JP7123897B2 - SEGMENT ASSEMBLY SUPPORT DEVICE AND SEGMENT ASSEMBLY SUPPORT METHOD - Google Patents

SEGMENT ASSEMBLY SUPPORT DEVICE AND SEGMENT ASSEMBLY SUPPORT METHOD Download PDF

Info

Publication number
JP7123897B2
JP7123897B2 JP2019223782A JP2019223782A JP7123897B2 JP 7123897 B2 JP7123897 B2 JP 7123897B2 JP 2019223782 A JP2019223782 A JP 2019223782A JP 2019223782 A JP2019223782 A JP 2019223782A JP 7123897 B2 JP7123897 B2 JP 7123897B2
Authority
JP
Japan
Prior art keywords
segment
ring
shape
new
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019223782A
Other languages
Japanese (ja)
Other versions
JP2021092086A (en
Inventor
吉隆 紀伊
琢郎 小坂
聡 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2019223782A priority Critical patent/JP7123897B2/en
Publication of JP2021092086A publication Critical patent/JP2021092086A/en
Application granted granted Critical
Publication of JP7123897B2 publication Critical patent/JP7123897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

本発明は、シールドトンネルの施工に用いられるセグメント組立支援装置と、シールドトンネルの施工時にセグメントの組立を支援する方法とに関する。 The present invention relates to a segment assembly support device used in shield tunnel construction and a method for supporting segment assembly during shield tunnel construction.

上下水道、共同溝、道路、鉄道等の管路として用いられるシールドトンネルは、シールド工法により構築される。シールド工法ではシールド掘進機が用いられる。シールド掘進機は、例えば、掘進機本体の外殻をなす筒状のスキンプレートと、このスキンプレートの前端部(切羽側端部)に設けられて地山を掘削するカッタヘッドと、スキンプレートの内側に設けられる推進ジャッキとを備える。 Shield tunnels used as pipelines for water supply and sewerage, utility tunnels, roads, railroads, etc. are constructed by the shield construction method. A shield tunneling machine is used in the shield construction method. The shield machine includes, for example, a cylindrical skin plate forming the outer shell of the machine body, a cutter head provided at the front end (face side end) of the skin plate for excavating the ground, and the skin plate. and a propulsion jack provided inside.

シールド工法では、例えば、地山に発進立坑と到達立坑とを構築し、発進立坑から到達立坑へ向けてシールド掘進機で地山を掘削しながら、スキンプレートの後部(テール部)の内方でエレクター装置を用いて次々にセグメント(セグメントピース)をトンネル周方向に組み立ててセグメントリングを構築すると共に、隣接するセグメントリング同士をトンネル軸方向で連結することで筒状の覆工体を構築する。この工法では、シールド掘進機は、その後方の既設セグメントリングを推進ジャッキで後方へ押圧し、その反力として発生する推力によって、地山を掘削しながら前進する。 In the shield construction method, for example, a starting vertical shaft and a reaching vertical shaft are constructed in the natural ground, and while excavating the natural ground from the starting vertical shaft to the reaching vertical shaft with a shield excavator, inside the rear part (tail part) of the skin plate A segment ring is constructed by assembling segments (segment pieces) one after another in the tunnel circumferential direction using an erector device, and a cylindrical lining body is constructed by connecting adjacent segment rings in the tunnel axial direction. In this construction method, the shield machine pushes the existing segment ring behind it rearward with a propulsion jack and moves forward while excavating the natural ground by the thrust generated as the reaction force.

この点、特許文献1は、シールド工法で構築されたセグメントリングの真円度などを把握する手法を開示している。 In this regard, Patent Literature 1 discloses a method of grasping the roundness of the segment ring constructed by the shield construction method.

特開2015-030994号公報JP 2015-030994 A

しかしながら、特許文献1に開示の技術は、構築された後のセグメントリングの形状を事後的に把握するものである。ゆえに、セグメントリングの構築後でないとセグメントの組立精度の確認ができなかった。 However, the technique disclosed in Patent Literature 1 is to grasp the shape of the constructed segment ring after the fact. Therefore, the assembly accuracy of the segments could not be confirmed until after the segment ring was constructed.

本発明は、このような実状に鑑み、セグメントリングの構築途中であってもセグメントの組立精度を確認できるようにすることを目的とする。 SUMMARY OF THE INVENTION In view of such circumstances, it is an object of the present invention to enable confirmation of assembly accuracy of segments even during construction of a segment ring.

そのため本発明に係るセグメント組立支援装置は、シールドトンネルの施工に用いられるものである。本発明に係るセグメント組立支援装置は、シールド掘進機のエレクター装置の把持部で把持される組立途中のセグメントの位置及び姿勢に応じて、該セグメントを含む新設セグメントリングの形状のうち組立途中及び未組立部分の周の曲率を変化させることにより、新設セグメントリングの形状を予測するリング形状予測部を備える。 Therefore, the segment assembly support device according to the present invention is used for constructing a shield tunnel. According to the segment assembly support device according to the present invention, according to the position and attitude of the segment in the process of assembly gripped by the gripping portion of the erector device of the shield machine, the shape of the new segment ring including the segment is divided into half-assembled and unassembled shapes. A ring shape prediction unit is provided for predicting the shape of the new segment ring by changing the curvature of the circumference of the assembled portion .

本発明に係るセグメント組立支援方法は、シールドトンネルの施工時にセグメントの組立を支援する方法である。本発明に係るセグメント組立支援方法は、シールド掘進機のエレクター装置の把持部で把持される組立途中のセグメントの位置及び姿勢に応じて、該セグメントを含む新設セグメントリングの形状のうち組立途中及び未組立部分の周の曲率を変化させることにより、新設セグメントリングの形状を予測することを含む。 A segment assembly support method according to the present invention is a method for supporting segment assembly during construction of a shield tunnel. According to the segment assembly support method according to the present invention, according to the position and attitude of a segment in the process of assembly that is gripped by a gripping portion of an erector device of a shield machine, the shape of a new segment ring including the segment is divided into half-assembled and unassembled segments. It involves predicting the shape of the new segmented ring by varying the curvature of the perimeter of the assembly .

本発明によれば、シールド掘進機のエレクター装置の把持部で把持されるセグメントの状態に基づいて、該セグメントを含む新設セグメントリングの形状を予測する。ゆえに、新設セグメントリングの構築途中であってもセグメントの組立精度を確認することができる。 According to the present invention, the shape of the new segment ring including the segment is predicted based on the state of the segment gripped by the gripping portion of the erector device of the shield machine. Therefore, it is possible to check the assembly accuracy of the segments even during the construction of the new segment ring.

本発明の一実施形態におけるシールド掘進機の概略構成図Schematic configuration diagram of a shield machine in one embodiment of the present invention 図1のA-A断面図AA sectional view of FIG. 図2のB-B断面図BB sectional view of FIG. 第1距離センサの測定対象領域及び撮像装置の撮像対象領域を示す図FIG. 4 is a diagram showing a measurement target area of the first distance sensor and an imaging target area of the imaging device; 第2距離センサの概略構成を示す図A diagram showing a schematic configuration of the second distance sensor セグメント組立支援装置の概略構成を示す図The figure which shows the schematic structure of a segment assembly assistance apparatus. 目開き量及び目違い量の測定結果の一例を示す図A diagram showing an example of measurement results of the amount of opening and the amount of misalignment 既設セグメントリングを示す図Diagram showing the existing segment ring 図8に対応する、画面表示される既設セグメントリングの形状を示す図A diagram showing the shape of the existing segment ring displayed on the screen, corresponding to FIG. 新設セグメントリングにおける3番目のセグメントの組立が完了した後を示す図View after assembly of the third segment in the new segmented ring is completed 図10に対応する、画面表示される既設セグメントリングの形状及び新設セグメントリングの第1予測形状を示す図A diagram showing the shape of the existing segment ring and the first predicted shape of the new segment ring displayed on the screen, corresponding to FIG. 新設セグメントリングにおける4番目のセグメントの組立途中を示す図Diagram showing the assembly of the 4th segment in the new segmented ring 図12に対応する、画面表示される既設セグメントリングの形状、新設セグメントリングの第1予測形状、及び、新設セグメントリングの第2予測形状を示す図A diagram showing the shape of the existing segment ring, the first predicted shape of the new segment ring, and the second predicted shape of the new segment ring displayed on the screen, corresponding to FIG. 新設セグメントリングにおける4番目のセグメントの組立が完了した後を示す図View after assembly of the 4th segment in the new segmented ring is complete 図14に対応する、画面表示される既設セグメントリングの形状、新設セグメントリングの第1予測形状、及び、新設セグメントリングの第2予測形状を示す図A diagram showing the shape of the existing segment ring, the first predicted shape of the new segment ring, and the second predicted shape of the new segment ring displayed on the screen, corresponding to FIG. 新設セグメントリングの第1予測形状の作成処理の一例を説明するための図A diagram for explaining an example of processing for creating a first predicted shape of a new segment ring. 新設セグメントリングの第2予測形状の作成処理の一例を説明するための図A diagram for explaining an example of processing for creating a second predicted shape of a new segment ring. 画面表示の変形例を示す図Diagram showing modification of screen display

以下に本発明の実施の形態を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態におけるシールド掘進機の概略構成を示す。図2は図1のA-A断面図である。図3は図2のB-B断面図である。尚、図1及び図3に図示の旋回リング4については、図2で図示を省略している。また、図1及び図2に図示のフレーム部10及び第2距離センサ16a,16bについては、図3で図示を省略している。本実施形態では、便宜上、トンネル掘進方向を前進方向として前後左右を規定している。 FIG. 1 shows a schematic configuration of a shield machine according to one embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line AA of FIG. FIG. 3 is a cross-sectional view taken along line BB of FIG. 1 and 3 are omitted in FIG. 2. As shown in FIG. Also, the frame portion 10 and the second distance sensors 16a and 16b shown in FIGS. 1 and 2 are omitted in FIG. In this embodiment, for the sake of convenience, front, back, left, and right are defined with the direction of tunnel excavation as the forward direction.

本実施形態では、いわゆる泥土圧式のシールド掘進機を例にとってシールド掘進機の構成を説明するが、シールド掘進機の種類はこれに限らず、例えば、泥水式のシールド掘進機であってもよい。 In the present embodiment, the configuration of the shield machine will be described by taking a so-called mud pressure type shield machine as an example, but the type of the shield machine is not limited to this, and may be, for example, a slurry type shield machine.

トンネルの構築に用いられるシールド掘進機1は、その本体をなす筒状(例えば円筒状)のスキンプレート2を備える。シールド掘進機1は、スキンプレート2の前面に設けられたカッタヘッド(図示せず)で地山を掘削しながら土砂を取り込んで後方に搬出して掘進する。 A shield machine 1 used for constructing a tunnel is provided with a cylindrical (for example, cylindrical) skin plate 2 forming its main body. The shield excavator 1 excavates the natural ground with a cutter head (not shown) provided on the front surface of the skin plate 2, takes in earth and sand, carries them out rearward, and excavates.

シールド掘進機1のスキンプレート2より内側には、複数の推進ジャッキ(図示せず)が、スキンプレート2の内面に沿って周方向に互いに間隔を空けて配置されている。推進ジャッキはシリンダ(図示せず)とロッド(図示せず)とにより構成される油圧ジャッキである。シリンダは、その一端がスキンプレート2に固定されており、他端側にて、ロッドが進出・退入可能となっている。推進ジャッキのロッドの先端部を既設のセグメント(セグメントピース)SPに当接させた状態で推進ジャッキを伸長作動させることにより、シールド掘進機1は推進力を得ることができる。このようにして、推進ジャッキは、既設のセグメントSPから反力を取ってシールド掘進機1を推進させる。 Inside the skin plate 2 of the shield machine 1, a plurality of propulsion jacks (not shown) are arranged along the inner surface of the skin plate 2 at intervals in the circumferential direction. The propulsion jack is a hydraulic jack composed of a cylinder (not shown) and a rod (not shown). One end of the cylinder is fixed to the skin plate 2, and the other end allows the rod to advance and retract. The shield machine 1 can obtain propulsion force by operating the propulsion jack to extend while the tip of the rod of the propulsion jack is in contact with the existing segment (segment piece) SP. In this way, the propulsion jack takes reaction force from the existing segment SP to propel the shield machine 1 .

