JP7121004B2 - Circuit component manufacturing method and circuit component - Google Patents

Circuit component manufacturing method and circuit component Download PDF

Info

Publication number
JP7121004B2
JP7121004B2 JP2019526890A JP2019526890A JP7121004B2 JP 7121004 B2 JP7121004 B2 JP 7121004B2 JP 2019526890 A JP2019526890 A JP 2019526890A JP 2019526890 A JP2019526890 A JP 2019526890A JP 7121004 B2 JP7121004 B2 JP 7121004B2
Authority
JP
Japan
Prior art keywords
circuit component
base material
molten resin
foam
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019526890A
Other languages
Japanese (ja)
Other versions
JPWO2019004132A1 (en
Inventor
敦 遊佐
智史 山本
英斗 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Publication of JPWO2019004132A1 publication Critical patent/JPWO2019004132A1/en
Application granted granted Critical
Publication of JP7121004B2 publication Critical patent/JP7121004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/62Barrels or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0333Organic insulating material consisting of one material containing S
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials

Description

本発明は、回路部品(成形回路部品)の製造方法及び回路部品(成形回路部品)に関する。 The present invention relates to a circuit component (molded circuit component) manufacturing method and circuit component (molded circuit component).

近年、自動車の軽量化及び電動化のトレンドに伴い、自動車の金属部品を軽量で絶縁性のある発泡樹脂部品に置き換える動きがある。このため、発泡成形体の製造方法(発泡成形)の研究及び実用化が盛んである。発泡成形には、従来から、汎用エンジニアリングプラスチック(汎用エンプラ)であるポリプロピレン(PP)やアクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS)が用いられてきた。また、ある程度の耐熱性を有する、ポリアミド6、ポリアミド66等のガラス繊維強化樹脂等も発泡成形に用いられる。発泡成形に用いる発泡剤は、大別すると、物理発泡剤と化学発泡剤との2種類があるが、化学発泡剤は高融点材料への適用が困難である。このため、上述の耐熱性の高いガラス繊維強化樹脂等の発泡成形には、物理発泡剤として高圧の超臨界流体を用いた発泡射出成形法が採用されている(例えば、特許文献1~3)。 In recent years, with the trend toward lighter and more electrified automobiles, there is a movement to replace metal parts of automobiles with foamed resin parts that are lightweight and have insulating properties. For this reason, research and practical application of methods for producing foam molded articles (foam molding) are being actively pursued. Polypropylene (PP) and acrylonitrile-butadiene-styrene copolymer resin (ABS), which are general-purpose engineering plastics (general-purpose engineering plastics), have conventionally been used for foam molding. Glass fiber reinforced resins such as polyamide 6 and polyamide 66, which have a certain degree of heat resistance, are also used for foam molding. The foaming agents used in foam molding are roughly classified into two types, physical foaming agents and chemical foaming agents, but chemical foaming agents are difficult to apply to high-melting-point materials. For this reason, the foam injection molding method using a high-pressure supercritical fluid as a physical foaming agent is adopted for the foam molding of the glass fiber reinforced resin having high heat resistance (for example, Patent Documents 1 to 3). .

上述の汎用エンプラの常用耐熱温度は100℃程度であるが、より高温の環境下での使用が想定される用途には、常用耐熱温度が150℃以上であるポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)等のスーパーエンジニアリングプラスチック(スーパーエンプラ)が用いられる。PPSはコストパフォーマンスに優れ、自動車部品での採用が最も伸びているスーパーエンプラである。LCPは高精密コネクター等の小型部品での用途が拡大している。特許文献4及び5には、PPSの発泡成形体の製造方法が開示されている。 The normal heat-resistant temperature of the above-mentioned general-purpose engineering plastics is about 100°C, but for applications that are expected to be used in a higher temperature environment, polyphenylene sulfide (PPS), liquid crystal polymer ( LCP) and other super engineering plastics (super engineering plastics) are used. PPS is a super engineering plastic that excels in cost performance and has the fastest growing adoption in automotive parts. Applications of LCP are expanding in small parts such as high-precision connectors. Patent Documents 4 and 5 disclose a method for producing a PPS foam molded article.

また、近年、MID(Molded Interconnected Device)が、スマートフォン等で実用化されており、今後、自動車分野での応用拡大が期待されている。MIDは、成形体の表面に金属膜で三次元回路を形成したデバイスであり、製品の軽量化、薄肉化及び部品点数削減に貢献できる(例えば、特許文献6及び7)。 In recent years, MIDs (Molded Interconnected Devices) have been put to practical use in smartphones and the like, and are expected to expand their application in the automobile field in the future. A MID is a device in which a three-dimensional circuit is formed on the surface of a molded body with a metal film, and can contribute to weight reduction and thinning of products and reduction in the number of parts (for example, Patent Documents 6 and 7).

発光ダイオード(LED)が実装されたMIDも提案されている。LEDは、通電により発熱するため背面からの排熱が必要であり、MIDの放熱性を高めることが重要となる。特許文献8及び9では、MIDと金属製の放熱材料とを一体化した複合部品が提案されている。 MIDs mounted with light emitting diodes (LEDs) have also been proposed. Since the LED generates heat when energized, it is necessary to dissipate the heat from the rear surface, and it is important to improve the heat dissipation of the MID. Patent Documents 8 and 9 propose composite parts in which an MID and a metal heat dissipation material are integrated.

また、伝導性フィラーを樹脂に混合して成形し、樹脂成形体自体の放熱性を高める方法も提案されている(例えば、特許文献10)。 Further, a method has been proposed in which a conductive filler is mixed with a resin and molded to enhance the heat dissipation of the resin molding itself (eg, Patent Document 10).

特許第2625576号公報Japanese Patent No. 2625576 特許第3788750号公報Japanese Patent No. 3788750 特許第4144916号公報Japanese Patent No. 4144916 特開2013‐60508号公報JP-A-2013-60508 特開2012‐251022号公報JP 2012-251022 A 欧州特許第1274288号公報European Patent No. 1274288 特許第5022501号公報Japanese Patent No. 5022501 特許第3443872号公報Japanese Patent No. 3443872 特開2017‐199803号公報JP 2017-199803 A 特開2015‐108058号公報JP 2015-108058 A

自動車部品軽量化のニーズに合致するため、特許文献6及び7に開示されるMID等の成形回路部品は、更なる軽量化が求められている。そこで、成形回路部品に比重の小さい発泡成形体を用いて、成形回路部品を軽量化することが期待されている。本発明は、上記課題を解決するものであり、軽量な成形回路部品を提供する。 In order to meet the need for weight reduction of automobile parts, molded circuit parts such as MIDs disclosed in Patent Documents 6 and 7 are required to be further reduced in weight. Therefore, it is expected to reduce the weight of molded circuit parts by using a foam molded body having a small specific gravity for the molded circuit parts. SUMMARY OF THE INVENTION The present invention solves the above problems and provides a molded circuit component that is lightweight.

また、特許文献4及び5に開示されるPPSの発泡成形体の製造方法は、PPSの成形体を加圧不活性ガス雰囲気中に保持して不活性ガスを浸透させる工程と、不活性ガスを浸透させたPPSを常圧下で加熱して発泡させる工程とを有する、所謂、バッチ式の製造方法である。このため、射出成形や押出成形等の連続成形と比較して生産性が劣るという課題を有している。 In addition, the method for producing a PPS foam molded article disclosed in Patent Documents 4 and 5 includes a step of holding the PPS molded article in a pressurized inert gas atmosphere to permeate the inert gas, and This is a so-called batch type production method, which includes a step of heating and foaming the impregnated PPS under normal pressure. Therefore, there is a problem that the productivity is inferior to that of continuous molding such as injection molding and extrusion molding.

特許文献1~3に開示される物理発泡剤を用いた発泡成形方法は、生産性が高い連続成形であり、比較的樹脂を選ばない発泡成形技術である。したがって、原理的には、特許文献1~3に開示される方法により、PPS等のスーパーエンプラの発泡成形が可能だと思われる。しかし、近年の自動車部品には、非常に高い耐熱性が要求される。本願の発明者らの検討によれば、特許文献1~3に開示されるような、従来の高圧の物理発泡剤を用いて製造した発泡成形体及びそれを用いた成形回路部品は、樹脂材料にスーパーエンプラを用いたとしても、十分な耐熱性を得られないことが判明した。 The foam molding method using a physical foaming agent disclosed in Patent Documents 1 to 3 is continuous molding with high productivity, and is a foam molding technique that does not require a relatively large amount of resin. Therefore, in principle, the methods disclosed in Patent Documents 1 to 3 are considered to be capable of foaming super engineering plastics such as PPS. However, recent automobile parts are required to have extremely high heat resistance. According to the studies of the inventors of the present application, as disclosed in Patent Documents 1 to 3, a foamed molded article manufactured using a conventional high-pressure physical foaming agent and a molded circuit component using the same are resin materials It was found that sufficient heat resistance could not be obtained even if a super engineering plastic was used for the material.

本発明は、上記課題を解決するものであり、生産性の高い連続成形を含み、耐熱性が高く且つ軽量な成形回路部品の製造方法を提供する。 The present invention is intended to solve the above problems, and provides a method for manufacturing a molded circuit component having high heat resistance and light weight, including continuous molding with high productivity.

更に、MID等の回路部品の基材となる樹脂成形体が十分な放熱性能を有すれば、特許文献8及び9に開示される金属製の放熱部材は不要となり、回路部品のコストを削減できる。しかし、例えば、特許文献10に開示されるような導電性フィラーを熱可塑性樹脂に添加して電子部品に要求される放熱性を得ようとすると、成形時の熱可塑性樹脂の流動性が低下する。この結果、成形性が低下して、樹脂成形体は十分な寸法精度を得られない。 Furthermore, if the resin molded body, which is the base material of circuit parts such as MID, has sufficient heat dissipation performance, the metal heat dissipation member disclosed in Patent Documents 8 and 9 becomes unnecessary, and the cost of circuit parts can be reduced. . However, for example, if a conductive filler as disclosed in Patent Document 10 is added to a thermoplastic resin to obtain the heat dissipation required for electronic parts, the fluidity of the thermoplastic resin during molding is reduced. . As a result, the moldability deteriorates, and the resin molding cannot obtain sufficient dimensional accuracy.

樹脂成形体の寸法精度を向上させるために保圧を高めて成形すると、樹脂成形体にバリが発生する虞がある。バリが発生した場合には、バリ取りの二次加工が必要となる。また、バリの発生を抑制するために、型締め圧を高くして成形すると、金型の寿命が短くなる問題が発生する。これらは、回路部品の製造コストを上昇させ、量産性を低下させる。 If the holding pressure is increased for molding in order to improve the dimensional accuracy of the resin molded body, burrs may occur in the resin molded body. If burrs occur, secondary processing for deburring is required. In addition, if molding is performed with a high mold clamping pressure in order to suppress the generation of burrs, the life of the mold will be shortened. These increase the manufacturing cost of circuit components and reduce mass productivity.

本発明はこれらの課題を解決するものであり、樹脂成形体である基材を用いた回路部品(MID)において、量産性と放熱性を両立できる回路部品を提供する。 The present invention solves these problems, and provides a circuit component (MID) using a base material that is a resin molded body, which can achieve both mass productivity and heat dissipation.

本発明の第1の態様に従えば、回路部品であって、熱可塑性樹脂を含む発泡成形体である基材と、前記基材上に形成されている回路パターンと、前記基材の実装面に実装され、前記回路パターンと電気的に接続している実装部品とを含み、前記回路パターンは前記基材上の粗化部に形成されていることを特徴とする回路部品が提供される。 According to the first aspect of the present invention, the substrate, which is a circuit component and is a foam molded body containing a thermoplastic resin, the circuit pattern formed on the substrate, and the mounting surface of the substrate and a mounting component electrically connected to the circuit pattern, wherein the circuit pattern is formed on the roughened portion on the substrate. .

本態様において、前記熱可塑性樹脂は、スーパーエンジニアリングプラスチックを含み、前記回路部品を加熱して、前記回路部品の表面温度を240℃~260℃に5分間維持したとき、加熱による前記回路部品の厚みの変化率が-2%~2%であってもよい。前記回路部品の加熱をリフロー炉によって行ってもよい。 In this aspect, the thermoplastic resin includes a super engineering plastic, and when the circuit component is heated and the surface temperature of the circuit component is maintained at 240 ° C. to 260 ° C. for 5 minutes, the thickness of the circuit component due to heating may be -2% to 2%. A reflow furnace may be used to heat the circuit components.

本態様において、前記回路部品は、前記熱可塑性樹脂と、絶縁性熱伝導フィラーとを含み、密度低減率が0.5%~10%である前記発泡成形体であり、前記実装面と、前記実装面に対向する背面とを有する前記基材と、前記実装面を含む前記基材の表面に形成されている前記回路パターンとを有し、前記基材の前記実装部品が実装されている部分において、前記実装面から前記背面までの距離が0.1mm以上であってもよい。前記基材の密度低減率が、1~7%であってもよい。また、前記基材の前記実装部品が実装されている部分において、前記実装面から前記背面までの距離が0.5mmを超えてもよく、また、前記実装面から前記背面までの間に発泡セルを有してもよい。また、前記背面に、側壁と底面により区画される凹部が形成され、前記底面に対応する前記実装面上に前記実装部品が実装され、前記実装面から前記底面までの距離が、0.1mm~1.5mmであってもよい。前記底面に対応する前記実装面上に配置される前記実装部品1個当たりの前記底面の面積が、0.4cm~4cmであってもよい。 In this aspect, the circuit component is the foam molded body containing the thermoplastic resin and an insulating thermally conductive filler and having a density reduction rate of 0.5% to 10%, and the mounting surface and the a portion of the base material having a rear surface facing a mounting surface, and the circuit pattern formed on a surface of the base material including the mounting surface; WHEREIN: 0.1 mm or more may be sufficient as the distance from the said mounting surface to the said back surface. A density reduction rate of the base material may be 1 to 7%. In addition, in the portion of the base material on which the mounted component is mounted, the distance from the mounting surface to the back surface may exceed 0.5 mm, and foam cells may be formed between the mounting surface and the back surface. may have Further, a recess defined by side walls and a bottom surface is formed on the back surface, the mounted component is mounted on the mounting surface corresponding to the bottom surface, and the distance from the mounting surface to the bottom surface is 0.1 mm to 0.1 mm. It may be 1.5 mm. An area of the bottom surface per mounted component arranged on the mounting surface corresponding to the bottom surface may be 0.4 cm 2 to 4 cm 2 .

前記実装面から前記底面に向かって、非貫通又は貫通の孔が形成されており、前記孔の内壁に無電解メッキ膜が形成されていてもよい。また、前記基材の前記実装部品が実装されている部分において、前記実装面に凹部が形成され、前記凹部の表面に無電解メッキ膜が形成されていてもよい。 A non-through hole or a through hole may be formed from the mounting surface toward the bottom surface, and an electroless plating film may be formed on the inner wall of the hole. Further, a concave portion may be formed in the mounting surface of the base material where the mounted component is mounted, and an electroless plating film may be formed on the surface of the concave portion.

前記実装部品がLEDであってもよく、前記回路パターンが、無電解メッキ膜を含んでもよい。また、前記背面に放熱部材が設けられていなくてもよい。前記熱可塑性樹脂が、スーパーエンジニアリングプラスチックを含んでもよく、前記スーパーエンジニアリングプラスチックが、ポリフェニレンサルファイド又は液晶ポリマーを含んでもよい。 The mounting component may be an LED, and the circuit pattern may include an electroless plating film. Further, the back surface may not be provided with a heat radiating member. The thermoplastic resin may include super engineering plastic, and the super engineering plastic may include polyphenylene sulfide or liquid crystal polymer.

本発明の第2の態様に従えば、熱可塑性樹脂が可塑化溶融されて溶融樹脂となる可塑化ゾーンと、前記溶融樹脂が飢餓状態となる飢餓ゾーンとを有し、前記飢餓ゾーンに物理発泡剤を導入するための導入口が形成された可塑化シリンダを用いて、回路部品を製造する方法であって、前記可塑化ゾーンにおいて、前記熱可塑性樹脂を可塑化溶融して前記溶融樹脂とすることと、前記飢餓ゾーンに一定圧力の前記物理発泡剤を含む加圧流体を導入し、前記飢餓ゾーンを前記一定圧力に保持することと、前記飢餓ゾーンにおいて、前記溶融樹脂を飢餓状態とすることと、前記飢餓ゾーンを前記一定圧力に保持した状態で、前記飢餓ゾーンにおいて、前記飢餓状態の溶融樹脂と前記一定圧力の物理発泡剤を含む加圧流体とを接触させることと、前記物理発泡剤を含む加圧流体を接触させた前記溶融樹脂を発泡成形体に成形することと、前記発泡成形体の表面に回路パターンを形成することとを含み、前記熱可塑性樹脂がスーパーエンジニアリングプラスチックであり、前記一定圧力が0.5MPa~12MPaであることを特徴とする回路部品の製造方法が提供される。 According to the second aspect of the present invention, a plasticization zone in which a thermoplastic resin is plasticized and melted to become a molten resin, and a starvation zone in which the molten resin is in a starvation state, physical foaming in the starvation zone A method for manufacturing a circuit component using a plasticizing cylinder having an inlet for introducing an agent, wherein the thermoplastic resin is plasticized and melted to form the molten resin in the plasticizing zone. introducing a pressurized fluid containing the physical blowing agent at a constant pressure into the starvation zone to maintain the constant pressure in the starvation zone; and starving the molten resin in the starvation zone. contacting the starved molten resin with a pressurized fluid containing a physical blowing agent at the constant pressure in the starvation zone while maintaining the starvation zone at the constant pressure; and molding the molten resin in contact with a pressurized fluid containing A circuit component manufacturing method is provided, wherein the constant pressure is 0.5 MPa to 12 MPa.

本態様において、前記スーパーエンジニアリングプラスチックが、ポリフェニレンサルファイド又は液晶ポリマーを含でもよい。また、前記スーパーエンジニアリングプラスチックがポリフェニレンサルファイドを含み、前記一定圧力が2MPa~12MPaであってもよい。前記物理発泡剤が窒素であってもよい。 In this aspect, the super engineering plastic may contain polyphenylene sulfide or a liquid crystal polymer. Further, the super engineering plastic may contain polyphenylene sulfide, and the constant pressure may be 2 MPa to 12 MPa. The physical blowing agent may be nitrogen.

前記飢餓ゾーンにおいて、前記物理発泡剤を含む加圧流体で前記溶融樹脂を加圧してもよく、前記発泡成形体の製造中、常時、前記飢餓ゾーンを前記一定圧力に保持してもよい。前記可塑化シリンダは、前記導入口に接続する導入速度調整容器を有し、前記製造方法は、前記物理発泡剤を含む加圧流体を前記導入速度調整容器に供給することを更に含み、前記導入速度調整容器から、前記飢餓ゾーンに前記一定圧力の物理発泡剤を含む加圧流体を導入してもよい。前記導入口は、常時、開放されており、前記発泡成形体の製造中、前記導入速度調整容器及び前記飢餓ゾーンを前記一定圧力に保持してもよい。 In the starvation zone, the pressurized fluid containing the physical blowing agent may pressurize the molten resin, and the constant pressure may be maintained in the starvation zone at all times during the production of the foam molded article. The plasticizing cylinder has an introduction speed adjusting container connected to the introduction port, and the manufacturing method further includes supplying a pressurized fluid containing the physical foaming agent to the introduction speed adjusting container, A pressurized fluid comprising a physical blowing agent at said constant pressure may be introduced into said starvation zone from a rate regulating vessel. The introduction port may be open at all times, and the introduction speed adjusting vessel and the starvation zone may be maintained at the constant pressure during the production of the foam molded article.

前記回路パターンが無電解メッキ膜を含んでおり、前記発泡成形体の表面に回路パターンを形成することが、前記発泡成形体の表面に、アミド基及びアミノ基の少なくとも一方を有するポリマーを含む触媒活性妨害層を形成することと、前記触媒活性妨害層を形成した前記発泡成形体の表面の一部を加熱又は光照射することと、加熱又は光照射した前記発泡成形体の表面に無電解メッキ触媒を付与することと、前記無電解メッキ触媒を付与した前記発泡成形体の表面に無電解メッキ液を接触させ、前記表面の加熱部分又は光照射部分に前記無電解メッキ膜を形成することとを含んでもよい。前記ポリマーが、ハイパーブランチポリマーであってもよい。 The circuit pattern contains an electroless plating film, and the formation of the circuit pattern on the surface of the foamed molded product is a catalyst containing a polymer having at least one of an amide group and an amino group on the surface of the foamed molded product. forming an activity hindrance layer, heating or irradiating a part of the surface of the foam molded body on which the catalytic activity hindering layer is formed, and electrolessly plating the heated or light irradiated surface of the foam molded body applying a catalyst; and bringing an electroless plating solution into contact with the surface of the foam molded article to which the electroless plating catalyst has been applied to form the electroless plating film on the heated portion or the light-irradiated portion of the surface. may include The polymer may be a hyperbranched polymer.

本発明は、軽量な回路部品(成形回路部品)を提供できる。 The present invention can provide lightweight circuit components (molded circuit components).

第1の実施形態の発泡成形体の製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing a foam molded article according to the first embodiment. 第1の実施形態で用いる発泡成形体の製造装置を示す概略図である。It is a schematic diagram showing a manufacturing apparatus of a foaming molding used in a first embodiment. 第1の実施形態における発泡成形体の表面に回路パターンを形成する方法を示すフローチャートである。4 is a flow chart showing a method of forming a circuit pattern on the surface of the foam molded article in the first embodiment. 第1の実施形態における発泡成形体の表面に回路パターンを形成する方法を説明する図である。It is a figure explaining the method of forming a circuit pattern on the surface of the foam molding in 1st Embodiment. 図5(a)は、第2の実施形態の回路部品の上面模式図であり、図5(b)は、図5(a)のB1‐B1線断面模式図である。FIG. 5(a) is a schematic top view of the circuit component of the second embodiment, and FIG. 5(b) is a schematic cross-sectional view taken along line B1-B1 in FIG. 5(a). 図6は、図5(b)に示す回路部品の一部拡大図である。FIG. 6 is a partially enlarged view of the circuit component shown in FIG. 5(b). 図7(a)は、図5(a)に示す回路部品の製造途中の構造を示す上面模式図であり、図7(b)は、図7(a)のB3‐B3線断面模式図である。FIG. 7(a) is a schematic top view showing the structure of the circuit component shown in FIG. 5(a) during manufacture, and FIG. 7(b) is a schematic cross-sectional view taken along line B3-B3 of FIG. 7(a). be. 図8(a)は、図5(a)に示す回路部品の別の製造途中の構造を示す上面模式図であり、図8(b)は、図8(a)のB4‐B4線断面模式図である。FIG. 8(a) is a schematic top view showing another halfway structure of the circuit component shown in FIG. 5(a); It is a diagram. 図9は、第2の実施形態の変形例1の回路部品の断面模式図である。FIG. 9 is a schematic cross-sectional view of a circuit component of Modification 1 of the second embodiment. 図10は、第2の実施形態の変形例2の回路部品の断面模式図である。FIG. 10 is a schematic cross-sectional view of a circuit component of Modification 2 of the second embodiment.

[第1の実施形態]
図1に示すフローチャートを参照しながら、本実施形態の成形回路部品の製造方法について説明する。本実施形態では、まず、発泡成形体を製造し(図1のステップS1~S5)、発泡成形体の表面に回路パターンを形成して(図1のステップS6)成形回路部品を得る。ここで、「成形回路部品」とは、樹脂成形体の表面に電気回路が形成されている部品を意味する。
[First Embodiment]
A method for manufacturing a molded circuit component according to the present embodiment will be described with reference to the flow chart shown in FIG. In this embodiment, first, a foam molded body is produced (steps S1 to S5 in FIG. 1), and a circuit pattern is formed on the surface of the foam molded body (step S6 in FIG. 1) to obtain a molded circuit component. Here, the term "molded circuit component" means a component in which an electric circuit is formed on the surface of a resin molded body.

<発泡成形体の製造装置>
まず、本実施形態で用いる発泡成形体を製造する製造装置について説明する。本実施形態では、図2に示す製造装置(射出成形装置)1000を用いて発泡成形体を製造する。製造装置1000は、主に、スクリュ20が内設された可塑化シリンダ210と、物理発泡剤を可塑化シリンダ210に供給する物理発泡剤供給機構であるボンベ100と、金型が設けられた型締めユニット(不図示)と、可塑化シリンダ210及び型締めユニットを動作制御するための制御装置(不図示)を備える。可塑化シリンダ210内において可塑化溶融された溶融樹脂は、図2における右手から左手に向かって流動する。したがって本実施形態の可塑化シリンダ210内部においては、図2における右手を「上流」または「後方」、左手を「下流」または「前方」と定義する。
<Production equipment for foam molding>
First, a manufacturing apparatus for manufacturing a foam molded article used in this embodiment will be described. In this embodiment, a foam molded article is manufactured using a manufacturing apparatus (injection molding apparatus) 1000 shown in FIG. The manufacturing apparatus 1000 mainly includes a plasticizing cylinder 210 in which a screw 20 is installed, a cylinder 100 which is a physical foaming agent supply mechanism for supplying the physical foaming agent to the plasticizing cylinder 210, and a mold provided with a mold. A clamping unit (not shown) and a control device (not shown) for controlling the operation of the plasticizing cylinder 210 and the mold clamping unit are provided. The molten resin that is plasticized and melted in the plasticizing cylinder 210 flows from right to left in FIG. Therefore, inside the plasticizing cylinder 210 of this embodiment, the right hand in FIG. 2 is defined as "upstream" or "rear", and the left hand is defined as "downstream" or "forward".

可塑化シリンダは、熱可塑性樹脂が可塑化溶融されて溶融樹脂となる可塑化ゾーン21と、可塑化ゾーン21の下流側に、溶融樹脂が飢餓状態となる飢餓ゾーン23とを有する。「飢餓状態」とは、溶融樹脂が飢餓ゾーン23内に充満せずに未充満となる状態である。したがって、飢餓ゾーン23内には、溶融樹脂の占有部分以外の空間が存在する。また、飢餓ゾーン23に物理発泡剤を導入するための導入口202が形成されており、導入口202には、導入速度調整容器300が接続している。ボンベ100は、導入速度調整容器300を介して可塑化シリンダ210に物理発泡剤を供給する。 The plasticizing cylinder has a plasticizing zone 21 in which a thermoplastic resin is plasticized and melted to become a molten resin, and a starvation zone 23 downstream of the plasticizing zone 21 in which the molten resin starves. The “starvation state” is a state in which the molten resin does not fill the starvation zone 23 but does not fill the starvation zone 23 . Therefore, in the starvation zone 23, there exists a space other than the portion occupied by the molten resin. Also, an inlet 202 for introducing the physical foaming agent is formed in the starvation zone 23 , and the inlet 202 is connected to an introduction speed adjusting container 300 . The cylinder 100 supplies the physical blowing agent to the plasticizing cylinder 210 through the introduction speed adjusting container 300 .

尚、製造装置1000は、飢餓ゾーン23を1つしか有していないが、本実施形態に用いられる製造装置は、これに限定されない。例えば、溶融樹脂への物理発泡剤の浸透を促進するために、飢餓ゾーン23及びそこに形成される導入口202を複数有し、複数の導入口202から物理発泡剤を可塑化シリンダ210に導入する構造であってもよい。また、製造装置1000は射出成形装置であるが、本実施形態に用いられる製造装置は、これに限定されず、例えば、押出成形装置であってもよい。 Although the manufacturing apparatus 1000 has only one starvation zone 23, the manufacturing apparatus used in this embodiment is not limited to this. For example, in order to promote penetration of the physical foaming agent into the molten resin, the starvation zone 23 and a plurality of inlets 202 formed therein are provided, and the physical foaming agent is introduced into the plasticizing cylinder 210 from the plurality of inlets 202. It may be a structure that Moreover, although the manufacturing apparatus 1000 is an injection molding apparatus, the manufacturing apparatus used in this embodiment is not limited to this, and may be, for example, an extrusion molding apparatus.

<成形回路部品の製造方法>
(1)熱可塑性樹脂の可塑化溶融
まず、可塑化シリンダ210の可塑化ゾーン21において、熱可塑性樹脂を可塑化溶融して溶融樹脂とする(図1のステップS1)。本実施形態では、熱可塑性樹脂として、スーパーエンジニアリングプラスチック(以下、適宜「スーパーエンプラ」と記載する)を用いることが好ましい。一般に、連続使用温度が150℃以上のプラスチックがスーパーエンプラに分類されるため、本願明細書においても、スーパーエンプラの定義はこれに従う。スーパーエンプラの多くは、その分子鎖の中にベンゼン環を含むため、分子鎖が太く強い。環境温度が高温になっても分子は運動し難くなるため、耐熱性に優れる。尚、フッ素樹脂の中には、ベンゼン環構造を有さずとも耐熱性に優れ、スーパーエンプラに分類される樹脂がある。フッ素樹脂は、炭素と結合すると非常に安定するためである。
<Method for manufacturing molded circuit parts>
(1) Plasticization and Melting of Thermoplastic Resin First, in the plasticizing zone 21 of the plasticizing cylinder 210, the thermoplastic resin is plasticized and melted to form a molten resin (step S1 in FIG. 1). In the present embodiment, it is preferable to use a super engineering plastic (hereinafter referred to as "super engineering plastic" as appropriate) as the thermoplastic resin. In general, plastics with a continuous use temperature of 150° C. or higher are classified as super engineering plastics, and the definition of super engineering plastics in this specification also follows this. Many super engineering plastics contain benzene rings in their molecular chains, so the molecular chains are thick and strong. Even if the ambient temperature rises, the molecules will not move easily, so it has excellent heat resistance. Among fluororesins, there are resins classified as super engineering plastics that are excellent in heat resistance without having a benzene ring structure. This is because the fluororesin is very stable when combined with carbon.

