JP7121545B2 - Method for joining concrete structures and method for joining precast concrete members - Google Patents

Method for joining concrete structures and method for joining precast concrete members Download PDF

Info

Publication number
JP7121545B2
JP7121545B2 JP2018103262A JP2018103262A JP7121545B2 JP 7121545 B2 JP7121545 B2 JP 7121545B2 JP 2018103262 A JP2018103262 A JP 2018103262A JP 2018103262 A JP2018103262 A JP 2018103262A JP 7121545 B2 JP7121545 B2 JP 7121545B2
Authority
JP
Japan
Prior art keywords
resin
members
joining
resin member
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103262A
Other languages
Japanese (ja)
Other versions
JP2019206870A (en
Inventor
周斗 高橋
康祐 横関
大介 林
直樹 曽我部
剛 取違
祐起 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2018103262A priority Critical patent/JP7121545B2/en
Publication of JP2019206870A publication Critical patent/JP2019206870A/en
Application granted granted Critical
Publication of JP7121545B2 publication Critical patent/JP7121545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、コンクリート構造物の接合方法及びプレキャストコンクリート部材の接合方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for joining concrete structures and a method for joining precast concrete members.

従来、接合部の止水性を確保しながらコンクリート構造物同士を接合する方法として、コンクリート構造物同士の間にコンクリートや無収縮モルタル等を充填して間詰めする方法が知られている(例えば、特許文献1参照。)。 Conventionally, as a method of joining concrete structures while ensuring water cutoff at joints, a method of filling concrete, non-shrinking mortar, or the like between concrete structures is known (for example, See Patent Document 1.).

特開2009-264040号公報Japanese Patent Application Laid-Open No. 2009-264040

しかしながら、これらの方法では間詰め材が硬化して強度を発現するまでに時間を要するので、工期短縮にも限界があった。また、長期に亘る間詰め材の収縮で接合部にひび割れが生じ、止水性や耐久性が低下する懸念もあった。本発明は、接合部の止水性や耐久性を確保しつつ、工期短縮を図ることができるコンクリート構造物の接合方法及びプレキャストコンクリート部材の接合方法を提供することを目的とする。 However, with these methods, it takes time for the filling material to harden and develop strength, so there is a limit to shortening the construction period. In addition, there is also a concern that cracks may occur in joints due to contraction of the filling material over a long period of time, resulting in a decrease in water resistance and durability. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for joining concrete structures and a method for joining precast concrete members, which are capable of shortening the construction period while ensuring the waterproofness and durability of the joints.

本発明のコンクリート構造物の接合方法は、コンクリート構造物と、熱可塑性樹脂を含みコンクリート構造物の表面に固定された樹脂部材と、を有する複合構造物を複数準備する複合構造物準備工程と、複合構造物の樹脂部材同士を溶着させ、樹脂部材同士が一体化されてなる溶着樹脂部を介してコンクリート構造物同士が接合された状態とする樹脂部材溶着工程と、を備える。 A concrete structure joining method of the present invention comprises a composite structure preparing step of preparing a plurality of composite structures each having a concrete structure and a resin member containing a thermoplastic resin and fixed to a surface of the concrete structure; and a resin member welding step of welding the resin members of the composite structure to each other and connecting the concrete structures to each other via a welded resin portion formed by integrating the resin members.

この接合方法によれば、コンクリート構造物の接合端面の表面に固定された樹脂部材の溶着によって、コンクリート構造物同士が接合される。溶着される樹脂部材は比較的速く硬化し強度を発現するので、コンクリート構造物の接合の時間が短縮され、ひいては工期短縮を図ることができる。また、樹脂部材は熱可塑性樹脂を含むので、樹脂部材同士の溶着によってコンクリート構造物同士の接合部が連続体(溶着樹脂部)として一体化し、その後は、溶着樹脂部自体はほとんど収縮しない。従って、長期に亘る収縮に起因して溶着樹脂部にひび割れが発生する等の可能性も低く、接合部の止水性、耐久性が確保される。よって、工期短縮と止水性、耐久性の確保とを両立することができる。 According to this joining method, the concrete structures are joined together by welding the resin members fixed to the joint end surfaces of the concrete structures. Since the welded resin member hardens relatively quickly and develops strength, the time required for joining the concrete structure can be shortened, and the construction period can be shortened. In addition, since the resin member contains a thermoplastic resin, the joints between the concrete structures are integrated as a continuous body (welded resin portion) by welding the resin members together, and after that, the welded resin portion itself hardly shrinks. Therefore, the welded resin portion is less likely to crack due to shrinkage over a long period of time, and the waterproofness and durability of the joint are ensured. Therefore, it is possible to achieve both shortening of the construction period and securing of water stoppage and durability.

本発明のコンクリート構造物の接合方法では、樹脂部材はシリカ成分を含み、複合構造物準備工程は、コンクリート構造物の材料であるフレッシュコンクリートを、樹脂部材に接触した状態で硬化させて複合構造物を製作する工程を含むようにしてもよい。本発明のコンクリート構造物の接合方法では、樹脂部材はシリカ成分を含み、複合構造物は、コンクリート構造物の材料であるフレッシュコンクリートを、樹脂部材に接触した状態で硬化させて製作されたものであるようにしてもよい。 In the concrete structure joining method of the present invention, the resin member contains a silica component, and in the composite structure preparation step, fresh concrete, which is a material of the concrete structure, is cured in contact with the resin member to form a composite structure. You may make it include the process of manufacturing. In the concrete structure joining method of the present invention, the resin member contains a silica component, and the composite structure is produced by curing fresh concrete, which is the material of the concrete structure, in contact with the resin member. You can let it be.

