JPH07224600A - Method of measuring segment shape for shielding construction work - Google Patents

Method of measuring segment shape for shielding construction work

Info

Publication number
JPH07224600A
JPH07224600A JP6017265A JP1726594A JPH07224600A JP H07224600 A JPH07224600 A JP H07224600A JP 6017265 A JP6017265 A JP 6017265A JP 1726594 A JP1726594 A JP 1726594A JP H07224600 A JPH07224600 A JP H07224600A
Authority
JP
Japan
Prior art keywords
segment
pivot shaft
shield
shield machine
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6017265A
Other languages
Japanese (ja)
Inventor
Satoru Miura
悟 三浦
Yoshikazu Miyauchi
良和 宮内
Toshikazu Miyajima
俊和 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6017265A priority Critical patent/JPH07224600A/en
Publication of JPH07224600A publication Critical patent/JPH07224600A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of measuring the shape of segments for a highly precise shield construction work regardless of the mechanical precision of a segment erector. CONSTITUTION:A pivot shaft 8 parallel to the axial line C of a shield excavator 1 is fixed at the inside of the shield excavator 1. A non-contact type distance meter 7 positioned to the direction crossing at right angles with the pivot shaft 8 at the rear end of the pivot shaft 8 viewed from the excavation direction is fitted rotatably around the the pivot shaft 8. The relative position of the center line of the pivot shaft 8 against the shield excavator 1 is measured. Further, the distance meter 7 is rotated around the pivot shaft while measuring the rotary angle to measure the distance from the center line of the pivot shaft to the opposite point on the inner face of the segment 5 by the distance meter 7. The sectional shape of the inner face of the segment 5 against the shield excavator 1 is obtained from the rotary angles against three or more opposite points measured and distances to the center line of the pivot shaft 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシールドトンネル工事に
おいてシールド内に組立てるセグメントの二次元断面形
状及び三次元形状を計測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a two-dimensional cross-sectional shape and a three-dimensional shape of a segment assembled in a shield in shield tunnel construction.

【0002】[0002]

【従来の技術】シールド掘進機による掘削を用いるトン
ネル構築工事では、地盤を一定距離だけ掘進する毎に、
図6に示すようにシールド掘進機の外周壁である円筒形
のシールド・スキンプレート(以下、単にスキンプレー
トという)の後端部の内側に掘削後のトンネル内壁とな
るセグメントを組立てる。通常セグメントは複数のセグ
メントピースから形成されるリング形状であるため、品
質管理や次回の組立てのために今回組立てたセグメント
リングの真円度、中心軸、切羽側端面の傾斜等を計測す
る必要がある。
2. Description of the Related Art In tunnel construction work using excavation by a shield machine, every time the ground is excavated a certain distance,
As shown in FIG. 6, a segment serving as an inner wall of a tunnel after excavation is assembled inside a rear end portion of a cylindrical shield skin plate (hereinafter, simply referred to as a skin plate) which is an outer peripheral wall of a shield machine. Since the normal segment is a ring shape formed from multiple segment pieces, it is necessary to measure the roundness, center axis, inclination of the end face on the cutting face, etc. of the segment ring assembled this time for quality control and the next assembly. is there.

【0003】従来セグメントリングの形状は、例えば図
6に示すようにセグメントピースのハンドリング装置で
あるエレクタ4のセグメント内面と対向する先端部に距
離センサ6を取付け、エレクタ4をセグメント内面に沿
って一回転させてセグメント内面までの距離を計測し、
距離センサ6の取付位置と計測された距離とからセグメ
ント内面の断面形状を算出して求めていた。
A conventional segment ring has a conventional shape, for example, as shown in FIG. 6, in which a distance sensor 6 is attached to a tip end portion of a segment piece handling device which faces an inner surface of a segment of an erector 4, and the erector 4 is arranged along the inner surface of the segment. Rotate to measure the distance to the inner surface of the segment,
The cross-sectional shape of the inner surface of the segment is calculated and obtained from the mounting position of the distance sensor 6 and the measured distance.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記エレクタ
の先端部に距離センサを取付けて計測する方法は、自動
組立装置で使われるような機械的精度が高いエレクタの
場合は有効な方法であるが、比較的精度の低い一般的な
エレクタの場合は回転に伴って回転中心が偏心するため
算出されたセグメント内面の形状が必ずしも正確ではな
い問題がある。
However, the method of mounting the distance sensor at the tip of the erector and measuring the erector is effective in the case of an erector having a high mechanical precision such as used in an automatic assembly apparatus. In the case of a general erector with relatively low accuracy, there is a problem that the calculated shape of the inner surface of the segment is not always accurate because the center of rotation is eccentric with the rotation.

