WO2015015892A1 - Magnetic field-generating device, magnetic resonance imaging apparatus using same, and magnetization unit for high temperature superconducting bulks - Google Patents

Magnetic field-generating device, magnetic resonance imaging apparatus using same, and magnetization unit for high temperature superconducting bulks Download PDF

Info

Publication number
WO2015015892A1
WO2015015892A1 PCT/JP2014/064569 JP2014064569W WO2015015892A1 WO 2015015892 A1 WO2015015892 A1 WO 2015015892A1 JP 2014064569 W JP2014064569 W JP 2014064569W WO 2015015892 A1 WO2015015892 A1 WO 2015015892A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
temperature superconducting
superconducting bulk
bulk body
temperature
Prior art date
Application number
PCT/JP2014/064569
Other languages
French (fr)
Japanese (ja)
Inventor
松田 和也
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015529430A priority Critical patent/JPWO2015015892A1/en
Publication of WO2015015892A1 publication Critical patent/WO2015015892A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming

Definitions

  • the present invention relates to a magnetic field generator capable of generating a spatially and temporally uniform high magnetic field, a magnetic resonance imaging apparatus using the same, and a high-temperature superconducting bulk magnetizer.
  • Nuclear Magnetic Resonance (NMR) equipment can obtain useful data for structural analysis of all organic compounds such as chemical shift amounts and spin-spin coupling constants of each atom.
  • a magnet (magnetic field generator) using a superconducting material is used because analysis in detail and with a large amount of information is possible.
  • An NMR apparatus is composed of a magnet (magnetic field generator) that generates a static magnetic field, a coil that generates a high-frequency pulse and detects an NMR signal, a receiver that receives the NMR signal, a system controller, and the like.
  • a superconducting magnet is a magnetic field. It is advantageous in terms of strength, stability and uniformity.
  • a chemical reaction occurring in a tissue or organ is traced as it is, and for example, a magnetic resonance imaging (MRI) apparatus that obtains a brain tomogram is an NMR.
  • MRI magnetic resonance imaging
  • the MRI apparatus is used not only for the medical field but also for industrial materials and components / structure analysis of agricultural products.
  • the MRI apparatus is a magnet that is a static magnetic field generating means, a gradient magnetic field for giving spatial information to a signal, a high-frequency electromagnetic wave irradiation system, an NMR signal detection system, a probe that surrounds an inspection object such as a human body and performs high-frequency electromagnetic wave irradiation and signal detection.
  • This MRI apparatus is safe because it does not use radiation, has a sufficient resolution, and has a very high practical value.
  • Patent Document 1 Japanese Patent Laid-Open No. Hei 11-1990. No. 248810
  • the high-temperature superconducting bulk body makes a superconducting transition at a higher temperature than the conventional helium-cooled superconducting magnet, the operating temperature of the refrigerator can be increased. For this reason, compared with a helium-cooled superconducting magnet, there are advantages in that the heat insulating structure can be simplified and a small refrigerator can be employed.
  • the magnetic field generator can be made smaller and lower in operating cost than a helium-cooled superconducting magnet.
  • a magnetic field generator is arranged inside a vacuum heat insulation container and the vacuum heat insulation container, and a superconducting current flows inside by being cooled and applied with a magnetic field.
  • a high-temperature superconducting bulk body that captures the magnetic field and supplies the supplemented magnetic field; and a refrigerator that cools the high-temperature superconducting bulk body to a cryogenic temperature, and the high-temperature superconducting bulk body includes the high-temperature superconducting bulk body.
  • Magnetization is performed using a magnetizing apparatus that applies a magnetic field and a detachable magnetic field adjusting apparatus that adjusts the magnetic field in the vicinity of the high-temperature superconducting bulk body.
  • the magnetic resonance imaging apparatus generates a static magnetic field in a measurement space in which the subject is set by the magnetic field adjustment device, and acquires a magnetic resonance signal from the subject, thereby obtaining an image of the subject. It is characterized by obtaining.
  • a magnetizing apparatus for a high-temperature superconducting bulk body includes a static magnetic field generating apparatus for generating a static magnetic field and applying a static magnetic field to the high-temperature superconducting bulk body, and the high-temperature superconducting bulk body by the applied static magnetic field. And a magnetic field adjusting device for adjusting magnetic field disturbance caused by the magnetized high-temperature superconducting bulk body.
  • the present invention it is possible to provide a magnetic field generator having high magnetic field uniformity with a small and simple configuration, a magnetic resonance imaging apparatus using the same, and a high temperature superconducting bulk magnetizer.
  • FIG. 3 is a cross-sectional view of the magnetic field generation device, the magnetic field adjustment device, and the magnetization device of the first embodiment taken along line BB. It is a flowchart which shows the magnetization operation
  • FIG. 1 is a configuration diagram of an MRI apparatus S including a magnetic field generation apparatus 1 according to the first embodiment.
  • the MRI apparatus S includes a magnetic field generator 1 that generates a magnetic field in a space 6 to be measured, a coil group 2 having a gradient magnetic field coil (not shown) and an RF (Radio Frequency) coil (not shown), and a system control unit 3, an output device 4, and a refrigerator power supply unit 5.
  • a magnetic field generator 1 that generates a magnetic field in a space 6 to be measured
  • a coil group 2 having a gradient magnetic field coil (not shown) and an RF (Radio Frequency) coil (not shown)
  • a system control unit 3 an output device 4, and a refrigerator power supply unit 5.
  • the magnetic field generator 1 includes high-temperature superconducting bulk bodies 11a and 11b (see FIG. 2) and a refrigerator 13 (see FIG. 2) that act as superconducting permanent magnets by cooling, and the magnetic field generator from the refrigerator power supply unit 5 is provided. By supplying electric power to one refrigerator 13 (see FIG. 2), the high-temperature superconducting bulk bodies 11a and 11b (see FIG. 2) are cooled.
  • the magnetic field generator 1 generates a spatially and temporally uniform magnetic field (static magnetic field) in the measurement space 6 by magnetizing the high-temperature superconducting bulk bodies 11a and 11b (see FIG. 2), which will be described later. It is supposed to let you.
  • a coil group 2 composed of a gradient magnetic field coil (not shown) and an RF coil (not shown) is disposed in a measured space 6 in the measurement space of the magnetic field generator 1.
  • the coil group 2 (gradient magnetic field coil, RF coil) is connected to the system control unit 3.
  • the system control unit 3 generates a gradient magnetic field in the space to be measured 6 by a gradient magnetic field coil (not shown) of the coil group 2 and performs phase encoding and frequency encoding to give signal position information.
  • the system control unit 3 uses an RF coil (not shown) of the coil group 2 to generate an RF signal in a direction perpendicular to the direction of the magnetic field (static magnetic field) generated by the magnetic field generator 1 in the measured space 6.
  • the NMR signal of the object to be measured (not shown) is received by the RF coil (not shown).
  • the RF coil (not shown) may be provided separately with a signal transmitting RF coil (not shown) and a receiving RF coil (not shown), or one RF coil (not shown). May be used for signal transmission and reception.
  • the system control unit 3 maps the NMR signal received by the RF coil (not shown) as MRI, outputs it to the output device 4, and displays it.
  • FIG. 2 is a perspective view of the magnetic field generator 1 of the first embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA of the magnetic field generator 1 of the first embodiment.
  • the coil group 2 (see FIG. 1) is omitted.
  • the magnetic field generator 1 includes high-temperature superconducting bulk bodies 11a and 11b, a heat conducting member 12 (see FIG. 3), a refrigerator 13, and a vacuum heat insulating container 14 (14a, 14b, and 14c). It is equipped with.
  • the refrigerator 13 is connected to a vacuum heat insulating container 14.
  • the vacuum heat insulating container 14 includes a vacuum heat insulating container 14a disposed so as to surround the high temperature superconducting bulk body 11a, a vacuum heat insulating container 14b disposed so as to surround the high temperature superconducting bulk body 11b, and the heat conducting member 12 (FIG. 3) and a vacuum heat insulating container 14c disposed inside.
  • the cold head 131 of the refrigerator 13 (see FIG. 2) is thermally connected to the high-temperature superconducting bulk bodies 11 a and 11 b via the heat conducting member 12. Thereby, the high-temperature superconducting bulk bodies 11a and 11b are cooled by the refrigerator 13 (see FIG. 2) via the heat conducting member 12.
  • the heat conducting member 12 is made of a material having a high heat conductivity, such as oxygen-free copper.
  • the heat conducting member 12 is fixed so as not to be in direct contact with the vacuum heat insulating container 14, but in order to avoid contact with the vacuum heat insulating container 14 due to deflection of the heat conducting member 12, the vacuum heat insulating container 14 and the heat conducting member 12 are arranged. May be indirectly supported and fixed by a load support (not shown) made of a material having a low thermal conductivity, for example, a fiber-reinforced plastic (FRP).
  • FRP fiber-reinforced plastic
  • alumina, glass fiber, or carbon fiber can be used as the FRP fiber.
  • the refrigerator 13 can downsize the magnetic field generator 1 by using, for example, a compressor-integrated Stirling refrigerator.
  • a compressor separation type GM cycle refrigerator a Solvay cycle refrigerator, a Stirling refrigerator, a pulse tube refrigerator, or the like.
  • the compressor heat radiation part of the refrigerator 13 is radiated by an air cooling or a water cooling device (not shown).
  • the high-temperature superconducting bulk bodies 11a and 11b of the magnetic field generator 1 are inserted into a magnetizing device 30 (see FIG. 4) that generates a high magnetic field.
  • a magnetizing device 30 see FIG. 4
  • the refrigerator 13 is operated by the leakage magnetic field from the magnetizing device 30.
  • the heat conducting member 12 and the vacuum heat insulating container 14c of the magnetic field generator 1 are appropriately lengthened and frozen from the magnetic field generating portion of the magnetizing device 30 to the magnetic field strength at which the refrigerator 13 can operate. It is necessary to increase the distance of the machine 13.
  • the inside of the vacuum heat insulation container 14 is exhausted from an exhaust port (not shown) provided in the vacuum heat insulation container 14.
  • an exhaust port not shown
  • the high-temperature superconducting bulk bodies 11 a and 11 b, the heat conducting member 12 and the cold head 131 disposed inside the vacuum heat insulating container 14 and the vacuum heat insulating container 14 are vacuum insulated.
  • the high temperature superconducting bulk body 11a, 11b, the heat conduction member 12, the cold head 131, and the vacuum heat insulating container 14 are laminated with a super insulator (heat insulating sheet) to suppress intrusion heat due to radiation.
  • a super insulator heat insulating sheet
  • the high-temperature superconducting bulk bodies 11a and 11b are processed into a cylindrical shape as shown in FIG.
  • the pair of high-temperature superconducting bulk bodies 11a and 11b are arranged inside the vacuum heat insulating containers 14a and 14b so as to have the measured space 6 on the opposing surfaces.
  • RE represents yttrium (element symbol Y), samarium (Sm), lanthanum (La), neodymium (Nd), europium (Eu), gadolinium (Gd), erbium (Er), ytterbium (Yb), Of these, at least one type or two or more types are combined.
  • the raw material When synthesizing yttrium-based, neodymium-based, and samarium-based oxide superconductors having a superconducting transition temperature of 90 K or higher in absolute temperature, the raw material is heated to a temperature higher than the melting point and then melted and then solidified again.
  • a high-temperature superconducting bulk body oxide superconducting bulk body in which coarse crystals are grown and formed is obtained.
  • a structure in which the insulating phase is finely dispersed In the parent phase that becomes superconducting, a structure in which the insulating phase is finely dispersed is obtained. The pinning point due to the presence of this dispersed layer captures the magnetic flux, and the high-temperature superconducting bulk body (oxide superconducting bulk body) is Works as a pseudo permanent magnet.
  • silver (Ag) may be added to the synthesis of the high-temperature superconducting bulk body (oxide superconducting bulk body).
  • Silver (Ag) is dispersed in the structure without significantly degrading the performance of the superconducting phase, suppressing the propagation of cracks in the sample to improve the mechanical strength, or lowering the melting point to accelerate crystal growth. By giving a temperature difference from the seed crystal, the melting point can be suppressed and the crystal orientation can be contributed.
  • a high-temperature superconducting bulk body (oxide superconducting bulk body) has anisotropy in superconducting characteristics depending on the crystal orientation, and has a higher critical current density in the direction perpendicular to the c-axis of the crystal axis than other crystal orientations. For this reason, when the c-axis of the crystal axis is oriented in one direction, an excellent magnetic field can be captured. Therefore, excellent trapping magnetic field characteristics can be obtained by orienting the c-axis in the direction of the magnetic field in which the high-temperature superconducting bulk (oxide superconducting bulk) is magnetized.
  • Another material for the high-temperature superconducting bulk material 11 (11a, 11b) is, for example, magnesium diboride (MgB 2 ). Since the high-temperature superconducting bulk body using magnesium diboride has a superconducting transition temperature of about 39 K in absolute temperature, the superconducting transition temperature is lower than that of the oxide superconducting bulk body described above, and the high-temperature superconducting bulk body 11 ( 11a, 11b) must be cooled to a lower temperature, that is, there is a demerit that a refrigerator 13 having a high refrigerating capacity is required.
  • MgB 2 magnesium diboride
  • the high-temperature superconducting bulk body using magnesium diboride has only to be heat-treated after mixing the raw material powder and forming the bulk body in the process of manufacturing the bulk body. Compared to the body, there are advantages that it is easy to produce a large bulk body, that it does not have a complicated crystal structure, and that a metal is a light substance.
  • the high-temperature superconducting bulk body 11 when magnetizing the high-temperature superconducting bulk body 11 (11a, 11b), a Lorentz force acts on the bulk body due to the current flowing inside and the external magnetic field.
  • the high-temperature superconducting bulk body 11 may be impregnated with a resin or an epoxy adhesive, and the high-temperature superconducting bulk body 11 is made of a metal ring such as stainless steel or aluminum. The periphery of (11a, 11b) may be fixed.
  • FIG. 4 is a perspective view showing a state where the magnetic field adjustment device 20 is mounted on the magnetic field generator 1 of the first embodiment and inserted into the magnetizing device 30.
