JP3788750B2 - Gas supply device for foaming agent, thermoplastic resin foam molding apparatus using the same, and thermoplastic resin foam molding method - Google Patents

Gas supply device for foaming agent, thermoplastic resin foam molding apparatus using the same, and thermoplastic resin foam molding method Download PDF

Info

Publication number
JP3788750B2
JP3788750B2 JP2001229327A JP2001229327A JP3788750B2 JP 3788750 B2 JP3788750 B2 JP 3788750B2 JP 2001229327 A JP2001229327 A JP 2001229327A JP 2001229327 A JP2001229327 A JP 2001229327A JP 3788750 B2 JP3788750 B2 JP 3788750B2
Authority
JP
Japan
Prior art keywords
pressure
thermoplastic resin
gas
resin foam
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001229327A
Other languages
Japanese (ja)
Other versions
JP2003039473A (en
Inventor
博志 小屋松
英昭 中島
文朗 津田
淳男 寺岡
裕正 上園
雅一 堀金
鉱二 大坪
正人 福森
友美 生野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Showa Denko Gas Products Co Ltd
Original Assignee
Japan Steel Works Ltd
Showa Tansan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Showa Tansan Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP2001229327A priority Critical patent/JP3788750B2/en
Publication of JP2003039473A publication Critical patent/JP2003039473A/en
Application granted granted Critical
Publication of JP3788750B2 publication Critical patent/JP3788750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スクリュシリンダ5内で溶融された熱可塑性樹脂内に、発泡剤用ガスとして、例えば超臨界状態の不活性ガスを注入して熱可塑性樹脂発泡体を成形する発泡剤用ガス供給装置、それを用いた熱可塑性樹脂発泡体の成形装置及び熱可塑性樹脂発泡体の成形方法に関するものである。
【0002】
【従来の技術】
スクリュシリンダ5内で溶融された熱可塑性樹脂内に超臨界状態の不活性ガスを注入して熱可塑性樹脂発泡体を成形する発泡剤用ガス供給装置やそれを用いた熱可塑性樹脂発泡体の成形装置が知られている。
【0003】
図6は従来の熱可塑性樹脂発泡体の成形装置としての射出成形装置を示す図である。射出成形装置1は、シリンダ2の中にスクリュ3を内蔵し、シリンダ2の外周にはヒータ4を有するスクリュシリンダ5を備え、このスクリュシリンダ5により樹脂の可塑化を行う。そして、可塑化工程においては、スクリュ3が回転し、図示しないホッパから材料供給口に導入された樹脂材料をスクリュ3の溝に食込ませ、溶融しながらスクリュシリンダ5の先端に溶融樹脂6をため込んでいく。スクリュ3は溶融樹脂6がたまるに従って後退する。
【0004】
さらに、熱可塑性樹脂発泡体成形用の射出成形装置1では、スクリュシリンダ5の先端部の射出ノズル7と材料供給口との間に、発泡剤用のガスを注入するためのガス供給口8が設けられ、可塑化工程においては、このガス供給口8より例えば窒素や二酸化炭素などの不活性ガスを注入する構成となっている。このガス供給は、ガス供給源12より開閉用の第1ソレノイドバルブ14を介してガス供給口8に導入する構成となっている。
【0005】
この発泡剤用のガスは、間欠運転される射出成形の各可塑化工程において、安定した定量が注入されることが成形品の品質を均一化する上で必要である。このため、従来では、第1ソレノイドバルブ14の閉成時に略一定の所定圧力に維持するための第2ソレノイドバルブ15び背圧弁16を備えている。
【0006】
このような従来の構成における動作を以下に説明する。
まず、ガスの注入を行わないときには、第1ソレノイドバルブ14を閉成状態とし、第2ソレノイドバルブ15を開成状態としておく。背圧弁16は背圧を所定圧力に調整するので、この際、ガス供給源12と第1ソレノイドバルブ14間のガス圧力は、背圧弁16で規定された圧力に調整されている。そして、こうして略一定圧力に維持された状態において、ガスの注入時には、第2ソレノイドバルブ15を閉成とすると共に第1ソレノイドバルブ14を開成して一定時間にわたりガス注入を行う。こうして、従来は注入されるガス量がほぼ一定となるようガスの注入制御を行っている。
【0007】
【発明が解決しようとする課題】
しかしながら、発泡剤用のガスとして、特に超臨界状態のガスを注入して超微細発泡成形を行う場合、溶融樹脂の圧力と注入されるガスの圧力、及びその流量との関係は図7に示すようになり、注入されるガス流量はガスの圧力と共に注入時間長にわたり大きく変動している。ここで、溶融樹脂の圧力は、図6に示すように、シリンダ内に設けられた第1圧力検出器18により検出される圧力を示しており、ガスの圧力は、第1ソレノイドバルブ14とガス供給源12との間に設けられた第2圧力検出器19により検出された圧力を示している。図7に示すところによれば、ガスの流量は、第1ソレノイドバルブ14を開いた(注入開始)直後に急激に増大した後、第1ソレノイドバルブ14を閉じる(注入終了)まで徐々に緩やかとなるよう減少し、またその圧力は背圧弁16により定められていた所定圧力P0から注入終了まで減少する。このような特性は超臨界状態のガス特有のものであり、従って、従来の技術では、特に超臨界状態のガスについて、図8に示すように溶融樹脂の圧力とガスの圧力を注入時間にわたって略一定として、その流量を略一定とすることができず、このため、ガスの流入量にバラツキが生じ、均一な品質の成形品が成形し難いという問題点がある。
【0008】
本発明は、上述した課題に鑑みてなされたものであり、注入されるガスの状態によらず、所定(例えば一定)の差圧をもって、溶融樹脂に発泡剤用のガスを供給することができる発泡剤用ガス供給装置、及びそれを用いた熱可塑性樹脂発泡体の成形装置及び熱可塑性樹脂発泡体の成形方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
上述した課題を解決するため、本発明は、スクリュシリンダ内で溶融された熱可塑性樹脂内に発泡剤用のガスを注入して熱可塑性樹脂発泡体を成形する発泡剤用ガス供給装置であって、前記熱可塑性樹脂の圧力と注入される前記ガスの圧力との差圧を検出する差圧検出手段と、前記差圧検出手段により検出される差圧が略一定となるように前記スクリュシリンダの背圧を制御することで、前記熱可塑性樹脂の圧力を制御する背圧制御手段とを備えたことを特徴とする。
【0010】
また、本発明の発泡剤用ガス供給装置において、前記差圧検出手段は、前記熱可塑性樹脂の圧力を検出する第1圧力検出手段と、注入される前記ガスの圧力を検出する第2圧力検出手段と、前記第1圧力検出手段と前記第2圧力検出手段とにより検出された圧力からそれらの差圧を演算する差圧演算手段とから構成されることを特徴とする。
【0011】
また、本発明の発泡剤用ガス供給装置において、前記発泡剤用のガスは、超臨界状態の不活性ガスであることを特徴とする。
【0012】
また、本発明は、スクリュシリンダ内で溶融された熱可塑性樹脂内に発泡剤用のガスを注入して熱可塑性樹脂発泡体を成形する熱可塑性樹脂発泡体の成形装置であって、前記スクリュシリンダ内で溶融された熱可塑性樹脂内に前記発泡剤用のガスを注入するために、請求項1乃至請求項3のいずれかに記載の発泡剤用ガス供給装置を備えたことを特徴とする。
【0013】
また、本発明の熱可塑性樹脂発泡体の成形装置において、前記成形装置は射出成形装置であることを特徴とする。
【0014】
また、本発明は、スクリュシリンダ内で溶融された熱可塑性樹脂内に発泡剤用のガスを注入して熱可塑性樹脂発泡体を成形する熱可塑性樹脂発泡体の成形方法であって、前記熱可塑性樹脂の圧力と注入される前記ガスの圧力との差圧を検出し、検出される差圧が略一定となるように前記スクリュシリンダの背圧を制御することで、前記熱可塑性樹脂の圧力を制御するようにしたことを特徴とする。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態を発泡剤用のガス供給装置を射出成形装置に適用した場合に例をとり図面を用いて説明する。
実施の形態1.
図1は本発明の実施の形態1を示す構成図である。実施の形態1は、溶融樹脂の圧力に対して注入ガスの圧力を制御することにより、差圧を略一定に制御しようとするものである。図1に示す発泡剤用のガス供給源12と射出成形装置1Aのスクリュシリンダ5のガス供給口8との間に設けられた第1ソレノイドバルブ14と、ガス供給源12と第1ソレノイドバルブ14間の圧力を調整するための自動圧力調整弁20とを備えている。
【0030】
また、このガス供給源12は、スクリュシリンダ5内の溶融樹脂の圧力を検出する第1圧力検出器18と、第1圧力検出器18により検出された圧力信号を電気信号に変換する第1トランスデューサ21と、第1ソレノイドバルブ14とガス供給源12との間の圧力を検出する第2圧力検出器19と、第2圧力検出器19により検出された圧力信号を電気信号に変換する第2トランスデューサ22と、これら第1、第2トランスデューサ21,22の電気信号を入力し、溶融樹脂の圧力とガスの圧力との差圧を演算する演算器としてのCPU23と、CPU23からの差圧に基づいて、自動圧力調整弁20を制御することによりガスの圧力を調整し、もって、差圧が所定の関係である、例えば一定となるよう、ガスの圧力を制御するコントローラ(PIC)24とから構成されている。
【0031】
このような構成において、発泡剤用のガスを供給するときは、第1圧力検出器18により溶融樹脂の圧力を検出し、第2圧力検出器19により注入されるガスの圧力(供給圧力)を検出すると共に、これらの電気信号からCPU23がこれら圧力の差圧を検出し、その差圧が例えばガス注入開始時から終了時まで略一定となるようにコントローラ24が自動圧力調整弁20を制御する。この動作の結果、第1圧力検出器18と第2圧力検出器19の検出値(PP-1,PP-2)は図2に示すように共に連動する値となり、それらの差圧が略一定となる。そして、このように差圧をガスの注入開始時t1から注入終了時t2にかけて、略一定量に制御することにより、超臨界状態の不活性ガスであっても、その流量Qを、注入時間にわたってほぼ一定にでき、これにより、間欠運転が行われる射出成形装置1Aにおいて、各可塑工程における発泡剤用のガスが略一定量に保たれる。