フレッシュコンクリートが硬化する際には、セメントの水和反応過程において、樹脂部材に含まれるシリカ成分とフレッシュコンクリートに含まれる水酸化カルシウムとの化学反応によって、珪酸カルシウム水和物の一種であるトバモライト(5CaO・6SiO2・5H2O)が生成する。よって、上記接合方法によれば、コンクリート構造物と樹脂部材とが強固に接合され、コンクリート構造物と樹脂部材との接合部の止水性も高い。 When fresh concrete hardens, tobermorite ( 5CaO.6SiO2.5H2O ) is produced . Therefore, according to the above joining method, the concrete structure and the resin member are firmly joined, and the joint portion between the concrete structure and the resin member has a high water cut-off property.

樹脂部材溶着工程は、樹脂部材同士を振動溶着法によって溶着する工程を含むようにしてもよい。樹脂部材溶着工程は、加熱された樹脂部材同士を押し付ける方向に複合構造物を加圧する加圧工程を含むこととしてもよい。 The resin member welding step may include a step of welding the resin members together by a vibration welding method. The resin member welding step may include a pressurization step of pressurizing the composite structure in a direction to press the heated resin members together.

本発明のコンクリート構造物の接合方法は複数のプレキャストコンクリート部材にプレストレスを導入してプレキャストコンクリート部材同士を接合する接合方法であって、プレキャストコンクリート部材と、熱可塑性樹脂を含みプレキャストコンクリート部材の端面に固定された樹脂部材と、を有する複合部材を複数準備する複合部材準備工程と、複合部材の樹脂部材同士を溶着させ、樹脂部材同士が一体化されてなる溶着樹脂部を介してプレキャストコンクリート部材同士が接合された状態とする樹脂部材溶着工程と、樹脂部材溶着工程で接合された複数のプレキャストコンクリート部材にプレストレスを導入するプレストレス導入工程と、を備え、樹脂部材溶着工程は、各々の複合部材の樹脂部材を加熱する加熱工程と、プレストレス導入工程におけるプレストレスよりも小さい加圧力で、加熱工程で加熱された樹脂部材同士を押し付ける方向に複合部材を加圧する加圧工程と、を有する。 A method for joining a concrete structure according to the present invention is a joining method for introducing prestress to a plurality of precast concrete members to join the precast concrete members together, and comprises a precast concrete member and an end face of the precast concrete member containing a thermoplastic resin. and a composite member preparing step of preparing a plurality of composite members having a resin member fixed to a precast concrete member through a welded resin portion formed by welding the resin members of the composite members together and integrating the resin members together. and a prestress introduction step of introducing prestress to a plurality of precast concrete members joined in the resin member welding step. A heating step of heating the resin member of the composite member, and a pressing step of pressing the composite member in a direction in which the resin members heated in the heating step are pressed against each other with a pressure smaller than the prestress in the prestress introduction step. have.

本発明によれば、接合部の止水性、耐久性を確保しつつ、工期短縮を図ることができるコンクリート構造物の接合方法及びプレキャストコンクリート部材の接合方法を提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a method for joining concrete structures and a method for joining precast concrete members, which are capable of shortening the construction period while ensuring the waterproofness and durability of the joints.

本発明の接合方法に使用される複数の複合部材の斜視図である。1 is a perspective view of multiple composite members used in the joining method of the present invention; FIG. 図1の複合部材同士の隣接する接合端面近傍を拡大して示す正面図である。FIG. 2 is a front view showing an enlarged vicinity of joint end surfaces of the composite members shown in FIG. 1 ; (a)~(c)は、複合部材の製作方法を示す断面図である。(a) to (c) are cross-sectional views showing a method of manufacturing a composite member. (a)~(c)は、複合部材同士の接合方法を示す正面図である。(a) to (c) are front views showing a method of joining composite members. (a)は、樹脂部材の表面を拡大して示す平面図であり、(b)は、樹脂部材の断面図である。(a) is a plan view showing an enlarged surface of a resin member, and (b) is a cross-sectional view of the resin member.

以下、図面を参照しつつ本発明に係るコンクリート構造物の接合方法の実施形態について詳細に説明する。本実施形態の接合方法は、コンクリート建造物の施工現場においてコンクリート構造物同士を接合する用途に用いられ、特に接合部の止水性が要求される用途で用いられる。 Hereinafter, an embodiment of a method for joining concrete structures according to the present invention will be described in detail with reference to the drawings. The joining method of the present embodiment is used for joining concrete structures together at a construction site of a concrete building, and is particularly used for a use where waterproofing of joints is required.

