JP7122007B2 - Superconducting device and magnet device - Google Patents

Superconducting device and magnet device Download PDF

Info

Publication number
JP7122007B2
JP7122007B2 JP2019540899A JP2019540899A JP7122007B2 JP 7122007 B2 JP7122007 B2 JP 7122007B2 JP 2019540899 A JP2019540899 A JP 2019540899A JP 2019540899 A JP2019540899 A JP 2019540899A JP 7122007 B2 JP7122007 B2 JP 7122007B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting bulk
magnetic pole
magnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019540899A
Other languages
Japanese (ja)
Other versions
JPWO2019049720A1 (en
Inventor
明保 山本
七海 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Publication of JPWO2019049720A1 publication Critical patent/JPWO2019049720A1/en
Application granted granted Critical
Publication of JP7122007B2 publication Critical patent/JP7122007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices

Description

本発明は、磁石装置に備えられる超伝導装置、及び、磁石装置に関するものである。 The present invention relates to a superconducting device provided in a magnet device and a magnet device.

例えば磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)装置等が有する磁石装置として、強磁場を発生させる磁石部を備えた磁石装置が用いられている。米国特許第7944208号明細書(特許文献1)には、磁気共鳴イメージングシステムにおいて、主磁石が有する互いに反対の磁極が、水平軸に沿って配置され、且つ、主磁石が発生させた磁場を検出するために構成された開放型磁気共鳴イメージング領域を画定する技術が開示されている。 2. Description of the Related Art A magnet device having a magnet unit that generates a strong magnetic field is used as a magnet device included in, for example, a magnetic resonance imaging (MRI) device. U.S. Pat. No. 7,944,208 discloses a magnetic resonance imaging system in which opposite magnetic poles of a main magnet are arranged along a horizontal axis and detect the magnetic field generated by the main magnet. Techniques are disclosed for defining an open magnetic resonance imaging region configured to.

このような強磁場を発生させる磁石装置においては、磁石部の外部に強磁場が漏洩することを防止又は抑制し、磁石部の周囲での磁場の強度を低減するために、環状経路に沿って、磁石部の一方の磁極から磁性体を経て磁石部の他方の磁極に戻る磁気回路が形成されるように、磁気回路用部材として、鉄等の透磁率の高い磁性体が設けられることがある。 In a magnet device that generates such a strong magnetic field, in order to prevent or suppress leakage of the strong magnetic field to the outside of the magnet part and to reduce the strength of the magnetic field around the magnet part, along the annular path A magnetic material with high magnetic permeability such as iron may be provided as a magnetic circuit member so that a magnetic circuit is formed from one magnetic pole of the magnet portion to the other magnetic pole of the magnet portion via the magnetic material. .

特開平7-178071号公報(特許文献2)には、MRI装置のマグネットアセンブリにおいて、下永久磁石を上面に取り付けた下ベースヨークと、その下ベースヨークの端縁部から立設された柱ヨークと、その柱ヨークで支持されると共に上永久磁石を下永久磁石に対向して下面に取り付けた上ベースヨークと、を有する技術が開示されている。 Japanese Patent Laying-Open No. 7-178071 (Patent Document 2) discloses a magnet assembly for an MRI apparatus, which includes a lower base yoke having a lower permanent magnet attached to its upper surface and a column yoke erected from the edge of the lower base yoke. and an upper base yoke supported by the column yoke and having an upper permanent magnet attached to the lower surface facing the lower permanent magnet.

一方、例えばMRI装置以外の磁石装置においては、強磁場を発生させる磁石部として、超伝導バルク体が用いられているものがある。非特許文献1及び非特許文献2には、二ホウ化マグネシウム(MgB)よりなる超伝導バルク体が永久磁石として用いられる技術が開示されている。On the other hand, in magnet devices other than MRI devices, for example, a superconducting bulk body is used as a magnet portion that generates a strong magnetic field. Non-Patent Document 1 and Non-Patent Document 2 disclose a technique in which a superconducting bulk body made of magnesium diboride (MgB 2 ) is used as a permanent magnet.

米国特許第7944208号明細書U.S. Pat. No. 7,944,208 特開平7-178071号公報JP-A-7-178071

A. Yamamoto et al., “Permanent magnet with MgB2 bulk superconductor”, Applied Physics Letters 105 (2014) 032601A. Yamamoto et al., “Permanent magnet with MgB2 bulk superconductor”, Applied Physics Letters 105 (2014) 032601 S. Sugino et al., “Enhanced trapped field in MgB2 bulk magnets by tuning grain boundary pinning through milling”, Superconductor Science and Technology 28 (2015) 055016S. Sugino et al., “Enhanced trapped field in MgB2 bulk magnets by tuning grain boundary pinning through milling”, Superconductor Science and Technology 28 (2015) 055016

磁気回路用部材として、鉄等の透磁率の高い磁性体が設けられる場合、透磁率の高い磁性体に磁場を閉じ込めることにより、磁性体の外部での磁場の強度を低減することができる。 When a magnetic material with high magnetic permeability such as iron is provided as a magnetic circuit member, the strength of the magnetic field outside the magnetic material can be reduced by confining the magnetic field in the magnetic material with high magnetic permeability.

ところが、鉄等の磁性体の透磁率は、印加される磁場の強度の増加に伴って減少するので、印加される磁場の強度の増加に伴って、磁性体の内部の磁場の強度が飽和すると、それ以上磁場の強度が増加した場合には、磁性体は磁場を磁性体の内部だけに閉じ込めることができないので、磁性体の外部に漏れ出す磁場の強度が強くなる。 However, since the magnetic permeability of a magnetic material such as iron decreases as the strength of the applied magnetic field increases, when the strength of the magnetic field inside the magnetic material saturates as the strength of the applied magnetic field increases, If the strength of the magnetic field increases further, the strength of the magnetic field leaking out of the magnetic body increases because the magnetic field cannot be confined within the magnetic body.

磁場の強度が強い場合でも印加された磁場を磁性体の内部に閉じ込めるためには、磁気回路の断面積、即ち磁性体の環状経路に垂直な断面積を大きくする必要がある。従って、磁気回路用部材として鉄等の磁性体を用いる場合には、磁気回路用部材の体積を大きくする必要があり、磁気回路を小型化又は軽量化することが困難である。 In order to confine the applied magnetic field inside the magnetic body even when the intensity of the magnetic field is high, it is necessary to increase the cross-sectional area of the magnetic circuit, that is, the cross-sectional area perpendicular to the circular path of the magnetic body. Therefore, when a magnetic material such as iron is used as a magnetic circuit member, it is necessary to increase the volume of the magnetic circuit member, making it difficult to reduce the size or weight of the magnetic circuit.

本発明は、上述のような従来技術の問題点を解決すべくなされたものであって、強磁場を発生させる磁石部を備えた磁石装置において、磁気回路用部材の体積を小さくすることができ、磁気回路を容易に小型化又は軽量化することができる磁石装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art as described above. An object of the present invention is to provide a magnet device in which a magnetic circuit can be easily reduced in size or weight.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 A brief outline of typical inventions disclosed in the present application is as follows.

本発明の一態様としての超伝導装置は、磁場を発生させる磁石部を備えた磁石装置に備えられる。当該超伝導装置は、磁石部の外部に設けられた第1超伝導バルク体を有し、第1超伝導バルク体は、超伝導状態で磁場を捕捉し、磁場を捕捉している第1超伝導バルク体と磁石部とにより磁気回路が形成される。 A superconducting device as one aspect of the present invention is provided in a magnet device having a magnet unit that generates a magnetic field. The superconducting device has a first superconducting bulk body provided outside the magnet unit, the first superconducting bulk body capturing a magnetic field in a superconducting state, and a first superconducting bulk body capturing the magnetic field. A magnetic circuit is formed by the conductive bulk body and the magnet portion.

また、他の一態様として、磁石部は、第1極性を有する第1磁極と、第1極性と反対の第2極性を有する第2磁極と、を有し、第1磁極、第1超伝導バルク体及び第2磁極は、第1軸の周りの環状経路に沿って、第1磁極、第1超伝導バルク体、第2磁極の順に配置され、環状経路に沿って、第1磁極から第1超伝導バルク体を経て第2磁極に戻る磁気回路が形成されてもよい。 Further, as another aspect, the magnet part has a first magnetic pole having a first polarity and a second magnetic pole having a second polarity opposite to the first polarity, and the first magnetic pole and the first superconducting The bulk body and the second magnetic pole are arranged along an annular path about the first axis in the order of the first magnetic pole, the first superconducting bulk body, the second magnetic pole, and along the annular path from the first magnetic pole to the second magnetic pole. A magnetic circuit may be formed through one superconducting bulk body and back to the second pole.

また、他の一態様として、磁石部は、環状経路に沿って互いに間隔を空けて配置された第1磁石及び第2磁石を有し、第1磁石は、第1磁極と、第2極性を有する第3磁極と、を有し、第2磁石は、第1極性を有する第4磁極と、第2磁極と、を有してもよい。第1磁極、第1超伝導バルク体、第2磁極、第4磁極及び第3磁極は、環状経路に沿って、第1磁極、第1超伝導バルク体、第2磁極、第4磁極、第3磁極の順に配置されていてもよい。 In another aspect, the magnet section has a first magnet and a second magnet spaced apart from each other along an annular path, and the first magnet has a first magnetic pole and a second polarity. a third magnetic pole having a first polarity; and the second magnet may have a fourth magnetic pole having a first polarity and a second magnetic pole. The first magnetic pole, the first superconducting bulk body, the second magnetic pole, the fourth magnetic pole and the third magnetic pole are arranged along an annular path along the first magnetic pole, the first superconducting bulk body, the second magnetic pole, the fourth magnetic pole, the third magnetic pole. The three magnetic poles may be arranged in order.

また、他の一態様として、当該超伝導装置は、環状経路に沿って配列された複数の第1超伝導バルク体を含む第1超伝導バルク体群を有し、第1磁極、第1超伝導バルク体群及び第2磁極は、環状経路に沿って、第1磁極、第1超伝導バルク体群、第2磁極の順に配置され、環状経路に沿って、第1磁極から第1超伝導バルク体群を経て第2磁極に戻る磁気回路が形成されてもよい。第1超伝導バルク体群に含まれる複数の第1超伝導バルク体は、複数の第1超伝導バルク体の各々が超伝導状態で磁場を捕捉することにより、第1磁極から出た磁束が、複数の第1超伝導バルク体を順次通って第2磁極に戻るように、環状経路に沿って配列されていてもよい。 Further, as another aspect, the superconducting device has a first superconducting bulk body group including a plurality of first superconducting bulk bodies arranged along a circular path, a first magnetic pole, a first superconducting bulk body The conducting bulk body group and the second magnetic pole are arranged in the order of the first magnetic pole, the first superconducting bulk body group and the second magnetic pole along the annular path, and along the annular path from the first magnetic pole to the first superconducting A magnetic circuit may be formed through the bulk bodies and back to the second pole. Each of the plurality of first superconducting bulk bodies contained in the first superconducting bulk body group captures a magnetic field in a superconducting state, so that the magnetic flux emitted from the first magnetic pole is , arranged along an annular path to sequentially pass through the plurality of first superconducting bulk bodies and back to the second pole.

また、他の一態様として、複数の第1超伝導バルク体は、互いに間隔を空けて配列されていてもよい。 Moreover, as another aspect, the plurality of first superconducting bulk bodies may be arranged with a space therebetween.

また、他の一態様として、第1超伝導バルク体群は、環状経路に沿って、第1磁極と隣り合い、且つ、第2磁極と隣り合わなくてもよい。複数の第1超伝導バルク体のうち、環状経路に沿って第1磁極に最も近い側に配置された第1超伝導バルク体の、環状経路に垂直な断面の外周長さは、複数の第1超伝導バルク体のうち、環状経路に沿って第1磁極に最も近い側と反対側に配置された第1超伝導バルク体の、環状経路に垂直な断面の外周長さよりも長くてもよい。 Also, as another aspect, the first superconducting bulk body group may be adjacent to the first magnetic pole and not adjacent to the second magnetic pole along the annular path. Among the plurality of first superconducting bulk bodies, the first superconducting bulk body arranged on the side closest to the first magnetic pole along the circular path has an outer circumference length of a cross section perpendicular to the circular path, It may be longer than the outer circumference length of the cross section perpendicular to the annular path of the first superconducting bulk body arranged on the opposite side of the side closest to the first magnetic pole along the annular path among the one superconducting bulk bodies. .

また、他の一態様として、複数の第1超伝導バルク体の各々の環状経路に垂直な断面の外周長さは、環状経路に沿って、第1磁極に最も近い側から第1磁極に最も近い側と反対側に向かって、複数の第1超伝導バルク体の配列順に減少してもよい。 Further, as another aspect, the outer circumference length of the cross section of each of the plurality of first superconducting bulk bodies perpendicular to the annular path is the closest to the first magnetic pole along the annular path from the side closest to the first magnetic pole. The order of arrangement of the plurality of first superconducting bulk bodies may decrease from the near side to the opposite side.

また、他の一態様として、当該超伝導装置は、環状経路に沿って配列された複数の第2超伝導バルク体を含む第2超伝導バルク体群を有し、複数の第2超伝導バルク体の各々は、超伝導状態で磁場を捕捉し、第1磁極、第1超伝導バルク体群、第2超伝導バルク体群及び第2磁極は、環状経路に沿って、第1磁極、第1超伝導バルク体群、第2超伝導バルク体群、第2磁極の順に配置され、環状経路に沿って、第1磁極から第1超伝導バルク体群及び第2超伝導バルク体群を順次経て第2磁極に戻る磁気回路が形成されてもよい。第1超伝導バルク体群に含まれる複数の第1超伝導バルク体、及び、第2超伝導バルク体群に含まれる複数の第2超伝導バルク体は、複数の第1超伝導バルク体及び複数の第2超伝導バルク体の各々が超伝導状態で磁場を捕捉することにより、第1磁極から出た磁束が、複数の第1超伝導バルク体及び複数の第2超伝導バルク体を順次通って第2磁極に戻るように、環状経路に沿って配列されていてもよい。第2超伝導バルク体群は、環状経路に沿って、第2磁極と隣り合い、複数の第2超伝導バルク体のうち、環状経路に沿って第2磁極に最も近い側に配置された第2超伝導バルク体の、環状経路に垂直な断面の外周長さは、複数の第2超伝導バルク体のうち、環状経路に沿って第2磁極に最も近い側と反対側に配置された第2超伝導バルク体の、環状経路に垂直な断面の外周長さよりも長くてもよい。 Further, as another aspect, the superconducting device has a second superconducting bulk body group including a plurality of second superconducting bulk bodies arranged along a circular path, and a plurality of second superconducting bulk bodies Each of the bodies captures a magnetic field in a superconducting state, the first magnetic pole, the first superconducting bulk group, the second superconducting bulk group and the second magnetic pole along an annular path, the first magnetic pole, the second A first superconducting bulk body group, a second superconducting bulk body group, and a second magnetic pole are arranged in this order, and the first superconducting bulk body group and the second superconducting bulk body group are sequentially arranged from the first magnetic pole along an annular path. A magnetic circuit may be formed to return to the second pole. The plurality of first superconducting bulk bodies contained in the first superconducting bulk body group and the plurality of second superconducting bulk bodies contained in the second superconducting bulk body group are the plurality of first superconducting bulk bodies and Each of the plurality of second superconducting bulk bodies captures a magnetic field in a superconducting state, so that the magnetic flux emitted from the first magnetic pole sequentially travels through the plurality of first superconducting bulk bodies and the plurality of second superconducting bulk bodies. It may be arranged along a circular path through and back to the second pole. The second superconducting bulk body group is adjacent to the second magnetic pole along the annular path, and among the plurality of second superconducting bulk bodies, the second superconducting bulk body group is arranged on the side closest to the second magnetic pole along the annular path. The outer circumference length of the cross section of the two superconducting bulk bodies perpendicular to the annular path is the second superconducting bulk body arranged on the side opposite to the side closest to the second magnetic pole along the annular path among the plurality of second superconducting bulk bodies. 2 It may be longer than the perimeter length of the cross-section perpendicular to the annular path of the superconducting bulk body.

また、他の一態様として、複数の第2超伝導バルク体の各々の環状経路に垂直な断面の外周長さは、環状経路に沿って、第2磁極に最も近い側から第2磁極に最も近い側と反対側に向かって、複数の第2超伝導バルク体の配列順に減少してもよい。 Further, as another aspect, the outer circumference length of the cross section of each of the plurality of second superconducting bulk bodies perpendicular to the annular path is the closest to the second magnetic pole along the annular path from the side closest to the second magnetic pole. The plurality of second superconducting bulk bodies may decrease in order of arrangement from the near side to the opposite side.

また、他の一態様として、複数の第1超伝導バルク体の各々は、環状経路に沿った軸線を中心とした筒状の第1筒部を含み、複数の第1超伝導バルク体は、複数の第1超伝導バルク体の各々が超伝導状態で軸線に沿った磁場を捕捉することにより、第1磁極から出た磁束が複数の第1超伝導バルク体の各々にそれぞれ含まれる複数の第1筒部を順次通って第2磁極に戻るように、環状経路に沿って配列されていてもよい。 Further, as another aspect, each of the plurality of first superconducting bulk bodies includes a cylindrical first cylindrical portion centered on an axis along the annular path, and the plurality of first superconducting bulk bodies are: When each of the plurality of first superconducting bulk bodies captures the magnetic field along the axis in the superconducting state, the magnetic flux emitted from the first magnetic pole is included in each of the plurality of first superconducting bulk bodies. They may be arranged along an annular path to sequentially pass through the first barrel and back to the second pole.

また、他の一態様として、複数の第1超伝導バルク体の各々は、環状経路に沿って延在する延在部を含み、複数の第1超伝導バルク体は、複数の第1超伝導バルク体の各々が超伝導状態で環状経路に沿った磁場を捕捉することにより、第1磁極から出た磁束が複数の第1超伝導バルク体の各々にそれぞれ含まれる複数の延在部を順次通って第2磁極に戻るように、環状経路に沿って配列されていてもよい。 Further, as another aspect, each of the plurality of first superconducting bulk bodies includes an extension extending along the annular path, and the plurality of first superconducting bulk bodies includes a plurality of first superconducting bulk bodies. By capturing the magnetic field along the annular path in each of the bulk bodies in the superconducting state, the magnetic flux emitted from the first magnetic pole sequentially travels through the plurality of extensions included in each of the plurality of first superconducting bulk bodies. It may be arranged along a circular path through and back to the second pole.

また、他の一態様として、当該超伝導装置は、磁石部を囲む筒状の第2筒部を含む第3超伝導バルク体を有し、第3超伝導バルク体は、超伝導状態で磁場を捕捉し、それぞれ磁場を捕捉している複数の第1超伝導バルク体と、磁場を捕捉している第3超伝導バルク体と、磁石部と、により磁気回路が形成されてもよい。 Further, as another aspect, the superconducting device has a third superconducting bulk body including a cylindrical second cylindrical part surrounding the magnet part, and the third superconducting bulk body is in a superconducting state and magnetic field A magnetic circuit may be formed by a plurality of first superconducting bulk bodies each capturing a magnetic field, a third superconducting bulk body capturing a magnetic field, and the magnet section.

また、他の一態様として、第1超伝導バルク体は、鉄ニクタイド又は二ホウ化マグネシウムよりなるものでもよい。 Moreover, as another aspect, the first superconducting bulk body may be made of iron pnictide or magnesium diboride.

また、他の一態様として、当該超伝導装置は、第1超伝導バルク体を冷却する冷却部を有し、第1超伝導バルク体が冷却部に冷却されることにより、第1超伝導バルク体が超伝導状態になってもよい。第1超伝導バルク体は、第二種超伝導体よりなり、第1超伝導バルク体は、超伝導状態で、下部臨界磁場を超え且つ上部臨界磁場以下の磁場を、磁束をピン止めすることにより捕捉し、磁場を捕捉している第1超伝導バルク体と磁石部とにより、磁束が通る閉回路である磁気回路が形成され、磁石部の一方の磁極から出た磁束が第1超伝導バルク体を通って磁石部の他方の磁極に戻ってもよい。 Further, as another aspect, the superconducting device has a cooling part that cools the first superconducting bulk body, and the first superconducting bulk body is cooled by the cooling part, whereby the first superconducting bulk body The body may become superconducting. The first superconducting bulk body is made of a second-class superconductor, and the first superconducting bulk body, in a superconducting state, is capable of pinning magnetic flux in a magnetic field exceeding the lower critical magnetic field and equal to or lower than the upper critical magnetic field. A magnetic circuit, which is a closed circuit through which magnetic flux passes, is formed by the first superconducting bulk body and the magnet portion that captures the magnetic field, and the magnetic flux emitted from one magnetic pole of the magnet portion is the first superconducting It may return through the bulk body to the other pole of the magnet portion.

本発明の一態様としての超伝導装置は、磁場を発生させる磁石部を備えた磁石装置に備えられる。当該超伝導装置は、磁石部を囲む筒状の第1筒部を含む第1超伝導バルク体を有し、第1超伝導バルク体は、超伝導状態で磁場を捕捉し、磁場を捕捉している第1超伝導バルク体と磁石部とにより磁気回路が形成される。 A superconducting device as one aspect of the present invention is provided in a magnet device having a magnet unit that generates a magnetic field. The superconducting device has a first superconducting bulk body including a tubular first cylinder surrounding a magnet part, the first superconducting bulk body capturing a magnetic field in a superconducting state and capturing the magnetic field. A magnetic circuit is formed by the first superconducting bulk body and the magnet part.

また、他の一態様として、当該超伝導装置は、磁石部の外部に設けられた第2超伝導バルク体を有し、第2超伝導バルク体は、超伝導状態で磁場を捕捉し、磁場を捕捉している第2超伝導バルク体と、磁場を捕捉している第1超伝導バルク体と、磁石部と、により磁気回路が形成されてもよい。 Further, as another aspect, the superconducting device has a second superconducting bulk body provided outside the magnet unit, and the second superconducting bulk body captures a magnetic field in a superconducting state, A magnetic circuit may be formed by the second superconducting bulk body capturing the magnetic field, the first superconducting bulk body capturing the magnetic field, and the magnet part.

また、他の一態様として、磁石部は、第1極性を有する第1磁極と、第1極性と反対の第2極性を有する第2磁極と、を有してもよい。第1磁極、第2超伝導バルク体及び第2磁極は、第1軸の周りの環状経路に沿って、第1磁極、第2超伝導バルク体、第2磁極の順に配置され、環状経路に沿って、第1磁極から第2超伝導バルク体を経て第2磁極に戻る磁気回路が形成されてもよい。 Also, as another aspect, the magnet section may have a first magnetic pole having a first polarity and a second magnetic pole having a second polarity opposite to the first polarity. The first magnetic pole, the second superconducting bulk body and the second magnetic pole are arranged along an annular path about the first axis in the order of the first magnetic pole, the second superconducting bulk body and the second magnetic pole, along the annular path. A magnetic circuit may be formed along the first magnetic pole through the second superconducting bulk body and back to the second magnetic pole.

また、他の一態様として、当該超伝導装置は、環状経路に沿って配列された複数の第2超伝導バルク体を含む第1超伝導バルク体群を有し、第1磁極、第1超伝導バルク体群及び第2磁極は、環状経路に沿って、第1磁極、第1超伝導バルク体群、第2磁極の順に配置され、環状経路に沿って、第1磁極から第1超伝導バルク体群を経て第2磁極に戻る磁気回路が形成されてもよい。第1超伝導バルク体群に含まれる複数の第2超伝導バルク体は、複数の第2超伝導バルク体の各々が超伝導状態で磁場を捕捉することにより、第1磁極から出た磁束が、複数の第2超伝導バルク体を順次通って第2磁極に戻るように、環状経路に沿って配列されていてもよい。 Further, as another aspect, the superconducting device has a first superconducting bulk body group including a plurality of second superconducting bulk bodies arranged along a circular path, a first magnetic pole, a first superconducting bulk body The conducting bulk body group and the second magnetic pole are arranged in the order of the first magnetic pole, the first superconducting bulk body group and the second magnetic pole along the annular path, and along the annular path from the first magnetic pole to the first superconducting A magnetic circuit may be formed through the bulk bodies and back to the second pole. The plurality of second superconducting bulk bodies included in the first superconducting bulk body group captures a magnetic field in each of the plurality of second superconducting bulk bodies in a superconducting state, so that the magnetic flux emitted from the first magnetic pole is , arranged along an annular path through the plurality of second superconducting bulk bodies in sequence and back to the second pole.