【0032】
実施の形態2.
図3は実施の形態2を示す構成図である。実施の形態2も実施の形態1と同様に溶融樹脂の圧力に対して注入ガスの圧力を制御することにより、差圧を略一定に制御しようとするものである。図3において、図1と同一符号は、図1に示したものと同一又は相当物であり、ここでの説明を省略する。実施の形態2は、図5に示したと同様、ガス供給源12と大気の間に第2ソレノイドバルブ15及び背圧弁16を設け、ガス供給源12と第2ソレノイドバルブ15との間から第1ソレノイドバルブ14を介してスクリュシリンダ5の供給口8まで設けられる配管上の第1ソレノイドバルブ14上流側に、第1ソレノイドバルブ14側の圧力を調整する自動圧力調整弁(減圧弁)30を設け、この自動圧力調整弁30と第1ソレノイドバルブ14間に、ガスの圧力を検出する第2圧力検出器19を設け、自動圧力調整弁30を差圧に基づいてコントローラにより制御するようにしたものである。
【0033】
このような構成によれば、第1圧力検出器18で検出された溶融樹脂の圧力に対して注入ガスの圧力を制御することにより、差圧が所定のパターン(例えば一定パターン)となるように制御することができ、所望の成形を行うことが容易となる。
【0034】
実施の形態3.
図4は、本発明の実施の形態3を示す構成図である。実施の形態3はガスの圧力に対して溶融樹脂の圧力を制御することにより、差圧を略一定に制御しようとするものである。図4に示す発泡剤用のガス供給源12は、図5に示したガス供給源と同様であり、ガス供給源12と射出成形装置1Cのスクリュシリンダ5のガス供給口8との間に設けられた第1ソレノイドバルブ14と、第1ソレノイドバルブ14の閉成時に第1ソレノイドバルブ14とガス供給源12間のガス圧力を略一定に保つための背圧弁16と、背圧弁16の上流側に設けられ第1ソレノイドバルブ14が開成時に第1ソレノイドバルブ14とガス供給源12間を背圧弁16から遮断する第2ソレノイドバルブ15とを備え、第2圧力検出器19がガス供給源12と第1ソレノイドバルブ14間に設けられガスの圧力を検出する。
【0035】
そして、溶融樹脂の圧力を検出する第1圧力検出器18と第2圧力検出器19の検出信号が第1、第2トランスデューサ21,22を介してCPU23Bに取り込まれて差圧が演算され、この差圧に基づいてコントローラ24Bは、スクリュ3の背圧をモータ40又は図示しない油圧ポンプを制御することにより制御し、溶融樹脂の圧力を制御する構成となっている。
【0036】
以上の構成により、ガスの注入時には第2ソレノイドバルブ15を閉じると共に第1ソレノイドバルブ14を開き、第1、第2圧力検出器18,19それぞれにより検出される圧力からCPU23Bにより演算される差圧が一定となるように、ガスの圧力に対して溶融樹脂の圧力をモータ40または図示しない油圧ポンプを制御することにより制御する。そして、このような構成によっても、差圧を略一定に制御でき、所望の成形を行うことができる。
【0037】
実施の形態4.
実施の形態1乃至実施の形態3はいずれもガスの圧力と溶融樹脂の圧力のいずれか一方のみを制御するようにしたものであるが、ガスの圧力と溶融樹脂の圧力のいずれをも制御することにより、所定の差圧を得られるようにしても良い。
例えば、実施の形態1または実施の形態2のいずれかの構成と実施の形態3の構成を組み合わせ、ガスの圧力と溶融樹脂の圧力を共に制御するようにする。図5は実施の形態4を示す構成図であり、図1、図4と同一符号はそれらと同一物を示しており、ここでの説明は省略する。そして、このような構成によれば、制御状態により、制御し易い制御対象を適宜選択して差圧を一定とすることができるので、差圧制御が容易となると共に応答性をも高めることができる。
【0038】
上述した実施の形態では、差圧を略一定となるように制御を行ってきたが、本発明は、溶融樹脂とガスの差圧との関係に基づき、例えば超臨界状態のガスについて所望の流量パターンが得られるような差圧パターンを得るようにしても良いことは言うまでもなく、これにより、より高品質で均一、あるいは所定の特性を持った成形品を得ることができるようになることは明白なことである。
【0039】
なお、以上の実施の形態においては、発泡剤用のガス供給装置が適用された熱可塑性樹脂発泡体の成形装置としての射出成形装置についてもその主要部の構成が明らかとされていることは言うまでもない。
【0040】
【発明の効果】
以上の説明より明らかなように、本発明によれば、注入されるガスの状態によらず、所定(例えば一定)の差圧をもって、溶融樹脂に発泡剤用のガスを供給することができる発泡剤用ガス供給装置、及びそれを用いた熱可塑性樹脂発泡体の成形装置及び熱可塑性樹脂発泡体の成形方法を提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】実施の形態1を示す構成図である。
【図2】実施の形態1の動作を説明する図である。
【図3】実施の形態2を示す構成図である。
【図4】実施の形態3を示す構成図である。
【図5】実施の形態4を示す構成図である。
【図6】従来の発泡剤用ガス供給装置及び射出成形装置を示す図である。
【図7】従来技術の動作を示す図である。
【図8】理想のガス供給動作を示す図である。
【符号の説明】
1,1A,1B,1C,1D 射出成形装置、3 スクリュ、5 スクリュシリンダ、6 溶融樹脂、8 ガス供給口、12 ガス供給源、14 第1ソレノイドバルブ、15 第2ソレノイドバルブ、16 背圧弁、18 第1圧力検出器、19 第2圧力検出器、20,30 自動圧力調整弁、21 第1トランスデューサ、22 第2トランスデューサ、23,23A,23B,23C CPU、24,24A,24B,24C コントローラ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas supply apparatus for a foaming agent that forms a thermoplastic resin foam by injecting, for example, a supercritical inert gas into the thermoplastic resin melted in the screw cylinder 5 as a foaming agent gas. The present invention relates to a thermoplastic resin foam molding apparatus and a thermoplastic resin foam molding method using the same.
[0002]
[Prior art]
A gas supply device for a foaming agent for injecting a supercritical inert gas into a thermoplastic resin melted in the screw cylinder 5 to form a thermoplastic resin foam, and molding of a thermoplastic resin foam using the same. The device is known.
[0003]
FIG. 6 is a view showing an injection molding apparatus as a conventional thermoplastic resin foam molding apparatus. The injection molding apparatus 1 includes a screw 3 in a cylinder 2 and a screw cylinder 5 having a heater 4 on the outer periphery of the cylinder 2. The screw cylinder 5 plasticizes resin. In the plasticizing step, the screw 3 rotates, the resin material introduced into the material supply port from a hopper (not shown) is sunk into the groove of the screw 3, and the molten resin 6 is put on the tip of the screw cylinder 5 while melting. Accumulate. The screw 3 moves backward as the molten resin 6 accumulates.
[0004]
Further, in the injection molding apparatus 1 for molding a thermoplastic resin foam, a gas supply port 8 for injecting a foaming agent gas is provided between the injection nozzle 7 at the tip of the screw cylinder 5 and the material supply port. In the plasticizing step, an inert gas such as nitrogen or carbon dioxide is injected from the gas supply port 8. This gas supply is configured to be introduced into the gas supply port 8 from the gas supply source 12 through the first solenoid valve 14 for opening and closing.
[0005]
In order to make the quality of the molded product uniform, it is necessary that the gas for the blowing agent is injected in a stable amount in each plasticizing step of injection molding that is intermittently operated. For this reason, conventionally, a second solenoid valve 15 and a back pressure valve 16 are provided to maintain a substantially constant predetermined pressure when the first solenoid valve 14 is closed.
[0006]
The operation in such a conventional configuration will be described below.