  • FIG. 5 is a cross-sectional view of the magnetic field generation device 1, the magnetic field adjustment device 20, and the magnetizing device 30 according to the first embodiment taken along line BB.
  • the magnetizing device 30 is a device that generates a spatially and temporally uniform magnetic field (static magnetic field).
  • the magnetizing device 30 includes magnetizing coil groups 301a and 301b made of a superconducting wire, and an arrow shown in FIG. A uniform magnetic field is generated in the direction of B 0 .
  • the magnetizing coil groups 301a and 301b are cooled to a superconducting transition temperature or lower by a cooling system (not shown) to maintain superconductivity.
  • a cooling system not shown
  • a coil and a refrigerator may be connected by a heat conducting member and cooled by heat conduction similarly to the magnetic field generator 1, and magnetized by liquid nitrogen or liquid helium.
  • the coil groups 301a and 301b may be immersed.
  • the magnetizing device 30 includes an external power supply device (not shown) for controlling the current flowing in the magnetizing coil groups 301a and 301b, and can generate a static magnetic field having a predetermined magnetic field strength. In order to make the generated magnetic field spatially uniform, it is preferable to adjust the magnetic field with a superconducting shim coil. Since the high-temperature superconducting bulk material 11 (11a, 11b) of the magnetic field generator 1 is magnetized with a uniformity equal to or less than the magnetic field of the magnetizing device 30, the magnetic field uniformity of the magnetizing device 30 is better. For example, it is desirable that the distribution in the space in which the magnetic field generator 1 is inserted with respect to the set magnetic field intensity is about several ppm or less.
  • the magnetic field adjustment device 20 is a device that adjusts (corrects) this turbulent magnetic field, and includes a magnetic field adjustment device 20a that can be attached to the vacuum heat insulation container 14a, a magnetic field adjustment device 20b that can be attached to the vacuum heat insulation container 14b, and a magnetic field correction.
  • System controller (not shown).
  • the magnetic field adjustment devices 20a and 20b each include magnetic field adjustment coil groups 201a and 201b.
  • the material of the magnetic field adjustment coil groups 201a and 201b may be copper used in a normal electromagnet, and is cooled to a superconducting transition temperature or lower by a cooling system (not shown), similarly to the magnetizing device 30.
  • a superconducting wire may be used.
  • the magnetic field correction system control unit (not shown) can control the magnetic field (adjusted magnetic field) generated in the magnetic field adjustment coil groups 201a and 201b by controlling the current flowing in the magnetic field adjustment coil groups 201a and 201b. .
  • FIG. 6 is a flowchart showing the magnetizing operation of the magnetic field generator 1.
  • step S101 the magnetizing operator sets the magnetic field strength to be magnetized and inputs it to the magnetizing device 30.
  • the magnetizing device 30 excites until the set magnetic field strength is reached.
  • step S102 the magnetizing operator attaches the magnetic field adjustment device 20 (20a, 20b) to the magnetic field generator 1. Further, as a preparation for step S103 to be described later, the coil group 2 and a dummy sample (not shown) are arranged in the measured space 6 of the magnetic field generator 1. Then, the magnetic field generator 1 equipped with the magnetic field adjusting device 20 is inserted into the magnetic field region of the magnetizing device 30 (see FIGS. 4 and 5). Here, as shown in FIG. 5, by attaching the magnetic field adjusting devices 20a and 20b to the vacuum heat insulating containers 14a and 14b (see FIG. 2) of the magnetic field generator 1, a magnetic field is formed in the vicinity of the high-temperature superconducting bulk bodies 11a and 11b. Adjustment coil groups 201a and 201b are arranged.
  • the magnetic field generator 1 When the magnetic field generator 1 is inserted into the magnetic field region of the magnetizing device 30, the center between the high temperature superconducting bulk body 11a and the high temperature superconducting bulk body 11b of the magnetic field generating device 1 comes to the magnetic field center of the magnetizing device 30. Thus, the magnetic field generator 1 is inserted (arranged). Moreover, the magnetic field generator 1 is fixed to the magnetizing device 30 with a non-magnetic (for example, aluminum or FRP) support jig (not shown) as required. As a result, after the cooling of the high-temperature superconducting bulk body 11 (11a, 11b) is completed and the magnetic flux is trapped in the bulk body, the magnetic field of the magnetizing device 30 is demagnetized (step S106 described later). It is possible to prevent the magnetic field generator 1 from moving toward the center of the magnetic device 30.
  • a non-magnetic for example, aluminum or FRP
  • the high-temperature superconducting bulk body 11 is magnetized by the magnetic field of the magnetizing device 30 depending on the components of the high-temperature superconducting bulk body 11. For this reason, the magnetic high-temperature superconducting bulk body 11 disturbs the spatial uniformity of the magnetic field of the magnetizing device 30.
  • the degree of magnetization at this time increases in the order of Y, Sm, Eu, and Gd depending on the RE element component of the high-temperature superconducting bulk body 11. Therefore, for example, by using a Y-type high-temperature superconducting bulk body 11, the influence of magnetization can be reduced.
  • Y-based high-temperature superconducting bulk bodies have demerits that the trapping magnetic field characteristics are poor compared to other oxide superconducting bulk bodies, and that it is difficult to manufacture large materials.
  • step S103 the system control unit 3 uses the coil group 2 arranged in the measured space 6 of the magnetic field generator 1 to set the magnetic field set for the dummy sample (not shown) arranged in the measured space 6.
  • An NMR signal at the intensity (see S101) is acquired.
  • light and shade is generated in the obtained image.
  • the magnetic field correction system control unit (not shown) of the magnetic field adjustment device 20 makes the magnetic field so as to eliminate the shading in the image based on the shading of the acquired image, that is, so as to eliminate the disturbance of the magnetic field.
  • the current flowing through the magnetic field adjustment coil groups 201a and 201b of the adjustment devices 20a and 20b is controlled to adjust and equalize the magnetic field. If necessary, the NMR signal may be acquired again to check the magnetic field uniformity.
  • step S104 the high-temperature superconducting bulk body 11 is cooled by the refrigerator 13.
  • the high-temperature superconducting bulk body 11 becomes superconducting, and the pinning force works to trap the magnetic flux entering the inside.
  • step S105 it is determined whether the high-temperature superconducting bulk body 11 has been cooled to a predetermined temperature. When cooling to a predetermined temperature is completed (S105 / Yes). Proceed to step S106. When cooling to the predetermined temperature is not completed (No at S105). Returning to step S103, steps S103 and S104 are repeated.
  • the cooling temperature is sufficiently low and the magnetic field adjustment by the magnetic field adjusting device 20 becomes difficult due to the diamagnetism of the high-temperature superconducting bulk body 11, the cooling of the high-temperature superconducting bulk body 11 is stopped and the temperature is raised to a necessary temperature. After breaking the superconducting state, the magnetic field adjustment device 20 adjusts the magnetic field again, and then cooling is resumed.
  • the magnetizing device 30 After completing the cooling of the high-temperature superconducting bulk body 11 to a predetermined temperature, the magnetizing device 30 is demagnetized in step S106.
  • the temperature at this time is preferably about several K to 10K higher than the lowest temperature reached by the high-temperature superconducting bulk body 11. This can suppress time fluctuation of the magnetic field of the high-temperature superconducting bulk body 11 by supercooling the high-temperature superconducting bulk body 11 that has been magnetized from a predetermined temperature to the lowest temperature.
  • an induced current is generated in the high-temperature superconducting bulk body 11 so as to maintain the magnetic flux trapped by electromagnetic induction (see S104), and this induced current becomes a superconducting current at a high temperature.
  • the superconducting bulk body 11 continues to flow, and the high-temperature superconducting bulk body 11 functions as a superconducting permanent magnet.
  • the magnetizing operator After demagnetization of the magnetizing device 30, the magnetizing operator removes the magnetic field generating device 1 from the magnetizing device 30 and the magnetic field adjusting device 20 in step S107, and completes the magnetization of the magnetic field generating device 1.
  • the high-temperature superconducting bulk body 11 can trap the magnetic flux as if the original magnetic field was copied if the current flowing through the high-temperature superconducting body 11 was less than the critical current value.
  • the magnetic field generator 1 according to the first embodiment can be magnetized with a uniform magnetic field corrected by the magnetizing device 30 and the magnetic field adjusting device 20.
  • the magnetic field adjusting device 20 is configured to be detachable from the magnetic field generating device 1, so that the magnetic field adjusting coil groups 201a and 201b are arranged in the vicinity of the high temperature superconducting bulk bodies 11a and 11b, and the high temperature superconducting bulk bodies 11a and 11b are arranged.
  • the nearby magnetic field can be suitably adjusted.
  • the magnetic field generator 1 having the high-temperature superconducting bulk body 11 can be used as a magnetic field generator that requires a spatially and temporally uniform high magnetic field like the MRI apparatus S.
  • the magnetic field generation source of the magnetic field generator 1 can be comprised only by the high-temperature superconducting bulk body 11, and as shown in FIGS. 1-3, the magnetic field generator 1 can be reduced in size. For this reason, even if the place where the magnetic field adjusting device 20 and the magnetizing device 30 are provided and the place where the MRI apparatus S is installed are separated from each other, the magnetic field can be obtained using the magnetizing device 30 and the magnetic field adjusting device 20. After magnetizing the generator 1, the magnetic field generator 1 can be transported to the installation location of the MRI apparatus S together with a transport refrigerator power supply unit (not shown) for supplying power to the refrigerator 13.
  • a transport refrigerator power supply unit not shown
  • FIG. 7 is a perspective view of the magnetic field generator 1C of the second embodiment.
  • FIG. 8 is a cross-sectional view taken along the line CC of the magnetic field generator 1C of the second embodiment.
  • the magnetic field generator 1 includes a pair of high-temperature superconducting bulk bodies 11a and 11b processed into a cylindrical shape, whereas the magnetic field generation according to the second embodiment.
  • the apparatus 1 ⁇ / b> C is different in that the high-temperature superconducting bulk body 11 c is processed into a ring shape and a magnetic field is generated in a hollow portion (measurement space 6) at the center of the ring.
  • the ring-shaped high-temperature superconducting bulk body 11c can also have a structure in which a plurality of rings are stacked, for example, for the purpose of extending the axial length of the cavity that generates the magnetic field.
  • the high-temperature superconducting bulk body 11c may be composed of a plurality of high-temperature superconducting bulk bodies, such as using a plurality of high-temperature superconducting bulk bodies stacked in the thickness direction.
  • the circumferential direction of the space to be measured 6 can be covered with the ring-shaped high-temperature superconducting bulk body 11c.
  • the structure is easy to magnetize a uniform magnetic field.
  • the vacuum heat insulating container 14 has a space to be measured 6 in which a static magnetic field from the high-temperature superconducting bulk body 11c is generated at the center of the tip. What is necessary is just to make it the cylindrical shape which has the room temperature bore which becomes, and can be made into a simple structure compared with the vacuum heat insulation container 14 of 1st Embodiment.
  • the heat conducting member 12 is made of a material having a high heat conductivity, such as oxygen-free copper, and is mainly processed and used in a rod shape.
  • the first embodiment is used. Compared to the above, since the ring-shaped high-temperature superconducting bulk body 11c and the refrigerator cold head 131 may be configured to be connected coaxially, a simpler structure can be achieved.
  • magnetizing apparatus 30c for inserting the magnetic field generator. 1C, for generating a magnetic field in the axial direction of the high-temperature superconducting bulk body 11c (the direction of arrow B 0 in FIG. 10),
  • the leakage magnetic field from the magnetizing device 30c is larger than that in the first embodiment.
  • the length of the heat conductive member 12 and the vacuum heat insulation container 14 of the magnetic field generator 1C is lengthened, and the magnetic field of the magnetizing device 30c to the magnetic field intensity which can operate the refrigerator 13 is obtained. It is necessary to separate the refrigerator 13 from the generation part.
  • the vacuum heat insulation container 14 and the heat conduction member 12 are connected to the FRP so that the vacuum heat insulation container 14 and the high-temperature superconducting bulk body 11c, the heat conduction member 12, and the refrigerator cold head 131 are not in direct contact with each other.
  • the support may be indirectly supported and fixed by a load support (not shown) made of a material having a low thermal conductivity such as the like.
  • FIG. 9 is a perspective view showing a state where the magnetic field adjustment device 20c is mounted on the magnetic field generation device 1C of the second embodiment and is inserted into the magnetization device 30c.
  • FIG. 10 is a cross-sectional view taken along the line DD of the magnetic field generator 1C, the magnetic field adjusting device 20c, and the magnetizing device 30c of the second embodiment.
  • the magnetic field adjustment coil group 201c of the magnetic field adjustment device 20c it is necessary to arrange the magnetic field adjustment coil group 201c of the magnetic field adjustment device 20c in the vicinity of the high-temperature superconducting bulk body 11c of the magnetic field generation device 1.
  • the high-temperature superconducting bulk body 11 c has a ring shape
  • the vacuum heat insulating container 14 also has a cylindrical shape. Therefore, only one magnetic field adjustment device 20 c needs to be attached to the magnetic field generation device 1. .
  • the magnetizing coils 301c of magnetizing apparatus 30c is to generate a uniform magnetic field in the axial direction of the ring-shaped high-temperature superconducting bulk body 11c (the direction of arrow B 0).
  • a more uniform magnetic field distribution can be obtained.
  • the magnetization procedure is the same as that in the first embodiment (see FIG. 6), and a description thereof will be omitted.
  • the magnetic field generator 1C according to the second embodiment can surround the circumference of the space 6 to be measured with the high-temperature superconducting bulk body 11c and obtain a more uniform magnetic field distribution.
  • the heat conductive member 12 and the vacuum heat insulation container 14 can be made into a simple structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