本実施形態では、図1に示されるように、道路橋に用いられるプレキャスト床版5(コンクリート構造物、プレキャストコンクリート部材)同士の接合方法を例として説明する。当該接合方法によって、複数のプレキャスト床版5が橋軸方向に連続的に連結される。最終的には、橋軸方向に配列された複数のプレキャスト床版5に対しプレストレスが導入され互いに強固に連結されることで、道路橋床版(コンクリート建造物)が構築される。本実施形態の接合方法は、以下に説明する複合部材準備工程と、樹脂部材溶着工程と、プレストレス導入工程と、を備える。 In this embodiment, as shown in FIG. 1, a method of joining precast floor slabs 5 (concrete structures, precast concrete members) used for road bridges will be described as an example. By this joining method, a plurality of precast floor slabs 5 are continuously connected in the bridge axis direction. Ultimately, prestress is applied to a plurality of precast floor slabs 5 arranged in the direction of the bridge axis, and the precast floor slabs 5 are strongly connected to each other, thereby constructing a road bridge slab (concrete structure). The joining method of this embodiment includes a composite member preparation step, a resin member welding step, and a prestress introducing step, which will be described below.

(複合部材準備工程)
複合部材準備工程では、図1及び図2に示されるように複数の複合部材3(複合構造物)が準備される。複合部材3とは、接合の対象であるプレキャスト床版5の接合端面7に予め樹脂部材9を固定してなる構造物である。すなわち、各複合部材3は、接合の対象であるプレキャスト床版5と、当該プレキャスト床版5の表面に固定された樹脂部材9と、を有する構造物である。複合構造物準備工程では、例えば、予め工場で製作された複数の複合部材3が道路橋床版の施工現場に搬入される。
(Composite member preparation process)
In the composite member preparing step, a plurality of composite members 3 (composite structures) are prepared as shown in FIGS. The composite member 3 is a structure in which a resin member 9 is fixed in advance to a joint end surface 7 of a precast floor slab 5 to be jointed. That is, each composite member 3 is a structure having a precast floor slab 5 to be joined and a resin member 9 fixed to the surface of the precast floor slab 5 . In the composite structure preparation process, for example, a plurality of composite members 3 manufactured in advance at a factory are carried to the road bridge deck construction site.

樹脂部材9は、薄板状又はシート状をなしており、接合対象である接合端面7に固定される。樹脂部材9は熱可塑性樹脂を主成分とする。この熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリカーボネート(PC)、ABS樹脂、ナイロン、EVA樹脂等が使用される。樹脂部材9は、ポリマーセメント、砂、石灰石微粉末、繊維等の異種材料を含有してもよい。また、樹脂部材9は、シリカ(SiO2)成分を含有している。シリカ源としてフライアッシュが樹脂部材9に含有されてもよい。 The resin member 9 is in the shape of a thin plate or a sheet, and is fixed to the joint end face 7 to be joined. The resin member 9 is mainly composed of thermoplastic resin. As this thermoplastic resin, for example, polypropylene (PP), polycarbonate (PC), ABS resin, nylon, EVA resin, or the like is used. The resin member 9 may contain different materials such as polymer cement, sand, fine limestone powder, and fibers. Moreover, the resin member 9 contains a silica (SiO 2 ) component. Fly ash may be contained in the resin member 9 as a silica source.

複合部材3は、例えば次のような方法により工場で製造される。図3(a)に示されるように、コンクリート型枠11内の両端に樹脂部材9を仕込んだ状態で、図3(b)に示されるように、コンクリート型枠11内にフレッシュコンクリートCが打設される。後述の挿通孔13をプレキャスト床版5に形成するため、フレッシュコンクリートCが投入される空間には予めシース管12が設置される。当該シース管12の中空部が、後述の緊張材15を挿通させるための挿通孔13として機能する。また、樹脂部材9にも予め対応する位置に挿通孔13が設けられてもよい。また、詳細な図示は省略するが、フレッシュコンクリートCが投入される空間には鉄筋が予め設置される。 The composite member 3 is manufactured at a factory, for example, by the following method. As shown in FIG. 3(a), the resin members 9 are placed at both ends of the concrete formwork 11, and fresh concrete C is poured into the concrete formwork 11 as shown in FIG. 3(b). is set. In order to form the later-described insertion holes 13 in the precast floor slab 5, the sheath pipe 12 is installed in advance in the space into which the fresh concrete C is poured. A hollow portion of the sheath tube 12 functions as an insertion hole 13 for inserting a tendon 15, which will be described later. Further, the resin member 9 may also be provided with the insertion holes 13 at corresponding positions in advance. Further, although detailed illustration is omitted, reinforcing bars are installed in advance in the space into which the fresh concrete C is thrown.