First, when gas is not injected, the first solenoid valve 14 is closed and the second solenoid valve 15 is opened. The back pressure valve 16 adjusts the back pressure to a predetermined pressure. At this time, the gas pressure between the gas supply source 12 and the first solenoid valve 14 is adjusted to the pressure defined by the back pressure valve 16. Then, in the state where the pressure is maintained at a substantially constant pressure, when the gas is injected, the second solenoid valve 15 is closed and the first solenoid valve 14 is opened to perform gas injection for a predetermined time. Thus, conventionally, gas injection control is performed so that the amount of injected gas is substantially constant.
[0007]
[Problems to be solved by the invention]
However, in particular, when superfine foam molding is performed by injecting supercritical gas as the foaming agent gas, the relationship between the pressure of the molten resin, the pressure of the injected gas, and the flow rate thereof is shown in FIG. Thus, the flow rate of the injected gas varies greatly with the pressure of the gas over the length of the injection time. Here, as shown in FIG. 6, the pressure of the molten resin indicates the pressure detected by the first pressure detector 18 provided in the cylinder, and the gas pressure is the same as that of the first solenoid valve 14 and the gas. The pressure detected by the 2nd pressure detector 19 provided between the supply sources 12 is shown. As shown in FIG. 7, the gas flow rate increases rapidly immediately after the first solenoid valve 14 is opened (injection start) and then gradually decreases until the first solenoid valve 14 is closed (injection end). And the pressure decreases from the predetermined pressure P0 determined by the back pressure valve 16 to the end of the injection. Such characteristics are peculiar to the gas in the supercritical state. Therefore, in the conventional technique, particularly for the gas in the supercritical state, the pressure of the molten resin and the pressure of the gas are substantially reduced over the injection time as shown in FIG. As a result, the flow rate cannot be made substantially constant. Therefore, there is a problem in that the amount of inflow of gas varies and it is difficult to form a molded product of uniform quality.
[0008]
The present invention has been made in view of the above-described problems, and can supply a foaming agent gas to a molten resin with a predetermined (for example, constant) differential pressure regardless of the state of the injected gas. It aims at providing the gas supply apparatus for foaming agents, the molding apparatus of a thermoplastic resin foam using the same, and the molding method of a thermoplastic resin foam.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is a gas supply device for a foaming agent that injects a gas for a foaming agent into a thermoplastic resin melted in a screw cylinder and molds a thermoplastic resin foam. A differential pressure detecting means for detecting a differential pressure between the pressure of the thermoplastic resin and the pressure of the injected gas, and the screw cylinder so that the differential pressure detected by the differential pressure detecting means is substantially constant. And a back pressure control means for controlling the pressure of the thermoplastic resin by controlling the back pressure .
[0010]
In the gas supply device for a foaming agent according to the present invention, the differential pressure detection means includes a first pressure detection means for detecting the pressure of the thermoplastic resin, and a second pressure detection for detecting the pressure of the injected gas. And a differential pressure calculating means for calculating the differential pressure from the pressures detected by the first pressure detecting means and the second pressure detecting means.
[0011]
In the blowing agent gas supply apparatus of the present invention, the blowing agent gas is an inert gas in a supercritical state .
[0012]
The present invention is also a thermoplastic resin foam molding apparatus for molding a thermoplastic resin foam by injecting a gas for a foaming agent into a thermoplastic resin melted in the screw cylinder, wherein the screw cylinder In order to inject | pour the gas for said foaming agents in the thermoplastic resin fuse | melted in the inside, the gas supply apparatus for foaming agents in any one of Claim 1 thru | or 3 was provided.
[0013]
In the thermoplastic resin foam molding apparatus of the present invention, the molding apparatus is an injection molding apparatus .
[0014]