シールド掘進機1は、スキンプレート2の後部(テール部)2a内にエレクター装置3を備える。エレクター装置3は、旋回リング4と、一対の昇降ジャッキ5,5と、U字状のアーム6と、一対の軸方向ジャッキ7,7と、把持部8とを備える。 The shield machine 1 includes an erector device 3 inside a rear portion (tail portion) 2a of the skin plate 2. As shown in FIG. The erector device 3 comprises a slewing ring 4 , a pair of lifting jacks 5 , 5 , a U-shaped arm 6 , a pair of axial jacks 7 , 7 and a gripper 8 .

旋回リング4は、スキンプレート2の後部2a内に旋回可能に支持されていて、図示しない旋回モータにより駆動されることでシールド掘進機1の機軸(中心軸)MC回りに回転することができる。そして、旋回リング4には、機軸MCを挟んで両側に昇降ジャッキ5が取り付けられている。昇降ジャッキ5は例えば油圧ジャッキである。 The slewing ring 4 is slewingly supported in the rear portion 2a of the skin plate 2, and can be rotated around the machine axis (central axis) MC of the shield machine 1 by being driven by a slewing motor (not shown). Elevating jacks 5 are attached to both sides of the turning ring 4 with the axis MC interposed therebetween. The lifting jack 5 is, for example, a hydraulic jack.

一対の昇降ジャッキ5,5の各々の端部(図1~図3に示す状態では下端部)には、U字状のアーム6の端部(図1~図3に示す状態では上端部)が連結している。U字状のアーム6の中間部(折り返し部)6aには、一対の軸方向ジャッキ7,7の前端部が取り付けられている。一対の軸方向ジャッキ7,7の後端部には把持部8が取り付けられている。軸方向ジャッキ7は例えば油圧ジャッキである。把持部8は、弧状断面(例えば円弧状断面)を有するセグメントSPを把持できるように構成されている。 At each end of the pair of lifting jacks 5, 5 (the lower end in the state shown in FIGS. 1 to 3), the end of the U-shaped arm 6 (the upper end in the state shown in FIGS. 1 to 3) are connected. Front ends of a pair of axial jacks 7, 7 are attached to an intermediate portion (folded portion) 6a of the U-shaped arm 6. As shown in FIG. A gripping portion 8 is attached to the rear ends of the pair of axial jacks 7 , 7 . Axial jack 7 is, for example, a hydraulic jack. The gripping portion 8 is configured to grip a segment SP having an arcuate cross section (for example, an arcuate cross section).

把持部8にてセグメントSPを把持した状態で旋回リング4を旋回させることで、エレクター装置3は、セグメントSPを把持部8で把持しつつ、セグメントSPをトンネル周方向に移動させることができる。 By turning the turning ring 4 while the gripping portion 8 grips the segment SP, the erector device 3 can move the segment SP in the tunnel circumferential direction while gripping the segment SP with the gripping portion 8 .

把持部8にてセグメントSPを把持した状態で一対の昇降ジャッキ5,5を伸縮作動させることで、エレクター装置3は、セグメントSPを把持部8で把持しつつ、セグメントSPを旋回リング4に対してトンネル内外方向(例えばトンネル径方向)に移動させることができる。 By extending and retracting the pair of lifting jacks 5 and 5 while the segment SP is gripped by the gripping portion 8 , the erector device 3 grips the segment SP with the gripping portion 8 and moves the segment SP with respect to the slewing ring 4 . can be moved in and out of the tunnel (for example, radial direction of the tunnel).

把持部8にてセグメントSPを把持した状態で一対の軸方向ジャッキ7,7を伸縮作動させることで、エレクター装置3は、セグメントSPを把持部8で把持しつつ、セグメントSPをアーム6に対してトンネル軸方向(機軸方向)に移動させることができる。 By extending and contracting the pair of axial jacks 7 and 7 while the segment SP is gripped by the gripping portion 8 , the erector device 3 grips the segment SP with the gripping portion 8 and moves the segment SP to the arm 6 . can be moved in the tunnel axis direction (machine axis direction).

従って、エレクター装置3は、セグメントSPを把持部8で把持しつつ、セグメントSPをトンネル軸方向、内外方向、周方向に適宜移動させることができる。エレクター装置3は、スキンプレート2の後部2aの内方にて、その周方向にセグメントSPを組み立てて、筒状(例えば円筒状)のセグメントリングSRを構築する。セグメントSPの組み立てでは、まず、セグメントSPの組み立て位置に向けて、概ね、トンネル軸方向及び周方向に移動した後、トンネル内外方向に移動する(組立工程の第1段階)。そして、この移動してきたセグメントSPと既設のセグメントSPとの連結(相対位置の微調整を含む)が行われる(組立工程の第2段階)。ここで、例えば、セグメントSP同士の連結に用いられる連結具が雄型連結金具と雌型連結金具とからなり、これらを嵌合することでセグメントSP同士の連結が行われる場合において、前述の組立工程の第1段階では、一方のセグメントSPの雄型連結金具が他方のセグメントSPの雌型連結金具に隣接するまで前述の移動が行われ得る。 Therefore, the erector device 3 can appropriately move the segment SP in the tunnel axial direction, the inner and outer directions, and the circumferential direction while gripping the segment SP with the grip part 8 . The erector device 3 assembles the segments SP in the circumferential direction inside the rear portion 2a of the skin plate 2 to construct a tubular (for example, cylindrical) segment ring SR. In the assembly of the segment SP, first, the segments are moved generally in the tunnel axial direction and the circumferential direction toward the assembly position of the segment SP, and then moved in the tunnel inner and outer directions (the first step of the assembly process). Then, the segment SP that has moved and the existing segment SP are connected (including fine adjustment of the relative position) (second stage of the assembly process). Here, for example, in the case where the connecting tool used for connecting the segments SP consists of a male connecting metal fitting and a female connecting metal fitting, and the segments SP are connected to each other by fitting them together, the assembly described above is performed. In a first step of the process, the aforementioned movement can be performed until the male fitting of one segment SP is adjacent to the female fitting of the other segment SP.

把持部8には、把持部8からトンネル軸方向後方とトンネル周方向とに張り出すように枠体9が設けられている。枠体9には、複数(本実施形態では7つ)の第1距離センサP1~P7と、複数(本実施形態では5つ)の撮像装置Q1~Q5とが取り付けられている。つまり、複数の第1距離センサP1~P7と、複数の撮像装置Q1~Q5とが、枠体9を介して、エレクター装置3の把持部8に設けられている。尚、本実施形態では、枠体9に7つの第1距離センサP1~P7と5つの撮像装置Q1~Q5とが取り付けられる例を示しているが、枠体9に取り付けられる第1距離センサ及び撮像装置の個数は前述のものに限らない。 A frame body 9 is provided in the gripping portion 8 so as to protrude from the gripping portion 8 in the axial direction of the tunnel and in the circumferential direction of the tunnel. A plurality of (seven in this embodiment) first distance sensors P1 to P7 and a plurality of (five in this embodiment) imaging devices Q1 to Q5 are attached to the frame body 9 . In other words, a plurality of first distance sensors P1 to P7 and a plurality of imaging devices Q1 to Q5 are provided on the grip portion 8 of the erector device 3 via the frame 9. As shown in FIG. In this embodiment, an example in which seven first distance sensors P1 to P7 and five imaging devices Q1 to Q5 are attached to the frame 9 is shown. The number of imaging devices is not limited to that described above.

本実施形態では、第1距離センサP1と撮像装置Q1とが一体的に形成され、第1距離センサP3と撮像装置Q2とが一体的に形成され、第1距離センサP4と撮像装置Q3とが一体的に形成され、第1距離センサP5と撮像装置Q4とが一体的に形成され、第1距離センサP7と撮像装置Q5とが一体的に形成されている。第1距離センサP1~P7及び撮像装置Q1~Q5として、例えばキーエンス社製の超高速インラインプロファイル測定器(LJ-V7000シリーズ)を用いることができる。 In this embodiment, the first distance sensor P1 and the imaging device Q1 are integrally formed, the first distance sensor P3 and the imaging device Q2 are integrally formed, and the first distance sensor P4 and the imaging device Q3 are integrally formed. It is integrally formed, the first distance sensor P5 and the imaging device Q4 are integrally formed, and the first distance sensor P7 and the imaging device Q5 are integrally formed. As the first distance sensors P1 to P7 and imaging devices Q1 to Q5, for example, an ultra-high-speed in-line profile measuring device (LJ-V7000 series) manufactured by Keyence Corporation can be used.

図4は、第1距離センサP1~P7の線状又は帯状の測定対象領域LP1~LP7と、撮像装置Q1~Q5の矩形状の撮像対象領域IQ1~IQ5とを示す。ここで、図4に示すセグメントSPEは、前述のセグメントSPのうちエレクター装置3の把持部8で把持されているものを示す。 FIG. 4 shows linear or band-shaped measurement target areas LP1-LP7 of the first distance sensors P1-P7 and rectangular imaging target areas IQ1-IQ5 of the imaging devices Q1-Q5. Here, the segment SPE shown in FIG. 4 indicates the segment held by the holding part 8 of the erector device 3 among the segments SP described above.

第1距離センサP1~P7は、各々が、セグメントSPEの縁部(内面の周縁部)と間隔を空けて対向している。また、第1距離センサP1~P7は、セグメントSPEの縁部(内面の周縁部)に沿って間隔を空けて並んでいる。 Each of the first distance sensors P1 to P7 faces the edge of the segment SPE (peripheral edge of the inner surface) with a gap therebetween. Also, the first distance sensors P1 to P7 are arranged at intervals along the edge of the segment SPE (periphery of the inner surface).

第1距離センサP1~P7は、各々が、図示しない照射部及び受光部を備える。第1距離センサP1~P7は、各々の照射部から各々の測定対象領域LP1~LP7に向けてラインレーザを照射する。第1距離センサP1~P7の各々の受光部は、ラインレーザの反射光を受光する。第1距離センサP1~P7として前述のプロファイル測定器が用いられる場合には、第1距離センサP1~P7の各々の受光部で受光される反射光から、測定対象領域LP1~LP7の断面形状が瞬時に取得され得る。この取得された断面形状データを用いて、測定対象領域LP1~LP7におけるセグメントSP間の目開き量や目違い量などの寸法測定を行うことができる。ここで、ラインレーザとは、一定の線幅を持つライン状に照射されて扇形の2次元平面の光路を形成するレーザである。 Each of the first distance sensors P1 to P7 has an irradiating section and a light receiving section (not shown). The first distance sensors P1 to P7 irradiate line lasers from their respective irradiating units toward their respective measurement target regions LP1 to LP7. Each light receiving portion of the first distance sensors P1 to P7 receives the reflected light of the line laser. When the profile measuring device described above is used as the first distance sensors P1 to P7, the cross-sectional shape of the measurement target regions LP1 to LP7 can be determined from the reflected light received by the light receiving portions of the first distance sensors P1 to P7. can be obtained instantly. Using the obtained cross-sectional shape data, it is possible to measure dimensions such as the amount of opening and the amount of misalignment between segments SP in the measurement target regions LP1 to LP7. Here, the line laser is a laser that irradiates in a line having a constant line width to form a fan-shaped two-dimensional plane optical path.

本実施形態において、「目開き量」とは、トンネル軸方向又は周方向で隣り合うセグメントSP同士の間の隙間(距離)である。本実施形態において、第1距離センサP1~P7は、セグメントSPEと、セグメントSPEに隣接する既設のセグメントSPとの間の目開き量を測定することができる。 In the present embodiment, the "splitting amount" is the gap (distance) between segments SP adjacent to each other in the tunnel axial direction or circumferential direction. In this embodiment, the first distance sensors P1 to P7 can measure the opening amount between the segment SPE and the existing segment SP adjacent to the segment SPE.

本実施形態において、「目違い量」とは、トンネル軸方向又は周方向で隣り合うセグメントSP同士の間の段差(トンネル内外方向(換言すればセグメントSPの厚さ方向)でのずれ量)である。本実施形態において、第1距離センサP1~P7は、セグメントSPEと、セグメントSPEに隣接する既設のセグメントSPとの間の目違い量を測定することができる。 In the present embodiment, the "misalignment amount" is the level difference between the segments SP adjacent in the tunnel axial direction or the circumferential direction (the amount of deviation in the tunnel inside and outside direction (in other words, the thickness direction of the segment SP)). be. In this embodiment, the first distance sensors P1-P7 can measure the amount of misalignment between the segment SPE and the existing segment SP adjacent to the segment SPE.