投入されたフレッシュコンクリートCは、樹脂部材9に接触した状態で硬化し、プレキャスト床版5となる。ここで、フレッシュコンクリートCが硬化する際には、セメントの水和反応過程において、樹脂部材9に含まれるシリカ成分とフレッシュコンクリートCに含まれる水酸化カルシウムとの化学反応によって、珪酸カルシウム水和物の一種であるトバモライト(5CaO・6SiO2・5H2O)が生成する。よって、プレキャスト床版5と樹脂部材9とが強固に接合されると共に、プレキャスト床版5と樹脂部材9との接合部の止水性も高い。その後、図3(c)に示されるようにコンクリート型枠11が除去されて、複合部材3が完成する。なお、上記のフレッシュコンクリートCの打設においては、樹脂部材9を埋設型枠として機能させてもよい。この場合、複合部材3の即脱成形が可能であり製造効率が向上する。 The charged fresh concrete C hardens in contact with the resin member 9 and becomes the precast floor slab 5 . Here, when the fresh concrete C hardens, the chemical reaction between the silica component contained in the resin member 9 and the calcium hydroxide contained in the fresh concrete C causes calcium silicate hydrate to form during the cement hydration reaction process. Tobermorite (5CaO 6SiO 2 5H 2 O), which is a kind of Therefore, the precast floor slab 5 and the resin member 9 are firmly joined together, and the joint portion between the precast floor slab 5 and the resin member 9 is highly waterproof. After that, as shown in FIG. 3(c), the concrete formwork 11 is removed, and the composite member 3 is completed. In placing the fresh concrete C described above, the resin member 9 may function as an embedded formwork. In this case, immediate release molding of the composite member 3 is possible, and the manufacturing efficiency is improved.

(樹脂部材溶着工程)
続く樹脂部材溶着工程は、道路橋床版の施工現場で実行される。樹脂部材溶着工程では、隣接する複合部材3の樹脂部材9同士を溶着させることによりプレキャスト床版5同士が接合される。以下、樹脂部材溶着工程の処理を具体的に説明する。以下の説明では、図2に示されるようにプレキャスト床版5同士の1つの接合部に注目して主に説明するが、樹脂部材溶着工程では他の接合部においても同じ処理が実行される。
(Resin member welding process)
The subsequent resin member welding step is performed at the road bridge deck construction site. In the resin member welding step, the precast floor slabs 5 are joined together by welding the resin members 9 of the adjacent composite members 3 together. The processing of the resin member welding process will be specifically described below. In the following description, as shown in FIG. 2, one joint between the precast floor slabs 5 will be mainly described, but in the resin member welding process, other joints are also subjected to the same process.

まず、図1及び図2に示されるように、隣接する複合部材3の接合端面7同士が向かい合うように設置される。そして、接合端面7上の樹脂部材9が加熱され、加熱によって樹脂部材9が溶融する(加熱工程)。このときの樹脂部材9の加熱温度は、樹脂部材9の材料の特性に合わせて設定されればよく、例えば80~500℃である。樹脂部材9の加熱方法としては、種々の加熱方法を採用することができる。樹脂部材9は、例えば、ヒーターや電熱線等で加熱されてもよく、レーザや電磁誘導を利用した加熱方法により加熱されてもよい。電熱線が予め樹脂部材9やプレキャスト床版5に仕込まれていてもよい。また、対面する樹脂部材9同士の間に高温の金属板材等を挟み込むといった加熱方法が採用されてもよい。 First, as shown in FIGS. 1 and 2, adjacent composite members 3 are installed so that their joint end faces 7 face each other. Then, the resin member 9 on the joining end surface 7 is heated, and the resin member 9 is melted by heating (heating step). The heating temperature of the resin member 9 at this time may be set according to the characteristics of the material of the resin member 9, and is, for example, 80 to 500.degree. As a method for heating the resin member 9, various heating methods can be adopted. The resin member 9 may be heated by, for example, a heater, a heating wire, or the like, or may be heated by a heating method using a laser or electromagnetic induction. A heating wire may be installed in the resin member 9 or the precast floor slab 5 in advance. Alternatively, a heating method may be employed in which a high-temperature metal plate or the like is sandwiched between the facing resin members 9 .

次に、図4(a)に示されるように、複数の複合部材3に亘って挿通孔13に緊張材15が挿通され、緊張材15に緊張力が付与される。この緊張力に起因して、図4(b)に示されるように、溶融した双方の樹脂部材9同士が突き合わされ、樹脂部材9同士が押し合う方向に加圧力Pが付与される(加圧工程)。緊張材15としては、例えばPC鋼材が用いられる。 Next, as shown in FIG. 4( a ), the tendon 15 is inserted through the insertion hole 13 over the plurality of composite members 3 , and tension is applied to the tendon 15 . Due to this tension, as shown in FIG. 4(b), the two melted resin members 9 are butted against each other, and a pressure P is applied in the direction in which the resin members 9 are pressed against each other. process). As the tendon 15, PC steel is used, for example.

この場合の加圧力Pは、樹脂部材9同士を溶着させる程度で十分である。従って、ここで緊張材15に付与される緊張力は、後述のプレストレス導入工程で付与される緊張力よりも低い。具体的には、後述のプレストレス導入工程で接合端面7に付与される圧力は例えば2.0~4.0MPaであるのに対し、この加圧工程で接合端面7に付与される圧力は例えば0.3~0.5MPaである。上記の圧力は、樹脂部材9の材料の特性に合わせて適宜設定されればよい。なお、加圧力Pが大きすぎると溶融した樹脂が接合端面7から大きくはみ出すので好ましくない。このように、後工程(プレストレス導入工程)で使用される緊張材15を利用して複合部材3に加圧力Pが付与されるので、樹脂部材9の溶着のための加圧手段を別途用意する必要がない。但し、加圧力Pを付与する方法は、緊張材15を緊張する方法には限定されず、他の種々の加圧手段を採用することもできる。 In this case, the pressure P is enough to weld the resin members 9 together. Therefore, the tension force applied to the tendon 15 here is lower than the tension force applied in the prestress introducing step, which will be described later. Specifically, while the pressure applied to the joint end surfaces 7 in the prestress introducing step described later is, for example, 2.0 to 4.0 MPa, the pressure applied to the joint end surfaces 7 in this pressurizing step is, for example, It is 0.3 to 0.5 MPa. The above pressure may be appropriately set according to the characteristics of the material of the resin member 9 . It should be noted that if the pressure P is too large, the melted resin protrudes greatly from the joint end surface 7, which is not preferable. As described above, the tendon 15 used in the post-process (prestress introduction process) is used to apply the pressure P to the composite member 3, so a pressure means for welding the resin member 9 is prepared separately. you don't have to. However, the method of applying the pressure P is not limited to the method of tightening the tendon 15, and various other pressure means can be employed.