スーパーエンプラは、非晶性(透明)樹脂と結晶性樹脂に大別される。非晶性(透明)樹脂としては、例えば、ポリフェニルスルホン(PPSU)、ポリスルホン(PSU)、ポリアリレート(PAR)、ポリエーテルイミド(PEI)が挙げられ、結晶性樹脂としては、例えば、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリエーテルスルホン(PES)、ポリアミドイミド(PAI)、液晶ポリマー(LCP)、ポリフッ化ビニリデン(PVDF)が挙げられる。本実施形態のスーパーエンプラは、これらを単独で用いても、二種類以上を混合して用いてもよく、また、これらのエンプラを含むポリマーアロイを用いてもよい。本実施形態に用いるスーパーエンプラとしては、微細セルを形成し易い結晶性樹脂が好ましく、中でも、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)がより好ましい。 Super engineering plastics are roughly divided into amorphous (transparent) resins and crystalline resins. Examples of amorphous (transparent) resins include polyphenylsulfone (PPSU), polysulfone (PSU), polyarylate (PAR), and polyetherimide (PEI). Examples of crystalline resins include polyether Ether ketone (PEEK), polyphenylene sulfide (PPS), polyether sulfone (PES), polyamideimide (PAI), liquid crystal polymer (LCP), polyvinylidene fluoride (PVDF). The super engineering plastics of the present embodiment may be used singly or in combination of two or more, or may be polymer alloys containing these engineering plastics. As the super engineering plastic used in the present embodiment, a crystalline resin that facilitates the formation of fine cells is preferable, and among these, polyphenylene sulfide (PPS) and liquid crystal polymer (LCP) are more preferable.

ポリフェニレンサルファイド(PPS)は、比較的安価である、化学的に安定である、寸法精度が出やすい、強度が高い等の利点を有するため、自動車用部品を中心に需要が拡大している。一方で、PPSは、成形に際してバリが発生し易い、ガラス長繊維等を混合すると反りが発生し易い、比重が大きいという課題がある。本実施形態では、PPSを発泡成形することで、バリや反りを抑制でき、更に比重を低減できる。液晶ポリマー(LCP)は、溶融樹脂の剪断速度依存性が大きいため、成形に際してバリが発生しにくい、薄肉成形部品においても高寸法精度が得られるという利点を有する。自動車用部品においては、LCPは高耐熱性が要求されるコネクターに採用されている。一方で、LCPは、高価であり、また比重が大きいという課題がある。本実施形態では、LCPを発泡成形することで、比重を低減でき、同じサイズのソリッド成形体(無発泡成形体)と比較して使用量が減るためコスト低減も図れる。 Polyphenylene sulfide (PPS) has advantages such as relatively low cost, chemical stability, high dimensional accuracy, and high strength. On the other hand, PPS has problems that burrs are likely to occur during molding, warping is likely to occur when glass long fibers or the like are mixed, and specific gravity is high. In this embodiment, by foam-molding PPS, burrs and warping can be suppressed, and the specific gravity can be reduced. Liquid crystal polymer (LCP) has the advantage that burrs are less likely to occur during molding and high dimensional accuracy can be obtained even in thin-walled molded parts, due to its large dependence on the shear rate of the molten resin. In automotive parts, LCP is used in connectors that require high heat resistance. On the other hand, LCP has the problem of being expensive and having a large specific gravity. In this embodiment, by foam-molding LCP, the specific gravity can be reduced, and the amount used is reduced compared to a solid molded body (non-foamed molded body) of the same size, so cost reduction can also be achieved.

本実施形態の熱可塑性樹脂には、ガラス繊維、タルク、カーボン繊維などの各種無機フィラーを混練してもよい。熱可塑性樹脂に、発泡核剤として機能する無機フィラーや溶融張力を高める添加剤を混合することで、発泡セルを微細化できる。本実施形態の熱可塑性樹脂は、必要に応じてその他の汎用の各種添加剤を含んでもよい。 Various inorganic fillers such as glass fiber, talc, and carbon fiber may be kneaded into the thermoplastic resin of the present embodiment. By mixing an inorganic filler functioning as a nucleating agent for foaming and an additive for increasing melt tension into the thermoplastic resin, the foamed cells can be made finer. The thermoplastic resin of the present embodiment may contain various general-purpose additives as necessary.

また、本実施形態では、熱可塑性樹脂としてスーパーエンプラのみを用いるが、発泡成形体の用途によっては、発泡成形体の耐熱性に影響を与えない程度に、スーパーエンプラではない、汎用の熱可塑性樹脂を混合して用いてもよい。本実施形態において、発泡成形体を構成する熱可塑性樹脂の主成分はスーパーエンプラであり、例えば、発泡成形体を構成する熱可塑性樹脂中のスーパーエンプラの割合は、60重量%~100重量%が好ましく、95重量%~100重量%がより好ましい。また、本実施形態では、発泡剤として物理発泡を用い、化学発泡剤は併用しない。したがって、本実施形態の熱可塑性樹脂であるスーパーエンプラは、化学発泡剤を含まない。スーパーエンプラの溶融温度は高いため、化学発泡剤の併用は困難である。 In addition, in the present embodiment, only super engineering plastic is used as the thermoplastic resin, but depending on the application of the foam molded product, a general-purpose thermoplastic resin that is not a super engineering plastic may be used to the extent that the heat resistance of the foam molded product is not affected. may be mixed and used. In the present embodiment, the main component of the thermoplastic resin forming the foam molded article is super engineering plastic. For example, the proportion of super engineering plastic in the thermoplastic resin forming the foam molded article is 60% to 100% by weight. Preferably, 95% to 100% by weight is more preferred. Moreover, in this embodiment, physical foaming is used as a foaming agent, and a chemical foaming agent is not used together. Therefore, the super engineering plastic, which is the thermoplastic resin of this embodiment, does not contain a chemical foaming agent. Due to the high melting temperature of super engineering plastics, it is difficult to use chemical blowing agents together.

本実施形態では、図2に示すスクリュ20が内設された可塑化シリンダ210内で熱可塑性樹脂の可塑化溶融を行う。可塑化シリンダ210の外壁面にはバンドヒータ(図示せず)が配設されており、これにより可塑化シリンダ210が加熱され、更にスクリュ20の回転による剪断発熱も加わり、熱可塑性樹脂が可塑化溶融される。 In this embodiment, the thermoplastic resin is plasticized and melted in a plasticizing cylinder 210 in which the screw 20 shown in FIG. 2 is installed. A band heater (not shown) is provided on the outer wall surface of the plasticizing cylinder 210, which heats the plasticizing cylinder 210 and further heats sheared by rotation of the screw 20, thereby plasticizing the thermoplastic resin. melted.

(2)飢餓ゾーンの圧力保持
次に、飢餓ゾーン23に一定圧力の物理発泡剤を導入し、飢餓ゾーン23を前記一定圧力に保持する(図1のステップS2)。
(2) Maintaining Pressure in Starvation Zone Next, a constant pressure physical blowing agent is introduced into the starvation zone 23 to maintain the constant pressure in the starvation zone 23 (step S2 in FIG. 1).

物理発泡剤としては、加圧流体を用いる。本実施形態において「流体」とは、液体、気体、超臨界流体のいずれかを意味する。また、物理発泡剤は、コストや環境負荷の観点から、二酸化炭素、窒素等が好ましい。本実施形態の物理発泡剤の圧力は比較的低圧であるため、例えば、窒素ボンベ、二酸化炭素ボンベ、空気ボンベ等の流体が貯蔵されたボンベから、減圧弁により一定圧力に減圧して取り出した流体を用いることができる。この場合、昇圧装置が不要となるので、製造装置全体のコストを低減できる。また、必要であれば所定の圧力まで昇圧した流体を物理発泡剤として用いてもよい。例えば、物理発泡剤として窒素を使用する場合、以下の方法で物理発泡剤を生成できる。まず、大気中の空気をコンプレッサーで圧縮しながら窒素分離膜を通して窒素を精製する。次に、精製した窒素をブースターポンプやシリンジポンプ等を用いて所定圧力まで昇圧し、物理発泡剤を生成する。また、圧縮空気を物理発泡剤として利用してもよい。本実施形態では、物理発泡剤と溶融樹脂の強制的な剪断混錬を行わない。このため、物理発泡剤として圧縮空気を用いても、溶融樹脂に対して溶解性の低い酸素は溶融樹脂に溶解し難く、溶融樹脂の酸化劣化を抑制できる。 A pressurized fluid is used as the physical blowing agent. In this embodiment, "fluid" means any one of liquid, gas, and supercritical fluid. Moreover, the physical blowing agent is preferably carbon dioxide, nitrogen, or the like from the viewpoint of cost and environmental load. Since the pressure of the physical foaming agent of the present embodiment is relatively low, for example, from a cylinder storing fluid such as a nitrogen cylinder, a carbon dioxide cylinder, an air cylinder, etc., the fluid taken out after being decompressed to a certain pressure by a pressure reducing valve can be used. In this case, the cost of the entire manufacturing apparatus can be reduced because the booster is not required. Also, if necessary, a fluid pressurized to a predetermined pressure may be used as a physical foaming agent. For example, when nitrogen is used as the physical blowing agent, the physical blowing agent can be produced by the following method. First, nitrogen is purified through a nitrogen separation membrane while compressing atmospheric air with a compressor. Next, the purified nitrogen is pressurized to a predetermined pressure using a booster pump, a syringe pump, or the like to generate a physical foaming agent. Compressed air may also be used as a physical blowing agent. In this embodiment, the physical blowing agent and the molten resin are not subjected to forced shear kneading. Therefore, even if compressed air is used as a physical blowing agent, oxygen, which has a low solubility in the molten resin, is difficult to dissolve in the molten resin, and oxidative deterioration of the molten resin can be suppressed.

飢餓ゾーン23に導入する物理発泡剤の圧力は一定であり、導入される物理発泡剤と同一の一定圧力に飢餓ゾーン23の圧力は保持される。この物発泡剤の圧力は、例えば、0.5MPa~12MPaであり、2MPa~12MPaが好ましく、2MPa~10MPaがより好ましく、2MPa~8MPaが更により好ましい。また、物理発泡剤の圧力は、1MPa~6MPaが好ましい。溶融樹脂の種類により最適な圧力は異なるが、物理発泡剤の圧力を0.5MPa以上とすることで、発泡に必要な量の物理発泡剤が溶融樹脂内に浸透でき、発泡成形体の発泡性が向上する。また、物理発泡剤の圧力を12MPa以下とすることで、発泡成形体の耐熱性が向上し、スワールマークの発生が抑制され、更に装置負荷を低減できる。尚、溶融樹脂を加圧する物理発泡剤の圧力が「一定」とは、所定圧力に対する圧力の変動幅が、好ましくは±20%以内、より好ましくは±10%以内であることを意味する。飢餓ゾーンの圧力は、例えば、可塑化シリンダ210の飢餓ゾーン23内に設けられた圧力センサ27により測定される。尚、スクリュ20の進退に伴い、飢餓ゾーン23は可塑化シリンダ210内を前後方向に移動するが、図2に示す圧力センサ27は、飢餓ゾーン23の最前進位置及び最後退位置において、常に飢餓ゾーン23内に存在する位置に設けられる。また、導入口202に対向する位置も、常に飢餓ゾーン23内にある。したがって、圧力センサ27は導入口202に対向する位置には設けられていないが、圧力センサ27の示す圧力と、導入口202に対向する位置の圧力は、ほぼ同一である。また、本実施形態では、飢餓ゾーン23に物理発泡剤のみを導入するが、本発明の効果に影響を与えない程度に、物理発泡剤以外の他の加圧流体を同時に飢餓ゾーン23に導入してもよい。この場合、飢餓ゾーン23に導入される物理発泡剤を含む加圧流体は、上述の一定圧力を有する。 The pressure of the physical blowing agent introduced into the starvation zone 23 is constant, and the pressure of the starvation zone 23 is maintained at the same constant pressure as the introduced physical blowing agent. The pressure of this foaming agent is, for example, 0.5 MPa to 12 MPa, preferably 2 MPa to 12 MPa, more preferably 2 MPa to 10 MPa, and even more preferably 2 MPa to 8 MPa. Moreover, the pressure of the physical foaming agent is preferably 1 MPa to 6 MPa. The optimum pressure varies depending on the type of molten resin, but by setting the pressure of the physical blowing agent to 0.5 MPa or more, the amount of physical blowing agent necessary for foaming can penetrate into the molten resin, and the foaming property of the foamed molded product is improved. improves. Further, by setting the pressure of the physical blowing agent to 12 MPa or less, the heat resistance of the foam molded product is improved, the generation of swirl marks is suppressed, and the load on the apparatus can be reduced. The expression that the pressure of the physical foaming agent that pressurizes the molten resin is "constant" means that the fluctuation range of the pressure with respect to the predetermined pressure is preferably within ±20%, more preferably within ±10%. The starvation zone pressure is measured, for example, by a pressure sensor 27 provided in the starvation zone 23 of the plasticizing cylinder 210 . The starvation zone 23 moves back and forth in the plasticizing cylinder 210 as the screw 20 advances and retreats, but the pressure sensor 27 shown in FIG. It is provided at a position existing within the zone 23 . Also, the position facing the inlet 202 is always within the starvation zone 23 . Therefore, although the pressure sensor 27 is not provided at the position facing the introduction port 202, the pressure indicated by the pressure sensor 27 and the pressure at the position facing the introduction port 202 are substantially the same. In addition, in the present embodiment, only the physical blowing agent is introduced into the starvation zone 23, but other pressurized fluids other than the physical blowing agent are simultaneously introduced into the starvation zone 23 to the extent that the effect of the present invention is not affected. may In this case, the pressurized fluid containing the physical blowing agent introduced into the starvation zone 23 has the constant pressure mentioned above.

本実施形態では、図2に示すように、ボンベ100から導入速度調整容器300を介し、導入口202から飢餓ゾーン23へ物理発泡剤を供給する。物理発泡剤は、減圧弁151を用いて所定の圧力に減圧した後、昇圧装置等を経ることなく、導入口202から飢餓ゾーン23で導入される。本実施形態では、可塑化シリンダ210に導入する物理発泡剤の導入量、導入時間等を制御しない。そのため、それらを制御する機構、例えば、逆止弁や電磁弁等を用いた駆動弁は不要であり、導入口202は、駆動弁を有さず、常に開放されている。本実施形態では、ボンベ100から供給される物理発泡剤により、減圧弁151から、導入速度調整容器300を経て、可塑化シリンダ210内の飢餓ゾーン23まで、一定の物理発泡剤の圧力に保持される。 In this embodiment, as shown in FIG. 2 , the physical foaming agent is supplied from the cylinder 100 to the starvation zone 23 through the introduction port 202 via the introduction speed adjusting container 300 . The physical foaming agent is introduced in the starvation zone 23 from the introduction port 202 without passing through a pressure increasing device or the like after being decompressed to a predetermined pressure using the decompression valve 151 . In this embodiment, the introduction amount of the physical foaming agent introduced into the plasticizing cylinder 210, introduction time, etc. are not controlled. Therefore, a mechanism for controlling them, for example, a driven valve using a check valve, an electromagnetic valve, or the like is not required, and the introduction port 202 does not have a driven valve and is always open. In this embodiment, the pressure of the physical foaming agent supplied from the cylinder 100 is kept constant from the decompression valve 151 through the introduction speed adjusting container 300 to the starvation zone 23 in the plasticizing cylinder 210. be.

物理発泡剤の導入口202は、従来の製造装置の物理発泡剤の導入口と比較して内径が大きい。このように導入口202の内径を大きくできるのは、成形中に導入口202が対向する飢餓ゾーン23における溶融樹脂の量が、従来の製造装置と比較して少ないためである。このため、比較的低圧の物理発泡剤であっても、可塑化シリンダ210内に効率良く導入できる。また、溶融樹脂の一部が導入口202に接触して固化した場合であっても、内径が大きいため、完全に塞がることなく導入口として機能できる。例えば、可塑化シリンダ210の内径が大きい場合、即ち、可塑化シリンダの外径が大きい場合に、導入口202の内径を大きくし易い。一方、導入口202の内径が極端に大き過ぎると、溶融樹脂の滞留が発生して成形不良の原因となり、また、導入口202に接続する導入速度調整容器300が大型化して装置全体のコストが上昇する。具体的には、導入口202の内径は、可塑化シリンダ210の内径の20%~100%が好ましく、30%~80%がより好ましい。または、可塑化シリンダ210の内径に依存せず、導入口202の内径は、3mm~150mmが好ましく、5mm~100mmがより好ましい。ここで、導入口202の内径とは、可塑化シリンダ210の内壁210a上における開口部の内径を意味する。また、導入口202の形状、即ち、可塑化シリンダ210の内壁210a上における開口部の形状は、真円に限られず、楕円や多角形であってもよい。導入口202の形状が楕円や多角形である場合には、導入口202の面積と同じ面積の真円におけるその直径を「導入口202の内径」と定義する。 The physical foaming agent introduction port 202 has a larger inner diameter than the physical foaming agent introduction port of the conventional manufacturing apparatus. The reason why the inner diameter of the inlet 202 can be increased in this way is that the amount of molten resin in the starvation zone 23 facing the inlet 202 during molding is smaller than in the conventional manufacturing apparatus. Therefore, even a relatively low-pressure physical foaming agent can be efficiently introduced into the plasticizing cylinder 210 . Further, even if a part of the molten resin contacts the inlet 202 and solidifies, it can function as an inlet without being completely blocked due to the large inner diameter. For example, when the inner diameter of the plasticizing cylinder 210 is large, that is, when the outer diameter of the plasticizing cylinder is large, it is easy to increase the inner diameter of the introduction port 202 . On the other hand, if the inner diameter of the introduction port 202 is extremely large, the molten resin will stagnate, resulting in poor molding. Rise. Specifically, the inner diameter of the introduction port 202 is preferably 20% to 100%, more preferably 30% to 80%, of the inner diameter of the plasticizing cylinder 210 . Alternatively, regardless of the inner diameter of the plasticizing cylinder 210, the inner diameter of the introduction port 202 is preferably 3 mm to 150 mm, more preferably 5 mm to 100 mm. Here, the inner diameter of the introduction port 202 means the inner diameter of the opening on the inner wall 210 a of the plasticizing cylinder 210 . Moreover, the shape of the inlet 202, that is, the shape of the opening on the inner wall 210a of the plasticizing cylinder 210 is not limited to a perfect circle, and may be an ellipse or a polygon. When the shape of the introduction port 202 is elliptical or polygonal, the diameter of a perfect circle having the same area as the area of the introduction port 202 is defined as the "inner diameter of the introduction port 202".

次に、導入口202に接続する導入速度調整容器300について説明する。導入口202に接続する導入速度調整容器300は、一定以上の容積を有することで、可塑化シリンダ210へ導入される物理発泡剤の流速を緩やかにし、導入速度調整容器300内に物理発泡剤が滞留できる時間を確保できる。導入速度調整容器300は、周囲に配置されたバンドヒーター(図示せず)により加熱された可塑化シリンダ210に直接接続されることにより、可塑化シリンダ210の熱が導入速度調整容器300に伝導される。これにより、導入速度調整容器300内部の物理発泡剤は加温され、物理発泡剤と溶融樹脂との温度差が小さくなり、物理発泡剤が接触する溶融樹脂の温度を極度に低下させることを抑制し、物理発泡剤の溶融樹脂への溶解量(浸透量)を安定化できる。即ち、導入速度調整容器300は、物理発泡剤の加温機能を有するバッファー容器として機能する。一方で、導入速度調整容器300は、その容積が大きすぎると、装置全体のコストが上昇する。導入速度調整容器300の容積は、飢餓ゾーン23に存在する溶融樹脂の量にも依存するが、5mL~20Lが好ましく、10mL~2Lがより好ましく、10mL~1Lが更により好ましい。導入速度調整容器300の容積をこの範囲とすることで、コストを考慮しながら物理発泡剤が滞留できる時間を確保できる。 Next, the introduction speed adjusting container 300 connected to the introduction port 202 will be described. The introduction speed adjusting container 300 connected to the introduction port 202 has a volume equal to or greater than a certain value, thereby slowing down the flow rate of the physical foaming agent introduced into the plasticizing cylinder 210, so that the physical foaming agent is introduced into the introduction speed adjusting container 300. You can secure the time you can stay. The introduction speed adjusting container 300 is directly connected to a plasticizing cylinder 210 heated by a band heater (not shown) arranged around it, so that the heat of the plasticizing cylinder 210 is conducted to the introducing speed adjusting container 300. be. As a result, the physical foaming agent inside the introduction speed adjusting container 300 is heated, the temperature difference between the physical foaming agent and the molten resin is reduced, and the temperature of the molten resin with which the physical foaming agent contacts is suppressed from being extremely lowered. It is possible to stabilize the amount (permeation amount) of the physical blowing agent dissolved in the molten resin. That is, the introduction speed adjusting container 300 functions as a buffer container having a function of heating the physical foaming agent. On the other hand, if the volume of the introduction speed adjusting container 300 is too large, the cost of the entire device increases. The volume of the introduction speed adjusting container 300 depends on the amount of molten resin existing in the starvation zone 23, but is preferably 5 mL to 20 L, more preferably 10 mL to 2 L, even more preferably 10 mL to 1 L. By setting the volume of the introduction speed adjusting container 300 within this range, it is possible to secure a time during which the physical foaming agent can stay while considering the cost.

また、後述するように物理発泡剤は溶融樹脂に接触して浸透することにより、可塑化シリンダ210内で消費される。飢餓ゾーン23の圧力を一定に保持するために、消費された分の物理発泡剤が導入速度調整容器300から飢餓ゾーン23へ導入される。導入速度調整容器300の容積が小さすぎると、物理発泡剤の置換頻度が高くなるため、物理発泡剤の温度が不安定となり、その結果、物理発泡剤の供給が不安定になる虞がある。したがって、導入速度調整容器300は、1~10分間に可塑化シリンダにおいて消費される量の物理発泡剤が滞留できる容積を有することが好ましい。また、例えば、導入速度調整容器300の容積は、当該導入速度調整容器300が接続される飢餓ゾーン23の容積の0.1倍~5倍が好ましく、0.5倍~2倍がより好ましい。本実施形態では、飢餓ゾーン23の容積は、溶融樹脂を含まない、空の可塑化シリンダ210において、スクリュ20の軸の直径及びスクリュフライトの深さが一定である部分が位置する領域(23)の容積を意味する。尚、導入口202は、常時、開放されているため、発泡成形体の製造中、導入速度調整容器300及び飢餓ゾーン23は、常時、物理発泡剤の一定圧力に保持される。 As will be described later, the physical foaming agent is consumed in the plasticizing cylinder 210 by contacting and permeating the molten resin. In order to keep the pressure in the starvation zone 23 constant, the consumed physical blowing agent is introduced into the starvation zone 23 from the introduction rate adjusting vessel 300 . If the volume of the introduction speed adjusting container 300 is too small, the replacement frequency of the physical blowing agent becomes high, so the temperature of the physical blowing agent becomes unstable, and as a result, there is a possibility that the supply of the physical blowing agent becomes unstable. Therefore, the introduction speed adjusting container 300 preferably has a volume capable of retaining the amount of physical foaming agent consumed in the plasticizing cylinder for 1 to 10 minutes. Also, for example, the volume of the introduction speed adjusting container 300 is preferably 0.1 to 5 times, more preferably 0.5 to 2 times, the volume of the starvation zone 23 to which the introduction speed adjusting container 300 is connected. In this embodiment, the volume of the starvation zone 23 is the area (23) in which the portion of the empty plasticizing cylinder 210 containing no molten resin, where the diameter of the shaft of the screw 20 and the depth of the screw flight is constant. means the volume of Since the introduction port 202 is always open, the introduction speed adjusting container 300 and the starvation zone 23 are always kept at a constant pressure of the physical foaming agent during the production of the foam molded product.

(3)溶融樹脂を飢餓状態とする
次に、溶融樹脂を飢餓ゾーン23へ流動させ、飢餓ゾーン23において溶融樹脂を飢餓状態とする(図1のステップS3)。飢餓状態は、飢餓ゾーン23の上流から飢餓ゾーン23への溶融樹脂の送り量と、飢餓ゾーン23からその下流への溶融樹脂の送り量とのバランスで決定され、前者の方が少ないと飢餓状態となる。
(3) Starvation of Molten Resin Next, the molten resin is made to flow into the starvation zone 23, and the molten resin is starved in the starvation zone 23 (step S3 in FIG. 1). The starvation state is determined by the balance between the amount of molten resin sent from the upstream of the starvation zone 23 to the starvation zone 23 and the amount of molten resin sent from the starvation zone 23 to the downstream thereof. becomes.

本実施形態では、溶融樹脂が圧縮されて圧力が高まる圧縮ゾーン22を飢餓ゾーン23の上流に設けることにより、飢餓ゾーン23において溶融樹脂を飢餓状態とする。圧縮ゾーン22には、上流側に位置する可塑化ゾーン21よりもスクリュ20の軸の直径を大きく(太く)し、スクリュフライトを段階的に浅くした大径部分20Aを設け、更に、大径部分20Aの下流側に隣接してシール部26を設ける。シール部26は、大径部分20Aと同様にスクリュ20の軸の直径が大きく(太く)、更に、スクリュフライトが設けられておらず、スクリュフライトの代わりにスクリュ20の軸に浅い溝が複数形成されている。大径部分20A及びシール部26は、スクリュ20の軸の直径を大きくすることにより、可塑化シリンダ210の内壁とスクリュ20のクリアランスを縮小し、下流に送る樹脂供給量を低減できるため、溶融樹脂の流動抵抗を高められる。したがって、本実施形態において、大径部分20A及びシール部26は、溶融樹脂の流動抵抗を高める機構である。尚、シール部26は、物理発泡剤の逆流、即ち、シール部26の下流側から上流側への物理発泡剤の移動を抑制する効果も奏する。 In this embodiment, the molten resin is starved in the starvation zone 23 by providing the compression zone 22 in which the molten resin is compressed and the pressure increases upstream of the starvation zone 23 . The compression zone 22 is provided with a large-diameter portion 20A in which the diameter of the shaft of the screw 20 is made larger (thicker) than that of the plasticizing zone 21 located on the upstream side, and the screw flights are gradually shallowed. A sealing portion 26 is provided adjacent to the downstream side of 20A. The seal portion 26 has a large (thick) shaft diameter of the screw 20 like the large-diameter portion 20A, and is not provided with a screw flight. It is By increasing the diameter of the shaft of the screw 20, the large-diameter portion 20A and the seal portion 26 reduce the clearance between the inner wall of the plasticizing cylinder 210 and the screw 20, thereby reducing the amount of resin to be supplied downstream. can increase the flow resistance of Therefore, in this embodiment, the large-diameter portion 20A and the seal portion 26 are mechanisms that increase the flow resistance of the molten resin. The sealing portion 26 also has the effect of suppressing the backflow of the physical foaming agent, that is, the movement of the physical foaming agent from the downstream side to the upstream side of the sealing portion 26 .

大径部分20A及びシール部26の存在により圧縮ゾーン22から飢餓ゾーン23に供給される樹脂流量が低下し、上流側の圧縮ゾーン22においては溶融樹脂が圧縮されて圧力が高まり、下流側の飢餓ゾーン23においては、溶融樹脂が未充満(飢餓状態)となる。溶融樹脂の飢餓状態を促進するために、スクリュ20は、圧縮ゾーン22に位置する部分と比較して、飢餓ゾーン23に位置する部分の軸の直径が小さく(細く)、且つスクリュフライトが深い構造を有する。更に、スクリュ20は、圧縮ゾーン22に位置する部分と比較して、飢餓ゾーン23全体に亘って、そこに位置する部分の軸の直径が小さく(細く)、且つスクリュフライトが深い構造を有することが好ましい。更に、飢餓ゾーン23全体に亘って、スクリュ20の軸の直径及びスクリュフライトの深さは、略一定であることが好ましい。これにより、飢餓ゾーン23における圧力を略一定に保持し、溶融樹脂の飢餓状態を安定化できる。本実施形態においては、飢餓ゾーン23は、図2に示すように、スクリュ20において、スクリュ20の軸の直径及びスクリュフライトの深さが一定である部分に形成される。 Due to the presence of the large-diameter portion 20A and the seal portion 26, the resin flow rate supplied from the compression zone 22 to the starvation zone 23 decreases, the molten resin is compressed in the compression zone 22 on the upstream side, the pressure increases, and the starvation rate on the downstream side increases. Zone 23 is underfilled with molten resin (starved state). In order to promote the starvation state of the molten resin, the screw 20 has a structure in which the shaft diameter of the portion located in the starvation zone 23 is smaller (thinner) and the screw flight is deeper than the portion located in the compression zone 22. have Furthermore, the screw 20 has a structure in which the shaft diameter of the portion located there is smaller (thinner) and the screw flight is deeper over the entire starvation zone 23 compared to the portion located in the compression zone 22. is preferred. Furthermore, throughout the starvation zone 23, the shaft diameter of the screw 20 and the depth of the screw flight are preferably substantially constant. Thereby, the pressure in the starvation zone 23 can be kept substantially constant, and the starvation state of the molten resin can be stabilized. In this embodiment, the starvation zone 23 is formed in a portion of the screw 20 where the diameter of the shaft of the screw 20 and the depth of the screw flight are constant, as shown in FIG.

圧縮ゾーン22に設けられる溶融樹脂の流動抵抗を高める機構は、圧縮ゾーン22から飢餓ゾーン23へ供給される樹脂流量を制限するために一時的に溶融樹脂が通過する流路面積を縮小させる機構であれば、特に制限されない。本実施形態では、スクリュの大径部分20A及びシール部26の両方を用いたが、片方のみ用いてもよい。スクリュの大径部分20A、シール部26以外の流動抵抗を高める機構としては、スクリュフライトが他の部分とは逆向きに設けられた構造、スクリュ上に設けられたラビリンス構造等が挙げられる。 The mechanism for increasing the flow resistance of the molten resin provided in the compression zone 22 is a mechanism for temporarily reducing the flow area through which the molten resin passes in order to limit the flow rate of the resin supplied from the compression zone 22 to the starvation zone 23. If there is, it is not particularly limited. Although both the large-diameter portion 20A of the screw and the seal portion 26 are used in this embodiment, only one of them may be used. Mechanisms for increasing the flow resistance other than the large-diameter portion 20A of the screw and the seal portion 26 include a structure in which screw flights are provided in the opposite direction to other portions, a labyrinth structure provided on the screw, and the like.

溶融樹脂の流動抵抗を高める機構は、スクリュとは別部材のリング等としてスクリュに設けてもよいし、スクリュの構造の一部としてスクリュと一体に設けてもよい。溶融樹脂の流動抵抗を高める機構は、スクリュとは別部材のリング等として設けると、リングを変更することにより溶融樹脂の流路であるクリアランス部の大きさを変更できるので、容易に溶融樹脂の流動抵抗の大きさを変更できるという利点がある。 The mechanism for increasing the flow resistance of the molten resin may be provided on the screw as a separate member such as a ring from the screw, or may be provided integrally with the screw as a part of the structure of the screw. If the mechanism for increasing the flow resistance of the molten resin is provided as a ring or the like, which is a separate member from the screw, the size of the clearance portion, which is the flow path of the molten resin, can be changed by changing the ring, so that the flow of the molten resin can be easily performed. There is an advantage that the magnitude of the flow resistance can be changed.