The purpose of the present invention is to provide a magnetic field-generating device that has a small and simple configuration and high magnetic field homogeneity, a magnetic resonance imaging apparatus using same, and a magnetization unit for high temperature superconducting bulks. The present invention is provided with: a thermally insulated vacuum container (14); a high temperature superconducting bulk (11), which is disposed inside the thermally insulated vacuum container (14), through which a superconducting current flows and which traps a magnetic field by being cooled and said magnetic field being applied, and which supplies the supplemented magnetic field; and a refrigerator (13) for cooling the high temperature superconducting bulk (11) to a very low temperature. The high temperature superconducting bulk (11) is magnetized using a magnetization unit (30) for applying a magnetic field on the high temperature superconducting bulk (11), and a detachable magnetic field-adjusting unit (20) for adjusting the magnetic field near the high temperature superconducting bulk (11).

Description

磁場発生装置、それを用いた磁気共鳴イメージング装置、および、高温超電導バルク体の着磁装置Magnetic field generator, magnetic resonance imaging apparatus using the same, and magnetizing apparatus for high-temperature superconducting bulk material
 本発明は、空間的、時間的に均一な高磁場を発生可能な磁場発生装置、それを用いた磁気共鳴イメージング装置、および、高温超電導バルク体の着磁装置に関する。 The present invention relates to a magnetic field generator capable of generating a spatially and temporally uniform high magnetic field, a magnetic resonance imaging apparatus using the same, and a high-temperature superconducting bulk magnetizer.
 核磁気共鳴(Nuclear Magnetic Resonance:NMR)装置は、各原子の化学シフト量やスピン-スピン結合定数等、あらゆる有機化合物の構造解析上有用なデータを得ることができるもので、強磁界を使うほど詳細で情報量の多い分析が可能なことから、超電導材料を用いた磁石(磁場発生装置)が利用されている。NMR装置は、静磁場を作る磁石(磁場発生装置)、高周波パルスを発生しNMR信号を検出するコイル、NMR信号を受ける受信機およびシステムコントローラ等から構成され、前記磁石としては、超電導磁石が磁場の強度および安定性と均一性の点から優位である。また、NMR現象を利用して、組織や器官の中で起きている化学反応をそのままの状態で追跡し、例えば脳透視断層図を得る磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)装置は、このNMRの医療への応用の代表例である。また、MRI装置は、医療分野だけでなく、工業用素材や農作物の成分・構造分析等にも利用されている。 Nuclear Magnetic Resonance (NMR) equipment can obtain useful data for structural analysis of all organic compounds such as chemical shift amounts and spin-spin coupling constants of each atom. A magnet (magnetic field generator) using a superconducting material is used because analysis in detail and with a large amount of information is possible. An NMR apparatus is composed of a magnet (magnetic field generator) that generates a static magnetic field, a coil that generates a high-frequency pulse and detects an NMR signal, a receiver that receives the NMR signal, a system controller, and the like. As the magnet, a superconducting magnet is a magnetic field. It is advantageous in terms of strength, stability and uniformity. In addition, by using the NMR phenomenon, a chemical reaction occurring in a tissue or organ is traced as it is, and for example, a magnetic resonance imaging (MRI) apparatus that obtains a brain tomogram is an NMR. It is a representative example of application to medical treatment. In addition, the MRI apparatus is used not only for the medical field but also for industrial materials and components / structure analysis of agricultural products.
 MRI装置は、静磁場発生手段である磁石、空間情報を信号に与えるための傾斜磁場、高周波電磁波照射系、NMR信号検出系、人体等の検査対象を取り巻き高周波の電磁波照射や信号検出を行うプローブコイル、これらを制御しかつ得られた信号を処理するコントローラ等から構成され、静磁場存在下に置かれた検査対象に高周波電磁波を照射し、得られたNMR信号により信号を発生している核種の空間分布を映像化するものである。このMRI装置は、放射線を使用しないことから安全であり、かつ、十分な解像度が得られ、実用価値が極めて高いものである。 The MRI apparatus is a magnet that is a static magnetic field generating means, a gradient magnetic field for giving spatial information to a signal, a high-frequency electromagnetic wave irradiation system, an NMR signal detection system, a probe that surrounds an inspection object such as a human body and performs high-frequency electromagnetic wave irradiation and signal detection. A nuclide composed of a coil, a controller for controlling these signals, and a controller for processing the obtained signals, irradiating a test object placed in the presence of a static magnetic field with high-frequency electromagnetic waves, and generating a signal based on the obtained NMR signals The spatial distribution of is visualized. This MRI apparatus is safe because it does not use radiation, has a sufficient resolution, and has a very high practical value.
 従来の核磁気共鳴を用いたNMR分析装置やMRI装置において、精度の高い分析を必要とする場合、被測定物体を配置する被測定空間の磁場を、高い磁場強度、かつ、空間・時間的に均一にする必要がある。このため、従来のNMR分析装置やMRI装置は、主磁場の形成に、ニオブ・チタンなどの金属系超電導線材による超電導コイルを使用した超電導磁石が用いられている。この超電導コイルは液体ヘリウムを使って極低温に冷却して利用するため、高価な液体ヘリウムが多量に必要であり、運転コストが高くなるという問題があった。 In a conventional NMR analysis apparatus or MRI apparatus using nuclear magnetic resonance, when high-precision analysis is required, the magnetic field in the measurement space in which the object to be measured is placed has a high magnetic field strength, spatially and temporally. It needs to be uniform. For this reason, in conventional NMR analyzers and MRI apparatuses, a superconducting magnet using a superconducting coil made of a metallic superconducting wire such as niobium / titanium is used to form a main magnetic field. Since this superconducting coil is used after being cooled to a very low temperature using liquid helium, a large amount of expensive liquid helium is required, and there has been a problem that the operating cost becomes high.
 一方で、核磁気共鳴装置ほど空間・時間的に高い均一度が必要ない、例えば磁気分離装置向けの磁場発生装置では、上記金属系超電導線材による超電導コイルを使用した超電導磁石を冷凍機で直接冷却する場合もある。この冷却方式では、液体ヘリウムが不要のために液溜めを除くことができ、冷凍機との熱伝導構造によっては装置を小型化することが可能である。しかし、冷凍機により超電導コイルを液体ヘリウム温度まで冷却する必要があるために、冷凍機が大型、かつ大量の電力を消費し、結果として冷凍機を含めた装置全体の大型化や運転コストが増加するという問題があった。 On the other hand, high uniformity in space and time is not required as much as nuclear magnetic resonance devices. For example, in magnetic field generators for magnetic separation devices, superconducting magnets using superconducting coils made of the above metal-based superconducting wires are directly cooled by a refrigerator. There is also a case. In this cooling method, since liquid helium is not required, the liquid reservoir can be removed, and the apparatus can be downsized depending on the heat conduction structure with the refrigerator. However, since the superconducting coil needs to be cooled to the liquid helium temperature by the refrigerator, the refrigerator is large and consumes a large amount of power, resulting in an increase in the size and operating cost of the entire device including the refrigerator. There was a problem to do.
 小型かつ簡単な構成で強磁界を発生する手段として、従来の低温超電導体コイルによる超電導磁石にかえて、冷凍機で直接冷却する高温超電導バルク体を使用する装置が特許文献1(特開平11-248810号公報)に開示されている。高温超電導バルク体は、従来のヘリウム冷却型の超電導磁石に比べて高い温度で超電導遷移するために、冷凍機の運転温度を高くすることが可能である。このため、ヘリウム冷却型の超電導磁石に比べ、断熱構造の簡易化や小型冷凍機が採用できるメリットがある。また、低い冷凍能力でも冷却可能なため、ヘリウム冷却型の超電導磁石に比べて小型かつ運転コストの低い磁場発生装置にすることができる。 As means for generating a strong magnetic field with a small and simple configuration, an apparatus using a high-temperature superconducting bulk body that is directly cooled by a refrigerator instead of a conventional superconducting magnet by a low-temperature superconducting coil is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. Hei 11-1990). No. 248810). Since the high-temperature superconducting bulk body makes a superconducting transition at a higher temperature than the conventional helium-cooled superconducting magnet, the operating temperature of the refrigerator can be increased. For this reason, compared with a helium-cooled superconducting magnet, there are advantages in that the heat insulating structure can be simplified and a small refrigerator can be employed. In addition, since cooling is possible even with a low refrigerating capacity, the magnetic field generator can be made smaller and lower in operating cost than a helium-cooled superconducting magnet.
特開平11-248810号公報Japanese Patent Laid-Open No. 11-248810
 ところで、高温超電導バルク体を超電導磁石として用いるためには、永久磁石と同様に、着磁を行う必要がある。すなわち、高温超電導バルク体とは別に、高温超電導バルク体が必要とするだけの磁場を発生させることができる着磁装置により、高温超電導バルク体に磁場を印加しなければならない。 By the way, in order to use the high-temperature superconducting bulk body as a superconducting magnet, it is necessary to perform magnetization similarly to the permanent magnet. That is, apart from the high-temperature superconducting bulk body, a magnetic field must be applied to the high-temperature superconducting bulk body by a magnetizing apparatus that can generate a magnetic field required by the high-temperature superconducting bulk body.
 しかしながら、着磁装置により高温超電導バルク体に着磁を行う際、仮に着磁装置が発生する磁場が均一であったとしても、着磁装置から発生する磁場により高温超電導バルク体自身が磁化するため、磁化した高温超電導バルク体の影響で磁場の空間均一性が乱れた状態となる。このため、高温超電導バルク体は、磁場の空間均一性が乱れた状態で着磁されるために、着磁装置で設定した磁場均一性を維持して高温超電導バルク体を着磁することができないという問題があった。 However, when magnetizing a high-temperature superconducting bulk body with a magnetizing device, even if the magnetic field generated by the magnetizing device is uniform, the high-temperature superconducting bulk body itself is magnetized by the magnetic field generated from the magnetizing device. The spatial uniformity of the magnetic field is disturbed due to the influence of the magnetized high-temperature superconducting bulk material. For this reason, since the high-temperature superconducting bulk material is magnetized in a state where the spatial uniformity of the magnetic field is disturbed, the high-temperature superconducting bulk material cannot be magnetized while maintaining the magnetic field uniformity set by the magnetizing device. There was a problem.
 そこで、本発明は、小型かつ簡単な構成で高い磁場均一性を有する磁場発生装置、それを用いた磁気共鳴イメージング装置、および、高温超電導バルク体の着磁装置を提供することを課題とする。 Therefore, it is an object of the present invention to provide a magnetic field generator having high magnetic field uniformity with a small and simple configuration, a magnetic resonance imaging apparatus using the same, and a high temperature superconducting bulk magnetizer.
 このような課題を解決するために、本発明に係る磁場発生装置は、真空断熱容器と、前記真空断熱容器の内部に配置され、冷却され磁場を印加されることにより超電導電流が内部を流れて前記磁場を捕捉し、補足した前記磁場を供給する高温超電導バルク体と、前記高温超電導バルク体を極低温に冷却する冷凍機と、を備え、前記高温超電導バルク体は、該高温超電導バルク体に磁場を印加する着磁装置と、該高温超電導バルク体の近傍の磁場を調整する着脱可能な磁場調整装置と、を用いて着磁されることを特徴とする。 In order to solve such a problem, a magnetic field generator according to the present invention is arranged inside a vacuum heat insulation container and the vacuum heat insulation container, and a superconducting current flows inside by being cooled and applied with a magnetic field. A high-temperature superconducting bulk body that captures the magnetic field and supplies the supplemented magnetic field; and a refrigerator that cools the high-temperature superconducting bulk body to a cryogenic temperature, and the high-temperature superconducting bulk body includes the high-temperature superconducting bulk body. Magnetization is performed using a magnetizing apparatus that applies a magnetic field and a detachable magnetic field adjusting apparatus that adjusts the magnetic field in the vicinity of the high-temperature superconducting bulk body.
 また、本発明に係る磁気共鳴イメージング装置は、磁場調整装置により被検体を設置する被測定空間に静磁場を発生させ、前記被検体からの磁気共鳴信号を取得することにより、前記被検体の画像を得ることを特徴とする。 Further, the magnetic resonance imaging apparatus according to the present invention generates a static magnetic field in a measurement space in which the subject is set by the magnetic field adjustment device, and acquires a magnetic resonance signal from the subject, thereby obtaining an image of the subject. It is characterized by obtaining.
 また、本発明に係る高温超電導バルク体の着磁装置は、静磁場を発生させ、高温超電導バルク体に静磁場を印加する静磁場発生装置と、印加された前記静磁場により前記高温超電導バルク体が磁化し、磁化した該高温超電導バルク体による磁場の乱れを調整する磁場調整装置と、を備えることを特徴とする。 Further, a magnetizing apparatus for a high-temperature superconducting bulk body according to the present invention includes a static magnetic field generating apparatus for generating a static magnetic field and applying a static magnetic field to the high-temperature superconducting bulk body, and the high-temperature superconducting bulk body by the applied static magnetic field. And a magnetic field adjusting device for adjusting magnetic field disturbance caused by the magnetized high-temperature superconducting bulk body.
 本発明によれば、小型かつ簡単な構成で高い磁場均一性を有する磁場発生装置、それを用いた磁気共鳴イメージング装置、および、高温超電導バルク体の着磁装置を提供することができる。 According to the present invention, it is possible to provide a magnetic field generator having high magnetic field uniformity with a small and simple configuration, a magnetic resonance imaging apparatus using the same, and a high temperature superconducting bulk magnetizer.
第1実施形態に係る磁場発生装置を備えるMRI装置の構成図である。It is a block diagram of an MRI apparatus provided with the magnetic field generator which concerns on 1st Embodiment. 第1実施形態の磁場発生装置の斜視図である。It is a perspective view of the magnetic field generator of 1st Embodiment. 第1実施形態の磁場発生装置のA-A線断面図である。It is an AA line sectional view of the magnetic field generator of a 1st embodiment. 第1実施形態の磁場発生装置に磁場調整装置を装着し、着磁装置に挿入した状態を示す斜視図である。It is a perspective view which shows the state which equipped the magnetic field generator of 1st Embodiment with the magnetic field adjustment apparatus, and was inserted in the magnetizing apparatus. 第1実施形態の磁場発生装置、磁場調整装置および着磁装置のB-B線断面図である。FIG. 3 is a cross-sectional view of the magnetic field generation device, the magnetic field adjustment device, and the magnetization device of the first embodiment taken along line BB. 磁場発生装置の着磁作業を示すフローチャートである。It is a flowchart which shows the magnetization operation | movement of a magnetic field generator. 第2実施形態の磁場発生装置の斜視図である。It is a perspective view of the magnetic field generator of 2nd Embodiment. 第2実施形態の磁場発生装置のC-C線断面図である。It is CC sectional view taken on the line of the magnetic field generator of 2nd Embodiment. 第2実施形態の磁場発生装置に磁場調整装置を装着し、着磁装置に挿入した状態を示す斜視図である。It is a perspective view which shows the state which equipped the magnetic field generator of 2nd Embodiment with the magnetic field adjustment apparatus, and was inserted in the magnetizing apparatus. 第2実施形態の磁場発生装置、磁場調整装置および着磁装置のD-D線断面図である。It is the DD sectional view taken on the line of the magnetic field generator of 2nd Embodiment, a magnetic field adjustment apparatus, and a magnetizing apparatus.
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