ここで、測定対象領域LP1~LP7は、セグメントSPEの縁部(内面の周縁部)と、このセグメントSPEに隣接する既設のセグメントSPの縁部(内面の周縁部)とに跨り得るように設定されている。ゆえに、測定対象領域LP1~LP7は、セグメントSPEの縁部と、このセグメントSPEに隣接する既設のセグメントSPの縁部とを含む。本実施形態では、例えば、前述の組立工程の第1段階の終盤から第2段階にかけて、測定対象領域LP1~LP7が、セグメントSPEの縁部(内面の周縁部)と、このセグメントSPEに隣接する既設のセグメントSPの縁部(内面の周縁部)とに跨り得るように、測定対象領域LP1~LP7の範囲が予め設定されている。 Here, the measurement target areas LP1 to LP7 are set so as to straddle the edge of the segment SPE (periphery of the inner surface) and the edge of the existing segment SP adjacent to this segment SPE (periphery of the inner surface). It is Therefore, the measurement target areas LP1-LP7 include the edge of the segment SPE and the edge of the existing segment SP adjacent to this segment SPE. In this embodiment, for example, from the end of the first stage to the second stage of the assembly process described above, the measurement target areas LP1 to LP7 are the edges of the segment SPE (periphery of the inner surface) and adjacent to the segment SPE. The ranges of the measurement target areas LP1 to LP7 are set in advance so that they can straddle the edges of the existing segment SP (periphery of the inner surface).

本実施形態では、セグメントSPEのトンネル周方向一側の縁部α1に測定対象領域LP1,LP2がオーバーラップしている。セグメントSPEのトンネル軸方向後側(坑口側)の縁部α2に測定対象領域LP3~LP5がオーバーラップしている。セグメントSPEのトンネル周方向他側の縁部α3に測定対象領域LP6,LP7がオーバーラップしている。 In this embodiment, the measurement target areas LP1 and LP2 overlap the edge α1 on one side in the tunnel circumferential direction of the segment SPE. The measurement target regions LP3 to LP5 overlap the edge α2 on the rear side (pithead side) of the segment SPE in the tunnel axial direction. The measurement target regions LP6 and LP7 overlap the edge α3 of the segment SPE on the other side in the tunnel circumferential direction.

尚、第1距離センサP1~P7は、照射したレーザー光が測定対象との間を往復する時間と光速度とに基づいて、第1距離センサP1~P7から測定対象までの距離を算出することができる。すなわち、本実施形態では、第1距離センサP1~P7は、レーザー光を測定対象に向けて照射して測定対象までの距離を測定するものでもある。 The first distance sensors P1 to P7 calculate the distance from the first distance sensors P1 to P7 to the object to be measured based on the reciprocating time of the irradiated laser light to the object to be measured and the speed of light. can be done. That is, in the present embodiment, the first distance sensors P1 to P7 also measure the distance to the measurement target by irradiating the laser light toward the measurement target.

撮像装置Q1~Q5は、各々が、セグメントSPEの縁部(内面の周縁部)と間隔を空けて対向している。また、撮像装置Q1~Q5は、セグメントSPEの縁部(内面の周縁部)に沿って間隔を空けて並んでいる。撮像装置Q1~Q5は、例えばCCDカメラ又はCMOSカメラである。 Each of the imaging devices Q1 to Q5 faces the edge of the segment SPE (peripheral edge of the inner surface) with a gap therebetween. The imaging devices Q1 to Q5 are arranged at intervals along the edge of the segment SPE (periphery of the inner surface). The imaging devices Q1-Q5 are, for example, CCD cameras or CMOS cameras.

撮像装置Q1によって撮像される領域である撮像対象領域IQ1は、第1距離センサP1の測定対象領域LP1を含む。撮像装置Q2によって撮像される領域である撮像対象領域IQ2は、第1距離センサP2,P3の測定対象領域LP2,LP3を含む。撮像装置Q3によって撮像される領域である撮像対象領域IQ3は、第1距離センサP4の測定対象領域LP4を含む。撮像装置Q4によって撮像される領域である撮像対象領域IQ4は、第1距離センサP5,P6の測定対象領域LP5,LP6を含む。撮像装置Q5によって撮像される領域である撮像対象領域IQ5は、第1距離センサP7の測定対象領域LP7を含む。 An imaging target area IQ1, which is an area imaged by the imaging device Q1, includes the measurement target area LP1 of the first distance sensor P1. An imaging target area IQ2, which is an area imaged by the imaging device Q2, includes measurement target areas LP2 and LP3 of the first distance sensors P2 and P3. An imaging target area IQ3, which is an area imaged by the imaging device Q3, includes the measurement target area LP4 of the first distance sensor P4. An imaging target area IQ4, which is an area imaged by the imaging device Q4, includes measurement target areas LP5 and LP6 of the first distance sensors P5 and P6. An imaging target area IQ5, which is an area imaged by the imaging device Q5, includes a measurement target area LP7 of the first distance sensor P7.

撮像対象領域IQ1~IQ5は、セグメントSPEの縁部(内面の周縁部)と、このセグメントSPEに隣接する既設のセグメントSPの縁部(内面の周縁部)とに跨り得るように設定されている。ゆえに、撮像対象領域IQ1~IQ5は、セグメントSPEの縁部と、このセグメントSPEに隣接する既設のセグメントSPの縁部とを含む。本実施形態では、例えば、前述の組立工程の第1段階の終盤から第2段階にかけて、撮像対象領域IQ1~IQ5が、セグメントSPEの縁部(内面の周縁部)と、このセグメントSPEに隣接する既設のセグメントSPの縁部(内面の周縁部)とに跨り得るように、撮像対象領域IQ1~IQ5の範囲が予め設定されている。 The imaging target areas IQ1 to IQ5 are set so as to straddle the edge of the segment SPE (periphery of the inner surface) and the edge of the existing segment SP adjacent to this segment SPE (periphery of the inner surface). . Therefore, the imaging target areas IQ1-IQ5 include the edge of the segment SPE and the edge of the existing segment SP adjacent to this segment SPE. In the present embodiment, for example, from the end of the first stage to the second stage of the assembly process described above, the imaging target areas IQ1 to IQ5 are the edges of the segment SPE (periphery of the inner surface) and adjacent to the segment SPE. The ranges of the imaging target areas IQ1 to IQ5 are set in advance so that they can straddle the edges of the existing segments SP (peripheries of the inner surface).

本実施形態では、撮像対象領域IQ1は、セグメントSPEのトンネル周方向一側の縁部α1と、セグメントSPEのトンネル軸方向前側(切羽側)の縁部α4とにオーバーラップしている。撮像対象領域IQ2は、セグメントSPEのトンネル周方向一側の縁部α1と、セグメントSPEのトンネル軸方向後側(坑口側)の縁部α2とにオーバーラップしている。撮像対象領域IQ3は、セグメントSPEのトンネル軸方向後側(坑口側)の縁部α2にオーバーラップしている。撮像対象領域IQ4は、セグメントSPEのトンネル周方向他側の縁部α3と、セグメントSPEのトンネル軸方向後側(坑口側)の縁部α2とにオーバーラップしている。撮像対象領域IQ5は、セグメントSPEのトンネル周方向他側の縁部α3と、セグメントSPEのトンネル軸方向前側(切羽側)の縁部α4とにオーバーラップしている。 In this embodiment, the imaging target region IQ1 overlaps the edge α1 on one side in the tunnel circumferential direction of the segment SPE and the edge α4 on the front side (face side) in the tunnel axial direction of the segment SPE. The imaging target region IQ2 overlaps an edge α1 on one side in the tunnel circumferential direction of the segment SPE and an edge α2 on the rear side (pithead side) of the segment SPE in the tunnel axial direction. The imaging target region IQ3 overlaps the edge α2 on the rear side (pithead side) in the tunnel axial direction of the segment SPE. The imaging target region IQ4 overlaps the edge α3 of the segment SPE on the other side in the tunnel circumferential direction and the edge α2 of the segment SPE on the rear side (pithead side) in the tunnel axial direction. The imaging target region IQ5 overlaps the edge α3 on the other side in the tunnel circumferential direction of the segment SPE and the edge α4 on the front side (face side) in the tunnel axial direction of the segment SPE.

図1及び図2に示すように、シールド掘進機1は、その中央部にフレーム部10を有する。フレーム部10はシールド掘進機1のシールド隔壁(図示せず)から機軸MCに沿って後方に延在している。フレーム部10は、エレクター装置3の旋回動作等に干渉しない位置に設けられている。フレーム部10は、平面視で略矩形状を有する上フレーム11及び下フレーム12と、下フレーム12の左右両側より立ち上がって各々の上端が上フレーム11に固定された複数の柱部材13と、両端が上フレーム11の左右両側に連結された複数のビーム部材14と、両端が下フレーム12の左右両側に連結された複数のビーム部材15とにより構成されている。 As shown in FIGS. 1 and 2, the shield machine 1 has a frame portion 10 at its central portion. The frame portion 10 extends rearward from a shield partition wall (not shown) of the shield machine 1 along the machine axis MC. The frame portion 10 is provided at a position that does not interfere with the turning motion of the erector device 3 or the like. The frame portion 10 includes an upper frame 11 and a lower frame 12 which are substantially rectangular in plan view, a plurality of column members 13 rising from both left and right sides of the lower frame 12 and having their upper ends fixed to the upper frame 11, and is composed of a plurality of beam members 14 connected to both left and right sides of the upper frame 11 and a plurality of beam members 15 having both ends connected to both left and right sides of the lower frame 12 .

フレーム部10の上面中央部(例えばビーム部材14の左右方向中央部)には、第2距離センサ16aが配置されている。フレーム部10の下面中央部(例えばビーム部材15の左右方向中央部)には、第2距離センサ16bが配置されている。 A second distance sensor 16a is arranged in the central portion of the upper surface of the frame portion 10 (for example, the central portion in the horizontal direction of the beam member 14). A second distance sensor 16b is arranged in the center portion of the lower surface of the frame portion 10 (for example, the center portion in the horizontal direction of the beam member 15).

図5は、第2距離センサ16aの概略構成を示す。第2距離センサ16aは、その本体部17と、反射器18と、回転機構19とを備える。第2距離センサ16aの本体部17は、機軸方向に沿うようにレーザー光を照射する。反射器18は、本体部17からのレーザー光を90°反射させて、その反射光を、スキンプレート2の後部2a内にて径方向外側に向かわせる。第2距離センサ16aの本体部17は、反射器18からの反射光が測定対象との間を往復する時間と光速度とに基づいて、第2距離センサ16aから測定対象までの距離を算出することができる。 FIG. 5 shows a schematic configuration of the second distance sensor 16a. The second distance sensor 16 a includes a main body 17 , a reflector 18 and a rotating mechanism 19 . The main body 17 of the second distance sensor 16a emits laser light along the machine axis direction. The reflector 18 reflects the laser light from the main body 17 by 90° and directs the reflected light outward in the rear portion 2a of the skin plate 2 in the radial direction. The main body 17 of the second distance sensor 16a calculates the distance from the second distance sensor 16a to the object to be measured based on the speed of light and the time it takes the reflected light from the reflector 18 to travel back and forth between the object to be measured. be able to.

ここで、反射器18を回転機構19によりレーザー反射点18aを中心に回転させると、反射光が照射される対象(測定対象)の位置が、スキンプレート2の周方向に沿って移動する。すなわち、第2距離センサ16aは、レーザー光の照射方向を変更可能に構成されている。尚、第2距離センサ16bは、第2距離センサ16aと同様の構成であるので、その説明を省略する。 Here, when the reflector 18 is rotated around the laser reflection point 18 a by the rotation mechanism 19 , the position of the target (measurement target) irradiated with the reflected light moves along the circumferential direction of the skin plate 2 . That is, the second distance sensor 16a is configured to be able to change the irradiation direction of the laser beam. The second distance sensor 16b has the same configuration as the second distance sensor 16a, so the description thereof will be omitted.

図2には、第2距離センサ16aの距離測定可能範囲M1と、第2距離センサ16bの距離測定可能範囲M2とが示されている。ゆえに、2個の第2距離センサ16a,16bの距離測定可能範囲M1,M2を組み合わせることにより、スキンプレート2の後部2aの全周のうちの大部分を距離測定可能範囲としてカバーすることができる。 FIG. 2 shows a distance measurable range M1 of the second distance sensor 16a and a distance measurable range M2 of the second distance sensor 16b. Therefore, by combining the distance measurable ranges M1 and M2 of the two second distance sensors 16a and 16b, most of the entire circumference of the rear portion 2a of the skin plate 2 can be covered as the distance measurable range. .