また、融樹脂の流動抵抗を高める機構以外に、飢餓ゾーン23から上流の圧縮ゾーン22へ溶融樹脂の逆流を防止する逆流防止機構(シール機構)を圧縮ゾーン22の飢餓ゾーン23との間に設けることによっても、飢餓ゾーン23において溶融樹脂を飢餓状態にできる。例えば、物理発泡剤の圧力により上流側に移動可能なリング、鋼球等のシール機構が挙げられる。但し、逆流防止機構は駆動部を必要とするため、樹脂滞留の虞がある。このため、駆動部を有さない流動抵抗を高める機構の方が好ましい。 In addition to the mechanism that increases the flow resistance of the molten resin, a backflow prevention mechanism (sealing mechanism) that prevents the molten resin from flowing back from the starvation zone 23 to the compression zone 22 upstream is provided between the compression zone 22 and the starvation zone 23. This also allows the molten resin to be starved in the starvation zone 23 . For example, a seal mechanism such as a ring or steel ball that can be moved upstream by the pressure of the physical foaming agent can be used. However, since the backflow prevention mechanism requires a drive unit, there is a risk of resin stagnation. Therefore, a mechanism that does not have a drive unit and increases flow resistance is preferable.

本実施形態では、飢餓ゾーン23における溶融樹脂の飢餓状態を安定化させるために、可塑化シリンダ210へ供給する熱可塑性樹脂の供給量を制御してもよい。熱可塑性樹脂の供給量が多すぎると飢餓状態を維持することが困難となるからである。本実施形態では、汎用のフィーダースクリュ212を用いて、熱可塑性樹脂の供給量を制御する。熱可塑性樹脂の供給量が制限されることにより、飢餓ゾーン23における溶融樹脂の計量速度が、圧縮ゾーン22での可塑化速度よりも大きくなる。この結果、飢餓ゾーン23における溶融樹脂の密度が安定に低下し、溶融樹脂への物理発泡剤の浸透が促進される。 In this embodiment, in order to stabilize the starvation state of the molten resin in the starvation zone 23, the amount of thermoplastic resin supplied to the plasticizing cylinder 210 may be controlled. This is because if the amount of thermoplastic resin supplied is too large, it will be difficult to maintain the starvation state. In this embodiment, a general-purpose feeder screw 212 is used to control the amount of thermoplastic resin supplied. The rate of molten resin metering in the starvation zone 23 is greater than the plasticization rate in the compression zone 22 due to the limited supply of thermoplastic resin. As a result, the density of the molten resin in the starvation zone 23 is stably lowered, promoting the permeation of the physical foaming agent into the molten resin.

本実施形態において、溶融樹脂の流動方向における飢餓ゾーン23の長さは、溶融樹脂と物理発泡剤との接触面積や接触時間を確保するために長いほうが好ましいが、長すぎると成形サイクルやスクリュ長さが長くなる弊害生じる。このため、飢餓ゾーン23の長さは、可塑化シリンダ210の内径の2倍~12倍が好ましく、4倍~10倍がより好ましい。また、飢餓ゾーン23の長さは、射出成形における計量ストーロークの全範囲を賄うことが好ましい。即ち、溶融樹脂の流動方向における飢餓ゾーン23の長さは、射出成形における計量ストーロークの長さ以上であることが好ましい。溶融樹脂の可塑化計量及び射出に伴ってスクリュ20は前方及び後方に移動するが、飢餓ゾーン23の長さを計量ストーロークの長さ以上とすることで、発泡成形体の製造中、常に、導入口202を飢餓ゾーン23内に配置できる(形成できる)。換言すれば、発泡成形体の製造中にスクリュ20が前方及び後方に動いても、飢餓ゾーン23以外のゾーンが、導入口202の位置に来ることはない。これにより、導入口202から導入される物理発泡剤は、発泡成形体の製造中、常に、飢餓ゾーン23に導入される。このように十分且つ適当な大きさ(長さ)を有する飢餓ゾーンを設け、そこに一定圧力の物理発泡剤を導入することで、飢餓ゾーン23を一定圧力により保持し易くなる。本実施形態においては、飢餓ゾーン23の長さは、図2に示すように、スクリュ20において、スクリュ20の軸の直径及びスクリュフライトの深さが一定である部分の長さと略同一である。 In this embodiment, the length of the starvation zone 23 in the flow direction of the molten resin is preferably long in order to secure the contact area and contact time between the molten resin and the physical blowing agent. The adverse effect that the length becomes long occurs. Therefore, the length of the starvation zone 23 is preferably 2 to 12 times the inner diameter of the plasticizing cylinder 210, more preferably 4 to 10 times. Also, the length of starvation zone 23 preferably covers the full range of metering strokes in injection molding. That is, the length of the starvation zone 23 in the flow direction of the molten resin is preferably equal to or longer than the length of the metering stroke in injection molding. The screw 20 moves forward and backward as the molten resin is plasticized, metered, and injected. A mouth 202 can be located (formed) within the starvation zone 23 . In other words, no zone other than the starvation zone 23 will come to the position of the inlet 202 even if the screw 20 moves forward and backward during the production of the foam molding. Thereby, the physical foaming agent introduced from the introduction port 202 is always introduced into the starvation zone 23 during the production of the foam molded product. By thus providing a starvation zone having a sufficient and appropriate size (length) and introducing a constant pressure physical blowing agent therein, the starvation zone 23 can be easily maintained at a constant pressure. In this embodiment, the length of the starvation zone 23 is substantially the same as the length of the portion of the screw 20 where the shaft diameter and screw flight depth of the screw 20 are constant, as shown in FIG.

更に、圧縮ゾーン22と飢餓ゾーン23の間に、流動速度調整ゾーン25を設けてもよい。流動速度調整ゾーン25の上流の圧縮ゾーン22における溶融樹脂の流動速度と、下流の飢餓ゾーン23における溶融樹脂の流動速度とを比較すると、飢餓ゾーン23における溶融樹脂の流動速度の方が早い。本願の発明者らは、圧縮ゾーン22と飢餓ゾーン23の間に、緩衝ゾーンとなる流動速度調整ゾーン25を設け、この急激な溶融樹脂の流動速度の変化(上昇)を抑制することにより、製造される発泡成形体の発泡性が向上することを見出した。圧縮ゾーン22から飢餓ゾーン23の間に緩衝ゾーンとなる流動速度調整ゾーン25を設けることで、発泡成形体の発泡性が向上する理由の詳細は不明であるが、流動速度調整ゾーン25に溶融樹脂が滞留することにより飢餓ゾーン23から流入した物理発泡剤と溶融樹脂が強制的に混練され、混練される時間が長くなることが一因ではないかと推測される。本実施形態では、図2に示す可塑化スクリュ20の流動速度調整ゾーン25に位置する部分に、減圧部及び圧縮部を設けて流路面積を変化させることで、溶融樹脂と物理発泡剤を減圧及び再圧縮する。更に、スクリュフライトに切欠きを設けることによって、溶融樹脂の流動速度を調整する。減圧部及び圧縮部は、例えば、スクリュフライトの深さを変化させることによって、換言すれば、スクリュ径の大きさ(太さ)を変化させることによって形成できる。 Additionally, a flow rate adjustment zone 25 may be provided between the compression zone 22 and the starvation zone 23 . Comparing the flow rate of the molten resin in the compression zone 22 upstream of the flow rate adjustment zone 25 and the flow rate of the molten resin in the starvation zone 23 downstream, the flow rate of the molten resin in the starvation zone 23 is higher. The inventors of the present application provided a flow rate adjustment zone 25 as a buffer zone between the compression zone 22 and the starvation zone 23 to suppress this rapid change (increase) in the flow rate of the molten resin. The inventors have found that the foamability of the foamed molded product obtained by this method is improved. The details of why the foamability of the foam molded product is improved by providing the flow rate adjustment zone 25 as a buffer zone between the compression zone 22 and the starvation zone 23 are unknown. It is speculated that one of the reasons is that the physical foaming agent and the molten resin that have flowed in from the starvation zone 23 are forcibly kneaded due to the retention of , and the kneading time is lengthened. In the present embodiment, the portion of the plasticizing screw 20 shown in FIG. and recompress. Furthermore, by providing a notch in the screw flight, the flow rate of the molten resin is adjusted. The decompression section and the compression section can be formed, for example, by changing the depth of the screw flight, in other words, by changing the size (thickness) of the screw diameter.

(4)溶融樹脂と物理発泡剤の接触
次に、飢餓ゾーン23を一定圧力に保持した状態で、飢餓ゾーン23において飢餓状態の溶融樹脂と一定圧力の前記物理発泡剤とを接触させる(図1のステップS4)。即ち、飢餓ゾーン23において、溶融樹脂を物理発泡剤により一定圧力で加圧する。飢餓ゾーン23は溶融樹脂が未充満(飢餓状態)であり物理発泡剤が存在できる空間があるため、物理発泡剤と溶融樹脂とを効率的に接触させることができる。溶融樹脂に接触した物理発泡剤は、溶融樹脂に浸透して消費される。物理発泡剤が消費されると、導入速度調整容器300中に滞留している物理発泡剤が飢餓ゾーン23に供給される。これにより、飢餓ゾーン23の圧力は一定圧力に保持され、溶融樹脂は一定圧力の物理発泡剤に接触し続ける。
(4) Contact between molten resin and physical blowing agent Next, while the starvation zone 23 is kept at a constant pressure, the starved molten resin is brought into contact with the physical blowing agent at a constant pressure in the starvation zone 23 (Fig. 1 step S4). That is, in the starvation zone 23, the molten resin is pressurized with a constant pressure by a physical foaming agent. Since the starvation zone 23 is not filled with the molten resin (starved state) and has a space in which the physical foaming agent can exist, the physical foaming agent and the molten resin can be efficiently brought into contact with each other. The physical blowing agent that comes into contact with the molten resin permeates the molten resin and is consumed. When the physical blowing agent is consumed, the physical blowing agent remaining in the introduction speed adjusting container 300 is supplied to the starvation zone 23 . This keeps the pressure in the starvation zone 23 at a constant pressure, and the molten resin continues to contact the physical blowing agent at constant pressure.

従来の物理発泡剤を用いた発泡成形では、可塑化シリンダに所定量の高圧の物理発泡剤を所定時間内に強制的に導入していた。したがって、物理発泡剤を高圧力に昇圧し、溶融樹脂への導入量、導入時間等を正確に制御する必要があり、物理発泡剤が溶融樹脂に接触するのは、短い導入時間のみであった。これに対して本実施形態では、可塑化シリンダ210に物理発泡剤を強制的に導入するのではなく、飢餓ゾーン23の圧力が一定となるように、一定圧力の物理発泡剤を連続的に可塑化シリンダ内に供給し、連続的に物理発泡剤を溶融樹脂に接触させる。これにより、温度及び圧力により決定される溶融樹脂への物理発泡剤の溶解量(浸透量)が、安定化する。また、本実施形態の物理発泡剤は、常に溶融樹脂に接触しているため、必要十分な量の物理発泡剤が溶融樹脂内に浸透できる。これにより、本実施形態で製造する発泡成形体は、従来の物理発泡剤を用いた成形方法と比較して低圧の物理発泡剤を用いているのにもかかわらず、発泡セルが微細である。 In conventional foam molding using a physical foaming agent, a predetermined amount of high-pressure physical foaming agent is forcibly introduced into a plasticizing cylinder within a predetermined time. Therefore, it is necessary to pressurize the physical blowing agent to a high pressure and accurately control the amount of introduction into the molten resin, the introduction time, etc., and the physical blowing agent is in contact with the molten resin only for a short introduction time. . In contrast, in the present embodiment, instead of forcibly introducing the physical blowing agent into the plasticizing cylinder 210, the physical blowing agent is continuously plasticized at a constant pressure so that the pressure in the starvation zone 23 is constant. The physical foaming agent is continuously brought into contact with the molten resin. This stabilizes the amount of physical foaming agent dissolved in the molten resin (permeation amount), which is determined by temperature and pressure. Moreover, since the physical foaming agent of this embodiment is always in contact with the molten resin, a necessary and sufficient amount of the physical foaming agent can penetrate into the molten resin. As a result, the foamed molded article produced in the present embodiment has finer foam cells despite the fact that the physical foaming agent is used at a lower pressure than in the conventional molding method using a physical foaming agent.

また、本実施形態の製造方法は、物理発泡剤の導入量、導入時間等を制御する必要が無いため、逆止弁や電磁弁等の駆動弁、更にこれらを制御する制御機構が不要となり、装置コストを抑えられる。また、本実施形態で用いる物理発泡剤は従来の物理発泡剤よりも低圧であるため装置負荷も小さい。 In addition, since the production method of the present embodiment does not require control of the introduction amount of the physical foaming agent, the introduction time, etc., drive valves such as check valves and electromagnetic valves, and control mechanisms for controlling these are unnecessary. Equipment costs can be reduced. Moreover, since the physical foaming agent used in this embodiment has a lower pressure than the conventional physical foaming agent, the load on the apparatus is also small.

本実施形態では、射出成形サイクルの連続した発泡成形体の製造中、常に、飢餓ゾーン23を一定圧力に保持する。つまり、可塑化シリンダ内で消費された物理発泡剤を補うために、前記一定圧力の物理発泡剤を連続的に供給しながら、発泡成形体の製造方法の全ての工程が実施される。また、本実施形態では、例えば、連続で複数ショットの射出成形を行う場合、射出工程、成形体の冷却工程及び成形体の取出工程が行われている間も、次のショット分の溶融樹脂が可塑化シリンダ内で準備されており、次のショット分の溶融樹脂が物理発泡剤により一定圧力で加圧される。つまり、連続で行う複数ショットの射出成形では、可塑化シリンダ内に、溶融樹脂と一定圧力の物理発泡剤が常に存在して接触している状態、つまり、可塑化シリンダ内で溶融樹脂が物理発泡剤により一定圧力で常時、加圧された状態で、可塑化計量工程、射出工程、成形体の冷却工程、取り出し工程等を含む、射出成形の1サイクルが行われる。同様に、押出成形等の連続成形を行う場合にも、可塑化シリンダ内に、溶融樹脂と一定圧力の物理発泡剤が常に存在して接触している状態、つまり、可塑化シリンダ内で溶融樹脂が物理発泡剤により一定圧力で常時、加圧された状態で成形が行われる。 In this embodiment, the starvation zone 23 is kept at a constant pressure all the time during the production of successive foamed bodies in the injection molding cycle. That is, all steps of the method for producing a foam molded product are carried out while continuously supplying the physical blowing agent at a constant pressure in order to compensate for the consumed physical blowing agent in the plasticizing cylinder. In addition, in the present embodiment, for example, when injection molding is continuously performed for a plurality of shots, the molten resin for the next shot is supplied during the injection process, the cooling process for the molded body, and the process for taking out the molded body. Prepared in a plasticizing cylinder, the next shot of molten resin is pressurized at a constant pressure by a physical foaming agent. In other words, in the continuous injection molding of multiple shots, the molten resin and the physical foaming agent at a constant pressure are always present and in contact with each other in the plasticizing cylinder. One cycle of injection molding including a plasticizing and weighing process, an injection process, a cooling process of the molded body, a taking-out process, etc. is carried out in a state of being constantly pressurized at a constant pressure by the agent. Similarly, when performing continuous molding such as extrusion molding, the molten resin and the physical blowing agent at a constant pressure are always present and in contact with each other in the plasticizing cylinder. is always pressurized at a constant pressure by a physical blowing agent.

(5)発泡成形
次に、物理発泡剤を接触させた溶融樹脂を発泡成形体に成形する(図1のステップS5)。本実施形態で用いる可塑化シリンダ210は、飢餓ゾーン23の下流に、飢餓ゾーン23に隣接して配置され、溶融樹脂が圧縮されて圧力が高まる再圧縮ゾーン24を有する。まず、可塑化スクリュ20の回転により、飢餓ゾーン23の溶融樹脂を再圧縮ゾーン24に流動させる。物理発泡剤を含む溶融樹脂は、再圧縮ゾーン24において圧力調整され、可塑化スクリュ20の前方に押し出されて計量される。このとき、可塑化スクリュ20の前方に押し出された溶融樹脂の内圧は、可塑化スクリュ20の後方に接続する油圧モータ又は電動モータ(不図示)により、スクリュ背圧として制御される。本実施形態では、溶融樹脂から物理発泡剤を分離させずに均一相溶させ、樹脂密度を安定化させるため、可塑化スクリュ20の前方に押し出された溶融樹脂の内圧、即ち、スクリュ背圧は、一定に保持されている飢餓ゾーン23の圧力よりも1~6MPa程度高く制御することが好ましい。尚、本実施形態では、スクリュ20前方の圧縮された樹脂が上流側に逆流しないように、スクリュ20の先端にチェックリング50が設けられる。これにより、計量時、飢餓ゾーン23の圧力は、スクリュ20前方の樹脂圧力に影響されない。
(5) Foam molding Next, the molten resin in contact with the physical foaming agent is molded into a foam molding (step S5 in FIG. 1). The plasticizing cylinder 210 used in this embodiment has a recompression zone 24 located downstream of the starvation zone 23 and adjacent to the starvation zone 23 where the molten resin is compressed to increase pressure. First, the rotation of the plasticizing screw 20 causes the molten resin in the starvation zone 23 to flow to the recompression zone 24 . The molten resin containing the physical blowing agent is pressure regulated in the recompression zone 24, pushed forward of the plasticizing screw 20 and metered. At this time, the internal pressure of the molten resin pushed forward of the plasticizing screw 20 is controlled as screw back pressure by a hydraulic motor or an electric motor (not shown) connected to the rear of the plasticizing screw 20 . In this embodiment, the internal pressure of the molten resin extruded forward of the plasticizing screw 20, that is, the screw back pressure is , is preferably controlled to be about 1 to 6 MPa higher than the pressure in the starvation zone 23 which is kept constant. In this embodiment, a check ring 50 is provided at the tip of the screw 20 so that the compressed resin in front of the screw 20 does not flow back to the upstream side. As a result, the pressure in the starvation zone 23 is not affected by the resin pressure in front of the screw 20 during metering.

発泡成形体の成形方法は、特に限定されず、例えば、射出発泡成形、押出発泡成形、発泡ブロー成形等により成形体を成形できる。本実施形態では、図2に示す可塑化シリンダ210から、金型内のキャビティ(不図示)に、計量した溶融樹脂を射出充填して射出発泡成形を行う。射出発泡成形としては、金型キャビティ内に、金型キャビティ容積の75%~95%の充填容量の溶融樹脂を充填して、気泡が拡大しながら金型キャビティを充填するショートショット法を用いてもよいし、また、金型キャビティ容積100%の充填量の溶融樹脂を充填した後、キャビティ容積を拡大させて発泡させるコアバック法を用いてもよい。得られる発泡成形体は内部に発泡セルを有するため、熱可塑性樹脂の冷却時の収縮が抑制されてヒケやソリが軽減され、低比重の成形体が得られる。発泡成形体の形状は、特に限定されない。押し出し成形によるシート状や筒状、射出成形による複雑形状等であってもよい。 The molding method of the foam molded article is not particularly limited, and the molded article can be molded by, for example, injection foam molding, extrusion foam molding, foam blow molding, or the like. In this embodiment, injection foam molding is performed by injecting and filling a weighed molten resin from a plasticizing cylinder 210 shown in FIG. 2 into a cavity (not shown) in a mold. In injection foam molding, the mold cavity is filled with molten resin with a filling capacity of 75% to 95% of the mold cavity volume, and the short shot method is used to fill the mold cavity while the bubbles expand. Alternatively, a core-back method may be used in which the mold cavity is filled with molten resin in a filling amount of 100% of the mold cavity volume, and then the cavity volume is expanded to cause foaming. Since the resulting foamed molded article has foamed cells inside, shrinkage of the thermoplastic resin during cooling is suppressed, sink marks and warpage are reduced, and a molded article with a low specific gravity can be obtained. The shape of the foam molded article is not particularly limited. It may be in the form of a sheet or cylinder formed by extrusion molding, or a complex shape formed by injection molding.

以上説明した発泡成形体の製造方法では、物理発泡剤の溶融樹脂への導入量、導入時間等を制御する必要がないため、複雑な制御装置を省略又は簡略化でき、装置コストを削減できる。また、本実施形態の発泡成形体の製造方法は、飢餓ゾーン23を一定圧力に保持した状態で、飢餓ゾーン23において、飢餓状態の溶融樹脂と前記一定圧力の物理発泡剤とを接触させる。これにより、物理発泡剤の溶融樹脂に対する溶解量(浸透量)を単純な機構により安定化できる。 In the method for producing a foamed molded product described above, since it is not necessary to control the introduction amount of the physical foaming agent into the molten resin, the introduction time, etc., a complicated control device can be omitted or simplified, and the device cost can be reduced. Further, in the method for producing a foam molded article of the present embodiment, the starved molten resin is brought into contact with the physical foaming agent under the constant pressure in the starvation zone 23 while the pressure in the starvation zone 23 is maintained at a constant pressure. This makes it possible to stabilize the amount of physical foaming agent dissolved in the molten resin (permeation amount) by a simple mechanism.

(6)回路パターンの成形
次に、得られた発泡成形体の表面に回路パターンを形成する(図1のステップS6)。発泡成形体上に回路パターンを形成する方法は、特に限定されず、汎用の方法を用いることができ、例えば、メッキ膜により形成できる。例えば、まず発泡成形体表面にメッキ膜を形成し、形成したメッキ膜にフォトレジストでパターニングし、エッチングにより回路パターン以外の部分のメッキ膜を除去する方法が挙げられる。また、発泡成形体の回路パターンを形成したい部分にレーザー光を照射して表面を粗化するか又は官能基を付与し、レーザー光照射部分のみにメッキ膜を形成する方法を用いてもよい。また回路パターンは、特開2017‐31441号公報、特開2017-160518号公報に開示される方法を用いて形成してもよい。
(6) Molding of Circuit Pattern Next, a circuit pattern is formed on the surface of the obtained foam molded product (step S6 in FIG. 1). The method of forming the circuit pattern on the foam molded article is not particularly limited, and a general-purpose method can be used, for example, it can be formed by plating. For example, there is a method of first forming a plated film on the surface of the foam molded article, patterning the formed plated film with a photoresist, and removing the plated film on the portion other than the circuit pattern by etching. Alternatively, a method may be used in which a laser beam is irradiated to a portion where a circuit pattern is desired to be formed on the foam molded body to roughen the surface or to impart functional groups, and a plating film is formed only on the laser beam irradiated portion. Also, the circuit pattern may be formed using the methods disclosed in JP-A-2017-31441 and JP-A-2017-160518.

本実施形態で用いる回路パターンの形成方法について、図3及び図4に基づいて以下に説明する。まず、発泡成形体60の表面に、触媒活性妨害層61を形成する(図3のステップS11及び図4(a))。次に、触媒活性妨害層61を形成した前記発泡成形体の表面の一部、即ち、回路パターンを形成する部分を加熱又は光照射する(図3のステップS12)。本実施形態では、回路パターンを形成する部分をレーザー描画する。レーザー光の照射された部分60aは加熱され、加熱部分の触媒活性妨害層61が除去される(図4(b))。レーザー描画した発泡成形体60の表面に無電解メッキ触媒を付与し(図3のステップS13)、次に、無電解メッキ液を接触させる(図3のステップS14)。この方法においては、触媒活性妨害層61は、その上に付与される無電解メッキ触媒の触媒活性を妨げる(妨害する)。このため、触媒活性妨害層61上では、無電解メッキ膜の生成が抑制される。一方、レーザー描画部分60aは、触媒活性妨害層61が除去されるため、無電解メッキ膜62が生成する。以上説明した方法により、発泡成形体60の表面に無電解メッキ膜62により回路パターンが形成された成形回路部品600が得られる(図4(c))。 A method of forming a circuit pattern used in this embodiment will be described below with reference to FIGS. 3 and 4. FIG. First, the catalytic activity hindrance layer 61 is formed on the surface of the foam molded body 60 (step S11 in FIG. 3 and FIG. 4(a)). Next, a part of the surface of the foam molded body on which the catalytic activity hindrance layer 61 is formed, that is, the part where the circuit pattern is to be formed is heated or irradiated with light (step S12 in FIG. 3). In this embodiment, laser drawing is performed on the portion where the circuit pattern is to be formed. The portion 60a irradiated with the laser beam is heated, and the catalytic activity obstructing layer 61 of the heated portion is removed (FIG. 4(b)). An electroless plating catalyst is applied to the surface of the laser-drawn foam molded body 60 (step S13 in FIG. 3), and then an electroless plating solution is brought into contact (step S14 in FIG. 3). In this method, the catalytic activity impeding layer 61 impedes (prevents) the catalytic activity of the electroless plating catalyst applied thereon. Therefore, formation of an electroless plating film is suppressed on the catalytic activity hindering layer 61 . On the other hand, since the catalytic activity hindering layer 61 is removed from the laser drawn portion 60a, an electroless plated film 62 is formed. By the method described above, a molded circuit component 600 having a circuit pattern formed on the surface of the foam molded body 60 by the electroless plating film 62 is obtained (FIG. 4(c)).

触媒活性妨害層は、例えば、アミド基及びアミノ基の少なくとも一方を有するポリマー(以下、適宜「アミド基/アミノ基含有ポリマー」と記載する)を含むことが好ましい。アミド基/アミノ基含有ポリマーは、無電解メッキ触媒の触媒活性を妨げる(妨害する)又は低下させる触媒活性妨害剤として作用する。アミド基/アミノ基含有ポリマーが無電解メッキ触媒の触媒活性を妨げるメカニズムは定かではないが、アミド基及びアミノ基が、無電解メッキ触媒に吸着、配位、反応等し、これにより、無電解メッキ触媒が触媒として作用できなくなると推測される。 The catalytic activity hindering layer preferably contains, for example, a polymer having at least one of an amide group and an amino group (hereinafter referred to as "amide group/amino group-containing polymer" as appropriate). The amide group/amino group-containing polymer acts as a catalytic activity inhibitor that hinders (obstructs) or reduces the catalytic activity of the electroless plating catalyst. Although the mechanism by which the amide group/amino group-containing polymer interferes with the catalytic activity of the electroless plating catalyst is not clear, the amide group and amino group are adsorbed, coordinated, reacted, etc., with the electroless plating catalyst. It is speculated that the plating catalyst becomes unable to act as a catalyst.

アミド基/アミノ基含有ポリマーは、任意のものを用いることができるが、無電解メッキ触媒の触媒活性を妨げる観点からは、アミド基を有するポリマーが好ましく、また、側鎖を有する分岐ポリマーが好ましい。分岐ポリマーにおいては、側鎖がアミド基及びアミノ基の少なくとも一方を含むことが好ましく、側鎖がアミド基を含むことがより好ましい。分岐ポリマーは、デンドリティックポリマーであることが好ましい。デンドリティックポリマーとは、頻繁に規則的な分岐を繰り返す分子構造で構成されたポリマーであり、デンドリマーとハイパーブランチポリマーに分類される。デンドリマーは、核となる分子を中心に、規則正しく完全に樹状分岐した構造をもつ、直径数nmの球形のポリマーであり、ハイパーブランチポリマーは、完全な樹状構造をもつデンドリマーとは異なり、不完全な樹状分岐をもつポリマーである。デンドリティックポリマーの中でも、ハイパーブランチポリマーは、比較的合成が容易で且つ安価であるため、本実施形態の分岐ポリマーとして好ましい。 Any amide group/amino group-containing polymer can be used, but from the viewpoint of hindering the catalytic activity of the electroless plating catalyst, a polymer having an amide group is preferable, and a branched polymer having a side chain is preferable. . In the branched polymer, the side chain preferably contains at least one of an amide group and an amino group, more preferably the side chain contains an amide group. Preferably, the branched polymer is a dendritic polymer. A dendritic polymer is a polymer composed of a molecular structure that repeats regular and frequent branching, and is classified into a dendrimer and a hyperbranched polymer. A dendrimer is a spherical polymer with a diameter of several nanometers and has an orderly and complete dendritic structure centered on a core molecule. It is a polymer with perfect dendritic branching. Among dendritic polymers, a hyperbranched polymer is preferable as the branched polymer of the present embodiment because it is relatively easy to synthesize and inexpensive.

レーザー描画に用いるレーザー光、無電解メッキ触媒及び無電解メッキ液は、特に限定されず、汎用のものを適宜選択して用いることができる。回路パターンの形成においては、無電解メッキ膜の上に、更に、他の種類の無電解メッキ膜や電解メッキ膜を積層してもよい。回路パターンを形成するメッキ膜62は、発泡成形体60の一面のみに平面的に形成させてもよいし、発泡成形体60の複数の面に亘って、又は球面等を含む立体形状の表面に沿って立体的に形成されてもよい。メッキ膜62が発泡成形体60の複数の面に亘って、又は球面等を含む立体形状の表面に沿って立体的に形成される場合、メッキ膜62は立体電気回路として作用し、このような所定パターンのメッキ膜62を有する成形回路部品600は、立体回路成形部品(MID)として作用する。 The laser beam, electroless plating catalyst, and electroless plating solution used for laser drawing are not particularly limited, and general-purpose ones can be appropriately selected and used. In forming the circuit pattern, other types of electroless plated film or electrolytic plated film may be further laminated on the electroless plated film. The plating film 62 that forms the circuit pattern may be planarly formed only on one surface of the foam molded body 60, or may be formed over a plurality of surfaces of the foam molded body 60, or on a three-dimensional surface including a spherical surface. It may be three-dimensionally formed along. When the plated film 62 is three-dimensionally formed over a plurality of surfaces of the foam molded body 60 or along the surface of a three-dimensional shape including a spherical surface, the plated film 62 acts as a three-dimensional electric circuit. A molded circuit component 600 having a predetermined pattern of plating film 62 acts as a three-dimensional circuit molded component (MID).

尚、上で説明した本実施形態で製造される成形回路部品600は、図4(c)に示すように、触媒活性妨害層61を有するが、本実施形態はこれに限定されない。本実施形態の製造方法は、更に、発泡成形体60の表面から触媒活性妨害層61を除去する工程を含んでもよい。発泡成形体60から触媒活性妨害層61を除去する方法としては、発泡成形体60を洗浄液で洗浄することによって、アミド基/アミノ基含有ポリマーを洗浄液に溶出させて除去する方法が挙げられる。洗浄液は、アミド基/アミノ基含有ポリマーを溶解させ、かつ発泡成形体60を変質させない液であれば特に限定されず、発泡成形体60の材料及びアミド基/アミノ基含有ポリマーの種類に応じて、適宜、選択できる。 Although the molded circuit component 600 manufactured in the present embodiment described above has a catalytic activity impeding layer 61 as shown in FIG. 4(c), the present embodiment is not limited to this. The manufacturing method of this embodiment may further include a step of removing the catalytic activity hindrance layer 61 from the surface of the foam molded article 60 . As a method for removing the catalytic activity hindering layer 61 from the foam molded article 60, there is a method of washing the foam molded article 60 with a washing liquid to dissolve and remove the amide group/amino group-containing polymer with the washing liquid. The cleaning liquid is not particularly limited as long as it dissolves the amide group/amino group-containing polymer and does not alter the properties of the foamed molded article 60, and it depends on the material of the foamed molded article 60 and the type of the amide group/amino group-containing polymer. can be selected as appropriate.