The present invention also relates to a thermoplastic resin foam molding method for molding a thermoplastic resin foam by injecting a gas for a foaming agent into a thermoplastic resin melted in a screw cylinder. By detecting the differential pressure between the pressure of the resin and the pressure of the injected gas, and controlling the back pressure of the screw cylinder so that the detected differential pressure is substantially constant, the pressure of the thermoplastic resin is reduced. It is characterized by being controlled.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking as an example a case where a gas supply device for a foaming agent is applied to an injection molding device.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing Embodiment 1 of the present invention. In the first embodiment, the differential pressure is controlled to be substantially constant by controlling the pressure of the injected gas with respect to the pressure of the molten resin. A first solenoid valve 14 provided between the gas supply source 12 for the foaming agent shown in FIG. 1 and the gas supply port 8 of the screw cylinder 5 of the injection molding apparatus 1A, the gas supply source 12, and the first solenoid valve 14 And an automatic pressure adjusting valve 20 for adjusting the pressure between them.
[0030]
The gas supply source 12 includes a first pressure detector 18 that detects the pressure of the molten resin in the screw cylinder 5 and a first transducer that converts a pressure signal detected by the first pressure detector 18 into an electrical signal. 21, a second pressure detector 19 that detects the pressure between the first solenoid valve 14 and the gas supply source 12, and a second transducer that converts the pressure signal detected by the second pressure detector 19 into an electrical signal. 22 and the CPU 23 as an arithmetic unit that inputs the electric signals of the first and second transducers 21 and 22 and calculates the pressure difference between the molten resin pressure and the gas pressure, and based on the pressure difference from the CPU 23. A controller for controlling the pressure of the gas so as to adjust the pressure of the gas by controlling the automatic pressure regulating valve 20 so that the differential pressure has a predetermined relationship, for example, constant. And a La (PIC) 24 Metropolitan.
[0031]
In such a configuration, when supplying the gas for the blowing agent, the pressure of the molten resin is detected by the first pressure detector 18 and the pressure (supply pressure) of the gas injected by the second pressure detector 19 is determined. At the same time, the CPU 23 detects the differential pressure between these pressures from these electrical signals, and the controller 24 controls the automatic pressure regulating valve 20 so that the differential pressure becomes substantially constant, for example, from the start to the end of gas injection. . As a result of this operation, the detected values (P P-1 , P P-2 ) of the first pressure detector 18 and the second pressure detector 19 become values that are linked together as shown in FIG. It becomes almost constant. In this way, by controlling the differential pressure to a substantially constant amount from the gas injection start time t 1 to the injection end time t 2 , the flow rate Q of the inert gas in the supercritical state is injected. In the injection molding apparatus 1A in which intermittent operation is performed, the foaming agent gas in each plastic process is maintained at a substantially constant amount.
[0032]
Embodiment 2. FIG.
FIG. 3 is a block diagram showing the second embodiment. In the second embodiment, as in the first embodiment, the differential pressure is controlled to be substantially constant by controlling the pressure of the injected gas with respect to the pressure of the molten resin. 3, the same reference numerals as those in FIG. 1 are the same as or equivalent to those shown in FIG. 1, and the description thereof is omitted here. In the second embodiment, as shown in FIG. 5, the second solenoid valve 15 and the back pressure valve 16 are provided between the gas supply source 12 and the atmosphere, and the first solenoid valve 15 is interposed between the gas supply source 12 and the second solenoid valve 15. An automatic pressure adjusting valve (pressure reducing valve) 30 for adjusting the pressure on the first solenoid valve 14 side is provided on the upstream side of the first solenoid valve 14 on the pipe provided to the supply port 8 of the screw cylinder 5 through the solenoid valve 14. The second pressure detector 19 for detecting the gas pressure is provided between the automatic pressure regulating valve 30 and the first solenoid valve 14, and the automatic pressure regulating valve 30 is controlled by the controller based on the differential pressure. It is.
[0033]
According to such a configuration, by controlling the pressure of the injection gas with respect to the pressure of the molten resin detected by the first pressure detector 18, the differential pressure becomes a predetermined pattern (for example, a constant pattern). It can be controlled, and it becomes easy to perform desired molding.
[0034]
Embodiment 3 FIG.