第2距離センサ16a,16bの各々の反射器18からのレーザー光をエレクター装置3の把持部8が遮る場合には、把持部8をスキンプレート2の周方向に沿って移動させることで、レーザー光を測定対象に照射することができる。 When the gripping portion 8 of the erector device 3 blocks the laser beam from each of the reflectors 18 of the second distance sensors 16a and 16b, the gripping portion 8 is moved along the circumferential direction of the skin plate 2 so that the laser light is Light can be applied to the object to be measured.

図6は、セグメント組立支援装置20の概略構成を示す図であり、第1距離センサP1~P7、撮像装置Q1~Q5、第2距離センサ16a,16b、制御装置22、及び出力装置23の関係を示すブロック図である。 FIG. 6 is a diagram showing a schematic configuration of the segment assembly support device 20, and the relationship between the first distance sensors P1 to P7, the imaging devices Q1 to Q5, the second distance sensors 16a and 16b, the control device 22, and the output device 23. 2 is a block diagram showing .

セグメント組立支援装置20は、シールドトンネルの施工に用いられるものである。セグメント組立支援装置20は、エレクター装置3の把持部8で把持されるセグメントSPEの状態(例えば、既設のセグメントSPに対するセグメントSPEの状態)を測定する装置としての機能を備える。 The segment assembly support device 20 is used for constructing a shield tunnel. The segment assembly support device 20 has a function as a device that measures the state of the segment SPE gripped by the gripping portion 8 of the erector device 3 (for example, the state of the segment SPE with respect to the existing segment SP).

セグメント組立支援装置20は、第1距離センサP1~P7と、撮像装置Q1~Q5と、第2距離センサ16a,16bと、制御装置22と、出力装置23とを備える。ここで、第1距離センサP1~P7により、本発明の「セグメント状態測定装置」の機能が実現され得る。このセグメント状態測定装置は、セグメントSPEの状態を測定する装置である。本実施形態では、例えば、前述の組立工程の第1段階から第2段階にかけて、このセグメント状態測定装置による測定を実施することが可能である。ここにおいて、前述の組立工程の第1段階では、エレクター装置3の把持部8で把持されるセグメントSPEが既設のセグメントSPに近づけられる。また本実施形態では、エレクター装置3の把持部8で把持されるセグメントSPEが既設のセグメントSPに近づけられている最中に(つまり移動中に)、このセグメント状態測定装置による測定を実施することができる。 The segment assembly support device 20 includes first distance sensors P1-P7, imaging devices Q1-Q5, second distance sensors 16a and 16b, a control device 22, and an output device . Here, the function of the "segment state measuring device" of the present invention can be realized by the first distance sensors P1 to P7. This segment state measuring device is a device for measuring the state of the segment SPE. In this embodiment, for example, it is possible to carry out measurement by this segment condition measuring device from the first stage to the second stage of the above-described assembly process. Here, in the first stage of the assembly process described above, the segment SPE gripped by the gripping portion 8 of the erector device 3 is brought closer to the existing segment SP. Further, in this embodiment, while the segment SPE gripped by the gripping portion 8 of the erector device 3 is being brought closer to the existing segment SP (that is, during movement), the measurement by the segment state measuring device is performed. can be done.

第1距離センサP1~P7は信号線24を介して制御装置22に接続されている。撮像装置Q1~Q5は信号線25を介して制御装置22に接続されている。尚、本実施形態では、信号線24,25が別体であるが、この他、信号線24,25は一体化されたものであってもよい。第2距離センサ16a,16bは信号線26を介して制御装置22に接続されている。 The first distance sensors P1-P7 are connected to the controller 22 via signal lines 24. As shown in FIG. The imaging devices Q1 to Q5 are connected to the control device 22 via the signal line 25. FIG. Although the signal lines 24 and 25 are separate in this embodiment, the signal lines 24 and 25 may be integrated. The second distance sensors 16a, 16b are connected to the controller 22 via signal lines 26. FIG.

制御装置22と出力装置23とは、相互に無線通信ができるように構成されている。出力装置23は、例えば、タブレット型端末などのモバイル端末である。出力装置23については、作業者によって持ち運びしやすいものが好ましい。出力装置23は、制御装置22にて処理された各種情報を表示する表示部(表示画面)23aを備える。 The control device 22 and the output device 23 are configured to be able to communicate wirelessly with each other. The output device 23 is, for example, a mobile terminal such as a tablet terminal. It is preferable that the output device 23 be easily carried by the operator. The output device 23 includes a display section (display screen) 23a for displaying various information processed by the control device 22 .

第1距離センサP1~P7の各々にて測定された、前述の目開き量及び目違い量に対応する信号と、測定対象までの距離に対応する信号とは、信号線24を介して制御装置22に伝達される。撮像装置Q1~Q5の各々によって撮られた画像に対応する信号は、信号線25を介して制御装置22に伝達される。第2距離センサ16a,16bの各々にて測定された、測定対象までの距離に対応する信号は、その測定時の第2距離センサ16a,16bの各々の回転機構19の回転角に対応する信号と共に、信号線26を介して制御装置22に伝達される。 Signals corresponding to the aforementioned eye opening amount and misalignment amount measured by each of the first distance sensors P1 to P7 and a signal corresponding to the distance to the object to be measured are sent to the control device via the signal line 24. 22. Signals corresponding to images captured by each of imaging devices Q1-Q5 are transmitted to control device 22 via signal line 25. FIG. A signal corresponding to the distance to the object to be measured, which is measured by each of the second distance sensors 16a and 16b, is a signal corresponding to the rotation angle of the rotation mechanism 19 of each of the second distance sensors 16a and 16b at the time of the measurement. together with the signal is transmitted to the control device 22 via the signal line 26 .

制御装置22は、記憶部22aと、目開き量及び目違い量測定部22bと、画像処理部22cと、既設リング形状測定部22dと、第1新設リング形状予測部22eと、第2新設リング形状予測部22fとを備える。記憶部22aは、制御装置22に伝達される各種情報と、制御装置22での処理結果を含む各種情報とを格納することができる。 The control device 22 includes a storage unit 22a, an eye opening amount and misalignment amount measuring unit 22b, an image processing unit 22c, an existing ring shape measuring unit 22d, a first new ring shape predicting unit 22e, and a second new ring. and a shape prediction unit 22f. The storage unit 22a can store various types of information transmitted to the control device 22 and various types of information including processing results in the control device 22 .

第1距離センサP1~P7及び撮像装置Q1~Q5から制御装置22に伝達された前述の目開き量、目違い量、及び画像に対応する信号については、目開き量及び目違い量測定部22bと画像処理部22cとで適宜処理が行われて、その処理結果が制御装置22から出力装置23に無線通信で伝達される。 Signals corresponding to the above-described eye opening amount, misalignment amount, and image transmitted from the first distance sensors P1 to P7 and the imaging devices Q1 to Q5 to the control device 22 are measured by the eye opening amount and misalignment amount measurement unit 22b. and the image processing unit 22c appropriately perform processing, and the processing result is transmitted from the control device 22 to the output device 23 by wireless communication.

作業者は、出力装置23の表示部23aの画面表示などを確認することで、エレクター装置3の把持部8で把持されるセグメントSPEの状態を把握することができる。つまり、作業者は、出力装置23の表示部23aの画面表示などを確認することで、測定対象領域LP1~LP7における、セグメントSPEと、セグメントSPEに隣接する既設のセグメントSPとの間の目開き量及び目違い量の具体的な数値を把握することができる。これに加えて、作業者は、出力装置23の表示部23aの画面表示などを確認することで、撮像対象領域IQ1~IQ5における、セグメントSPEと、セグメントSPEに隣接する既設のセグメントSPとの間の目開き状況及び目違い状況を画像で把握することができる。 The operator can grasp the state of the segment SPE gripped by the gripping section 8 of the erector device 3 by checking the screen display of the display section 23 a of the output device 23 . In other words, by checking the screen display of the display unit 23a of the output device 23, the operator can confirm the opening between the segment SPE and the existing segment SP adjacent to the segment SPE in the measurement target regions LP1 to LP7. It is possible to grasp specific numerical values of the amount and the amount of misalignment. In addition to this, by checking the screen display of the display unit 23a of the output device 23, the operator can see the distance between the segment SPE and the existing segment SP adjacent to the segment SPE in the imaging target regions IQ1 to IQ5. It is possible to grasp the state of eye opening and the state of misalignment in the image.

従って、セグメント組立施工時に、作業者は、出力装置23の表示部23aの画面表示などに基づいて、セグメントSPEと、セグメントSPEに隣接する既設のセグメントSPとの間の目開き及び目違いを最小化するようにエレクター装置3の作動を修正することができる。 Therefore, when assembling the segment, the worker minimizes the gap and misalignment between the segment SPE and the existing segment SP adjacent to the segment SPE based on the screen display of the display unit 23a of the output device 23. The operation of the erector device 3 can be modified so that the

図7は、出力装置23に画面表示され得る、前述の目開き量及び目違い量の測定結果の一例を示す図である。この例では、図4に示すセグメントSPEの縁部α1,α2の隣に既設のセグメントSPが位置している一方、セグメントSPEの縁部α3,α4の隣には既設のセグメントSPが存在しない状況を示している。 FIG. 7 is a diagram showing an example of the measurement results of the aforementioned eye opening amount and misalignment amount that can be displayed on the screen of the output device 23 . In this example, the existing segment SP is located next to the edges α1 and α2 of the segment SPE shown in FIG. 4, while the existing segment SP does not exist next to the edges α3 and α4 of the segment SPE. is shown.

図6に戻り、第1距離センサP1~P7と第2距離センサ16a,16bとのそれぞれから制御装置22に伝達された前述の測定対象までの距離に対応する信号については、既設リング形状測定部22d、第1新設リング形状予測部22e、及び第2新設リング形状予測部22fで適宜処理が行われて、その処理結果が制御装置22から出力装置23に無線通信で伝達される。 Returning to FIG. 6, the signals corresponding to the distances to the measurement object transmitted from the first distance sensors P1 to P7 and the second distance sensors 16a and 16b to the control device 22 are obtained from the existing ring shape measuring unit. 22d, the first new ring shape prediction unit 22e, and the second new ring shape prediction unit 22f perform appropriate processing, and the processing results are transmitted from the control device 22 to the output device 23 by wireless communication.

作業者は、出力装置23の表示部23aの画面表示などを確認することで、エレクター装置3の把持部8で把持されるセグメントSPEの組立精度を把握することができる。この組立精度の把握には、例えば、後述する既設セグメントリング30の形状31、及び、新設セグメントリング40の第1予測形状41及び第2予測形状42の画面表示が用いられ得る。この点の詳細については、図8~図17を用いて後述する。 By checking the screen display of the display section 23 a of the output device 23 , the operator can grasp the assembly accuracy of the segment SPE gripped by the grip section 8 of the erector device 3 . For grasping the assembly accuracy, for example, a screen display of a shape 31 of the existing segment ring 30 and a first predicted shape 41 and a second predicted shape 42 of the new segment ring 40, which will be described later, can be used. Details of this point will be described later with reference to FIGS.

従って、セグメント組立施工時に、作業者は、出力装置23の表示部23aの画面表示などに基づいて、セグメントSPEの組立精度を向上するようにエレクター装置3の作動を修正することができる。 Therefore, when assembling the segment, the operator can correct the operation of the erector device 3 so as to improve the assembly accuracy of the segment SPE based on the screen display of the display section 23a of the output device 23 and the like.