<成形回路部品>
本実施形態の成形回路部品600は、熱可塑性樹脂を含む発泡成形体60である基材と、前記基材上に形成されている回路パターンとを含み、軽量である。また、本願の発明者らは、本実施形態の製造方法により、高い耐熱性を有する成形回路部品が製造できることを見出した。本実施形態の製造方法に用いるスーパーエンプラは、常用耐熱温度が150℃以上と高い。しかし、一般に発泡成形体はソリッド成形体(無発泡成形体)と比較して耐熱性が低く、従来の高圧の物理発泡剤を使用して製造した発泡成形体は、熱可塑性樹脂としてスーパーエンプラを用いたとしても、十分な耐熱性を得られない。従来のスーパーエンプラの発泡成形体を用いた成形回路部品は、例えば、リフロー炉を通過させると、発泡セルが膨張し、成形体の厚みが増加する等の弊害が生じる。これに対して、本実施形態で得られる成形回路部品は、例えば、成形回路部品を加熱して、成形回路部品の表面温度を240℃~260℃に5分間維持したとき、加熱による成形回路部品の厚みの変化率が-2%~2%であり、好ましくは-1%~1%である。また、本実施形態で得られる成形回路部品は、例えば、成形回路部品の表面温度を200℃~260℃に3分~10分間維持したとき、加熱による成形回路部品の厚みの変化率が-2%~2%であり、好ましくは-1%~1%である。このような高い耐熱性を有する成形回路部品は、鉛フリーハンダ用のリフロー炉を通過させても形状変化が少なく、膨れ等が発生し難い。
<Molded circuit parts>
A molded circuit component 600 of the present embodiment includes a base material, which is a foam molded body 60 containing a thermoplastic resin, and a circuit pattern formed on the base material, and is lightweight. Further, the inventors of the present application have found that a molded circuit component having high heat resistance can be manufactured by the manufacturing method of the present embodiment. The super engineering plastic used in the production method of the present embodiment has a high normal heat resistance temperature of 150° C. or higher. However, in general, foam molded products have lower heat resistance than solid molded products (non-foam molded products), and foam molded products manufactured using conventional high-pressure physical foaming agents use super engineering plastics as thermoplastic resins. Even if it is used, sufficient heat resistance cannot be obtained. A molded circuit component using a conventional super engineering plastic foamed molded body, for example, when passed through a reflow furnace, the foamed cells expand, causing problems such as an increase in the thickness of the molded body. On the other hand, the molded circuit component obtained in the present embodiment, for example, when the molded circuit component is heated and the surface temperature of the molded circuit component is maintained at 240 ° C. to 260 ° C. for 5 minutes, the molded circuit component by heating is -2% to 2%, preferably -1% to 1%. Further, the molded circuit component obtained in the present embodiment has a thickness change rate of −2 when the surface temperature of the molded circuit component is maintained at 200° C. to 260° C. for 3 to 10 minutes, for example. % to 2%, preferably -1% to 1%. A molded circuit component having such high heat resistance undergoes little change in shape even when passed through a reflow furnace for lead-free soldering, and bulges and the like are less likely to occur.

ここで、「加熱による成形回路部品の厚みの変化率」は、以下の式によって定義される。尚、成形回路部品の加熱は、例えば、リフロー炉によって行うことができる。

(Da-Db)/Db×100(%)
Db:成形回路部品の加熱前の厚み
Da:成形回路部品の加熱後の厚み
Here, "rate of change in thickness of molded circuit component due to heating" is defined by the following equation. Incidentally, the molded circuit component can be heated by, for example, a reflow furnace.

(Da−Db)/Db×100 (%)
Db: Thickness of molded circuit part before heating
Da: Thickness of molded circuit component after heating

本実施形態の成形回路部品の高い耐熱性は、熱可塑性樹脂としてスーパーエンプラを用い、飢餓状態の溶融樹脂と接触させる物理発泡剤の一定圧力を、例えば、0.5MPa~12MPaという特定の範囲内とすることによってもたらされると推測される。従来の超臨界流体等を用いた発泡成形では、平均して15~20MPaの高圧の物理発泡剤を用いる。本実施形態の製造方法では、比較的低圧力で且つ一定圧力の物理発泡剤を溶融樹脂に接触させる点が、従来の発泡成形とは異なる。本願の発明者らは、物理発泡剤の一定圧力を例えば、12MPa以下、好ましくは10MPa以下、より好ましくは8MPa以下、更により好ましくは6MPa以下とすることで、発泡成形体の耐熱性が向上することを見出した。更に、物理発泡剤の一定圧力を低くすることで、外観不良(スワールマーク)も改善できる。物理発泡剤の一定圧力の下限値は、発泡に必要な量の物理発泡剤を溶融樹脂内に浸透させる観点から、0.5MPa以上であり、1MPa以上が好ましく、2MPa以上がより好ましい。 The high heat resistance of the molded circuit component of the present embodiment is achieved by using a super engineering plastic as the thermoplastic resin and applying a constant pressure of the physical foaming agent brought into contact with the starved molten resin within a specific range of, for example, 0.5 MPa to 12 MPa. is assumed to be caused by Conventional foam molding using a supercritical fluid or the like uses a high-pressure physical foaming agent of 15 to 20 MPa on average. The production method of the present embodiment differs from conventional foam molding in that the physical foaming agent is brought into contact with the molten resin at a relatively low and constant pressure. The inventors of the present application have found that the constant pressure of the physical foaming agent is, for example, 12 MPa or less, preferably 10 MPa or less, more preferably 8 MPa or less, and even more preferably 6 MPa or less, so that the heat resistance of the foamed molded product is improved. I found out. Furthermore, by lowering the constant pressure of the physical blowing agent, poor appearance (swirl marks) can be improved. The lower limit of the constant pressure of the physical blowing agent is 0.5 MPa or more, preferably 1 MPa or more, more preferably 2 MPa or more, from the viewpoint of permeating the molten resin with the amount of physical blowing agent necessary for foaming.

本実施形態の成形回路部品が高耐熱性を有するメカニズムは不明であるが、特定の種類の熱可塑性樹脂(スーパーエンプラ)と、特定の範囲の物理発泡剤の一定圧力(例えば、0.5MPa~12MPa)との組み合わせにより、従来の発泡成形体とは異なる何らかの構造的な変化、例えば、非常にミクロ的な構造的な変化が本実施形態の成形回路部品に生じた可能性がある。また、発泡成形体中の残留発泡剤は、加熱により膨張して発泡成形体の耐熱性に悪影響を与えると推測される。このため、本実施形態の発泡成形体が高い耐熱性を有する要因は、単純に、発泡成形体中の残留発泡剤が少ないためだとも考えられる。しかし、発明者らの検討によれば、例えば、アニール処理等により従来の発泡成形体から残留発泡剤をある程度脱気しても、本実施形態の発泡成形体と同等の耐熱性は得られず、加熱により膨れ等が発生することが判明している。したがって、残留発泡剤の量は、本実施形態の発泡成形体の高耐熱性の主要因ではないと推測される。尚、上記考察は、現時点での知見に基づく発明者らの推測であり、本発明の範囲を何ら制限するものではない。 Although the mechanism by which the molded circuit component of the present embodiment has high heat resistance is unknown, a specific type of thermoplastic resin (super engineering plastic) and a specific range of physical foaming agent constant pressure (for example, 0.5 MPa ~ 12 MPa), there is a possibility that some kind of structural change, for example, a very microscopic structural change that is different from the conventional foam molded product, occurred in the molded circuit component of the present embodiment. In addition, it is presumed that the residual foaming agent in the foam-molded article expands upon heating and adversely affects the heat resistance of the foam-molded article. Therefore, it is considered that the reason why the foam molded article of the present embodiment has high heat resistance is simply that the amount of residual foaming agent in the foam molded article is small. However, according to the studies of the inventors, for example, even if the residual foaming agent is degassed to some extent from the conventional foamed molded article by annealing or the like, heat resistance equivalent to that of the foamed molded article of the present embodiment cannot be obtained. It has been found that swelling and the like occur due to heating. Therefore, it is presumed that the amount of residual foaming agent is not the main factor in the high heat resistance of the foam molded article of this embodiment. Note that the above considerations are speculations made by the inventors based on current knowledge, and do not limit the scope of the present invention.

本実施形態における物理発泡剤の一定圧力は、例えば、0.5MPa~12MPaであるが、スーパーエンプラの種類によって、更に好ましい範囲が存在する。例えば、スーパーエンプラがポリフェニレンサルファイド(PPS)の場合、物理発泡剤の一定圧力は、2MPa~12MPaが好ましく、2MPa~10MPaがより好ましく、2MPa~8MPaが更により好ましい。スーパーエンプラが液晶ポリマー(LCP)の場合、物理発泡剤の一定圧力は1MPa~6MPaが好ましい。スーパーエンプラの種類と物理発泡剤の一定圧力の範囲とが上記組合せの場合、発泡性がより良好で、耐熱性がより高い発泡成形体が得られ、更に、スワールマークの発生も抑制できる。 The constant pressure of the physical foaming agent in this embodiment is, for example, 0.5 MPa to 12 MPa, but there is a more preferable range depending on the type of super engineering plastic. For example, when the super engineering plastic is polyphenylene sulfide (PPS), the constant pressure of the physical blowing agent is preferably 2 MPa to 12 MPa, more preferably 2 MPa to 10 MPa, and even more preferably 2 MPa to 8 MPa. When the super engineering plastic is a liquid crystal polymer (LCP), the constant pressure of the physical blowing agent is preferably 1 MPa to 6 MPa. When the type of super engineering plastic and the constant pressure range of the physical blowing agent are in the above combination, a foamed molded article with better foamability and higher heat resistance can be obtained, and the occurrence of swirl marks can be suppressed.

本実施形態で製造する成形回路部品は、それに含まれる発泡セルの平均セル径が100μm以下であることが好ましく、50μm以下であることがより好ましい。発泡セルの平均セル径が上記範囲であると、セルの側壁が小さくなるため加熱時に膨張し難くなり、この結果、発泡成形体の耐熱性がより向上する。尚、発泡セルの平均セル径は、例えば、発泡成形体の断面SEM写真の画像解析によって求めることができる。 In the molded circuit component manufactured in the present embodiment, the average cell diameter of the foam cells contained therein is preferably 100 μm or less, more preferably 50 μm or less. When the average cell diameter of the foamed cells is within the above range, the sidewalls of the cells become small, so that the foamed cells are less likely to expand when heated, and as a result, the heat resistance of the foamed molded product is further improved. The average cell diameter of foamed cells can be obtained, for example, by image analysis of a cross-sectional SEM photograph of a foamed molded product.

本実施形態で製造する成形回路部品は、発泡成形体において、その内部に発泡セルが形成される発泡部の厚みが0.5mm以上であることが好ましく、1mm以上であることがより好ましく、2mm以上であることが更により好ましい。上記範囲の厚みがあると、成形体に十分な厚みのスキン層を形成できる。スキン層により、成形回路部品加熱時の発泡セルの膨張を抑制できるため、成形回路部品の耐熱性が更に向上する。特に、スーパーエンプラとしてLCPを用いる場合、LCPの発泡成形体からは物理発泡剤を含む内包ガスが逃げにくい。発泡部の厚みを増すことにより、内包ガス膨張による発泡セルの膨張が抑制され、LCPを用いた成形回路部品の耐熱性がより向上する。また、本実施形態で製造する成形回路部品は、発泡成形体において、その内部に発泡セルが形成される発泡部の厚みが3mm以下であってもよく、2mm以下であってもよく、1mm以下であってもよい。発泡部の厚みが薄いほど、加熱による成形回路部品の厚みの変化率は大きくなる傾向があるが、本実施形態の製造方法で製造した成形回路部品は耐熱性が高いので、厚みが上記範囲内の発泡部においても、加熱による成形回路部品の厚みの変化率を-2%~2%、好ましくは-1%~1%に抑えることができる。 In the molded circuit component manufactured in the present embodiment, the thickness of the foamed part in which the foamed cells are formed is preferably 0.5 mm or more, more preferably 1 mm or more, and more preferably 2 mm. The above is even more preferable. When the thickness is within the above range, a sufficiently thick skin layer can be formed on the molded body. The skin layer can suppress the expansion of the foamed cells when the molded circuit component is heated, thereby further improving the heat resistance of the molded circuit component. In particular, when LCP is used as a super engineering plastic, it is difficult for the internal gas containing the physical foaming agent to escape from the LCP foam molded product. By increasing the thickness of the foamed portion, the expansion of the foamed cells due to the expansion of the contained gas is suppressed, and the heat resistance of the molded circuit component using LCP is further improved. In addition, in the molded circuit component manufactured in the present embodiment, the thickness of the foamed part in which the foamed cells are formed may be 3 mm or less, 2 mm or less, or 1 mm or less. may be As the thickness of the foamed portion becomes thinner, the rate of change in the thickness of the molded circuit component due to heating tends to increase. Also in the foamed portion, the rate of change in the thickness of the molded circuit component due to heating can be suppressed to -2% to 2%, preferably -1% to 1%.

本実施形態では、回路パターンを形成する前に発泡成形体を更にアニール処理してもよい。アニール処理において発泡成形体を加熱することで、発泡成形体から物理発泡剤を含む内包ガスを脱気できる。これにより、内包ガスの膨張による発泡セルの膨張が抑制され、成形回路部品の耐熱性がより向上する。 In this embodiment, the foam molded article may be further annealed before the circuit pattern is formed. By heating the foam-molded article in the annealing treatment, the inclusion gas containing the physical foaming agent can be degassed from the foam-molded article. As a result, expansion of the foam cells due to expansion of the contained gas is suppressed, and the heat resistance of the molded circuit component is further improved.

[第2の実施形態]
<回路部品>
本実施形態では、図5(a)、(b)及び図6に示す回路部品700について説明する。本実施形態の回路部品700は、熱可塑性樹脂を含む発泡成形体である基材10と、基材10上に形成されている回路パターン70とを含み、軽量である。また、回路部品700は、密度低減率が、好ましくは、0.5%~10%の板状の発泡成形体であり、実装面10aと、実装面10aに対向する背面10bとを有する基材10と、実装面10aを含む基材10の表面に形成されている回路パターン70と、基材10の実装面10a上に実装され、回路パターン70と電気的に接続している実装部品30とを有する。
[Second embodiment]
<Circuit parts>
In this embodiment, a circuit component 700 shown in FIGS. 5A, 5B and 6 will be described. A circuit component 700 of this embodiment includes a base material 10 that is a foam molded body containing a thermoplastic resin, and a circuit pattern 70 formed on the base material 10, and is lightweight. Further, the circuit component 700 is preferably a plate-like foam molded body having a density reduction rate of 0.5% to 10%, and has a mounting surface 10a and a back surface 10b facing the mounting surface 10a. 10, a circuit pattern 70 formed on the surface of the substrate 10 including the mounting surface 10a, and a mounted component 30 mounted on the mounting surface 10a of the substrate 10 and electrically connected to the circuit pattern 70. have

基材10は、熱可塑性樹脂と、好ましくは、絶縁性熱伝導フィラーとを含み、その内部に発泡セル11を有する。 The base material 10 contains a thermoplastic resin and preferably an insulating thermally conductive filler, and has foam cells 11 therein.

熱可塑性樹脂は、ハンダリフロー耐性を有する耐熱性のある高融点の熱可塑性樹脂を用いることが好ましい。例えば、6Tナイロン(6TPA)、9Tナイロン(9TPA)、10Tナイロン(10TPA)、12Tナイロン(12TPA)、MXD6ナイロン(MXDPA)等の芳香族ポリアミド及びこれらのアロイ材料、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリフェニルスルホン(PPSU)等を用いることができる。中でも、ポリフェニレンサルファイドは、所謂、スパーエンジニアリングプラスチック(スーパーエンプラ)の中では安価であるため、本実施形態の熱可塑性樹脂として好ましい。これらの熱可塑性樹脂は、単独で用いてもよいし、2種類以上を混合して用いてもよい。また、本実施形態では、実装部品30がハンダ付けにより実装される。このため、基材10に用いる熱可塑性樹脂は、ハンダ付けが可能なように、融点が260℃以上であることが好ましく、290℃以上であることがより好ましい。尚、実装部品30の実装に、低温ハンダを用いる場合はこの限りではない。 As the thermoplastic resin, it is preferable to use a heat-resistant, high-melting thermoplastic resin that has solder reflow resistance. For example, aromatic polyamides such as 6T nylon (6TPA), 9T nylon (9TPA), 10T nylon (10TPA), 12T nylon (12TPA), MXD6 nylon (MXDPA) and their alloy materials, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyetheretherketone (PEEK), polyetherimide (PEI), polyphenylsulfone (PPSU) and the like can be used. Among them, polyphenylene sulfide is inexpensive among so-called super engineering plastics (super engineering plastics), and is therefore preferable as the thermoplastic resin of the present embodiment. These thermoplastic resins may be used alone or in combination of two or more. Moreover, in this embodiment, the mounting component 30 is mounted by soldering. For this reason, the thermoplastic resin used for the substrate 10 preferably has a melting point of 260° C. or higher, more preferably 290° C. or higher, so as to enable soldering. However, this is not the case when low-temperature solder is used to mount the mounting component 30 .

絶縁性熱伝導フィラーとは、ここでは、熱伝導率1W/m・K以上のフィラーであり、カーボン等の導電性の放熱材料は除外される。絶縁性熱伝導フィラーとしては、例えば、高熱伝導率の無機粉末である、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、水酸化マグネシウム、窒化ホウ素、窒化アルミニウム等のセラミックス粉が挙げられる。フィラー同士の接触率を高めて熱伝達性を高めるために、ワラストナイト等の棒状、タルクや窒化ホウ素等の板状のフィラーを混合してもよい。絶縁性熱伝導フィラーは、基材10中に例えば、10重量%~90重量%含まれ、30重量%~80重量%含まれることが好ましい。絶縁性熱伝導フィラーの配合量が上記範囲内であると、本実施形態の回路部品700は、十分な放熱性を得られる。 Here, the insulating thermally conductive filler is a filler having a thermal conductivity of 1 W/m·K or more, excluding conductive heat dissipating materials such as carbon. Examples of insulating thermally conductive fillers include ceramic powders such as aluminum oxide, silicon oxide, magnesium oxide, magnesium hydroxide, boron nitride, and aluminum nitride, which are inorganic powders with high thermal conductivity. In order to increase the contact ratio between the fillers and enhance heat transferability, rod-shaped fillers such as wollastonite, and plate-shaped fillers such as talc and boron nitride may be mixed. The insulating thermally conductive filler is contained in the base material 10 in an amount of, for example, 10% to 90% by weight, preferably 30% to 80% by weight. When the blending amount of the insulating thermally conductive filler is within the above range, the circuit component 700 of the present embodiment can obtain sufficient heat dissipation.

基材10は、更に、その強度を制御するために、ガラス繊維、チタン酸カルシウム等の棒状又は針状のフィラーを含んでもよい。また、基材10は、必要に応じて、樹脂成形体に添加される汎用の各種添加剤を含んでもよい。 The base material 10 may further contain rod-like or needle-like fillers such as glass fibers and calcium titanate to control its strength. Moreover, the base material 10 may contain general-purpose various additives added to a resin molding as needed.

基材10は、密度低減率が、好ましくは、0.5%~10%の発泡成形体である。基材10の密度低減率は、1%~7%がより好ましく、4%~6%が更により好ましい。基材10の密度低減率を上記範囲内とすることで、基材10の成形性が高まると共に、回路部品700は十分な放熱性を得られる。ここで、発泡成形体の密度低減率とは、発泡成形体と同じ材料を用いて成形した非発泡成形体(ソリッド成形体)の密度に対する、ソリッド成形体の密度と発泡成形体の密度との差の割合である。発泡成形体は発泡セル(気泡)を包含するため、ソリッド成形品と比較して比重が小さくなる。例えば、発泡成形体の密度低減率が5%であるとは、ソリッド成形体の密度(100%)に対して、発泡成形体の密度(95%)が5%低下していることを意味する。 The base material 10 is preferably a foam molded article having a density reduction rate of 0.5% to 10%. The density reduction rate of the substrate 10 is more preferably 1% to 7%, and even more preferably 4% to 6%. By setting the density reduction rate of the base material 10 within the above range, the moldability of the base material 10 is enhanced and the circuit component 700 can obtain sufficient heat dissipation. Here, the density reduction rate of the foamed molded body is the ratio of the density of the solid molded body and the density of the foamed molded body to the density of the non-foamed molded body (solid molded body) molded using the same material as the foamed molded body. is the percentage of the difference. Since the foamed molded product contains foamed cells (bubbles), it has a smaller specific gravity than a solid molded product. For example, a density reduction rate of 5% for the foamed molded body means that the density (95%) of the foamed molded body is reduced by 5% with respect to the density (100%) of the solid molded body. .

回路パターン70は、絶縁体である樹脂の基材10上に形成されるため、無電解メッキにより形成されることが好ましい。したがって、回路パターン70は、例えば、無電解ニッケルリンメッキ膜、無電解銅メッキ膜、無電解ニッケルメッキ膜等の無電解メッキ膜を含んでもよく、中でも、無電解ニッケルリンメッキ膜を含むことが好ましい。樹脂基材10上の無電解メッキ膜の上に、更に、他の種類の無電解メッキ膜や電解メッキ膜を積層して、回路パターン70を形成してもよい。メッキ膜の総厚さを厚くすることで回路パターン70の電気抵抗を小さくできる。電気抵抗を下げる観点から、回路パターン70は、無電解銅メッキ膜、電解銅メッキ膜、電解ニッケルメッキ膜等を含むことが好ましい。また、メッキ膜のハンダの濡れ性を向上させるために、金、銀、錫等のメッキ膜を回路パターン70の最表面に形成してもよい。 Since the circuit pattern 70 is formed on the resin substrate 10 which is an insulator, it is preferably formed by electroless plating. Therefore, the circuit pattern 70 may include an electroless plating film such as an electroless nickel phosphor plating film, an electroless copper plating film, an electroless nickel plating film, etc. Among them, the electroless nickel phosphor plating film may be included. preferable. The circuit pattern 70 may be formed by laminating another type of electroless plated film or electrolytic plated film on the electroless plated film on the resin substrate 10 . By increasing the total thickness of the plating film, the electrical resistance of the circuit pattern 70 can be reduced. From the viewpoint of reducing electrical resistance, the circuit pattern 70 preferably includes an electroless copper plating film, an electrolytic copper plating film, an electrolytic nickel plating film, or the like. In addition, a plating film of gold, silver, tin, or the like may be formed on the outermost surface of the circuit pattern 70 in order to improve the solder wettability of the plating film.

回路パターン70の最表面に金メッキ膜を設けると、ハンダの濡れ性が向上すると共に、回路パターンの腐食を防止できる。しかし、回路パターン70の最表面全面に金メッキ膜を設けるとコストが上昇する。コスト上昇を抑制しつつ回路パターン70の腐食を防止するため、実装面10aにおいて、実装部品30がハンダ付けされる実装部12以外をレジストで覆い、実装部12に形成される回路パターンの最表面のみに金メッキ膜を形成してもよい。実装部12では、金メッキ膜によりハンダの濡れ性が向上すると共に回路パターンの腐食が抑制され、実装部12以外の部分では、安価なレジストにより回路パターン70の腐食が抑制される。 By providing a gold-plated film on the outermost surface of the circuit pattern 70, the wettability of the solder can be improved and corrosion of the circuit pattern can be prevented. However, providing the gold plating film on the entire outermost surface of the circuit pattern 70 increases the cost. In order to prevent the corrosion of the circuit pattern 70 while suppressing the cost increase, on the mounting surface 10a, areas other than the mounting portion 12 to which the mounting component 30 is soldered are covered with a resist, and the outermost surface of the circuit pattern formed on the mounting portion 12 is covered. A gold plating film may be formed only on the . In the mounting portion 12, the solder wettability is improved by the gold plating film and the corrosion of the circuit pattern is suppressed.

実装部品30は、ハンダ31により回路パターン70と電気的に接続し、通電により熱を発生して発熱源となる。実装部品30としては、例えば、LED(発光ダイオード)、パワーモジュール、IC(集積回路)、熱抵抗等が挙げられる。本実施形態では、実装部品30としてLEDを用いる。実装部品30は、基材10の実装面10a上に実装される。回路パターン70は、実装部品30と電気的に接続するため、実装面10aを含む基材10の表面に形成されている。 The mounted component 30 is electrically connected to the circuit pattern 70 by the solder 31 and generates heat when energized to serve as a heat source. Examples of the mounted component 30 include LEDs (light emitting diodes), power modules, ICs (integrated circuits), thermal resistors, and the like. In this embodiment, an LED is used as the mounting component 30 . Mounted component 30 is mounted on mounting surface 10a of substrate 10 . The circuit pattern 70 is formed on the surface of the base material 10 including the mounting surface 10a in order to electrically connect with the mounted component 30. As shown in FIG.

基材10の実装部品30が実装されている部分(実装部12)において、実装面10aから背面10bまでの距離(実装部12の厚みd)は0.1mm以上であることが好ましく、0.5mmを超えることがより好ましい。ここで、実装面10aから背面10bまでの距離(実装部12の厚みd)とは、実装部12の実装面10aから背面10bまでの、実装面10aの垂線m方向における距離である。また、実装部12の厚みdが一定でない場合、厚みdは上記範囲内で変動していることが好ましい。本実施形態において基材10は板状体であり、背面10bは、実装面10aの反対側の面である。また、本実施形態の基材10は、厚みは一定の板状体なので、厚みdが基材10の厚みでもある。 In the portion (mounting portion 12) of the substrate 10 where the mounting component 30 is mounted, the distance from the mounting surface 10a to the back surface 10b (thickness d of the mounting portion 12) is preferably 0.1 mm or more. More preferably, it exceeds 5 mm. Here, the distance from the mounting surface 10a to the rear surface 10b (thickness d of the mounting portion 12) is the distance from the mounting surface 10a to the rear surface 10b of the mounting portion 12 in the direction of the perpendicular m to the mounting surface 10a. Moreover, when the thickness d of the mounting portion 12 is not constant, it is preferable that the thickness d varies within the above range. In this embodiment, the base material 10 is a plate-like body, and the back surface 10b is the surface opposite to the mounting surface 10a. Further, since the base material 10 of the present embodiment is a plate-like body with a constant thickness, the thickness d is also the thickness of the base material 10 .

実装部品30の発する熱を背面10bへ逃がす観点からは、厚みdは薄い方が好ましい。しかし、実装部12の厚みdが薄過ぎると、基材10の成形時に実装部12における樹脂の流動性が低下し、この結果、成形性が低下する。また、基材10の機械的強度が低下し、基材10のみで自立することが難しくなる。基材10が自立できない場合、例えば、基材10の背面10bに基材10を支持する金属板等の支持部材を添える必要があり、コスト高となる。本実施形態では、実装部12に適当な厚みを持たせることで、基材10の成形性及び機械的強度の低下を防ぎ、基材10の支持部材等が不要なためコストの上昇を防止できる。基材10の機械的強度を重視する場合には、厚みdは0.6mm以上であることが好ましい。また、厚みdの上限値は、特に限定されず、回路部品700の用途に基づいて適宜決定できる。コストの観点より、厚みdは、例えば、2.5mm以下である。 From the viewpoint of allowing the heat generated by the mounted component 30 to escape to the rear surface 10b, the thinner the thickness d, the better. However, if the thickness d of the mounting portion 12 is too thin, the fluidity of the resin in the mounting portion 12 is reduced during molding of the base material 10, resulting in deterioration of moldability. Moreover, the mechanical strength of the base material 10 is lowered, making it difficult for the base material 10 to stand alone. If the base material 10 cannot stand on its own, for example, it is necessary to attach a support member such as a metal plate to the back surface 10b of the base material 10 to support the base material 10, which increases the cost. In this embodiment, by giving the mounting portion 12 an appropriate thickness, it is possible to prevent deterioration of the moldability and mechanical strength of the base material 10, and to prevent an increase in cost because a support member for the base material 10 is unnecessary. . When the mechanical strength of the substrate 10 is important, the thickness d is preferably 0.6 mm or more. Moreover, the upper limit of the thickness d is not particularly limited, and can be appropriately determined based on the application of the circuit component 700 . From the viewpoint of cost, the thickness d is, for example, 2.5 mm or less.

また、一般に、発泡成形体の厚みが0.2mm以下、又は0.5mm以下であると、発泡成形体は主にスキン層からなり、内部にコア層が殆ど形成されず、この結果、内部に発泡セルが形成され難い。実装部12の厚みdが、0.2mm以下、又は0.5mm以下であると、内部に発泡セルを殆ど有しないことにより、背面10bへの放熱性が向上する。一方で、実装部12の厚みdが0.5mmを超えると、実装部12の内部に発泡セル11が存在する可能性があり、そのため、放熱性は低下する傾向にある。しかし、本実施形態の基材10は、絶縁性熱伝導フィラーを含むため、ある程度の放熱性は確保でき、また、上述のように機械強度が向上する利点もある。 In general, when the thickness of the foam molded body is 0.2 mm or less, or 0.5 mm or less, the foam molded body mainly consists of a skin layer, and little core layer is formed inside. Foam cells are difficult to form. When the thickness d of the mounting portion 12 is 0.2 mm or less, or 0.5 mm or less, the heat dissipation to the back surface 10b is improved because there are almost no foam cells inside. On the other hand, when the thickness d of the mounting portion 12 exceeds 0.5 mm, there is a possibility that the foam cells 11 exist inside the mounting portion 12, which tends to reduce heat dissipation. However, since the base material 10 of the present embodiment contains an insulating thermally conductive filler, it is possible to ensure a certain degree of heat dissipation, and also has the advantage of improving the mechanical strength as described above.