≪第1実施形態≫
<磁気共鳴イメージング装置(MRI装置)>
 第1実施形態に係る磁気共鳴イメージング装置(MRI装置)Sについて、図1を用いて説明する。図1は、第1実施形態に係る磁場発生装置1を備えるMRI装置Sの構成図である。
<< First Embodiment >>
<Magnetic resonance imaging system (MRI system)>
A magnetic resonance imaging apparatus (MRI apparatus) S according to the first embodiment will be described with reference to FIG. FIG. 1 is a configuration diagram of an MRI apparatus S including a magnetic field generation apparatus 1 according to the first embodiment.
 MRI装置Sは、被測定空間6に磁場を発生する磁場発生装置1と、傾斜磁場コイル(図示せず)およびRF(Radio Frequency)コイル(図示せず)を有するコイル群2と、システム制御部3と、出力装置4と、冷凍機電源ユニット5と、を備えている。 The MRI apparatus S includes a magnetic field generator 1 that generates a magnetic field in a space 6 to be measured, a coil group 2 having a gradient magnetic field coil (not shown) and an RF (Radio Frequency) coil (not shown), and a system control unit 3, an output device 4, and a refrigerator power supply unit 5.
 磁場発生装置1は、冷却することにより超電導永久磁石として働く高温超電導バルク体11a,11b(図2参照)および冷凍機13(図2参照)を備えており、冷凍機電源ユニット5から磁場発生装置1の冷凍機13(図2参照)に電力を供給することにより、高温超電導バルク体11a,11b(図2参照)を冷却する。また、磁場発生装置1は、高温超電導バルク体11a,11b(図2参照)に後述する着磁を行うことにより、被測定空間6に空間的、時間的に均一な磁場(静磁場)を発生させるようになっている。 The magnetic field generator 1 includes high-temperature superconducting bulk bodies 11a and 11b (see FIG. 2) and a refrigerator 13 (see FIG. 2) that act as superconducting permanent magnets by cooling, and the magnetic field generator from the refrigerator power supply unit 5 is provided. By supplying electric power to one refrigerator 13 (see FIG. 2), the high-temperature superconducting bulk bodies 11a and 11b (see FIG. 2) are cooled. The magnetic field generator 1 generates a spatially and temporally uniform magnetic field (static magnetic field) in the measurement space 6 by magnetizing the high-temperature superconducting bulk bodies 11a and 11b (see FIG. 2), which will be described later. It is supposed to let you.
 磁場発生装置1の測定空間内にある被測定空間6には、傾斜磁場コイル(図示せず)およびRFコイル(図示せず)からなるコイル群2が配置されている。コイル群2(傾斜磁場コイル、RFコイル)は、システム制御部3と接続されている。 A coil group 2 composed of a gradient magnetic field coil (not shown) and an RF coil (not shown) is disposed in a measured space 6 in the measurement space of the magnetic field generator 1. The coil group 2 (gradient magnetic field coil, RF coil) is connected to the system control unit 3.
 システム制御部3は、コイル群2の傾斜磁場コイル(図示せず)により、被測定空間6に傾斜磁場を発生させ、位相エンコードおよび周波数エンコードを行うことにより、信号の位置情報を与える。次に、システム制御部3は、コイル群2のRFコイル(図示せず)により、被測定空間6で磁場発生装置1が発生させる磁場(静磁場)の向きに対して垂直な方向にRF信号を発生させた後、被測定物体(図示せず)のNMR信号をRFコイル(図示せず)により受信する。なお、このRFコイル(図示せず)は、信号の送信用RFコイル(図示せず)および受信用RFコイル(図示せず)を分けて設けてもよく、1つのRFコイル(図示せず)を信号の送信用および受信用に用いてもよい。そして、システム制御部3は、RFコイル(図示せず)で受信したNMR信号をMRIとしてマッピングし、出力装置4へ出力し表示する。 The system control unit 3 generates a gradient magnetic field in the space to be measured 6 by a gradient magnetic field coil (not shown) of the coil group 2 and performs phase encoding and frequency encoding to give signal position information. Next, the system control unit 3 uses an RF coil (not shown) of the coil group 2 to generate an RF signal in a direction perpendicular to the direction of the magnetic field (static magnetic field) generated by the magnetic field generator 1 in the measured space 6. Then, the NMR signal of the object to be measured (not shown) is received by the RF coil (not shown). The RF coil (not shown) may be provided separately with a signal transmitting RF coil (not shown) and a receiving RF coil (not shown), or one RF coil (not shown). May be used for signal transmission and reception. Then, the system control unit 3 maps the NMR signal received by the RF coil (not shown) as MRI, outputs it to the output device 4, and displays it.
<磁場発生装置>
 次に、第1実施形態に係る磁気共鳴イメージング装置(MRI装置)Sが備える磁場発生装置1について、図2および図3を用いて更に説明する。図2は、第1実施形態の磁場発生装置1の斜視図である。図3は、第1実施形態の磁場発生装置1のA-A線断面図である。なお、図2においては、コイル群2(図1参照)を省略して図示している。
<Magnetic field generator>
Next, the magnetic field generator 1 provided in the magnetic resonance imaging apparatus (MRI apparatus) S according to the first embodiment will be further described with reference to FIGS. FIG. 2 is a perspective view of the magnetic field generator 1 of the first embodiment. FIG. 3 is a cross-sectional view taken along line AA of the magnetic field generator 1 of the first embodiment. In FIG. 2, the coil group 2 (see FIG. 1) is omitted.
 図2に示すように、磁場発生装置1は、高温超電導バルク体11a,11bと、熱伝導部材12(図3参照)と、冷凍機13と、真空断熱容器14(14a,14b,14c)と、を備えている。 As shown in FIG. 2, the magnetic field generator 1 includes high-temperature superconducting bulk bodies 11a and 11b, a heat conducting member 12 (see FIG. 3), a refrigerator 13, and a vacuum heat insulating container 14 (14a, 14b, and 14c). It is equipped with.
 冷凍機13は、真空断熱容器14と接続されている。真空断熱容器14は、高温超電導バルク体11aを囲むように配置されている真空断熱容器14aと、高温超電導バルク体11bを囲むように配置されている真空断熱容器14bと、熱伝導部材12(図3参照)が内部に配置されている真空断熱容器14cと、から構成されている。 The refrigerator 13 is connected to a vacuum heat insulating container 14. The vacuum heat insulating container 14 includes a vacuum heat insulating container 14a disposed so as to surround the high temperature superconducting bulk body 11a, a vacuum heat insulating container 14b disposed so as to surround the high temperature superconducting bulk body 11b, and the heat conducting member 12 (FIG. 3) and a vacuum heat insulating container 14c disposed inside.
 図3に示すように、冷凍機13(図2参照)のコールドヘッド131は、熱伝導部材12を介して高温超電導バルク体11a,11bと熱的に接続されている。これにより、高温超電導バルク体11a,11bは、熱伝導部材12を介して冷凍機13(図2参照)により冷却される。 As shown in FIG. 3, the cold head 131 of the refrigerator 13 (see FIG. 2) is thermally connected to the high-temperature superconducting bulk bodies 11 a and 11 b via the heat conducting member 12. Thereby, the high-temperature superconducting bulk bodies 11a and 11b are cooled by the refrigerator 13 (see FIG. 2) via the heat conducting member 12.
 熱伝導部材12は、熱伝導率の大きい材料、例えば無酸素銅等により構成される。熱伝導部材12は、真空断熱容器14と直接接触しないよう固定されているが、熱伝導部材12のたわみによって真空断熱容器14と接触することを避けるために、真空断熱容器14と熱伝導部材12とを熱伝導率の小さい材料、例えば繊維強化プラスチック(Fiber Reinforced Plastics;FRP)からなる荷重支持体(図示せず)により間接的に支持固定してもよい。なお、FRPの繊維には、例えばアルミナ、ガラス繊維、炭素繊維等を用いることができる。 The heat conducting member 12 is made of a material having a high heat conductivity, such as oxygen-free copper. The heat conducting member 12 is fixed so as not to be in direct contact with the vacuum heat insulating container 14, but in order to avoid contact with the vacuum heat insulating container 14 due to deflection of the heat conducting member 12, the vacuum heat insulating container 14 and the heat conducting member 12 are arranged. May be indirectly supported and fixed by a load support (not shown) made of a material having a low thermal conductivity, for example, a fiber-reinforced plastic (FRP). For example, alumina, glass fiber, or carbon fiber can be used as the FRP fiber.
 冷凍機13は、例えば圧縮機一体型のスターリング冷凍機を用いることにより、磁場発生装置1を小型化することができる。その他に、圧縮機分離型のGMサイクル冷凍機、ソルベイサイクル冷凍機、スターリング冷凍機、パルス管冷凍機等を用いても同様の効果が得られる。ちなみに、冷凍機13の圧縮機放熱部は、空冷や水冷装置(図示せず)により放熱される。 The refrigerator 13 can downsize the magnetic field generator 1 by using, for example, a compressor-integrated Stirling refrigerator. In addition, the same effect can be obtained by using a compressor separation type GM cycle refrigerator, a Solvay cycle refrigerator, a Stirling refrigerator, a pulse tube refrigerator, or the like. Incidentally, the compressor heat radiation part of the refrigerator 13 is radiated by an air cooling or a water cooling device (not shown).
 ちなみに、後述するように、磁場発生装置1の高温超電導バルク体11a,11bは、高磁場を発生する着磁装置30(図4参照)に挿入される。このため、例えば圧縮機一体型のスターリング冷凍機、GMサイクル冷凍機等の場合、冷凍機13の内部にモータが組み込まれているため、着磁装置30からの漏洩磁場により、冷凍機13が動作しないおそれがある。このため、あらかじめ設計段階で、磁場発生装置1の熱伝導部材12および真空断熱容器14cの長さを適切に取り、冷凍機13が動作可能な磁場強度まで着磁装置30の磁場発生部分から冷凍機13の距離を離す必要がある。 Incidentally, as will be described later, the high-temperature superconducting bulk bodies 11a and 11b of the magnetic field generator 1 are inserted into a magnetizing device 30 (see FIG. 4) that generates a high magnetic field. For this reason, for example, in the case of a compressor-integrated Stirling refrigerator, GM cycle refrigerator, etc., since the motor is incorporated in the refrigerator 13, the refrigerator 13 is operated by the leakage magnetic field from the magnetizing device 30. There is a risk of not. For this reason, in the design stage in advance, the heat conducting member 12 and the vacuum heat insulating container 14c of the magnetic field generator 1 are appropriately lengthened and frozen from the magnetic field generating portion of the magnetizing device 30 to the magnetic field strength at which the refrigerator 13 can operate. It is necessary to increase the distance of the machine 13.
 真空断熱容器14の内部は、真空断熱容器14に設けられた排気ポート(図示せず)から排気される。これにより、真空断熱容器14の内部に配置される高温超電導バルク体11a,11b、熱伝導部材12およびコールドヘッド131と、真空断熱容器14との間が、真空断熱されている。なお、図示は省略するが、常温の真空断熱容器14から低温の高温超電導バルク体11a,11b、熱伝導部材12およびコールドヘッド131への輻射熱の侵入を抑制するために、高温超電導バルク体11a,11b、熱伝導部材12およびコールドヘッド131と、真空断熱容器14との間に、スーパーインシュレータ(断熱シート)を積層させることにより、輻射による侵入熱を抑制する。これにより、高温超電導バルク体11a,11bを更に低温に維持できる。 The inside of the vacuum heat insulation container 14 is exhausted from an exhaust port (not shown) provided in the vacuum heat insulation container 14. As a result, the high-temperature superconducting bulk bodies 11 a and 11 b, the heat conducting member 12 and the cold head 131 disposed inside the vacuum heat insulating container 14 and the vacuum heat insulating container 14 are vacuum insulated. In addition, although illustration is abbreviate | omitted, in order to suppress the penetration | invasion of the radiant heat from the vacuum heat insulation container 14 of normal temperature to the low temperature high temperature superconducting bulk body 11a, 11b, the heat conductive member 12, and the cold head 131, the high temperature superconducting bulk body 11a, 11b, the heat conduction member 12, the cold head 131, and the vacuum heat insulating container 14 are laminated with a super insulator (heat insulating sheet) to suppress intrusion heat due to radiation. Thereby, the high-temperature superconducting bulk bodies 11a and 11b can be maintained at a lower temperature.
<高温超電導バルク体>
 高温超電導バルク体11a,11bは、図2に示すように、円柱形状に加工されている。そして、一対の高温超電導バルク体11a,11bが対向面に被測定空間6を有するように、真空断熱容器14a,14bの内部にそれぞれ配置される。
<High-temperature superconducting bulk material>
The high-temperature superconducting bulk bodies 11a and 11b are processed into a cylindrical shape as shown in FIG. The pair of high-temperature superconducting bulk bodies 11a and 11b are arranged inside the vacuum heat insulating containers 14a and 14b so as to have the measured space 6 on the opposing surfaces.
 冷却することにより超電導永久磁石として働く高温超電導バルク体11(11a,11b)の材料として、例えばその主成分をRE-Ba-Cu-Oで表せる酸化物超電導バルク体がある。ここで、REは、イットリウム(元素記号Y)、サマリウム(Sm)、ランタン(La)、ネオジム(Nd)、ユーロピウム(Eu)、ガドリニウム(Gd)、エルビウム(Er)、イッテルビウム(Yb)を表し、そのうち少なくとも1種または2種以上を合わせてなるものである。 As a material of the high-temperature superconducting bulk body 11 (11a, 11b) that works as a superconducting permanent magnet by cooling, for example, there is an oxide superconducting bulk body whose main component can be expressed by RE-Ba-Cu-O. Here, RE represents yttrium (element symbol Y), samarium (Sm), lanthanum (La), neodymium (Nd), europium (Eu), gadolinium (Gd), erbium (Er), ytterbium (Yb), Of these, at least one type or two or more types are combined.
 絶対温度で90K以上の超電導遷移温度を持つイットリウム系、ネオジム系、サマリウム系などの酸化物超電導体を合成する際、原料をいったん融点よりも高く加熱して溶融させ、再び凝固させるいわゆる溶融法で合成すると、粗大な結晶が成長し形成される高温超電導バルク体(酸化物超電導バルク体)が得られる。超電導となる母相には、絶縁相が微細に分散した組織が得られ、この分散層の存在に起因するピン止め点が磁束を捕捉して、高温超電導バルク体(酸化物超電導バルク体)は擬似的な永久磁石として働く。 When synthesizing yttrium-based, neodymium-based, and samarium-based oxide superconductors having a superconducting transition temperature of 90 K or higher in absolute temperature, the raw material is heated to a temperature higher than the melting point and then melted and then solidified again. When synthesized, a high-temperature superconducting bulk body (oxide superconducting bulk body) in which coarse crystals are grown and formed is obtained. In the parent phase that becomes superconducting, a structure in which the insulating phase is finely dispersed is obtained. The pinning point due to the presence of this dispersed layer captures the magnetic flux, and the high-temperature superconducting bulk body (oxide superconducting bulk body) is Works as a pseudo permanent magnet.
 なお、高温超電導バルク体(酸化物超電導バルク体)の合成には50%以下の銀(Ag)が添加されることもある。銀(Ag)は、超電導相の性能を大きく損なうことなく組織中に分散し、試料のき裂の伝播を抑制して機械的強度を向上したり、融点を降下して結晶成長を早くしたり、種結晶との温度差を与えてその融点を抑制して結晶方位に寄与させることができる。 In addition, 50% or less of silver (Ag) may be added to the synthesis of the high-temperature superconducting bulk body (oxide superconducting bulk body). Silver (Ag) is dispersed in the structure without significantly degrading the performance of the superconducting phase, suppressing the propagation of cracks in the sample to improve the mechanical strength, or lowering the melting point to accelerate crystal growth. By giving a temperature difference from the seed crystal, the melting point can be suppressed and the crystal orientation can be contributed.
 高温超電導バルク体(酸化物超電導バルク体)は、その結晶方位によって超電導特性に異方性があり、結晶軸のc軸に垂直な方向の臨界電流密度が他の結晶方位に比べて高い。このため、結晶軸のc軸を一方向に配向すると優秀な磁場の捕捉ができる。したがって、高温超電導バルク体(酸化物超電導バルク体)をその着磁する磁場方向にc軸を配向することで優れた捕捉磁場特性が得られる。 A high-temperature superconducting bulk body (oxide superconducting bulk body) has anisotropy in superconducting characteristics depending on the crystal orientation, and has a higher critical current density in the direction perpendicular to the c-axis of the crystal axis than other crystal orientations. For this reason, when the c-axis of the crystal axis is oriented in one direction, an excellent magnetic field can be captured. Therefore, excellent trapping magnetic field characteristics can be obtained by orienting the c-axis in the direction of the magnetic field in which the high-temperature superconducting bulk (oxide superconducting bulk) is magnetized.
