JP7120600B2 - 処理装置、処理方法及びプログラム - Google Patents

処理装置、処理方法及びプログラム Download PDF

Info

Publication number
JP7120600B2
JP7120600B2 JP2018045380A JP2018045380A JP7120600B2 JP 7120600 B2 JP7120600 B2 JP 7120600B2 JP 2018045380 A JP2018045380 A JP 2018045380A JP 2018045380 A JP2018045380 A JP 2018045380A JP 7120600 B2 JP7120600 B2 JP 7120600B2
Authority
JP
Japan
Prior art keywords
power
power storage
storage system
command value
control coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045380A
Other languages
English (en)
Other versions
JP2019161845A (ja
Inventor
耕治 工藤
俊介 岡
賢司 柏原
誠 安喰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
NEC Corp
Original Assignee
Kansai Electric Power Co Inc
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, NEC Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2018045380A priority Critical patent/JP7120600B2/ja
Publication of JP2019161845A publication Critical patent/JP2019161845A/ja
Application granted granted Critical
Publication of JP7120600B2 publication Critical patent/JP7120600B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、処理装置、蓄電システム制御装置、蓄電システム、処理方法及びプログラムに関する。
電力系統の周波数調整に関連する技術が特許文献1乃至3に開示されている。
特許文献1には、予め与えられた定数と現在の電力需要と電力系統の周波数偏差とに基づいて複数の発電機の出力を増減することによって、定周波数制御を実施する周波数調整システムが開示されている。当該周波数調整システムは、互いに伝送路で結合された統合制御装置と、1または2以上の個別制御装置とを有する。
統合制御装置は、定数及び電力需要に基づいて各発電機の調整分担係数を算出し、各個別制御装置に送信する。個別制御装置は、周波数偏差を検出し、検出した周波数偏差と統合制御装置から受信した調整分担係数とに基づいて出力指令値を算出する。そして、個別制御装置は、算出した出力指令値に基づいて発電機に負荷設定する。
特許文献2には、中央給電指令所と、蓄電池SCADA(Supervisory Control And Data Acquisition)と、ローカル充放電システム(ローカル充放電装置/電力貯蔵装置)とを有する電力制御システムが開示されている。
中央給電指令所は、所定周期で、蓄電池群に対する割当容量と、周波数偏差の積分値の最大値とを用いて充放電利得線を作成し、蓄電池SCADAに送信する。蓄電池SCADAは、所定周期で、中央給電指令所から受信した充放電利得線に基づき、各ローカル充放電システムの分担係数を算出し、各ローカル充放電システムに送信する。ローカル充放電システムは、所定周期で周波数偏差を検出し、検出した周波数偏差と分担係数とに基づいて出力指令値を算出する。そして、ローカル充放電システムは、算出した出力指令値に従い電力を出力する。
特許文献3には、中央給電指令所と、蓄電池SCADAと、ローカル充放電システム(ローカル充放電装置/電力貯蔵装置)とを有する電力制御システムが開示されている。
中央給電指令所は、所定周期で、蓄電池群に対する割当容量と、電力系統での電力の需給バランスを調節するために必要な調節電力量とを用いて充放電利得線を作成し、蓄電池SCADAに送信する。また、中央給電指令所は、所定周期で調節電力量をローカル充放電システムに通知する。
蓄電池SCADAは、所定周期で、中央給電指令所から受信した充放電利得線に基づき、各ローカル充放電システムの分担係数を算出し、各ローカル充放電システムに送信する。ローカル充放電システムは、所定周期で、調節電力量と分担係数とに基づいて出力指令値を算出する。そして、ローカル充放電システムは、算出した出力指令値に従い電力を出力する。