【0005】そこで本発明の目的は、エレクタ等の機械
的精度に依存しない高精度なシールド工事用のセグメン
ト形状計測方法を提供するにある。
Therefore, an object of the present invention is to provide a highly accurate segment shape measuring method for shield construction that does not depend on the mechanical accuracy of the erector or the like.

【0006】[0006]

【課題を解決するための手段】図1を参照するに、本発
明のシールド工事用のセグメント形状計測方法は、シー
ルド掘進機1で掘進後セグメント5を組立てるシールド
工事におけるセグメント形状計測方法において、シール
ド掘進機1の内側にシールド掘進機1の軸線Cと平行に
枢支軸8を取付け、枢支軸8のセグメント5の内面と対
向すべき部位に枢支軸8と直交方向に向けた非接触式距
離計7を枢支軸8の回りに回転自在に枢支し、シールド
掘進機1に対する枢支軸8の中心線の位置を計測し、回
転角度を計測しながら距離計7を枢支軸8の回りに回転
させて中心線からセグメント5の内面上の複数の対向点
までの距離を計測し、中心線の位置と計測された三点以
上の対向点の各々に対する距離と距離計7の回転角度と
からシールド掘進機1に対するセグメント5の内面の断
面形状を求める。
Referring to FIG. 1, a segment shape measuring method for shield construction of the present invention is a segment shape measuring method in shield construction in which a shield excavator 1 assembles a segment 5 after excavation. The pivot shaft 8 is attached inside the excavator 1 in parallel with the axis C of the shield machine 1, and the portion of the pivot shaft 8 that should face the inner surface of the segment 5 is not in contact with the pivot shaft 8 in a direction orthogonal to the pivot shaft 8. Type distance meter 7 is rotatably supported around a pivot shaft 8, the position of the center line of the pivot shaft 8 with respect to the shield machine 1 is measured, and the distance meter 7 is pivoted while measuring the rotation angle. Rotate about 8 to measure the distance from the center line to a plurality of facing points on the inner surface of the segment 5, and measure the position of the center line and the distance to each of the measured three or more facing points and the distance meter 7. Rotation angle and shield digging Determining an inner surface of the cross-sectional shape of the segment 5 relative to 1.

【0007】好ましくは、シールド掘進機1の内側に旋
回リング18付のセグメント5組立用エレクタ4を設け、
旋回リング18上から旋回リング18の回転中心へ向かう三
本以上の長さ調節可能な支持腕10により枢支軸8の軸受
け9を旋回リング18の回転中心に保持し、各支持腕10の
長さの調節により枢支軸8の中心線をシールド掘進機1
の軸線C上に位置決めする。
Preferably, the erector 4 for assembling the segment 5 with the turning ring 18 is provided inside the shield machine 1.
The bearing 9 of the pivot shaft 8 is held at the center of rotation of the swivel ring 18 by three or more adjustable support arms 10 extending from above the swivel ring 18 toward the center of rotation of the swivel ring 18, and the length of each support arm 10 is increased. Adjust the height to adjust the center line of the pivot shaft 8 to the shield machine 1
Position on the axis C of.