 また、高温超電導バルク体11(11a,11b)のその他の材料として、例えば二ホウ化マグネシウム(MgB2 )がある。二ホウ化マグネシウムを用いた高温超電導バルク体は、絶対温度で約39Kの超電導遷移温度を持つため、前述の酸化物超電導バルク体と比較して、超電導遷移温度が低く、高温超電導バルク体11(11a,11b)をより低温に冷却する必要がある、即ち、高い冷凍能力を有する冷凍機13が必要になるというデメリットがある。一方で、二ホウ化マグネシウムを用いた高温超電導バルク体は、バルク体を製造する過程において、原料粉末を混合し、バルク体に成型した後に熱処理を行うだけでよいので、前述の酸化物超電導バルク体と比較して、大型のバルク体の製造が容易であること、複雑な結晶構造を持たないこと、金属でも軽い物質であること、というメリットが挙げられる。 Another material for the high-temperature superconducting bulk material 11 (11a, 11b) is, for example, magnesium diboride (MgB 2 ). Since the high-temperature superconducting bulk body using magnesium diboride has a superconducting transition temperature of about 39 K in absolute temperature, the superconducting transition temperature is lower than that of the oxide superconducting bulk body described above, and the high-temperature superconducting bulk body 11 ( 11a, 11b) must be cooled to a lower temperature, that is, there is a demerit that a refrigerator 13 having a high refrigerating capacity is required. On the other hand, the high-temperature superconducting bulk body using magnesium diboride has only to be heat-treated after mixing the raw material powder and forming the bulk body in the process of manufacturing the bulk body. Compared to the body, there are advantages that it is easy to produce a large bulk body, that it does not have a complicated crystal structure, and that a metal is a light substance.
 なお、高温超電導バルク体11(11a,11b)を着磁する際、バルク体には内部に流れる電流と、外部磁場により内部にローレンツ力が働く。このローレンツ力によるバルク体の破壊を防ぐため、高温超電導バルク体11(11a,11b)に樹脂やエポキシ系接着剤を含浸させてもよく、ステンレスやアルミニウム等の金属製リングで高温超電導バルク体11(11a,11b)の周囲を固定する等してもよい。 In addition, when magnetizing the high-temperature superconducting bulk body 11 (11a, 11b), a Lorentz force acts on the bulk body due to the current flowing inside and the external magnetic field. In order to prevent destruction of the bulk body due to this Lorentz force, the high-temperature superconducting bulk body 11 (11a, 11b) may be impregnated with a resin or an epoxy adhesive, and the high-temperature superconducting bulk body 11 is made of a metal ring such as stainless steel or aluminum. The periphery of (11a, 11b) may be fixed.
<着磁装置>
 次に、磁場発生装置1の高温超電導バルク体11(11a,11b)を着磁する着磁装置30および磁場調整装置20について、図4および図5を用いて説明する。図4は、第1実施形態の磁場発生装置1に磁場調整装置20を装着し着磁装置30に挿入した状態を示す斜視図である。図5は、第1実施形態の磁場発生装置1、磁場調整装置20および着磁装置30のB-B線断面図である。
<Magnetic device>
Next, the magnetizing device 30 and the magnetic field adjusting device 20 that magnetize the high-temperature superconducting bulk material 11 (11a, 11b) of the magnetic field generating device 1 will be described with reference to FIGS. FIG. 4 is a perspective view showing a state where the magnetic field adjustment device 20 is mounted on the magnetic field generator 1 of the first embodiment and inserted into the magnetizing device 30. FIG. 5 is a cross-sectional view of the magnetic field generation device 1, the magnetic field adjustment device 20, and the magnetizing device 30 according to the first embodiment taken along line BB.
 着磁装置30は、空間的、時間的に均一な磁場(静磁場)を発生させる装置であり、例えば、超電導線材で製作された着磁用コイル群301a,301bを備え、図5に示す矢印B0 の向きに均一な磁場を発生させている。なお、着磁用コイル群301a,301bは、冷却システム(図示せず)により超電導遷移温度以下に冷却され、超電導を維持する。この冷却システム(図示せず)としては、磁場発生装置1と同様に熱伝導部材によりコイルと冷凍機とを接続し熱伝導により冷却するものであってもよく、液体窒素や液体ヘリウムにより着磁用コイル群301a,301bを侵漬するものであってもよい。 The magnetizing device 30 is a device that generates a spatially and temporally uniform magnetic field (static magnetic field). For example, the magnetizing device 30 includes magnetizing coil groups 301a and 301b made of a superconducting wire, and an arrow shown in FIG. A uniform magnetic field is generated in the direction of B 0 . The magnetizing coil groups 301a and 301b are cooled to a superconducting transition temperature or lower by a cooling system (not shown) to maintain superconductivity. As this cooling system (not shown), a coil and a refrigerator may be connected by a heat conducting member and cooled by heat conduction similarly to the magnetic field generator 1, and magnetized by liquid nitrogen or liquid helium. The coil groups 301a and 301b may be immersed.
 また、着磁装置30は、着磁用コイル群301a,301bに流れる電流を制御する外部電源装置(図示せず)を備え、所定の磁場強度の静磁場を発生させることができる。なお、発生させる磁場を空間的に均一にするために、超電導シムコイルにより磁場調整をするのが好ましい。磁場発生装置1の高温超電導バルク体11(11a,11b)には、この着磁装置30での磁場以下の均一度で着磁されるため、着磁装置30の磁場均一度は高い方がよく、例えば設定した磁場強度に対して磁場発生装置1を挿入する空間内の分布を数ppm程度以下にすることが望ましい。 Further, the magnetizing device 30 includes an external power supply device (not shown) for controlling the current flowing in the magnetizing coil groups 301a and 301b, and can generate a static magnetic field having a predetermined magnetic field strength. In order to make the generated magnetic field spatially uniform, it is preferable to adjust the magnetic field with a superconducting shim coil. Since the high-temperature superconducting bulk material 11 (11a, 11b) of the magnetic field generator 1 is magnetized with a uniformity equal to or less than the magnetic field of the magnetizing device 30, the magnetic field uniformity of the magnetizing device 30 is better. For example, it is desirable that the distribution in the space in which the magnetic field generator 1 is inserted with respect to the set magnetic field intensity is about several ppm or less.
 磁場発生装置1を着磁装置30に挿入した際、着磁装置30から発生する磁場B0 により高温超電導バルク体11(11a,11b)自身が磁化するため、その影響で磁場の空間均一性が乱れる。磁場調整装置20は、この乱れた磁場を調整(補正)する装置であり、真空断熱容器14aに取り付け可能な磁場調整装置20aと、真空断熱容器14bに取り付け可能な磁場調整装置20bと、磁場補正用システム制御部(図示せず)と、を備えている。 When the magnetic field generator 1 is inserted into the magnetizing device 30, the high-temperature superconducting bulk material 11 (11a, 11b) itself is magnetized by the magnetic field B 0 generated from the magnetizing device 30, so that the spatial uniformity of the magnetic field is affected by the influence. Disturbed. The magnetic field adjustment device 20 is a device that adjusts (corrects) this turbulent magnetic field, and includes a magnetic field adjustment device 20a that can be attached to the vacuum heat insulation container 14a, a magnetic field adjustment device 20b that can be attached to the vacuum heat insulation container 14b, and a magnetic field correction. System controller (not shown).
 磁場調整装置20a,20bは、磁場調整コイル群201a,201bがそれぞれ内蔵されている。この磁場調整コイル群201a,201bの材料としては、通常の電磁石で用いられる銅であってもよく、着磁装置30と同様に、冷却システム(図示せず)により超電導遷移温度以下に冷却された超電導線材であってもよい。 The magnetic field adjustment devices 20a and 20b each include magnetic field adjustment coil groups 201a and 201b. The material of the magnetic field adjustment coil groups 201a and 201b may be copper used in a normal electromagnet, and is cooled to a superconducting transition temperature or lower by a cooling system (not shown), similarly to the magnetizing device 30. A superconducting wire may be used.
 磁場補正用システム制御部(図示せず)は、磁場調整コイル群201a,201bに流れる電流を制御することにより、磁場調整コイル群201a,201bで発生する磁場(調整磁場)を制御することができる。 The magnetic field correction system control unit (not shown) can control the magnetic field (adjusted magnetic field) generated in the magnetic field adjustment coil groups 201a and 201b by controlling the current flowing in the magnetic field adjustment coil groups 201a and 201b. .
<磁場発生装置(高温超電導バルク体)の着磁方法>
 次に、磁場発生装置1の着磁について、図6を用いて説明する。図6は、磁場発生装置1の着磁作業を示すフローチャートである。
<Magnetic method of magnetic field generator (high-temperature superconducting bulk body)>
Next, magnetization of the magnetic field generator 1 will be described with reference to FIG. FIG. 6 is a flowchart showing the magnetizing operation of the magnetic field generator 1.
 ステップS101において、着磁作業者は、着磁する磁場強度を設定し、着磁装置30に入力する。着磁装置30は、設定された磁場強度となるまで励磁する。 In step S101, the magnetizing operator sets the magnetic field strength to be magnetized and inputs it to the magnetizing device 30. The magnetizing device 30 excites until the set magnetic field strength is reached.
 ステップS102において、着磁作業者は、磁場発生装置1に磁場調整装置20(20a,20b)を装着する。また、後述するステップS103の準備として、磁場発生装置1の被測定空間6にコイル群2とダミーサンプル(図示せず)を配置する。そして、磁場調整装置20を装着した磁場発生装置1を着磁装置30の磁場領域に挿入する(図4,図5参照)。ここで、図5に示すように、磁場調整装置20a,20bを磁場発生装置1の真空断熱容器14a,14b(図2参照)に装着することにより、高温超電導バルク体11a,11bの近傍に磁場調整コイル群201a,201bが配置される。 In step S102, the magnetizing operator attaches the magnetic field adjustment device 20 (20a, 20b) to the magnetic field generator 1. Further, as a preparation for step S103 to be described later, the coil group 2 and a dummy sample (not shown) are arranged in the measured space 6 of the magnetic field generator 1. Then, the magnetic field generator 1 equipped with the magnetic field adjusting device 20 is inserted into the magnetic field region of the magnetizing device 30 (see FIGS. 4 and 5). Here, as shown in FIG. 5, by attaching the magnetic field adjusting devices 20a and 20b to the vacuum heat insulating containers 14a and 14b (see FIG. 2) of the magnetic field generator 1, a magnetic field is formed in the vicinity of the high-temperature superconducting bulk bodies 11a and 11b. Adjustment coil groups 201a and 201b are arranged.
 なお、磁場発生装置1を着磁装置30の磁場領域に挿入する際、着磁装置30の磁場中心に、磁場発生装置1の高温超電導バルク体11aと高温超電導バルク体11bの間の中心がくるように、磁場発生装置1を挿入(配置)する。また、必要に応じて磁場発生装置1を着磁装置30に非磁性(例えばアルミニウムやFRP)の支持治具(図示せず)により固定する。これにより、高温超電導バルク体11(11a,11b)の冷却が完了し、磁束がバルク体にトラップされた後、着磁装置30の磁場を消磁する際(後述するステップS106)、磁気力によって着磁装置30の中心に向かって磁場発生装置1が移動することを防ぐことができる。 When the magnetic field generator 1 is inserted into the magnetic field region of the magnetizing device 30, the center between the high temperature superconducting bulk body 11a and the high temperature superconducting bulk body 11b of the magnetic field generating device 1 comes to the magnetic field center of the magnetizing device 30. Thus, the magnetic field generator 1 is inserted (arranged). Moreover, the magnetic field generator 1 is fixed to the magnetizing device 30 with a non-magnetic (for example, aluminum or FRP) support jig (not shown) as required. As a result, after the cooling of the high-temperature superconducting bulk body 11 (11a, 11b) is completed and the magnetic flux is trapped in the bulk body, the magnetic field of the magnetizing device 30 is demagnetized (step S106 described later). It is possible to prevent the magnetic field generator 1 from moving toward the center of the magnetic device 30.
 ここで、磁場発生装置1を着磁装置30の磁場領域に挿入すると、高温超電導バルク体11の成分に依存して、着磁装置30の磁場により高温超電導バルク体11が磁化する。このため、磁化した高温超電導バルク体11により、着磁装置30の磁場の空間均一性が乱される。なお、このときの磁化の度合いは、高温超電導バルク体11のRE元素成分により、Y、Sm、Eu、Gdの順に大きくなる。よって、例えば高温超電導バルク体11としてY系のものを使用することにより磁化の影響を小さくできる。しかしながらY系の高温超電導バルク体は、捕捉磁場特性が他の酸化物超電導バルク体に比べて悪いことや、大型材の製造が難しいというデメリットがある。 Here, when the magnetic field generator 1 is inserted into the magnetic field region of the magnetizing device 30, the high-temperature superconducting bulk body 11 is magnetized by the magnetic field of the magnetizing device 30 depending on the components of the high-temperature superconducting bulk body 11. For this reason, the magnetic high-temperature superconducting bulk body 11 disturbs the spatial uniformity of the magnetic field of the magnetizing device 30. The degree of magnetization at this time increases in the order of Y, Sm, Eu, and Gd depending on the RE element component of the high-temperature superconducting bulk body 11. Therefore, for example, by using a Y-type high-temperature superconducting bulk body 11, the influence of magnetization can be reduced. However, Y-based high-temperature superconducting bulk bodies have demerits that the trapping magnetic field characteristics are poor compared to other oxide superconducting bulk bodies, and that it is difficult to manufacture large materials.
 ステップS103において、システム制御部3は、磁場発生装置1の被測定空間6に配置されたコイル群2を用いて、被測定空間6に配置されたダミーサンプル(図示せず)について、設定した磁場強度(S101参照)でのNMR信号を取得する。このとき、磁化した高温超電導バルク体11による磁場の乱れのため、所得した画像に濃淡が生じる。 In step S103, the system control unit 3 uses the coil group 2 arranged in the measured space 6 of the magnetic field generator 1 to set the magnetic field set for the dummy sample (not shown) arranged in the measured space 6. An NMR signal at the intensity (see S101) is acquired. At this time, due to the disturbance of the magnetic field due to the magnetized high-temperature superconducting bulk body 11, light and shade is generated in the obtained image.
 そして、磁場調整装置20の磁場補正用システム制御部(図示せず)は、所得した画像の濃淡に基づいて、画像に濃淡が解消するように、即ち、磁場の乱れが解消するように、磁場調整装置20a,20bの磁場調整コイル群201a,201bに流れる電流を制御して磁場を調整し、均一化させる。なお、必要に応じて、再度NMR信号を取得して磁場均一性の確認を行ってもよい。 Then, the magnetic field correction system control unit (not shown) of the magnetic field adjustment device 20 makes the magnetic field so as to eliminate the shading in the image based on the shading of the acquired image, that is, so as to eliminate the disturbance of the magnetic field. The current flowing through the magnetic field adjustment coil groups 201a and 201b of the adjustment devices 20a and 20b is controlled to adjust and equalize the magnetic field. If necessary, the NMR signal may be acquired again to check the magnetic field uniformity.
 ステップS104において、冷凍機13により高温超電導バルク体11を冷却する。冷却することにより、高温超電導バルク体11が超電導化し、ピン止め力が働き内部に侵入している磁束をトラップさせる。 In step S104, the high-temperature superconducting bulk body 11 is cooled by the refrigerator 13. By cooling, the high-temperature superconducting bulk body 11 becomes superconducting, and the pinning force works to trap the magnetic flux entering the inside.
 ステップS105において、高温超電導バルク体11を所定温度まで冷却が完了したか判定する。所定温度まで冷却が完了した場合(S105・Yes)。ステップS106に進む。所定温度まで冷却が完了していない場合(S105・No)。ステップS103に戻り、ステップS103およびステップS104を繰り返す。 In step S105, it is determined whether the high-temperature superconducting bulk body 11 has been cooled to a predetermined temperature. When cooling to a predetermined temperature is completed (S105 / Yes). Proceed to step S106. When cooling to the predetermined temperature is not completed (No at S105). Returning to step S103, steps S103 and S104 are repeated.
 これは、高温超電導バルク体11の磁化の影響が、温度により変化するためである。このため、高温超電導バルク体11を冷却しつつ(S104)、定期的にNMR信号を取得して磁場の均一度の確認と、磁場調整装置20の磁場調整コイル群201a,201bに流れる電流を制御して磁場の調整を行う(S103)。 This is because the influence of the magnetization of the high-temperature superconducting bulk body 11 changes depending on the temperature. For this reason, while cooling the high-temperature superconducting bulk body 11 (S104), NMR signals are periodically acquired to check the uniformity of the magnetic field, and the current flowing through the magnetic field adjustment coil groups 201a and 201b of the magnetic field adjustment device 20 is controlled. Then, the magnetic field is adjusted (S103).