FIG. 4 is a block diagram showing Embodiment 3 of the present invention. In the third embodiment, the differential pressure is controlled to be substantially constant by controlling the pressure of the molten resin with respect to the gas pressure. 4 is the same as the gas supply source shown in FIG. 5, and is provided between the gas supply source 12 and the gas supply port 8 of the screw cylinder 5 of the injection molding apparatus 1C. The first solenoid valve 14, the back pressure valve 16 for keeping the gas pressure between the first solenoid valve 14 and the gas supply source 12 substantially constant when the first solenoid valve 14 is closed, and the upstream side of the back pressure valve 16. And a second solenoid valve 15 that shuts off the space between the first solenoid valve 14 and the gas supply source 12 from the back pressure valve 16 when the first solenoid valve 14 is opened, and the second pressure detector 19 is connected to the gas supply source 12. It is provided between the first solenoid valves 14 and detects the gas pressure.
[0035]
The detection signals of the first pressure detector 18 and the second pressure detector 19 for detecting the pressure of the molten resin are taken into the CPU 23B via the first and second transducers 21 and 22, and the differential pressure is calculated. Based on the differential pressure, the controller 24B is configured to control the back pressure of the screw 3 by controlling the motor 40 or a hydraulic pump (not shown) to control the pressure of the molten resin.
[0036]
With the above configuration, when the gas is injected, the second solenoid valve 15 is closed and the first solenoid valve 14 is opened, and the differential pressure calculated by the CPU 23B from the pressure detected by the first and second pressure detectors 18 and 19 respectively. The pressure of the molten resin is controlled by controlling the motor 40 or a hydraulic pump (not shown) with respect to the gas pressure. Also with such a configuration, the differential pressure can be controlled to be substantially constant, and desired molding can be performed.
[0037]
Embodiment 4 FIG.
In the first to third embodiments, only one of the gas pressure and the molten resin pressure is controlled. However, both the gas pressure and the molten resin pressure are controlled. Thus, a predetermined differential pressure may be obtained.
For example, either the configuration of Embodiment 1 or Embodiment 2 and the configuration of Embodiment 3 are combined to control both the gas pressure and the molten resin pressure. FIG. 5 is a block diagram showing the fourth embodiment. The same reference numerals as those in FIGS. 1 and 4 denote the same components, and the description thereof is omitted here. According to such a configuration, it is possible to appropriately select a control target that is easy to control depending on the control state and to make the differential pressure constant, so that the differential pressure control is facilitated and the responsiveness is improved. it can.
[0038]
In the above-described embodiment, control has been performed so that the differential pressure becomes substantially constant. However, the present invention is based on the relationship between the differential pressure between the molten resin and the gas, for example, a desired flow rate for supercritical gas. It goes without saying that it is possible to obtain a differential pressure pattern that can obtain a pattern, and it is obvious that this makes it possible to obtain a molded product with higher quality, uniformity, or predetermined characteristics. It is a thing.
[0039]
In the above embodiment, it goes without saying that the configuration of the main part of the injection molding apparatus as the molding apparatus for the thermoplastic resin foam to which the gas supply apparatus for the foaming agent is applied has been clarified. Yes.
[0040]
【The invention's effect】
As is clear from the above description, according to the present invention, foaming that can supply the foaming agent gas to the molten resin with a predetermined (for example, constant) differential pressure regardless of the state of the injected gas. The agent gas supply device, the thermoplastic resin foam molding device using the same, and the thermoplastic resin foam molding method can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment.
FIG. 2 is a diagram for explaining the operation of the first embodiment.
FIG. 3 is a configuration diagram showing a second embodiment.
4 is a configuration diagram showing a third embodiment. FIG.
FIG. 5 is a configuration diagram showing a fourth embodiment.
FIG. 6 is a view showing a conventional blowing agent gas supply device and injection molding device.
FIG. 7 is a diagram showing the operation of the prior art.
FIG. 8 is a diagram showing an ideal gas supply operation.
[Explanation of symbols]
1, 1A, 1B, 1C, 1D Injection molding device, 3 screw, 5 screw cylinder, 6 molten resin, 8 gas supply port, 12 gas supply source, 14 1st solenoid valve, 15 2nd solenoid valve, 16 back pressure valve, 18 First pressure detector, 19 Second pressure detector, 20, 30 Automatic pressure regulating valve, 21 First transducer, 22 Second transducer, 23, 23A, 23B, 23C CPU, 24, 24A, 24B, 24C controller.