次に、セグメント組立支援装置20を用いる、新設セグメントリング40の構築方法(セグメント組立方法)について、図8~図15を用いて説明する。図8は、既設セグメントリング30を示す図である。図9は、図8に対応する、表示部23aにて画面表示される既設セグメントリング30の形状31を示す図である。図10は、新設セグメントリング40における3番目のセグメントSP3の組立が完了した後を示す図である。図11は、図10に対応する、表示部23aにて画面表示される既設セグメントリング30の形状31及び新設セグメントリング40の第1予測形状41を示す図である。図12は、新設セグメントリング40における4番目のセグメントSP4の組立途中を示す図である。図13は、図12に対応する、表示部23aにて画面表示される既設セグメントリング30の形状31、新設セグメントリング40の第1予測形状41、及び、新設セグメントリング40の第2予測形状42を示す図である。図14は、新設セグメントリング40における4番目のセグメントSP4の組立が完了した後を示す図である。図15は、図14に対応する、表示部23aにて画面表示される既設セグメントリング30の形状31、新設セグメントリング40の第1予測形状41、及び、新設セグメントリング40の第2予測形状42を示す図である。 Next, the construction method (segment assembly method) of the new segment ring 40 using the segment assembly support device 20 will be described with reference to FIGS. 8 to 15. FIG. FIG. 8 is a diagram showing the existing segment ring 30. As shown in FIG. FIG. 9 is a diagram showing the shape 31 of the existing segment ring 30 displayed on the screen of the display section 23a, corresponding to FIG. FIG. 10 is a diagram showing the state after the assembly of the third segment SP3 in the new segment ring 40 is completed. FIG. 11 is a diagram showing the shape 31 of the existing segment ring 30 and the first predicted shape 41 of the new segment ring 40 displayed on the screen of the display unit 23a, corresponding to FIG. FIG. 12 is a diagram showing the assembly of the fourth segment SP4 in the new segment ring 40 during assembly. 13 shows the shape 31 of the existing segment ring 30, the first predicted shape 41 of the new segment ring 40, and the second predicted shape 42 of the new segment ring 40 displayed on the display unit 23a, corresponding to FIG. It is a figure which shows. FIG. 14 is a diagram showing the state after the assembly of the fourth segment SP4 in the new segment ring 40 is completed. 15 shows the shape 31 of the existing segment ring 30, the first predicted shape 41 of the new segment ring 40, and the second predicted shape 42 of the new segment ring 40 displayed on the screen of the display unit 23a, corresponding to FIG. It is a figure which shows.

本実施形態では、既設セグメントリング30の切羽側に隣接して新設セグメントリング40が構築される。ここにおいて、既設セグメントリング30は、N-1番目に構築されるセグメントリングSRであり、新設セグメントリング40は、N番目に構築されるセグメントリングSRである(Nは2以上の整数)。 In this embodiment, the new segment ring 40 is constructed adjacent to the face side of the existing segment ring 30 . Here, the existing segment ring 30 is the (N-1)th segment ring SR constructed, and the new segment ring 40 is the Nth segment ring SR (N is an integer equal to or greater than 2).

新設セグメントリング40の構築方法では、まず、図8に示すように、既設セグメントリング30の形状(内空形状)31を、第2距離センサ16a,16bを用いて測定する。この工程では、第2距離センサ16a,16bの測定結果に基づいて、制御装置22の既設リング形状測定部22dにて適宜処理を行い、その結果が出力装置23に送られて、出力装置23の表示部23aにて既設セグメントリング30の形状31が表示される(図9参照)。 In the method for constructing the new segment ring 40, first, as shown in FIG. 8, the shape (inner hollow shape) 31 of the existing segment ring 30 is measured using the second distance sensors 16a and 16b. In this process, based on the measurement results of the second distance sensors 16a and 16b, the existing ring shape measuring unit 22d of the control device 22 performs appropriate processing, and the results are sent to the output device 23. The shape 31 of the existing segment ring 30 is displayed on the display section 23a (see FIG. 9).

本実施形態において、既設リング形状測定部22dが、本発明の「リング形状測定部」に対応し得る。また、既設セグメントリング30の形状31は、本発明の「基準セグメントリングの形状」となり得る。 In this embodiment, the existing ring shape measuring section 22d can correspond to the "ring shape measuring section" of the present invention. Also, the shape 31 of the existing segment ring 30 can be the "shape of the reference segment ring" of the present invention.

次に、シールド掘進機1の推進ジャッキを伸長する。これにより、既設セグメントリング30がスキンプレート2の後部2aの後方に押し出される。その反力により、シールド掘進機1は前方に推進される。 Next, the propulsion jack of the shield machine 1 is extended. As a result, the existing segment ring 30 is pushed out behind the rear portion 2 a of the skin plate 2 . The reaction force propels the shield machine 1 forward.

次に、エレクター装置3を用いて、新設セグメントリング40を構成する所定の個数のセグメントSPを組み立てる。ここで、前述の所定の個数とは、後述する新設セグメントリング40の第1予測形状41を作成するために必要な個数であり、予め設定されている。本実施形態では、前述の所定の個数を3個とし、3個のセグメントSP(1番目のセグメントSP1から3番目のセグメントSP3まで)を組み立てる(図10参照)。しかしながら、前述の所定の個数は3個に限定されるものではないことは言うまでもない。また、セグメント組立施工時には、それに邪魔にならないように推進ジャッキが適宜短縮され得る。 Next, the erector device 3 is used to assemble a predetermined number of segments SP that constitute the new segment ring 40 . Here, the predetermined number mentioned above is the number necessary for creating the first predicted shape 41 of the new segment ring 40 to be described later, and is set in advance. In this embodiment, the predetermined number is set to three, and three segments SP (first segment SP1 to third segment SP3) are assembled (see FIG. 10). However, it goes without saying that the above predetermined number is not limited to three. Also, the propulsion jack can be appropriately shortened so as not to interfere with segment assembly.

セグメントSP1~SP3の組立施工において、作業者は、出力装置23の表示部23aの画面表示などに基づいて、前述のセグメント間の目開き及び目違いを最小化するようにエレクター装置3の作動を修正することができる。 In the assembly work of the segments SP1 to SP3, the operator operates the erector device 3 so as to minimize the eye opening and misalignment between the segments based on the screen display of the display unit 23a of the output device 23. can be fixed.

セグメントSP3までの組立が完了すると、既設セグメントリング30に連結されたセグメントSP1~SP3の形状(内空形状)を、第2距離センサ16b(必要であれば、これに加えて第2距離センサ16a)を用いて測定する。そして、この測定結果に基づいて、制御装置22の第1新設リング形状予測部22eにて適宜処理を行って、新設セグメントリング40の第1予測形状41を作成する。この結果が出力装置23に送られて、出力装置23の表示部23aにて、新設セグメントリング40の第1予測形状41が、既設セグメントリング30の形状31と共に表示される(図11参照)。ここにおいて、新設セグメントリング40の第1予測形状41とは、既設セグメントリング30に連結されたセグメントSP1~SP3から予測される新設セグメントリング40の形状(内空形状)である。新設セグメントリング40の第1予測形状41は、本発明の「基準セグメントリングの形状」となり得る。 When the assembly up to the segment SP3 is completed, the shape (inner hollow shape) of the segments SP1 to SP3 connected to the existing segment ring 30 is measured by the second distance sensor 16b (and the second distance sensor 16a if necessary). ). Then, based on the measurement result, the first new ring shape prediction unit 22e of the control device 22 performs appropriate processing to create the first predicted shape 41 of the new segment ring 40. FIG. This result is sent to the output device 23, and the first predicted shape 41 of the new segment ring 40 is displayed together with the shape 31 of the existing segment ring 30 on the display section 23a of the output device 23 (see FIG. 11). Here, the first predicted shape 41 of the new segment ring 40 is the shape (inner hollow shape) of the new segment ring 40 predicted from the segments SP1 to SP3 connected to the existing segment ring 30 . The first predicted shape 41 of the new segmented ring 40 can be the "reference segmented ring shape" of the present invention.

ここで、第1新設リング形状予測部22eにて実施される新設セグメントリング40の第1予測形状41の作成処理の一例について図16を用いて説明する。
図16は、新設セグメントリング40の第1予測形状41の作成処理の一例を説明するための図である。図16は、新設セグメントリング40を構成する複数のセグメントSPのうち、セグメントSP1~SP3の組立が完了し、残りのセグメントSPが未組立の場合を示している。
An example of processing for creating the first predicted shape 41 of the new segment ring 40 performed by the first new ring shape prediction unit 22e will now be described with reference to FIG.
16A and 16B are diagrams for explaining an example of processing for creating the first predicted shape 41 of the new segment ring 40. FIG. FIG. 16 shows a case in which the segments SP1 to SP3 of the plurality of segments SP forming the new segment ring 40 have been assembled, and the remaining segments SP have not yet been assembled.

この場合において、新設セグメントリング40の第1予測形状41のうち、組立完了部分(セグメントSP1~SP3が相当する部分)41aについては、第2距離センサ16b(必要であれば、これに加えて第2距離センサ16a)による測定結果により定まる。一方、新設セグメントリング40の第1予測形状41のうち、未組立部分41bについては、残りのセグメントSPが相当するので、周長(延長)(換言すれば弧長)L1が一定であることが本処理の前提となる。未組立部分41bの周長(延長)L1に対して、その周の曲率(径)R1を変化(変動)させることで、未組立部分41bの端部41bt1,41bt2に、組立完了部分41aの端部41at1,41at2を合致させる。このようにして、未組立部分41bについての形状予測を行うことで、新設セグメントリング40の第1予測形状41が作成され得る。 In this case, of the first predicted shape 41 of the new segment ring 40, the assembly completed portion (the portion corresponding to the segments SP1 to SP3) 41a is detected by the second distance sensor 16b (and, if necessary, the second distance sensor 16b). 2 Determined by the measurement result of the distance sensor 16a). On the other hand, of the first predicted shape 41 of the new segment ring 40, the unassembled portion 41b corresponds to the remaining segment SP, so the circumferential length (extension) (in other words, arc length) L1 is constant. This is a prerequisite for this processing. By changing (varying) the curvature (diameter) R1 of the circumference (extension) L1 of the unassembled portion 41b, the ends 41bt1 and 41bt2 of the unassembled portion 41b are aligned with the ends of the assembled portion 41a. Match the parts 41at1 and 41at2. By performing shape prediction for the unassembled portion 41b in this manner, the first predicted shape 41 of the new segment ring 40 can be created.

次に、エレクター装置3を用いて、新設セグメントリング40を構成する4番目のセグメントSP4を組み立てる(図12及び図14参照)。セグメントSP4の組立施工において、作業者は、出力装置23の表示部23aの画面表示などに基づいて、前述のセグメント間の目開き及び目違いを最小化するようにエレクター装置3の作動を修正することができる。 Next, the erector device 3 is used to assemble the fourth segment SP4 that constitutes the new segment ring 40 (see FIGS. 12 and 14). In the assembly work of the segment SP4, the operator corrects the operation of the erector device 3 so as to minimize the above-mentioned eye opening and misalignment between the segments based on the screen display of the display unit 23a of the output device 23. be able to.

図12に示すように、セグメントSP4の組立途中において(つまり、エレクター装置3の把持部8でセグメントSP4が把持されている状態において)、制御装置22の第2新設リング形状予測部22fは、前述の第2距離センサ16a,16bによるセグメントSP1~SP3の形状(内空形状)の測定結果と、第1距離センサP1~P7による該センサからセグメントSP4の内面までの距離の測定結果とに基づいて、適宜処理を行って、新設セグメントリング40の第2予測形状42を作成する。この結果が出力装置23に送られて、出力装置23の表示部23aにて、新設セグメントリング40の第2予測形状42が、既設セグメントリング30の形状31及び新設セグメントリング40の第1予測形状41と共に表示される(図13参照)。本実施形態において、第2新設リング形状予測部22fが、本発明の「リング形状予測部」に対応し得る。 As shown in FIG. 12, during assembly of the segment SP4 (that is, while the segment SP4 is being gripped by the gripping portion 8 of the erector device 3), the second new ring shape prediction portion 22f of the control device 22 performs the above-described Based on the measurement results of the shapes (inner hollow shapes) of the segments SP1 to SP3 by the second distance sensors 16a and 16b and the measurement results of the distances from the sensors to the inner surface of the segment SP4 by the first distance sensors P1 to P7 , appropriate processing is performed to create the second predicted shape 42 of the new segment ring 40 . This result is sent to the output device 23, and on the display unit 23a of the output device 23, the second predicted shape 42 of the new segment ring 40 is displayed as the shape 31 of the existing segment ring 30 and the first predicted shape of the new segment ring 40. 41 (see FIG. 13). In this embodiment, the second newly installed ring shape prediction unit 22f can correspond to the "ring shape prediction unit" of the present invention.