【0008】[0008]

【作用】本発明では、枢支軸8を静止させたまま、枢支
軸8に枢支した非接触式距離計7を回転させてセグメン
ト2の内面までの距離を計測する。例えば図1では枢支
軸8をエレクタ4に固定するが、エレクタ4を停止させ
たまま距離計7を回転させるので、エレクタ4の機械的
精度に関係なく距離計測が可能である。非接触式距離計
7は従来技術に属する装置であり、例えば波動信号を発
信してから反射信号を受信するまでの時間と波動信号の
速度とから反射面までの距離を求める光波距離計や超音
波距離計とすることができる。距離計7は、例えば枢支
軸8に内蔵されたモータ等の回転機構12により減速機構
を介して回転させる。
In the present invention, the distance to the inner surface of the segment 2 is measured by rotating the non-contact distance meter 7 pivotally supported by the pivot shaft 8 while keeping the pivot shaft 8 stationary. For example, in FIG. 1, the pivot shaft 8 is fixed to the erector 4, but the distance meter 7 is rotated while the erector 4 is stopped, so that the distance can be measured regardless of the mechanical accuracy of the erector 4. The non-contact distance meter 7 is a device belonging to the prior art, and is, for example, an optical wave distance meter or a super-wave distance meter that determines the distance to the reflecting surface from the time from transmitting the wave signal to receiving the reflected signal and the speed of the wave signal. It can be a sonic rangefinder. The range finder 7 is rotated by a rotation mechanism 12 such as a motor built in the pivot 8 through a speed reduction mechanism.

【0009】距離計7による計測を行なう前に、枢支軸
8の中心線のシールド掘進機1に対する位置を例えば測
量により計測する。シールド工事では通常シールド掘削
機1の位置を測量しているので、坑内ベンチマーク等を
介して枢支軸8の中心線の位置を測量すれば、シールド
掘進機1に対する中心線の位置が求められる。
Before the measurement by the range finder 7, the position of the center line of the pivot 8 with respect to the shield machine 1 is measured, for example, by surveying. Since the position of the shield excavator 1 is normally measured in the shield work, the position of the center line with respect to the shield machine 1 can be obtained by measuring the position of the center line of the pivot shaft 8 via an underground mine benchmark or the like.

【0010】図1を参照するに、距離計7は枢支軸8と
直交方向に向けて取付けられ、軸線Cと垂直な平面H上
におけるセグメント5の内面までの距離を計測する。図
2は断面図Hを模式的に示し、枢支軸8の中心線と断面
Hとの交点をP、軸線Cと断面Hとの交点をO、距離計
7と対向するセグメント5の内面上の点をS1〜S4で表
す。距離計7の回転角度を例えば距離計7が対向点S1
へ向かう水平方向を基準にして計測する。距離計7の回
転角度は例えばエンコーダ等を介して自動計測すること
ができる。距離計7を基準方向から角度θ2だけ回転さ
せた時に距離計7が距離P−S2を計測したとすれば、
角度θ2と距離P−S2とからセグメント5の内面上の対
向点S2が定まり、予め計測された中心線の位置から対
向点S2のシールド掘進機1に対する位置が算出でき
る。対向点S1、S3、S4の位置も同様に算出できる。
セグメント5の内面の断面形状を円と仮定すれば、少な
くとも三つの異なる対向点の位置からセグメント5の内
周円の中心及び半径が算出でき、セグメント5の内周円
が求められる。隣接する対応点の円周角即ち距離計7の
回転角度を小さくすれば、精度の高い断面形状の計測が
可能となる。
Referring to FIG. 1, a distance meter 7 is mounted in a direction orthogonal to a pivot shaft 8 and measures a distance to an inner surface of a segment 5 on a plane H perpendicular to an axis C. FIG. 2 schematically shows a cross-sectional view H, where P is the intersection of the center line of the pivot shaft 8 and the cross-section H, O is the intersection of the axis C and the cross-section H, and is on the inner surface of the segment 5 facing the distance meter 7. Points are represented by S 1 to S 4 . For example, the rotation angle of the range finder 7 may be determined by the range finder 7 at the facing point S 1
Measure with reference to the horizontal direction toward. The rotation angle of the range finder 7 can be automatically measured, for example, via an encoder or the like. If the range finder 7 measures the distance P−S 2 when the range finder 7 is rotated by an angle θ 2 from the reference direction,
The facing point S 2 on the inner surface of the segment 5 is determined from the angle θ 2 and the distance P−S 2, and the position of the facing point S 2 with respect to the shield machine 1 can be calculated from the position of the center line measured in advance. The positions of the facing points S 1 , S 3 , and S 4 can be calculated in the same manner.
If the cross-sectional shape of the inner surface of the segment 5 is assumed to be a circle, the center and radius of the inner peripheral circle of the segment 5 can be calculated from the positions of at least three different facing points, and the inner peripheral circle of the segment 5 can be obtained. If the circumferential angle of the corresponding points adjacent to each other, that is, the rotation angle of the range finder 7 is reduced, the cross-sectional shape can be measured with high accuracy.