以上説明した本実施形態の回路部品700は、以下に説明するように、量産性と放熱性を両立できる。基材10は発泡成形体である。このため、絶縁性熱伝導フィラーを含む熱可塑性樹脂であっても、成形時に発泡剤を含有することで溶融樹脂の流動性が向上する。さらに、発泡圧により金型の転写性が向上し、基材10は十分な寸法精度を得られる。このように基材10の成形性が向上するため、保圧や型締め圧を高めて成形を行う必要がなく、バリの発生も抑制される。これにより、回路部品700の製造コストを抑制でき、量産性が向上する。一方、発泡成形体は発泡セルを含むため、断熱性が向上し、放熱性が低下する傾向がある。しかし、本実施形態の基材10は、密度低減率を上述の比較的低い範囲に特定することで、図6に示すように、スキン層13での気泡の発生を抑制できる。発泡セル11は主にコア層14内に存在する。このため、発熱源となる実装部品30が実装される基材10の表面(実装面10a)は、発泡セル11の影響が少なく、絶縁性熱伝導フィラーが樹脂流動方向に配向することにより、十分な放熱性を得られる。 The circuit component 700 of this embodiment described above can achieve both mass productivity and heat dissipation as described below. The base material 10 is a foam molding. Therefore, even with a thermoplastic resin containing an insulating thermally conductive filler, the fluidity of the molten resin is improved by containing a foaming agent during molding. Furthermore, the bubbling pressure improves the transferability of the mold, and the substrate 10 can obtain sufficient dimensional accuracy. Since the moldability of the base material 10 is improved in this manner, it is not necessary to perform molding with increased holding pressure or mold clamping pressure, and the occurrence of burrs is also suppressed. Thereby, the manufacturing cost of the circuit component 700 can be suppressed, and the mass productivity is improved. On the other hand, since the foamed molded product contains foamed cells, it tends to have improved heat insulation and lower heat dissipation. However, in the base material 10 of the present embodiment, by specifying the density reduction rate within the relatively low range described above, as shown in FIG. Foam cells 11 are mainly present in core layer 14 . Therefore, the surface (mounting surface 10a) of the base material 10 on which the mounting component 30 serving as a heat source is mounted is less affected by the foamed cells 11, and the insulating thermally conductive filler is oriented in the direction of resin flow. good heat dissipation.

更に、本実施形態の基材10は、発泡成形体であるが、ハンダリフロー耐性を有する。発泡成形体は発泡セルを含むため、ハンダリフロー時に表面の膨れが発生し易い。しかし、基材10は、密度低減率を上述の比較的低い範囲に特定することで、基材10内の発泡セル11の密度を比較的低くできる。また、樹脂内部に残存する発泡剤の量を低減することができる。これにより、基材10のハンダリフロー耐性が向上すると推測される。更に、本実施形態の基材10は、密度低減率を上述の比較的低い範囲に特定することで、発泡剤の使用量を少なくできる。例えば、発泡剤として物理発泡剤を用いる場合、比較的低圧力の物理発泡剤を用いることができる。これにより、発泡成形時に外観不良が発生し難いため、表面に回路パターン70を形成し易くなる。更に、本実施形態の回路部品700は、基材10が十分な放熱性能を有するため、金属製の放熱部材を設けなくてもよい。これにより、コストを削減できる。 Furthermore, although the base material 10 of this embodiment is a foam molded article, it has solder reflow resistance. Since the foamed molded product contains foamed cells, swelling on the surface is likely to occur during solder reflow. However, the density of the foam cells 11 in the base material 10 can be made relatively low by specifying the density reduction rate of the base material 10 within the relatively low range described above. Also, the amount of the foaming agent remaining inside the resin can be reduced. It is presumed that this improves the solder reflow resistance of the substrate 10 . Furthermore, the substrate 10 of the present embodiment can reduce the amount of foaming agent used by specifying the density reduction rate within the relatively low range described above. For example, when using a physical blowing agent as a blowing agent, a relatively low-pressure physical blowing agent can be used. This makes it easier to form the circuit pattern 70 on the surface because it is less likely that an appearance defect will occur during foam molding. Furthermore, in the circuit component 700 of the present embodiment, since the substrate 10 has sufficient heat dissipation performance, it is not necessary to provide a heat dissipation member made of metal. This can reduce costs.

尚、本実施形態において、回路パターン70は、図5(a)、(b)及び図6に示すように、板状体の基材10の片面(実装面10a)のみに形成されているが、本実施形態は、これに限定されない。基材10は板状体に限定されず、回路部品700の用途に応じた任意の形状とすることができる。そして回路パターン70は、基材10の複数の面に亘って、又は球面等を含む立体形状の面に沿って立体的に形成されてもよい。回路パターン70が、基材10の複数の面に亘って、又は球面等を含む立体形状の表面に沿って立体的に形成される場合、回路部品700は三次元成形回路部品として機能する。 In the present embodiment, the circuit pattern 70 is formed only on one surface (mounting surface 10a) of the plate-shaped substrate 10 as shown in FIGS. , the present embodiment is not limited to this. The base material 10 is not limited to a plate-like body, and may have any shape according to the application of the circuit component 700 . The circuit pattern 70 may be three-dimensionally formed over a plurality of surfaces of the substrate 10 or along a three-dimensional surface including a spherical surface. When the circuit pattern 70 is three-dimensionally formed over a plurality of surfaces of the substrate 10 or along a three-dimensional surface including a spherical surface, the circuit component 700 functions as a three-dimensional molded circuit component.

また、本実施形態の回路部品700は、熱可塑性樹脂がスーパーエンプラである場合、第1の実施形態の成形回路部品600(図4(c)参照)と同等の耐熱性を有してもよい。即ち、回路部品700を加熱して、回路部品700の表面温度を240℃~260℃に5分間維持したとき、加熱による回路部品700の厚みの変化率が-2%~2%であってもよく、好ましくは-1%~1%であってもよい。また、本実施形態で得られる回路部品700は、例えば、回路部品700の表面温度を200℃~260℃に3分~10分間維持したとき、加熱による回路部品700の厚みの変化率が-2%~2%であってもよく、好ましくは-1%~1%であってもよい。このような高い耐熱性を有する回路部品は、鉛フリーハンダ用のリフロー炉を通過させても形状変化が少なく、膨れ等が発生し難い。 Further, when the thermoplastic resin is super engineering plastic, the circuit component 700 of the present embodiment may have heat resistance equivalent to that of the molded circuit component 600 of the first embodiment (see FIG. 4(c)). . That is, when the circuit component 700 is heated and the surface temperature of the circuit component 700 is maintained at 240° C. to 260° C. for 5 minutes, even if the change rate of the thickness of the circuit component 700 due to heating is −2% to 2%. well, preferably -1% to 1%. Further, the circuit component 700 obtained in the present embodiment has a thickness change rate of −2 when the surface temperature of the circuit component 700 is maintained at 200° C. to 260° C. for 3 minutes to 10 minutes, for example. % to 2%, preferably -1% to 1%. A circuit component having such high heat resistance undergoes little change in shape even when passed through a reflow furnace for lead-free soldering, and bulges and the like are less likely to occur.

<回路部品の製造方法>
回路部品700の製造方法について説明する。まず、好ましくは、絶縁性熱伝導フィラーを含む熱可塑性樹脂を発泡成形して、密度低減率が、好ましくは、0.5%~10%の発泡成形体(基材10)を得る。基材10は、二酸化炭素や窒素等の物理発泡剤を用いて発泡成形することが好ましい。発泡剤の種類には、化学発泡剤と物理発泡剤があるが、化学発泡剤は分解温度が低いため高融点の樹脂材料を発泡させることが難しい。基材10には、高融点の耐熱性の高い樹脂を用いることが好ましい。物理発泡剤を用いれば、高融点樹脂を用いて、基材10を発泡成形できる。物理発泡剤を用いた成形法としては、超臨界流体を用いたMuCell(登録商標)や、本発明者らが提案する高圧設備を不要とする低圧発泡成形法(例えば、WO2017/007032号公報に記載)を用いることができる。
<Method for manufacturing circuit parts>
A method of manufacturing circuit component 700 will be described. First, preferably, a thermoplastic resin containing an insulating thermally conductive filler is foam-molded to obtain a foam-molded article (substrate 10) having a density reduction rate of preferably 0.5% to 10%. The substrate 10 is preferably foam-molded using a physical foaming agent such as carbon dioxide or nitrogen. Types of foaming agents include chemical foaming agents and physical foaming agents. However, chemical foaming agents have a low decomposition temperature, making it difficult to foam high-melting resin materials. A resin having a high melting point and high heat resistance is preferably used for the base material 10 . If a physical foaming agent is used, the substrate 10 can be foam-molded using a high melting point resin. As a molding method using a physical foaming agent, MuCell (registered trademark) using a supercritical fluid and a low-pressure foaming molding method that does not require high-pressure equipment proposed by the present inventors (for example, see WO2017/007032 described) can be used.

WO2017/007032号公報に記載される低圧発泡成形法を用いて基材10を成形する場合、発泡射出成形機の可塑化シリンダ内に導入する物理発泡剤の圧力、金型への樹脂の充填率等を調整することにより、発泡成形体の密度低減率を調整できる。低圧発泡成形法において、可塑化シリンダ内に導入する物理発泡剤の圧力は、例えば、10MPa以下、好ましくは6MPa以下、より好ましくは2MPa以下である。 When molding the base material 10 using the low-pressure foam molding method described in WO2017/007032, the pressure of the physical foaming agent introduced into the plasticizing cylinder of the foam injection molding machine, the filling rate of the resin into the mold By adjusting the above, the density reduction rate of the foam molded article can be adjusted. In the low-pressure foam molding method, the pressure of the physical foaming agent introduced into the plasticizing cylinder is, for example, 10 MPa or less, preferably 6 MPa or less, more preferably 2 MPa or less.

また、基材10は、第1の実施形態で用いた図2に示す製造装置(射出成形装置)1000を用いて、第1の実施形態の発泡成形体60と同様の製造方法により製造してもよい。 Further, the base material 10 is manufactured by a manufacturing method similar to that of the foam molded article 60 of the first embodiment using the manufacturing apparatus (injection molding apparatus) 1000 shown in FIG. 2 used in the first embodiment. good too.

次に、基材10の実装面10aを含む表面に、回路パターン70を形成する。回路パターン70を形成する方法は、特に限定されず、汎用の方法を用いることができる。例えば、実装面10a全体にメッキ膜を形成し、メッキ膜にフォトレジストでパターニングし、エッチングにより回路パターン以外の部分のメッキ膜を除去する方法、回路パターンを形成したい部分にレーザー光を照射して基材を粗化し、レーザー光照射部分のみにメッキ膜を形成する方法等が挙げられる。また、回路パターン70は、第1の実施形態の回路パターンと同様の方法により形成してもよい。 Next, a circuit pattern 70 is formed on the surface of the substrate 10 including the mounting surface 10a. A method for forming the circuit pattern 70 is not particularly limited, and a general-purpose method can be used. For example, a method of forming a plated film on the entire mounting surface 10a, patterning the plated film with a photoresist, and removing the plated film from portions other than the circuit pattern by etching; A method of roughening the base material and forming a plated film only on the portion irradiated with the laser beam can be used. Also, the circuit pattern 70 may be formed by a method similar to that of the circuit pattern of the first embodiment.

本実施形態では、以下に説明する方法により回路パターン70を形成する。まず、基材10の表面に、触媒活性妨害層を形成する。次に、触媒活性妨害層が形成された基材10の実装面10aの無電解メッキ膜を形成する部分、即ち、回路パターン70を形成する部分をレーザー描画する。これにより、実装面10a上にレーザー描画部分15が形成される(図7(a)及び(b))。レーザー描画した基材10の表面に無電解メッキ触媒を付与し、次に、無電解メッキ液を接触させる。触媒活性妨害層は、その上に付与される無電解メッキ触媒の触媒活性を妨げる(妨害する)。このため、触媒活性妨害層上では、無電解メッキ膜の生成が抑制される。一方、レーザー描画部分15は、触媒活性妨害層が除去されるため、無電解メッキ膜が生成する。これにより、レーザー描画部分15に無電解メッキ膜により回路パターン70が形成される(図8(a)及び(b))。 In this embodiment, the circuit pattern 70 is formed by the method described below. First, a catalytic activity hindrance layer is formed on the surface of the substrate 10 . Next, the part where the electroless plating film is to be formed, that is, the part where the circuit pattern 70 is to be formed, of the mounting surface 10a of the substrate 10 on which the catalytic activity hindrance layer is formed is laser drawn. As a result, a laser drawn portion 15 is formed on the mounting surface 10a (FIGS. 7A and 7B). An electroless plating catalyst is applied to the laser-drawn surface of the substrate 10, and then an electroless plating solution is brought into contact. The catalytic activity impeding layer impedes (prevents) the catalytic activity of the electroless plating catalyst applied thereon. Therefore, formation of an electroless plating film is suppressed on the catalytic activity hindering layer. On the other hand, in the laser drawn portion 15, an electroless plated film is formed because the catalytic activity hindrance layer is removed. As a result, a circuit pattern 70 is formed from the electroless plating film on the laser drawn portion 15 (FIGS. 8A and 8B).

触媒活性妨害層は、触媒活性を妨害する樹脂(触媒失活剤)を用いて形成できる。触媒失活剤としては、側鎖にアミド基及びジチオカルバメート基を有するポリマーが好ましい。側鎖のアミド基及びジチオカルバメート基が無電解メッキ触媒となる金属イオンに作用し、触媒能を発揮することを妨げると推測される。また、触媒失活剤は、デンドリマー、ハイパーブランチポリマー等のデンドリティックポリマーが好ましい。触媒失活剤としては、例えば、特開2017‐160518号公報に開示されるポリマーを用いることができ、また、同特許公開公報に開示される方法により、基材表面に妨害層を形成できる。 The catalytic activity hindering layer can be formed using a resin (catalyst deactivator) that hinders catalytic activity. As the catalyst deactivator, polymers having amide groups and dithiocarbamate groups in side chains are preferred. It is presumed that the amide group and dithiocarbamate group in the side chain act on metal ions serving as electroless plating catalysts and prevent them from exerting their catalytic ability. Moreover, the catalyst deactivator is preferably a dendritic polymer such as a dendrimer or a hyperbranched polymer. As the catalyst deactivator, for example, a polymer disclosed in JP-A-2017-160518 can be used, and an interference layer can be formed on the substrate surface by the method disclosed in the same patent publication.

レーザー描画に用いるレーザー光及びレーザー描画方法は、特に限定されず、汎用のレーザー光及びレーザー描画方法を適宜選択して用いることができる。レーザー描画部分15では、図7(b)に示すように、触媒活性妨害層(不図示)を除去すると共に、基材10の表面を粗化してもよい。これにより、レーザー描画部分15に無電解メッキ触媒が吸着し易くなる。 The laser light and laser drawing method used for laser drawing are not particularly limited, and a general-purpose laser light and laser drawing method can be appropriately selected and used. In the laser-drawn portion 15, as shown in FIG. 7B, the catalytic activity hindering layer (not shown) may be removed and the surface of the substrate 10 may be roughened. This makes it easier for the electroless plating catalyst to be adsorbed on the laser-drawn portion 15 .

無電解メッキ触媒は、特に限定されず、汎用のものを適宜選択して用いることができる。また、無電解メッキ触媒として、例えば、特開2017-036486号公報に開示されている塩化パラジウム等の金属塩を含むメッキ触媒液を用いてもよい。無電解メッキ触媒として金属塩を含むメッキ触媒液を用いる場合、基材にメッキ触媒液を付与する前に、無電解メッキ触媒の吸着を促進する前処理液を基材に付与してもよい。前処理液としては、例えば、ポリエチレンイミン等の窒素含有ポリマーを含む水溶液を用いることができる。 The electroless plating catalyst is not particularly limited, and a general-purpose one can be appropriately selected and used. Also, as the electroless plating catalyst, for example, a plating catalyst solution containing a metal salt such as palladium chloride disclosed in JP-A-2017-036486 may be used. When a plating catalyst liquid containing a metal salt is used as the electroless plating catalyst, a pretreatment liquid that promotes adsorption of the electroless plating catalyst may be applied to the substrate before applying the plating catalyst liquid to the substrate. As the pretreatment liquid, for example, an aqueous solution containing a nitrogen-containing polymer such as polyethyleneimine can be used.

無電解メッキ液及び無電解メッキ方法は、特に限定されず、汎用の無電解メッキ液及び無電解メッキ方法を適宜選択して用いることができる。無電解メッキ液は、例えば、次亜リン酸ナトリウム、ホルマリン等の還元剤を含有する。無電解メッキ液としては、無電解ニッケルメッキ液、無電解ニッケルリンメッキ液、無電解銅メッキ液、無電解パラジウムメッキ液等を用いることができ、中でも無電解メッキ触媒(金属イオン)の還元効果の高い次亜リン酸ナトリウムを還元剤として含み、メッキ液が安定な無電解ニッケルメッキ液(無電解ニッケルリンメッキ液)が好ましい。回路パターン70の形成においては、無電解メッキ膜の上に、更に、他の種類の無電解メッキ膜や電解メッキ膜を積層してもよい。 The electroless plating solution and electroless plating method are not particularly limited, and a general-purpose electroless plating solution and electroless plating method can be appropriately selected and used. The electroless plating solution contains reducing agents such as sodium hypophosphite and formalin. As the electroless plating solution, electroless nickel plating solution, electroless nickel phosphorus plating solution, electroless copper plating solution, electroless palladium plating solution, etc. can be used. An electroless nickel plating solution (electroless nickel phosphorous plating solution) containing sodium hypophosphite having a high phosphate as a reducing agent and being a stable plating solution is preferred. In forming the circuit pattern 70, another type of electroless plated film or electrolytic plated film may be laminated on the electroless plated film.

また、上述のように、コスト上昇を抑制しつつ回路パターン70の腐食を防止するため、実装面10aにおいて、実装部品30がハンダ付けされる実装部12以外をレジストで覆い、実装部12に形成される回路パターン70の最表面のみに金メッキ膜を形成してもよい。このような態様の回路パターンは、例えば、以下方法により形成できる。まず、最表面の金メッキ膜を除く回路パターンが形成された基材10に対して、実装面10aを含む全面にソルダーレジスト(例えば、太陽インキ株式会社製)を塗布し、レジスト層を形成する。次に、レーザー光を用いて、実装部12の実装面10a上のレジスト層を除去して開口を形成し、開口に回路パターンを露出される。そして、開口に露出している回路パターンの最表面のみに金メッキ膜を形成する。 In addition, as described above, in order to prevent corrosion of the circuit pattern 70 while suppressing the cost increase, on the mounting surface 10a, areas other than the mounting portion 12 to which the mounting component 30 is soldered are covered with a resist, and the resist is formed on the mounting portion 12. A gold plating film may be formed only on the outermost surface of the circuit pattern 70 to be applied. A circuit pattern of such an aspect can be formed, for example, by the following method. First, a solder resist (manufactured by Taiyo Ink Co., Ltd., for example) is applied to the entire surface including the mounting surface 10a of the substrate 10 on which the circuit pattern is formed except for the gold plating film on the outermost surface to form a resist layer. Next, using a laser beam, the resist layer on the mounting surface 10a of the mounting portion 12 is removed to form an opening, and the circuit pattern is exposed in the opening. Then, a gold plating film is formed only on the outermost surface of the circuit pattern exposed in the opening.

基材10に回路パターン70を形成した後、基材10の実装面10a上に実装部品30を実装し、回路パターン70と電気的に接続させる。これにより、本実施形態の回路部品700が得られる。実装方法は特に限定されず、汎用の方法を用いることができ、例えば、高温のリフロー炉に実装部品30を配置した基材10を通過させるハンダリフロー法、又はレーザー光を基材10と実装部品30の界面に照射してハンダ付けを行うレーザーハンダ付け法(スポット実装)により、実装部品30を基材10にハンダ付けしてもよい。 After the circuit pattern 70 is formed on the substrate 10 , the mounting component 30 is mounted on the mounting surface 10 a of the substrate 10 and electrically connected to the circuit pattern 70 . Thus, the circuit component 700 of this embodiment is obtained. The mounting method is not particularly limited, and a general-purpose method can be used. For example, a solder reflow method in which the substrate 10 with the mounted component 30 placed thereon is passed through a high-temperature reflow furnace, or a laser beam is applied to the substrate 10 and the mounted component. The mounting component 30 may be soldered to the base material 10 by a laser soldering method (spot mounting) in which the interface of the component 30 is irradiated and soldered.

[変形例1]
次に、図9に示す第2の実施形態の変形例1について説明する。上述の図5に示す回路部品700の基材10は、厚みが一定の板状体であるが、本実施形態は、これに限定されない。例えば、図9に示す本変形例の回路部品400のように、基材40の背面40bに、側壁45aと底面45bにより区画された凹部45を設けてもよい。底面45bに対応する実装面40a上に実装部品30が実装される。本変形例の回路部品400は、凹部45以外の構成は、図5に示す回路部品700と同様である。
[Modification 1]
Next, Modification 1 of the second embodiment shown in FIG. 9 will be described. The substrate 10 of the circuit component 700 shown in FIG. 5 described above is a plate-like body having a constant thickness, but the present embodiment is not limited to this. For example, like a circuit component 400 of this modified example shown in FIG. 9, a concave portion 45 defined by a side wall 45a and a bottom surface 45b may be provided on the back surface 40b of the base material 40. FIG. A mounted component 30 is mounted on the mounting surface 40a corresponding to the bottom surface 45b. A circuit component 400 of this modified example has the same configuration as the circuit component 700 shown in FIG. 5 except for the concave portion 45 .

本変形例では、背面40bに凹部45を設けて、実装部品30が設けられる実装部42の厚みd1を薄くすることで、実装部42内のコア層を薄くする。これにより、実装部42の厚み方向への伝熱性が改善され、実装部品30が発生する熱を背面40bへ逃がし易くなる。これにより、回路部品400の放熱性を更に向上できる。 In this modified example, a recess 45 is provided in the back surface 40b to reduce the thickness d1 of the mounting portion 42 in which the mounting component 30 is provided, thereby thinning the core layer in the mounting portion 42. FIG. As a result, heat transfer in the thickness direction of the mounting portion 42 is improved, and heat generated by the mounted component 30 can be easily released to the rear surface 40b. Thereby, the heat dissipation of the circuit component 400 can be further improved.

実装部42の厚みd1を薄くした態様としては、実装面40aに凹部を設ける態様も考えられる。しかし、実装面40aに凹凸が設けられると、回路パターン70の形成が難しくなる虞がある。例えば、上述した触媒活性妨害層を用いて無電解メッキ膜のパターンを形成する場合、凹凸のある表面ではメッキ膜のコントラストがつき難い場合がある。本変形例では、背面40bに凹凸を設けることで、実装面40aにおける回路パターン70の形成に悪影響を与えずに、回路部品400の放熱性を改善できる。 As a form of reducing the thickness d1 of the mounting portion 42, a form of providing a recess in the mounting surface 40a is also conceivable. However, if the mounting surface 40a is uneven, it may become difficult to form the circuit pattern 70. FIG. For example, when forming a pattern of an electroless plated film using the above-described catalytic activity hindering layer, it may be difficult to obtain a contrast of the plated film on an uneven surface. In this modification, by providing the unevenness on the back surface 40b, the heat dissipation of the circuit component 400 can be improved without adversely affecting the formation of the circuit pattern 70 on the mounting surface 40a.

実装面40aから底面45bまでの距離d1は、例えば、0.1mm~1.5mmであることが好ましい。ここで、実装面40aから底面45bまでの距離d1とは、実装面40aから底面45bまでの、実装面40aの垂線方向における距離である。また、距離d1が一定でない場合、距離d1は上記範囲内で変動していることが好ましい。距離d1を上記範囲内とすることで、基材40の成形性及び機械的強度の低下を防ぎ、回路部品400の放熱性を改善できる。 A distance d1 from the mounting surface 40a to the bottom surface 45b is preferably 0.1 mm to 1.5 mm, for example. Here, the distance d1 from the mounting surface 40a to the bottom surface 45b is the distance from the mounting surface 40a to the bottom surface 45b in the direction perpendicular to the mounting surface 40a. Moreover, when the distance d1 is not constant, it is preferable that the distance d1 fluctuates within the above range. By setting the distance d1 within the above range, the moldability and mechanical strength of the substrate 40 can be prevented from being lowered, and the heat dissipation of the circuit component 400 can be improved.

本変形例では、図9に示すように、1つの凹部45の底面45bに対応する実装面40a上に、1個の実装部品30が実装されている。しかし、本実施形態はこれに限定されない。例えば、1つの凹部45の底面45bに対応する実装面40a上に、複数の実装部品30が実装されていてもよい。また、底面45bの面積は、実装部品30の底面の面積より大きくてもよいし、小さくてもよし、底面45bの面積と実装部品30の底面の面積とは略同一であってもよい。 In this modified example, one mounting component 30 is mounted on the mounting surface 40a corresponding to the bottom surface 45b of one recess 45, as shown in FIG. However, this embodiment is not limited to this. For example, a plurality of mounting components 30 may be mounted on the mounting surface 40 a corresponding to the bottom surface 45 b of one recess 45 . The area of the bottom surface 45b may be larger or smaller than the area of the bottom surface of the mounted component 30, and the area of the bottom surface 45b and the area of the bottom surface of the mounted component 30 may be substantially the same.

底面45bに対応する実装面40a上に配置される実装部品30、1個当たりの底面45bの面積は、例えば、4cm以下であり、好ましくは、0.4cm~4cmである。底面45bの面積が広い程、放熱性は向上が、凹部45における成形性及び機械的強度が低下する。底面45bの面積を上記範囲内とすることで、放熱性と、成形性及び機械的強度とを両立できる。The area of the bottom surface 45b per mounted component 30 placed on the mounting surface 40a corresponding to the bottom surface 45b is, for example, 4 cm 2 or less, preferably 0.4 cm 2 to 4 cm 2 . As the area of the bottom surface 45b increases, the heat dissipation improves, but the moldability and mechanical strength of the concave portion 45 decrease. By setting the area of the bottom surface 45b within the above range, it is possible to achieve a balance between heat dissipation, formability, and mechanical strength.

基材40の実装部42以外の部分の厚みd2は、機械的強度とコストの観点より、例えば、0.6mm~2.5mmである。 The thickness d2 of the portion of the substrate 40 other than the mounting portion 42 is, for example, 0.6 mm to 2.5 mm from the viewpoint of mechanical strength and cost.

凹部45は、基材40の成形と同時に形成してもよい。例えば、金型キャビティ内に、凹部45に対応する凸部を有する金型を用いて、本変形例の基材40を成形できる。 The concave portion 45 may be formed at the same time when the base material 40 is molded. For example, the base material 40 of this modified example can be molded using a mold having convex portions corresponding to the concave portions 45 in the mold cavity.

[変形例2]
次に、図10に示す第2の実施形態の変形例2について説明する。本変形例の回路部品500は、図10に示すように、基材51の背面50bに、側壁55aと底面55bにより区画された凹部55が設けられる。そして、実装部品30が実装される実装部52の実装面50aから底面55bに向かって貫通孔56が形成され、貫通孔56の内壁に無電解メッキ膜71が形成される。本変形例の貫通孔56の内部は、無電解メッキ膜71で充填されている。貫通孔56の無電解メッキ膜71は、回路パターン70及びハンダ31を介して実装部品30に連結する。本変形例の回路部品500は、貫通孔56以外の構成は、図9に示す回路部品400と同様である。
[Modification 2]
Next, Modification 2 of the second embodiment shown in FIG. 10 will be described. As shown in FIG. 10, the circuit component 500 of this modified example is provided with a concave portion 55 defined by a side wall 55a and a bottom surface 55b on the rear surface 50b of the base material 51. As shown in FIG. A through hole 56 is formed from the mounting surface 50 a of the mounting portion 52 on which the mounted component 30 is mounted to the bottom surface 55 b , and an electroless plated film 71 is formed on the inner wall of the through hole 56 . The inside of the through-hole 56 of this modified example is filled with an electroless plated film 71 . The electroless plated film 71 of the through hole 56 is connected to the mounting component 30 via the circuit pattern 70 and the solder 31 . A circuit component 500 of this modified example has the same configuration as the circuit component 400 shown in FIG. 9 except for the through holes 56 .

本変形例では、内部が無電解メッキ膜71で充填されている貫通孔56を設けることにより、実装部品30が発生する熱を無電解メッキ膜71を通じて背面50bへ逃がし易くなる。これにより、回路部品500の放熱性を更に向上できる。また、貫通孔56の内部に無電解メッキ膜71を形成することで、貫通孔56を形成した実装部52の機械的強度の低下を抑制できる。 In this modified example, by providing the through holes 56 filled with the electroless plating film 71, the heat generated by the mounting component 30 can be easily released to the rear surface 50b through the electroless plating film 71. FIG. Thereby, the heat dissipation of the circuit component 500 can be further improved. Further, by forming the electroless plated film 71 inside the through-hole 56, it is possible to suppress a decrease in the mechanical strength of the mounting portion 52 in which the through-hole 56 is formed.

貫通孔56は、例えば、レーザー加工により形成してもよい。貫通孔56内部の無電解メッキ膜71は、例えば、回路パターン70を無電解メッキ膜で形成するときに同時に形成してもよい。 The through holes 56 may be formed by laser processing, for example. The electroless plated film 71 inside the through hole 56 may be formed at the same time as the circuit pattern 70 is formed of the electroless plated film, for example.

尚、本変形例では貫通孔56を設けたが、本実施形態はこれに限定されず、実装面50aに設ける孔は、必ずしも底面55bまで貫通している必要はない。即ち、貫通孔56に代えて非貫通孔を設けてもよく、例えば、実装部52の実装面50aから底面55bに向かう凹部を形成し、凹部の表面に無電解メッキ膜を形成してもよい。無電解メッキ膜形成の観点からは、貫通孔の方が、無電解メッキ液が流れ易いため好ましい。一方で、実装部52の機械的強度、内部に形成される無電解メッキ膜の腐食防止の観点からは、実装面50aに設ける孔は底面55bまで貫通していない凹部の方が好ましい。凹部であっても、回路部品500の放熱性を改善する効果を奏する。実装部52の実装面50aから底面55bに向かう凹部の深さは、回路パターンを形成する無電解メッキ膜の厚みより深ければ、任意に決定できる。また、凹部は、実装面50aに垂直な方向に延びる孔に限定されず、実装面50a上に延びる溝であってもよい。 Although the through hole 56 is provided in this modified example, the present embodiment is not limited to this, and the hole provided in the mounting surface 50a does not necessarily have to penetrate to the bottom surface 55b. That is, a non-through hole may be provided instead of the through hole 56. For example, a recess may be formed from the mounting surface 50a of the mounting portion 52 toward the bottom surface 55b, and an electroless plating film may be formed on the surface of the recess. . From the viewpoint of forming an electroless plating film, the through holes are preferable because the electroless plating solution flows easily. On the other hand, from the viewpoint of the mechanical strength of the mounting portion 52 and the corrosion prevention of the electroless plated film formed inside, it is preferable that the hole provided in the mounting surface 50a be a concave portion that does not penetrate to the bottom surface 55b. Even if it is a concave portion, it is effective in improving the heat dissipation of the circuit component 500 . The depth of the recess from the mounting surface 50a of the mounting portion 52 toward the bottom surface 55b can be arbitrarily determined as long as it is deeper than the thickness of the electroless plating film forming the circuit pattern. Further, the concave portion is not limited to a hole extending in a direction perpendicular to the mounting surface 50a, and may be a groove extending on the mounting surface 50a.