また、他の一態様として、第1超伝導バルク体は、鉄ニクタイド又は二ホウ化マグネシウムよりなるものでもよい。 Moreover, as another aspect, the first superconducting bulk body may be made of iron pnictide or magnesium diboride.

また、他の一態様として、当該超伝導装置は、第1超伝導バルク体を冷却する冷却部を有し、第1超伝導バルク体が冷却部に冷却されることにより、第1超伝導バルク体が超伝導状態になってもよい。第1超伝導バルク体は、第二種超伝導体よりなり、第1超伝導バルク体は、超伝導状態で、下部臨界磁場を超え且つ上部臨界磁場以下の磁場を、磁束をピン止めすることにより捕捉し、磁場を捕捉している第1超伝導バルク体と磁石部とにより、磁束が通る閉回路である磁気回路が形成され、磁石部の一方の磁極から出る磁束が第1筒部の内部を通って磁石部の他方の磁極に戻ってもよい。 Further, as another aspect, the superconducting device has a cooling part that cools the first superconducting bulk body, and the first superconducting bulk body is cooled by the cooling part, whereby the first superconducting bulk body The body may become superconducting. The first superconducting bulk body is made of a second-class superconductor, and the first superconducting bulk body, in a superconducting state, is capable of pinning magnetic flux in a magnetic field exceeding the lower critical magnetic field and equal to or lower than the upper critical magnetic field. A magnetic circuit, which is a closed circuit through which magnetic flux passes, is formed by the first superconducting bulk body and the magnet portion that captures the magnetic field, and the magnetic flux emitted from one magnetic pole of the magnet portion flows into the first cylinder It may return through the interior to the other pole of the magnet portion.

本発明の一態様としての磁石装置は、磁場を発生させる磁石部と、磁石部の外部に設けられた超伝導装置と、を備えている。超伝導装置は、磁石部の外部に設けられた超伝導バルク体を有し、超伝導バルク体は、超伝導状態で磁場を捕捉し、磁場を捕捉している超伝導バルク体と磁石部とにより磁気回路が形成される。 A magnet device as one aspect of the present invention includes a magnet unit that generates a magnetic field, and a superconducting device provided outside the magnet unit. The superconducting device has a superconducting bulk body provided outside the magnet section, the superconducting bulk body capturing a magnetic field in a superconducting state, and the superconducting bulk body capturing the magnetic field and the magnet section. A magnetic circuit is formed by

本発明の一態様としての磁石装置は、磁場を発生させる磁石部と、磁石部を囲む超伝導装置と、を備えている。超伝導装置は、磁石部を囲む筒状の筒部を含む超伝導バルク体を有し、超伝導バルク体は、超伝導状態で磁場を捕捉し、磁場を捕捉している超伝導バルク体と磁石部とにより磁気回路が形成される、 A magnet device as one aspect of the present invention includes a magnet unit that generates a magnetic field and a superconducting device that surrounds the magnet unit. A superconducting device has a superconducting bulk body including a cylindrical tubular portion surrounding a magnet portion, the superconducting bulk body capturing a magnetic field in a superconducting state, and a superconducting bulk body capturing the magnetic field. A magnetic circuit is formed by the magnet part,

本発明の一態様を適用することで、強磁場を発生させる磁石部を備えた磁石装置において、磁気回路用部材の体積を小さくすることができ、磁気回路を容易に小型化又は軽量化することができる。 By applying one aspect of the present invention, it is possible to reduce the volume of a magnetic circuit member in a magnet device including a magnet portion that generates a strong magnetic field, and easily reduce the size or weight of the magnetic circuit. can be done.

実施の形態の超伝導装置を備えた磁石装置を模式的に示す平面図である。1 is a plan view schematically showing a magnet device provided with a superconducting device according to an embodiment; FIG. 実施の形態の超伝導装置を備えた磁石装置を模式的に示す斜視図である。1 is a perspective view schematically showing a magnet device provided with a superconducting device according to an embodiment; FIG. 実施の形態の超伝導装置の一部分を模式的に示す斜視図である。1 is a perspective view schematically showing part of a superconducting device according to an embodiment; FIG. 実施の形態の超伝導装置の一部分を模式的に示す断面図である。1 is a cross-sectional view schematically showing part of a superconducting device according to an embodiment; FIG. 実施の形態の超伝導装置の他の部分を模式的に示す斜視図である。3 is a perspective view schematically showing another portion of the superconducting device of the embodiment; FIG. 実施の形態の超伝導装置の他の部分を模式的に示す断面図である。3 is a cross-sectional view schematically showing another portion of the superconducting device of the embodiment; FIG. 実施の形態の超伝導装置の第1変形例を模式的に示す断面図である。It is a sectional view showing typically the 1st modification of the superconducting device of an embodiment. 実施の形態の超伝導装置の第2変形例を模式的に示す断面図である。It is a sectional view showing typically the 2nd modification of the superconducting device of an embodiment. 実施の形態の磁石装置の第1変形例を模式的に示す平面図である。It is a top view which shows typically the 1st modification of the magnet apparatus of embodiment. 実施の形態の磁石装置の第2変形例を模式的に示す平面図である。It is a top view which shows typically the 2nd modification of the magnet apparatus of embodiment. 実施の形態の磁石装置の第3変形例を模式的に示す平面図である。It is a top view which shows typically the 3rd modification of the magnet apparatus of embodiment. 実施の形態の磁石装置の第4変形例を模式的に示す平面図である。It is a top view which shows typically the 4th modification of the magnet apparatus of embodiment. 実施の形態の磁石装置の第5変形例を模式的に示す平面図である。It is a top view which shows typically the 5th modification of the magnet apparatus of embodiment. 実施の形態の超伝導装置を備えた磁石装置を有するMRI装置を示すブロック図である。1 is a block diagram showing an MRI apparatus having a magnet device equipped with a superconducting device according to an embodiment; FIG. 実施例1の超伝導装置が有する超伝導バルク体の製造方法の一部のステップを示すフロー図である。3 is a flowchart showing some steps of a method for manufacturing a superconducting bulk body of the superconducting device of Example 1. FIG. 実施例1の超伝導装置内に配置された5個のホール素子により測定された局所磁束密度の外部磁場依存性を示すグラフである。4 is a graph showing external magnetic field dependence of local magnetic flux density measured by five Hall elements arranged in the superconducting device of Example 1. FIG. 実施例1の超伝導装置内に配置された5個のホール素子により測定された局所磁束密度の時間依存性を示すグラフである。5 is a graph showing time dependence of local magnetic flux density measured by five Hall elements arranged in the superconducting device of Example 1. FIG.

以下に、本発明の各実施の形態について、図面を参照しつつ説明する。 Each embodiment of the present invention will be described below with reference to the drawings.

なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実施の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 It should be noted that the disclosure is merely an example, and those skilled in the art will naturally include within the scope of the present invention any appropriate modifications that can be easily conceived while maintaining the gist of the invention. In addition, in order to make the description clearer, the drawings may schematically show the width, thickness, shape, etc. of each part compared to the embodiment, but this is only an example, and the interpretation of the present invention is not limited. It is not limited.

また本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 In addition, in this specification and each figure, the same reference numerals may be given to the same elements as those described above with respect to the previous figures, and detailed description thereof may be omitted as appropriate.

更に、実施の形態で用いる図面においては、構造物を区別するために付したハッチング(網掛け)を図面に応じて省略する場合もある。 Furthermore, in the drawings used in the embodiments, hatching for distinguishing structures may be omitted depending on the drawing.

なお、以下の実施の形態においてA~Bとして範囲を示す場合には、特に明示した場合を除き、A以上B以下を示すものとする。 In the following embodiments, when a range is indicated as A to B, it indicates A or more and B or less, unless otherwise specified.

(実施の形態)
<磁石装置及び超伝導装置>
始めに、本発明の一実施形態である実施の形態の超伝導装置を備えた磁石装置及び超伝導装置について説明する。
(Embodiment)
<Magnet device and superconducting device>
First, a magnet device and a superconducting device having a superconducting device according to an embodiment of the present invention will be described.

図1は、実施の形態の超伝導装置を備えた磁石装置を模式的に示す平面図である。図2は、実施の形態の超伝導装置を備えた磁石装置を模式的に示す斜視図である。なお、図2では、理解を簡単にするために、超伝導装置を備えた磁石装置のうち、超伝導バルク部以外の部分の図示を省略している。また、図1に示す配置は、必ずしも上面から視た場合の配置に限られず、正面から視た場合の配置であってもよい(後述する図9乃至図13においても同様)。 FIG. 1 is a plan view schematically showing a magnet device provided with a superconducting device according to an embodiment. FIG. 2 is a perspective view schematically showing a magnet device provided with the superconducting device of the embodiment. In FIG. 2, for the sake of easy understanding, the illustration of the magnet device including the superconducting device other than the superconducting bulk portion is omitted. Further, the arrangement shown in FIG. 1 is not necessarily limited to the arrangement when viewed from above, and may be the arrangement when viewed from the front (the same applies to FIGS. 9 to 13 described later).

図1及び図2に示すように、本実施の形態の超伝導装置1を備えた磁石装置2は、磁場を発生させる磁石部3を備えている。即ち、本実施の形態の超伝導装置1は、磁石部3を備えた磁石装置2に備えられるものであり、磁石部3の外部に設けられるものである。 As shown in FIGS. 1 and 2, a magnet device 2 including a superconducting device 1 of this embodiment includes a magnet unit 3 that generates a magnetic field. That is, the superconducting device 1 of this embodiment is provided in the magnet device 2 having the magnet portion 3 and is provided outside the magnet portion 3 .

本実施の形態の超伝導装置1は、磁石部3の外部に設けられ、且つ、第二種超伝導体よりなる超伝導バルク体、即ち超伝導バルク部4を有する。超伝導バルク部4は、超伝導状態で、下部臨界磁場を超え且つ上部臨界磁場以下の磁場を、磁束をピン止めすることにより捕捉し、磁場を捕捉している超伝導バルク部4と磁石部3とにより、磁束が通る閉回路である磁気回路5が形成され、磁石部3の一方の磁極から出た磁束が超伝導バルク部4を通って磁石部3の他方の磁極に戻る。 The superconducting device 1 of this embodiment has a superconducting bulk body, that is, a superconducting bulk portion 4, which is provided outside the magnet portion 3 and made of a second-class superconductor. In the superconducting state, the superconducting bulk portion 4 captures a magnetic field that exceeds the lower critical magnetic field and is equal to or lower than the upper critical magnetic field by pinning the magnetic flux, and the superconducting bulk portion 4 and the magnet portion capture the magnetic field. 3 form a magnetic circuit 5 which is a closed circuit through which magnetic flux passes, and the magnetic flux emitted from one magnetic pole of the magnet portion 3 returns to the other magnetic pole of the magnet portion 3 through the superconducting bulk portion 4 .

なお、本願明細書において、磁気回路とは、磁束即ち磁力線が通る通路を意味する。或いは、本願明細書において、磁気回路とは、高密度の磁束を運ぶ媒体を意味するか、又は、磁束を漏洩させたくない方向には漏洩させないように、高密度の磁束を捕捉して伝達又は伝搬する通路を意味する。或いは、本願明細書において、磁気回路とは、磁束が通る閉回路であって、所望の位置に磁場又は磁束を閉じ込める閉回路を意味する。このとき、磁気回路の内部の透磁率にも依存するが、磁気回路の内部及び周辺において、全ての磁束のうち磁気回路の内部に閉じ込められて磁気回路の長手方向に沿って周回するものが大部分を占めるか又は全部であり、全ての磁束のうち磁気回路の長手方向と交差するものは一部にすぎないか又は皆無である。 In the specification of the present application, a magnetic circuit means a passage through which magnetic flux, ie, lines of magnetic force pass. Alternatively, as used herein, a magnetic circuit means a medium that carries a high density magnetic flux, or a medium that captures and transmits or transmits high density magnetic flux so that it does not leak in directions in which it is not desired to leak. It means a passage through which it propagates. Alternatively, in this specification, a magnetic circuit means a closed circuit through which a magnetic flux passes, confining the magnetic field or magnetic flux at a desired location. At this time, although it depends on the magnetic permeability inside the magnetic circuit, in and around the magnetic circuit, most of the magnetic flux is confined inside the magnetic circuit and circulates along the longitudinal direction of the magnetic circuit. It is partly or entirely, and only partly or none of the total magnetic flux crosses the longitudinal direction of the magnetic circuit.

具体的には、磁石部3は、第1極性を有する第1磁極としてのN極PL1と、第1極性と反対の第2極性を有する第2磁極としてのS極PL2と、を有する。そして、N極PL1、超伝導バルク部4及びS極PL2は、ある軸6の周りの環状経路7に沿って、N極PL1、超伝導バルク部4、S極PL2の順に配置されている。 Specifically, the magnet portion 3 has an N pole PL1 as a first magnetic pole having a first polarity and an S pole PL2 as a second magnetic pole having a second polarity opposite to the first polarity. The N-pole PL1, the superconducting bulk portion 4 and the S-pole PL2 are arranged along an annular path 7 around an axis 6 in the order N-pole PL1, superconducting bulk portion 4 and S-pole PL2.

また、図1及び図2に示す例では、磁石部3は、環状経路7に沿って互いに間隔を空けて配置された2個の磁石MG1及びMG2を有し、磁石MG1は、N極PL1と、第2極性を有する第3磁極としてのS極PL3と、を有し、磁石MG2は、第1極性を有する第4磁極としてのN極PL4と、S極PL2と、を有する。N極PL1、超伝導バルク部4、S極PL2、N極PL4及びS極PL3は、環状経路7に沿って、N極PL1、超伝導バルク部4、S極PL2、N極PL4、S極PL3の順に配置されている。 1 and 2, the magnet unit 3 has two magnets MG1 and MG2 spaced apart from each other along the annular path 7, the magnet MG1 being connected to the north pole PL1. , and an S pole PL3 as a third magnetic pole having a second polarity, and the magnet MG2 has an N pole PL4 as a fourth magnetic pole having a first polarity and an S pole PL2. N-pole PL1, superconducting bulk 4, S-pole PL2, N-pole PL4 and S-pole PL3 are connected along annular path 7 to N-pole PL1, superconducting bulk 4, S-pole PL2, N-pole PL4, S-pole They are arranged in the order of PL3.

磁石MG1及びMG2を有する磁石部3として、所謂ヘルムホルツコイルを用いることができる。そして、磁石MG1と磁石MG2との間では、磁石MG1のS極PL3と、磁石MG2のN極PL4とが対向している。これにより、磁石MG1と磁石MG2との間の空間8に、磁場を印加して処理する被処理物(MRI装置の場合は、人体等の被検体)を容易に出し入れすることができる。なお、磁石部3として、ネオジム鉄ボロン(ホウ素)合金よりなるネオジム磁石などの強磁性永久磁石を用いることもできる。 A so-called Helmholtz coil can be used as the magnet unit 3 having the magnets MG1 and MG2. Between the magnets MG1 and MG2, the south pole PL3 of the magnet MG1 faces the north pole PL4 of the magnet MG2. As a result, an object to be processed (an object such as a human body in the case of an MRI apparatus) to be processed by applying a magnetic field can be easily taken in and out of the space 8 between the magnets MG1 and MG2. A ferromagnetic permanent magnet such as a neodymium magnet made of a neodymium-iron-boron (boron) alloy can also be used as the magnet portion 3 .

なお、N極PL1、S極PL2、S極PL3及びN極PL4の全ての極性を、一括して反対の極性に代えてもよい。 The polarities of all of the N pole PL1, S pole PL2, S pole PL3, and N pole PL4 may be collectively replaced with opposite polarities.

後述する図14を用いて説明するように、例えば磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)装置等が有する磁石装置として、強磁場を発生させる磁石部を備えた磁石装置が用いられている。このような磁石装置においては、磁石部の外部に強磁場が漏洩することを防止又は抑制し、磁石部の周囲での磁場の強度を低減するために、環状経路に沿って、磁石部の一方の磁極から磁性体を経て磁石部の他方の磁極に戻る磁気回路が形成されるように、磁気回路用部材として、鉄等の透磁率の高い磁性体が設けられることがある。この場合、透磁率の高い磁性体に磁場を閉じ込めることにより、磁性体の外部での磁場の強度を低減することができる。このとき、磁石部の外側には、環状経路に沿って、磁石部の一方の磁極(例えばN極)から出て、磁性体を通り、他方の磁極(例えばS極)に戻る磁気回路が形成される。 2. Description of the Related Art As described later with reference to FIG. 14, a magnet device having a magnet unit that generates a strong magnetic field is used as a magnet device included in, for example, a magnetic resonance imaging (MRI) device. In such a magnet device, in order to prevent or suppress leakage of a strong magnetic field to the outside of the magnet portion and to reduce the strength of the magnetic field around the magnet portion, one side of the magnet portion is provided along the annular path. A magnetic material having a high magnetic permeability such as iron may be provided as a magnetic circuit member so that a magnetic circuit is formed from one magnetic pole to the other magnetic pole of the magnet portion through the magnetic material. In this case, the strength of the magnetic field outside the magnetic body can be reduced by confining the magnetic field in the magnetic body with high magnetic permeability. At this time, a magnetic circuit is formed on the outside of the magnet part along a circular path, which goes out from one magnetic pole (for example, the N pole) of the magnet part, passes through the magnetic body, and returns to the other magnetic pole (for example, the S pole). be done.

ところが、鉄等の磁性体の透磁率は、印加される磁場の強度の増加に伴って減少するので、印加される磁場の強度の増加に伴って、磁性体の内部の磁場の強度が徐々に飽和する。磁性体の内部の磁場の強度が飽和すると、それ以上磁場の強度が増加した場合には、磁性体は磁場を磁性体の内部だけに閉じ込めることができないので、磁性体の外部に漏洩する磁場の強度が強くなる。 However, since the magnetic permeability of a magnetic material such as iron decreases as the strength of the applied magnetic field increases, the strength of the magnetic field inside the magnetic material gradually decreases as the strength of the applied magnetic field increases. Saturate. When the strength of the magnetic field inside the magnetic body saturates and the strength of the magnetic field increases further, the magnetic field cannot be confined only inside the magnetic body. strength increases.

磁場の強度が強い場合でも印加された磁場を磁性体の内部に閉じ込めるためには、磁気回路の断面積、即ち磁性体の環状経路に垂直な断面積を大きくする必要がある。従って、磁気回路用部材として鉄等の磁性体を用いる場合には、磁気回路用部材の体積を大きくする必要があり、磁気回路を小型化又は軽量化することが困難である。 In order to confine the applied magnetic field inside the magnetic body even when the intensity of the magnetic field is high, it is necessary to increase the cross-sectional area of the magnetic circuit, that is, the cross-sectional area perpendicular to the circular path of the magnetic body. Therefore, when a magnetic material such as iron is used as a magnetic circuit member, it is necessary to increase the volume of the magnetic circuit member, making it difficult to reduce the size or weight of the magnetic circuit.

一方、本実施の形態では、超伝導状態で磁場を捕捉している超伝導バルク体、即ち超伝導バルク部4と磁石部3とにより、磁気回路5が形成される。超伝導バルク体の場合、超伝導状態での臨界電流密度が十分に大きい場合には、磁性体が飽和するときの磁場である飽和磁場よりも強い磁場を捕捉することができる。言い換えれば、磁性体の飽和磁場よりも強い磁場を、超伝導バルク体の内部に閉じ込めることができる。そのため、強い磁場を超伝導バルク体の内部に閉じ込める場合、磁性体の内部に閉じ込める場合に比べて、磁気回路の断面積、即ち超伝導バルク体の環状経路に垂直な断面積を、小さくすることができる。従って、磁気回路用部材として超伝導バルク体を用いる場合、磁気回路用部材の体積を小さくすることができ、磁気回路を容易に小型化又は軽量化することができる。 On the other hand, in the present embodiment, the magnetic circuit 5 is formed by the superconducting bulk body capturing the magnetic field in the superconducting state, that is, the superconducting bulk portion 4 and the magnet portion 3 . In the case of a superconducting bulk body, if the critical current density in the superconducting state is large enough, a magnetic field stronger than the saturation magnetic field, which is the magnetic field at which the magnetic body saturates, can be captured. In other words, a magnetic field stronger than the saturation magnetic field of the magnetic material can be confined inside the superconducting bulk material. Therefore, when confining a strong magnetic field inside a superconducting bulk body, the cross-sectional area of the magnetic circuit, that is, the cross-sectional area perpendicular to the circular path of the superconducting bulk body, must be made smaller than when confining it inside a magnetic body. can be done. Therefore, when a superconducting bulk body is used as a magnetic circuit member, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be easily reduced in size or weight.

また、MRI装置が有する磁石装置として、強磁場を発生させる磁石部3を備えた磁石装置2が用いられる場合であって、磁石部3が磁石MG1と磁石MG2とを有する場合を考える。このような場合には、磁石MG1と磁石MG2との間の空間8が開放されているため、磁石MG1と磁石MG2との間に、断層画像を撮像することにより検査を受ける被検体として例えば人間が検査のために立ち入った場合でも、閉塞感をあまり感じずに検査を受けることができる。 Also, consider the case where the magnet device 2 including the magnet portion 3 that generates a strong magnetic field is used as the magnet device of the MRI apparatus, and the magnet portion 3 includes the magnet MG1 and the magnet MG2. In such a case, since the space 8 between the magnets MG1 and MG2 is open, there is space between the magnets MG1 and MG2, such as a human being, as a subject to be examined by picking up a tomographic image. Even if the patient enters for the examination, the examination can be performed without feeling a sense of blockage.

超伝導バルク部4に強磁場を捕捉させて磁気回路を形成する方法として、超伝導バルク部4に強磁場を印加しながら超伝導バルク部4を常伝導状態から超伝導状態に冷却、即ち磁場中冷却することにより、超伝導バルク部4に磁場を捕捉させる方法が考えられる。具体的には、超伝導バルク部4の近傍に磁石部3と異なる磁石部を磁場印加用に設け、磁場印加用に設けられた磁石部を用いて超伝導バルク部4を磁場中冷却することにより、超伝導バルク部4に強磁場を捕捉させて磁気回路を形成することができる。或いは、磁石装置2の外部で磁場中冷却して強磁場を捕捉させた超伝導バルク部4を、強磁場を捕捉させたまま磁石装置2の内部に移動させて磁気回路を形成することができる。或いは、磁石部3に、磁石部3を通常使用する時の磁場よりも強磁場を発生させた状態で超伝導バルク部4を冷却することにより、超伝導バルク部4に強磁場を捕捉させて磁気回路を形成することができる。 As a method of capturing a strong magnetic field in the superconducting bulk portion 4 to form a magnetic circuit, the superconducting bulk portion 4 is cooled from a normal conducting state to a superconducting state while applying a strong magnetic field to the superconducting bulk portion 4. A method of trapping the magnetic field in the superconducting bulk portion 4 by medium cooling is conceivable. Specifically, a magnet portion different from the magnet portion 3 is provided for applying a magnetic field in the vicinity of the superconducting bulk portion 4, and the superconducting bulk portion 4 is cooled in the magnetic field using the magnet portion provided for applying the magnetic field. Thus, a magnetic circuit can be formed by trapping a strong magnetic field in the superconducting bulk portion 4 . Alternatively, the superconducting bulk portion 4 cooled in the magnetic field outside the magnet device 2 to trap the strong magnetic field can be moved into the magnet device 2 while trapping the strong magnetic field to form a magnetic circuit. . Alternatively, the superconducting bulk portion 4 is allowed to capture the strong magnetic field by cooling the superconducting bulk portion 4 in a state in which the magnet portion 3 generates a magnetic field stronger than the magnetic field generated when the magnet portion 3 is normally used. A magnetic circuit can be formed.