【0011】このようにして本発明の目的である「エレ
クタ等の機械的精度に依存しない高精度なシールド工事
用のセグメント形状計測方法」の提供が達成できた。
Thus, the object of the present invention is to provide the "segment shape measuring method for shield work with high accuracy which does not depend on the mechanical accuracy of the erector or the like".

【0012】枢支軸8の中心線が軸線C上にあれば、距
離計7による計測距離とシールド掘進機1の内径との直
接対比が可能となり、例えば内径から計測距離とセグメ
ントの厚さとを減ずる簡単な演算処理でテールクリアラ
ンスが求められる。図1の実施例では、中心線を軸線C
上に位置決めするため、枢支軸8の軸受け9を長さ調節
機構11付きの三本以上の支持腕10により支持し、各支持
腕10の長さの調節により枢支軸8の中心線の位置を調整
可能としている。図中17はセグメント5を把持するグリ
ップ、16は昇降装置、15は昇降装置を内径方向に移動す
る油圧ジャッキを示す。但し枢支軸8の取付け位置及び
取付け方法は図示例に限定されない。
If the center line of the pivot shaft 8 is on the axis C, the distance measured by the range finder 7 and the inner diameter of the shield machine 1 can be directly compared. For example, the measured distance and the segment thickness can be calculated from the inner diameter. Tail clearance is required by a simple calculation process that reduces the clearance. In the embodiment of FIG. 1, the center line is the axis C.
In order to position it upward, the bearing 9 of the pivot shaft 8 is supported by three or more support arms 10 with a length adjusting mechanism 11, and the length of each support arm 10 is adjusted to adjust the center line of the pivot shaft 8. The position can be adjusted. In the figure, 17 is a grip for holding the segment 5, 16 is a lifting device, and 15 is a hydraulic jack for moving the lifting device in the inner diameter direction. However, the mounting position and the mounting method of the pivot shaft 8 are not limited to the illustrated example.

【0013】[0013]

【実施例】図3は、シールド掘進機1の掘進と停止を繰
返しながらセグメント5の内面の三次元形状を求める本
発明の実施例を示す。図3(A)に示す掘進停止地点で計
測機7を回転させてセグメント5の内面の断面形状を求
め、距離Lだけシールド掘進機1を掘進させた図3(B)
の地点で再度掘進を停止して断面形状を求める。距離計
7はシールド掘進機1と共に移動するので、掘進と停止
の繰返しにより距離Lだけ隔てた複数の断面形状が得ら
れ、各断面形状からセグメント5内面の三次元形状を求
める。距離Lを短縮すれば三次元形状の精度は向上す
る。
FIG. 3 shows an embodiment of the present invention in which the three-dimensional shape of the inner surface of the segment 5 is obtained by repeatedly excavating and stopping the shield machine 1. 3B in which the shield machine 1 is excavated by a distance L by rotating the measuring machine 7 at the excavation stop point shown in FIG. 3A to obtain the cross-sectional shape of the inner surface of the segment 5.
Stop the excavation again at the point of and obtain the cross-sectional shape. Since the rangefinder 7 moves together with the shield machine 1, a plurality of cross-sectional shapes separated by the distance L are obtained by repeating excavation and stop, and the three-dimensional shape of the inner surface of the segment 5 is obtained from each cross-sectional shape. If the distance L is shortened, the accuracy of the three-dimensional shape is improved.