Claims (6)

スクリュシリンダ内で溶融された熱可塑性樹脂内に発泡剤用のガスを注入して熱可塑性樹脂発泡体を成形する発泡剤用ガス供給装置であって、
前記熱可塑性樹脂の圧力と注入される前記ガスの圧力との差圧を検出する差圧検出手段と、
前記差圧検出手段により検出される差圧が略一定となるように前記スクリュシリンダの背圧を制御することで、前記熱可塑性樹脂の圧力を制御する背圧制御手段
を備えたことを特徴とする発泡剤用ガス供給装置。
A blowing agent gas supply device for injecting a blowing agent gas into a thermoplastic resin melted in a screw cylinder to mold a thermoplastic resin foam,
A differential pressure detecting means for detecting a differential pressure between the pressure of the thermoplastic resin and the pressure of the injected gas;
Back pressure control means for controlling the pressure of the thermoplastic resin by controlling the back pressure of the screw cylinder so that the differential pressure detected by the differential pressure detection means is substantially constant. Gas supply device for foaming agent.
請求項1に記載の発泡剤用ガス供給装置において、
前記差圧検出手段は、前記熱可塑性樹脂の圧力を検出する第1圧力検出手段と、
注入される前記ガスの圧力を検出する第2圧力検出手段と、
前記第1圧力検出手段と前記第2圧力検出手段とにより検出された圧力からそれらの差圧を演算する差圧演算手段とから構成されることを特徴とする発泡剤用ガス供給装置。
In the gas supply apparatus for foaming agents according to claim 1,
The differential pressure detecting means includes first pressure detecting means for detecting the pressure of the thermoplastic resin,
Second pressure detecting means for detecting the pressure of the injected gas;
A blowing agent gas supply device comprising differential pressure calculation means for calculating a differential pressure from pressures detected by the first pressure detection means and the second pressure detection means.
請求項1又は請求項2に記載の発泡剤用ガス供給装置において、
前記発泡剤用のガスは、超臨界状態の不活性ガスであることを特徴とする発泡剤用ガス供給装置。
In the gas supply apparatus for foaming agents according to claim 1 or 2 ,
The blowing agent gas supply device, wherein the blowing agent gas is a supercritical inert gas.
スクリュシリンダ内で溶融された熱可塑性樹脂内に発泡剤用のガスを注入して熱可塑性樹脂発泡体を成形する熱可塑性樹脂発泡体の成形装置であって、
前記スクリュシリンダ内で溶融された熱可塑性樹脂内に前記発泡剤用のガスを注入するために、請求項1乃至請求項3のいずれかに記載の発泡剤用ガス供給装置を備えたことを特徴とする熱可塑性樹脂発泡体の成形装置。
A thermoplastic resin foam molding device for molding a thermoplastic resin foam by injecting a gas for a foaming agent into a thermoplastic resin melted in a screw cylinder,
4. The blowing agent gas supply device according to claim 1 , wherein the blowing agent gas supply device is provided in order to inject the blowing agent gas into the thermoplastic resin melted in the screw cylinder. A thermoplastic resin foam molding apparatus.
請求項に記載の熱可塑性樹脂発泡体の成形装置において、
前記成形装置は射出成形装置であることを特徴とする熱可塑性樹脂発泡体の成形装置。
In the molding apparatus of the thermoplastic resin foam according to claim 4 ,
The molding apparatus for a thermoplastic resin foam, wherein the molding apparatus is an injection molding apparatus.
スクリュシリンダ内で溶融された熱可塑性樹脂内に発泡剤用のガスを注入して熱可塑性樹脂発泡体を成形する熱可塑性樹脂発泡体の成形方法であって、
前記熱可塑性樹脂の圧力と注入される前記ガスの圧力との差圧を検出し、
検出される差圧が略一定となるように前記スクリュシリンダの背圧を制御することで、前記熱可塑性樹脂の圧力を制御するようにしたことを特徴とする熱可塑性樹脂発泡体の成形方法。
A method for molding a thermoplastic resin foam, in which a foaming agent gas is injected into a thermoplastic resin melted in a screw cylinder to mold a thermoplastic resin foam,
Detecting the pressure difference between the pressure of the thermoplastic resin and the pressure of the injected gas ,
A method for molding a thermoplastic resin foam , wherein the pressure of the thermoplastic resin is controlled by controlling the back pressure of the screw cylinder so that the detected differential pressure is substantially constant .
JP2001229327A 2001-07-30 2001-07-30 Gas supply device for foaming agent, thermoplastic resin foam molding apparatus using the same, and thermoplastic resin foam molding method Expired - Lifetime JP3788750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229327A JP3788750B2 (en) 2001-07-30 2001-07-30 Gas supply device for foaming agent, thermoplastic resin foam molding apparatus using the same, and thermoplastic resin foam molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229327A JP3788750B2 (en) 2001-07-30 2001-07-30 Gas supply device for foaming agent, thermoplastic resin foam molding apparatus using the same, and thermoplastic resin foam molding method