ここで、第2新設リング形状予測部22fにて実施される新設セグメントリング40の第2予測形状42の作成処理の一例について図17を用いて説明する。
図17は、新設セグメントリング40の第2予測形状42の作成処理の一例を説明するための図である。図17は、新設セグメントリング40を構成する複数のセグメントSPのうち、セグメントSP1~SP3の組立が完了し、セグメントSP4が組立途中(エレクター装置3の把持部8でセグメントSP4が把持されている状態)であり、残りのセグメントSPが未組立の場合を示している。
An example of processing for creating the second predicted shape 42 of the new segment ring 40 performed by the second new ring shape prediction unit 22f will now be described with reference to FIG.
FIG. 17 is a diagram for explaining an example of processing for creating the second predicted shape 42 of the new segment ring 40. As shown in FIG. FIG. 17 shows that the segments SP1 to SP3 of the plurality of segments SP constituting the new segment ring 40 have been assembled, and the segment SP4 is in the process of being assembled (segment SP4 is being gripped by the gripping portion 8 of the erector device 3). ) and the remaining segment SP is unassembled.

この場合において、新設セグメントリング40の第2予測形状42のうち、組立完了部分(セグメントSP1~SP3が相当する部分)42aについては、第2距離センサ16b(必要であれば、これに加えて第2距離センサ16a)による測定結果により定まる。一方、新設セグメントリング40の第2予測形状42のうち、組立途中及び未組立部分42bについては、セグメントSP4及び残りのセグメントSPが相当するので、周長(延長)(換言すれば弧長)L2が一定であることが本処理の前提となる。組立途中及び未組立部分42bの周長(延長)L2に対して、第1距離センサP1~P7による測定結果を加味しつつ、その周の曲率(径)R2を変化(変動)させることで、組立途中及び未組立部分42bの端部42bt1,42bt2に、組立完了部分42aの端部42at1,42at2を合致させる。このようにして、組立途中及び未組立部分42bについての形状予測を行うことで、新設セグメントリング40の第2予測形状42が作成され得る。 In this case, of the second predicted shape 42 of the new segment ring 40, the assembly completed portion (the portion corresponding to the segments SP1 to SP3) 42a is detected by the second distance sensor 16b (and, if necessary, the second distance sensor 16b). 2 Determined by the measurement result of the distance sensor 16a). On the other hand, of the second predicted shape 42 of the new segment ring 40, the intermediate and unassembled portion 42b corresponds to the segment SP4 and the remaining segment SP, so the circumference (extension) (in other words, arc length) L2 It is a premise of this process that is constant. By changing (fluctuating) the curvature (diameter) R2 of the perimeter (extension) L2 of the assembled and unassembled portion 42b while considering the measurement results of the first distance sensors P1 to P7, The ends 42at1 and 42at2 of the assembled portion 42a are aligned with the ends 42bt1 and 42bt2 of the half-assembled and unassembled portions 42b. In this way, the second predicted shape 42 of the new segment ring 40 can be created by performing shape prediction for the part 42b during assembly and for the unassembled portion 42b.

尚、第2新設リング形状予測部22fにおける新設セグメントリング40の第2予測形状42の作成では、更に、第1距離センサP1~P7による前述の目開き量及び目違い量の測定結果に基づいてもよい。また、この第2予測形状42の作成では、前述の第2距離センサ16a,16bによるセグメントSP1~SP3の形状の測定結果に基づかなくてもよい。つまり、この第2予測形状42の作成では、少なくとも、第1距離センサP1~P7の測定結果が用いられる。ここにおいて、新設セグメントリング40の第2予測形状42とは、少なくとも、第1距離センサP1~P7の測定結果から予測される新設セグメントリング40の形状(内空形状)である。 In addition, in the creation of the second predicted shape 42 of the new segment ring 40 in the second new ring shape prediction unit 22f, further, based on the measurement results of the above-described eye opening amount and misalignment amount by the first distance sensors P1 to P7 good too. Moreover, the creation of the second predicted shape 42 need not be based on the measurement results of the shapes of the segments SP1 to SP3 by the second distance sensors 16a and 16b. In other words, in creating the second predicted shape 42, at least the measurement results of the first distance sensors P1 to P7 are used. Here, the second predicted shape 42 of the new segment ring 40 is at least the shape (inner hollow shape) of the new segment ring 40 predicted from the measurement results of the first distance sensors P1 to P7.

本実施形態では、第1距離センサP1~P7による該センサからセグメントSP4の内面までの距離の測定結果及び前述の目開き量及び目違い量の測定結果と、エレクター装置3の旋回リング4の旋回角、昇降ジャッキ5の伸縮量、及び軸方向ジャッキ7の伸縮量とに基づいて、組立途中のセグメントSP4の位置及び姿勢を把握することができる。換言すれば、前述のセグメント状態測定装置は、組立途中のセグメントSP4の状態として、組立途中のセグメントSP4の位置及び姿勢を測定することができるように構成され得る。この測定された、組立途中のセグメントSP4の位置及び姿勢に基づいて、第2新設リング形状予測部22fにて、新設セグメントリング40の第2予測形状42を作成してもよい。また、この新設セグメントリング40の第2予測形状42の作成に際して、組立途中のセグメントSP4の位置及び姿勢の測定のために、第1距離センサP1~P7以外の測定手段を用いてもよい。 In this embodiment, the measurement results of the distances from the first distance sensors P1 to P7 to the inner surface of the segment SP4, the measurement results of the above-described mesh opening amount and misalignment amount, and the turning of the turning ring 4 of the erector device 3 The position and orientation of the segment SP4 during assembly can be grasped based on the angle, the amount of expansion and contraction of the lifting jack 5, and the amount of expansion and contraction of the axial jack 7. FIG. In other words, the segment state measuring device described above can be configured to measure the position and orientation of the segment SP4 during assembly as the state of the segment SP4 during assembly. The second predicted shape 42 of the new segment ring 40 may be created by the second new ring shape prediction unit 22f based on the measured position and orientation of the segment SP4 during assembly. Further, when creating the second predicted shape 42 of the new segment ring 40, measuring means other than the first distance sensors P1 to P7 may be used to measure the position and orientation of the segment SP4 during assembly.

出力装置23の表示部23aで画面表示される新設セグメントリング40の第2予測形状42は、組立途中のセグメントSP4の状態の変化に応じて(例えば、組立途中のセグメントSP4の位置及び姿勢の変化に応じて)変化する。つまり、組立途中のセグメントSP4の位置及び姿勢などの変化に応じて、新設セグメントリング40の第2予測形状42の画面表示がリアルタイムで変化し得る。 The second predicted shape 42 of the newly installed segment ring 40 displayed on the display unit 23a of the output device 23 corresponds to changes in the state of the segment SP4 during assembly (for example, changes in the position and posture of the segment SP4 during assembly). change). That is, the screen display of the second predicted shape 42 of the new segment ring 40 can change in real time according to changes in the position, attitude, etc. of the segment SP4 during assembly.

作業者は、出力装置23の表示部23aに画面表示されている新設セグメントリング40の第2予測形状42を、既設セグメントリング30の形状31と新設セグメントリング40の第1予測形状41との少なくとも一方に近づけるように、組立途中のセグメントSP4の位置及び姿勢などを変化させるべく、エレクター装置3の作動を修正する(図12~図15参照)。このようにして、セグメント組立支援装置20によって、セグメントSP4の組立の支援が行われ得る。 The operator selects the second predicted shape 42 of the new segment ring 40 displayed on the display unit 23 a of the output device 23 as at least the shape 31 of the existing segment ring 30 and the first predicted shape 41 of the new segment ring 40 . The operation of the erector device 3 is modified in order to change the position and attitude of the segment SP4 during assembly so as to bring it closer to one side (see FIGS. 12 to 15). In this manner, the segment assembly assistance device 20 can assist assembly of the segment SP4.

セグメントSP4までの組立が完了すると、既設セグメントリング30に連結されたセグメントSP1~SP4の形状(内空形状)を、第2距離センサ16a,16bを用いて測定する。そして、この第2距離センサ16a,16bの測定結果に基づいて、制御装置22の第1新設リング形状予測部22eにて適宜処理を行って、新設セグメントリング40の第1予測形状41を更新する。この結果が出力装置23に送られて、出力装置23の表示部23aにて、新設セグメントリング40の第1予測形状41が、既設セグメントリング30の形状31及び新設セグメントリング40の第2予測形状42と共に表示される。 When the assembly up to the segment SP4 is completed, the shapes (inner hollow shapes) of the segments SP1 to SP4 connected to the existing segment ring 30 are measured using the second distance sensors 16a and 16b. Based on the measurement results of the second distance sensors 16a and 16b, the first new ring shape prediction unit 22e of the control device 22 performs appropriate processing to update the first predicted shape 41 of the new segment ring 40. . This result is sent to the output device 23, and on the display unit 23a of the output device 23, the first predicted shape 41 of the new segment ring 40 is displayed as the shape 31 of the existing segment ring 30 and the second predicted shape of the new segment ring 40. 42.

新設セグメントリング40を構成する5番目以降のセグメントSPについても、前述の4番目のセグメントSP4と同様に組み立てられる。この点、セグメント組立支援装置20によって5番目以降のセグメントSPの組立の支援が行われ得ることは言うまでもない。このようにして、新設セグメントリング40の構築が行われる。 The fifth and subsequent segments SP constituting the new segment ring 40 are also assembled in the same manner as the above-described fourth segment SP4. In this regard, it goes without saying that the segment assembly support device 20 can assist in the assembly of the fifth and subsequent segments SP. Thus, the new segment ring 40 is constructed.

図18は、出力装置23の表示部23aにおける画面表示の変形例を示す図である。図18は、図15に示した既設セグメントリング30の形状31と、新設セグメントリング40の第1予測形状41及び第2予測形状42とに加えて、セグメントリングSRの形状(内空形状)の設計値50を示している。この設計値50は、本発明の「基準セグメントリングの形状」となり得る。 FIG. 18 is a diagram showing a modified example of screen display on the display section 23a of the output device 23. As shown in FIG. FIG. 18 shows the shape (inner hollow shape) of the segment ring SR in addition to the shape 31 of the existing segment ring 30 and the first predicted shape 41 and second predicted shape 42 of the new segment ring 40 shown in FIG. A design value of 50 is shown. This design value 50 can be the "reference segment ring shape" of the present invention.

作業者は、出力装置23の表示部23aに画面表示されている新設セグメントリング40の第2予測形状42を、既設セグメントリング30の形状31と新設セグメントリング40の第1予測形状41と設計値50との少なくとも1つに近づけるように、セグメントSPE(図18ではセグメントSP4)の位置及び姿勢などを変化させるべく、エレクター装置3の作動を修正することができる。 The operator compares the second predicted shape 42 of the new segment ring 40 displayed on the display unit 23a of the output device 23 with the shape 31 of the existing segment ring 30, the first predicted shape 41 of the new segment ring 40, and the design value. 50, the actuation of the erector device 3 can be modified to change the position, orientation, etc. of the segment SPE (segment SP4 in FIG. 18).

尚、図18では、図15に示した画面表示に加えて、既設セグメントリング30に連結されたセグメントSP(図18ではセグメントSP1~SP3)と、エレクター装置3の把持部8で把持されているセグメントSPE(図18ではセグメントSP4)との画面表示が追加されている。エレクター装置3の把持部8で把持されているセグメントSPEの画面表示については、セグメントSPEの位置及び姿勢の変化に応じてセグメントSPEの画面表示が変化することが好ましい。 18, in addition to the screen display shown in FIG. 15, the segments SP (segments SP1 to SP3 in FIG. 18) connected to the existing segment ring 30 and gripped by the gripping portion 8 of the erector device 3 A screen display with segment SPE (segment SP4 in FIG. 18) is added. As for the screen display of the segment SPE gripped by the gripping unit 8 of the erector device 3, it is preferable that the screen display of the segment SPE changes in accordance with changes in the position and posture of the segment SPE.

また、図15及び図18において、エレクター装置3の昇降ジャッキ5、アーム6、及び把持部8の少なくとも1つの画面表示が追加されてもよい。これらについても、位置及び姿勢の変化に応じて画面表示が変化することが好ましい。 15 and 18, screen displays of at least one of the lifting jack 5, the arm 6, and the gripper 8 of the erector device 3 may be added. Also for these, it is preferable that the screen display changes according to changes in position and posture.