 なお、冷却温度が十分低く、高温超電導バルク体11の反磁性により磁場調整装置20による磁場調整が困難になった場合、高温超電導バルク体11の冷却を中止し、必要な温度まで昇温して超電導状態を壊した後、磁場調整装置20により再度磁場調整したのち、冷却を再開する。 If the cooling temperature is sufficiently low and the magnetic field adjustment by the magnetic field adjusting device 20 becomes difficult due to the diamagnetism of the high-temperature superconducting bulk body 11, the cooling of the high-temperature superconducting bulk body 11 is stopped and the temperature is raised to a necessary temperature. After breaking the superconducting state, the magnetic field adjustment device 20 adjusts the magnetic field again, and then cooling is resumed.
 高温超電導バルク体11を所定温度まで冷却完了した後、ステップS106において、着磁装置30を消磁する。このときの温度(ステップS105の所定温度)は、高温超電導バルク体11の最低到達温度に対して数K~10K程度高いことが望ましい。これは、着磁が完了した高温超電導バルク体11を所定温度から最低到達温度まで過冷却させることにより、高温超電導バルク体11の磁場の時間変動を抑えることができる。 After completing the cooling of the high-temperature superconducting bulk body 11 to a predetermined temperature, the magnetizing device 30 is demagnetized in step S106. The temperature at this time (predetermined temperature in step S105) is preferably about several K to 10K higher than the lowest temperature reached by the high-temperature superconducting bulk body 11. This can suppress time fluctuation of the magnetic field of the high-temperature superconducting bulk body 11 by supercooling the high-temperature superconducting bulk body 11 that has been magnetized from a predetermined temperature to the lowest temperature.
 着磁装置30の磁場を消磁していくと、高温超電導バルク体11の内部では、電磁誘導によりトラップした磁束(S104参照)を維持するように誘導電流が生じ、この誘導電流が超電導電流として高温超電導バルク体11の内部流れ続け、高温超電導バルク体11が超電導永久磁石として働く。 When the magnetic field of the magnetizing device 30 is demagnetized, an induced current is generated in the high-temperature superconducting bulk body 11 so as to maintain the magnetic flux trapped by electromagnetic induction (see S104), and this induced current becomes a superconducting current at a high temperature. The superconducting bulk body 11 continues to flow, and the high-temperature superconducting bulk body 11 functions as a superconducting permanent magnet.
 着磁装置30の消磁が終わった後、ステップS107において、着磁作業者は磁場発生装置1を着磁装置30および磁場調整装置20から取外し、磁場発生装置1の着磁を完了する。 After demagnetization of the magnetizing device 30, the magnetizing operator removes the magnetic field generating device 1 from the magnetizing device 30 and the magnetic field adjusting device 20 in step S107, and completes the magnetization of the magnetic field generating device 1.
 このように、高温超電導バルク体11は、内部に流れる電流が臨界電流値以下であれば、もとの磁場をコピーしたように、磁束をトラップできる。このため、第1実施形態に係る磁場発生装置1には、着磁装置30と磁場調整装置20による補正された均一な磁場を着磁することができる。特に、磁場調整装置20を磁場発生装置1と着脱可能に構成することにより、磁場調整コイル群201a,201bを高温超電導バルク体11a,11bの近傍に配置して、高温超電導バルク体11a,11bの近傍の磁場を好適に調整することができる。
 また、MRI装置Sのような空間的、時間的に均一な高磁場を要求される磁場発生装置として、高温超電導バルク体11を有する磁場発生装置1を用いることができる。
As described above, the high-temperature superconducting bulk body 11 can trap the magnetic flux as if the original magnetic field was copied if the current flowing through the high-temperature superconducting body 11 was less than the critical current value. For this reason, the magnetic field generator 1 according to the first embodiment can be magnetized with a uniform magnetic field corrected by the magnetizing device 30 and the magnetic field adjusting device 20. In particular, the magnetic field adjusting device 20 is configured to be detachable from the magnetic field generating device 1, so that the magnetic field adjusting coil groups 201a and 201b are arranged in the vicinity of the high temperature superconducting bulk bodies 11a and 11b, and the high temperature superconducting bulk bodies 11a and 11b are arranged. The nearby magnetic field can be suitably adjusted.
Further, as a magnetic field generator that requires a spatially and temporally uniform high magnetic field like the MRI apparatus S, the magnetic field generator 1 having the high-temperature superconducting bulk body 11 can be used.
 また、磁場発生装置1は、高温超電導バルク体11を冷凍機13により冷却し続ければ、着磁後に磁場調整装置20を取外しても、高温超電導バルク体11が超電導永久磁石として働く。このため、磁場発生装置1の磁場発生源を高温超電導バルク体11のみで構成でき、図1から図3に示すように、磁場発生装置1を小型化できる。このため、磁場調整装置20および着磁装置30が設けられた場所と、MRI装置Sを設置する場所とが、離れた場所であっても、着磁装置30および磁場調整装置20を用いて磁場発生装置1を着磁した後、冷凍機13に電力を供給する搬送用冷凍機電源ユニット(図示せず)とともに、磁場発生装置1をMRI装置Sの設置場所まで搬送させることができる。 In addition, if the magnetic field generator 1 continues to cool the high-temperature superconducting bulk body 11 with the refrigerator 13, the high-temperature superconducting bulk body 11 works as a superconducting permanent magnet even if the magnetic field adjusting device 20 is removed after magnetization. For this reason, the magnetic field generation source of the magnetic field generator 1 can be comprised only by the high-temperature superconducting bulk body 11, and as shown in FIGS. 1-3, the magnetic field generator 1 can be reduced in size. For this reason, even if the place where the magnetic field adjusting device 20 and the magnetizing device 30 are provided and the place where the MRI apparatus S is installed are separated from each other, the magnetic field can be obtained using the magnetizing device 30 and the magnetic field adjusting device 20. After magnetizing the generator 1, the magnetic field generator 1 can be transported to the installation location of the MRI apparatus S together with a transport refrigerator power supply unit (not shown) for supplying power to the refrigerator 13.
≪第2実施形態≫
<磁場発生装置>
 第2実施形態に係る磁場発生装置1Cについて、図7および図8を用いて説明する。図7は、第2実施形態の磁場発生装置1Cの斜視図である。図8は、第2実施形態の磁場発生装置1CのC-C線断面図である。
<< Second Embodiment >>
<Magnetic field generator>
A magnetic field generator 1 </ b> C according to the second embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a perspective view of the magnetic field generator 1C of the second embodiment. FIG. 8 is a cross-sectional view taken along the line CC of the magnetic field generator 1C of the second embodiment.
 第1実施形態に係る磁場発生装置1は、図2に示すように、円柱形状に加工された一対の高温超電導バルク体11a,11bを備えているのに対し、第2実施形態に係る磁場発生装置1Cは、図8に示すように、高温超電導バルク体11cをリング状に加工し、リング中心の空洞部分(被測定空間6)に磁場を発生させるようにした点で異なっている。 As shown in FIG. 2, the magnetic field generator 1 according to the first embodiment includes a pair of high-temperature superconducting bulk bodies 11a and 11b processed into a cylindrical shape, whereas the magnetic field generation according to the second embodiment. As shown in FIG. 8, the apparatus 1 </ b> C is different in that the high-temperature superconducting bulk body 11 c is processed into a ring shape and a magnetic field is generated in a hollow portion (measurement space 6) at the center of the ring.
 リング状の高温超電導バルク体11cは、例えば磁場を発生させる空洞部分の軸方向長さを延長させる目的で、複数のリングを積層させる構造にすることもできる。また、高温超電導バルク体11cは、厚み方向に複数の高温超電導バルク体を積層して用いる等、複数個の高温超電導バルク体から構成されてもよい。第2実施形態に係る磁場発生装置1Cでは、第1実施形態に係る磁場発生装置1と比較して、被測定空間6の周方向をリング状の高温超電導バルク体11cで覆うことができ、より均一な磁場を着磁させやすい構造になっている。 The ring-shaped high-temperature superconducting bulk body 11c can also have a structure in which a plurality of rings are stacked, for example, for the purpose of extending the axial length of the cavity that generates the magnetic field. Moreover, the high-temperature superconducting bulk body 11c may be composed of a plurality of high-temperature superconducting bulk bodies, such as using a plurality of high-temperature superconducting bulk bodies stacked in the thickness direction. In the magnetic field generation device 1C according to the second embodiment, compared to the magnetic field generation device 1 according to the first embodiment, the circumferential direction of the space to be measured 6 can be covered with the ring-shaped high-temperature superconducting bulk body 11c. The structure is easy to magnetize a uniform magnetic field.
 また、高温超電導バルク体11cをリング状の構造とすることにより、図7に示すように、真空断熱容器14は、先端中央に高温超電導バルク体11cからの静磁場が発生する被測定空間6となる室温ボアを有する円筒形状にすればよく、第1実施形態の真空断熱容器14と比べて簡易な構造にすることができる。 Further, by forming the high-temperature superconducting bulk body 11c into a ring-shaped structure, as shown in FIG. 7, the vacuum heat insulating container 14 has a space to be measured 6 in which a static magnetic field from the high-temperature superconducting bulk body 11c is generated at the center of the tip. What is necessary is just to make it the cylindrical shape which has the room temperature bore which becomes, and can be made into a simple structure compared with the vacuum heat insulation container 14 of 1st Embodiment.
 図8に示すように、熱伝導部材12は、熱伝導率の大きい材料、例えば無酸素銅等により構成され、主に棒状に加工し用いられるが、真空断熱容器14と同様、第1実施形態と比較して、リング状の高温超電導バルク体11cと冷凍機コールドヘッド131とを同軸上に連結するよう構成すればよいので、より簡易な構造とすることができる。 As shown in FIG. 8, the heat conducting member 12 is made of a material having a high heat conductivity, such as oxygen-free copper, and is mainly processed and used in a rod shape. However, like the vacuum heat insulating container 14, the first embodiment is used. Compared to the above, since the ring-shaped high-temperature superconducting bulk body 11c and the refrigerator cold head 131 may be configured to be connected coaxially, a simpler structure can be achieved.
 ちなみに、後述するように、磁場発生装置1Cを挿入する着磁装置30c(図10参照)は、高温超電導バルク体11cの軸方向(図10の矢印B0 の向き)に磁場を発生させるため、着磁装置30cからの漏洩磁場が第1実施形態に比べて大きくなる。このため、第1実施形態の場合よりも、磁場発生装置1Cの熱伝導部材12および真空断熱容器14の長さを長くして、冷凍機13が動作可能な磁場強度まで着磁装置30cの磁場発生部分から冷凍機13の距離を離す必要がある。 Incidentally, as described later, (see Fig. 10) magnetizing apparatus 30c for inserting the magnetic field generator. 1C, for generating a magnetic field in the axial direction of the high-temperature superconducting bulk body 11c (the direction of arrow B 0 in FIG. 10), The leakage magnetic field from the magnetizing device 30c is larger than that in the first embodiment. For this reason, compared with the case of 1st Embodiment, the length of the heat conductive member 12 and the vacuum heat insulation container 14 of the magnetic field generator 1C is lengthened, and the magnetic field of the magnetizing device 30c to the magnetic field intensity which can operate the refrigerator 13 is obtained. It is necessary to separate the refrigerator 13 from the generation part.
 その他、第1実施形態と同様、真空断熱容器14と高温超電導バルク体11c、熱伝導部材12、および冷凍機コールドヘッド131が直接接触しないよう、真空断熱容器14と熱伝導部材12とを、FRP等の熱伝導率の小さい材料で作られた荷重支持体(図示せず)により間接的に支持固定してもよい。 In addition, as in the first embodiment, the vacuum heat insulation container 14 and the heat conduction member 12 are connected to the FRP so that the vacuum heat insulation container 14 and the high-temperature superconducting bulk body 11c, the heat conduction member 12, and the refrigerator cold head 131 are not in direct contact with each other. Alternatively, the support may be indirectly supported and fixed by a load support (not shown) made of a material having a low thermal conductivity such as the like.
<着磁装置>
 次に、磁場発生装置1Cの高温超電導バルク体11cを着磁する着磁装置30cおよび磁場調整装置20cについて、図9および図10を用いて説明する。図9は、第2実施形態の磁場発生装置1Cに磁場調整装置20cを装着し着磁装置30cに挿入した状態を示す斜視図である。図10は、第2実施形態の磁場発生装置1C、磁場調整装置20cおよび着磁装置30cのD-D線断面図である。
<Magnetic device>
Next, a magnetizing device 30c and a magnetic field adjusting device 20c for magnetizing the high-temperature superconducting bulk body 11c of the magnetic field generating device 1C will be described with reference to FIGS. FIG. 9 is a perspective view showing a state where the magnetic field adjustment device 20c is mounted on the magnetic field generation device 1C of the second embodiment and is inserted into the magnetization device 30c. FIG. 10 is a cross-sectional view taken along the line DD of the magnetic field generator 1C, the magnetic field adjusting device 20c, and the magnetizing device 30c of the second embodiment.
 第1実施形態の場合と同様に、磁場発生装置1の高温超電導バルク体11cの近傍に磁場調整装置20cの磁場調整コイル群201cを配置する必要がある。ここで、図10に示すように、高温超電導バルク体11cはリング状であり、真空断熱容器14も円筒形状で構成されるため、磁場調整装置20c一つを磁場発生装置1に取り付けるだけでよい。 As in the case of the first embodiment, it is necessary to arrange the magnetic field adjustment coil group 201c of the magnetic field adjustment device 20c in the vicinity of the high-temperature superconducting bulk body 11c of the magnetic field generation device 1. Here, as shown in FIG. 10, the high-temperature superconducting bulk body 11 c has a ring shape, and the vacuum heat insulating container 14 also has a cylindrical shape. Therefore, only one magnetic field adjustment device 20 c needs to be attached to the magnetic field generation device 1. .
 また、図10に示すように、着磁装置30cの着磁用コイル群301cは、リング状の高温超電導バルク体11cの軸方向(矢印B0 の向き)に均一な磁場を発生させている。このように、リング状の高温超電導バルク体11cの軸方向に着磁することで、より均一な磁場分布を得られる。なお、着磁の手順は、第1実施形態(図6参照)と同様であり、説明を省略する。 Further, as shown in FIG. 10, the magnetizing coils 301c of magnetizing apparatus 30c is to generate a uniform magnetic field in the axial direction of the ring-shaped high-temperature superconducting bulk body 11c (the direction of arrow B 0). Thus, by magnetizing in the axial direction of the ring-shaped high-temperature superconducting bulk body 11c, a more uniform magnetic field distribution can be obtained. The magnetization procedure is the same as that in the first embodiment (see FIG. 6), and a description thereof will be omitted.
 このように、第2実施形態に係る磁場発生装置1Cは、被測定空間6の周方向周囲を高温超電導バルク体11cで囲むことができ、より均一な磁場分布を得られる。また、熱伝導部材12および真空断熱容器14を簡易な構成とすることができる。 Thus, the magnetic field generator 1C according to the second embodiment can surround the circumference of the space 6 to be measured with the high-temperature superconducting bulk body 11c and obtain a more uniform magnetic field distribution. Moreover, the heat conductive member 12 and the vacuum heat insulation container 14 can be made into a simple structure.
S              磁気共鳴イメージング装置(MRI装置)
1、1C           磁場発生装置
2              コイル群
3              システム制御部
4              出力装置
5              冷凍機電源ユニット
6              被測定空間
11,11a,11b,11c 高温超電導バルク体
12             熱伝導部材
13             冷凍機
131            コールドヘッド
14             真空断熱容器
20,20a,20b,20c 磁場調整装置
201a,201b,201c 磁場調整コイル群
30,30c         着磁装置(静磁場発生装置)
301a,301b,301c 着磁用コイル群
S Magnetic resonance imaging system (MRI system)
DESCRIPTION OF SYMBOLS 1, 1C Magnetic field generator 2 Coil group 3 System control part 4 Output device 5 Refrigerator power supply unit 6 Measurement space 11, 11a, 11b, 11c High-temperature superconducting bulk body 12 Thermal conduction member 13 Refrigerator 131 Cold head 14 Vacuum insulation container 20, 20a, 20b, 20c Magnetic field adjusting devices 201a, 201b, 201c Magnetic field adjusting coil groups 30, 30c Magnetizing device (static magnetic field generating device)
301a, 301b, 301c Magnetizing coil group