【0014】図4は、軸線Cの方向に伸縮可能な伸縮部
材13を介して枢支軸8をシールド掘進機1の内側に取付
け、シールド掘進機1を停止させたままセグメント5の
内面の三次元形状を求める本発明の実施例を示す。図示
例では、伸縮部材13として軸線C方向に伸縮する油圧ジ
ャッキを用い、その一端をエレクタ4の切羽側面に固定
し、他端を枢支軸8の切羽側端と接続している。図4
(A)の地点で断面形状を計測し、距離Lだけ伸縮部材13
を伸長させた図4(B)の地点で再び断面形状を計測し、
距離Lだけ隔てた複数の断面形状を得る。シールド掘進
機1を掘進させる場合に比べ掘進終了後又は掘進直前に
複数の断面形状を一括して計測でき、また距離Lの短縮
化により精度の高い計測が期待できる。但し本発明の伸
縮部材13及びその取付け位置は図示例に限定されない。
In FIG. 4, the pivot shaft 8 is attached to the inside of the shield machine 1 via the elastic member 13 which can be expanded and contracted in the direction of the axis C, and the tertiary of the inner surface of the segment 5 is maintained while the shield machine 1 is stopped. The Example of this invention which calculates | requires an original shape is shown. In the illustrated example, a hydraulic jack that expands and contracts in the direction of the axis C is used as the elastic member 13, one end of which is fixed to the side face of the face of the erector 4 and the other end is connected to the end of the pivot shaft 8 on the face side. Figure 4
The cross-sectional shape is measured at the point (A) and the elastic member 13 is separated by the distance L.
Measure the cross-sectional shape again at the point in Figure 4 (B) where
Obtain a plurality of cross-sectional shapes separated by a distance L. Compared with the case of excavating the shield machine 1, it is possible to collectively measure a plurality of cross-sectional shapes after the excavation is completed or immediately before the excavation, and it is possible to expect a highly accurate measurement due to the reduction of the distance L. However, the elastic member 13 and its mounting position of the present invention are not limited to the illustrated example.

【0015】以上セグメント5の内面の断面形状の計測
方法について説明したが、セグメント5の厚さは予め決
められているか又は組立て前に計測可能であるから、セ
グメント5の内面の断面形状とセグメント5の厚さとか
らセグメント5の外面の断面形状を算出することもでき
る。図5に示すようにセグメント5の組立て前に本発明
の計測方法によってスキンプレート2の内面の断面形状
を求めれば、スキンプレート2の内面とセグメント5の
外面との間の距離であるテールクリアランスを求めるこ
ともできる。
The method of measuring the cross-sectional shape of the inner surface of the segment 5 has been described above. However, since the thickness of the segment 5 is predetermined or can be measured before assembling, the cross-sectional shape of the inner surface of the segment 5 and the segment 5 can be measured. The cross-sectional shape of the outer surface of the segment 5 can be calculated from the thickness of the segment. As shown in FIG. 5, when the cross-sectional shape of the inner surface of the skin plate 2 is obtained by the measuring method of the present invention before the assembly of the segment 5, the tail clearance, which is the distance between the inner surface of the skin plate 2 and the outer surface of the segment 5, is calculated. You can also ask.

【0016】[0016]

【発明の効果】以上詳細に説明したように、本発明のシ
ールド工事用のセグメント形状計測方法は、シールド掘
進機の内側にシールド掘進機の軸線と平行に枢支軸を取
付け、枢支軸のセグメント内面と対向すべき部位に枢支
軸と直交方向へ向けた非接触式距離計を枢支し、シール
ド掘進機に対する枢支軸の中心線の位置を計測し、回転
角度を計測しながら距離計を枢支軸の回りに回転させて
中心線からセグメント内面上の複数の対向点までの距離
を計測し、中心線の位置と距離計の回転角度と計測距離
とからセグメント内面形状を求めるので、以下の顕著な
効果を奏する。
As described in detail above, in the segment shape measuring method for shield construction of the present invention, the pivot shaft is attached inside the shield machine parallel to the axis of the shield machine, and A non-contact type distance meter that is oriented in the direction orthogonal to the pivot shaft is pivotally supported at the part that should face the inner surface of the segment, the position of the center line of the pivot shaft with respect to the shield machine is measured, and the distance is measured while measuring the rotation angle. Rotate the meter around the pivot axis to measure the distance from the center line to multiple opposing points on the inner surface of the segment, and calculate the shape of the inner surface of the segment from the position of the center line, the rotation angle of the distance meter, and the measured distance. The following remarkable effects are achieved.