以下、本発明について実施例及び比較例を用いて更に説明する。但し、本発明は、以下に説明する実施例及び比較例に限定されるものではない。 The present invention will be further described below using examples and comparative examples. However, the present invention is not limited to the examples and comparative examples described below.

[試料1‐1の製造]
発泡成形体を製造し、発泡成形体上にメッキ膜により回路パターンを形成して成形回路部品(試料1‐1)を得た。発泡成形体の製造において、熱可塑性樹脂としてポリフェニレンサルファイド(PPS)(ポリプラスチック製、ジェラファイド1130T6)を用い、物理発泡剤として窒素を用いた。可塑化シリンダの飢餓ゾーンに導入する物理発泡剤の圧力は1MPaとした。
[Production of sample 1-1]
A foam-molded article was produced, and a circuit pattern was formed on the foam-molded article with a plating film to obtain a molded circuit component (Sample 1-1). Polyphenylene sulfide (PPS) (manufactured by Polyplastics Co., Ltd., Gelafide 1130T6) was used as the thermoplastic resin, and nitrogen was used as the physical foaming agent in the production of the foamed molded article. The pressure of the physical foaming agent introduced into the starvation zone of the plasticizing cylinder was 1 MPa.

(1)発泡成形体の製造装置
上述した実施形態で用いた図2に示す製造装置1000を用いて、発泡成形体を製造した。製造装置1000の詳細について説明する。上述のように、製造装置1000は射出成形装置であり、可塑化シリンダ210と、物理発泡剤を可塑化シリンダ210に供給する物理発泡剤供給機構であるボンベ100と、金型が設けられた型締めユニット(不図示)と、可塑化シリンダ210及び型締めユニットを動作制御するための制御装置(不図示)を備える。
(1) Foam-molded article manufacturing apparatus A foam-molded article was manufactured using the manufacturing apparatus 1000 shown in FIG. 2 used in the above-described embodiment. Details of the manufacturing apparatus 1000 will be described. As described above, the manufacturing apparatus 1000 is an injection molding apparatus, and includes a plasticizing cylinder 210, a cylinder 100 which is a physical foaming agent supply mechanism for supplying the physical foaming agent to the plasticizing cylinder 210, and a mold provided with a mold. A clamping unit (not shown) and a control device (not shown) for controlling the operation of the plasticizing cylinder 210 and the mold clamping unit are provided.

可塑化シリンダ210のノズル先端29には、エアシリンダの駆動により開閉するシャットオフバルブ28が設けられ、可塑化シリンダ210の内部を高圧に保持できる。ノズル先端29には金型(不図示)が密着し、金型が形成するキャビティ内にノズル先端29から溶融樹脂が射出充填される。可塑化シリンダ210の上部側面には、上流側から順に、熱可塑性樹脂を可塑化シリンダ210に供給するための樹脂供給口201及び物理発泡剤を可塑化シリンダ210内に導入するための導入口202が形成される。これらの樹脂供給口201及び導入口202にはそれぞれ、樹脂供給用ホッパ211及びフィーダースクリュ212、導入速度調整容器300が配設される。導入速度調整容器300には、ボンベ100が、減圧弁151、圧力計152、開放弁153を介して、配管154により接続する。また、可塑化シリンダ210の飢餓ゾーン23内には、飢餓ゾーン23の圧力をモニターするセンサ27が設けられている。 The nozzle tip 29 of the plasticizing cylinder 210 is provided with a shut-off valve 28 that is opened and closed by driving the air cylinder, so that the inside of the plasticizing cylinder 210 can be maintained at a high pressure. A mold (not shown) is in close contact with the tip of the nozzle 29, and molten resin is injected and filled from the tip of the nozzle 29 into a cavity formed by the mold. On the upper side surface of the plasticizing cylinder 210, a resin supply port 201 for supplying the thermoplastic resin to the plasticizing cylinder 210 and an introduction port 202 for introducing the physical foaming agent into the plasticizing cylinder 210 are arranged in order from the upstream side. is formed. A resin supply hopper 211, a feeder screw 212, and an introduction speed adjusting container 300 are arranged in the resin supply port 201 and the introduction port 202, respectively. The cylinder 100 is connected to the introduction speed adjusting container 300 by a pipe 154 via a pressure reducing valve 151 , a pressure gauge 152 and an open valve 153 . A sensor 27 is also provided within the starvation zone 23 of the plasticizing cylinder 210 to monitor the pressure in the starvation zone 23 .

スクリュ20は、熱可塑性樹脂の可塑化溶融を促進し、溶融樹脂の計量及び射出を行うため、可塑化シリンダ210内において回転及び進退自在に配設されている。スクリュ20には、上述したように、溶融樹脂の流動抵抗を高める機構として、シール部26及びスクリュ20の大径部分20Aが設けられている。 The screw 20 is arranged rotatably and forwards and backwards within the plasticizing cylinder 210 in order to accelerate the plasticizing and melting of the thermoplastic resin and to meter and inject the molten resin. As described above, the screw 20 is provided with the sealing portion 26 and the large diameter portion 20A of the screw 20 as a mechanism for increasing the flow resistance of the molten resin.

可塑化シリンダ210では、樹脂供給口201から可塑化シリンダ210内に熱可塑性樹脂が供給され、熱可塑性樹脂がバンドヒータ(不図示)によって可塑化されて溶融樹脂となり、スクリュ20が正回転することにより下流に送られる。スクリュ20に設けられたシール部26及び大径部分20Aの存在により、シール部26の上流側では、溶融樹脂が圧縮されて圧力が高まり、シール部26の下流の飢餓ゾーン23では、溶融樹脂が未充満(飢餓状態)となる。更に下流に送られた溶融樹脂は、射出前に可塑化シリンダ210の先端付近において再圧縮されて計量される。 In the plasticizing cylinder 210, thermoplastic resin is supplied from the resin supply port 201 into the plasticizing cylinder 210, and the thermoplastic resin is plasticized by a band heater (not shown) to become molten resin, and the screw 20 rotates forward. sent downstream by Due to the presence of the seal portion 26 and the large-diameter portion 20A provided in the screw 20, the molten resin is compressed and the pressure is increased on the upstream side of the seal portion 26, and the molten resin is compressed in the starvation zone 23 downstream of the seal portion 26. It becomes underfilled (starvation state). The molten resin sent further downstream is recompressed and weighed near the tip of the plasticizing cylinder 210 before injection.

これにより、可塑化シリンダ210内では、上流側から順に、熱可塑性樹脂が可塑化溶融される可塑化ゾーン21、溶融樹脂が圧縮されて圧力が高まる圧縮ゾーン22、溶融樹脂の流動速度を調整する流動速度調整ゾーン25、溶融樹脂が未充満となる飢餓ゾーン23、飢餓ゾーンにおいて減圧された溶融樹脂が再度圧縮される再圧縮ゾーン24が形成される。 As a result, in the plasticizing cylinder 210, from the upstream side, the plasticizing zone 21 in which the thermoplastic resin is plasticized and melted, the compression zone 22 in which the molten resin is compressed and the pressure increases, and the flow rate of the molten resin are adjusted. A flow rate adjusting zone 25, a starvation zone 23 in which the molten resin is not filled, and a recompression zone 24 in which the molten resin depressurized in the starvation zone is compressed again are formed.

製造装置1000において、可塑化シリンダ210の内径は22mmであり、導入口202の内径は6mmであった。したがって、導入口202の内径は、可塑化シリンダ210の内径の約27%であった。また、導入速度調整容器300の容積は約80mLであり、飢餓ゾーン23の容積は、110mLであった。したがって、導入速度調整容器300の容積は、飢餓ゾーン23の容積の約0.7倍であった。また、キャビティの大きさが5cm×5cm×2mmである金型を用いた。 In the manufacturing apparatus 1000, the inner diameter of the plasticizing cylinder 210 was 22 mm, and the inner diameter of the inlet 202 was 6 mm. Thus, the inner diameter of inlet 202 was approximately 27% of the inner diameter of plasticizing cylinder 210 . Also, the volume of the introduction rate adjusting vessel 300 was approximately 80 mL, and the volume of the starvation zone 23 was 110 mL. Therefore, the volume of the introduction rate regulation vessel 300 was approximately 0.7 times the volume of the starvation zone 23 . Also, a mold with a cavity size of 5 cm×5 cm×2 mm was used.

(2)発泡成形体の製造
ボンベ100として、窒素が14.5MPaで充填された容積47Lの窒素ボンベを用いた。まず、減圧弁151の値を1MPaに設定し、ボンベ100を開放し、減圧弁151、圧力計152、更に導入速度調整容器300を介して、可塑化シリンダ210の導入口202から、飢餓ゾーン23へ1MPaの窒素を供給した。成形体の製造中、ボンベ100は常時、開放した状態とした。
(2) Manufacture of Foam Molded Body As the cylinder 100, a nitrogen cylinder with a volume of 47 L filled with nitrogen at 14.5 MPa was used. First, the value of the pressure reducing valve 151 is set to 1 MPa, the cylinder 100 is opened, and the gas is supplied from the inlet port 202 of the plasticizing cylinder 210 via the pressure reducing valve 151, the pressure gauge 152, and the introduction speed adjusting container 300 to the starvation zone 23. 1 MPa of nitrogen was supplied to the The cylinder 100 was kept open at all times during the production of the compact.

可塑化シリンダ210において、バンドヒータ(不図示)により、可塑化ゾーン21を320~300℃、圧縮ゾーン22を320℃、流動速度調整ゾーン25及び飢餓ゾーン23を300℃、再圧縮ゾーン24を320℃に調整した。そして、樹脂供給用ホッパ211から、フィーダースクリュ212を30rpmの回転数で回転させながら、熱可塑性樹脂(PPS)の樹脂ペレットを可塑化シリンダ210に供給し、スクリュ20を正回転させた。これにより、可塑化ゾーン21において、熱可塑性樹脂を加熱、混練し、溶融樹脂とした。 In the plasticizing cylinder 210, band heaters (not shown) are used to heat the plasticizing zone 21 to 320 to 300°C, the compression zone 22 to 320°C, the flow rate adjustment zone 25 and the starvation zone 23 to 300°C, and the recompression zone 24 to 320°C. °C. Then, resin pellets of thermoplastic resin (PPS) were supplied to the plasticizing cylinder 210 from the resin supply hopper 211 while the feeder screw 212 was rotated at 30 rpm, and the screw 20 was rotated forward. As a result, the thermoplastic resin is heated and kneaded in the plasticizing zone 21 to form a molten resin.

フィーダースクリュ212の回転数は、事前にソリッド成形体(無発泡成形体)の成形により、成形条件の設定(条件出し)を行い、樹脂ペレットが飢餓供給される回転数に決定した。ここで、樹脂ペレットの飢餓供給とは、可塑化ゾーン21において、樹脂ペレットの供給中、可塑化シリンダ内に樹脂ペレット又はその溶融樹脂が充満しない状態が維持され、供給した樹脂ペレット又はその溶融樹脂からスクリュ20のフライトが露出している状態を意味する。樹脂ペレットの飢餓供給の確認は、例えば、赤外線センサ又は可視化カメラにてスクリュ20上の樹脂ペレット又は溶融樹脂の有無を確認する方法が挙げられる。用いたフィーダースクリュ212に透明窓が設けられており、透明窓を介して樹脂供給口201直下の可塑化ゾーン21の状態を視認して確認した。 The number of rotations of the feeder screw 212 was determined by molding a solid molded article (non-foamed molded article) in advance to set the molding conditions (conditioning) and determine the number of rotations at which the resin pellets were starved and supplied. Here, the starvation supply of resin pellets means that in the plasticizing zone 21, during the supply of resin pellets, the state in which the plasticizing cylinder is not filled with the resin pellets or the molten resin is maintained, and the supplied resin pellets or the molten resin is maintained. , means that the flight of the screw 20 is exposed. Confirmation of the starvation supply of the resin pellets includes, for example, a method of confirming the presence or absence of resin pellets or molten resin on the screw 20 with an infrared sensor or a visualization camera. The feeder screw 212 used was provided with a transparent window, and the state of the plasticizing zone 21 immediately below the resin supply port 201 was visually confirmed through the transparent window.

スクリュ20の背圧を3MPaとし(物理発泡剤の圧力:1MP+2MPa=3MPa)とし、回転数100rpmにて正回転することにより、溶融樹脂を可塑化ゾーン21から圧縮ゾーン22に流動させ、更に、流動速度調整ゾーン25及び飢餓ゾーン23に流動させた。 The back pressure of the screw 20 is 3 MPa (physical foaming agent pressure: 1 MPa + 2 MPa = 3 MPa), and the screw 20 is rotated forward at a rotation speed of 100 rpm to flow the molten resin from the plasticization zone 21 to the compression zone 22, and further flow It was flowed to the rate regulation zone 25 and the starvation zone 23.

溶融樹脂は、スクリュ大径部分20A及びシール部26と、可塑化シリンダ210の内壁との隙間から、流動速度調整ゾーン25及び飢餓ゾーン23へ流動するため、飢餓ゾーン23への溶融樹脂の供給量が制限された。これにより、圧縮ゾーン22においては溶融樹脂が圧縮されて圧力が高まり、下流側の飢餓ゾーン23においては、溶融樹脂が未充満(飢餓状態)となった。飢餓ゾーン23では、溶融樹脂が未充満(飢餓状態)であるため、溶融樹脂が存在しない空間に導入口202から導入された物理発泡剤(窒素)が存在し、その物理発泡剤により溶融樹脂は加圧された。 Since the molten resin flows into the flow rate adjusting zone 25 and the starvation zone 23 from the gaps between the screw large diameter portion 20A and the seal portion 26 and the inner wall of the plasticizing cylinder 210, the amount of molten resin supplied to the starvation zone 23 is was restricted. As a result, the molten resin was compressed in the compression zone 22 to increase the pressure, and the starvation zone 23 on the downstream side was filled with the molten resin (starvation state). In the starvation zone 23, the molten resin is not filled (starved state), so there is a physical blowing agent (nitrogen) introduced from the inlet 202 in the space where the molten resin does not exist, and the physical blowing agent causes the molten resin to pressurized.

更に、溶融樹脂は再圧縮ゾーン24に送られて再圧縮され、スクリュ20の後退に伴い、可塑化シリンダ210の先端部において1ショット分の溶融樹脂が計量された。その後、シャットオフバルブ28を開放して、キャビティ内に、キャビティの容積の90%の充填率となる様に溶融樹脂を射出充填して平板形状の発泡成形体を成形した(ショートショット法)。金型温度は150℃とした。成形後、発泡成形体が冷却するのを待って、金型内から発泡成形体を取り出した。冷却時間は、10秒とした。 Further, the molten resin was sent to the recompression zone 24 and recompressed, and as the screw 20 retreated, one shot of the molten resin was weighed at the tip of the plasticizing cylinder 210 . After that, the shut-off valve 28 was opened, and the molten resin was injection-filled into the cavity so that the filling rate was 90% of the volume of the cavity to form a flat plate-shaped foam-molded product (short-shot method). The mold temperature was 150°C. After molding, the foam-molded article was taken out from the mold after waiting for the foam-molded article to cool. The cooling time was 10 seconds.

以上説明した成形体の射出成形を連続して20ショット行い、20個の発泡成形体を得た。20個の発泡成形体の製造中、常時、圧力センサ27により可塑化シリンダ210内の飢餓ゾーン23の圧力を計測した。その結果、飢餓ゾーン23の圧力は、常に1MPaで一定であった。また、飢餓ゾーン23へ供給される窒素の圧力を示す圧力計152の値も、発泡成形体の製造中、常時、1MPaであった。以上から、可塑化計量工程、射出工程、成形体の冷却工程、取り出し工程等を含む射出成形の1サイクルを通して、飢餓ゾーン23において、1MPaの窒素により溶融樹脂が、常時、加圧されていたこと、及び20個の成形体の連続成形の間、飢餓ゾーン23において、窒素により溶融樹脂が、常時、加圧されていたことが確認できた。 20 shots of injection molding of the molded articles described above were continuously performed to obtain 20 foam molded articles. The pressure in the starvation zone 23 in the plasticizing cylinder 210 was measured by the pressure sensor 27 at all times during the production of 20 foamed moldings. As a result, the pressure in starvation zone 23 was always constant at 1 MPa. Moreover, the value of the pressure gauge 152, which indicates the pressure of nitrogen supplied to the starvation zone 23, was always 1 MPa during the production of the foam molded product. From the above, the molten resin was constantly pressurized with nitrogen of 1 MPa in the starvation zone 23 through one cycle of injection molding including the plasticization weighing process, the injection process, the cooling process of the molded body, the take-out process, etc. , and during continuous molding of 20 molded bodies, it was confirmed that the molten resin was always pressurized by nitrogen in the starvation zone 23 .

(3)回路パターンの形成
以下に説明する方法により、発泡成形体上にメッキ膜により形成された回路パターンを形成した。
(3) Formation of circuit pattern A circuit pattern formed of a plated film was formed on the foam molded body by the method described below.

(a)触媒活性妨害剤の合成
式(1)で表される、市販のハイパーブランチポリマー(日産化学工業製、ハイパーテック HPS-200)にアミド基を導入して、式(2)で表されるハイパーブランチポリマーを合成した。
(a) Synthesis of catalytic activity inhibitor An amide group is introduced into a commercially available hyperbranched polymer (Hypertech HPS-200, manufactured by Nissan Chemical Industries, Ltd.) represented by formula (1), and represented by formula (2). We synthesized a hyperbranched polymer with

Figure 0007121004000001
Figure 0007121004000001

Figure 0007121004000002
Figure 0007121004000002

まず、式(1)で表されるハイパーブランチポリマー(1.3g、ジチオカルバメート基:4.9mmol)、N‐イソプロピルアクリルアミド(NIPAM)(1.10g、9.8mmol)、α,α’‐アゾビスイソブチロニトリル(AIBN)(81mg、0.49mmol)、脱水テトラヒドロフラン(THF)(10mL)をシュレンク管へ加え、凍結脱気を3回行った。その後、オイルバスを用いて70℃で一晩(18時間)撹拌して反応させ、反応終了後、氷水によって冷却し、THFで適度に希釈した。次に、ヘキサン中で再沈殿させ、得られた固体の生成物を60℃で一晩真空乾燥させた。生成物のNMR(核磁気共鳴)測定及びIR(赤外吸収スペクトル)測定を行った。この結果、式(1)で表される市販のハイパーブランチポリマーにアミド基が導入されて、式(2)で表されるポリマーが生成していることが確認できた。次に、生成物の分子量をGPC(ゲル浸透クロマトグラフィー)で測定した。分子量は、数平均分子量(Mn)=9,946、重量平均分子量(Mw)=24,792であり、ハイパーブランチ構造独特の数平均分子量(Mn)と重量平均分子量(Mw)とが大きく異なった値であった。式(2)で表されるハイパーブランチポリマーの収率は、92%であった。 First, a hyperbranched polymer represented by formula (1) (1.3 g, dithiocarbamate group: 4.9 mmol), N-isopropylacrylamide (NIPAM) (1.10 g, 9.8 mmol), α,α'-azo Bisisobutyronitrile (AIBN) (81 mg, 0.49 mmol) and dehydrated tetrahydrofuran (THF) (10 mL) were added to the Schlenk tube, and freeze degassing was performed three times. Then, using an oil bath, the reaction mixture was stirred overnight (18 hours) at 70° C. After completion of the reaction, the reaction mixture was cooled with ice water and appropriately diluted with THF. It was then reprecipitated in hexane and the resulting solid product was vacuum dried at 60° C. overnight. NMR (nuclear magnetic resonance) measurement and IR (infrared absorption spectrum) measurement of the product were performed. As a result, it was confirmed that an amide group was introduced into the commercially available hyperbranched polymer represented by Formula (1) to produce a polymer represented by Formula (2). The molecular weight of the product was then determined by GPC (gel permeation chromatography). The molecular weights were number average molecular weight (Mn) = 9,946 and weight average molecular weight (Mw) = 24,792. was value. The yield of the hyperbranched polymer represented by formula (2) was 92%.

(b)触媒活性妨害層の形成
合成した式(2)で表されるポリマーをメチルエチルケトンに溶解して、ポリマー濃度0.5重量%のポリマー液を調製した。成形した発泡成形体を調製したポリマー液に室温で5秒間ディッピングし、その後、85℃乾燥機中で5分間乾燥した。これにより、発泡成形体表面に触媒活性妨害層を形成した。触媒活性妨害層の膜厚は、約70nmであった。
(b) Formation of Catalytic Activity Hindering Layer The polymer represented by the synthesized formula (2) was dissolved in methyl ethyl ketone to prepare a polymer solution having a polymer concentration of 0.5% by weight. The molded foamed article was dipped in the prepared polymer solution at room temperature for 5 seconds and then dried in a 85° C. dryer for 5 minutes. As a result, a catalytic activity hindering layer was formed on the surface of the foamed molded article. The film thickness of the catalytic activity hindrance layer was about 70 nm.

(c)レーザー描画
触媒活性妨害層を形成した発泡成形体の表面に、3Dレーザーマーカ(キーエンス製、ファイバーレーザー、出力50W)を用いて、2000mm/sの加工速度で、回路パターンに対応する部分をレーザー描画した。描画パターンの線幅は0.3mm、隣り合う描画線間の最小距離は0.5mmとした。レーザー描画により、レーザー描画部分の触媒活性妨害層を除去できた。
(c) Laser drawing Using a 3D laser marker (manufactured by Keyence, fiber laser, output 50 W) on the surface of the foamed molded article on which the catalytic activity hindrance layer is formed, at a processing speed of 2000 mm / s, the part corresponding to the circuit pattern was laser drawn. The line width of the drawing pattern was 0.3 mm, and the minimum distance between adjacent drawing lines was 0.5 mm. By laser drawing, it was possible to remove the catalytic activity hindrance layer in the laser drawn portion.

(d)無電解メッキ触媒の付与及びメッキ膜の形成
レーザー描画を行った発泡成形体を30℃の塩化パラジウム溶液(奥野製薬工業製、アクチベータ)に5分浸漬して、無電解メッキ触媒を付与した。無電解メッキ触媒を付与した発泡成形体を水洗し、次に、60℃の無電解ニッケルリンメッキ液(奥野製薬工業製、トップニコロンLPH-L、pH6.5)に10分浸漬させた。発泡成形体上のレーザー描画部に選択的に、ニッケルリン膜(無電解ニッケルリンメッキ膜)が約1μm成長した。
(d) Application of Electroless Plating Catalyst and Formation of Plating Film The laser-drawn foam molded product is immersed in a palladium chloride solution (manufactured by Okuno Chemical Industry Co., Ltd., Activator) for 5 minutes to apply an electroless plating catalyst. did. The foam molded article to which the electroless plating catalyst was applied was washed with water, and then immersed in an electroless nickel phosphorus plating solution (manufactured by Okuno Chemical Industry Co., Ltd., Top Nicolon LPH-L, pH 6.5) at 60° C. for 10 minutes. A nickel phosphorous film (electroless nickel phosphorous plated film) was selectively grown to a thickness of about 1 μm on the laser-drawn portion of the foam molded product.

レーザー描画部のニッケルリン膜上に、更に、汎用の方法により、電解銅メッキ膜を10μm、電解ニッケルメッキ膜を1μm、電解金メッキ膜を0.1μm、この順に積層し、回路パターンを形成した。 A 10 μm electrolytic copper plating film, a 1 μm electrolytic nickel plating film, and a 0.1 μm electrolytic gold plating film were further laminated in this order on the nickel phosphorous film of the laser-drawn portion by a general-purpose method to form a circuit pattern.

[試料1‐2~1‐10の製造]
発泡成形体の製造において、可塑化シリンダの飢餓ゾーンに導入する物理発泡剤の圧力をそれぞれ、2MPa、4MPa、6MPa、8MPa、10MPa、12MPa、14MPa、18MPa及び0.4MPaとした以外は試料1‐1と同様の方法により、試料1‐2~1‐10(成形回路部品)を製造した。
[Production of samples 1-2 to 1-10]
Sample 1- except that the pressure of the physical blowing agent introduced into the starvation zone of the plasticizing cylinder was 2 MPa, 4 MPa, 6 MPa, 8 MPa, 10 MPa, 12 MPa, 14 MPa, 18 MPa and 0.4 MPa, respectively, in the production of the foamed molding. Samples 1-2 to 1-10 (molded circuit components) were manufactured in the same manner as in 1.

各試料の発泡成形体の製造中、常時、圧力センサ27により可塑化シリンダ210内の飢餓ゾーン23の圧力を計測した。その結果、飢餓ゾーン23の圧力は、導入される物理発泡剤と同一の一定圧力であった。また、飢餓ゾーン23へ供給される窒素の圧力を示す圧力計152の値も、発泡成形体の製造中、常時、試料毎に設定した一定圧力であった。以上から、可塑化計量工程、射出工程、成形体の冷却工程、取り出し工程等を含む射出成形の1サイクルを通して、飢餓ゾーン23において、試料毎に設定した一定圧力の窒素により溶融樹脂が、常時、加圧されていたこと、及び20個の成形体の連続成形の間、飢餓ゾーン23において、窒素により溶融樹脂が、常時、加圧されていたことが確認できた。 The pressure in the starvation zone 23 inside the plasticizing cylinder 210 was measured by the pressure sensor 27 at all times during the production of the foamed molding of each sample. As a result, the starvation zone 23 pressure was the same constant pressure as the physical blowing agent introduced. Also, the value of the pressure gauge 152, which indicates the pressure of nitrogen supplied to the starvation zone 23, was always a constant pressure set for each sample during the production of the foam molded product. From the above, through one cycle of injection molding including the plasticization weighing process, the injection process, the cooling process of the molded body, the take-out process, etc., in the starvation zone 23, the molten resin is always It was confirmed that the pressure was applied and that the molten resin was always pressurized by nitrogen in the starvation zone 23 during the continuous molding of 20 molded bodies.

[試料1‐1~1‐10の評価]
試料1‐1~1‐10(成形回路部品)を以下に説明する方法により評価した。各試料の評価結果を各試料の発泡成形体の製造時に用いた物理発泡剤の圧力と共に表1及び表2に示す。
[Evaluation of Samples 1-1 to 1-10]
Samples 1-1 to 1-10 (molded circuit components) were evaluated by the method described below. The evaluation results of each sample are shown in Tables 1 and 2 together with the pressure of the physical foaming agent used during the production of the foam molded article of each sample.

(1)発泡成形体の発泡性
発泡成形体の形状観察及び断面観察を行い、発泡成形体の発泡性を下記評価基準に従って評価した。尚、下記の判断基準でA判定の発泡成形体は、ソリッド成形品と比較して比重が10%程度低下していた。
(1) Foamability of foam molded product The shape and cross-section of the foam molded product were observed, and the foamability of the foam molded product was evaluated according to the following evaluation criteria. In addition, the specific gravity of the foam-molded article judged as A in the following criteria was lower by about 10% than that of the solid-molded article.

<発泡性の評価基準>
A:十分に発泡している。
発泡成形体は金型のキャビティを完全に充填しており、発泡成形体内部に形成された発泡セルは微細化している(セル径が約30~50μm程度)。
B:発泡している。
発泡成形体は金型のキャビティを完全に充填してはいないが、キャビティの端部に未充填部分が無い。即ち、溶融樹脂の流動末端がキャビティの端部に達している。発泡成形体内部に形成された発泡セルには、肥大化したもの(セル径が約100~200μm程度)が散見される。
C:成形体の一部のみが発泡している。
金型のキャビティの端部に未充填部分がある。即ち、溶融樹脂の流動末端がキャビティの端部に達していない。発泡成形体の端部近傍(溶融樹脂の流動末端近傍)に形成された発泡セルは肥大化している(セル径が約100~200μm程度)。
<Evaluation criteria for foamability>
A: Sufficiently foamed.
The foamed molded product completely fills the cavity of the mold, and the foamed cells formed inside the foamed molded product are fine (the cell diameter is about 30 to 50 μm).
B: Foaming.
Although the foam molding does not completely fill the cavity of the mold, there is no unfilled portion at the end of the cavity. That is, the flow end of the molten resin reaches the end of the cavity. Enlarged cells (having a cell diameter of about 100 to 200 μm) are occasionally found in the foam cells formed inside the foam molded article.
C: Only part of the molded article is foamed.
There is an unfilled portion at the end of the mold cavity. That is, the flow end of the molten resin does not reach the end of the cavity. The foam cells formed in the vicinity of the ends of the foamed molded product (near the flow end of the molten resin) are enlarged (the cell diameter is about 100 to 200 μm).

(2)加熱試験による成形回路部品の厚みの変化率
上で作製した試料1‐1~1‐10の各20個の成形回路部品から、無作為に各5個を選択した。まず、成形回路部品1個につき、平板の厚みに相当する部分(金型のキャビティの幅2mmに対応する部分)の長さを4ヵ所測定した(厚みDb)。その後、以下に説明する加熱試験を行った。まず、鉛フリーハンダ用リフロー炉を想定して、設定温度250℃に加熱した電気炉内に、成形回路部品を静置した。成形回路部品表面には熱伝対を接触させ表面温度を測定し、最高到達温度が240℃~260℃になることを確認した。表面温度が最高温度に達してから5分後に、成形回路部品を電気炉から取り出した。成形回路部品を電気炉内に静置した時間は、約8~9分であった。成形回路部品を室温まで冷却した後、加熱前に厚みを測定した部分の厚みを再度測定し(厚みDa)、加熱試験による成形回路部品の厚みの変化率を以下の式により求めた。

(Da-Db)/Db×100(%)
Db:成形回路部品の加熱前の厚み
Da:成形回路部品の加熱後の厚み
(2) Rate of Change in Thickness of Molded Circuit Part by Heating Test From each of the 20 molded circuit parts of Samples 1-1 to 1-10 prepared above, 5 pieces each were selected at random. First, for each molded circuit component, the length of the portion corresponding to the thickness of the flat plate (the portion corresponding to the width of the mold cavity of 2 mm) was measured at four locations (thickness Db). After that, the heating test described below was performed. First, assuming a reflow furnace for lead-free solder, the molded circuit component was placed in an electric furnace heated to a set temperature of 250°C. A thermocouple was brought into contact with the surface of the molded circuit component to measure the surface temperature, and it was confirmed that the maximum reaching temperature was 240°C to 260°C. Five minutes after the maximum surface temperature was reached, the molded circuit component was removed from the electric furnace. The time for which the molded circuit component was allowed to stand in the electric furnace was about 8-9 minutes. After cooling the molded circuit component to room temperature, the thickness of the portion where the thickness was measured before heating was measured again (thickness Da), and the rate of change in the thickness of the molded circuit component due to the heating test was determined by the following equation.