本実施形態によれば、セグメント組立支援装置20は、シールドトンネルの施工に用いられるものである。セグメント組立支援装置20は、シールド掘進機1のエレクター装置3の把持部8で把持されるセグメントSPEの状態に基づいて、セグメントSPEを含む新設セグメントリング40の形状(第2予測形状42)を予測するリング形状予測部(第2新設リング形状予測部22f)を備える。ゆえに、新設セグメントリング40の構築途中であっても、新設セグメントリング40を構成するセグメントSPの組立精度を確認することができる。 According to this embodiment, the segment assembly support device 20 is used for constructing a shield tunnel. The segment assembly support device 20 predicts the shape (second predicted shape 42) of the new segment ring 40 including the segment SPE based on the state of the segment SPE gripped by the gripping portion 8 of the erector device 3 of the shield machine 1. A ring shape prediction unit (second newly installed ring shape prediction unit 22f) is provided. Therefore, even during the construction of the new segment ring 40, it is possible to check the assembly accuracy of the segments SP forming the new segment ring 40. FIG.

また本実施形態によれば、セグメント組立支援装置20は、前記予測された新設セグメントリング40の形状(第2予測形状42)を表示する表示部23aを更に備える。ゆえに、作業者は、表示部23aを確認することで、新設セグメントリング40の構築途中であっても、新設セグメントリング40を構成するセグメントSPの組立精度を容易に確認することができる。 Further, according to the present embodiment, the segment assembly support device 20 further includes the display section 23a that displays the predicted shape of the new segment ring 40 (second predicted shape 42). Therefore, the worker can easily check the assembly accuracy of the segments SP forming the new segment ring 40 by checking the display portion 23a even during the construction of the new segment ring 40 .

また本実施形態によれば、表示部23aは基準セグメントリングの形状を更に表示する。この基準セグメントリングの形状は、例えば、既設セグメントリング30の形状31と新設セグメントリング40の第1予測形状41と設計値50との少なくとも1つを含む。これにより、作業者は、表示部23aに表示されている新設セグメントリング40の第2予測形状42を、前述の基準セグメントリングの形状に近づけるように、セグメントSPEの位置及び姿勢などを変化させるべく、エレクター装置3の作動を修正することができる。尚、表示部23aは、表示部23aに表示されている新設セグメントリング40の第2予測形状42と、前述の基準セグメントリングの形状とを重ね合わせた状態で表示することが好ましい。 Further, according to this embodiment, the display section 23a further displays the shape of the reference segment ring. The shape of this reference segment ring includes at least one of the shape 31 of the existing segment ring 30, the first predicted shape 41 of the new segment ring 40, and the design value 50, for example. As a result, the operator can change the position and posture of the segment SPE so that the second predicted shape 42 of the new segment ring 40 displayed on the display unit 23a approaches the shape of the aforementioned reference segment ring. , the operation of the erector device 3 can be modified. The display section 23a preferably displays the second predicted shape 42 of the new segment ring 40 displayed on the display section 23a and the shape of the aforementioned reference segment ring in a superimposed state.

また本実施形態によれば、セグメント組立支援装置20は、既設セグメントリング30の形状を測定するリング形状測定部(既設リング形状測定部22d)を更に備える。前述の基準セグメントリングの形状は、リング形状測定部(既設リング形状測定部22d)にて測定された既設セグメントリング30の形状31を含む。これにより、作業者は、表示部23aに表示されている新設セグメントリング40の第2予測形状42を、既設セグメントリング30の形状31に近づけるように、セグメントSPEの位置及び姿勢などを変化させるべく、エレクター装置3の作動を修正することができる。 Further, according to the present embodiment, the segment assembly support device 20 further includes a ring shape measuring section (existing ring shape measuring section 22d) that measures the shape of the existing segment ring 30. FIG. The shape of the reference segment ring described above includes the shape 31 of the existing segment ring 30 measured by the ring shape measuring section (existing ring shape measuring section 22d). As a result, the operator can change the position and attitude of the segment SPE so that the second predicted shape 42 of the new segment ring 40 displayed on the display unit 23a is closer to the shape 31 of the existing segment ring 30. , the operation of the erector device 3 can be modified.

また本実施形態によれば、セグメント組立支援装置20は、新設セグメントリング40を構成するセグメントSPのうち既設セグメントリング30に連結されているもの(例えば、図10及び図12におけるセグメントSP1~SP3)の形状を測定する形状測定部(第2距離センサ16a,16b)と、この形状測定部の測定結果に基づいて新設セグメントリング40の形状(第1予測形状41)を予測する別のリング形状予測部(第1新設リング形状予測部22e)とを更に備える。前述の基準セグメントリングの形状は、前記別のリング形状予測部(第1新設リング形状予測部22e)で予測された新設セグメントリング40の形状(第1予測形状41)を含む。これにより、作業者は、表示部23aに表示されている新設セグメントリング40の第2予測形状42を、新設セグメントリング40の第1予測形状41に近づけるように、セグメントSPEの位置及び姿勢などを変化させるべく、エレクター装置3の作動を修正することができる。 Further, according to the present embodiment, the segment assembly support device 20 includes the segments SP that form the new segment ring 40 and that are connected to the existing segment ring 30 (for example, segments SP1 to SP3 in FIGS. 10 and 12). and another ring shape prediction for predicting the shape (first predicted shape 41) of the new segment ring 40 based on the measurement result of the shape measuring unit (second distance sensors 16a, 16b). section (first newly installed ring shape prediction section 22e). The shape of the reference segment ring described above includes the shape (first predicted shape 41) of the new segment ring 40 predicted by the another ring shape prediction unit (first new ring shape prediction unit 22e). As a result, the operator adjusts the position and attitude of the segment SPE so that the second predicted shape 42 of the new segment ring 40 displayed on the display unit 23a approaches the first predicted shape 41 of the new segment ring 40. To change, the operation of the erector device 3 can be modified.

また本実施形態によれば、セグメント組立支援装置20は、エレクター装置3の把持部8で把持されるセグメントSPEの状態を測定するセグメント状態測定装置を更に備える。このセグメント状態測定装置は、エレクター装置3に設けられた距離センサ(第1距離センサP1~P7)を含む。距離センサ(第1距離センサP1~P7)は、測定対象領域LP1~LP7に向けてラインレーザを照射する照射部と、このラインレーザの反射光を受光する受光部とを備えることが好ましい。 Further, according to this embodiment, the segment assembly support device 20 further includes a segment state measuring device that measures the state of the segment SPE gripped by the gripping portion 8 of the erector device 3 . This segment state measuring device includes distance sensors (first distance sensors P1 to P7) provided in the erector device 3 . The distance sensors (first distance sensors P1 to P7) preferably include an irradiating section that irradiates a line laser toward the measurement target areas LP1 to LP7, and a light receiving section that receives the reflected light of the line laser.

また本実施形態によれば、セグメント組立支援方法は、シールドトンネルの施工時にセグメントSPの組立を支援する方法である。このセグメント組立支援方法は、シールド掘進機1のエレクター装置3の把持部8で把持されるセグメントSPEの状態に基づいて、セグメントSPEを含む新設セグメントリング40の形状(第2予測形状42)を予測することを含む。ゆえに、新設セグメントリング40の構築途中であっても、新設セグメントリング40を構成するセグメントSPの組立精度を確認することができる。 Further, according to this embodiment, the segment assembly support method is a method for supporting the assembly of the segments SP during construction of the shield tunnel. This segment assembly support method predicts the shape (second predicted shape 42) of the new segment ring 40 including the segment SPE based on the state of the segment SPE gripped by the gripping portion 8 of the erector device 3 of the shield machine 1. including doing Therefore, even during the construction of the new segment ring 40, it is possible to check the assembly accuracy of the segments SP forming the new segment ring 40. FIG.

また本実施形態によれば、前述のセグメント組立支援方法は、前記予測された新設セグメントリング40の形状(第2予測形状42)を表示部23aなどで画面表示することを更に含む。ゆえに、作業者は、当該画面表示を確認することで、新設セグメントリング40の構築途中であっても、新設セグメントリング40を構成するセグメントSPの組立精度を容易に確認することができる。 Further, according to the present embodiment, the segment assembly support method described above further includes displaying the predicted shape of the new segment ring 40 (second predicted shape 42) on the display unit 23a or the like. Therefore, by checking the screen display, the operator can easily check the accuracy of assembling the segments SP forming the new segment ring 40 even during construction of the new segment ring 40 .

また本実施形態によれば、セグメント組立方法は、前述のセグメント組立支援方法にて予測された新設セグメントリング40の形状(第2予測形状42)に基づいて、エレクター装置3の作動を修正することを含む。ゆえに、新設セグメントリング40の構築途中にセグメントSPEの位置や姿勢などを修正することができるので、新設セグメントリング40を精度よく構築することができる。 Further, according to the present embodiment, the segment assembly method corrects the operation of the erector device 3 based on the shape (second predicted shape 42) of the new segment ring 40 predicted by the segment assembly support method described above. including. Therefore, since the position, attitude, etc. of the segment SPE can be corrected during construction of the new segment ring 40, the new segment ring 40 can be constructed with high accuracy.

また本実施形態によれば、セグメント組立方法は、セグメント組立支援装置20の出力装置23の表示部23aの表示に基づいて、エレクター装置3の作動を修正することを含む。ゆえに、作業者が、出力装置23の表示部23aの表示を確認することで、セグメントSPEの組立精度を把握することができ、それをエレクター装置3の操作に生かすことができる。 Further, according to the present embodiment, the segment assembly method includes correcting the operation of the erector device 3 based on the display on the display section 23a of the output device 23 of the segment assembly support device 20. FIG. Therefore, by confirming the display on the display section 23 a of the output device 23 , the operator can grasp the assembly accuracy of the segment SPE, and can utilize it in operating the erector device 3 .

前述の第2距離センサ16a,16bは、特許文献1に記載のシールド掘進機におけるテールクリアランスの測定方法で用いられる距離センサとしての役割を有してもよい。つまり、第2距離センサ16a,16bは、セグメントSPの組立精度の確認やセグメントリングSRの形状把握(例えば真円度把握)に用いられるのみならず、シールド掘進機のテールクリアランスの測定に用いられてもよい。 The second distance sensors 16a and 16b described above may serve as distance sensors used in the tail clearance measuring method for a shield machine disclosed in Patent Document 1. In other words, the second distance sensors 16a and 16b are used not only to confirm the assembly accuracy of the segments SP and to grasp the shape of the segment ring SR (for example, to grasp the roundness), but also to measure the tail clearance of the shield machine. may

本実施形態では、第1距離センサP1~P7として、ラインレーザを用いるレーザ距離センサを挙げて説明したが、第1距離センサP1~P7の構成はこれに限らない。例えば、第1距離センサP1~P7として、CCDカメラやCMOSカメラなどからなる撮像装置を採用し、この撮像装置によって取得された画像データに基づいて測定対象領域LP1~LP7における各種の距離測定(寸法測定)を行ってもよい。 In the present embodiment, laser distance sensors using line lasers have been described as the first distance sensors P1 to P7, but the configuration of the first distance sensors P1 to P7 is not limited to this. For example, as the first distance sensors P1 to P7, an imaging device such as a CCD camera or a CMOS camera is adopted, and various distance measurements (dimensions measurement) may be performed.

本実施形態では、第2距離センサ16a,16bとしてレーザ距離センサを挙げて説明したが、第2距離センサ16a,16bの構成はこれに限らない。例えば、第2距離センサ16a,16bとして、所定の撮像対象領域を少なくともトンネル周方向に移動可能な撮像装置(例えばCCDカメラやCMOSカメラなど)を採用し、この撮像装置によって取得された画像データに基づいて距離測定を行うようにしてもよい。 In the present embodiment, laser distance sensors have been described as the second distance sensors 16a and 16b, but the configuration of the second distance sensors 16a and 16b is not limited to this. For example, as the second distance sensors 16a and 16b, an imaging device (for example, a CCD camera, a CMOS camera, etc.) capable of moving a predetermined imaging target area at least in the tunnel circumferential direction is adopted, and the image data acquired by this imaging device is Based on this, distance measurement may be performed.

本実施形態では、スキンプレート2及びセグメントリングSRの断面形状が円形である例を示したが、スキンプレート2及びセグメントリングSRの断面形状は円形に限らない。スキンプレート2及びセグメントリングSRの断面形状は例えば楕円形又は矩形であってもよい。 Although the skin plate 2 and the segment ring SR have circular cross-sectional shapes in this embodiment, the cross-sectional shapes of the skin plate 2 and the segment ring SR are not limited to circular. The cross-sectional shapes of the skin plate 2 and the segment ring SR may be oval or rectangular, for example.