特開2005-20916号公報 WO2014/123188号 WO2015/037654号
特許文献1に開示の技術は、発電機の出力を調整することで、電力系統の周波数調整を行うものである。しかし、そもそも発電機は出力応動遅れが比較的大きく、短周期の周波数変動に対応するのが難しい。このため、特許文献2及び3に開示のように、出力応動遅れが小さい蓄電池を併用する試みがなされている。しかし、特許文献2及び3に記載の方法で算出される分担係数の場合、電力系統全体の状態(需要情報や、他の電力系統との連系情報、及び連系状態と関連する系統定数など)を考慮できないため、周波数調整の効果が不十分になり得る。
本発明は、蓄電池を用いて電力系統の周波数調整を行う技術において、周波数調整の効果を向上させることを課題とする。
本発明によれば、
電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置であって、
現在の電力需要を示す需要情報を取得する電力需要取得手段と、
予め定められた系統定数と、前記需要情報で示される電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段と、
前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信手段と、
を有する処理装置が提供される。
また、本発明によれば、
電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置であって、
現在の電力需要を示す需要情報を取得する電力需要取得手段と、
予め定められた系統定数と、前記需要情報で示される電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段と、
前記制御係数に基づき、前記周波数偏差と、前記周波数偏差に応じた前記蓄電システム各々の充放電指令値との関係を示す個別制御係数を、前記蓄電システムごとに算出する個別制御係数算出手段と、
前記個別制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第2の送信手段と、
を有する処理装置が提供される。
また、本発明によれば、
処理装置で生成され、予め定められた系統定数と電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の蓄電システム全体での充放電指令値との関係を示す制御係数を受信する受信手段と、
前記制御係数と所定の分配比率との積であって、前記周波数偏差と、前記周波数偏差に応じた前記蓄電システム各々の充放電指令値との関係を示す個別制御係数を、前記蓄電システムごとに算出する個別制御係数算出手段と、
前記個別制御係数を前記蓄電システム各々に送信する送信手段と、
を有し、
前記制御係数は、予め定められた系統定数と、需要情報で示される電力需要とに基づき算出されたものである蓄電システム制御装置が提供される。
また、本発明によれば、
予め定められた系統定数と電力需要との積又は当該積を補正した値に、所定の分配率を掛けた値であって、電力系統の周波数偏差と、前記周波数偏差に応じた自蓄電システムの充放電指令値との関係を示す個別制御係数を受信する受信手段と、
前記周波数偏差を算出する周波数偏差算出手段と、
前記個別制御係数と、前記周波数偏差とに基づき、自蓄電システムの充放電指令値を決定する指令値決定手段と、
決定された前記充放電指令値に基づき、蓄電池の充放電を制御する蓄電池制御手段と、
を有し、
前記個別制御係数は、制御係数に基づき算出されたものであり、
前記制御係数は、予め定められた系統定数と、需要情報で示される電力需要とに基づき算出されたものである蓄電システムが提供される。
また、本発明によれば、
電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置が、
現在の電力需要を示す需要情報を取得する電力需要取得工程と、
予め定められた系統定数と、前記需要情報で示される電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出工程と、
前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信工程と、
を実行する処理方法が提供される。
また、本発明によれば、
電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置を、
現在の電力需要を示す需要情報を取得する電力需要取得手段、
予め定められた系統定数と、前記需要情報で示される電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段、
前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信手段、