【0017】(イ)エレクタを停止させたまま計測を行な
うので、エレクタの機械的精度に関係なく計測ができ
る。 (ロ)単一の距離計により精度の高い断面形状を求めるこ
とができる。 (ハ)枢支軸と掘進機との間に伸縮部材を介在させ、枢支
軸を軸線方向に移動可能とすれば、シールド掘進機を停
止させたままセグメントの三次元形状を求めることがで
きる。 (ニ)距離計の回転角度の自動計測がエンコーダ等を介し
て容易に行える。 (ホ)セグメントの自動組立て装置等との融合によりシー
ルドトンネル工事の自動化への利用が期待できる。 (ヘ)従来の円形シールド工法以外にも2連又は3連とい
ったマルチフェイスシールド工法へ適用が期待できる。
(A) Since the measurement is performed with the erector stopped, the measurement can be performed regardless of the mechanical accuracy of the erector. (B) A highly accurate cross-sectional shape can be obtained with a single rangefinder. (C) If the elastic member is interposed between the pivot shaft and the excavator and the pivot shaft is movable in the axial direction, the three-dimensional shape of the segment can be obtained while the shield excavator is stopped. . (D) Automatic measurement of the rotation angle of the rangefinder can be easily performed via an encoder or the like. (E) It can be expected to be used for automation of shield tunnel construction by fusing it with automatic assembly equipment of segments. (F) In addition to the conventional circular shield method, it can be expected to be applied to a multi-face shield method such as two or three stations.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の一実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】は、本発明の作用を示す説明図である。FIG. 2 is an explanatory view showing the operation of the present invention.

【図3】は、セグメントの三次元形状計測の実施例を示
す説明図である。
FIG. 3 is an explanatory diagram showing an example of three-dimensional shape measurement of a segment.

【図4】は、伸縮部材を用いた三次元形状計測の実施例
の説明図である。
FIG. 4 is an explanatory diagram of an example of three-dimensional shape measurement using a stretchable member.

【図5】は、本発明によるテールクリアランス計測の説
明図である。
FIG. 5 is an explanatory diagram of tail clearance measurement according to the present invention.