超伝導バルク部4は、下部臨界磁場Hc1及び上部臨界磁場Hc2を有する、所謂第二種超伝導体よりなる。外部磁場が下部臨界磁場Hc1以下の場合、第二種超伝導体はマイスナー効果を示し、第二種超伝導体中から磁束が排除された状態になり、所謂完全反磁性を示す。また、外部磁場が下部臨界磁場Hc1を超え且つ上部臨界磁場Hc2以下の場合、第二種超伝導体中には磁束が侵入するが、第二種超伝導体中に微細に分布する常伝導相等により磁束がピン止めされることで超伝導電流を電気抵抗が零の状態で流すことができ、このように磁束をピン止めすることにより、第二種超伝導体よりなる超伝導バルク部4は、強磁場を捕捉することができる。例えば10K程度の温度で、鉄ニクタイドの下部臨界磁場Hc1は、0.01~0.03T(テスラ)程度であり、鉄ニクタイドの上部臨界磁場Hc2は50Tよりも大きい。また、例えば10K程度の温度で、二ホウ化マグネシウム(MgB)の下部臨界磁場Hc1は、0.01~0.03T程度であり、MgBの上部臨界磁場Hc2は、30T程度である。The superconducting bulk portion 4 is made of a so-called second-class superconductor having a lower critical magnetic field Hc1 and an upper critical magnetic field Hc2 . When the external magnetic field is lower than the lower critical magnetic field H c1 , the second-class superconductor exhibits the Meissner effect, becomes a state in which magnetic flux is excluded from the second-class superconductor, and exhibits so-called perfect diamagnetism. In addition, when the external magnetic field exceeds the lower critical magnetic field Hc1 and is equal to or lower than the upper critical magnetic field Hc2 , the magnetic flux penetrates into the second-class superconductor. A superconducting current can flow in a state of zero electrical resistance by pinning the magnetic flux by the conductive phase, etc. By pinning the magnetic flux in this way, a superconducting bulk part made of a second-class superconductor 4 can capture strong magnetic fields. For example, at a temperature of about 10 K, the lower critical magnetic field H c1 of iron pnictide is about 0.01-0.03 T (Tesla), and the upper critical magnetic field H c2 of iron pnictide is greater than 50 T. Further, for example, at a temperature of about 10 K, the lower critical magnetic field H c1 of magnesium diboride (MgB 2 ) is about 0.01 to 0.03 T, and the upper critical magnetic field H c2 of MgB 2 is about 30 T. .

なお、後述する実施例1では、MgBよりなる超伝導バルク体が2Tの磁場を捕捉し、後述する実施例2では、鉄ニクタイドよりなる超伝導バルク体も同様に磁場を捕捉している。そのため、例えばMgB及び鉄ニクタイドよりなる本実施の形態の超伝導バルク部4が、第二種超伝導体であり、且つ、マイスナー効果ではなく磁束をピン止めすることにより下部臨界磁場Hc1を超え且つ上部臨界磁場Hc2以下の強磁場を捕捉するものであることが分かる。In Example 1 described later, the superconducting bulk body made of MgB 2 captures a magnetic field of 2T, and in Example 2 described later, the superconducting bulk body made of iron pnictide also captures the magnetic field. Therefore, the superconducting bulk portion 4 of the present embodiment made of, for example, MgB 2 and iron pnictide is a second-class superconductor, and the lower critical magnetic field H c1 is generated by pinning the magnetic flux instead of the Meissner effect. It can be seen that it captures a strong magnetic field that exceeds the upper critical magnetic field Hc2 and is less than or equal to the upper critical magnetic field Hc2.

好適には、超伝導バルク部4は、その少なくとも一部が、環状経路7に沿って配列された複数の部材(複数の超伝導バルク体)に分割されていてもよい。このような場合でも、超伝導バルク部4が一体的に形成されている場合と、略同様の効果を得ることができるので、磁石部3と超伝導バルク部4とにより磁気回路5を形成する場合に、超伝導バルク部4を容易に形成即ち製造することができる。以下では、超伝導バルク部4が、全体に亘って、環状経路7に沿って配列された複数の部材に分割された場合を例示して説明するものとする。 Preferably, at least a portion of the superconducting bulk portion 4 may be divided into a plurality of members (a plurality of superconducting bulk bodies) arranged along the annular path 7 . Even in such a case, substantially the same effect as in the case where the superconducting bulk portion 4 is integrally formed can be obtained, so the magnetic circuit 5 is formed by the magnet portion 3 and the superconducting bulk portion 4. , the superconducting bulk portion 4 can be easily formed or manufactured. In the following, the case where the superconducting bulk portion 4 is entirely divided into a plurality of members arranged along the annular path 7 will be described as an example.

図1及び図2に示すように、好適には、超伝導バルク部4は、超伝導バルク体群としての部材群を複数有する。即ち、超伝導バルク部4は、部材群SG1、SG2及びSG3を有する。部材群SG1は、環状経路7に沿って配列された超伝導バルク体としての部材SB1を複数含む。部材群SG2は、環状経路7に沿って配列された超伝導バルク体としての部材SB2を複数含む。部材群SG3は、環状経路7に沿って配列された超伝導バルク体としての部材SB3を複数含む。複数の部材SB1、複数の部材SB2及び複数の部材SB3の各々は、超伝導状態で磁場を捕捉する。 As shown in FIGS. 1 and 2, the superconducting bulk portion 4 preferably has a plurality of member groups as superconducting bulk body groups. That is, the superconducting bulk portion 4 has member groups SG1, SG2 and SG3. The member group SG1 includes a plurality of members SB1 as superconducting bulk bodies arranged along the annular path 7 . The member group SG2 includes a plurality of members SB2 as superconducting bulk bodies arranged along the annular path 7 . The member group SG3 includes a plurality of members SB3 as superconducting bulk bodies arranged along the annular path 7 . Each of the plurality of members SB1, the plurality of members SB2 and the plurality of members SB3 captures the magnetic field in a superconducting state.

N極PL1、部材群SG2、部材群SG1、部材群SG3、S極PL2、N極PL4及びS極PL3は、環状経路7に沿って、N極PL1、部材群SG2、部材群SG1、部材群SG3、S極PL2、N極PL4、S極PL3の順に配置されている。そして、環状経路7に沿って、N極PL1から部材群SG2、部材群SG1及び部材群SG3を順次経てS極PL2に戻る磁気回路5が形成される。 The N pole PL1, the member group SG2, the member group SG1, the member group SG3, the S pole PL2, the N pole PL4, and the S pole PL3 are arranged along the annular path 7 to form the N pole PL1, the member group SG2, the member group SG1, and the member group SG3, S pole PL2, N pole PL4, and S pole PL3 are arranged in this order. A magnetic circuit 5 is formed along the circular path 7 from the N pole PL1 to the S pole PL2 through the member group SG2, the member group SG1, and the member group SG3 in order.

このような場合、部材群SG2に含まれる複数の部材SB2、部材群SG1に含まれる複数の部材SB1、及び、部材群SG3に含まれる複数の部材SB3は、複数の部材SB2、複数の部材SB1及び複数の部材SB3の各々が超伝導状態で磁場を捕捉することにより、N極PL1から出た磁束9が、複数の部材SB2、複数の部材SB1及び複数の部材SB3を順次通ってS極PL2に戻るように、環状経路7に沿って配列されている。 In such a case, the plurality of members SB2 included in the member group SG2, the plurality of members SB1 included in the member group SG1, and the plurality of members SB3 included in the member group SG3 are the plurality of members SB2 and the plurality of members SB1. And each of the plurality of members SB3 captures the magnetic field in a superconducting state, so that the magnetic flux 9 emitted from the N pole PL1 sequentially passes through the plurality of members SB2, the plurality of members SB1 and the plurality of members SB3, and reaches the S pole PL2. are arranged along the circular path 7 so as to return to the .

なお、超伝導バルク部4は、部材群を複数有しなくてもよく、部材群SG1、SG2及びSG3のうちいずれかの部材群を有するだけでもよい。 Note that the superconducting bulk portion 4 may not have a plurality of member groups, and may have only one of the member groups SG1, SG2, and SG3.

図3は、実施の形態の超伝導装置の一部分を模式的に示す斜視図である。図4は、実施の形態の超伝導装置の一部分を模式的に示す断面図である。図3及び図4は、実施の形態の超伝導装置として部材群SG1を例示して説明する。また、図3及び図4では、軸線11に沿って互いに隣り合う2個の部材SB1の間にスペーサSP1が配置される例を例示している。 FIG. 3 is a perspective view schematically showing part of the superconducting device of the embodiment. FIG. 4 is a cross-sectional view schematically showing part of the superconducting device of the embodiment. 3 and 4 illustrate and explain the member group SG1 as the superconducting device of the embodiment. 3 and 4 illustrate an example in which the spacer SP1 is arranged between two members SB1 adjacent to each other along the axis 11. As shown in FIG.

図3及び図4に示すように、複数の部材SB1の各々は、環状経路7に沿った軸線11を中心とした筒状の筒部CP1を含む。複数の部材SB1は、複数の部材SB1の各々が軸線11に沿った磁場を捕捉することにより、N極PL1(図1参照)から出た磁束9が複数の部材SB1の各々にそれぞれ含まれる複数の筒部CP1を順次通ってS極PL2(図1参照)に戻るように、環状経路7に沿って配列されている。磁場を捕捉した筒部CP1は、磁気を帯びたチューブ、即ち磁気チューブとして機能する。 As shown in FIGS. 3 and 4, each of the plurality of members SB1 includes a tubular portion CP1 centered on an axis 11 along the annular path 7. As shown in FIGS. Each of the plurality of members SB1 captures a magnetic field along the axis 11, so that the magnetic flux 9 emitted from the N pole PL1 (see FIG. 1) is included in each of the plurality of members SB1. are arranged along the annular path 7 so as to return to the S pole PL2 (see FIG. 1) through the cylindrical portion CP1 of the . The cylindrical part CP1 that has captured the magnetic field functions as a magnetized tube, that is, a magnetic tube.

筒部CP1が円筒状である場合、図4に示すように、筒部CP1の軸線11を中心とした外径を外径DM1とし、筒部CP1の内径を内径DM2とし、筒部CP1の軸線11に沿った長さを長さHT1とする。なお、図3では、筒部CP1が円筒状である例を示すが、筒部CP1は筒状であればよく、楕円筒状でもよく、四角筒状等の角筒状でもよい。 When the cylindrical portion CP1 has a cylindrical shape, as shown in FIG. 4, the outer diameter centered on the axis 11 of the cylindrical portion CP1 is defined as the outer diameter DM1, the inner diameter of the cylindrical portion CP1 is defined as the inner diameter DM2, and the axial line of the cylindrical portion CP1. Let the length along 11 be length HT1. Note that FIG. 3 shows an example in which the tubular portion CP1 is cylindrical, but the tubular portion CP1 may have any shape as long as it has a tubular shape, such as an elliptical tubular shape, or a square tubular shape such as a square tubular shape.

図3に示すように、複数の部材SB1の各々の環状経路7に垂直な断面の外周長さLN1は、互いに等しくてもよい。このような場合、複数の部材SB1の各々の外径を細くすることができ、磁気回路用部材の体積を小さくすることができ、磁気回路を容易に小型化又は軽量化することができる。 As shown in FIG. 3, the outer perimeter lengths LN1 of the sections perpendicular to the annular path 7 of each of the plurality of members SB1 may be equal to each other. In such a case, the outer diameter of each of the plurality of members SB1 can be reduced, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be easily reduced in size or weight.

また、複数の部材SB1は、互いに間隔を空けて配列されていてもよい。後述する実施例1の超伝導装置において、図16を用いて説明するように、複数の部材SB1が互いに間隔を空けて配列される場合でも、軸線11に沿った強磁場を捕捉することができる。これによっても、磁気回路用部材の体積を小さくすることができ、磁気回路を更に小型化又は軽量化することができる。なお、図4に示すように、軸線11に沿って互いに隣り合う2個の部材SB1の各々がそれぞれ有する2個の筒部CP1の間の間隔をギャップGP1とする。 Also, the plurality of members SB1 may be arranged at intervals. In the superconducting device of Example 1, which will be described later, a strong magnetic field along the axis 11 can be captured even when a plurality of members SB1 are arranged at intervals as described with reference to FIG. . Also by this, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be further reduced in size or weight. As shown in FIG. 4, a gap GP1 is defined as a gap GP1 between two cylindrical portions CP1 of two members SB1 adjacent to each other along the axis 11. As shown in FIG.

図4に示すように、軸線11に沿って互いに隣り合う2個の部材SB1の間には、スペーサSP1が配置されていてもよい。これにより、複数の部材SB1の各々が磁場を捕捉している時に、軸線11に沿って互いに隣り合う2個の部材SB1が磁気吸引力により吸着することを防止することができる。なお、図4に示すように、スペーサSP1の軸線11に沿った長さは、ギャップGP1に等しい。 As shown in FIG. 4, between two members SB1 adjacent to each other along the axis 11, a spacer SP1 may be arranged. As a result, when each of the plurality of members SB1 captures the magnetic field, it is possible to prevent two members SB1 adjacent to each other along the axis 11 from being attracted by the magnetic attraction force. Incidentally, as shown in FIG. 4, the length of the spacer SP1 along the axis 11 is equal to the gap GP1.

図5は、実施の形態の超伝導装置の他の部分を模式的に示す斜視図である。図6は、実施の形態の超伝導装置の他の部分を模式的に示す断面図である。図5及び図6は、実施の形態の超伝導装置の他の部分として部材群SG2及びSG3を例示するものであるが、まず、部材群SG2を例示する場合について説明する。また、図5及び図6では、軸線11に沿って互いに隣り合う2個の部材SB2が互いに間隔を空けて配置されるものの、互いに隣り合う2個の部材SB2の間にスペーサが配置されない例を図示している。 FIG. 5 is a perspective view schematically showing another portion of the superconducting device of the embodiment. FIG. 6 is a cross-sectional view schematically showing another portion of the superconducting device of the embodiment. 5 and 6 illustrate the member groups SG2 and SG3 as other parts of the superconducting device of the embodiment. First, the case of illustrating the member group SG2 will be described. 5 and 6 show an example in which two members SB2 adjacent to each other along the axis 11 are arranged with a space therebetween, but no spacer is arranged between the two members SB2 adjacent to each other. Illustrated.

図5及び図6に示すように、複数の部材SB2の各々も、複数の部材SB1の各々と同様に、環状経路7に沿った軸線11を中心とした筒状の筒部CP2を含む。複数の部材SB2は、複数の部材SB2の各々が軸線11に沿った磁場を捕捉することにより、N極PL1(図1参照)から出た磁束9が、複数の部材SB2の各々にそれぞれ含まれる複数の筒部CP2を順次通ってS極PL2(図1参照)に戻るように、環状経路7に沿って配列されている。 As shown in FIGS. 5 and 6, each of the plurality of members SB2 also includes a tubular portion CP2 centered on the axis 11 along the annular path 7, similarly to each of the plurality of members SB1. Each of the plurality of members SB2 captures a magnetic field along the axis 11 so that the magnetic flux 9 emitted from the N pole PL1 (see FIG. 1) is contained in each of the plurality of members SB2. They are arranged along the annular path 7 so as to sequentially pass through the plurality of cylindrical portions CP2 and return to the S pole PL2 (see FIG. 1).

図1、図2、図5及び図6に示すように、部材群SG2は、環状経路7に沿って、N極PL1と隣り合い、且つ、S極PL2と隣り合わない。また、複数の部材SB2のうち、環状経路7に沿ってN極PL1に最も近い側に配置された部材SB2の、環状経路7に垂直な断面の外周長さLN2(図5参照)は、複数の部材SB2のうち、環状経路7に沿ってN極PL1に最も近い側と反対側に配置された部材SB2の、環状経路7に垂直な断面の外周長さLN2よりも長い。 As shown in FIGS. 1, 2, 5 and 6, the member group SG2 is adjacent to the N pole PL1 and not adjacent to the S pole PL2 along the annular path 7. FIG. In addition, among the plurality of members SB2, the member SB2 arranged on the side closest to the N pole PL1 along the annular path 7 has an outer peripheral length LN2 (see FIG. 5) of a cross section perpendicular to the annular path 7. is longer than the outer peripheral length LN2 of the cross section perpendicular to the annular path 7 of the member SB2 arranged on the side opposite to the side closest to the N pole PL1 along the annular path 7 among the members SB2.

これにより、部材群SG2のうちN極PL1に最も近い側では、磁石部3のN極PL1の環状経路7に垂直な断面の外周長さに合わせて、部材SB2の環状経路7に垂直な断面の外周長さLN2を長くする、即ち部材SB2を太くすることができる。そのため、磁石部3のN極PL1から出た磁束9よりなる磁場を超伝導バルク部4に効率良く閉じ込めることができる。一方、部材群SG2のうちN極PL1に最も近い側と反対側では、部材SB2の環状経路7に垂直な断面の外周長さLN2を短くする、即ち部材SB2を細くすることができる。そのため、磁気回路用部材の体積を小さくすることができ、磁気回路を小型化又は軽量化することができる。 As a result, on the side of the member group SG2 closest to the N pole PL1, the cross section perpendicular to the circular path 7 of the member SB2 is matched to the outer circumference length of the cross section perpendicular to the circular path 7 of the N pole PL1 of the magnet portion 3. It is possible to lengthen the outer peripheral length LN2 of the member SB2, that is, to thicken the member SB2. Therefore, the magnetic field formed by the magnetic flux 9 emitted from the N pole PL1 of the magnet portion 3 can be confined in the superconducting bulk portion 4 efficiently. On the other hand, on the opposite side of the member group SG2 from the side closest to the N pole PL1, the outer circumference length LN2 of the cross section perpendicular to the annular path 7 of the member SB2 can be shortened, that is, the member SB2 can be thinned. Therefore, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be reduced in size or weight.

なお、部材SB2の、環状経路7に垂直な断面の外周長さLN2(図5参照)が環状経路7に沿って一様に変化する場合には、部材SB2のうち環状経路7に沿って中央に位置する部分の、環状経路7に垂直な断面の外周長さを、外周長さLN2と定義する。 When the outer circumference length LN2 (see FIG. 5) of the member SB2 in the cross section perpendicular to the annular path 7 varies uniformly along the annular path 7, the central portion of the member SB2 along the annular path 7 The outer circumference length of the section perpendicular to the annular path 7 of the portion located at is defined as the outer circumference length LN2.

好適には、複数の部材SB2の各々の環状経路7に垂直な断面の外周長さLN2は、環状経路7に沿って、N極PL1に最も近い側からN極PL1に最も近い側と反対側に向かって、複数の部材SB2の配列順に減少する。 Preferably, the outer circumference length LN2 of each of the plurality of members SB2 in the cross section perpendicular to the annular path 7 extends along the annular path 7 from the side closest to the N pole PL1 to the side closest to the N pole PL1 and the side opposite to the side closest to the N pole PL1. decreases in the order in which the plurality of members SB2 are arranged.

これにより、N極PL1に最も近い側からN極PL1に最も近い側と反対側に向かって、複数の部材SB2の各々の外周長さLN2を一様に減少させることができる。そのため、N極PL1に最も近い側からN極PL1に最も近い側と反対側に向かって、複数の部材SB2の各々に捕捉される磁束9を一様に収束させることができる。よって、複数の部材SB2の例えば角部等に局所的に磁場が集中することを防止又は抑制することができ、強磁場を複数の部材SB2により効率良く捕捉することができ、強磁場を効率良く部材群SG2内に閉じ込めることができる。なお、部材群SG2のうちN極PL1側の部分は、ラッパ形状即ちトランペット形状若しくはホルン形状、又は、朝顔形状を有していてもよい。 Thereby, the outer peripheral length LN2 of each of the plurality of members SB2 can be uniformly decreased from the side closest to the N-pole PL1 toward the side opposite to the side closest to the N-pole PL1. Therefore, the magnetic flux 9 captured by each of the plurality of members SB2 can be uniformly converged from the side closest to the N-pole PL1 toward the side opposite to the side closest to the N-pole PL1. Therefore, it is possible to prevent or suppress the local concentration of the magnetic field at, for example, the corners of the plurality of members SB2, the strong magnetic field can be efficiently captured by the plurality of members SB2, and the strong magnetic field can be efficiently captured. It can be confined within the member group SG2. A portion of the member group SG2 on the N pole PL1 side may have a trumpet shape, a horn shape, or a morning glory shape.

次に、図5が部材群SG3を例示する場合について説明する。この場合、図5及び図6では、軸線11に沿って互いに隣り合う2個の部材SB3が互いに間隔を空けて配置されるものの、互いに隣り合う2個の部材SB3の間にスペーサが配置されない例を図示している。 Next, a case where FIG. 5 illustrates the member group SG3 will be described. In this case, in FIGS. 5 and 6, two members SB3 adjacent to each other along the axis 11 are arranged with a space therebetween, but no spacer is arranged between the two members SB3 adjacent to each other. is illustrated.

図5及び図6に示すように、複数の部材SB3の各々も、複数の部材SB1の各々と同様に、環状経路7に沿った軸線11を中心とした筒状の筒部CP3を含む。複数の部材SB3は、複数の部材SB3の各々が軸線11に沿った磁場を捕捉することにより、N極PL1(図1参照)から出た磁束9が、複数の部材SB3の各々にそれぞれ含まれる複数の筒部CP3を順次通ってS極PL2(図1参照)に戻るように、環状経路7に沿って配列されている。なお、図6に示す磁束9の向きは、図5が部材群SG2を例示する場合の磁束9の向きを示しており、図5が部材群SG3を例示する場合の磁束9の向きとは逆向きになっている。 As shown in FIGS. 5 and 6, each of the plurality of members SB3 also includes a tubular portion CP3 centered on the axis 11 along the annular path 7, similarly to each of the plurality of members SB1. Each of the plurality of members SB3 captures a magnetic field along the axis 11 so that the magnetic flux 9 emitted from the N pole PL1 (see FIG. 1) is contained in each of the plurality of members SB3. They are arranged along the annular path 7 so as to sequentially pass through the plurality of cylindrical portions CP3 and return to the S pole PL2 (see FIG. 1). The direction of the magnetic flux 9 shown in FIG. 6 indicates the direction of the magnetic flux 9 when FIG. 5 illustrates the member group SG2, and is opposite to the direction of the magnetic flux 9 when FIG. 5 illustrates the member group SG3. Oriented.

図1、図2、図5及び図6に示すように、部材群SG3は、環状経路7に沿って、S極PL2と隣り合い、且つ、N極PL1と隣り合わない。また、複数の部材SB3のうち、環状経路7に沿ってS極PL2に最も近い側に配置された部材SB3の、環状経路7に垂直な断面の外周長さLN3(図5参照)は、複数の部材SB3のうち、環状経路7に沿ってS極PL2に最も近い側と反対側に配置された部材SB3の、環状経路7に垂直な断面の外周長さLN3よりも長い。 As shown in FIGS. 1, 2, 5 and 6, member group SG3 is adjacent to S pole PL2 along annular path 7 and not adjacent to N pole PL1. Further, among the plurality of members SB3, the member SB3 arranged on the side closest to the S pole PL2 along the annular path 7 has an outer peripheral length LN3 (see FIG. 5) of a cross section perpendicular to the annular path 7. is longer than the outer peripheral length LN3 of the cross section perpendicular to the annular path 7 of the member SB3 arranged on the side opposite to the side closest to the S pole PL2 along the annular path 7 among the members SB3.