(Da−Db)/Db×100 (%)
Db: Thickness of molded circuit part before heating
Da: Thickness of molded circuit component after heating

成形回路部品1個につき、4ヵ所の厚みの変化率を求め、更に、試料毎に発成形回路部品5個において同様に厚みの変化率を求めた(4ヵ所×5個=合計20ヶ所)。そして、これら20ヶ所の厚みの変化率の平均値を各試料の加熱試験による成形回路部品の厚みの変化率とした。 For each molded circuit component, the rate of change in thickness was determined at 4 locations, and further, the rate of change in thickness was similarly determined for 5 molded circuit components for each sample (4 locations x 5 = 20 locations in total). Then, the average value of the rate of change in thickness at these 20 locations was taken as the rate of change in thickness of the molded circuit component obtained by the heating test of each sample.

(3)加熱試験後の表面の膨れ
上述した加熱試験後の成形回路部品の表面を観察し、表面の膨れの有無を下記評価基準に従って評価した。
(3) Surface swelling after heating test The surface of the molded circuit component after the heating test was observed, and the presence or absence of surface swelling was evaluated according to the following evaluation criteria.

<加熱試験後の表面の膨れの評価基準>
A:成形回路部品の表面に膨れが無い。
B:成形回路部品の表面の一部に小さな膨れがある(直径1mm未満)。
C:成形回路部品の表面に大きな膨れがある(直径1mm~3mm)。
D:成形回路部品の表面により大きな膨れがある(直径3mm以上)。
<Evaluation Criteria for Surface Blisters after Heating Test>
A: There is no blistering on the surface of the molded circuit component.
B: Part of the surface of the molded circuit component has a small bulge (less than 1 mm in diameter).
C: There is a large bulge on the surface of the molded circuit component (1 mm to 3 mm in diameter).
D: There is a large bulge on the surface of the molded circuit component (diameter of 3 mm or more).

(4)発泡成形体表面のスワールマーク
加熱試験前の成形回路部品の表面を観察し、発泡成形体表面のスワールマークの有無を下記評価基準に従って評価した。
(4) Swirl Marks on Surface of Foamed Mold The surface of the molded circuit component was observed before the heating test, and the presence or absence of swirl marks on the surface of the foam molded product was evaluated according to the following evaluation criteria.

<スワールマークの評価基準>
A:スワールマークが発生していないか、又は非常にわずかに発生している。
B:発泡成形体表面の一部にスワールマークが発生している。
C:発泡成形体表面全体にスワールマークが発生しており、発泡成形体の表面が白く曇っている。
<Swirl mark evaluation criteria>
A: Swirl marks are not generated or are generated very slightly.
B: Swirl marks are generated on part of the surface of the foam molded article.
C: Swirl marks are generated on the entire surface of the foamed molded article, and the surface of the foamed molded article is white and cloudy.

Figure 0007121004000003
Figure 0007121004000003
Figure 0007121004000004
Figure 0007121004000004

発泡成形体の製造時に用いた物理発泡剤の圧力が1~12MPaである試料1‐1~1‐7は、発泡成形体の発泡性が良好であり、加熱試験による成形回路部品の厚みの変化率が小さく、表面の膨れも小さかったことから耐熱性が高いことが確認できた。更に、スワールマークの発生も抑制されていた。また、発泡成形体の製造時に用いた物理発泡剤の圧力が2~10MPaである試料1‐2~1‐6は、発泡性がより良好で、耐熱性がより高く、スワールマークの発生もより少なかった。 Samples 1-1 to 1-7 in which the pressure of the physical foaming agent used in the production of the foamed molding is 1 to 12 MPa, the foaming property of the foamed molding is good, and the change in the thickness of the molded circuit part by the heating test. It was confirmed that the heat resistance was high because the modulus was small and the swelling on the surface was small. Furthermore, the occurrence of swirl marks was also suppressed. In addition, samples 1-2 to 1-6, in which the pressure of the physical foaming agent used in the production of the foamed molding is 2 to 10 MPa, have better foamability, higher heat resistance, and less swirl marks. It was less.

発泡成形体の製造時に用いた物理発泡剤の圧力が12MPaを超える試料1‐8及び1‐9は、試料1‐1~1‐7と比較して、加熱試験による成形回路部品の厚みの変化率が大きく、表面の膨れも大きかった。これから、試料1‐1~1‐7と比較して、耐熱性が低いことがわかった。また、試料1‐8及び1‐9では、スワールマークの発生も著しかった。発泡成形体の製造時に用いた物理発泡剤の圧力が0.5MPa未満の試料1‐10は、試料1‐1~1‐7と比較して、発泡成形体の発泡性が不十分であった。 Samples 1-8 and 1-9, in which the pressure of the physical foaming agent used in the production of the foamed molding exceeds 12 MPa, compared to Samples 1-1 to 1-7, changes in the thickness of the molded circuit parts due to the heating test. The rate was large, and the swelling on the surface was also large. From this, it was found that the heat resistance was lower than that of Samples 1-1 to 1-7. Also, in Samples 1-8 and 1-9, the occurrence of swirl marks was remarkable. Sample 1-10, in which the pressure of the physical foaming agent used in the production of the foamed molding is less than 0.5 MPa, had insufficient foamability compared to Samples 1-1 to 1-7. .

[試料2‐1~2‐8の製造]
熱可塑性樹脂として液晶ポリマー(LCP)(ホリプラスチック製、ラペロスS135)を用い、可塑化シリンダの飢餓ゾーンに導入する物理発泡剤(窒素)の圧力をそれぞれ、0.5MPa、1MPa、2MPa、4MPa、6MPa、8MPa、10MPa及び0.4MPaとした以外は、試料1‐1と同様の方法により試料2‐1~2‐8(成形回路部品)を製造した。
[Production of samples 2-1 to 2-8]
A liquid crystal polymer (LCP) (Hori Plastics, Laperos S135) was used as the thermoplastic resin, and the pressure of the physical blowing agent (nitrogen) introduced into the starvation zone of the plasticizing cylinder was 0.5 MPa, 1 MPa, 2 MPa, 4 MPa, respectively. Samples 2-1 to 2-8 (molded circuit parts) were produced in the same manner as sample 1-1 except that the pressure was 6 MPa, 8 MPa, 10 MPa and 0.4 MPa.

各試料の発泡成形体の製造中、常時、圧力センサ27により可塑化シリンダ210内の飢餓ゾーン23の圧力を計測した。その結果、飢餓ゾーン23の圧力は、導入される物理発泡剤と同一の一定圧力であった。また、飢餓ゾーン23へ供給される窒素の圧力を示す圧力計152の値も、発泡成形体の製造中、常時、試料毎に設定した一定圧力であった。以上から、可塑化計量工程、射出工程、成形体の冷却工程、取り出し工程等を含む射出成形の1サイクルを通して、飢餓ゾーン23において、試料毎に設定した一定圧力の窒素により溶融樹脂が、常時、加圧されていたこと、及び20個の成形体の連続成形の間、飢餓ゾーン23において、窒素により溶融樹脂が、常時、加圧されていたことが確認できた。 The pressure in the starvation zone 23 inside the plasticizing cylinder 210 was measured by the pressure sensor 27 at all times during the production of the foamed molding of each sample. As a result, the starvation zone 23 pressure was the same constant pressure as the physical blowing agent introduced. Also, the value of the pressure gauge 152, which indicates the pressure of nitrogen supplied to the starvation zone 23, was always a constant pressure set for each sample during the production of the foam molded product. From the above, through one cycle of injection molding including the plasticization weighing process, the injection process, the cooling process of the molded body, the take-out process, etc., in the starvation zone 23, the molten resin is always It was confirmed that the pressure was applied and that the molten resin was always pressurized by nitrogen in the starvation zone 23 during the continuous molding of 20 molded bodies.

[試料2‐1~2‐8の評価]
上で作製した試料2‐1~2‐8(成形回路部品)について、上述した試料1‐1~1‐10と同様の方法により、以下の(1)~(4)の評価を行った。
(1)発泡成形体の発泡性
(2)加熱試験による発泡成形体の厚みの変化率
(3)加熱試験後の表面の膨れ
(4)発泡成形体表面のスワールマーク
[Evaluation of Samples 2-1 to 2-8]
Samples 2-1 to 2-8 (molded circuit parts) prepared above were evaluated for the following (1) to (4) in the same manner as samples 1-1 to 1-10 described above.
(1) Expandability of foam molded product (2) Rate of change in thickness of foam molded product by heating test (3) Surface swelling after heat test (4) Swirl mark on foam molded product surface

各試料の評価結果を各試料の発泡成形体の製造時に用いた物理発泡剤の圧力と共に表3に示す。 The evaluation results of each sample are shown in Table 3 together with the pressure of the physical foaming agent used in producing the foam molded article of each sample.

Figure 0007121004000005
Figure 0007121004000005

発泡成形体の製造時に用いた物理発泡剤の圧力が0.5~10MPaである試料2‐1~2‐7は、発泡性が良好で、加熱試験による発泡成形体の厚みの変化率が小さかったことから耐熱性が高いことが確認できた。更に、スワールマークの発生も抑制されていた。また、発泡成形体の製造時に用いた物理発泡剤の圧力が1~6MPaである試料2‐2~2‐5は、発泡性がより良好で、耐熱性がより高く、スワールマークの発生も少なかった。 Samples 2-1 to 2-7, in which the pressure of the physical foaming agent used in the production of the foamed molding was 0.5 to 10 MPa, had good foaming properties, and the rate of change in the thickness of the foamed molding due to the heating test was small. Therefore, it was confirmed that the heat resistance was high. Furthermore, the occurrence of swirl marks was also suppressed. In addition, samples 2-2 to 2-5, in which the pressure of the physical foaming agent used in the production of the foamed molding is 1 to 6 MPa, have better foamability, higher heat resistance, and less swirl marks. rice field.

発泡成形体の製造時に用いた物理発泡剤の圧力が0.4MPaの試料2‐8は、試料2‐1~2‐7と比較して、発泡成形体の発泡性が不十分であった。 Sample 2-8, in which the pressure of the physical foaming agent used in the production of the foamed article was 0.4 MPa, had insufficient foamability compared to Samples 2-1 to 2-7.

[試料3‐1]
図5に示す板状体の基材10を用いて、回路部品700を製造した。また、実装部品30として、LED(発光ダイオード)を用いた。
[Sample 3-1]
A circuit component 700 was manufactured using the plate-like substrate 10 shown in FIG. Also, an LED (light emitting diode) was used as the mounting component 30 .

(1)基材の成形
絶縁性熱伝導フィラーを含む熱可塑性樹脂として、酸化アルミ等を含むポリフェニレンサルファイド(PPS)(DIC製、TZ-2010-A1、熱伝導率1W/m・K)を用いた。成形装置としてWO2017/007032号公報の図2に開示される成形装置を用い、物理発泡剤として加圧窒素を用いて、板状(50mm×80mm×2mm)の発泡成形体を成形した。金型への溶融樹脂の充填量を調整して、発泡体の密度低減率を5%とした。成形条件は、物理発泡剤の導入圧力:2MPa、樹脂温度:350℃、金型温度:150℃、射出速度:50mm/s、型締め圧:3tf、保圧:0(ゼロ)とした。
(1) Molding of base material Polyphenylene sulfide (PPS) (DIC, TZ-2010-A1, thermal conductivity 1 W/m K) containing aluminum oxide, etc., is used as a thermoplastic resin containing an insulating thermally conductive filler. board. Using the molding apparatus disclosed in FIG. 2 of WO2017/007032 as the molding apparatus and pressurized nitrogen as the physical foaming agent, a plate-like (50 mm×80 mm×2 mm) foam molded article was molded. The density reduction rate of the foam was set to 5% by adjusting the amount of molten resin filled into the mold. The molding conditions were as follows: introduction pressure of physical foaming agent: 2 MPa, resin temperature: 350° C., mold temperature: 150° C., injection speed: 50 mm/s, mold clamping pressure: 3 tf, holding pressure: 0 (zero).

成形した発泡成形体の外観を光学顕微鏡で観察した。成形時において金型ゲートに位置していた部分から金型末端に位置して部分まで、発泡成形体の厚みの変動幅は5μm以内であり、発泡成形体の厚みは均一であった。また、成形体の金型末端に位置していた部分(流動末端部)に、顕微鏡で確認できる大きさのバリは発生していなかった。更に、発泡成形体の断面をSEMで観察した。成形体の表面から深さ約100μmまでの範囲のスキン層には、発泡セルは確認できなかった。成形体の表面から約100μmより深い範囲のコア層には、平均セル径が50μm程度の微細な発泡セルが確認された。 The external appearance of the molded foamed article was observed with an optical microscope. During molding, the variation in thickness of the foam-molded product was within 5 μm from the portion located at the mold gate to the portion located at the end of the mold, and the thickness of the foam-molded product was uniform. In addition, no burrs of a size that can be confirmed with a microscope were generated in the portion (end of flow) located at the end of the mold for the molded product. Furthermore, the cross section of the foam molded article was observed by SEM. No foam cells were observed in the skin layer from the surface of the molded article to a depth of about 100 μm. Fine foamed cells with an average cell diameter of about 50 μm were confirmed in the core layer at a depth of about 100 μm from the surface of the molded article.

(2)回路パターンの形成
以下に説明する方法により、基材10上にメッキ膜により形成された回路パターン70を形成した。
(2) Formation of Circuit Pattern A circuit pattern 70 formed of a plating film was formed on the substrate 10 by the method described below.

(a)触媒活性妨害層の形成
基材の表面に、上述の試料1-1の製造で用いた、触媒失活剤である式(2)で表されるハイパーブランチポリマーを含む触媒活性妨害層を形成した。尚、式(2)で表されるハイパーブランチポリマーは、特開2017‐160518号公報に開示される方法により合成した。
(a) Formation of catalytic activity hindering layer A catalytic activity hindering layer containing the hyperbranched polymer represented by formula (2), which is a catalyst deactivator, used in the production of sample 1-1 above, on the surface of the base material. formed. The hyperbranched polymer represented by Formula (2) was synthesized by the method disclosed in JP-A-2017-160518.

合成した式(2)で表されるポリマーをメチルエチルケトンに溶解して、ポリマー濃度0.3重量%のポリマー溶液を調製した。室温のポリマー溶液に基材を5秒間浸漬し、その後、85℃乾燥機中で5分間乾燥した。これにより、基材表面に膜厚約50nmの触媒活性妨害層が形成された。 A polymer solution having a polymer concentration of 0.3% by weight was prepared by dissolving the synthesized polymer represented by formula (2) in methyl ethyl ketone. The substrate was immersed in the room temperature polymer solution for 5 seconds and then dried in an 85° C. dryer for 5 minutes. As a result, a catalytic activity hindering layer having a film thickness of about 50 nm was formed on the substrate surface.

(b)レーザー描画
触媒活性妨害層を形成した基材10の表面に、3Dレーザーマーカ(キーエンス製、ファイバーレーザー、出力50W)を用いて、800mm/sの加工速度で3回重ね書きを行い、回路パターン70に対応する部分をレーザー描画した。描画パターンの線幅は0.3mm、隣り合う描画線間の最小距離は0.5mmとした。レーザー描画により、レーザー描画部分15(図7(a)及び(b)参照)の触媒活性妨害層を除去できた。また、レーザー描画部分15の表面は粗化され、基材10内に含まれていたフィラーが露出した。レーザーによる粗化深さは、約50μmであった。
(b) Laser drawing Using a 3D laser marker (manufactured by Keyence, fiber laser, output 50 W) on the surface of the substrate 10 on which the catalytic activity hindrance layer is formed, overwriting is performed three times at a processing speed of 800 mm / s, A portion corresponding to the circuit pattern 70 was drawn with a laser. The line width of the drawing pattern was 0.3 mm, and the minimum distance between adjacent drawing lines was 0.5 mm. By laser drawing, the catalytic activity hindering layer of the laser drawn portion 15 (see FIGS. 7(a) and (b)) could be removed. Moreover, the surface of the laser-drawn portion 15 was roughened, and the filler contained in the base material 10 was exposed. The laser roughening depth was about 50 μm.

(c)触媒付与の前処理
水に、重量平均分子量70,000のポリエチレンイミン(PEI)(和光純薬製、30重量%濃度溶液)、次亜リン酸カルシウム(大道製薬製)を混合し、PEIの配合量(固形分濃度)が1g/L、次亜リン酸カルシウムの配合量が5g/Lとなるように前処理液を調製した。調製した室温の前処理液に基材10を5分間浸漬した。
(c) Pretreatment for imparting catalyst Polyethylenimine (PEI) with a weight average molecular weight of 70,000 (manufactured by Wako Pure Chemical Industries, 30% by weight solution) and calcium hypophosphite (manufactured by Daido Pharmaceutical Co., Ltd.) are mixed with water, and PEI is added. A pretreatment liquid was prepared so that the compounding amount (solid content concentration) was 1 g/L and the compounding amount of calcium hypophosphite was 5 g/L. The substrate 10 was immersed in the prepared pretreatment liquid at room temperature for 5 minutes.

(d)基材の洗浄
エアバブリングにより撹拌した常温の水に基材を5分間浸漬して洗浄した。
(d) Washing of substrate The substrate was washed by immersing it in room temperature water stirred by air bubbling for 5 minutes.

(e)無電解メッキ触媒の付与
35℃に調整した市販の塩化パラジウム(PdCl)水溶液(奥野製薬工業製、アクチベータ、塩化パラジウム濃度:150ppm)に基材10を5分間浸漬した。基材を塩化パラジウム水溶液から取り出した後、水洗した。
(e) Application of Electroless Plating Catalyst The substrate 10 was immersed in a commercially available palladium chloride (PdCl 2 ) aqueous solution (manufactured by Okuno Chemical Industry Co., Ltd., activator, palladium chloride concentration: 150 ppm) adjusted to 35° C. for 5 minutes. After removing the substrate from the aqueous palladium chloride solution, it was washed with water.

(f)無電解メッキ
60℃に調整した無電解ニッケルリンメッキ液(奥野製薬工業製、トップニコロンLPH-L、pH6.5)に、基材10を10分間浸漬した。基材10上のレーザー描画部15にニッケルリン膜(無電解ニッケルリンメッキ膜)が約1μm成長した。
(f) Electroless Plating The base material 10 was immersed in an electroless nickel phosphorus plating solution (manufactured by Okuno Chemical Industry Co., Ltd., Top Nicolon LPH-L, pH 6.5) adjusted to 60° C. for 10 minutes. A nickel phosphorous film (electroless nickel phosphorous plating film) was grown to a thickness of about 1 μm on the laser-drawn portion 15 on the substrate 10 .

ニッケルリン膜上に、更に、汎用の方法により、電解銅メッキ膜を20μm、電解ニッケルメッキ膜を1μm、電解金メッキ膜を0.1μm、この順に積層し、回路パターン70を形成した。 On the nickel phosphorous film, a 20 μm electrolytic copper plating film, a 1 μm electrolytic nickel plating film, and a 0.1 μm electrolytic gold plating film were laminated in this order by a general-purpose method to form a circuit pattern 70 .

(3)実装部品の実装
実装部品30として、面実装タイプの高輝度LED(日亜化学製、NS2W123BT、3.0mmx2.0mmx高さ0.7mm)を用いた。基材10の実装部12の実装面10a上において、回路パターン70と電気的に接続可能な位置に3個の実装部品(LED)30及びハンダ31を配置した。ハンダの平均膜厚は約20μmとした。図5(a)に示すように、3個の実装部品30は直列接続した。次に、基材10をリフロー炉に通した(ハンダリフロー)。リフロー炉内で基材10は加熱され、基材10の最高到達温度は約240℃となり、基材10が最高到達温度で加熱された時間は約1分であった。ハンダ31により、実装部品30は基材10に実装され、回路部品700(試料3‐1)を得た。尚、ハンダリフローにより基材10に膨れは発生しなかった。
(3) Mounting of Mounted Components As the mounted component 30, a surface mount type high brightness LED (NS2W123BT manufactured by Nichia Corporation, 3.0 mm×2.0 mm×height 0.7 mm) was used. On the mounting surface 10 a of the mounting portion 12 of the substrate 10 , three mounting components (LEDs) 30 and solder 31 are arranged at positions where they can be electrically connected to the circuit pattern 70 . The average thickness of the solder was set to about 20 μm. As shown in FIG. 5(a), three mounting components 30 are connected in series. Next, the substrate 10 was passed through a reflow oven (solder reflow). The base material 10 was heated in the reflow furnace to reach a maximum temperature of about 240° C., and the time during which the base material 10 was heated at the maximum temperature was about 1 minute. Mounting component 30 was mounted on substrate 10 by solder 31 to obtain circuit component 700 (sample 3-1). No blistering occurred in the substrate 10 due to solder reflow.

[試料3‐2]
板状の基材10(図5)に代えて、背面40bに凹部45形成された基材40(図9)を用いた以外は、試料3‐1と同様の方法により、図9に示す回路部品400を製造した。
[Sample 3-2]
The circuit shown in FIG. 9 was fabricated in the same manner as for sample 3-1, except that a substrate 40 (FIG. 9) having a concave portion 45 formed on the back surface 40b was used instead of the plate-shaped substrate 10 (FIG. 5). A part 400 was manufactured.

(1)基材の成形
試料3‐1と同様の材料及び装置を用いて、同様の成形条件で発泡成形体を成形した。但し、金型キャビティ内に、凹部45に対応する、3個の凸部を有する金型を用いて、基材40の成形と同時に凹部45を形成した。発泡成形体は、板状(50mm×80mm×2mm)であり、3個の実装部品(LED)30を実装する実装面40aに対応する背面40bに、側壁45aと底面45bにより区画された凹部45を有する。底面45bの面積は、4mm×4mm=0.16cmとし、実装面40aから底面45bまでの距離d1は、0.6mmとした。底面45bの面積(0.16cm)は、実装部品30の底面の面積(3mmx2mm=0.06cm)より大きく設定した。
(1) Molding of base material Using the same material and apparatus as those of Sample 3-1, a foam molded article was molded under the same molding conditions. However, using a mold having three convex portions corresponding to the concave portions 45 in the mold cavity, the concave portions 45 were formed simultaneously with the molding of the base material 40 . The foam molded body has a plate shape (50 mm x 80 mm x 2 mm), and has a concave portion 45 defined by a side wall 45a and a bottom surface 45b on a rear surface 40b corresponding to a mounting surface 40a on which three mounting components (LEDs) 30 are mounted. have The area of the bottom surface 45b was 4 mm×4 mm=0.16 cm 2 , and the distance d1 from the mounting surface 40a to the bottom surface 45b was 0.6 mm. The area of the bottom surface 45b (0.16 cm 2 ) was set larger than the area of the bottom surface of the mounting component 30 (3 mm×2 mm=0.06 cm 2 ).

得られた発泡成形体の外観を光学顕微鏡で観察した。実装部52は、実装部52以外の部分と比較して、その厚み(d1)が薄いが、樹脂の充填に問題は無かった。また、試料3‐1と同様に、発泡成形体の厚みの変動幅は5μm以内であり、実装部52以外の部分の厚み(d2)は均一であった。また、成形体の金型末端に位置していた部分(流動末端部)に、顕微鏡で確認できる大きさのバリは発生していなかった。更に、発泡成形体の断面をSEMで観察した。厚み(d1)が薄い実装部52では、実装部52以外の部分と比較して、コア層内部の発泡セルが少なかった。 The appearance of the resulting foamed molded product was observed with an optical microscope. Although the thickness (d1) of the mounting portion 52 is thinner than the portion other than the mounting portion 52, there was no problem in filling the resin. Further, similarly to the sample 3-1, the variation width of the thickness of the foam molded body was within 5 μm, and the thickness (d2) of the portion other than the mounting portion 52 was uniform. In addition, no burrs of a size that can be confirmed with a microscope were generated in the portion (end of flow) located at the end of the mold for the molded product. Furthermore, the cross section of the foam molded article was observed by SEM. In the mounting portion 52 having a small thickness (d1), there were fewer foamed cells inside the core layer than in the portion other than the mounting portion 52 .

(2)回路パターンの形成及び実装部品の実装
試料3‐1と同様の方法により、実装面40a上に回路パターン70を形成し、実装部品30を実装して、回路部品400(試料3‐2)を得た。
(2) Formation of Circuit Pattern and Mounting of Mounting Components By the same method as in sample 3-1, circuit pattern 70 is formed on mounting surface 40a, mounting component 30 is mounted, and circuit component 400 (sample 3-2 ).

[試料3‐3]
板状の基材10(図5)に代えて、凹部55及び内部が無電解メッキ膜71で充填された貫通孔56が形成された基材51(図10)を用いた以外は、試料3‐1と同様の方法により、図10に示す回路部品500を製造した。
[Sample 3-3]
In place of the plate-like substrate 10 (FIG. 5), a substrate 51 (FIG. 10) having recesses 55 and through-holes 56 filled with an electroless plating film 71 was used. -1, a circuit component 500 shown in FIG. 10 was manufactured.

(1)基材の成形
試料3‐1と同様の材料及び装置を用いて、同様の成形条件で発泡成形体を成形した。但し、試料3‐2で用いた金型を用いて、背面50bに凹部55が形成された基材51を成形した。貫通孔56を形成する前の基材51は、試料3‐2の基材40と同様である。
(1) Molding of base material Using the same material and apparatus as those of Sample 3-1, a foam molded article was molded under the same molding conditions. However, the mold used for Sample 3-2 was used to mold the base material 51 having the concave portion 55 formed in the back surface 50b. The base material 51 before forming the through holes 56 is the same as the base material 40 of the sample 3-2.

(2)回路パターン及び貫通孔の形成
試料3‐1と同様の方法により、触媒活性妨害層を形成した後、レーザー描画を行った。レーザー描画の際、配線パターンに対応するレーザー描画部分15(図7(a)及び(b)参照)と共に、実装部52の実装面50aから凹部55の底面55bに向かう貫通孔56をレーザー光により形成した。貫通孔56の直径は0.2mmとし、LED30、1個につき、6個の貫通孔56を形成した。
(2) Formation of circuit pattern and through-holes After forming a catalytic activity hindering layer by the same method as sample 3-1, laser drawing was performed. At the time of laser drawing, the through hole 56 extending from the mounting surface 50a of the mounting portion 52 to the bottom surface 55b of the recess 55 is formed by laser light along with the laser drawing portion 15 (see FIGS. 7A and 7B) corresponding to the wiring pattern. formed. The diameter of the through-holes 56 was 0.2 mm, and six through-holes 56 were formed for each LED 30 .

次に、試料3‐1と同様の方法により、触媒付与の前処理、基材の洗浄、無電解メッキ触媒の付与及び無電解メッキをこの順で行った。これにより、レーザー描画部分15上の無電解メッキ膜と、貫通孔56内部の無電解メッキ膜71とを同時に形成した。次に、レーザー描画部分15の無電解メッキ膜上に、試料3‐1と同様の方法により、電解銅メッキ膜、電解ニッケルメッキ膜、電解金メッキ膜をこの順に積層し、回路パターン70を形成した。 Next, pretreatment for catalyst application, cleaning of the substrate, application of electroless plating catalyst, and electroless plating were performed in this order by the same method as for sample 3-1. As a result, the electroless plated film on the laser-drawn portion 15 and the electroless plated film 71 inside the through hole 56 were simultaneously formed. Next, an electrolytic copper plating film, an electrolytic nickel plating film, and an electrolytic gold plating film were laminated in this order on the electroless plating film of the laser-drawn portion 15 by the same method as in Sample 3-1 to form a circuit pattern 70. .

(3)実装部品の実装
試料3‐1と同様の方法により、実装面50a上に実装部品30を実装して、回路部品500(試料3‐3)を得た。
(3) Mounting of Mounting Component A mounting component 30 was mounted on the mounting surface 50a by the same method as that for the sample 3-1 to obtain a circuit component 500 (sample 3-3).

[試料3‐4]
基材である発泡成形体の密度低減率を0.5%とした以外は、試料3‐1と同様の方法により、図5に示す回路部品700(試料3‐4)を製造した。基材の成形において、物理発泡剤の導入圧力を1MPaとし、金型への溶融樹脂の充填量を調整して、密度低減率を0.5%とした。また、成形体にバリが発生しないように、型締め圧及び保圧の調整をおこなった。その他の成形条件は、試料3‐1と同様とした。
[Sample 3-4]
A circuit component 700 (sample 3-4) shown in FIG. 5 was manufactured in the same manner as for sample 3-1, except that the density reduction rate of the foam molded body as the base material was set to 0.5%. In molding the base material, the introduction pressure of the physical foaming agent was set to 1 MPa, and the filling amount of the molten resin into the mold was adjusted to set the density reduction rate to 0.5%. In addition, the mold clamping pressure and holding pressure were adjusted so as not to generate burrs on the compact. Other molding conditions were the same as those for sample 3-1.

[試料3‐5]
基材である発泡成形体の密度低減率を1%とした以外は、試料3‐1と同様の方法により、図5に示す回路部品700(試料3‐5)を製造した。基材の成形において、物理発泡剤の導入圧力を1MPaとし、金型への溶融樹脂の充填量を調整して、密度低減率を1%とした。また、成形体にバリが発生しないように、型締め圧及び保圧の調整をおこなった。その他の成形条件は、試料3‐1と同様とした。
[Sample 3-5]
A circuit component 700 (sample 3-5) shown in FIG. 5 was manufactured in the same manner as for sample 3-1, except that the density reduction rate of the foam molded body as the base material was set to 1%. In molding the base material, the introduction pressure of the physical foaming agent was set to 1 MPa, and the filling amount of the molten resin into the mold was adjusted to set the density reduction rate to 1%. In addition, the mold clamping pressure and holding pressure were adjusted so as not to generate burrs on the compact. Other molding conditions were the same as those for sample 3-1.