その後、図4(c)に示されるように、加圧力Pの付与の継続中において、樹脂部材9が放熱により温度低下し再硬化すると、双方の樹脂部材9同士が溶着され一体化された溶着樹脂部19が生成する。そうすると、溶着樹脂部19を介してプレキャスト床版5同士が接合された状態となる。そして、溶着樹脂部19が完全に硬化しプレキャスト床版5同士の接合が完了する。 After that, as shown in FIG. 4(c), when the temperature of the resin member 9 decreases due to heat radiation and rehardening occurs while the application of the pressure P continues, the two resin members 9 are welded together and integrated. A resin portion 19 is generated. As a result, the precast floor slabs 5 are joined to each other via the welding resin portion 19 . Then, the welding resin portion 19 is completely hardened and the joining of the precast floor slabs 5 is completed.

なお、樹脂部材9同士を溶着させる方法としては、振動溶着法が採用されてもよい。溶着法を採用する場合、樹脂部材9同士を圧着させ、例えば、周波数約200Hz,振幅1~5mmで一方の樹脂部材9を往復動させる。上記の往復動により樹脂部材9同士の間に摩擦熱が発生し、当該摩擦熱によって樹脂部材9が溶融する。 As a method for welding the resin members 9 to each other, a vibration welding method may be employed. When the welding method is adopted, the resin members 9 are pressed together, and one resin member 9 is reciprocated at a frequency of about 200 Hz and an amplitude of 1 to 5 mm, for example. Frictional heat is generated between the resin members 9 due to the reciprocating motion, and the resin member 9 is melted by the frictional heat.

(プレストレス導入工程)
溶着樹脂部19が硬化した後、更に緊張材15に緊張力が付与され、複数のプレキャスト床版5に亘ってプレストレスが導入される。これにより、複数の複数のプレキャスト床版5が道路橋の橋軸方向に連結され、道路橋床版が完成する。プレストレス導入工程では、プレキャスト床版5同士のプレストレスによる連結において、設計上必要な緊張力が付与される。前述の通り、プレストレス導入工程で接合端面7に付与される圧力は、例えば2.0~4.0MPaである。
(Prestress introduction step)
After the welding resin part 19 is cured, tension is further applied to the tendons 15 to introduce prestress across the plurality of precast floor slabs 5 . As a result, a plurality of precast floor slabs 5 are connected in the axial direction of the road bridge to complete the road bridge floor slab. In the prestress introducing step, the prestressed connection of the precast floor slabs 5 is applied with a tension required for design. As described above, the pressure applied to the joint end surface 7 in the prestress introduction step is, for example, 2.0 to 4.0 MPa.

本実施形態の接合方法による作用効果について説明する。当該接合方法によれば、プレキャスト床版5の接合端面7に設けられた樹脂部材9の溶着によって、プレキャスト床版5同士が接合される。溶着された樹脂部材9は、モルタル等の硬化と比べてより速く硬化して強度を発現するので、プレキャスト床版5の接合の時間が短縮され、ひいては工期短縮を図ることができる。すなわち、溶融された樹脂部材9が比較的速く再硬化して溶着樹脂部19となり強度を発現するので、その後のプレキャスト導入工程に早期に移行することができ、その結果、工期短縮が図られる。特に、道路橋床版の取替え工事等では、工事可能な時間帯が限られている場合も多く、工期短縮の必要性が高いので、本実施形態の接合方法が好適に適用される。 The effect of the joining method of this embodiment will be described. According to the joining method, the precast floor slabs 5 are joined together by welding the resin members 9 provided on the joint end surfaces 7 of the precast floor slabs 5 . The welded resin member 9 hardens more quickly than mortar or the like and develops strength, so that the time for joining the precast floor slabs 5 can be shortened, and the construction period can be shortened. That is, the melted resin member 9 rehardens relatively quickly to become the welded resin portion 19 and develops strength, so that the subsequent precast introduction step can be started early, and as a result, the construction period can be shortened. In particular, in the case of road bridge deck replacement work, etc., there are many cases in which the work period is limited, and there is a strong need to shorten the work period.