これにより、部材群SG3のうちS極PL2に最も近い側では、磁石部3のS極PL2の環状経路7に垂直な断面の外周長さに合わせて、部材SB3の環状経路7に垂直な断面の外周長さLN3を長くする、即ち部材SB3を太くすることができる。そのため、磁石部3のS極PL2に戻る磁束9よりなる磁場を超伝導バルク部4に効率良く閉じ込めることができる。一方、部材群SG3のうちS極PL2に最も近い側と反対側では、部材SB3の環状経路7に垂直な断面の外周長さLN3を短くする、即ち部材SB3を細くすることができる。そのため、磁気回路用部材の体積を小さくすることができ、磁気回路を小型化又は軽量化することができる。 As a result, on the side of the member group SG3 closest to the S pole PL2, the cross section perpendicular to the circular path 7 of the member SB3 is adjusted to match the outer circumference length of the cross section perpendicular to the circular path 7 of the S pole PL2 of the magnet portion 3. It is possible to lengthen the outer peripheral length LN3 of the member SB3, that is, to thicken the member SB3. Therefore, the magnetic field formed by the magnetic flux 9 returning to the S pole PL2 of the magnet portion 3 can be confined in the superconducting bulk portion 4 efficiently. On the other hand, on the opposite side of the member group SG3 that is closest to the S pole PL2, the outer circumference length LN3 of the cross section perpendicular to the annular path 7 of the member SB3 can be shortened, that is, the member SB3 can be thinned. Therefore, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be reduced in size or weight.

好適には、複数の部材SB3の各々の環状経路7に垂直な断面の外周長さLN3は、環状経路7に沿って、S極PL2に最も近い側からS極PL2に最も近い側と反対側に向かって、複数の部材SB3の配列順に減少する。 Preferably, the outer circumference length LN3 of the cross section perpendicular to the annular path 7 of each of the plurality of members SB3 is from the side closest to the S pole PL2 along the annular path 7 to the side closest to the S pole PL2 and the side opposite to the side closest to the S pole PL2. decreases in the order in which the plurality of members SB3 are arranged.

これにより、S極PL2に最も近い側と反対側からS極PL2に最も近い側に向かって、複数の部材SB3の各々の外周長さLN3を一様に増加させることができる。そのため、S極PL2に最も近い側と反対側からS極PL2に最も近い側に向かって、複数の部材SB3の各々に捕捉される磁束9を一様に広げることができる。よって、複数の部材SB3の例えば角部等に局所的に磁場が集中することを防止又は抑制することができ、強磁場を複数の部材SB3により効率良く捕捉することができ、強磁場を効率良く部材群SG3内に閉じ込めることができる。なお、部材群SG3のうちS極PL2側の部分は、ラッパ形状即ちトランペット形状若しくはホルン形状、又は、朝顔形状を有していてもよい。 As a result, the outer peripheral length LN3 of each of the plurality of members SB3 can be uniformly increased from the side opposite to the side closest to the S pole PL2 toward the side closest to the S pole PL2. Therefore, the magnetic flux 9 captured by each of the plurality of members SB3 can be spread uniformly from the side opposite to the side closest to the S pole PL2 toward the side closest to the S pole PL2. Therefore, it is possible to prevent or suppress the local concentration of the magnetic field on, for example, the corners of the plurality of members SB3, so that the strong magnetic field can be efficiently captured by the plurality of members SB3. It can be confined within the member group SG3. A portion of the member group SG3 on the S pole PL2 side may have a trumpet shape, a trumpet shape, a horn shape, or a morning glory shape.

また、図1に示すように、超伝導装置1は、超伝導バルク部4を冷却する冷却部として、例えばGM冷凍機等の冷凍機21を有してもよい。冷凍機21は、磁石部3の外部に設けられ、本体部22と、コールドヘッド23と、を含む。また、超伝導装置1は、超伝導バルク部4が外部と断熱された状態で、超伝導バルク部4を格納する低温容器(図示は省略)を有してもよい。超伝導バルク部4と、コールドヘッド23とは、低温容器内に配置され、超伝導バルク部4は、コールドヘッド23と熱的に接触される。超伝導バルク部4を冷凍機21により超伝導バルク部4の臨界温度以下に冷却することにより、超伝導バルク部4を超伝導状態にすることができる。 Moreover, as shown in FIG. 1, the superconducting device 1 may have a refrigerator 21 such as a GM refrigerator as a cooling unit for cooling the superconducting bulk portion 4 . The refrigerator 21 is provided outside the magnet portion 3 and includes a main body portion 22 and a cold head 23 . Moreover, the superconducting device 1 may have a cryocontainer (not shown) that stores the superconducting bulk portion 4 in a state in which the superconducting bulk portion 4 is insulated from the outside. The superconducting bulk part 4 and the cold head 23 are arranged in a cryocontainer, and the superconducting bulk part 4 is in thermal contact with the cold head 23 . By cooling the superconducting bulk portion 4 to below the critical temperature of the superconducting bulk portion 4 by the refrigerator 21, the superconducting bulk portion 4 can be brought into a superconducting state.

<超伝導装置の第1変形例>
図7は、実施の形態の超伝導装置の第1変形例を模式的に示す断面図である。なお、図7は、実施の形態の超伝導装置における部材群SG1に対応した部材群を、部材群SG1として示し、部材群SG1に含まれる複数の部材SB1のうち、環状経路7に沿って互いに隣り合う2個の部材SB1を例示して説明する。また、図7では、環状経路7に沿って互いに隣り合う2個の部材SB1の間にスペーサが配置されていない例を例示している。
<First modification of superconducting device>
FIG. 7 is a cross-sectional view schematically showing a first modification of the superconducting device of the embodiment. FIG. 7 shows a member group corresponding to the member group SG1 in the superconducting device of the embodiment as a member group SG1. Two adjacent members SB1 are illustrated and explained. Also, FIG. 7 illustrates an example in which no spacer is arranged between two members SB1 adjacent to each other along the annular path 7 .

図7に示すように、部材群SG1は、複数の部材SB1を含み、複数の部材SB1の各々は、環状経路7に沿って延在する延在部EX1を含んでもよい。複数の部材SB1は、複数の部材SB1の各々が超伝導状態で環状経路7に沿った磁場を捕捉することにより、N極PL1から出た磁束9が複数の部材SB1の各々にそれぞれ含まれる複数の延在部EX1を順次通ってS極PL2に戻るように、環状経路7に沿って配列されている。 As shown in FIG. 7 , the member group SG1 may include a plurality of members SB1, and each of the plurality of members SB1 may include an extension EX1 extending along the annular path 7. As shown in FIG. Each of the plurality of members SB1 captures a magnetic field along the annular path 7 while each of the plurality of members SB1 is in a superconducting state. are arranged along the annular path 7 so as to sequentially return to the S pole PL2 through the extension EX1 of the .

部材SB1が延在部EX1を含む場合でも、部材SB1が筒部CP1(図4参照)を含む場合と同様に、複数の部材SB1の各々が超伝導状態で環状経路7に沿った磁場を捕捉することにより、磁気回路の断面積、即ち超伝導バルク体の環状経路に垂直な断面積を、小さくすることができる。従って、磁気回路用部材として超伝導バルク体を用いる場合、磁気回路用部材として磁性体を用いる場合に比べて、磁気回路用部材の体積を小さくすることができ、磁気回路を容易に小型化又は軽量化することができる。ただし、部材SB1が延在部EX1を含む場合には、部材SB1が筒部CP1を含む場合に比べ、重量が増加するため、上記した軽量化の効果は、ある程度小さくなる。 Even when the member SB1 includes the extension EX1, each of the plurality of members SB1 captures the magnetic field along the annular path 7 in a superconducting state, as in the case when the member SB1 includes the tubular portion CP1 (see FIG. 4). By doing so, the cross-sectional area of the magnetic circuit, that is, the cross-sectional area perpendicular to the circular path of the superconducting bulk body can be reduced. Therefore, when a superconducting bulk body is used as a magnetic circuit member, the volume of the magnetic circuit member can be reduced compared with the case where a magnetic body is used as the magnetic circuit member, and the magnetic circuit can be easily reduced in size or size. It can be made lighter. However, when the member SB1 includes the extension portion EX1, the weight increases compared to when the member SB1 includes the tubular portion CP1, so the above-described effect of weight reduction is reduced to some extent.

或いは、複数の部材SB1の各々は、環状経路7に垂直な表面及び裏面を有する板部PP1を含んでもよい。複数の部材SB1は、複数の部材SB1の各々が超伝導状態で環状経路7に沿った磁場を捕捉することにより、N極PL1から出た磁束9が複数の部材SB1の各々にそれぞれ含まれる複数の板部PP1を順次通ってS極PL2に戻るように、環状経路7に沿って配列されている。 Alternatively, each of the plurality of members SB1 may include a plate portion PP1 having a front surface and a back surface that are perpendicular to the circular path 7 . Each of the plurality of members SB1 captures a magnetic field along the annular path 7 while each of the plurality of members SB1 is in a superconducting state. are arranged along the annular path 7 so as to return to the S pole PL2 through the plate portions PP1 of the .

部材SB1が板部PP1を含む場合でも、部材SB1が筒部CP1(図4参照)を含む場合と同様に、複数の部材SB1の各々が超伝導状態で環状経路7に沿った磁場を捕捉することにより、磁気回路の断面積、即ち超伝導バルク体の環状経路に垂直な断面積を、小さくすることができる。従って、磁気回路用部材として超伝導バルク体を用いる場合、磁気回路用部材として磁性体を用いる場合に比べて、磁気回路用部材の体積を小さくすることができ、磁気回路を容易に小型化又は軽量化することができる。 Even when the member SB1 includes the plate portion PP1, each of the plurality of members SB1 captures the magnetic field along the annular path 7 in a superconducting state, as in the case when the member SB1 includes the tubular portion CP1 (see FIG. 4). Thereby, the cross-sectional area of the magnetic circuit, that is, the cross-sectional area perpendicular to the circular path of the superconducting bulk body can be reduced. Therefore, when a superconducting bulk body is used as a magnetic circuit member, the volume of the magnetic circuit member can be reduced compared with the case where a magnetic body is used as the magnetic circuit member, and the magnetic circuit can be easily reduced in size or size. It can be made lighter.

図7に示すように、複数の部材SB1の各々の環状経路7に垂直な断面の外周長さLN1(図3参照)は、互いに等しくてもよい。即ち、複数の部材SB1の各々の軸線11を中心とした外径DM1は、互いに等しくてもよい。このような場合、複数の部材SB1の各々の外径DM1を細くすることができ、磁気回路用部材の体積を小さくすることができ、磁気回路を小型化又は軽量化することができる。 As shown in FIG. 7, the outer perimeter lengths LN1 (see FIG. 3) of the sections perpendicular to the annular path 7 of each of the plurality of members SB1 may be equal to each other. That is, the outer diameters DM1 about the axis 11 of each of the plurality of members SB1 may be equal to each other. In such a case, the outer diameter DM1 of each of the plurality of members SB1 can be reduced, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be reduced in size or weight.

また、複数の部材SB1は、互いに間隔を空けて配列されていてもよい。これによっても、磁気回路用部材の体積を小さくすることができ、磁気回路を小型化又は軽量化することができる。 Also, the plurality of members SB1 may be arranged at intervals. This also allows the volume of the magnetic circuit member to be reduced, and the magnetic circuit to be reduced in size or weight.

なお、部材SB1が延在部EX1を含むとは、例えば、部材SB1の外径DM1に対する、部材SB1の軸線11に沿った長さHT1の比が、1を超える場合を意味する。また、部材SB1が板部PP1を含むとは、例えば、部材SB1の外径DM1に対する、部材SB1の軸線11に沿った長さHT1の比が、1以下の場合を意味する。 The member SB1 including the extension EX1 means, for example, that the ratio of the length HT1 along the axis 11 of the member SB1 to the outer diameter DM1 of the member SB1 exceeds one. Further, that the member SB1 includes the plate portion PP1 means, for example, that the ratio of the length HT1 along the axis 11 of the member SB1 to the outer diameter DM1 of the member SB1 is 1 or less.

<超伝導装置の第2変形例>
図8は、実施の形態の超伝導装置の第2変形例を模式的に示す断面図である。なお、図8は、実施の形態の超伝導装置における部材群SG2に対応した部材群を、部材群SG2として例示して説明する。また、図8では、環状経路7に沿って互いに隣り合う2個の部材SB2の間にスペーサが配置されていない例を例示している。
<Second modification of superconducting device>
FIG. 8 is a cross-sectional view schematically showing a second modification of the superconducting device of the embodiment. In addition, FIG. 8 illustrates and demonstrates the member group corresponding to the member group SG2 in the superconducting device of embodiment as member group SG2. In addition, FIG. 8 illustrates an example in which no spacer is arranged between two members SB2 adjacent to each other along the annular path 7. As shown in FIG.

図8に示すように、部材群SG2は、複数の部材SB2を含み、複数の部材SB2の各々は、環状経路7に垂直な断面の外周長さLN2(図5参照)が環状経路7に沿って一様に変化する台部TL2を含んでもよい。複数の部材SB2は、複数の部材SB2の各々が超伝導状態で環状経路7に沿った磁場を捕捉することにより、N極PL1から出た磁束が複数の部材SB2の各々にそれぞれ含まれる複数の台部TL2を順次通ってS極PL2に戻るように、環状経路7に沿って配列されている。 As shown in FIG. 8, the member group SG2 includes a plurality of members SB2, and each of the plurality of members SB2 has an outer peripheral length LN2 (see FIG. 5) of a section perpendicular to the annular path 7 along the annular path 7. It may also include a platform TL2 that varies uniformly with the Each of the plurality of members SB2 captures a magnetic field along the annular path 7 while each of the plurality of members SB2 is in a superconducting state. They are arranged along the annular path 7 so as to sequentially return to the S pole PL2 through the platform TL2.

部材SB2が台部TL2を含む場合でも、部材SB2が筒部CP2(図6参照)を含む場合と同様に、複数の部材SB2の各々が超伝導状態で環状経路7に沿った磁場を捕捉することにより、磁気回路の断面積、即ち超伝導バルク体の環状経路に垂直な断面積を、小さくすることができる。従って、磁気回路用部材として超伝導バルク体を用いる場合、磁気回路用部材として磁性体を用いる場合に比べて、磁気回路用部材の体積を小さくすることができ、磁気回路を容易に小型化又は軽量化することができる。ただし、部材SB2が台部TL2を含む場合には、部材SB2が筒部CP2を含む場合に比べ、重量が増加するため、上記した軽量化の効果は、ある程度小さくなる。 Even when the member SB2 includes the pedestal TL2, each of the plurality of members SB2 captures the magnetic field along the annular path 7 in a superconducting state, similar to when the member SB2 includes the tubular portion CP2 (see FIG. 6). Thereby, the cross-sectional area of the magnetic circuit, that is, the cross-sectional area perpendicular to the circular path of the superconducting bulk body can be reduced. Therefore, when a superconducting bulk body is used as a magnetic circuit member, the volume of the magnetic circuit member can be reduced compared with the case where a magnetic body is used as the magnetic circuit member, and the magnetic circuit can be easily reduced in size or size. It can be made lighter. However, when the member SB2 includes the base portion TL2, the weight increases compared to when the member SB2 includes the cylindrical portion CP2, so the above-described effect of weight reduction is reduced to some extent.

好適には、複数の部材SB2の各々の環状経路7に垂直な断面の外周長さLN2(図5参照)は、環状経路7に沿って、N極PL1に最も近い側からN極PL1に最も近い側と反対側に向かって、複数の部材SB2の配列順に減少する。 Preferably, the outer circumference length LN2 (see FIG. 5) of the cross section perpendicular to the circular path 7 of each of the plurality of members SB2 is the distance from the side closest to the N pole PL1 to the N pole PL1 along the circular path 7. It decreases in order of arrangement of the plurality of members SB2 toward the near side and the opposite side.

これにより、N極PL1に最も近い側からN極PL1に最も近い側と反対側に向かって、複数の部材SB2の各々の外周長さLN2を一様に減少させることができる。そのため、N極PL1に最も近い側からN極PL1に最も近い側と反対側に向かって、複数の部材SB2の各々に捕捉される磁束9を一様に収束させることができる。よって、複数の部材SB2の例えば角部等に局所的に磁場が集中することを防止又は抑制することができる。また、部材SB2が筒部CP2を含む場合に比べれば、効果は若干小さくなるものの、強磁場を複数の部材SB2により効率良く捕捉することができ、強磁場を効率良く部材群SG2内に閉じ込めることができる。 Thereby, the outer peripheral length LN2 of each of the plurality of members SB2 can be uniformly decreased from the side closest to the N-pole PL1 toward the side opposite to the side closest to the N-pole PL1. Therefore, the magnetic flux 9 captured by each of the plurality of members SB2 can be uniformly converged from the side closest to the N-pole PL1 toward the side opposite to the side closest to the N-pole PL1. Therefore, it is possible to prevent or suppress local concentration of the magnetic field on, for example, the corners of the plurality of members SB2. In addition, although the effect is slightly smaller than when the member SB2 includes the cylindrical portion CP2, the strong magnetic field can be efficiently captured by the plurality of members SB2, and the strong magnetic field can be efficiently confined within the member group SG2. can be done.

なお、部材群SG2に含まれる部材SB2が台部TL2を含むのと同様に、部材群SG3に含まれる部材SB3が台部TL3を含んでもよい。このとき、複数の部材SB3の各々の環状経路7に垂直な断面の外周長さLN3(図5参照)が、環状経路7に沿って、S極PL2に最も近い側からS極PL2に最も近い側と反対側に向かって、複数の部材SB3の配列順に減少してもよい。これにより、部材SB3が筒部CP3(図6参照)を含む場合に比べれば、効果は若干小さくなるものの、磁気回路用部材の体積をある程度は小さくすることができ、磁気回路をある程度は小型化又は軽量化することができる。 It should be noted that the member SB3 included in the member group SG3 may include the base portion TL3 in the same way that the member SB2 included in the member group SG2 includes the base portion TL2. At this time, the outer circumference length LN3 (see FIG. 5) of the cross section perpendicular to the circular path 7 of each of the plurality of members SB3 is the closest to the S pole PL2 along the circular path 7 from the side closest to the S pole PL2. It may decrease in order of arrangement of the plurality of members SB3 toward the opposite side. As a result, compared to the case where the member SB3 includes the tubular portion CP3 (see FIG. 6), although the effect is slightly reduced, the volume of the magnetic circuit member can be reduced to some extent, and the magnetic circuit can be miniaturized to some extent. Or it can be made lighter.

<超伝導バルク体の材料>
超伝導バルク体として、二ホウ化マグネシウム(MgB)の焼結体バルク又は鉄ニクタイドの焼結体バルクを用いることができる。即ち、超伝導バルク部4は、二ホウ化マグネシウム又は鉄ニクタイドよりなることが好ましい。
<Material of superconducting bulk body>
A sintered body bulk of magnesium diboride (MgB 2 ) or a sintered body bulk of iron pnictide can be used as the superconducting bulk body. That is, the superconducting bulk portion 4 is preferably made of magnesium diboride or iron pnictide.

MgBの臨界温度Tは、約39Kであり、NbTi合金の臨界温度(9K)、及び、NbSnの臨界温度(18K)のいずれよりも高い。そのため、MgBは、液体ヘリウム温度(4.2K)に比べて極めて高い温度である10~30K程度の温度で超伝導状態を維持することができ、超伝導バルク体を冷却する冷却方法として、液体ヘリウムに代えて冷凍機を用いた冷却方法を用いることができる。これにより、本実施の形態の超伝導装置を磁石装置の磁気回路用部材として用いる場合でも、磁気回路を小型化又は軽量化することができる。 The critical temperature Tc of MgB2 is about 39K, which is higher than both the critical temperature of NbTi alloy (9K) and the critical temperature of Nb3Sn ( 18K). Therefore, MgB 2 can maintain a superconducting state at a temperature of about 10 to 30 K, which is extremely high compared to the temperature of liquid helium (4.2 K). A cooling method using a refrigerator can be used instead of liquid helium. As a result, even when the superconducting device of the present embodiment is used as a magnetic circuit member of a magnet device, the magnetic circuit can be reduced in size or weight.

また、MgBよりなる超伝導バルク体は、MgBの焼結体よりなり、その合成方法としては、各種の方法があるものの、例えばマグネシウム(Mg)とホウ素(B)の粉末とを混合した混合物を成型した成型体を焼結することにより容易に形成することができる。これにより、MgBよりなる超伝導バルク体として、大型の超伝導バルク体を容易に形成することができる。従って、大型の超伝導バルク体を用いて、本実施の形態の超伝導装置を容易に大型化することができるので、本実施の形態の超伝導装置を、鉄等の磁性体に代えて、強磁場を発生させる磁石装置の磁気回路用部材として、容易に用いることができる。このような観点でも、本実施の形態の超伝導装置を、鉄等の磁性体に代えて、磁石装置の磁気回路用部材として用いる場合に、磁気回路を容易に小型化又は軽量化することができる。 The superconducting bulk body made of MgB2 is made of a sintered body of MgB2, and although there are various methods for synthesizing it, for example, powders of magnesium (Mg) and boron (B) are mixed. It can be easily formed by sintering a molded body obtained by molding the mixture. Thereby, a large superconducting bulk body can be easily formed as a superconducting bulk body made of MgB 2 . Therefore, the superconducting device of the present embodiment can be easily enlarged by using a large-sized superconducting bulk material. It can be easily used as a magnetic circuit member of a magnet device that generates a strong magnetic field. From this point of view as well, when the superconducting device of the present embodiment is used as a magnetic circuit member of a magnet device instead of a magnetic material such as iron, the magnetic circuit can be easily reduced in size or weight. can.

また、MgBの結晶中の臨界電流密度の方向依存性が小さい。即ち、MgBの臨界電流密度特性は、異方性が小さく、略等方的である。そのため、MgBの焼結体よりなる超伝導バルク体については、隣り合う2個の結晶粒の各々の配向方向のなす角度が0°から離れた場合でも、当該2個の結晶粒の間の界面を横切って流れる臨界電流密度が大きく減少することはない。そのため、MgBの焼結体よりなる超伝導バルク体については、超伝導バルク体を形成する際に、結晶粒の配向方向を制御する必要がないので、大型の超伝導バルク体を容易に形成することができる。Also, the directional dependence of the critical current density in the crystal of MgB2 is small. That is, the critical current density characteristics of MgB 2 are less anisotropic and substantially isotropic. Therefore, in a superconducting bulk body made of a sintered body of MgB2, even if the angle formed by the orientation directions of two adjacent crystal grains is away from 0°, the gap between the two crystal grains The critical current density flowing across the interface is not significantly reduced. Therefore, when forming a superconducting bulk body made of a sintered body of MgB2, it is not necessary to control the orientation direction of crystal grains, so a large - sized superconducting bulk body can be easily formed. can do.

MgBよりなる超伝導バルク体におけるMgBの平均粒径は、磁場を捕捉する観点からは、可能な限り小さい方が良いので、当該平均粒径の下限値は、10~20nmであるものの、当該下限値以上の範囲においては、当該平均粒径は、200~400nmであることがより好ましい。MgBの平均粒径が200nm以上の場合、MgBの平均粒径が200nm未満の場合に比べ、平均粒径を所望の値に容易に調整することができる。一方、MgBの平均粒径が400nm以下の場合、MgBの平均粒径が400nmを超える場合に比べ、超伝導バルク体の内部構造の均一性を容易に高めることができ、臨界電流密度を容易に向上させることができる。The average particle diameter of MgB 2 in the superconducting bulk body made of MgB 2 should be as small as possible from the viewpoint of capturing the magnetic field. In the range of the lower limit value or more, the average particle size is more preferably 200 to 400 nm. When the average particle size of MgB2 is 200 nm or more, the average particle size can be easily adjusted to a desired value compared to when the average particle size of MgB2 is less than 200 nm. On the other hand, when the average grain size of MgB2 is 400 nm or less, compared with the case where the average grain size of MgB2 exceeds 400 nm, the uniformity of the internal structure of the superconducting bulk body can be easily improved, and the critical current density can be increased. can be easily improved.