【図6】は、従来技術の説明図である。FIG. 6 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1 シールド掘進機 2 スキンプレート 3
シールドジャッキ 4 エレクタ 5 セグメント 6
距離センサー 7 非接触式距離計 8 枢支軸 9
軸受け 10 支持腕 11 長さ調節機構 12
回転機構 13 伸縮部材 15 油圧ジャッキ 16
昇降装置 17 グリップ 18 旋回リング。
1 Shield machine 2 Skin plate 3
Shield jack 4 Electa 5 Segment 6
Distance sensor 7 Non-contact distance meter 8 Pivot shaft 9
Bearing 10 Support arm 11 Length adjustment mechanism 12
Rotation mechanism 13 Telescopic member 15 Hydraulic jack 16
Lifting device 17 Grip 18 Slewing ring.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】シールド掘進機で掘進後セグメントを組立
てるシールド工事におけるセグメント形状計測方法にお
いて、シールド掘進機の内側にシールド掘進機の軸線と
平行に枢支軸を取付け、前記枢支軸のセグメント内面と
対向すべき部位に前記枢支軸と直交方向に向けた非接触
式距離計を前記枢支軸の回りに回転自在に枢支し、シー
ルド掘進機に対する前記枢支軸の中心線の位置を計測
し、回転角度を計測しながら前記距離計を前記枢支軸の
回りに回転させて前記中心線から前記セグメント内面上
の複数の対向点までの距離を計測し、前記中心線の位置
と計測された三点以上の対向点の各々に対する前記距離
と前記距離計の回転角度とからシールド掘進機に対する
前記セグメント内面の断面形状を求めてなるシールド工
事用のセグメント形状計測方法。
1. A segment shape measuring method in a shield construction for assembling a post-digging segment with a shield machine, wherein a pivot shaft is attached inside a shield machine parallel to an axis of the shield machine, and a segment inner surface of the pivot shaft. A non-contact distance meter oriented in a direction orthogonal to the pivot shaft is rotatably pivoted around the pivot shaft at a portion to be opposed to the position of the center line of the pivot shaft with respect to the shield machine. The distance meter is rotated around the pivot shaft while measuring the rotation angle to measure the distance from the center line to a plurality of opposing points on the inner surface of the segment, and the position and the position of the center line are measured. Segment shape for shield construction in which the cross-sectional shape of the inner surface of the segment with respect to the shield machine is obtained from the distance with respect to each of the three or more opposed points and the rotation angle of the range finder. Measurement method.
【請求項2】請求項1の計測方法において、シールド掘
進機内に旋回リング付のセグメント組立用エレクタを設
け、前記旋回リング上から前記旋回リングの回転中心へ
向かう三本以上の長さ調節可能な支持腕により前記枢支
軸の軸受けを前記旋回リングの回転中心に保持し、前記
各支持腕の長さの調節により前記枢支軸の中心線をシー
ルド掘進機の軸線上に位置決めしてなるシールド工事用
のセグメント形状計測方法。
2. The measuring method according to claim 1, wherein a segment assembly erector with a swivel ring is provided in the shield machine, and three or more lengths from the swivel ring to the center of rotation of the swivel ring can be adjusted. A shield formed by holding a bearing of the pivot shaft at the center of rotation of the swivel ring by a support arm and positioning the center line of the pivot shaft on the axis of the shield machine by adjusting the length of each support arm. Segment shape measurement method for construction.
【請求項3】請求項1の計測方法において、前記枢支軸
をシールド掘進機の軸線方向に伸縮可能な伸縮部材を介
してシールド掘進機の内側に取付け、前記伸縮部材の伸
縮により前記距離計を前記中心線上において移動させ、
異なる位置で求めた前記セグメント内面の複数の断面形
状から前記セグメント内面の三次元形状を求めてなるシ
ールド工事用のセグメント形状計測方法。
3. The distance measuring device according to claim 1, wherein the pivot shaft is attached to the inside of the shield machine through an elastic member that can expand and contract in the axial direction of the shield machine, and the elastic member expands and contracts to extend the rangefinder. On the center line,
A segment shape measuring method for shield construction, wherein a three-dimensional shape of the segment inner surface is obtained from a plurality of cross-sectional shapes of the segment inner surface obtained at different positions.
【請求項4】請求項2の計測方法において、シールド掘
進機の軸線方向に伸縮可能な伸縮部材の一端を前記セグ
メント組立用エレクタに固定し、前記枢支軸を前記伸縮
部材の他端に固定し、前記伸縮部材の伸縮により前記距
離計をシールド掘進機の軸線上において移動させ、異な
る位置で求めた前記セグメント内面の複数の断面形状か
ら前記セグメント内面の三次元形状を求めてなるシール
ド工事用のセグメント形状計測方法。
4. The measuring method according to claim 2, wherein one end of an elastic member that can expand and contract in the axial direction of the shield machine is fixed to the segment assembly erector, and the pivot shaft is fixed to the other end of the elastic member. However, for the shield construction in which the distance meter is moved on the axis of the shield machine by the expansion and contraction of the elastic member, and the three-dimensional shape of the segment inner surface is obtained from the plurality of cross-sectional shapes of the segment inner surface obtained at different positions. Segment shape measurement method.
【請求項5】請求項3又は4の計測方法において、前記
伸縮部材を油圧シリンダーとしてなるシールド工事用の
セグメント形状計測方法。
5. The segment shape measuring method for shield construction according to claim 3 or 4, wherein the elastic member is a hydraulic cylinder.
JP6017265A 1994-02-14 1994-02-14 Method of measuring segment shape for shielding construction work Pending JPH07224600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6017265A JPH07224600A (en) 1994-02-14 1994-02-14 Method of measuring segment shape for shielding construction work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6017265A JPH07224600A (en) 1994-02-14 1994-02-14 Method of measuring segment shape for shielding construction work

Publications (1)