Publications (2)

Publication Number Publication Date
JP2003039473A JP2003039473A (en) 2003-02-13
JP3788750B2 true JP3788750B2 (en) 2006-06-21

Family

ID=19061689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229327A Expired - Lifetime JP3788750B2 (en) 2001-07-30 2001-07-30 Gas supply device for foaming agent, thermoplastic resin foam molding apparatus using the same, and thermoplastic resin foam molding method

Country Status (1)

Country Link
JP (1) JP3788750B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027615A1 (en) 2011-08-19 2013-02-28 日立マクセル株式会社 Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method
WO2014126082A1 (en) 2013-02-18 2014-08-21 日立マクセル株式会社 Method for producing molded foam body
WO2018131372A1 (en) 2017-01-11 2018-07-19 マクセル株式会社 Method and apparatus for manufacturing foamed product
WO2019003748A1 (en) 2017-06-26 2019-01-03 マクセル株式会社 Method for manufacturing foam molded body and foam molded body
KR20190112808A (en) 2017-03-10 2019-10-07 마쿠세루 가부시키가이샤 Manufacturing method and apparatus for foam molding
KR20190142427A (en) 2016-03-15 2019-12-26 마쿠세루 가부시키가이샤 Method and apparatus for manufacturing foam molded body
KR20200021939A (en) 2017-06-26 2020-03-02 맥셀 홀딩스 가부시키가이샤 Method of manufacturing circuit components and circuit components
US10632663B2 (en) 2015-07-08 2020-04-28 Maxell, Ltd. Process and device for producing molded foam
US10703029B2 (en) 2014-10-31 2020-07-07 Maxell, Ltd. Process and device for producing foamed molded object
DE112022001487T5 (en) 2021-03-16 2024-01-04 Shibaura Machine Co., Ltd. Foam casting process, control method for an injection molding machine for foam casting, and injection molding machine for foam casting