鉄ニクタイドは、鉄(Fe)とヒ素(As)等の第15族元素との化合物を意味する。鉄ニクタイドの臨界温度Tは、組成により異なるものの、MgBの臨界温度Tと同程度か、MgBの臨界温度Tよりも高い。そのため、磁石装置の磁気回路用部材として、MgBよりなる超伝導バルク体に代えて鉄ニクタイドよりなる超伝導バルク体を用いる場合でも、磁気回路用部材として鉄等の磁性体を用いる場合に比べて磁気回路を容易に小型化又は軽量化する効果については、MgBよりなる超伝導バルク体を用いた場合と同程度の効果、又は、MgBよりなる超伝導バルク体を用いた場合よりも大きな効果が得られる。Iron pnictides refer to compounds of iron (Fe) and group 15 elements such as arsenic (As). The critical temperature Tc of iron pnictides varies depending on the composition, but is about the same as the critical temperature Tc of MgB2 or higher than the critical temperature Tc of MgB2. Therefore, even when a superconducting bulk body made of iron pnictide is used instead of a superconducting bulk body made of MgB 2 as a magnetic circuit member of a magnet device, it is less effective than using a magnetic material such as iron as a magnetic circuit member. As for the effect of easily miniaturizing or lightening the magnetic circuit by using the superconducting bulk body made of MgB 2 , the effect is comparable to that of using the superconducting bulk body made of MgB 2 , or more than the effect of using the superconducting bulk body made of MgB 2 . A big effect is obtained.

鉄ニクタイドとして用いられる材料として、REFeAsO1-x(0<x<1、REは希土類元素)、(AE,A)(Fe,TM)(As,Pn)(AEはアルカリ土類元素、Aはアルカリ元素、TMは遷移金属元素、Pnはニクトゲン元素)、A1-x(Fe,TM)(As,Pn)(0<x<1、Aはアルカリ元素、TMは遷移金属元素、Pnはニクトゲン元素)、SmFeAsO1-x(0<x<1)、NdFeAsO1-x(0<x<1)、CeFeAsO1-x(0<x<1)、LaFeAsO1-x(0<x<1)、SmFeAs1-y1-x(0<x<1、0<y<1)、LaFe1-yZnAsO1-x(0<x<1、0<y<1)、LaFeAsO0.85(0≦x≦0.85)、LaFeAsO1-x(0<x<1)、CaFe1-xCoAsH(0<x<1)、Ca1-xLaFeAsH(0<x<1)、Ca1-xSmFeAsH(0<x<1)、CaFeAsF1-x(0<x<1)、Sr1-xLaFeAs(0<x<1)、(Ba,La)FeAs、(Ba,Ce)FeAs、(Ba,Pr)FeAs、(Ba,Nd)FeAs、(Sr,La)FeAs、(Ca,La)Fe(As,P)、Ba(Fe,Pt)As、(Ca,La)FeAs、(Ca,La)Fe(As,Sb)、(Ca,RE)Fe(As,Sb)(RE=La,Ce,Pr,Nd)、Ca10(IrAs)(FeAs、Na0.65Fe1.93Se、(Na,NH)FeSe、LaFeAs(O,C)が挙げられる。即ち、鉄ニクタイドは、上記した組成式で表される化合物からなる群から選択された一種以上よりなることが好ましい。Materials used as iron pnictides include REFeAsO 1-x F x (0<x<1, RE is a rare earth element), (AE, A) (Fe, TM) 2 (As, Pn) 2 (AE is an alkaline earth element). element, A is an alkali element, TM is a transition metal element, Pn is a nictogen element), A 1-x (Fe, TM) (As, Pn) (0<x<1, A is an alkali element, TM is a transition metal element , Pn is a nictogen element), SmFeAsO 1-x H x (0<x<1), NdFeAsO 1-x H x (0<x<1), CeFeAsO 1-x H x (0<x<1), LaFeAsO 1- xHx (0< x <1), SmFeAs1 - yPyO1-xHx (0< x <1, 0< y <1), LaFe1 - yZnyAsO1 - xH x (0<x<1, 0<y<1), LaFeAsO 0.85 H x (0≦x≦0.85), LaFeAsO 1-x (0<x<1), CaFe 1-x Co x AsH (0<x<1), Ca1-xLaxFeAsH (0< x <1), Ca1 -xSmxFeAsH (0<x<1), CaFeAsF1-x ( 0 < x<1), Sr 1-x La x Fe 2 As 2 (0<x<1), (Ba, La) Fe 2 As 2 , (Ba, Ce) Fe 2 As 2 , (Ba, Pr) Fe 2 As 2 , (Ba , Nd) Fe2As2 , (Sr,La) Fe2As2 , ( Ca,La)Fe2 ( As,P) 2 , Ba ( Fe,Pt) 2As2 , ( Ca,La) FeAs2 , (Ca, La) Fe(As, Sb) 2 , (Ca, RE) Fe(As, Sb) 2 (RE=La, Ce, Pr, Nd), Ca 10 (Ir 4 As 8 ) (Fe 2 As 2 ) 5 , Na 0.65 Fe 1.93 Se 2 , (Na, NH 3 ) Fe 2 Se 2 and LaFeAs(O, C 2 ). That is, the iron pnictide is preferably composed of one or more selected from the group consisting of the compounds represented by the above compositional formulas.

<磁石装置の第1変形例>
図9は、実施の形態の磁石装置の第1変形例を模式的に示す平面図である。
<First Modification of Magnet Device>
FIG. 9 is a plan view schematically showing a first modification of the magnet device of the embodiment.

図9に示すように、磁石部3は、環状経路7に沿って設けられた1個の磁石MG3のみを有し、磁石部3は、第1極性を有する第1磁極としてのN極PL1と、第1極性と反対の第2極性を有する第2磁極としてのS極PL2と、のみを有してもよい。そして、N極PL1、超伝導バルク部4及びS極PL2は、環状経路7に沿って、N極PL1、超伝導バルク部4、S極PL2の順に配置されていてもよい。 As shown in FIG. 9, the magnet unit 3 has only one magnet MG3 provided along the annular path 7, and the magnet unit 3 has an N pole PL1 as a first magnetic pole having a first polarity. , and the south pole PL2 as a second magnetic pole having a second polarity opposite to the first polarity. The N pole PL1, the superconducting bulk portion 4, and the S pole PL2 may be arranged along the circular path 7 in the order of the N pole PL1, the superconducting bulk portion 4, and the S pole PL2.

このような場合、磁石部3が所謂ヘルムホルツコイルよりなる場合に比べれば、磁石部3の内部の空間8に、例えば人体等の被検体を出し入れしにくくなるものの、磁気回路用部材として磁性体を用いる場合に比べて、磁気回路用部材の体積を小さくする効果が得られ、磁気回路を容易に小型化又は軽量化する効果が得られる。 In such a case, compared to the case where the magnet portion 3 is composed of a so-called Helmholtz coil, it is difficult to put a subject such as a human body into and out of the space 8 inside the magnet portion 3, but a magnetic material is used as a magnetic circuit member. Compared to the case of using such a material, the effect of reducing the volume of the magnetic circuit member can be obtained, and the effect of easily reducing the size or weight of the magnetic circuit can be obtained.

<磁石装置の第2変形例>
図10は、実施の形態の磁石装置の第2変形例を模式的に示す平面図である。
<Second Modification of Magnet Device>
FIG. 10 is a plan view schematically showing a second modification of the magnet device of the embodiment.

図10に示すように、超伝導バルク部4は、部材群SG2及びSG3(図1参照)を有さず、部材群SG1のみを有してもよい。そして、環状経路7のうちN極PL1から出てS極PL2に戻る部分において、複数の部材SB1の各々の環状経路7に垂直な断面の外周長さLN1(図3参照)は、互いに等しくてもよい。このような場合、前述した図1及び図2を用いて説明した実施の形態の磁石装置に比べれば効果の程度は小さくなるものの、磁気回路用部材として磁性体を用いる場合に比べて、磁気回路用部材の体積をある程度小さくすることができ、磁気回路をある程度小型化又は軽量化することができる。 As shown in FIG. 10, the superconducting bulk portion 4 may have only the member group SG1 without the member groups SG2 and SG3 (see FIG. 1). In the portion of the annular path 7 that exits the N pole PL1 and returns to the S pole PL2, the outer peripheral lengths LN1 (see FIG. 3) of the sections perpendicular to the annular path 7 of each of the plurality of members SB1 are equal to each other. good too. In such a case, although the degree of effect is smaller than that of the magnet device of the embodiment described with reference to FIGS. The volume of the member can be reduced to some extent, and the magnetic circuit can be made smaller or lighter to some extent.

<磁石装置の第3変形例>
図11は、実施の形態の磁石装置の第3変形例を模式的に示す平面図である。
<Third Modification of Magnet Device>
FIG. 11 is a plan view schematically showing a third modification of the magnet device of the embodiment.

図11に示すように、超伝導バルク体、即ち超伝導バルク部4は、環状経路7に沿って分割されておらず、一体的に形成されていてもよい。このような場合、超伝導バルク部4を一体的に形成する点で、前述した図1及び図2を用いて説明した実施の形態の磁石装置に比べれば、超伝導バルク部4を容易に形成しにくくなるものの、磁気回路用部材の体積をある程度小さくすることができ、磁気回路をある程度小型化又は軽量化することができる。 As shown in FIG. 11, the superconducting bulk body, ie, the superconducting bulk portion 4, may not be divided along the annular path 7, but may be integrally formed. In such a case, the superconducting bulk portion 4 can be formed more easily than the magnet apparatus of the embodiment described above with reference to FIGS. However, the volume of the magnetic circuit member can be reduced to some extent, and the size and weight of the magnetic circuit can be reduced to some extent.

<磁石装置の第4変形例>
実施の形態の磁石装置では、超伝導バルク体、即ち超伝導バルク部4は、磁石部3の外部に設けられていた。しかし、超伝導バルク部4の端部が磁石部3を囲み、磁石部3の一部が、超伝導バルク部4の端部の内部に入り込んでいてもよい。このような磁石装置を、磁石装置の第4変形例として説明する。
<Fourth Modification of Magnet Device>
In the magnet device of the embodiment, the superconducting bulk body, that is, the superconducting bulk portion 4 is provided outside the magnet portion 3 . However, the end portion of the superconducting bulk portion 4 may surround the magnet portion 3 and a part of the magnet portion 3 may enter the inside of the end portion of the superconducting bulk portion 4 . Such a magnet device will be described as a fourth modified example of the magnet device.

図12は、実施の形態の磁石装置の第4変形例を模式的に示す平面図である。なお、図12では、理解を簡単にするために、部材SB4及びSB5については、断面を示している。 FIG. 12 is a plan view schematically showing a fourth modification of the magnet device of the embodiment. Note that FIG. 12 shows a cross section of the members SB4 and SB5 for easy understanding.

図12に示すように、本第4変形例の磁石装置に備えられた超伝導装置は、超伝導バルク体としての超伝導バルク部4を有する。また、超伝導バルク部4は、磁石MG1即ち磁石部3の一部分を囲む筒状の筒部CP5を含む、超伝導バルク体としての部材SB4と、磁石MG2即ち磁石部3の他の部分を囲む筒状の筒部CP6を含む、超伝導バルク体としての部材SB5と、を有する。部材SB4及び部材SB5の各々は、第二種超伝導体よりなり、超伝導状態で、下部臨界磁場を超え且つ上部臨界磁場以下の磁場を、磁束をピン止めすることにより捕捉する。 As shown in FIG. 12, the superconducting device provided in the magnet device of the fourth modification has a superconducting bulk portion 4 as a superconducting bulk body. In addition, the superconducting bulk portion 4 includes a member SB4 as a superconducting bulk body including a tubular portion CP5 surrounding a portion of the magnet MG1, ie, the magnet portion 3, and the magnet MG2, ie, another portion of the magnet portion 3. and a member SB5 as a superconducting bulk body including a cylindrical tubular portion CP6. Each of member SB4 and member SB5 is made of a type II superconductor and, in the superconducting state, traps a magnetic field above the lower critical field and below the upper critical field by pinning the magnetic flux.

図12に示す例では、複数の部材SB2を含む部材群SG2、複数の部材SB1を含む部材群SG1、及び、複数の部材SB3を含む部材群SG3については、前述した図1を用いて説明した実施の形態の磁石装置と同様にすることができる。 In the example shown in FIG. 12, the member group SG2 including a plurality of members SB2, the member group SG1 including a plurality of members SB1, and the member group SG3 including a plurality of members SB3 have been described with reference to FIG. It can be the same as the magnet device of the embodiment.

また、図12に示す例では、部材SB4、複数の部材SB2、複数の部材SB1、複数の部材SB3及び部材SB5は、ある軸6の周りの環状経路7に沿って、部材SB4、複数の部材SB2、複数の部材SB1、複数の部材SB3、部材SB5の順に配置されている。即ち、N極PL1、部材群SG2、部材群SG1、部材群SG3及びS極PL2は、環状経路7に沿って、N極PL1、部材群SG2、部材群SG1、部材群SG3、S極PL2の順に配置されている。そして、磁場を捕捉している部材SB4と、それぞれ磁場を捕捉している複数の部材SB2と、それぞれ磁場を捕捉している複数の部材SB1と、それぞれ磁場を捕捉している複数の部材SB3と、磁場を捕捉している部材SB5と、磁石部3と、により磁気回路5が形成される。即ち、環状経路7に沿って、N極PL1から、複数の部材SB2、複数の部材SB1及び複数の部材SB3を順次経てS極PL2に戻る磁気回路5が形成される。なお、筒部CP5及びCP6は、いずれも環状経路7に沿った軸線11(図3参照)を中心とした筒状の筒部である。また、N極PL1から出る磁束は、筒部CP5の内部、及び、筒部CP6の内部を順次通ってS極PL2に戻る。 Further, in the example shown in FIG. 12, the member SB4, the plurality of members SB2, the plurality of members SB1, the plurality of members SB3, and the member SB5 are arranged along an annular path 7 around an axis 6 to form the member SB4, the plurality of members SB2, the plurality of members SB1, the plurality of members SB3, and the member SB5 are arranged in this order. That is, the N pole PL1, the member group SG2, the member group SG1, the member group SG3, and the S pole PL2 are arranged along the annular path 7 to form the N pole PL1, the member group SG2, the member group SG1, the member group SG3, and the S pole PL2. are arranged in order. A member SB4 capturing a magnetic field, a plurality of members SB2 each capturing a magnetic field, a plurality of members SB1 each capturing a magnetic field, and a plurality of members SB3 each capturing a magnetic field. , the member SB5 that captures the magnetic field, and the magnet portion 3 form a magnetic circuit 5 . That is, a magnetic circuit 5 is formed along the circular path 7 from the N pole PL1 to the S pole PL2 via the plurality of members SB2, the plurality of members SB1, and the plurality of members SB3 in order. Both of the tubular portions CP5 and CP6 are tubular portions having an axis 11 (see FIG. 3) along the annular path 7 as a center. Further, the magnetic flux emitted from the N pole PL1 returns to the S pole PL2 through the interior of the cylindrical portion CP5 and the interior of the cylindrical portion CP6 in sequence.

図12に示す例では、部材群SG2に含まれる複数の部材SB2、部材群SG1に含まれる複数の部材SB1、及び、部材群SG3に含まれる複数の部材SB3は、複数の部材SB2、複数の部材SB1及び複数の部材SB3の各々が超伝導状態で磁場を捕捉することにより、N極PL1から出た磁束が、複数の部材SB2、複数の部材SB1及び複数の部材SB3を順次通ってS極PL2に戻るように、環状経路7に沿って配列されている。 In the example shown in FIG. 12, the plurality of members SB2 included in the member group SG2, the plurality of members SB1 included in the member group SG1, and the plurality of members SB3 included in the member group SG3 are the plurality of members SB2 and the plurality of members SB3. Since each of the member SB1 and the plurality of members SB3 captures the magnetic field in a superconducting state, the magnetic flux emitted from the N pole PL1 passes through the plurality of members SB2, the plurality of members SB1 and the plurality of members SB3 in sequence to reach the S pole. Arranged along a circular path 7 leading back to PL2.

なお、図12では、超伝導装置が2個の部材SB4と、2個の部材SB5と、を有する場合を例示して説明するが、部材SB4の数は1個以上であればよく、部材SB5の数は1個以上であればよい。また、本第4変形例でも、実施の形態と同様に、部材SB4及びSB5を含む超伝導バルク部4は、二ホウ化マグネシウム又は鉄ニクタイドよりなることが好ましい。また、本第4変形例でも、実施の形態と同様に、超伝導装置は、部材SB4及びSB5を含む超伝導バルク部4を冷却する冷却部として、例えばGM冷凍機等の冷凍機21を有してもよい。 In FIG. 12, the case where the superconducting device has two members SB4 and two members SB5 will be described as an example. The number of may be 1 or more. Also, in the fourth modification, as in the embodiment, the superconducting bulk portion 4 including the members SB4 and SB5 is preferably made of magnesium diboride or iron pnictide. Also in the fourth modification, as in the embodiment, the superconducting device has a refrigerator 21 such as a GM refrigerator as a cooling unit for cooling the superconducting bulk portion 4 including the members SB4 and SB5. You may

本第4変形例でも、実施の形態と同様に、磁気回路用部材の体積を小さくすることができ、磁気回路を小型化又は軽量化することができる。一方、本第4変形例では、超伝導バルク部4の端部が磁石部3を囲み、磁石部3の一部が、超伝導バルク部4の端部の内部に入り込んでいる。そのため、本第4変形例では、実施の形態に比べ、磁石部3の周辺において、強い磁場を超伝導バルク部4に効率良く閉じ込めることができる。 In the fourth modified example, similarly to the embodiment, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be reduced in size or weight. On the other hand, in the fourth modified example, the ends of the superconducting bulk portion 4 surround the magnet portion 3 , and part of the magnet portion 3 enters inside the ends of the superconducting bulk portion 4 . Therefore, in the fourth modified example, a strong magnetic field can be efficiently confined in the superconducting bulk portion 4 around the magnet portion 3 compared to the embodiment.

なお、超伝導バルク部4が、複数の部材SB2、複数の部材SB1及び複数の部材SB3のいずれも有さず、部材SB4又は部材SB5のみを有してもよい。このとき、磁場を捕捉している部材SB4又は磁場を捕捉している部材SB5と、磁石部3と、により磁気回路5が形成される。このような場合でも、磁石装置に超伝導バルク部4が備えられていない場合に比べれば、磁気回路用部材の体積を小さくすることができ、磁気回路を小型化又は軽量化することができる。 The superconducting bulk portion 4 may have none of the plurality of members SB2, the plurality of members SB1, and the plurality of members SB3, and may have only the member SB4 or the member SB5. At this time, the magnetic circuit 5 is formed by the member SB4 or the member SB5 that captures the magnetic field and the magnet portion 3 . Even in such a case, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be made smaller or lighter than when the superconducting bulk portion 4 is not provided in the magnet device.

また、超伝導バルク部4のうち、部材SB4及びSB5以外の部分が、図10に示したように、部材群SG2及びSG3を有さず、部材群SG1のみを有してもよく、環状経路7のうちN極PL1から出てS極PL2に戻る部分において、複数の部材SB1の各々の環状経路7に垂直な断面の外周長さLN1(図3参照)が、互いに等しくてもよい。或いは、超伝導バルク部4のうち、部材SB4及びSB5以外の部分が、図11に示したように、環状経路7に沿って分割されておらず、一体的に形成されていてもよい。その他、部材群SG1、SG2及びSG3については、図7に示した部材群SG1、又は、図8に示した部材群SG2若しくは部材群SG3と同様にすることができる。 10, the portion of the superconducting bulk portion 4 other than the members SB4 and SB5 may have only the member group SG1 without the member groups SG2 and SG3. In the portion of 7 that exits from the N pole PL1 and returns to the S pole PL2, the outer circumference length LN1 (see FIG. 3) of the cross section perpendicular to the circular path 7 of each of the plurality of members SB1 may be equal to each other. Alternatively, portions of the superconducting bulk portion 4 other than the members SB4 and SB5 may be integrally formed without being divided along the annular path 7 as shown in FIG. In addition, the member groups SG1, SG2, and SG3 can be the same as the member group SG1 shown in FIG. 7, or the member group SG2 or member group SG3 shown in FIG.

<磁石装置の第5変形例>
実施の形態の磁石装置では、超伝導バルク体、即ち超伝導バルク部4は、磁石部3の外部に設けられていた。しかし、超伝導バルク部4の途中の部分が磁石部を囲み、磁石部が超伝導バルク部4の途中の部分の内部に設けられていてもよい。このような磁石装置を、磁石装置の第5変形例として説明する。
<Fifth Modification of Magnet Device>
In the magnet device of the embodiment, the superconducting bulk body, that is, the superconducting bulk portion 4 is provided outside the magnet portion 3 . However, the middle portion of the superconducting bulk portion 4 may surround the magnet portion, and the magnet portion may be provided inside the middle portion of the superconducting bulk portion 4 . Such a magnet device will be described as a fifth modification of the magnet device.

図13は、実施の形態の磁石装置の第5変形例を模式的に示す平面図である。なお、図13では、二点鎖線で囲まれた領域RG1を拡大して断面図として示している。 FIG. 13 is a plan view schematically showing a fifth modification of the magnet device of the embodiment. Note that FIG. 13 shows an enlarged cross-sectional view of a region RG1 surrounded by a two-dot chain line.

図13に示すように、本第5変形例の磁石装置は、磁石部3(図1参照)に代え、超伝導バルク体、即ち超伝導バルク部4の途中の内部に設けられた磁石部3aを備えている。磁石部3aは、磁石MG4を有し、磁石MG4は、第1極性を有する第1磁極としてのN極PL1と、第1極性と反対の第2極性を有する第2磁極としてのS極PL2と、を有する。 As shown in FIG. 13, in the magnet device of the fifth modification, instead of the magnet portion 3 (see FIG. 1), a magnet portion 3a is provided inside the superconducting bulk body, that is, the superconducting bulk portion 4. It has The magnet part 3a has a magnet MG4, and the magnet MG4 has an N pole PL1 as a first magnetic pole having a first polarity and an S pole PL2 as a second magnetic pole having a second polarity opposite to the first polarity. , have

また、本第5変形例の磁石装置に備えられた超伝導装置は、超伝導バルク体としての超伝導バルク部4を有する。また、超伝導バルク部4は、磁石MG4即ち磁石部3aを囲む筒状の筒部CP7を含む、超伝導バルク体としての部材SB6を有する。筒部CP7は、環状経路7に沿った軸線11(図3参照)を中心とした筒状の筒部である。部材SB6は、第二種超伝導体よりなり、超伝導状態で、下部臨界磁場を超え且つ上部臨界磁場以下の磁場を、磁束をピン止めすることにより磁場を捕捉する。そして、N極PL1、超伝導バルク部4及びS極PL2は、ある軸6の周りの環状経路7に沿って、N極PL1、超伝導バルク部4、S極PL2の順に配置されている。 Moreover, the superconducting device provided in the magnet device of the fifth modified example has a superconducting bulk portion 4 as a superconducting bulk body. Also, the superconducting bulk portion 4 has a member SB6 as a superconducting bulk body including a tubular portion CP7 surrounding the magnet MG4, that is, the magnet portion 3a. The tubular portion CP7 is a tubular portion having an axis 11 (see FIG. 3) along the annular path 7 as a center. The member SB6 is made of a type II superconductor and, in the superconducting state, traps a magnetic field above the lower critical field and below the upper critical field by pinning the magnetic flux. The N-pole PL1, the superconducting bulk portion 4 and the S-pole PL2 are arranged along an annular path 7 around an axis 6 in the order N-pole PL1, superconducting bulk portion 4 and S-pole PL2.