図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。
尚、出願当初の請求項は以下のとおりであった。
[請求項1]
シールドトンネルの施工に用いられるセグメント組立支援装置であって、
シールド掘進機のエレクター装置の把持部で把持されるセグメントの状態に基づいて、該セグメントを含む新設セグメントリングの形状を予測するリング形状予測部を備える、セグメント組立支援装置。
[請求項2]
前記予測された新設セグメントリングの形状を表示する表示部を更に備える、請求項1に記載のセグメント組立支援装置。
[請求項3]
前記表示部は基準セグメントリングの形状を更に表示する、請求項2に記載のセグメント組立支援装置。
[請求項4]
前記把持されるセグメントの状態を測定するセグメント状態測定装置を更に備え、
前記セグメント状態測定装置は、前記エレクター装置に設けられた距離センサを含む、請求項1~請求項3のいずれか1つに記載のセグメント組立支援装置。
[請求項5]
シールドトンネルの施工時にセグメントの組立を支援する方法であって、
シールド掘進機のエレクター装置の把持部で把持されるセグメントの状態に基づいて、該セグメントを含む新設セグメントリングの形状を予測することを含む、セグメント組立支援方法。
[請求項6]
前記予測された新設セグメントリングの形状を画面表示することを更に含む、請求項5に記載のセグメント組立支援方法。
The illustrated embodiments are merely illustrative of the present invention, and the present invention includes various improvements and modifications made by those skilled in the art within the scope of the claims in addition to those directly indicated by the described embodiments. It goes without saying that it is inclusive.
The claims as originally filed were as follows.
[Claim 1]
A segment assembly support device used for construction of a shield tunnel,
A segment assembly support device comprising a ring shape predicting unit that predicts the shape of a new segment ring including a segment gripped by a gripping unit of an erector device of a shield machine, based on the state of the segment.
[Claim 2]
2. The segment assembly support device according to claim 1, further comprising a display unit for displaying the predicted shape of the new segment ring.
[Claim 3]
3. The segment assembly support device according to claim 2, wherein said display further displays the shape of the reference segment ring.
[Claim 4]
further comprising a segment state measuring device for measuring the state of the gripped segment;
The segment assembly support device according to any one of claims 1 to 3, wherein said segment state measuring device includes a distance sensor provided in said erector device.
[Claim 5]
A method of assisting assembly of segments during construction of a shield tunnel, comprising:
A segment assembly support method, comprising predicting the shape of a new segment ring including a segment gripped by a gripper of an erector device of a shield machine, based on the state of the segment.
[Claim 6]
6. The segment assembly support method according to claim 5, further comprising displaying the predicted shape of the new segment ring on the screen.

1…シールド掘進機、2…スキンプレート、2a…後部、3…エレクター装置、4…旋回リング、5…昇降ジャッキ、6…アーム、6a…中間部、7…軸方向ジャッキ、8…把持部、9…枠体、10…フレーム部、11…上フレーム、12…下フレーム、13…柱部材、14,15…ビーム部材、16a,16b…第2距離センサ、17…本体部、18…反射器、18a…レーザー反射点、19…回転機構、20…セグメント組立支援装置、22…制御装置、22a…記憶部、22b…目開き量及び目違い量測定部、22c…画像処理部、22d…既設リング形状測定部、22e…第1新設リング形状予測部、22f…第2新設リング形状予測部、23…出力装置、23a…表示部、30…既設セグメントリング、31…形状、40…新設セグメントリング、41…第1予測形状、41a…組立完了部分、41at1,41at2…端部、41b…未組立部分、41bt1,41bt2…端部、42…第2予測形状、42a…組立完了部分、42at1,42at2…端部、42b…組立途中及び未組立部分、42bt1,42bt2…端部、50…設計値、IQ1~IQ5…撮像対象領域、L1,L2…周長(延長)、LP1~LP7…測定対象領域、M1,M2…距離測定可能範囲、MC…機軸、P1~P7…第1距離センサ、Q1~Q5…撮像装置、R1,R2…曲率(径)、SP,SPE,SP1~SP4…セグメント、SR…セグメントリング、α1~α4…縁部 DESCRIPTION OF SYMBOLS 1... Shield machine, 2... Skin plate, 2a... Rear part, 3... Erector device, 4... Revolving ring, 5... Elevating jack, 6... Arm, 6a... Intermediate part, 7... Axial jack, 8... Grasping part, DESCRIPTION OF SYMBOLS 9... Frame 10... Frame part 11... Upper frame 12... Lower frame 13... Column member 14, 15... Beam member 16a, 16b... Second distance sensor 17... Body part 18... Reflector , 18a... Laser reflection point 19... Rotating mechanism 20... Segment assembly support device 22... Control device 22a... Storage unit 22b... Eye opening amount and misalignment amount measuring unit 22c... Image processing unit 22d... Existing Ring shape measurement unit 22e First new ring shape prediction unit 22f Second new ring shape prediction unit 23 Output device 23a Display unit 30 Existing segment ring 31 Shape 40 New segment ring , 41 First predicted shape 41a Assembled portion 41at1, 41at2 End portion 41b Unassembled portion 41bt1, 41bt2 End portion 42 Second predicted shape 42a Assembled portion 42at1, 42at2 ... end 42b ... intermediate and unassembled portion 42bt1, 42bt2 ... end 50 ... design value IQ1 to IQ5 ... imaging target area L1, L2 ... circumference (extension) LP1 to LP7 ... measurement target area , M1, M2... distance measurable range, MC... axis, P1 to P7... first distance sensor, Q1 to Q5... imaging device, R1, R2... curvature (diameter), SP, SPE, SP1 to SP4... segment, SR ... segment ring, α1 to α4 ... edge

Claims (6)

シールドトンネルの施工に用いられるセグメント組立支援装置であって、
シールド掘進機のエレクター装置の把持部で把持される組立途中のセグメントの位置及び姿勢に応じて、該セグメントを含む新設セグメントリングの形状のうち組立途中及び未組立部分の周の曲率を変化させることにより、新設セグメントリングの形状を予測するリング形状予測部を備える、セグメント組立支援装置。
A segment assembly support device used for construction of a shield tunnel,
To change the curvature of the circumference of the partially assembled and unassembled portions of the shape of the new segment ring including the segment in accordance with the position and orientation of the segment gripped by the gripping portion of the erector device of the shield machine. A segment assembly support device comprising a ring shape predicting unit that predicts the shape of a newly installed segment ring .
前記予測された新設セグメントリングの形状を表示する表示部を更に備える、請求項1に記載のセグメント組立支援装置。 2. The segment assembly support device according to claim 1, further comprising a display unit for displaying the predicted shape of the new segment ring. 前記表示部は基準セグメントリングの形状を更に表示する、請求項2に記載のセグメント組立支援装置。 3. The segment assembly support device according to claim 2, wherein said display further displays the shape of the reference segment ring. 前記把持される組立途中のセグメントの位置及び姿勢を測定するセグメント状態測定装置を更に備え、
前記セグメント状態測定装置は、前記エレクター装置に設けられた複数の距離センサを含み、
前記距離センサは、前記把持される組立途中のセグメントの縁部と、該セグメントに隣接する既設のセグメントの縁部との間の目開き量及び目違い量を測定し、
前記セグメント状態測定装置は、前記目開き量及び前記目違い量に基づいて、前記把持される組立途中のセグメントの位置及び姿勢を測定する、請求項1~請求項3のいずれか1つに記載のセグメント組立支援装置。
further comprising a segment condition measuring device for measuring the position and orientation of the gripped segment during assembly ;
The segment state measuring device includes a plurality of distance sensors provided on the erector device ,
The distance sensor measures the gap amount and misalignment amount between the edge of the gripped segment in the process of assembly and the edge of the existing segment adjacent to the segment,
4. The segment state measuring device according to any one of claims 1 to 3, wherein the segment state measuring device measures the position and posture of the gripped segment in the process of assembly based on the eye opening amount and the misalignment amount. segment assembly support device.
シールドトンネルの施工時にセグメントの組立を支援する方法であって、
シールド掘進機のエレクター装置の把持部で把持される組立途中のセグメントの位置及び姿勢に応じて、該セグメントを含む新設セグメントリングの形状のうち組立途中及び未組立部分の周の曲率を変化させることにより、新設セグメントリングの形状を予測することを含む、セグメント組立支援方法。
A method of assisting assembly of segments during construction of a shield tunnel, comprising:
To change the curvature of the circumference of the partially assembled and unassembled portions of the shape of the new segment ring including the segment in accordance with the position and orientation of the segment gripped by the gripping portion of the erector device of the shield machine. A segment assembly support method, including predicting the shape of a newly installed segment ring .
前記予測された新設セグメントリングの形状を画面表示することを更に含む、請求項5に記載のセグメント組立支援方法。 6. The segment assembly support method according to claim 5, further comprising displaying the predicted shape of the new segment ring on the screen.
JP2019223782A 2019-12-11 2019-12-11 SEGMENT ASSEMBLY SUPPORT DEVICE AND SEGMENT ASSEMBLY SUPPORT METHOD Active JP7123897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019223782A JP7123897B2 (en) 2019-12-11 2019-12-11 SEGMENT ASSEMBLY SUPPORT DEVICE AND SEGMENT ASSEMBLY SUPPORT METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223782A JP7123897B2 (en) 2019-12-11 2019-12-11 SEGMENT ASSEMBLY SUPPORT DEVICE AND SEGMENT ASSEMBLY SUPPORT METHOD

Publications (2)

Publication Number Publication Date
JP2021092086A JP2021092086A (en) 2021-06-17
JP7123897B2 true JP7123897B2 (en) 2022-08-23

Family

ID=76313039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223782A Active JP7123897B2 (en) 2019-12-11 2019-12-11 SEGMENT ASSEMBLY SUPPORT DEVICE AND SEGMENT ASSEMBLY SUPPORT METHOD

Country Status (1)

Country Link
JP (1) JP7123897B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027151A (en) 2015-07-16 2017-02-02 株式会社熊谷組 Shield tunnel plotter
JP2018021321A (en) 2016-08-02 2018-02-08 株式会社フジタ Circularity measurement device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069118Y2 (en) * 1989-03-15 1994-03-09 株式会社熊谷組 Misalignment and clearance analysis device for segment assembly robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027151A (en) 2015-07-16 2017-02-02 株式会社熊谷組 Shield tunnel plotter
JP2018021321A (en) 2016-08-02 2018-02-08 株式会社フジタ Circularity measurement device

Also Published As

Publication number Publication date
JP2021092086A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP7123897B2 (en) SEGMENT ASSEMBLY SUPPORT DEVICE AND SEGMENT ASSEMBLY SUPPORT METHOD
JP4371603B2 (en) Semi shield excavator
EP3899680A1 (en) Method and device for determining the position of a mining and/or construction machine
JP7359965B2 (en) Apparatus and method for automatically placing tunnel lining segments
JP4684049B2 (en) Shield tunneling machine and method for measuring tail clearance and / or space dimension in segment tunnel
JP4682168B2 (en) Shield machine
JP2015030994A (en) Method for measuring tail clearance of shield machine
JP2021092087A (en) Segment state measuring device, segment assembly method, and segment state measuring method
JP2005133468A (en) Shield machine
JP2019065472A (en) Assemble device of segment of shield excavator and assemble method of the same
JP7163222B2 (en) Construction management system and construction management method
JP6193451B2 (en) Measurement method for tail clearance of shield machine
JP7440588B1 (en) Tunnel excavator erector device
JP6967946B2 (en) Shield excavator segment assembly equipment and assembly method
JP3276344B2 (en) Segment positioning apparatus and method and tunnel excavator
JP3406378B2 (en) Segment assembly equipment
JPH07224600A (en) Method of measuring segment shape for shielding construction work
JP2000213296A (en) Control device and control method for elector, assembling method for lining member and tunnel excavator
JP3217710B2 (en) Shield construction method and shield excavator
JP2004143815A (en) Bending type tunnel excavating machine
JP3276343B2 (en) Elector control device, tunnel excavator, and method of assembling lining member
JPH0734796A (en) Apparatus and method for automatically setting-up segment
JPH03212595A (en) Shield construction method performing excavation and assembly of segment simultaneously and shield excavator used therefor
JP2013133650A (en) H&v shield boring machine
JP2024057715A (en) Position and orientation measuring device for tunnel excavator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7123897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150