Publication Number Publication Date
JPH07224600A true JPH07224600A (en) 1995-08-22

Family

ID=11939143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6017265A Pending JPH07224600A (en) 1994-02-14 1994-02-14 Method of measuring segment shape for shielding construction work

Country Status (1)

Country Link
JP (1) JPH07224600A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070827A (en) * 2005-09-05 2007-03-22 Taisei Corp Shield machine, and method of measuring tail clearance and/or dimension of internal space of segment tunnel
WO2014109122A1 (en) * 2013-01-09 2014-07-17 日立造船株式会社 Segment roundness measuring device and segment roundness measuring method
CN105973141A (en) * 2016-04-29 2016-09-28 中铁建大桥工程局集团第二工程有限公司 Device and method of measuring shield tunnel segment dislocation
JP2018021327A (en) * 2016-08-02 2018-02-08 株式会社フジタ Circularity measurement device
JP2018021321A (en) * 2016-08-02 2018-02-08 株式会社フジタ Circularity measurement device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070827A (en) * 2005-09-05 2007-03-22 Taisei Corp Shield machine, and method of measuring tail clearance and/or dimension of internal space of segment tunnel
JP4684049B2 (en) * 2005-09-05 2011-05-18 大成建設株式会社 Shield tunneling machine and method for measuring tail clearance and / or space dimension in segment tunnel
WO2014109122A1 (en) * 2013-01-09 2014-07-17 日立造船株式会社 Segment roundness measuring device and segment roundness measuring method
JP2014134439A (en) * 2013-01-09 2014-07-24 Hitachi Zosen Corp Segment circularity measurement device and segment circularity measurement method
CN104903679A (en) * 2013-01-09 2015-09-09 日立造船株式会社 Segment roundness measuring device and segment roundness measuring method
KR20150103006A (en) * 2013-01-09 2015-09-09 히다치 조센 가부시키가이샤 Segment roundness measuring device and segment roundness measuring method
CN105973141A (en) * 2016-04-29 2016-09-28 中铁建大桥工程局集团第二工程有限公司 Device and method of measuring shield tunnel segment dislocation
JP2018021327A (en) * 2016-08-02 2018-02-08 株式会社フジタ Circularity measurement device
JP2018021321A (en) * 2016-08-02 2018-02-08 株式会社フジタ Circularity measurement device

Similar Documents

Publication Publication Date Title
US6675122B1 (en) Indirect position determination with the aid of a tracker
JP2001509851A (en) Apparatus and method for determining the position of a working unit
WO2006098771A1 (en) Method and apparatus for machine element control
JP2019525039A (en) Control of heading of drilling equipment
US10989812B2 (en) Foundation engineering apparatus and foundation engineering method
JP2017181340A (en) Construction machine and calibration method of construction machine
JP2001509852A (en) Apparatus and method for determining the position of a working unit
EP0523907A2 (en) Method and apparatus for controlling direction of excavating machine
US20230257967A1 (en) Revolving work vehicle, and method for detecting position of working end of revolving work vehicle
JPH07224600A (en) Method of measuring segment shape for shielding construction work
JP2003535321A (en) Measurement method for facilitating manufacture of self-restoring laser gyroscope block
CA1248937A (en) Rock drill with tunnel profile control system
JP6991940B2 (en) Segment roundness measuring device, shield excavator and segment roundness measuring method
JP4182181B2 (en) Automatic tracking survey instrument
JP2651346B2 (en) Tail clearance measurement method and device
JP3915192B2 (en) Tail clearance measuring device for shield machine
JP4477209B2 (en) Direction angle measuring device for construction machinery
JP3406378B2 (en) Segment assembly equipment
JP2585348Y2 (en) Segment roundness measuring device
JPH02232499A (en) Automatic survey positioning system of tunnel living machine
JPH069118Y2 (en) Misalignment and clearance analysis device for segment assembly robot
JP2964682B2 (en) Surface profile measuring device
JPH02274998A (en) Segment roundness measuring device for shield excavator
JPH07233695A (en) Self-traveling tail-clearance measuring device
JP2004044359A (en) Erector controller and assembly method for lining member