図13に示す例では、複数の部材SB2を含む部材群SG2、複数の部材SB1を含む部材群SG1、及び、複数の部材SB3を含む部材群SG3については、前述した図1を用いて説明した実施の形態の磁石装置と同様にすることができる。一方、図13に示す例では、複数の部材SB2と、複数の部材SB1との間に、部材SB6が配置され、複数の部材SB2と、部材SB6との間に、複数の部材SB7を含む、超伝導バルク体群としての部材群SG4が配置されている。複数の部材SB7の各々は、環状経路7に沿った軸線11(図3参照)を中心とした筒状の筒部CP8を含む。複数の部材SB7を含む部材群SG4については、複数の部材SB1を含む部材群SG1と同様にすることができる。なお、複数の部材SB2、複数の部材SB7、複数の部材SB1及び複数の部材SB3は、磁石部3aの外部に設けられている。また、複数の部材SB7の各々は、超伝導状態で磁場を捕捉する。 In the example shown in FIG. 13, the member group SG2 including a plurality of members SB2, the member group SG1 including a plurality of members SB1, and the member group SG3 including a plurality of members SB3 have been described with reference to FIG. It can be the same as the magnet device of the embodiment. On the other hand, in the example shown in FIG. 13, a member SB6 is arranged between a plurality of members SB2 and a plurality of members SB1, and a plurality of members SB7 are arranged between the plurality of members SB2 and SB6. A member group SG4 is arranged as a superconducting bulk body group. Each of the plurality of members SB7 includes a cylindrical tubular portion CP8 centered on an axis 11 (see FIG. 3) along the annular path 7. As shown in FIG. The member group SG4 including a plurality of members SB7 can be configured in the same manner as the member group SG1 including a plurality of members SB1. The plurality of members SB2, the plurality of members SB7, the plurality of members SB1, and the plurality of members SB3 are provided outside the magnet portion 3a. Also, each of the plurality of members SB7 captures the magnetic field in a superconducting state.

また、図13に示す例では、複数の部材SB2、複数の部材SB7、部材SB6、複数の部材SB1及び複数の部材SB3は、ある軸6の周りの環状経路7に沿って、複数の部材SB2、複数の部材SB7、部材SB6、複数の部材SB1、複数の部材SB3の順に配置されている。即ち、N極PL1、部材群SG1、部材群SG3、部材群SG2、部材群SG4及びS極PL2は、環状経路7に沿って、N極PL1、部材群SG1、部材群SG3、部材群SG2、部材群SG4、S極PL2の順に配置されている。そして、それぞれ磁場を捕捉している複数の部材SB2と、それぞれ磁場を捕捉している複数の部材SB7と、磁場を捕捉している部材SB6と、それぞれ磁場を捕捉している複数の部材SB1と、それぞれ磁場を捕捉している複数の部材SB3と、磁石部3aと、により磁気回路5が形成される。即ち、環状経路7に沿って、N極PL1から、複数の部材SB1、複数の部材SB3、複数の部材SB2及び複数の部材SB7を順次経てS極PL2に戻る磁気回路5が形成される。また、N極PL1から出る磁束は、筒部CP7の内部を通ってS極PL2に戻る。 Further, in the example shown in FIG. 13, the plurality of members SB2, the plurality of members SB7, the plurality of members SB6, the plurality of members SB1 and the plurality of members SB3 are arranged along an annular path 7 around a given axis 6 to form the plurality of members SB2 , a plurality of members SB7, a plurality of members SB6, a plurality of members SB1, and a plurality of members SB3. That is, the N pole PL1, the member group SG1, the member group SG3, the member group SG2, the member group SG4, and the S pole PL2 are arranged along the annular path 7 to form the N pole PL1, the member group SG1, the member group SG3, the member group SG2, The member group SG4 and the S pole PL2 are arranged in this order. A plurality of members SB2 each capturing a magnetic field, a plurality of members SB7 each capturing a magnetic field, a member SB6 each capturing a magnetic field, and a plurality of members SB1 each capturing a magnetic field. , a magnetic circuit 5 is formed by a plurality of members SB3 each capturing a magnetic field, and the magnet portion 3a. That is, a magnetic circuit 5 is formed along the circular path 7 from the N pole PL1 to the S pole PL2 via the plurality of members SB1, the plurality of members SB3, the plurality of members SB2, and the plurality of members SB7 in order. Also, the magnetic flux emitted from the N pole PL1 returns to the S pole PL2 through the inside of the cylindrical portion CP7.

図13に示す例では、部材群SG1に含まれる複数の部材SB1、部材群SG3に含まれる複数の部材SB3、部材群SG2に含まれる複数の部材SB2、及び、部材群SG4に含まれる複数の部材SB7は、複数の部材SB1、複数の部材SB3、複数の部材SB2及び複数の部材SB7の各々が超伝導状態で磁場を捕捉することにより、N極PL1から出た磁束が、複数の部材SB1、複数の部材SB3、複数の部材SB2及び複数の部材SB7を順次通ってS極PL2に戻るように、環状経路7に沿って配列されている。 In the example shown in FIG. 13, the plurality of members SB1 included in the member group SG1, the plurality of members SB3 included in the member group SG3, the plurality of members SB2 included in the member group SG2, and the plurality of members included in the member group SG4 In the member SB7, each of the plurality of members SB1, the plurality of members SB3, the plurality of members SB2, and the plurality of members SB7 captures a magnetic field in a superconducting state. , a plurality of members SB3, a plurality of members SB2 and a plurality of members SB7, and back to the S pole PL2.

本第5変形例でも、実施の形態と同様に、部材SB6を含む超伝導バルク部4は、二ホウ化マグネシウム又は鉄ニクタイドよりなることが好ましい。また、本第5変形例でも、実施の形態と同様に、超伝導装置は、部材SB6を含む超伝導バルク部4を冷却する冷却部として、例えばGM冷凍機等の冷凍機21を有してもよい。 Also in the fifth modification, the superconducting bulk portion 4 including the member SB6 is preferably made of magnesium diboride or iron pnictide, as in the embodiment. Also in the fifth modification, as in the embodiment, the superconducting device has a refrigerator 21 such as a GM refrigerator as a cooling unit for cooling the superconducting bulk portion 4 including the member SB6. good too.

本第5変形例では、超伝導バルク部4の途中の部分が磁石部3aを囲み、磁石部3aが超伝導バルク部4の途中の部分の内部に設けられている。このような場合でも、実施の形態と同様に、磁気回路用部材の体積を小さくすることができ、磁気回路を小型化又は軽量化することができる。そのため、実施の形態に比べて、磁石部が配置される位置を変更することができるので、磁石装置の設計の自由度を向上させることができる。 In the fifth modification, the middle portion of the superconducting bulk portion 4 surrounds the magnet portion 3a, and the magnet portion 3a is provided inside the middle portion of the superconducting bulk portion 4. FIG. Even in such a case, as in the embodiment, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be reduced in size or weight. Therefore, compared to the embodiment, the positions at which the magnet units are arranged can be changed, so that the degree of freedom in designing the magnet device can be improved.

なお、超伝導バルク部4が、複数の部材SB2、複数の部材SB7、複数の部材SB1及び複数の部材SB3のいずれも有さず、部材SB6のみを有してもよい。このとき、磁場を捕捉している部材SB6と、磁石部3aと、により磁気回路5が形成される。このような場合でも、磁石装置に超伝導バルク部4が備えられていない場合に比べれば、磁気回路用部材の体積を小さくすることができ、磁気回路を小型化又は軽量化することができる。 The superconducting bulk portion 4 may have only the member SB6 without having any of the plurality of members SB2, the plurality of members SB7, the plurality of members SB1, and the plurality of members SB3. At this time, the magnetic circuit 5 is formed by the member SB6 that captures the magnetic field and the magnet portion 3a. Even in such a case, the volume of the magnetic circuit member can be reduced, and the magnetic circuit can be made smaller or lighter than when the superconducting bulk portion 4 is not provided in the magnet device.

また、超伝導バルク部4のうち、部材SB6以外の部分が、図10に示したように、部材群SG2及びSG3を有さず、部材群SG1及びSG4のみを有してもよく、環状経路7のうちN極PL1から出てS極PL2に戻る部分において、複数の部材SB1及び複数の部材SB7の各々の環状経路7に垂直な断面の外周長さが、互いに等しくてもよい。 10, the portion of the superconducting bulk portion 4 other than the member SB6 may have only the member groups SG1 and SG4 without the member groups SG2 and SG3. In the portion of 7 that exits the N pole PL1 and returns to the S pole PL2, the outer perimeter lengths of cross sections perpendicular to the annular path 7 of each of the plurality of members SB1 and SB7 may be equal to each other.

<MRI装置>
次に、本実施の形態の超伝導装置を備えた磁石装置を有するMRI装置について説明する。
<MRI device>
Next, an MRI apparatus having a magnet device equipped with the superconducting device of this embodiment will be described.

図14は、実施の形態の超伝導装置を備えた磁石装置を有するMRI装置を示すブロック図である。 FIG. 14 is a block diagram showing an MRI apparatus having a magnet device equipped with a superconducting device according to an embodiment.

MRI装置31は、核磁気共鳴(Nuclear Magnetic Resonance:NMR)現象を利用して被検体32の生体組織の断層画像を得る。MRI装置31は、図14に示すように、静磁場発生磁石33と、傾斜磁場コイル34及び傾斜磁場電源35と、RF(Radio Frequency)送信コイル36及びRF送信部37と、RF受信コイル38及び信号処理部39と、計測制御部41と、を備えている。なお、図14では図示を省略するが、MRI装置31は、MRI装置31全体を制御する全体制御部と、計測操作を行い、且つ、計測結果等を表示する表示・操作部と、被検体32を静磁場発生磁石33の内部に出し入れする搬送装置と、を備えていてもよい。 The MRI apparatus 31 obtains a tomographic image of the biological tissue of the subject 32 using the nuclear magnetic resonance (NMR) phenomenon. As shown in FIG. 14, the MRI apparatus 31 includes a static magnetic field generating magnet 33, a gradient magnetic field coil 34 and a gradient magnetic field power supply 35, an RF (Radio Frequency) transmission coil 36 and an RF transmission section 37, an RF reception coil 38 and A signal processing unit 39 and a measurement control unit 41 are provided. Although not shown in FIG. 14, the MRI apparatus 31 includes an overall control unit that controls the entire MRI apparatus 31, a display/operation unit that performs measurement operations and displays measurement results and the like, and a subject 32. a conveying device for taking the magnetic field generating magnet 33 into and out of the static magnetic field generating magnet 33 .

静磁場発生磁石33として、本実施の形態の超伝導装置である超伝導装置1及び磁石部3(図1参照)を備えた磁石装置2を用いることができる。前述した図1及び図2を用いて説明したように、磁石装置2に備えられる磁石部3(図1参照)は、環状経路7(図1参照)に沿った直流磁場を発生させるものであればよい。このような磁石部3(図1参照)として、永久磁石、又は、銅線等を巻回した常伝導コイル又は超伝導線を巻回した超伝導コイル等の電磁石、を用いることができる。なお、図14に示す例では、前述した図1を用いて説明したように、静磁場発生磁石33、即ち磁石装置2に備えられる磁石部3(図1参照)として、ヘルムホルツコイルよりなる電磁石が設けられている。 As the static magnetic field generating magnet 33, the magnet device 2 including the superconducting device 1, which is the superconducting device of the present embodiment, and the magnet unit 3 (see FIG. 1) can be used. As described above with reference to FIGS. 1 and 2, the magnet unit 3 (see FIG. 1) provided in the magnet device 2 may generate a DC magnetic field along the annular path 7 (see FIG. 1). Just do it. A permanent magnet, or an electromagnet such as a normal-conducting coil wound with a copper wire or the like or a superconducting coil wound with a superconducting wire can be used as the magnet unit 3 (see FIG. 1). In the example shown in FIG. 14, as described above with reference to FIG. 1, an electromagnet composed of a Helmholtz coil is used as the static magnetic field generating magnet 33, that is, the magnet unit 3 (see FIG. 1) provided in the magnet device 2. is provided.

傾斜磁場コイル34は、MRI装置31の実空間座標系(静止座標系)における互いに交差、好適には直交するX軸、Y軸及びZ軸の3軸方向の各々を中心としてそれぞれ巻回された3個のコイルを含む。傾斜磁場コイル34は、傾斜磁場電源35に接続されている。傾斜磁場電源35は、傾斜磁場コイル34に電流を供給する。具体的には、傾斜磁場電源35は、計測制御部41による制御に従って、傾斜磁場コイル34に電流を供給する。これにより、X軸、Y軸及びZ軸の3軸方向に傾斜磁場が発生する。従って、傾斜磁場コイル34と傾斜磁場電源35とにより、傾斜磁場を発生させる傾斜磁場発生部が形成される。 The gradient magnetic field coil 34 is wound around each of the three axial directions of the X-axis, the Y-axis and the Z-axis which intersect each other, preferably orthogonal to each other in the real space coordinate system (stationary coordinate system) of the MRI apparatus 31. Contains 3 coils. The gradient magnetic field coils 34 are connected to a gradient magnetic field power supply 35 . A gradient magnetic field power supply 35 supplies current to the gradient magnetic field coil 34 . Specifically, the gradient magnetic field power supply 35 supplies current to the gradient magnetic field coil 34 according to control by the measurement control section 41 . As a result, gradient magnetic fields are generated in three axial directions of the X-axis, Y-axis and Z-axis. Therefore, the gradient magnetic field coil 34 and the gradient magnetic field power supply 35 form a gradient magnetic field generator for generating a gradient magnetic field.

RF送信コイル36は、被検体32にRFパルス信号を照射するコイルである。RF送信コイル36は、RF送信部37に接続されている。RF送信部37は、RF送信コイル36に、高周波パルス電流を供給する。これにより、被検体32の生体組織を構成する原子のスピンにNMR現象が誘起される。具体的には、RF送信部37は、計測制御部41による制御に従って、高周波パルス電流を振幅変調し、増幅してRF送信コイル36に供給することにより、RFパルス信号が被検体32に照射される。従って、RF送信コイル36とRF送信部37とにより、RFパルス信号を発生させるRFパルス発生部が形成される。 The RF transmission coil 36 is a coil that irradiates the subject 32 with an RF pulse signal. The RF transmission coil 36 is connected to the RF transmission section 37 . The RF transmission section 37 supplies a high frequency pulse current to the RF transmission coil 36 . As a result, an NMR phenomenon is induced in the spins of atoms forming the biological tissue of the subject 32 . Specifically, under the control of the measurement control unit 41, the RF transmission unit 37 amplitude-modulates the high-frequency pulse current, amplifies it, and supplies it to the RF transmission coil 36, so that the subject 32 is irradiated with the RF pulse signal. be. Therefore, the RF transmission coil 36 and the RF transmission section 37 form an RF pulse generation section for generating an RF pulse signal.

RF受信コイル38は、被検体32の生体組織のNMR現象により放出されるエコー信号を受信するコイルである。RF受信コイル38は、信号処理部39に接続されている。RF受信コイル38が受信したエコー信号は、信号処理部39に送られる。 The RF receiving coil 38 is a coil that receives echo signals emitted by the NMR phenomenon of the living tissue of the subject 32 . The RF receiving coil 38 is connected to the signal processing section 39 . The echo signal received by the RF receiving coil 38 is sent to the signal processing section 39 .

信号処理部39は、RF受信コイル38により受信されたエコー信号の検出処理を行う。具体的には、信号処理部39は、計測制御部41による制御に従って、受信されたエコー信号を増幅し、直交位相検波により直交する二系統の信号に分割し、それぞれを一定数だけサンプリングし、サンプリングされた信号をA/D変換してデジタルデータとしてのエコーデータを取得する。そして、信号処理部39は、エコーデータに対して各種処理を行い、処理が行われたエコーデータを計測制御部41に送る。 The signal processing unit 39 performs detection processing of echo signals received by the RF receiving coil 38 . Specifically, the signal processing unit 39 amplifies the received echo signal under the control of the measurement control unit 41, divides it into two orthogonal signals by quadrature phase detection, samples each by a certain number, The sampled signal is A/D converted to obtain echo data as digital data. The signal processing unit 39 then performs various types of processing on the echo data and sends the processed echo data to the measurement control unit 41 .

計測制御部41は、被検体32の断層画像の形成に必要なエコーデータを収集するため、傾斜磁場電源35、RF送信部37及び信号処理部39に制御信号を送信してこれらを制御する制御部である。 The measurement control unit 41 transmits control signals to the gradient magnetic field power supply 35, the RF transmission unit 37, and the signal processing unit 39 in order to collect echo data necessary for forming a tomographic image of the subject 32, and controls them. Department.

具体的には、計測制御部41は、ある一定の撮像シーケンスの制御データに基づいて、傾斜磁場電源35、RF送信部37及び信号処理部39を制御して、被検体32へのRFパルス信号の照射及び傾斜磁場パルスの印加と、被検体32からのエコー信号の検出と、を繰り返して実行し、被検体32の撮像領域についての断層画像の形成に必要なエコーデータを収集する。 Specifically, the measurement control unit 41 controls the gradient magnetic field power supply 35, the RF transmission unit 37, and the signal processing unit 39 based on control data of a certain imaging sequence, and transmits an RF pulse signal to the subject 32. and application of gradient magnetic field pulses, and detection of echo signals from the subject 32 are repeatedly executed to collect echo data necessary for forming a tomographic image of the imaging region of the subject 32 .

MRI装置31が有する磁石装置としての静磁場発生磁石33が発生させる磁場の強度は、MRI装置以外の装置が有する磁石装置が発生させる磁場の強度に比べて強い。そのため、MRI装置31が有する静磁場発生磁石33において、磁場を磁気回路の内部に閉じ込めるために、磁気回路の断面積を大きくする必要があり、磁気回路用部材として鉄等の磁性体を用いる場合には、磁性体の体積を大きくする必要性が増加する。従って、MRI装置が有する磁石装置において、磁気回路を小型化又は軽量化することができない、という課題は、MRI装置以外の装置が有する磁石装置において、磁気回路を小型化又は軽量化することができない、という課題に比べて、顕著なものである。 The strength of the magnetic field generated by the static magnetic field generating magnet 33 as the magnet device of the MRI apparatus 31 is stronger than the strength of the magnetic field generated by the magnet devices of devices other than the MRI apparatus. Therefore, in the static magnetic field generating magnet 33 of the MRI apparatus 31, it is necessary to increase the cross-sectional area of the magnetic circuit in order to confine the magnetic field inside the magnetic circuit. Therefore, the need to increase the volume of the magnetic material increases. Therefore, the problem that the magnetic circuit cannot be reduced in size or weight in the magnet device of the MRI apparatus is the problem that the magnetic circuit cannot be reduced in size or weight in the magnet apparatus of the apparatus other than the MRI apparatus. , is a remarkable one.

よって、本実施の形態の超伝導装置を備えた磁石装置をMRI装置が有する磁石装置として用いる場合、磁気回路を小型化又は軽量化できるという効果は、本実施の形態の超伝導装置を備えた磁石装置をMRI装置以外の装置が有する磁石装置として用いる場合に比べて、顕著なものになる。 Therefore, when the magnet device provided with the superconducting device of the present embodiment is used as the magnet device of the MRI apparatus, the effect of reducing the size or weight of the magnetic circuit is the same as the magnet device provided with the superconducting device of the present embodiment. This is remarkable compared to the case where the magnet device is used as a magnet device possessed by a device other than the MRI device.

前述した図1及び図2を用いて説明したように、磁石装置2に備えられる磁石部3が磁石MG1と磁石MG2とを有し、ヘルムホルツコイルよりなる場合を考える。このような場合、磁石MG1と磁石MG2との間の空間8が開放されているため、磁石MG1と磁石MG2との間に、被検体として例えば人間が検査のために立ち入った場合でも、閉塞感をあまり感じずに検査を受けることができる。 As described above with reference to FIGS. 1 and 2, consider the case where the magnet unit 3 provided in the magnet device 2 has the magnet MG1 and the magnet MG2 and is composed of a Helmholtz coil. In such a case, since the space 8 between the magnets MG1 and MG2 is open, even if a human being as a subject enters between the magnets MG1 and MG2 for examination, the feeling of blockage will not be felt. You can take the test without feeling too much.

一方、前述した図9を用いて説明したように、磁石装置2に備えられる磁石部3が磁石MG3のみを有する場合を考える。このような場合には、磁石部3が磁石MG1と磁石MG2とを有する場合に比べ、磁石部3の内部に、例えば人体等の被検体を出し入れしにくくなるものの、磁気回路用部材として磁性体を用いる場合に比べて、磁気回路用部材の体積を小さくする効果が得られ、磁気回路を容易に小型化又は軽量化する効果が得られる。 On the other hand, as described above with reference to FIG. 9, consider the case where the magnet unit 3 provided in the magnet device 2 has only the magnet MG3. In such a case, compared to the case where the magnet portion 3 has the magnets MG1 and MG2, it is difficult to put a subject such as a human body into and out of the inside of the magnet portion 3. Compared to the case of using , the effect of reducing the volume of the magnetic circuit member can be obtained, and the effect of easily reducing the size or weight of the magnetic circuit can be obtained.

以下、実施例に基づいて本実施の形態をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。 Hereinafter, this embodiment will be described in further detail based on examples. In addition, the present invention is not limited to the following examples.

(実施例1)
以下では、実施の形態で図3及び図4を用いて説明した筒部CP1を含む部材SB1、即ち磁気チューブを、二ホウ化マグネシウム(MgB)よりなる超伝導バルク体を用いて、実施例1の超伝導装置として形成し、実施例1の超伝導装置が磁場を閉じ込め可能かを評価するための評価試験を行った。実施例1の超伝導装置として、それぞれ軸線11を中心とした筒状の筒部CP1をそれぞれ含む4個の超伝導バルク体としての部材SB1を有する超伝導装置1を形成した。4個の部材SB1は、軸線11に沿って互いに間隔を空けて配列されていた。
(Example 1)
In the following, the member SB1 including the cylindrical portion CP1 described in the embodiment with reference to FIGS. An evaluation test was conducted to evaluate whether the superconducting device of Example 1 can confine a magnetic field. As a superconducting device of Example 1, a superconducting device 1 having four members SB1 as superconducting bulk bodies each including a tubular portion CP1 centered on the axis 11 was formed. The four members SB1 were spaced apart from each other along the axis 11 .

[超伝導バルク体の形成]
まず、超伝導バルク体として、筒状の筒部CP1を含み、且つ、MgBよりなる超伝導バルク体としての部材SB1を、形成した。
[Formation of superconducting bulk body]
First , as a superconducting bulk body, a member SB1 as a superconducting bulk body including a tubular portion CP1 and made of MgB2 was formed.

図15は、実施例1の超伝導装置が有する超伝導バルク体の製造方法の一部のステップを示すフロー図である。 FIG. 15 is a flowchart showing some steps of a method for manufacturing a superconducting bulk body of the superconducting device of Example 1. FIG.

まず、粒径が325メッシュで純度が99.9%であるマグネシウム(Mg)粉末と、粒径が300メッシュで純度が99%であるホウ素(B)粉末とを、Mg粉末とB粉末との混合比がモル比即ち原子数比で1:2になるように混合し、混合された粉末を粉砕した(図15のステップS11)。 First, magnesium (Mg) powder with a particle size of 325 mesh and a purity of 99.9% and boron (B) powder with a particle size of 300 mesh and a purity of 99% are mixed together. The powders were mixed so that the mixing ratio was 1:2 in terms of molar ratio, that is, the atomic number ratio, and the mixed powder was pulverized (step S11 in FIG. 15).

次に、混合及び粉砕された粉末を一軸方向に加圧して、円盤状のペレットに成型した(図15のステップS12)。この成型されたペレットにおいて、ペレットの軸線の周りの外径は、30mmであり、ペレットの軸線に沿った長さは、10mmであった。また、加圧する際の圧力は、100MPaであった。 Next, the mixed and pulverized powder was uniaxially pressed to form a disk-shaped pellet (step S12 in FIG. 15). In this molded pellet, the outer diameter around the pellet axis was 30 mm and the length along the pellet axis was 10 mm. Moreover, the pressure at the time of pressurization was 100 MPa.

次に、成型された円盤状のペレットを、内部の雰囲気がアルゴン(Ar)雰囲気下に制御された管状炉を用いて、850℃で3時間熱処理した(図15のステップS13)。このように、Ar雰囲気下で熱処理する理由は、Mgを酸化させずにBと反応させてMgBを形成するためである。これにより、MgBの焼結体よりなり、且つ、円盤状の超伝導バルク体を形成した。形成されたMgBよりなる超伝導バルク体の臨界温度Tは、約39Kであった。また、形成されたMgBよりなる超伝導バルク体におけるMgBの平均粒径は、300nmであった。Next, the molded disk-shaped pellet was heat-treated at 850° C. for 3 hours using a tubular furnace whose internal atmosphere was controlled to be an argon (Ar) atmosphere (step S13 in FIG. 15). The reason why the heat treatment is performed in the Ar atmosphere is that Mg is reacted with B without being oxidized to form MgB2. As a result, a disk-shaped superconducting bulk body made of a sintered body of MgB 2 was formed. The critical temperature Tc of the formed superconducting bulk body of MgB2 was about 39K. The average grain size of MgB2 in the formed superconducting bulk body made of MgB2 was 300 nm.