また、樹脂部材9が仮にエポキシ樹脂等の熱硬化性樹脂を主成分とする場合には、未硬化の樹脂部材9をプレキャスト床版5の接合端面7同士の間に設置し、加熱して硬化させる、といった一連の作業を施工現場で実行することになる。また、樹脂部材9が仮に常温硬化性の接着剤である場合にも同様に、接合端面7に接着剤を塗布する処理を施工現場で実行することになる。 If the resin member 9 is mainly composed of a thermosetting resin such as epoxy resin, the uncured resin member 9 is placed between the joint end faces 7 of the precast floor slabs 5 and heated to cure. A series of work will be carried out at the construction site. Further, even if the resin member 9 is a room-temperature-curing adhesive, the process of applying the adhesive to the joint end surface 7 will be similarly performed at the construction site.

これに対し、本実施形態の接合方法では、樹脂部材9の主成分が熱可塑性樹脂であるので、複合部材3は、硬質の樹脂部材9がプレキャスト床版5に固定された態様であるので、事前に工場で製作して施工現場に搬送するといった運用が可能である。そうすると、施工現場においては、プレキャスト床版5の接合端面7に対して樹脂部材9を固定する作業が省略され、工期短縮が図られる。或いは、施工現場において、樹脂部材9をプレキャスト床版5に固定する作業を、複合部材3が設置される位置(道路橋床版の完成位置)とは別の場所で予め進行することができ、工期短縮が図られる。また、一般的に、熱可塑性樹脂は熱硬化性樹脂に比べて紫外線による劣化が少ない傾向にあり、接合部の耐久性も向上する。 On the other hand, in the joining method of the present embodiment, since the main component of the resin member 9 is a thermoplastic resin, the composite member 3 is a mode in which the hard resin member 9 is fixed to the precast floor slab 5. It is possible to operate such that it is manufactured in a factory in advance and transported to the construction site. Then, at the construction site, the work of fixing the resin member 9 to the joint end surface 7 of the precast floor slab 5 can be omitted, and the construction period can be shortened. Alternatively, at the construction site, the work of fixing the resin member 9 to the precast floor slab 5 can be performed in advance at a location other than the position where the composite member 3 is installed (the completed position of the road bridge deck). Construction period can be shortened. In general, thermoplastic resins tend to be less susceptible to deterioration due to ultraviolet rays than thermosetting resins, and the durability of joints is also improved.

また、接合完了後におけるプレキャスト床版5同士の継目には、熱可塑性樹脂からなる溶着樹脂部19が充填されるので、膨潤ゴムや無収縮モルタル等が充填される場合に比較して止水性が高い。また、膨潤ゴム等では、接合端面7間から受ける圧力のバラツキによって止水性にバラツキが生じるが、これに対し溶着樹脂部19は接合端面7間で加圧されながら硬化したものであるので、接合端面7から溶着樹脂部19に作用する圧力のバラツキが低減されており、止水性のバラツキも小さい。また、溶着樹脂部19とプレキャスト床版5との接合面は、前述したようなトバモライトが生成する化学反応によって強固に接合されているので、当該接合面の止水性も高い。 In addition, since the joints of the precast floor slabs 5 are filled with the welding resin portion 19 made of a thermoplastic resin after the completion of joining, the water stoppage is higher than when swelling rubber or non-shrinking mortar is filled. high. In the case of swollen rubber or the like, variations in water resistance occur due to variations in the pressure applied between the joint end surfaces 7. On the other hand, the welding resin portion 19 is hardened while being pressurized between the joint end surfaces 7. Variation in the pressure acting on the welding resin portion 19 from the end surface 7 is reduced, and variation in water stoppage is also small. In addition, since the joint surface between the welding resin portion 19 and the precast floor slab 5 is firmly joined by the chemical reaction generated by tobermorite as described above, the joint surface has high water resistance.

また、樹脂部材9は熱可塑性樹脂を含むので、樹脂部材9同士の溶着によってプレキャスト床版5同士の接合部が連続体(溶着樹脂部19)として一体化し、その後は、溶着樹脂部19自体はほとんど収縮しない。従って、長期に亘る収縮に起因して溶着樹脂部19にひび割れが発生する等の可能性も低く、接合部の止水性、耐久性が確保される。よって、工期短縮と止水性、耐久性の確保とを両立することができる。 Further, since the resin member 9 contains a thermoplastic resin, the joints between the precast floor slabs 5 are integrated as a continuous body (welded resin portion 19) by welding the resin members 9 to each other. Almost no shrinkage. Therefore, there is little possibility that the welding resin portion 19 will crack due to contraction over a long period of time, and the waterproofness and durability of the joint can be ensured. Therefore, it is possible to achieve both shortening of the construction period and securing of water stoppage and durability.

本発明は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、変形例を構成することも可能である。各実施形態の構成を適宜組み合わせて使用してもよい。 The present invention can be embodied in various forms with various modifications and improvements based on the knowledge of those skilled in the art, including the embodiment described above. Moreover, it is also possible to configure a modified example using the technical matters described in the above-described embodiments. You may use it, combining the structure of each embodiment suitably.