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223236B2 (en) * 2002-06-21 2009-02-12 株式会社名機製作所 Gas impregnated resin injection apparatus and injection molding method
KR100654620B1 (en) 2004-06-28 2006-12-08 주식회사 프라코 The Adjustable Method for Gas
KR100654619B1 (en) 2004-06-29 2006-12-08 주식회사 프라코 The Adjustable Method for Gas
KR100641599B1 (en) 2004-07-02 2006-11-10 주식회사 프라코 The Adjustable Method for Gas
CN101428462B (en) * 2007-11-09 2011-05-11 联塑(杭州)机械有限公司 Expanded plastic injection molding method and apparatus
US20190118432A1 (en) * 2017-10-23 2019-04-25 Trexel, Inc. Blowing agent introduction in polymer foam processing
JP2022089258A (en) * 2020-12-04 2022-06-16 株式会社日本製鋼所 Gas supply system, injection molding machine and foam molding method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980147B2 (en) 2011-08-19 2015-03-17 Hitachi Maxell, Ltd. Kneading apparatus, method for producing thermoplastic resin molded product, and foam injection molding method
US9186634B2 (en) 2011-08-19 2015-11-17 Hitachi Maxell, Ltd. Kneading apparatus, method for producing thermoplastic resin molded product, and foam injection molding method
US9718217B2 (en) 2011-08-19 2017-08-01 Hitachi Maxell, Ltd. Kneading apparatus, method for producing thermoplastic resin molded product, and foam injection molding method
WO2013027615A1 (en) 2011-08-19 2013-02-28 日立マクセル株式会社 Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method
WO2014126082A1 (en) 2013-02-18 2014-08-21 日立マクセル株式会社 Method for producing molded foam body
US9884439B2 (en) 2013-02-18 2018-02-06 Hitachi Maxell, Ltd. Method for producing foamed molded product
US10703029B2 (en) 2014-10-31 2020-07-07 Maxell, Ltd. Process and device for producing foamed molded object
US10632663B2 (en) 2015-07-08 2020-04-28 Maxell, Ltd. Process and device for producing molded foam
US11241816B2 (en) 2015-07-08 2022-02-08 Maxell, Ltd. Process and device for producing molded foam
US11207809B2 (en) 2016-03-15 2021-12-28 Maxell, Ltd. Method and apparatus for manufacturing foam molded body
KR20200136053A (en) 2016-03-15 2020-12-04 마쿠세루 가부시키가이샤 Method and apparatus for manufacturing foam molded body
KR20190142427A (en) 2016-03-15 2019-12-26 마쿠세루 가부시키가이샤 Method and apparatus for manufacturing foam molded body
WO2018131372A1 (en) 2017-01-11 2018-07-19 マクセル株式会社 Method and apparatus for manufacturing foamed product
US11318646B2 (en) 2017-01-11 2022-05-03 Maxell, Ltd. Method and apparatus for manufacturing foamed product
KR20190093638A (en) 2017-01-11 2019-08-09 마쿠세루 가부시키가이샤 Manufacturing method and apparatus for foam molding
US11820063B2 (en) 2017-03-10 2023-11-21 Maxell, Ltd. Manufacturing method and manufacturing device for foam molded article
KR20190112808A (en) 2017-03-10 2019-10-07 마쿠세루 가부시키가이샤 Manufacturing method and apparatus for foam molding
US11478969B2 (en) 2017-03-10 2022-10-25 Maxell, Ltd. Manufacturing method and manufacturing device for foam molded article
US11260564B2 (en) 2017-06-26 2022-03-01 Maxell, Ltd. Method for manufacturing foam molded body and foam molded body
KR20200021939A (en) 2017-06-26 2020-03-02 맥셀 홀딩스 가부시키가이샤 Method of manufacturing circuit components and circuit components
WO2019003748A1 (en) 2017-06-26 2019-01-03 マクセル株式会社 Method for manufacturing foam molded body and foam molded body
KR20210084670A (en) 2017-06-26 2021-07-07 마쿠세루 가부시키가이샤 Method for manufacturing foam body and foam molded body
US11648713B2 (en) 2017-06-26 2023-05-16 Maxell, Ltd. Method for manufacturing foam molded body and foam molded body
KR20200011486A (en) 2017-06-26 2020-02-03 마쿠세루 가부시키가이샤 Manufacturing method of foam molded article and foam molded article
US11945140B2 (en) 2017-06-26 2024-04-02 Maxell, Ltd. Method for manufacturing foam molded body and foam molded body
DE112022001487T5 (en) 2021-03-16 2024-01-04 Shibaura Machine Co., Ltd. Foam casting process, control method for an injection molding machine for foam casting, and injection molding machine for foam casting

Also Published As

Publication number Publication date
JP2003039473A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JP3788750B2 (en) Gas supply device for foaming agent, thermoplastic resin foam molding apparatus using the same, and thermoplastic resin foam molding method
US5728329A (en) Method and apparatus for injecting a molten material into a mold cavity
US6019918A (en) Gas assisted injection molding with controlled internal melt pressure
JP2000141435A (en) Method for injection-molding plastic molded product made of thermoplastic plastic and device therefor
JP2665112B2 (en) Injection molding method and injection molding device
JP2755826B2 (en) Method for injection molding molded articles from thermoplastic materials
US6994537B2 (en) Electrical injection velocity-pressure switching and pressure holding device
JP2883140B2 (en) Injection molding machine filling detection method
JP4085103B2 (en) Holding pressure switching control method
WO2018089905A1 (en) Large part injection mold apparatus and method
JP2003039474A (en) Supplying apparatus for gas for foaming agent, and molding apparatus for thermoplastic resin foamed item and molding method for thermoplastic resin foamed item by use of it
US5543093A (en) Injection molding method and apparatus
KR101959325B1 (en) Apparatus of foam-injection molding
WO2021159122A4 (en) Low-pressure molding system
JP3418495B2 (en) Injection molding method
JP2001150485A (en) Mechanism for adjusting flow rate of supercritical fluid
JPH03146323A (en) In-mold resin pressure controller for injection molding machine
JP2007001114A (en) Injection molding machine and injection molding method
JP3482027B2 (en) Hollow injection molding method and apparatus
US11491693B2 (en) Large part injection mold apparatus and process
JP3233608B2 (en) Injection molding machine
JP5292649B2 (en) Method and apparatus for preventing oxidation of molten resin in mold
JP4088382B2 (en) Hollow injection molding method
KR20230129297A (en) Injection molding machine for foam molding and method and method for molding foam molded product
KR20150059516A (en) Molding method and device for thin film of molded product

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3788750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250