次に、円盤状の超伝導バルク体を軸線に沿って貫通する貫通孔を形成した(図15のステップS14)。これにより、図3及び図4に示したように、筒状の筒部CP1を含み、且つ、MgBよりなる超伝導バルク体、即ち部材SB1を、形成した。上記したように、この超伝導バルク体、即ち部材SB1において、筒部CP1の軸線11の外径DM1(図4参照)は、30mmであり、筒部CP1の内径DM2(図4参照)は、10mmであり、筒部CP1の軸線11に沿った長さHT1(図4参照)は、10mmであった。Next, a through hole was formed through the disk-shaped superconducting bulk body along the axis (step S14 in FIG. 15). As a result, as shown in FIGS. 3 and 4, a superconducting bulk body, that is, a member SB1 including a tubular portion CP1 and made of MgB 2 was formed. As described above, in this superconducting bulk body, that is, the member SB1, the outer diameter DM1 (see FIG. 4) of the axis 11 of the tubular portion CP1 is 30 mm, and the inner diameter DM2 (see FIG. 4) of the tubular portion CP1 is 10 mm, and the length HT1 (see FIG. 4) along the axis 11 of the cylindrical portion CP1 was 10 mm.

なお、実施例1では、混合及び粉砕された粉末を円盤状のペレットに成型し、熱処理して円盤状の焼結体を形成した後、貫通孔を形成することにより、筒状の筒部を含む超伝導バルク体を形成した。しかし、混合及び粉砕された粉末を筒状に成型し、熱処理することにより、筒状の筒部を含む超伝導バルク体を形成してもよい。 In Example 1, the mixed and pulverized powder was molded into disc-shaped pellets, heat-treated to form a disc-shaped sintered body, and then through holes were formed to form a cylindrical cylindrical portion. A superconducting bulk body containing However, the mixed and pulverized powder may be shaped into a tube and heat-treated to form a superconducting bulk body including a tubular portion.

[超伝導装置の形成]
次に、実施例1の超伝導装置として、軸線11を中心とした筒状の筒部CP1をそれぞれ含む4個の超伝導バルク体としての部材SB1を有する超伝導装置1を形成した。4個の部材SB1の各々がそれぞれ有する4個の筒部CP1は、軸線11に沿って互いに間隔を空けて配列されていた。前述したように、筒部CP1の外径DM1(図4参照)は、30mmであり、筒部CP1の内径DM2(図4参照)は、10mmであり、筒部CP1の軸線11に沿った長さHT1(図4参照)は、10mmであった。また、軸線11に沿って互いに隣り合う2個の部材SB1の各々がそれぞれ有する2個の筒部CP1の間の間隔即ちギャップGP1(図4参照)は、3mmであった。
[Formation of superconducting device]
Next, as a superconducting device of Example 1, a superconducting device 1 having four members SB1 as superconducting bulk bodies each including a tubular portion CP1 centered on the axis 11 was formed. The four cylindrical portions CP1 of each of the four members SB1 are arranged along the axis 11 at intervals. As described above, the outer diameter DM1 (see FIG. 4) of the cylindrical portion CP1 is 30 mm, the inner diameter DM2 (see FIG. 4) of the cylindrical portion CP1 is 10 mm, and the length along the axis 11 of the cylindrical portion CP1 The height HT1 (see FIG. 4) was 10 mm. Also, the distance between the two cylindrical portions CP1 of each of the two members SB1 adjacent to each other along the axis 11, that is, the gap GP1 (see FIG. 4) was 3 mm.

図3及び図4に示すように、実施例1では、互いに隣り合う2個の部材SB1の各々がそれぞれ有する2個の筒部CP1の間には、スペーサSP1が配置されていた。スペーサSP1は、超伝導装置1が磁場を捕捉している時に、互いに隣り合う2個の部材SB1の各々がそれぞれ有する2個の筒部CP1が磁気吸引力により吸着することを防止する。実施例1では、スペーサSP1として、ステンレス鋼よりなるステンレスリングを用いた。スペーサSP1は、軸線11を中心とした筒状の筒部CP4を有する。筒部CP4の軸線11を中心とした外径(外径DM1)は、30mmであり、筒部CP4の軸線11を中心とした内径(内径DM2)は、10mmであり、筒部CP4の軸線11に沿った長さ(ギャップGP1)は、3mmであった。 As shown in FIGS. 3 and 4, in Example 1, the spacer SP1 is arranged between the two cylindrical portions CP1 of each of the two members SB1 adjacent to each other. The spacer SP1 prevents the two cylindrical portions CP1 of each of the two members SB1 adjacent to each other from being attracted to each other by magnetic attraction when the superconducting device 1 captures a magnetic field. In Example 1, a stainless ring made of stainless steel was used as the spacer SP1. The spacer SP1 has a tubular portion CP4 centered on the axis 11 . The outer diameter (outer diameter DM1) centered on the axis 11 of the cylindrical portion CP4 is 30 mm, and the inner diameter (inner diameter DM2) centered on the axis 11 of the cylindrical portion CP4 is 10 mm. The length (gap GP1) along the was 3 mm.

[超伝導装置が磁場を閉じ込め可能かを評価する評価試験]
次に、実施例1の超伝導装置が磁場を閉じ込め可能かを評価する評価試験を行った。
[Evaluation test to evaluate whether a superconducting device can confine a magnetic field]
Next, an evaluation test was conducted to evaluate whether the superconducting device of Example 1 can confine a magnetic field.

まず、超伝導装置1に対して、超伝導装置1が有する4個の部材SB1の各々の筒部CP1の軸線11に平行な磁場(外部磁場)を印加し、外部磁場が印加された状態で、GM(Gifford-McMahon)冷凍機により、MgBの転移温度(約39K)よりも低い温度である10Kの温度に冷却し、MgBを超伝導状態とした。この状態で、外部磁場の強度を0まで減少させて外部磁場を除去した。これにより、超伝導状態にある4個の部材SB1に、磁場を捕捉させた。First, a magnetic field (external magnetic field) parallel to the axis 11 of each cylindrical portion CP1 of each of the four members SB1 of the superconducting device 1 is applied to the superconducting device 1, and with the external magnetic field applied, , by a GM (Gifford-McMahon) refrigerator to a temperature of 10 K, which is lower than the transition temperature of MgB2 ( approximately 39 K), to bring MgB2 into a superconducting state. In this state, the intensity of the external magnetic field was reduced to 0 to remove the external magnetic field. As a result, the magnetic field was captured by the four members SB1 in the superconducting state.

図4に示すように、軸線11上に配置された5個のホール素子(商品名:Model HGT-2101 Magnetic Field Sensor、LakeShore社製)51~55を用いて、実施例1の超伝導装置が捕捉した磁場の強さを測定した。 As shown in FIG. 4, five Hall elements (trade name: Model HGT-2101 Magnetic Field Sensor, manufactured by Lake Shore) 51 to 55 arranged on the axis 11 are used to produce the superconducting device of Example 1. The strength of the captured magnetic field was measured.

図4に示すように、ホール素子51は、軸線11上で、且つ、図4における上から1番目の部材SB1の筒部CP1と2番目の部材SB1の筒部CP1との間、言い換えれば図4における上から1番目のスペーサSP1の筒部CP4内に配置されていた。ホール素子52は、図4における上から2番目の部材SB1の筒部CP1内で、且つ、軸線11に沿った長さ方向における中央位置に配置されていた。ホール素子53は、軸線11上で、且つ、図4における上から2番目の部材SB1の筒部CP1と3番目の部材SB1の筒部CP1との間、言い換えれば図4における上から2番目のスペーサSP1の筒部CP4内に配置されていた。ホール素子54は、図4における上から3番目の部材SB1の筒部CP1内で、且つ、軸線11に沿った長さ方向における中央位置に配置されていた。ホール素子55は、軸線11上で、且つ、図4における上から3番目の部材SB1の筒部CP1と4番目の部材SB1の筒部CP1との間、言い換えれば図4における上から3番目のスペーサSP1の筒部CP4内に配置されていた。 As shown in FIG. 4, the Hall element 51 is located on the axis 11 and between the tubular portion CP1 of the first member SB1 and the tubular portion CP1 of the second member SB1 from the top in FIG. 4 is arranged in the cylindrical portion CP4 of the first spacer SP1 from the top. The Hall element 52 was arranged in the cylindrical portion CP1 of the second member SB1 from the top in FIG. The Hall element 53 is located on the axis 11 and between the cylindrical portion CP1 of the second member SB1 from the top and the cylindrical portion CP1 of the third member SB1 in FIG. It was arranged in the cylindrical portion CP4 of the spacer SP1. The Hall element 54 is arranged in the cylindrical portion CP1 of the third member SB1 from the top in FIG. The Hall element 55 is located on the axis 11 and between the cylindrical portion CP1 of the third member SB1 from the top and the cylindrical portion CP1 of the fourth member SB1 in FIG. It was arranged in the cylindrical portion CP4 of the spacer SP1.

図16は、実施例1の超伝導装置内に配置された5個のホール素子により測定された局所磁束密度の外部磁場依存性を示すグラフである。図16は、前述したように、10Kの温度において、20000Oe(2T)の外部磁場を印加した状態から、外部磁場の強度を0まで減少させて外部磁場を除去させて、超伝導装置1に磁場を捕捉させる際に、ホール素子51~55を用いて測定した局所磁束密度を示す。なお、図16において、Ch1、Ch2、Ch3、Ch4、Ch5は、それぞれホール素子51、52、53、54、55が測定した局所磁束密度を示す。 16 is a graph showing external magnetic field dependence of local magnetic flux density measured by five Hall elements arranged in the superconducting device of Example 1. FIG. As described above, FIG. 16 shows a state in which an external magnetic field of 20,000 Oe (2 T) is applied at a temperature of 10 K, and the intensity of the external magnetic field is reduced to 0 to remove the external magnetic field. shows local magnetic flux densities measured using the Hall elements 51 to 55 when trapping . In FIG. 16, Ch1, Ch2, Ch3, Ch4, and Ch5 indicate local magnetic flux densities measured by Hall elements 51, 52, 53, 54, and 55, respectively.

その結果、ホール素子51の測定値(図16のCh1)、ホール素子52の測定値(図16のCh2)、ホール素子53の測定値(図16のCh3)、ホール素子54の測定値(図16のCh4)及びホール素子55の測定値(図16のCh5)のいずれにおいても、局所磁束密度は、略2T(20000G)であった。即ち、ホール素子51~55のいずれの測定値においても、外部磁場を除去させる過程における局所磁束密度の測定値の減少量は、20000Oeの外部磁場が印加された状態を基準としたときに、1%以内であり、略減衰していなかった。 As a result, the measured value of the Hall element 51 (Ch1 in FIG. 16), the measured value of the Hall element 52 (Ch2 in FIG. 16), the measured value of the Hall element 53 (Ch3 in FIG. 16), the measured value of the Hall element 54 (Fig. 16 Ch4) and the measured value of the Hall element 55 (Ch5 in FIG. 16), the local magnetic flux density was approximately 2T (20000 G). That is, in any of the measured values of the Hall elements 51 to 55, the amount of decrease in the measured value of the local magnetic flux density in the process of removing the external magnetic field is 1 when the external magnetic field of 20000 Oe is applied as a reference. % and was not substantially attenuated.

また、図16に示すように、外部磁場が0の状態、即ち超伝導装置1内に磁場が捕捉された状態において、ホール素子52の測定値とホール素子54の測定値との差、即ちギャップを介して隣り合う2個の超伝導バルク体の各々がそれぞれ有する2個の筒部CP1の内部に捕捉された局所磁束密度の差は、20000Oeの外部磁場が印加された状態を基準としたときに、1%以内であった。また、ホール素子52の測定値とホール素子51又は53の測定値との差も、20000Oeの外部磁場が印加された状態を基準としたときに、1%以内であり、ホール素子54の測定値とホール素子53又は55の測定値との差も、20000Oeの外部磁場が印加された状態を基準としたときに、1%以内であった。 Further, as shown in FIG. 16, when the external magnetic field is zero, that is, when the magnetic field is captured in the superconducting device 1, the difference between the measured values of the Hall element 52 and the measured value of the Hall element 54, that is, the gap When an external magnetic field of 20000 Oe is applied as a reference, , was within 1%. In addition, the difference between the measured value of the Hall element 52 and the measured value of the Hall element 51 or 53 is also within 1% when an external magnetic field of 20000 Oe is applied as a reference, and the measured value of the Hall element 54 and the measured value of the Hall element 53 or 55 was also within 1% when based on the state in which an external magnetic field of 20000 Oe was applied.

従って、実施例1の超伝導装置では、互いに間隔を空けて配列された4個の超伝導バルク体としての部材SB1が磁場を捕捉できること、即ち、当該4個の部材SB1の間で磁場を無損失で伝送できることが明らかになった。よって、実施例1の超伝導装置により、磁気回路を小型化又は軽量化できることが明らかになった。 Therefore, in the superconducting device of Example 1, the four members SB1 as superconducting bulk bodies arranged at intervals can capture the magnetic field. It became clear that transmission with loss is possible. Therefore, it has been clarified that the superconducting device of Example 1 can reduce the size and weight of the magnetic circuit.

次に、超伝導装置に捕捉された磁場の時間依存性を測定した。 Next, we measured the time dependence of the magnetic field trapped in the superconducting device.

図17は、実施例1の超伝導装置内に配置された5個のホール素子により測定された局所磁束密度の時間依存性を示すグラフである。図17は、前述したように、10Kの温度において、2T(20000G)の磁場を捕捉させた後、20Kの温度において約17時間保持する際に、ホール素子51~55を用いて測定した局所磁束密度を示す。なお、図17において、Ch1、Ch2、Ch3、Ch4、Ch5は、それぞれホール素子51、52、53、54、55が測定した局所磁束密度を、測定開始の時点での局所磁束密度で規格化して示している。 17 is a graph showing time dependence of local magnetic flux density measured by five Hall elements arranged in the superconducting device of Example 1. FIG. As described above, FIG. 17 shows the local magnetic flux measured using the Hall elements 51 to 55 when a magnetic field of 2 T (20000 G) is captured at a temperature of 10 K and then held at a temperature of 20 K for about 17 hours. Indicates density. In FIG. 17, Ch1, Ch2, Ch3, Ch4, and Ch5 normalize the local magnetic flux densities measured by the Hall elements 51, 52, 53, 54, and 55, respectively, with the local magnetic flux densities at the start of measurement. showing.

その結果、ホール素子51の測定値(図17のCh1)、ホール素子52の測定値(図17のCh2)、ホール素子53の測定値(図17のCh3)、ホール素子54の測定値(図17のCh4)及びホール素子55の測定値(図17のCh5)のいずれにおいても、保持時間の経過に伴う局所磁束密度の測定値の減少量は、1%以内であり、略減衰していなかった。 As a result, the measured value of the Hall element 51 (Ch1 in FIG. 17), the measured value of the Hall element 52 (Ch2 in FIG. 17), the measured value of the Hall element 53 (Ch3 in FIG. 17), the measured value of the Hall element 54 (Fig. 17 Ch4) and the measured value of the Hall element 55 (Ch5 in FIG. 17), the amount of decrease in the measured value of the local magnetic flux density with the passage of the holding time is within 1%, and there is no substantial attenuation. rice field.

従って、実施例1の超伝導装置では、当該4個の超伝導バルク体としての部材SB1が時間が経過しても安定して磁場を捕捉できること、即ち、当該4個の部材SB1の間で時間が経過しても安定して磁場を無損失で伝送できることが明らかになった。 Therefore, in the superconducting device of Example 1, the four members SB1 as superconducting bulk bodies can stably capture the magnetic field even after the passage of time. It was found that the magnetic field can be stably transmitted without loss even after the passage of time.

(実施例2)
次に、二ホウ化マグネシウム(MgB)よりなる超伝導バルク体に代えて、鉄ニクタイドよりなる超伝導バルク体を用いたこと以外、実施例1の超伝導装置と同様にして、実施の形態で図3及び図4を用いて説明した筒部CP1を含む部材SB1、即ち磁気チューブを、実施例2の超伝導装置として形成し、実施例2の超伝導装置が磁場を閉じ込め可能かを評価するための評価試験を行った。実施例2の超伝導装置として、軸線11を中心とした筒状の筒部CP1をそれぞれ含む4個の超伝導バルク体としての部材SB1を有する超伝導装置1を形成した。4個の部材SB1の各々がそれぞれ有する4個の筒部CP1は、軸線11に沿って互いに間隔を空けて配列されていた。
(Example 2)
Next, an embodiment is performed in the same manner as the superconducting device of Example 1, except that a superconducting bulk body made of iron pnictide is used instead of the superconducting bulk body made of magnesium diboride (MgB 2 ). The member SB1 including the cylindrical portion CP1 described with reference to FIGS. 3 and 4, that is, the magnetic tube is formed as the superconducting device of Example 2, and whether the superconducting device of Example 2 can confine the magnetic field is evaluated. We conducted an evaluation test to As a superconducting device of Example 2, a superconducting device 1 having four members SB1 as superconducting bulk bodies each including a tubular portion CP1 centered on the axis 11 was formed. The four cylindrical portions CP1 of each of the four members SB1 are arranged along the axis 11 at intervals.

実施例2では、鉄ニクタイドよりなる超伝導バルク体として、(Ba,K)FeAs等よりなる超伝導バルク体を合成した。まず、バリウム(Ba)、カリウム(K)、鉄(Fe)及びヒ素(As)のモル比が上記の組成式で表されるモル比となるように秤量した原料粉末を、粉砕し、混合した。次に、混合した原料粉末を、所定の形状に成型した後、例えば500~1100℃で24~240時間熱処理した。形成された鉄ニクタイドよりなる超伝導バルク体の臨界温度Tは、約30Kであり、MgBよりなる超伝導バルク体の臨界温度Tと同程度であった。In Example 2, a superconducting bulk body made of (Ba, K)Fe 2 As 2 or the like was synthesized as a superconducting bulk body made of iron pnictide. First, raw material powders weighed so that the molar ratio of barium (Ba), potassium (K), iron (Fe), and arsenic (As) is the molar ratio represented by the above compositional formula were pulverized and mixed. . Next, after molding the mixed raw material powder into a predetermined shape, it is heat-treated at, for example, 500 to 1100° C. for 24 to 240 hours. The critical temperature Tc of the formed superconducting bulk body of iron pnictides was about 30 K, which was comparable to the critical temperature Tc of the superconducting bulk body of MgB2.

次に、実施例1で説明した方法と同様の方法により、実施例2の超伝導装置を形成し、超伝導状態である超伝導装置に磁場を捕捉させ、捕捉された磁場を測定した。その結果、鉄ニクタイドよりなる超伝導バルク体の臨界温度がMgBよりなる超伝導バルク体の臨界温度と同程度に高いことから予想できるものの、図16及び図17を用いて説明した結果と略同様の結果が得られた。また、鉄ニクタイドとして、前述した各種の鉄ニクタイドを用いた場合も略同様の結果が得られた。これにより、MgBに代え鉄ニクタイドを用いた場合でも、実施例1の超伝導装置と同様に、磁気回路を小型化又は軽量化できることが明らかになった。Next, the superconducting device of Example 2 was formed by a method similar to that described in Example 1, a magnetic field was trapped in the superconducting device in a superconducting state, and the trapped magnetic field was measured. As a result, although it can be expected from the fact that the critical temperature of the superconducting bulk body made of iron pnictide is as high as the critical temperature of the superconducting bulk body made of MgB 2 , the results are similar to those described with reference to FIGS. 16 and 17. Similar results were obtained. Substantially the same results were obtained when the various iron pnictides described above were used as the iron pnictides. As a result, it has been clarified that even when iron pnictide is used instead of MgB 2 , the magnetic circuit can be made smaller or lighter as in the superconducting device of the first embodiment.

以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Although the invention made by the present inventor has been specifically described based on the embodiment, the invention is not limited to the above embodiment, and can be variously modified without departing from the gist of the invention. Needless to say.

本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。 Within the scope of the idea of the present invention, those skilled in the art can conceive of various modifications and modifications, and it is understood that these modifications and modifications also fall within the scope of the present invention.

例えば、前述の各実施の形態に対して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったもの、又は、工程の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 For example, a person skilled in the art may appropriately add, delete, or change the design of components, or add, omit, or change the conditions of the above-described embodiments. As long as it has the gist, it is included in the scope of the present invention.

本発明は、磁石装置に備えられる超伝導装置、及び、磁石装置に適用して有効である。 INDUSTRIAL APPLICABILITY The present invention is effective when applied to a superconducting device provided in a magnet device and a magnet device.