実施形態では、道路橋に用いられるプレキャスト床版5の接合方法を説明したが、本発明はこれに限定されず、種々のコンクリート構造物同士の接合方法に適用することができる。また、実施形態では3以上のプレキャスト床版5が連続的に接合される例を説明したが、本発明の接合方法は、2つのコンクリート構造物同士の接合にも適用することができる。また本発明は、プレストレス導入により接合されるタイプのコンクリート構造物の接合方法には限定されず、プレストレス導入工程は必須ではない。 In the embodiment, the method for joining the precast floor slabs 5 used for road bridges has been described, but the present invention is not limited to this, and can be applied to various methods for joining concrete structures. Moreover, although the example in which three or more precast floor slabs 5 are continuously joined has been described in the embodiment, the joining method of the present invention can also be applied to joining two concrete structures. Moreover, the present invention is not limited to a method for joining concrete structures that are joined by introducing prestress, and the prestress introducing step is not essential.

前述のとおり、樹脂部材9同士を溶着させる方法としては、振動溶着法が採用されてもよい。振動溶着法が採用される場合、樹脂部材9は摩擦力が伝達しやすい形状であることが必要であり、また樹脂の溶け代や溶けた樹脂の逃げ道が必要であるので、樹脂部材9の表面(他の樹脂部材9に対面する面)が凹凸形状であることが好ましい。この観点から、樹脂部材9の表面の全面に、例えば、図5に拡大して示されるように格子状に多数のV溝23を形成してもよい。この場合、V溝23同士の間隔は3~10mmとすることが好ましい。なお、接合対象のコンクリート構造物が箱抜き部材又はレンコン柱梁である場合、上記のような凹凸形状の樹脂部材9の製作は困難であるので、振動溶着法以外の方法(例えば、ヒーターや電熱線により樹脂部材9を加熱する方法)を採用することが好ましい。 As described above, the vibration welding method may be adopted as the method for welding the resin members 9 together. When the vibration welding method is adopted, the resin member 9 needs to have a shape that facilitates the transmission of frictional force. (The surface facing the other resin member 9) preferably has an uneven shape. From this point of view, a large number of V-shaped grooves 23 may be formed in a grid pattern on the entire surface of the resin member 9, as shown in FIG. In this case, the interval between the V-grooves 23 is preferably 3 to 10 mm. When the concrete structure to be joined is a box-out member or a lotus root column beam, it is difficult to manufacture the uneven resin member 9 as described above. A method of heating the resin member 9 with a hot wire) is preferably adopted.

また、樹脂部材9の裏面(プレキャスト床版5に固定される面)を凹凸形状としてもよい。この場合、プレキャスト床版5と樹脂部材9との一体性が機械的に向上する。また、凹凸形状がせん断キーとして機能し、プレキャスト床版5と樹脂部材9との間でせん断応力の伝達が可能になる。 Further, the back surface of the resin member 9 (the surface fixed to the precast floor slab 5) may be uneven. In this case, the integrity between the precast floor slab 5 and the resin member 9 is mechanically improved. In addition, the uneven shape functions as a shear key, and shear stress can be transmitted between the precast floor slab 5 and the resin member 9 .

また、実施形態では、フレッシュコンクリートを樹脂部材9に接触した状態で硬化させて複合部材3を製作したが、硬化済みのプレキャスト床版5の接合端面7に、例えば接着剤等により樹脂部材9を固定して複合部材3を製作してもよい。また、樹脂部材9がシリカ成分を含むものでなくてもよい。 In the embodiment, the composite member 3 is manufactured by curing the fresh concrete in contact with the resin member 9, but the resin member 9 is attached to the joint end surface 7 of the cured precast floor slab 5 with an adhesive or the like. The composite member 3 may be produced by fixing. Also, the resin member 9 may not contain a silica component.

3…複合部材(複合構造物)、5…プレキャスト床版(コンクリート構造物、プレキャストコンクリート部材)、9…樹脂部材、15…緊張材、19…溶着樹脂部、C…フレッシュコンクリート。 3... Composite member (composite structure), 5... Precast floor slab (concrete structure, precast concrete member), 9... Resin member, 15... Tendon, 19... Welded resin part, C... Fresh concrete.

Claims (3)