Claims (5)

  1.  真空断熱容器と、
     前記真空断熱容器の内部に配置され、冷却され磁場を印加されることにより超電導電流が内部を流れて前記磁場を捕捉し、補足した前記磁場を供給する高温超電導バルク体と、
     前記高温超電導バルク体を極低温に冷却する冷凍機と、を備え、
     前記高温超電導バルク体は、
     該高温超電導バルク体に磁場を印加する着磁装置と、
      該高温超電導バルク体の近傍の磁場を調整する着脱可能な磁場調整装置と、を用いて着磁される
    ことを特徴とする磁場発生装置。
    A vacuum insulation container;
    A high-temperature superconducting bulk body that is disposed inside the vacuum insulation container, is cooled and applied with a magnetic field so that a superconducting current flows inside to capture the magnetic field and supplies the supplemented magnetic field;
    A refrigerator that cools the high-temperature superconducting bulk body to a cryogenic temperature, and
    The high temperature superconducting bulk body is:
    A magnetizing device for applying a magnetic field to the high-temperature superconducting bulk body;
    A magnetic field generator characterized by being magnetized using a detachable magnetic field adjusting device for adjusting a magnetic field in the vicinity of the high-temperature superconducting bulk body.
  2.  前記高温超電導バルク体は、
     一対の高温超電導バルク体を有し、該一対の高温超電導バルク体の対向面に捕捉した前記磁場を供給する
    ことを特徴とする請求項1に記載の磁場発生装置。
    The high temperature superconducting bulk body is:
    The magnetic field generator according to claim 1, further comprising a pair of high-temperature superconducting bulk bodies and supplying the captured magnetic field to opposing surfaces of the pair of high-temperature superconducting bulk bodies.
  3.  前記高温超電導バルク体は、
     リング状の高温超電導バルク体を有し、該リング状の高温超電導バルク体の中央部に捕捉した前記磁場を供給する
    ことを特徴とする請求項1に記載の磁場発生装置。
    The high temperature superconducting bulk body is:
    The magnetic field generator according to claim 1, wherein the magnetic field generator has a ring-shaped high-temperature superconducting bulk body and supplies the captured magnetic field to a central portion of the ring-shaped high-temperature superconducting bulk body.
  4.  請求項1乃至請求項3のいずれか1項に記載の磁場調整装置により被検体を設置する被測定空間に静磁場を発生させ、前記被検体からの磁気共鳴信号を取得することにより、前記被検体の画像を得ることを特徴とする磁気共鳴イメージング装置。 The magnetic field adjustment device according to claim 1 generates a static magnetic field in a measurement space in which the subject is set, and acquires a magnetic resonance signal from the subject, thereby obtaining the subject. A magnetic resonance imaging apparatus characterized by obtaining an image of a specimen.
  5.  静磁場を発生させ、高温超電導バルク体に静磁場を印加する静磁場発生装置と、
     前記高温超電導バルク体を有する磁場発生装置と着脱可能に構成され、印加された前記静磁場により前記高温超電導バルク体が磁化し、磁化した該高温超電導バルク体による磁場の乱れを調整する磁場調整装置と、を備える
    ことを特徴とする高温超電導バルク体の着磁装置。
    A static magnetic field generator for generating a static magnetic field and applying the static magnetic field to the high-temperature superconducting bulk body;
    Magnetic field adjustment device configured to be detachable from the magnetic field generator having the high-temperature superconducting bulk body, and magnetizing the high-temperature superconducting bulk body by the applied static magnetic field, and adjusting magnetic field disturbance due to the magnetized high-temperature superconducting bulk body And a magnetizing device for a high-temperature superconducting bulk body.
PCT/JP2014/064569 2013-07-31 2014-06-02 Magnetic field-generating device, magnetic resonance imaging apparatus using same, and magnetization unit for high temperature superconducting bulks WO2015015892A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015529430A JPWO2015015892A1 (en) 2013-07-31 2014-06-02 Magnetic field generator, magnetic resonance imaging apparatus using the same, and magnetizing apparatus for high-temperature superconducting bulk material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013159363 2013-07-31
JP2013-159363 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015015892A1 true WO2015015892A1 (en) 2015-02-05