1 超伝導装置
2 磁石装置
3、3a 磁石部
4 超伝導バルク部
5 磁気回路
6 軸
7 環状経路
8 空間
9 磁束
11 軸線
21 冷凍機
22 本体部
23 コールドヘッド
31 MRI装置
32 被検体
33 静磁場発生磁石
34 傾斜磁場コイル
35 傾斜磁場電源
36 RF送信コイル
37 RF送信部
38 RF受信コイル
39 信号処理部
41 計測制御部
51~55 ホール素子
CP1~CP8 筒部
DM1 外径
DM2 内径
EX1 延在部
GP1 ギャップ
HT1 長さ
LN1~LN3 外周長さ
MG1~MG4 磁石
PL1、PL4 N極
PL2、PL3 S極
PP1 板部
RG1 領域
SB1~SB7 部材
SG1~SG4 部材群
SP1 スペーサ
TL2、TL3 台部
REFERENCE SIGNS LIST 1 superconducting device 2 magnet device 3, 3a magnet section 4 superconducting bulk section 5 magnetic circuit 6 axis 7 annular path 8 space 9 magnetic flux 11 axis line 21 refrigerator 22 body section 23 cold head 31 MRI apparatus 32 subject 33 static magnetic field generation Magnet 34 Gradient magnetic field coil 35 Gradient magnetic field power supply 36 RF transmission coil 37 RF transmission section 38 RF reception coil 39 Signal processing section 41 Measurement control section 51 to 55 Hall elements CP1 to CP8 Cylindrical section DM1 Outer diameter DM2 Inner diameter EX1 Extension section GP1 Gap HT1 Length LN1 to LN3 Peripheral length MG1 to MG4 Magnet PL1, PL4 N pole PL2, PL3 S pole PP1 Plate RG1 Region SB1 to SB7 Member SG1 to SG4 Member group SP1 Spacer TL2, TL3 Base

Claims (17)

磁場を発生させる磁石部を備えた磁石装置に備えられる超伝導装置において、
前記磁石部の外部にそれぞれ設けられた複数の第1超伝導バルク体を含む第1超伝導バルク体群を有し、
前記磁石部は、
第1極性を有する第1磁極と、
前記第1極性と反対の第2極性を有する第2磁極と、
を有し、
前記第1磁極、前記第1超伝導バルク体群及び前記第2磁極は、第1軸の周りの環状経路に沿って、前記第1磁極、前記第1超伝導バルク体群、前記第2磁極の順に配置され、
前記複数の第1超伝導バルク体の各々は、超伝導状態で磁場を捕捉し、
それぞれ磁場を捕捉している前記複数の第1超伝導バルク体と前記磁石部とにより、磁束が通る閉回路であり、且つ、前記環状経路に沿って、前記第1磁極から前記第1超伝導バルク体群を経て前記第2磁極に戻る、磁気回路が形成され、
前記第1超伝導バルク体群に含まれる前記複数の第1超伝導バルク体は、前記複数の第1超伝導バルク体の各々が超伝導状態で磁場を捕捉することにより、前記第1磁極から出た磁束が、前記複数の第1超伝導バルク体を順次通って前記第2磁極に戻るように、前記環状経路に沿って配列され、
前記第1超伝導バルク体群は、前記環状経路に沿って、前記第1磁極と隣り合い、且つ、前記第2磁極と隣り合わず、
前記複数の第1超伝導バルク体のうち、前記環状経路に沿って前記第1磁極に最も近い側に配置された第1超伝導バルク体の、前記環状経路に垂直な断面の外周長さは、前記複数の第1超伝導バルク体のうち、前記環状経路に沿って前記第1磁極に最も近い側と反対側に配置された第1超伝導バルク体の、前記環状経路に垂直な断面の外周長さよりも長い、超伝導装置。
In a superconducting device provided in a magnet device having a magnet unit that generates a magnetic field,
a first superconducting bulk body group including a plurality of first superconducting bulk bodies provided outside the magnet unit;
The magnet part is
a first magnetic pole having a first polarity;
a second magnetic pole having a second polarity opposite the first polarity;
has
Said first magnetic pole, said first superconducting bulk group and said second magnetic pole are arranged along an annular path about a first axis, said first magnetic pole, said first superconducting bulk group and said second magnetic pole. are arranged in the order of
each of the plurality of first superconducting bulk bodies traps a magnetic field in a superconducting state;
The plurality of first superconducting bulk bodies each capturing a magnetic field and the magnet portion form a closed circuit through which magnetic flux passes, and along the annular path from the first magnetic pole to the first superconducting a magnetic circuit is formed through the bulk bodies and back to the second magnetic pole;
Each of the plurality of first superconducting bulk bodies contained in the first superconducting bulk body group captures a magnetic field in a superconducting state, thereby arranged along the annular path such that emitted magnetic flux sequentially passes through the plurality of first superconducting bulk bodies and returns to the second magnetic pole;
the first superconducting bulk body group is adjacent to the first magnetic pole and not adjacent to the second magnetic pole along the annular path;
Out of the plurality of first superconducting bulk bodies, the first superconducting bulk body arranged on the side closest to the first magnetic pole along the circular path has an outer circumference length of a cross section perpendicular to the circular path: , of the first superconducting bulk body arranged on the side opposite to the side closest to the first magnetic pole along the annular path, among the plurality of first superconducting bulk bodies, of the cross section perpendicular to the annular path A superconducting device that is longer than its perimeter.
請求項1に記載の超伝導装置において、
前記磁石部は、前記環状経路に沿って互いに間隔を空けて配置された第1磁石及び第2磁石を有し、
前記第1磁石は、
前記第1磁極と、
前記第2極性を有する第3磁極と、
を有し、
前記第2磁石は、
前記第1極性を有する第4磁極と、
前記第2磁極と、
を有し、
前記第1磁極、前記第1超伝導バルク体群、前記第2磁極、前記第4磁極及び前記第3磁極は、前記環状経路に沿って、前記第1磁極、前記第1超伝導バルク体群、前記第2磁極、前記第4磁極、前記第3磁極の順に配置され、
前記第1磁石と前記第2磁石との間の空間が開放されている、超伝導装置。
A superconducting device according to claim 1,
the magnet unit has a first magnet and a second magnet spaced apart from each other along the annular path;
The first magnet is
the first magnetic pole;
a third magnetic pole having the second polarity;
has
The second magnet is
a fourth magnetic pole having the first polarity;
the second magnetic pole;
has
The first magnetic pole, the first superconducting bulk group, the second magnetic pole, the fourth magnetic pole and the third magnetic pole are arranged along the annular path to form the first magnetic pole and the first superconducting bulk group. , the second magnetic pole, the fourth magnetic pole, and the third magnetic pole are arranged in this order,
A superconducting device, wherein a space between the first magnet and the second magnet is open.
請求項1又は3に記載の超伝導装置において、
前記複数の第1超伝導バルク体の各々の前記環状経路に垂直な断面の外周長さは、前記環状経路に沿って、前記第1磁極に最も近い側から前記第1磁極に最も近い側と反対側に向かって、前記複数の第1超伝導バルク体の配列順に減少する、超伝導装置。
In the superconducting device according to claim 1 or 3,
The length of the outer circumference of each of the plurality of first superconducting bulk bodies in the cross section perpendicular to the annular path is from the side closest to the first magnetic pole to the side closest to the first magnetic pole along the annular path. A superconducting device decreasing in order of arrangement of said plurality of first superconducting bulk bodies toward opposite sides.
請求項1、3又は7に記載の超伝導装置において、
前記環状経路に沿って配列された複数の第2超伝導バルク体を含む第2超伝導バルク体群を有し、
前記複数の第2超伝導バルク体の各々は、超伝導状態で磁場を捕捉し、
前記第1磁極、前記第1超伝導バルク体群、前記第2超伝導バルク体群及び前記第2磁極は、前記環状経路に沿って、前記第1磁極、前記第1超伝導バルク体群、前記第2超伝導バルク体群、前記第2磁極の順に配置され、
前記環状経路に沿って、前記第1磁極から前記第1超伝導バルク体群及び前記第2超伝導バルク体群を順次経て前記第2磁極に戻る前記磁気回路が形成され、
前記第1超伝導バルク体群に含まれる前記複数の第1超伝導バルク体、及び、前記第2超伝導バルク体群に含まれる前記複数の第2超伝導バルク体は、前記複数の第1超伝導バルク体及び前記複数の第2超伝導バルク体の各々が超伝導状態で磁場を捕捉することにより、前記第1磁極から出た磁束が、前記複数の第1超伝導バルク体及び前記複数の第2超伝導バルク体を順次通って前記第2磁極に戻るように、前記環状経路に沿って配列され、
前記第2超伝導バルク体群は、前記環状経路に沿って、前記第2磁極と隣り合い、
前記複数の第2超伝導バルク体のうち、前記環状経路に沿って前記第2磁極に最も近い側に配置された第2超伝導バルク体の、前記環状経路に垂直な断面の外周長さは、前記複数の第2超伝導バルク体のうち、前記環状経路に沿って前記第2磁極に最も近い側と反対側に配置された第2超伝導バルク体の、前記環状経路に垂直な断面の外周長さよりも長い、超伝導装置。
A superconducting device according to claim 1, 3 or 7,
a second superconducting bulk body group including a plurality of second superconducting bulk bodies arranged along the annular path;
each of the plurality of second superconducting bulk bodies traps a magnetic field in a superconducting state;
The first magnetic pole, the first superconducting bulk body group, the second superconducting bulk body group and the second magnetic pole are arranged along the annular path to form the first magnetic pole, the first superconducting bulk body group, Arranged in the order of the second superconducting bulk body group and the second magnetic pole,
the magnetic circuit is formed along the annular path from the first magnetic pole through the first superconducting bulk body group and the second superconducting bulk body group in order and back to the second magnetic pole;
The plurality of first superconducting bulk bodies contained in the first superconducting bulk body group and the plurality of second superconducting bulk bodies contained in the second superconducting bulk body group are formed from the plurality of first superconducting bulk bodies Each of the superconducting bulk body and the plurality of second superconducting bulk bodies captures a magnetic field in a superconducting state, so that the magnetic flux emitted from the first magnetic pole is transferred to the plurality of first superconducting bulk bodies and the plurality of superconducting bulk bodies. arranged along the annular path sequentially through the second superconducting bulk of the and back to the second pole;
the second superconducting bulk body group is adjacent to the second magnetic pole along the annular path;
Of the plurality of second superconducting bulk bodies, the second superconducting bulk body arranged on the side closest to the second magnetic pole along the circular path has an outer circumference length of a cross section perpendicular to the circular path: , of the second superconducting bulk body arranged on the side opposite to the side closest to the second magnetic pole along the annular path, among the plurality of second superconducting bulk bodies, of the cross section perpendicular to the annular path A superconducting device that is longer than its perimeter.
請求項8に記載の超伝導装置において、
前記複数の第2超伝導バルク体の各々の前記環状経路に垂直な断面の外周長さは、前記環状経路に沿って、前記第2磁極に最も近い側から前記第2磁極に最も近い側と反対側に向かって、前記複数の第2超伝導バルク体の配列順に減少する、超伝導装置。
A superconducting device according to claim 8,
Each of the plurality of second superconducting bulk bodies has an outer circumference length of a cross section perpendicular to the annular path along the annular path from the side closest to the second magnetic pole to the side closest to the second magnetic pole. A superconducting device, decreasing in order of arrangement of said plurality of second superconducting bulk bodies toward opposite sides.
請求項1、3又は7乃至9のいずれか一項に記載の超伝導装置において、
前記複数の第1超伝導バルク体の各々は、前記環状経路に沿った軸線を中心とした筒状の第1筒部を含み、
前記複数の第1超伝導バルク体は、前記複数の第1超伝導バルク体の各々が超伝導状態で前記軸線に沿った磁場を捕捉することにより、前記第1磁極から出た磁束が前記複数の第1超伝導バルク体の各々にそれぞれ含まれる複数の第1筒部を順次通って前記第2磁極に戻るように、前記環状経路に沿って配列されている、超伝導装置。
A superconducting device according to any one of claims 1, 3 or 7 to 9,
each of the plurality of first superconducting bulk bodies includes a tubular first tubular portion centered on an axis along the annular path;
Each of the plurality of first superconducting bulk bodies captures a magnetic field along the axis while each of the plurality of first superconducting bulk bodies is in a superconducting state. a superconducting device arranged along said annular path to return to said second magnetic pole sequentially through a plurality of first cylinders respectively contained in each of said first superconducting bulk bodies of .
請求項1、3又は7乃至9のいずれか一項に記載の超伝導装置において、
前記複数の第1超伝導バルク体の各々は、前記環状経路に沿って延在する延在部を含み、
前記複数の第1超伝導バルク体は、前記複数の第1超伝導バルク体の各々が超伝導状態で前記環状経路に沿った磁場を捕捉することにより、前記第1磁極から出た磁束が前記複数の第1超伝導バルク体の各々にそれぞれ含まれる複数の延在部を順次通って前記第2磁極に戻るように、前記環状経路に沿って配列されている、超伝導装置。
A superconducting device according to any one of claims 1, 3 or 7 to 9,
each of the plurality of first superconducting bulk bodies includes an extension extending along the annular path;
Each of the plurality of first superconducting bulk bodies captures a magnetic field along the annular path while each of the plurality of first superconducting bulk bodies is in a superconducting state. A superconducting device arranged along said annular path to sequentially return to said second magnetic pole through a plurality of extensions respectively included in each of a plurality of first superconducting bulk bodies.
請求項1、3又は7乃至11のいずれか一項に記載の超伝導装置において、
前記磁石部を囲む筒状の第2筒部を含む第3超伝導バルク体を有し、
前記第3超伝導バルク体は、超伝導状態で磁場を捕捉し、
それぞれ磁場を捕捉している前記複数の第1超伝導バルク体と、磁場を捕捉している前記第3超伝導バルク体と、前記磁石部と、により前記磁気回路が形成される、超伝導装置。
A superconducting device according to any one of claims 1, 3 or 7 to 11,
a third superconducting bulk body including a cylindrical second cylindrical portion surrounding the magnet portion;
the third superconducting bulk body captures a magnetic field in a superconducting state;
A superconducting device in which the magnetic circuit is formed by the plurality of first superconducting bulk bodies each capturing a magnetic field, the third superconducting bulk body capturing a magnetic field, and the magnet section. .
請求項1、3又は7乃至12のいずれか一項に記載の超伝導装置において、
前記第1超伝導バルク体は、鉄ニクタイド又は二ホウ化マグネシウムよりなる、超伝導装置。
A superconducting device according to any one of claims 1, 3 or 7 to 12,
A superconducting device, wherein the first superconducting bulk body is made of iron pnictide or magnesium diboride.
請求項1、3又は7乃至13のいずれか一項に記載の超伝導装置において、
前記第1超伝導バルク体を冷却する冷却部を有し、
前記第1超伝導バルク体が前記冷却部に冷却されることにより、前記第1超伝導バルク体が超伝導状態になり、
前記第1超伝導バルク体は、第二種超伝導体よりなり、
前記第1超伝導バルク体は、超伝導状態で、下部臨界磁場を超え且つ上部臨界磁場以下の磁場を、磁束をピン止めすることにより捕捉する、超伝導装置。
14. A superconducting device according to any one of claims 1, 3 or 7 to 13,
Having a cooling part for cooling the first superconducting bulk body,
By cooling the first superconducting bulk body in the cooling unit, the first superconducting bulk body enters a superconducting state,
The first superconducting bulk body is made of a second-class superconductor,
A superconducting device, wherein the first superconducting bulk body captures a magnetic field above a lower critical magnetic field and below an upper critical magnetic field in a superconducting state by pinning the magnetic flux.
請求項1、3又は7乃至14のいずれか一項に記載の超伝導装置と、
前記磁石部と、
を備えた、磁石装置。
a superconducting device according to any one of claims 1, 3 or 7 to 14;
the magnet unit;
A magnet device.
磁場を発生させる磁石部を備えた磁石装置に備えられる超伝導装置において、
前記磁石部の外部にそれぞれ設けられた複数の第1超伝導バルク体を含む第1超伝導バルク体群を有し、
前記磁石部は、
第1極性を有する第1磁極と、
前記第1極性と反対の第2極性を有する第2磁極と、
を有し、
前記第1磁極、前記第1超伝導バルク体群及び前記第2磁極は、第1軸の周りの環状経路に沿って、前記第1磁極、前記第1超伝導バルク体群、前記第2磁極の順に配置され、
前記複数の第1超伝導バルク体の各々は、超伝導状態で磁場を捕捉し、
それぞれ磁場を捕捉している前記複数の第1超伝導バルク体と前記磁石部とにより、磁束が通る閉回路であり、且つ、前記環状経路に沿って、前記第1磁極から前記第1超伝導バルク体群を経て前記第2磁極に戻る、磁気回路が形成され、
前記複数の第1超伝導バルク体の各々は、前記環状経路に沿って延在する延在部を含み、
前記複数の第1超伝導バルク体は、前記複数の第1超伝導バルク体の各々が超伝導状態で前記環状経路に沿った磁場を捕捉することにより、前記第1磁極から出た磁束が前記複数の第1超伝導バルク体の各々にそれぞれ含まれる複数の延在部を順次通って前記第2磁極に戻るように、前記環状経路に沿って配列されている、超伝導装置。
In a superconducting device provided in a magnet device having a magnet unit that generates a magnetic field,
a first superconducting bulk body group including a plurality of first superconducting bulk bodies provided outside the magnet unit;
The magnet part is
a first magnetic pole having a first polarity;
a second magnetic pole having a second polarity opposite the first polarity;
has
Said first magnetic pole, said first superconducting bulk group and said second magnetic pole are arranged along an annular path about a first axis, said first magnetic pole, said first superconducting bulk group and said second magnetic pole. are arranged in the order of
each of the plurality of first superconducting bulk bodies traps a magnetic field in a superconducting state;
The plurality of first superconducting bulk bodies each capturing a magnetic field and the magnet portion form a closed circuit through which magnetic flux passes, and along the annular path from the first magnetic pole to the first superconducting a magnetic circuit is formed through the bulk bodies and back to the second magnetic pole;
each of the plurality of first superconducting bulk bodies includes an extension extending along the annular path;
Each of the plurality of first superconducting bulk bodies captures a magnetic field along the annular path while each of the plurality of first superconducting bulk bodies is in a superconducting state. A superconducting device arranged along said annular path to sequentially return to said second magnetic pole through a plurality of extensions respectively included in each of a plurality of first superconducting bulk bodies.
請求項23に記載の超伝導装置において、
前記磁石部は、前記環状経路に沿って互いに間隔を空けて配置された第1磁石及び第2磁石を有し、
前記第1磁石は、
前記第1磁極と、
前記第2極性を有する第3磁極と、
を有し、
前記第2磁石は、
前記第1極性を有する第4磁極と、
前記第2磁極と、
を有し、
前記第1磁極、前記第1超伝導バルク体群、前記第2磁極、前記第4磁極及び前記第3磁極は、前記環状経路に沿って、前記第1磁極、前記第1超伝導バルク体群、前記第2磁極、前記第4磁極、前記第3磁極の順に配置され、
前記第1磁石と前記第2磁石との間の空間が開放されている、超伝導装置。
24. A superconducting device according to claim 23, wherein
the magnet unit has a first magnet and a second magnet spaced apart from each other along the annular path;
The first magnet is
the first magnetic pole;
a third magnetic pole having the second polarity;
has
The second magnet is
a fourth magnetic pole having the first polarity;
the second magnetic pole;
has
The first magnetic pole, the first superconducting bulk group, the second magnetic pole, the fourth magnetic pole and the third magnetic pole are arranged along the annular path to form the first magnetic pole and the first superconducting bulk group. , the second magnetic pole, the fourth magnetic pole, and the third magnetic pole are arranged in this order,
A superconducting device, wherein a space between the first magnet and the second magnet is open.
請求項23又は24に記載の超伝導装置において、
前記磁石部を囲む筒状の筒部を含む第2超伝導バルク体を有し、
前記第2超伝導バルク体は、超伝導状態で磁場を捕捉し、
それぞれ磁場を捕捉している前記複数の第1超伝導バルク体と、磁場を捕捉している前記第2超伝導バルク体と、前記磁石部と、により前記磁気回路が形成される、超伝導装置。
A superconducting device according to claim 23 or 24,
Having a second superconducting bulk body including a tubular portion surrounding the magnet portion,
the second superconducting bulk body captures a magnetic field in a superconducting state;
A superconducting device in which the magnetic circuit is formed by the plurality of first superconducting bulk bodies each capturing a magnetic field, the second superconducting bulk body capturing a magnetic field, and the magnet section. .
請求項23乃至25のいずれか一項に記載の超伝導装置において、
前記第1超伝導バルク体は、鉄ニクタイド又は二ホウ化マグネシウムよりなる、超伝導装置。
A superconducting device according to any one of claims 23 to 25,
A superconducting device, wherein the first superconducting bulk body is made of iron pnictide or magnesium diboride.
請求項23乃至26のいずれか一項に記載の超伝導装置において、
前記第1超伝導バルク体を冷却する冷却部を有し、
前記第1超伝導バルク体が前記冷却部に冷却されることにより、前記第1超伝導バルク体が超伝導状態になり、
前記第1超伝導バルク体は、第二種超伝導体よりなり、
前記第1超伝導バルク体は、超伝導状態で、下部臨界磁場を超え且つ上部臨界磁場以下の磁場を、磁束をピン止めすることにより捕捉する、超伝導装置。
A superconducting device according to any one of claims 23 to 26,
Having a cooling part for cooling the first superconducting bulk body,
By cooling the first superconducting bulk body in the cooling unit, the first superconducting bulk body enters a superconducting state,
The first superconducting bulk body is made of a second-class superconductor,
A superconducting device, wherein the first superconducting bulk body captures a magnetic field above a lower critical magnetic field and below an upper critical magnetic field in a superconducting state by pinning the magnetic flux.
請求項23乃至27のいずれか一項に記載の超伝導装置と、
前記磁石部と、
を備えた、磁石装置。
A superconducting device according to any one of claims 23 to 27;
the magnet unit;
A magnet device.
JP2019540899A 2017-09-07 2018-08-28 Superconducting device and magnet device Active JP7122007B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017171907 2017-09-07
JP2017171907 2017-09-07
PCT/JP2018/031681 WO2019049720A1 (en) 2017-09-07 2018-08-28 Superconducting device and magnet device

Publications (2)

Publication Number Publication Date
JPWO2019049720A1 JPWO2019049720A1 (en) 2020-11-26
JP7122007B2 true JP7122007B2 (en) 2022-08-19

Family

ID=65634799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019540899A Active JP7122007B2 (en) 2017-09-07 2018-08-28 Superconducting device and magnet device

Country Status (2)

Country Link
JP (1) JP7122007B2 (en)
WO (1) WO2019049720A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276419A (en) 1992-02-18 1994-01-04 The United States Of America As Represented By The Secretary Of The Air Force Air-code magnetic flux guide
JP3817214B2 (en) 2002-10-29 2006-09-06 富士写真フイルム株式会社 Image playback device
WO2016117658A1 (en) 2015-01-21 2016-07-28 新日鐵住金株式会社 Oxide superconducting bulk magnet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296207A (en) * 1987-05-27 1988-12-02 Tdk Corp Magnetic circuit
JPS63318722A (en) * 1987-06-23 1988-12-27 Toshiba Corp Magnetic circuit
JPH01135707U (en) * 1987-10-16 1989-09-18
JPH01198006A (en) * 1988-02-03 1989-08-09 Central Res Inst Of Electric Power Ind Superconducting magnetic circuit
JPH01216507A (en) * 1988-02-25 1989-08-30 Toyota Motor Corp Superconductive magnetism applying apparatus
JPH07211538A (en) * 1994-01-20 1995-08-11 Hitachi Ltd Superconductive bulk magnet
JPH08195310A (en) * 1995-01-19 1996-07-30 Hitachi Ltd Superconducting magnet device
JP3670708B2 (en) * 1995-04-10 2005-07-13 新日本製鐵株式会社 Magnetization method of cylindrical superconducting magnet
JP5583501B2 (en) * 2010-07-14 2014-09-03 公益財団法人鉄道総合技術研究所 Simple superconducting magnet and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276419A (en) 1992-02-18 1994-01-04 The United States Of America As Represented By The Secretary Of The Air Force Air-code magnetic flux guide
JP3817214B2 (en) 2002-10-29 2006-09-06 富士写真フイルム株式会社 Image playback device
WO2016117658A1 (en) 2015-01-21 2016-07-28 新日鐵住金株式会社 Oxide superconducting bulk magnet

Also Published As

Publication number Publication date
JPWO2019049720A1 (en) 2020-11-26
WO2019049720A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6775215B2 (en) Iron-based superconducting permanent magnets and their manufacturing methods
Ogawa et al. Development of a magnetic resonance microscope using a high Tc bulk superconducting magnet
RU2572650C2 (en) Module with gradient coils from superconductor with cryogenic cooling for magnetic-resonance tomography
JP4317646B2 (en) Nuclear magnetic resonance apparatus
JP2009293909A (en) Cooling storage expander, pulse tube refrigerating machine, magnetic resonance imaging device, nuclear magnetic resonator, superconductive quantum interference device fluxmeter, and magnetic shielding method of cooling storage expander
DE19908433C2 (en) Nuclear magnetic resonance (NMR) device and method for operating a nuclear magnetic resonance (NMR) device
JP6090557B2 (en) Superconductor, superconducting magnet, superconducting magnetic field generator and nuclear magnetic resonance apparatus
JP4806742B2 (en) Magnetic field generator and nuclear magnetic resonance apparatus
Webb et al. The technological future of 7 T MRI hardware
JP2009156719A (en) Superconducting magnetic field generating device, magnetization method therefor, and nuclear magnetic resonance apparatus
JP3828491B2 (en) Cooling of receiving coil in MRI scanner
JP5792462B2 (en) Superconductor having increased high magnetic field characteristics, method of manufacturing the same, and MRI apparatus including the same
JP7122007B2 (en) Superconducting device and magnet device
Ishihara et al. Superior homogeneity of trapped magnetic field in superconducting MgB2 bulk magnets
WO2015015892A1 (en) Magnetic field-generating device, magnetic resonance imaging apparatus using same, and magnetization unit for high temperature superconducting bulks
Yokoyama et al. Pulsed-field magnetization of a bulk superconductor with small holes
JP6369851B2 (en) Magnetic field generation apparatus and magnetic field generation method
Yokoyama et al. Evaluation of pulsed-field magnetization of a bulk superconductor with small holes
Giunchi et al. Feasibility Study of a MgB 2 Superconducting Magnetic Cloak
JP2016046278A (en) Magnetic field generation device
JP2016118513A (en) Field generation device
Wu et al. Magnetic foils for SRF cryomodule
JP7072800B2 (en) Nuclear magnetic resonance measuring device and method
Brialmont Investigation of passive magnetic shielding methods combining bulk superconductors and coated conductors
JP2002221560A (en) Magnetic field generation device

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7122007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350