複数のプレキャストコンクリート部材にプレストレスを導入して前記プレキャストコンクリート部材同士を接合する接合方法であって、
前記プレキャストコンクリート部材と、熱可塑性樹脂を含み前記プレキャストコンクリート部材の端面に固定された樹脂部材と、を有する複合部材を複数準備する複合部材準備工程と、
前記複合部材の前記樹脂部材同士を溶着させ、前記樹脂部材同士が一体化されてなる溶着樹脂部を介して前記プレキャストコンクリート部材同士が接合された状態とする樹脂部材溶着工程と、
前記樹脂部材溶着工程で接合された複数の前記プレキャストコンクリート部材にプレストレスを導入するプレストレス導入工程と、を備え、
前記樹脂部材溶着工程は、
各々の前記複合部材の前記樹脂部材を加熱する加熱工程と、
前記プレストレス導入工程におけるプレストレスよりも小さい加圧力で、前記加熱工程で加熱された前記樹脂部材同士を押し付ける方向に前記複合部材を加圧する加圧工程と、を有する、プレキャストコンクリート部材の接合方法。
A joining method for introducing prestress to a plurality of precast concrete members to join the precast concrete members,
a composite member preparing step of preparing a plurality of composite members each having the precast concrete member and a resin member containing a thermoplastic resin and fixed to an end surface of the precast concrete member;
a resin member welding step in which the resin members of the composite member are welded to each other, and the precast concrete members are joined to each other via a welded resin portion formed by integrating the resin members;
a prestress introducing step of introducing prestress to the plurality of precast concrete members joined in the resin member welding step;
The resin member welding step includes:
a heating step of heating the resin member of each of the composite members;
A method for joining precast concrete members, comprising a pressurizing step of pressurizing the composite member in a direction in which the resin members heated in the heating step are pressed against each other with a pressure smaller than the prestress in the prestress introducing step. .
前記樹脂部材はシリカ成分を含み、
前記複合部材準備工程は、
前記プレキャストコンクリート部材の材料であるフレッシュコンクリートを、前記樹脂部材に接触した状態で硬化させて前記複合部材を製作する工程を含む、請求項1に記載のプレキャストコンクリート部材の接合方法。
The resin member contains a silica component,
The composite member preparation step includes:
2. The method of joining precast concrete members according to claim 1, further comprising the step of hardening fresh concrete, which is a material of said precast concrete member , in contact with said resin member to fabricate said composite member .
前記樹脂部材はシリカ成分を含み、
前記複合部材は、
前記プレキャストコンクリート部材の材料であるフレッシュコンクリートを、前記樹脂部材に接触した状態で硬化させて製作されたものである、請求項1に記載のプレキャストコンクリート部材の接合方法。
The resin member contains a silica component,
The composite member is
2. The method for joining precast concrete members according to claim 1, wherein fresh concrete, which is a material of said precast concrete members , is produced by hardening while in contact with said resin member.
JP2018103262A 2018-05-30 2018-05-30 Method for joining concrete structures and method for joining precast concrete members Active JP7121545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018103262A JP7121545B2 (en) 2018-05-30 2018-05-30 Method for joining concrete structures and method for joining precast concrete members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103262A JP7121545B2 (en) 2018-05-30 2018-05-30 Method for joining concrete structures and method for joining precast concrete members

Publications (2)

Publication Number Publication Date
JP2019206870A JP2019206870A (en) 2019-12-05
JP7121545B2 true JP7121545B2 (en) 2022-08-18

Family

ID=68768428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103262A Active JP7121545B2 (en) 2018-05-30 2018-05-30 Method for joining concrete structures and method for joining precast concrete members

Country Status (1)

Country Link
JP (1) JP7121545B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307549A (en) 2005-04-28 2006-11-09 Dream Sogo Kenkyusho:Kk Building block and construction method of block structure using the building block
JP2007046262A (en) 2005-08-08 2007-02-22 Inoac Corp Seal joint member for connecting precast floor slab
JP2009299277A (en) 2008-06-10 2009-12-24 Taisei Corp Concrete member joining method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951385B2 (en) * 1990-09-21 1999-09-20 電気化学工業株式会社 Polymer cement mortar composition
JP3121191B2 (en) * 1993-11-26 2000-12-25 ダイセル・ヒュルス株式会社 Concrete block and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307549A (en) 2005-04-28 2006-11-09 Dream Sogo Kenkyusho:Kk Building block and construction method of block structure using the building block
JP2007046262A (en) 2005-08-08 2007-02-22 Inoac Corp Seal joint member for connecting precast floor slab
JP2009299277A (en) 2008-06-10 2009-12-24 Taisei Corp Concrete member joining method

Also Published As

Publication number Publication date
JP2019206870A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
US5803963A (en) Smart-fiber-reinforced matrix composites
JP5090339B2 (en) Segment of prestressed concrete girder and its manufacturing method
US6511727B1 (en) Flat strip lamella for reinforcing building components and method for their production
JP7121545B2 (en) Method for joining concrete structures and method for joining precast concrete members
JPH09242342A (en) Repair method of structure by carbon-fiber reinforced plastic sheet
JP7076295B2 (en) How to transfer concrete
JP3925837B2 (en) How to build a joint
KR20150000722A (en) A Complex Pannel And Method of Construction of synthetic resine and matrix For usein such Pannel
JP2009299277A (en) Concrete member joining method
KR20080055073A (en) Method for reinforcing a concrete structure
US20180111348A1 (en) Self-Stressing Engineered Composite Materials, Methods of Self-Stressing Engineered Composite Materials, and Self-Stressing Reinforcement for Same
JP7120897B2 (en) Joining method of precast members
JP3948809B2 (en) Joining structure and joining method between concrete member and steel pipe member, and concrete / steel composite truss bridge
JP2020133260A (en) Concrete slab joint structure and concrete slab joining method
JP3224945U (en) Concrete products
JP6633426B2 (en) Method for joining precast concrete structural members
KR100591262B1 (en) Methods for connection of spliced prestressed concrete girder segments
KR0174161B1 (en) Epoxy resin panel and preparing method of the same
JP2019015061A (en) Concrete floor slab joint structure, concrete floor slab joining method, and concrete floor slab manufacturing method
JP5541524B2 (en) Joining method between concrete structures
JP7116693B2 (en) Method for repairing stone structures
JP2006307549A (en) Building block and construction method of block structure using the building block
KR101857275B1 (en) long span bridge building structure and the method of manufacturing long span bridge building
JP2019027276A (en) Hinge connection structure of concrete and manufacturing method of concrete structure of the same
JPH0476147A (en) Setup method for concrete reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220805

R150 Certificate of patent or registration of utility model

Ref document number: 7121545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150