Family

ID=52431437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064569 WO2015015892A1 (en) 2013-07-31 2014-06-02 Magnetic field-generating device, magnetic resonance imaging apparatus using same, and magnetization unit for high temperature superconducting bulks

Country Status (2)

Country Link
JP (1) JPWO2015015892A1 (en)
WO (1) WO2015015892A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021506A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Bulk magnet structure and bulk magnet system for nmr
EP3657193A1 (en) 2018-11-20 2020-05-27 Bruker Switzerland AG Method for magnetizing a superconductor bulk magnet, with generating an auxiliary magnetic field in the superconductor bore
EP4053860A1 (en) 2021-03-05 2022-09-07 Bruker Switzerland AG A method for charging a superconductor bulk magnet by field-cooling, with at least one non-homogeneous magnetic field component of the applied charger magnetic field

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008917A (en) * 2000-06-26 2002-01-11 Inst Of Physical & Chemical Res Control method of superconductor magnetic field application apparatus, nuclear magnetic resonance apparatus using the same, and superconducting magnet apparatus
JP2006034528A (en) * 2004-07-26 2006-02-09 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging device and magnet system
JP2009156719A (en) * 2007-12-27 2009-07-16 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnetic field generating device, magnetization method therefor, and nuclear magnetic resonance apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008917A (en) * 2000-06-26 2002-01-11 Inst Of Physical & Chemical Res Control method of superconductor magnetic field application apparatus, nuclear magnetic resonance apparatus using the same, and superconducting magnet apparatus
JP2006034528A (en) * 2004-07-26 2006-02-09 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging device and magnet system
JP2009156719A (en) * 2007-12-27 2009-07-16 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnetic field generating device, magnetization method therefor, and nuclear magnetic resonance apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORIHIDE SAHO ET AL.: "Development of a Palm-sized Miniature Superconducting Bulk Magnet", CRYOGENIC ENGINEERING, vol. 47, no. 7, 12 September 2012 (2012-09-12), pages 430 - 435 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021506A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Bulk magnet structure and bulk magnet system for nmr
JPWO2018021506A1 (en) * 2016-07-27 2019-06-13 日本製鉄株式会社 Bulk magnet structure and bulk magnet system for NMR
US10712411B2 (en) 2016-07-27 2020-07-14 Nippon Steel Corporation Bulk magnet structure and bulk magnet system for NMR
EP3657193A1 (en) 2018-11-20 2020-05-27 Bruker Switzerland AG Method for magnetizing a superconductor bulk magnet, with generating an auxiliary magnetic field in the superconductor bore
JP2020106521A (en) * 2018-11-20 2020-07-09 ブルーカー スウィッツァーランド アー・ゲーBruker Switzerland AG Method for magnetizing superconductor bulk magnet, with generating auxiliary magnetic field in superconductor bore
US11551843B2 (en) 2018-11-20 2023-01-10 Bruker Switzerland Ag Method for magnetizing a superconductor bulk magnet, with generating an auxiliary magnetic field in the superconductor bore
EP4053860A1 (en) 2021-03-05 2022-09-07 Bruker Switzerland AG A method for charging a superconductor bulk magnet by field-cooling, with at least one non-homogeneous magnetic field component of the applied charger magnetic field

Also Published As

Publication number Publication date
JPWO2015015892A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US6169402B1 (en) Nuclear magnetic resonance spectrometer
RU2572650C2 (en) Module with gradient coils from superconductor with cryogenic cooling for magnetic-resonance tomography
JP4317646B2 (en) Nuclear magnetic resonance apparatus
US6828791B2 (en) Nuclear magnetic resonance apparatus probe having a solenoid coil and a saddle coil and nuclear magnetic resonance apparatus probe using the same
RU2011141120A (en) MAGNETIC RESONANT TOMOGRAPHY SYSTEM, INCLUDING A SUPERCONDUCTING MAIN MAGNET, A SUPERCONDUCTING GRADIENT COIL AND A COOLED RADIO FREQUENCY
JP5265899B2 (en) High temperature superconducting current leads for superconducting magnets
JP2007136202A (en) Magnetic resonance imaging system which requires low necessity for cooling
US11009572B2 (en) Integrated single-sourced cooling of superconducting magnets and RF coils in nuclear magnetic resonance devices
US8947090B2 (en) Electromagnet assembly
WO2015015892A1 (en) Magnetic field-generating device, magnetic resonance imaging apparatus using same, and magnetization unit for high temperature superconducting bulks
JP2005152632A (en) Mri system utilizing supplemental static field-shaping coils
JP2004349276A (en) Superconducting permanent magnet unit
JP6369851B2 (en) Magnetic field generation apparatus and magnetic field generation method
CN104434103A (en) Magnetic resonance imaging apparatus
JP2016046278A (en) Magnetic field generation device
JP6941703B2 (en) Superconducting magnet devices and methods for magnetizing superconducting bulk magnets by field cooling via a ferromagnetic shield
JP2016118513A (en) Field generation device
EP3128336A1 (en) Laminated and fixed structure of superconducting bulk body and magnetic field generating apparatus
JP7114881B2 (en) Superconducting magnetic field generator and nuclear magnetic resonance device
JP2002238874A (en) Magnet device and magnetic resonance imaging apparatus using the same, and adjuster of magnetic field uniformity coefficient, and method of adjusting the magnetic field uniformity coefficient
JP2002221560A (en) Magnetic field generation device
JP7122007B2 (en) Superconducting device and magnet device
JP7460879B2 (en) Nuclear magnetic resonance magnetic field generating device and method for producing the same
US20110056228A1 (en) Cooling apparatus for nuclear magnetic resonance imaging rf coil
JPWO2020067458A1 (en) Magnet unit for nuclear magnetic resonance and magnetic field generator for nuclear magnetic resonance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832605

Country of ref document: EP

Kind code of ref document: A1