[試料3‐6]
基材である発泡成形体の密度低減率を7%とした以外は、試料3‐1と同様の方法により、図5に示す回路部品700(試料3‐6)を製造した。基材の成形において、物理発泡剤の導入圧力を2MPaとし、金型への溶融樹脂の充填量を調整して、密度低減率を7%とした。また、成形体にバリが発生しないように、型締め圧の調整をおこなった。その他の成形条件は、試料3‐1と同様とした。
[Sample 3-6]
A circuit component 700 (sample 3-6) shown in FIG. 5 was manufactured in the same manner as for sample 3-1, except that the density reduction rate of the foamed molded body as the base material was set to 7%. In the molding of the base material, the introduction pressure of the physical foaming agent was set to 2 MPa, and the filling amount of the molten resin into the mold was adjusted to set the density reduction rate to 7%. Also, the mold clamping pressure was adjusted so as not to generate burrs on the compact. Other molding conditions were the same as those for sample 3-1.

[試料3‐7]
基材である発泡成形体の密度低減率を10%とした以外は、試料3‐1と同様の方法により、図5に示す回路部品700(試料3‐7)を製造した。基材の成形において、物理発泡剤の導入圧力を2MPaとし、金型への溶融樹脂の充填量を調整して、密度低減率を10%とした。また、成形体にバリが発生しないように、型締め圧の調整をおこなった。その他の成形条件は、試料3‐1と同様とした。
[Sample 3-7]
A circuit component 700 (sample 3-7) shown in FIG. 5 was manufactured in the same manner as for sample 3-1, except that the density reduction rate of the foam molded body as the base material was set to 10%. In molding the base material, the introduction pressure of the physical foaming agent was set to 2 MPa, and the filling amount of the molten resin into the mold was adjusted to set the density reduction rate to 10%. Also, the mold clamping pressure was adjusted so as not to generate burrs on the compact. Other molding conditions were the same as those for sample 3-1.

[試料3‐8]
基材を非発泡成形体(ソリッド成形体)とした以外は、試料3‐1と同様の構成の回路部品を製造した。
[Sample 3-8]
A circuit component having the same configuration as Sample 3-1 was manufactured, except that a non-foamed molded body (solid molded body) was used as the base material.

(1)基材の成形
試料3‐1と同様の材料及び装置を用いて、非発泡成形体を成形した。非発泡成形体を成形するため、可塑化シリンダへの物理発泡剤の導入は行なわなかった。樹脂温度及び金型温度は、試料3‐1と同様とした。但し、試料3‐8では、溶融樹脂の流動性が低いため、射出成形時に保圧を加えないと成形体にヒケが生じる。このため、40MPaの保圧を5秒間加えた。また、成形時に金型が開かないようにするための型締め圧は40tfであった。
(1) Molding of base material A non-foamed molded article was molded using the same materials and equipment as those of Sample 3-1. No physical blowing agent was introduced into the plasticizing cylinder in order to form a non-foamed molding. The resin temperature and mold temperature were the same as those of sample 3-1. However, in Sample 3-8, since the fluidity of the molten resin is low, sink marks occur in the molded body unless pressure is applied during injection molding. Therefore, a holding pressure of 40 MPa was applied for 5 seconds. The clamping pressure for preventing the mold from opening during molding was 40 tf.

得られた発泡成形体の外観を光学顕微鏡で観察した。成形時において金型ゲートに位置していた部分から金型末端に位置して部分まで、発泡成形体の厚みの変動幅は10μmであり、試料3‐1の変動幅5μmより悪化していた。また、成形体の金型パーティング面に対応する部分に、約50μm長さのバリが発生しており、バリ取りの2次加工が必要なレベルであった。 The appearance of the resulting foamed molded product was observed with an optical microscope. During molding, the width of variation in the thickness of the foam molded product from the portion located at the mold gate to the portion located at the end of the mold was 10 μm, which was worse than the variation width of 5 μm for sample 3-1. Moreover, a burr having a length of about 50 μm was generated in the portion corresponding to the mold parting surface of the molded body, and the level required secondary processing for deburring.

(2)回路パターンの形成及び実装部品の実装
試料3‐1と同様の方法により、成形体の実装面上に回路パターンを形成し、実装部品を実装して、回路部品(試料3‐8)を得た。
(2) Formation of circuit pattern and mounting of mounting parts By the same method as sample 3-1, a circuit pattern is formed on the mounting surface of the molded body, mounting parts are mounted, and circuit parts (sample 3-8) got

[試料3‐9]
基材である発泡成形体の密度低減率を15%とした以外は、試料3‐1と同様の方法により、図5に示す回路部品700(試料3‐9)を製造した。基材の成形において、物理発泡剤の導入圧力を4MPaとし、金型への溶融樹脂の充填量を調整して、密度低減率を15%とした。その他の成形条件は、試料3‐1と同様とした。
[Sample 3-9]
A circuit component 700 (sample 3-9) shown in FIG. 5 was manufactured in the same manner as for sample 3-1, except that the density reduction rate of the foamed molded body as the base material was set to 15%. In molding the base material, the introduction pressure of the physical foaming agent was set to 4 MPa, and the filling amount of the molten resin into the mold was adjusted to set the density reduction rate to 15%. Other molding conditions were the same as those for sample 3-1.

[回路部品の評価]
製造した回路部品(試料3‐1~試料3‐9)について、以下の評価を行った。結果を表4に示す。
[Evaluation of Circuit Components]
The following evaluations were performed on the manufactured circuit components (Samples 3-1 to 3-9). Table 4 shows the results.

(1)回路部品の放熱性
製造した各回路部品(試料3‐1~試料3‐9)に電源を接続し、300mAの直流電流を流してLED30を点灯させた。LED30の温度が十分に安定化した30分後、LED30の温度を測定した。LED30の温度は、LED30の背面の電極間に熱電対を固定して測定した。
(1) Heat Dissipation of Circuit Components A power supply was connected to each of the manufactured circuit components (Samples 3-1 to 3-9), and a DC current of 300 mA was passed through to turn on the LED 30 . Thirty minutes after the temperature of the LED 30 was sufficiently stabilized, the temperature of the LED 30 was measured. The temperature of the LED 30 was measured by fixing a thermocouple between electrodes on the rear surface of the LED 30 .

(2)基材(成形体)の量産性
以下の評価基準に従って、基材(成形体)の量産性を評価した。
(2) Mass productivity of substrate (molded article) The mass productivity of the substrate (molded article) was evaluated according to the following evaluation criteria.

<量産性の評価基準>
○:型締め圧:5tf未満、保圧:10MPa未満の成形条件で成形が可能であり、成形体にバリは発生しなかった。
△:型締め圧:5~10tf、保圧:10~20MPaの成形条件で成形が可能であり、成形体にバリは発生しなかった。
×:型締め圧:35tf以上、保圧:40MPa以上の成形条件で成形が可能であり、成形体にバリが発生した。
<Evaluation criteria for mass production>
◯: Molding was possible under molding conditions of mold clamping pressure of less than 5 tf and holding pressure of less than 10 MPa, and no burrs occurred on the molded body.
Δ: Molding was possible under the molding conditions of mold clamping pressure: 5 to 10 tf, holding pressure: 10 to 20 MPa, and no burrs occurred on the molded body.
x: Molding was possible under molding conditions of clamping pressure of 35 tf or more and holding pressure of 40 MPa or more, and burrs occurred in the molded body.

Figure 0007121004000006
Figure 0007121004000006

表4に示すように、試料3‐1~3‐7の回路部品はLEDの温度が90℃以下と低く抑えられ、放熱性が高く、更に成形体の量産性も良好であった。基材の形状が異なり、その他の条件が同一である試料3‐1~3‐3を比較する。板状体の基材を用いた試料3‐1の回路部品700(図5)より、試料3‐2の基材に凹部を設けた回路部品400(図9)の方がLEDの温度が低く、更に、試料3‐3の基材に凹部及びスルーホールを設けた回路部品500(図10)の方がLEDの温度がより低かった。即ち、試料3‐3、3‐2、3‐1の順に放熱性が高かった。 As shown in Table 4, the circuit components of Samples 3-1 to 3-7 kept the temperature of the LED as low as 90° C. or less, had high heat dissipation, and had good mass productivity. Samples 3-1 to 3-3 having different substrate shapes and the same other conditions are compared. The temperature of the LED is lower in the circuit component 400 (FIG. 9) in which the concave portion is provided in the base material of the sample 3-2 than in the circuit component 700 (FIG. 5) of the sample 3-1 using the plate-shaped base material. Furthermore, the temperature of the LED was lower in the circuit component 500 (FIG. 10) having recesses and through holes in the base material of sample 3-3. That is, samples 3-3, 3-2, and 3-1 had higher heat dissipation properties in that order.

また、基材の密度減少率が異なり、その他の条件が同一の試料3‐1、3‐4~3‐7及び3-9を比較する。基材の密度減少率が1~7%である試料3‐1、3‐5及び3‐6は、特に、放熱性が高く、成形体の量産性が良好であった。試料3‐1、3‐5及び3‐6のLEDの温度は、無発泡成形体を基材と用いた場合(試料3‐8)とほぼ同程度であり、無発泡成形体と同等の放熱性を有することが確認できた。試料3‐1、3‐5及び3‐6と比較すると、密度減少率が0.5%である試料3‐4は量産性がやや低く、密度減少率が10%である試料3‐7は、LEDの温度がやや高かった。また、基材の密度減少率が15%である試料3‐9は、成形体の量産性は良好であったが、試料3‐1、3‐5及び3‐6と比較すると、LEDの温度が高く、放熱性が低下した。基材の密度減少率が高い試料3‐9では、発泡セルによる断滅効果で基材の熱抵抗が上昇するため、基材中の絶縁性熱伝導フィラーの効果が低下したと推測される。 In addition, Samples 3-1, 3-4 to 3-7 and 3-9, which have different density reduction rates of the base material and are otherwise identical, are compared. Samples 3-1, 3-5 and 3-6, in which the density reduction rate of the base material was 1 to 7%, had particularly high heat dissipation and good mass productivity of molded bodies. The temperature of the LEDs of Samples 3-1, 3-5 and 3-6 is almost the same as when the non-foamed molded body is used as the base material (Sample 3-8), and the heat dissipation is equivalent to that of the non-foamed molded body. It was confirmed that the Compared to samples 3-1, 3-5 and 3-6, sample 3-4 with a density reduction rate of 0.5% has a slightly lower mass productivity, and sample 3-7 with a density reduction rate of 10% , the temperature of the LED was slightly high. In addition, Sample 3-9, in which the density reduction rate of the substrate was 15%, had good mass productivity of the molded body, but compared to Samples 3-1, 3-5, and 3-6, the LED temperature was high, and heat dissipation decreased. In Sample 3-9, in which the density reduction rate of the base material is high, the thermal resistance of the base material increases due to the quenching effect of the foam cells, so it is presumed that the effect of the insulating thermally conductive filler in the base material is reduced.

一方、無発泡成形体を基材として用いた試料3‐8は、成形体の量産性が低かった。 On the other hand, Sample 3-8, which used a non-foamed molded article as a base material, was low in mass productivity of the molded article.

本発明の製造方法は、物理発泡剤に関わる装置機構を簡略化できる。また、発泡性に優れた発泡成形体を低コストで、効率よく製造できる。更に、高い耐熱性を有する成形回路部品を製造できる。また、本発明の回路部品(MID)は、量産性と放熱性を両立できる。このため、LED等の実装部品の発熱によって、回路部品が高温となることを抑制でき、量産に適しているため、スマートフォンや、自動車部品に応用可能である。 The manufacturing method of the present invention can simplify the device mechanism related to the physical foaming agent. In addition, a foam molded article having excellent foamability can be produced efficiently at low cost. Additionally, molded circuit components can be produced that have high heat resistance. Further, the circuit component (MID) of the present invention can achieve both productivity and heat dissipation. Therefore, it is possible to suppress the temperature of the circuit components from becoming high due to the heat generated by the mounted components such as LEDs.

20 スクリュ
21 可塑化ゾーン
22 圧縮ゾーン
23 飢餓ゾーン
24 再圧縮ゾーン
25 流動速度調整ゾーン
26 シール部
27 圧力センサ
100 ボンベ
210 可塑化シリンダ
300 導入速度調整容器
1000 製造装置
10,40,51 基材
70 回路パターン
30 実装部品(LED)
11 発泡セル
700,400,500 回路部品
20 screw 21 plasticization zone 22 compression zone 23 starvation zone 24 recompression zone 25 flow rate adjustment zone 26 seal portion 27 pressure sensor 100 cylinder 210 plasticization cylinder 300 introduction speed adjustment container 1000 manufacturing apparatus 10, 40, 51 base material 70 circuit Pattern 30 Mounted component (LED)
11 foam cells 700, 400, 500 circuit parts

Claims (18)

回路部品であって、
熱可塑性樹脂と絶縁性熱伝導フィラーとを含み、密度低減率が0.5%~10%である発泡成形体である基材と、
前記基材上に形成されている回路パターンと、
前記基材の実装面に実装され、前記回路パターンと電気的に接続している実装部品とを含み、
前記基材は、
前記基材の内部にあり、発泡セルを含むコア層と、
前記基材の表面から深さ100μmまでの範囲にあり、発泡セルを含まないスキン層とを含み、
前記基材は、前記実装面のスキン層内に形成され、前記回路パターンが形成される部分に形成される粗化部を含むことを特徴とする回路部品。
a circuit component,
a base material, which is a foam molded body containing a thermoplastic resin and an insulating thermally conductive filler and having a density reduction rate of 0.5% to 10% ;
a circuit pattern formed on the substrate;
a mounting component mounted on the mounting surface of the base material and electrically connected to the circuit pattern;
The base material is
a core layer inside the substrate and containing foam cells;
a skin layer that is in the range from the surface of the base material to a depth of 100 μm and does not contain foam cells,
A circuit component , wherein the substrate includes a roughened portion formed in a skin layer of the mounting surface and formed in a portion where the circuit pattern is formed .
前記熱可塑性樹脂は、スーパーエンジニアリングプラスチックを含み、
前記回路部品を加熱して、前記回路部品の表面温度を240℃~260℃に5分間維持したとき、加熱による前記回路部品の厚みの変化率が-2%~2%であることを特徴とする請求項1に記載の回路部品。
The thermoplastic resin includes a super engineering plastic,
When the circuit component is heated and the surface temperature of the circuit component is maintained at 240° C. to 260° C. for 5 minutes, the change rate of the thickness of the circuit component due to heating is -2% to 2%. The circuit component according to claim 1.
前記回路部品は
記実装面と、前記実装面に対向する背面とを有する前記基材を有し、
前記基材の前記実装部品が実装されている部分において、前記実装面から前記背面までの距離が0.1mm以上であることを特徴とする請求項1に記載の回路部品。
The circuit component is
Having the base material having the mounting surface and a back surface facing the mounting surface,
2. The circuit component according to claim 1, wherein a distance from said mounting surface to said back surface is 0.1 mm or more in a portion of said base material on which said component is mounted.
前記基材の密度低減率が、1~7%であることを特徴とする請求項3に記載の回路部品。 4. The circuit component according to claim 3, wherein the base material has a density reduction rate of 1 to 7%. 前記基材の前記実装部品が実装されている部分において、前記実装面から前記背面までの距離が0.5mmを超えることを特徴とする請求項3又は4に記載の回路部品。 5. The circuit component according to claim 3, wherein the distance from the mounting surface to the back surface exceeds 0.5 mm in the portion of the substrate where the mounting component is mounted. 前記基材の前記実装部品が実装されている部分において、前記実装面から前記背面までの間に発泡セルを有することを特徴とする請求項5に記載の回路部品。 6. The circuit component according to claim 5, wherein foam cells are provided between the mounting surface and the back surface in the portion of the base material on which the mounting component is mounted. 前記背面に、側壁と底面により区画される凹部が形成され、
前記底面に対応する前記実装面上に前記実装部品が実装され、
前記実装面から前記底面までの距離が、0.1mm~1.5mmであることを特徴とする請求項3又は4に記載の回路部品。
A recess defined by a side wall and a bottom surface is formed on the back surface,
the mounting component is mounted on the mounting surface corresponding to the bottom surface;
5. The circuit component according to claim 3, wherein the distance from said mounting surface to said bottom surface is 0.1 mm to 1.5 mm.
前記底面に対応する前記実装面上に配置される前記実装部品1個当たりの前記底面の面積が、0.4cm~4cmであることを特徴とする請求項7に記載の回路部品。 8. The circuit component according to claim 7, wherein an area of said bottom surface per mounted component arranged on said mounting surface corresponding to said bottom surface is 0.4 cm 2 to 4 cm 2 . 前記実装面から前記底面に向かって、非貫通又は貫通の孔が形成されており、前記孔の内壁に無電解メッキ膜が形成されている請求項7又は8に記載の回路部品。 9. The circuit component according to claim 7, wherein a non-through hole or a through hole is formed from the mounting surface toward the bottom surface, and an electroless plating film is formed on the inner wall of the hole. 前記基材の前記実装部品が実装されている部分において、前記実装面に凹部が形成され、前記凹部の表面に無電解メッキ膜が形成されている請求項7又は8に記載の回路部品。 9. The circuit component according to claim 7, wherein a concave portion is formed in the mounting surface of the base material where the mounted component is mounted, and an electroless plating film is formed on the surface of the concave portion. 前記回路パターンが、無電解メッキ膜を含む請求項3~10のいずれか一項に記載の回路部品。 The circuit component according to any one of claims 3 to 10, wherein the circuit pattern contains an electroless plating film. 前記背面に放熱部材が設けられていないことを特徴とする請求項3~11のいずれか一項に記載の回路部品。 12. The circuit component according to any one of claims 3 to 11, wherein no heat radiating member is provided on the back surface. 前記熱可塑性樹脂が、スーパーエンジニアリングプラスチックを含む請求項3~12のいずれか一項に記載の回路部品。 13. The circuit component according to any one of claims 3 to 12, wherein said thermoplastic resin comprises a super engineering plastic. 前記熱可塑性樹脂が、スーパーエンジニアリングプラスチックを含み、前記スーパーエンジニアリングプラスチックが、ポリフェニレンサルファイド又は液晶ポリマーを含むことを特徴とする請求項1~13のいずれか一項に記載の回路部品。 14. The circuit component according to any one of claims 1 to 13, wherein the thermoplastic resin comprises super engineering plastic, and the super engineering plastic comprises polyphenylene sulfide or liquid crystal polymer. 熱可塑性樹脂が可塑化溶融されて溶融樹脂となる可塑化ゾーンと、前記溶融樹脂が飢餓状態となる飢餓ゾーンとを有し、前記飢餓ゾーンに物理発泡剤を導入するための導入口が形成された可塑化シリンダを用いて、回路部品を製造する方法であって、
前記可塑化ゾーンにおいて、前記熱可塑性樹脂を可塑化溶融して前記溶融樹脂とすることと、
前記飢餓ゾーンに一定圧力の前記物理発泡剤を含む加圧流体を導入し、前記飢餓ゾーンを前記一定圧力に保持することと、
前記飢餓ゾーンにおいて、前記溶融樹脂を飢餓状態とすることと、
前記飢餓ゾーンを前記一定圧力に保持した状態で、前記飢餓ゾーンにおいて、前記飢餓状態の溶融樹脂と前記一定圧力の物理発泡剤を含む加圧流体とを接触させることと、
前記物理発泡剤を含む加圧流体を接触させた前記溶融樹脂を発泡成形体に成形することと、
前記発泡成形体の表面に回路パターンを形成することとを含み、
前記熱可塑性樹脂がスーパーエンジニアリングプラスチックであり、前記一定圧力が0.5MPa~12MPaであり、
前記回路部品は、
熱可塑性樹脂と絶縁性熱伝導フィラーとを含み、密度低減率が0.5%~10%である発泡成形体である基材と、
前記基材上に形成されている回路パターンと、
前記基材の実装面に実装され、前記回路パターンと電気的に接続している実装部品とを含み、
前記基材は、
前記基材の内部にあり、発泡セルを含むコア層と、
前記基材の表面から深さ100μmまでの範囲にあり、発泡セルを含まないスキン層とを含み、
前記基材は、前記実装面のスキン層内に形成され、前記回路パターンが形成される部分に形成される粗化部を含むことを特徴とする回路部品の製造方法。
It has a plasticization zone in which a thermoplastic resin is plasticized and melted to become a molten resin, and a starvation zone in which the molten resin is starved, and an inlet for introducing a physical blowing agent is formed in the starvation zone. A method for manufacturing a circuit component using a plasticized cylinder comprising:
plasticizing and melting the thermoplastic resin into the molten resin in the plasticizing zone;
introducing a pressurized fluid containing the physical blowing agent at a constant pressure into the starvation zone and maintaining the starvation zone at the constant pressure;
Starving the molten resin in the starvation zone;
contacting the starved molten resin with a pressurized fluid containing a physical blowing agent at the constant pressure in the starvation zone while maintaining the constant pressure in the starvation zone;
Molding the molten resin in contact with a pressurized fluid containing the physical foaming agent into a foamed molding;
Forming a circuit pattern on the surface of the foam molded body,
The thermoplastic resin is a super engineering plastic, the constant pressure is 0.5 MPa to 12 MPa ,
The circuit component is
a base material, which is a foam molded body containing a thermoplastic resin and an insulating thermally conductive filler and having a density reduction rate of 0.5% to 10%;
a circuit pattern formed on the substrate;
a mounting component mounted on the mounting surface of the base material and electrically connected to the circuit pattern;
The base material is
a core layer inside the substrate and containing foam cells;
a skin layer that is in the range from the surface of the base material to a depth of 100 μm and does not contain foam cells,
A method of manufacturing a circuit component , wherein the substrate is formed in a skin layer of the mounting surface and includes a roughened portion formed in a portion where the circuit pattern is formed .
前記スーパーエンジニアリングプラスチックが、ポリフェニレンサルファイド又は液晶ポリマーを含むことを特徴とする請求項15に記載の回路部品の製造方法。 16. The method of manufacturing a circuit component according to claim 15, wherein the super engineering plastic comprises polyphenylene sulfide or liquid crystal polymer. 前記スーパーエンジニアリングプラスチックがポリフェニレンサルファイドを含み、前記一定圧力が2MPa~12MPaであることを特徴とする請求項15に記載の回路部品の製造方法。 16. The method of manufacturing a circuit component according to claim 15, wherein the super engineering plastic contains polyphenylene sulfide, and the constant pressure is 2 MPa to 12 MPa. 前記回路パターンが無電解メッキ膜を含んでおり、前記発泡成形体の表面に回路パターンを形成することが、
前記発泡成形体の表面に、アミド基及びアミノ基の少なくとも一方を有するポリマーを含む触媒活性妨害層を形成することと、
前記触媒活性妨害層を形成した前記発泡成形体の表面の一部を加熱又は光照射することと、
加熱又は光照射した前記発泡成形体の表面に無電解メッキ触媒を付与することと、
前記無電解メッキ触媒を付与した前記発泡成形体の表面に無電解メッキ液を接触させ、前記表面の加熱部分又は光照射部分に前記無電解メッキ膜を形成することとを含む請求項15~17のいずれか一項に記載の回路部品の製造方法。
wherein the circuit pattern includes an electroless plating film, and forming the circuit pattern on the surface of the foam molded body;
forming a catalytic activity hindrance layer containing a polymer having at least one of an amide group and an amino group on the surface of the foam molded article;
Heating or irradiating a part of the surface of the foam molded article on which the catalytic activity hindering layer is formed;
applying an electroless plating catalyst to the surface of the foamed molded article that has been heated or irradiated with light;
15 to 17, comprising contacting an electroless plating solution to the surface of the foam molded article to which the electroless plating catalyst has been applied to form the electroless plating film on the heated portion or the light-irradiated portion of the surface. A method for manufacturing a circuit component according to any one of Claims 1 to 3.
JP2019526890A 2017-06-26 2018-06-25 Circuit component manufacturing method and circuit component Active JP7121004B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017124318 2017-06-26
JP2017124318 2017-06-26
JP2018037610 2018-03-02
JP2018037610 2018-03-02
PCT/JP2018/024022 WO2019004132A1 (en) 2017-06-26 2018-06-25 Method for manufacturing circuit component and circuit component

Publications (2)

Publication Number Publication Date
JPWO2019004132A1 JPWO2019004132A1 (en) 2020-04-23
JP7121004B2 true JP7121004B2 (en) 2022-08-17

Family

ID=64740656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019526890A Active JP7121004B2 (en) 2017-06-26 2018-06-25 Circuit component manufacturing method and circuit component

Country Status (4)

Country Link
JP (1) JP7121004B2 (en)
KR (1) KR102632455B1 (en)
CN (1) CN110799321B (en)
WO (1) WO2019004132A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270709A (en) 2006-10-31 2008-11-06 Techno Polymer Co Ltd Heat-dissipating resin composition, substrate for mounting led, reflector, and substrate for mounting led provided with reflector portion
JP2016082235A (en) 2014-10-09 2016-05-16 古河電気工業株式会社 Mounting structure of led light emission element package to foamed resin metal coating composite sheet board and foamed resin metal coating composite sheet board for led lighting equipment
WO2017007032A1 (en) 2015-07-08 2017-01-12 日立マクセル株式会社 Process and device for producing molded foam
JP2017031441A (en) 2015-07-29 2017-02-09 日立マクセル株式会社 Manufacturing method of plated part and plated part

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022501B1 (en) 1969-08-20 1975-07-31
DE2751216A1 (en) * 1977-11-16 1979-05-17 Oeder Horst G Printed circuit board assembly - by piercing flux and solder foil on foam plate by connecting wires
JPH01204454A (en) * 1988-02-09 1989-08-17 Citizen Watch Co Ltd Structure of pin grid array using resin substrate
US5158986A (en) 1991-04-05 1992-10-27 Massachusetts Institute Of Technology Microcellular thermoplastic foamed with supercritical fluid
JP3443872B2 (en) 1993-05-25 2003-09-08 日立電線株式会社 Method of manufacturing heat sink integrated circuit molded body
JP4144916B2 (en) 1996-04-04 2008-09-03 三井化学株式会社 Thermoplastic resin foam injection molded body and method for producing the same
JP3874888B2 (en) * 1997-05-30 2007-01-31 新潟精密株式会社 Memory module and memory system
DE10132092A1 (en) 2001-07-05 2003-01-23 Lpkf Laser & Electronics Ag Track structures and processes for their manufacture
JP3788750B2 (en) 2001-07-30 2006-06-21 株式会社日本製鋼所 Gas supply device for foaming agent, thermoplastic resin foam molding apparatus using the same, and thermoplastic resin foam molding method
CN102460667B (en) * 2009-06-08 2014-11-12 松下电器产业株式会社 Method of producing electronic component mounting structure, and electronic component mounting structure
JP2011241375A (en) * 2010-04-23 2011-12-01 Sumitomo Chemical Co Ltd Heat dissipation member and part for lighting fixture comprising the same
CN102934531A (en) * 2010-06-04 2013-02-13 古河电气工业株式会社 Printed circuit board, antenna, wireless communication device and manufacturing methods thereof
JP6003012B2 (en) 2011-05-31 2016-10-05 東レ株式会社 Polyphenylene sulfide resin foam and method for producing the same
JP5809895B2 (en) 2011-09-13 2015-11-11 古河電気工業株式会社 Polyphenylene sulfide foam and method for producing the same
JP2015108058A (en) 2013-12-04 2015-06-11 Dic株式会社 Modified thermally conductive filler, thermally conductive material, and thermally conductive member
JP2017199803A (en) 2016-04-27 2017-11-02 日立マクセル株式会社 Three-dimensional molded circuit component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270709A (en) 2006-10-31 2008-11-06 Techno Polymer Co Ltd Heat-dissipating resin composition, substrate for mounting led, reflector, and substrate for mounting led provided with reflector portion
JP2016082235A (en) 2014-10-09 2016-05-16 古河電気工業株式会社 Mounting structure of led light emission element package to foamed resin metal coating composite sheet board and foamed resin metal coating composite sheet board for led lighting equipment
WO2017007032A1 (en) 2015-07-08 2017-01-12 日立マクセル株式会社 Process and device for producing molded foam
JP2017031441A (en) 2015-07-29 2017-02-09 日立マクセル株式会社 Manufacturing method of plated part and plated part

Also Published As

Publication number Publication date
JPWO2019004132A1 (en) 2020-04-23
CN110799321A (en) 2020-02-14
CN110799321B (en) 2022-06-17
KR102632455B1 (en) 2024-02-02
WO2019004132A1 (en) 2019-01-03
KR20200021939A (en) 2020-03-02

Similar Documents

Publication Publication Date Title
US10148006B2 (en) Thermoplastic resin composition, resin molded article, and method for manufacturing resin molded article having a plated layer
EP2896659B1 (en) Thermoplastic resin composition, resin molded article, and method for producing resin molded article having a plated layer
JP2023063596A (en) foam molding
WO2013129659A1 (en) Method for producing molded body, method for producing molded body having plating film, method for producing resin pellets, molded foam having plating film, foam injection molding method, nozzle unit, and injection molding apparatus
TWI803602B (en) Method for producing foam molded article and foam molded article
CN116390330A (en) Three-dimensional molded circuit component
JP7121004B2 (en) Circuit component manufacturing method and circuit component
JP6072599B2 (en) Method for producing molded body having plated film and molded body having plated film
KR20140047585A (en) Production method for injection-molded article and injection-molded article
WO2018131372A1 (en) Method and apparatus for manufacturing foamed product
EP4067428A1 (en) Polyarylene sulfide resin composition, molded article, layered product, and production method therefor
JP2007076374A (en) Manufacturing method of molded product, extrusion molding apparatus and molded product
JP2002361690A (en) Mold for injection molding and method for injection molding using the same
JP2003001662A (en) Mold for molding gear and injection molding method using the same
JP2004122367A (en) Insert-molded object and its manufacturing method
JP2004262142A (en) Mechanical component and its injection molding method
JP2002106683A (en) Molded gear of crystalline resin composition and injection molding method
JP2018149688A (en) Method and apparatus for producing foam molding
JP2003211480A (en) Molded product of polyamide resin composition and method for injection-molding the molded product
JP2008024737A (en) Glass fiber-reinforced resin molded item and its manufacturing method
JP2003053765A (en) Molded product for sealing member and injection molding method therefor
JP2002292672A (en) Polyamide resin molding and its injection molding method
JP2002241603A (en) Polyamide-based resin composition molded article and method for injection-molding the same
JP2003053808A (en) Molding by amorphous resin composition and method for its injection molding
KR20130024023A (en) Injection-molded article of metal-coated graphite powder, method for manufacturing the same, and light-emitting diode using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20191211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220804

R150 Certificate of patent or registration of utility model

Ref document number: 7121004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150