として機能させるプログラムが提供される。
本発明によれば、蓄電池を用いて電力系統の周波数調整を行う技術において、周波数調整の効果を向上させることができる。
本実施形態の電力制御システムの全体像の一例を示す図である。 本実施形態の処理装置100の機能ブロック図の一例を示す図である。 本実施形態の装置のハードウエア構成の一例を示す図である。 本実施形態の処理装置100の処理の流れの一例を示すフローチャートである。 本実施形態の蓄電システム制御装置200の機能ブロック図の一例を示す図である。 本実施形態の蓄電システム制御装置200の処理の流れの一例を示すフローチャートである。 本実施形態の蓄電システム300の機能ブロック図の一例を示す図である。 本実施形態の蓄電システム300のハードウエア構成の一例を示す図である。 充放電指令値を算出する処理の一例を示す図である。 本実施形態の蓄電システム300の処理の流れの一例を示すフローチャートである。 本実施形態の処理装置100の機能ブロック図の一例を示す図である。 本実施形態の処理装置100の処理の流れの一例を示すフローチャートである。 本実施形態の蓄電システム制御装置200の機能ブロック図の一例を示す図である。 本実施形態の蓄電システム300の機能ブロック図の一例を示す図である。 本実施形態の処理装置100の機能ブロック図の一例を示す図である。 本実施形態の蓄電システム制御装置200の機能ブロック図の一例を示す図である。 本実施形態の蓄電システム制御装置200の機能ブロック図の一例を示す図である。 本実施形態の蓄電システム300の機能ブロック図の一例を示す図である。 本実施形態の処理装置100の機能ブロック図の一例を示す図である。 本実施形態の処理装置100の処理の流れの一例を示すフローチャートである。 実施例1を説明するための図である。 本実施形態の処理装置100の機能ブロック図の一例を示す図である。 実施例2を説明するための図である。 本実施形態の処理装置100の機能ブロック図の一例を示す図である。 実施例3を説明するための図である。 実施例4を説明するための図である。 出力指令値を算出する処理の一例を示す図である。 本実施形態の電力制御システムの全体像の一例を示す図である。 本実施形態の制御係数算出部102の機能ブロック図の一例を示す図である。
<第1の実施形態>
「電力制御システムの全体像及び概要」
まず、図1を用いて、本実施形態の電力制御システムの全体像及び概要を説明する。図示するように、電力制御システムは、中央給電指令所システム、蓄電システム制御装置、及び、蓄電システム(大型蓄電システム、家庭用蓄電システム等)を有する。また、電力制御システムは、火力発電所、水力発電所、系統用蓄電池などの電力供給装置を有する。図では、通信線を破線で示し、電力線を実線で示している。なお、図では、通信線が各装置間を直接結んでいるが、各装置間の通信は専用線で実現されてもよいし、汎用的に利用されているインターネットや携帯網、LAN(Local Area Network)、WiFi、920MHz帯通信等の通信網を介して実現されてもよい。
本実施形態では、火力発電所、水力発電所、系統用蓄電池、及び各種蓄電システム等の出力電力や充放電を制御することで、電力系統の負荷周波数制御(LFC:Load Frequency Control)を行う。なお、本実施形態は、特徴的な手法で蓄電システムの充放電を制御する点に特徴を有し、電力供給装置の制御方法は特段制限されない。蓄電システムの充放電を制御する特徴的な手法の概要は、以下の通りである。
まず、中央給電指令所システムは、現在の電力需要を示す需要情報と、予め定められた系統定数とに基づき制御係数[W/Hz]を算出し、算出した制御係数を蓄電システム制御装置に送信する。制御係数は、電力系統の周波数偏差と、周波数偏差に応じた複数の蓄電システム全体での充放電指令値との関係を示す。中央給電指令所システムは、定期的に、又は、不定期に、繰り返し制御係数を算出し、蓄電システム制御装置に送信する。
蓄電システム制御装置は、中央給電指令所システムから受信した制御係数に基づき、複数の蓄電システム各々に対応した個別制御係数[W/Hz]を算出する。そして、蓄電システム制御装置は、算出した個別制御係数を各蓄電システムに送信する。個別制御係数は、電力系統の周波数偏差と、周波数偏差に応じた各蓄電システムの充放電指令値との関係を示す。蓄電システム制御装置は、中央給電指令所システムから制御係数を受信する都度、個別制御係数を算出し、各蓄電システムに送信することができる。
蓄電システム制御装置により制御される蓄電システムは、一般家庭で利用される家庭用蓄電システムであってもよいし、ヒートポンプ給湯器など電気を熱の形で蓄電(蓄エネ)するシステムであってもよい。また、企業等で利用される中型蓄電システムであってもよいし、変電所等に置かれる大型蓄電システムであってもよいし、フライホイール、超電導電力貯蔵装置、電気自動車など、その他の蓄電システムであってもよいし、これらが混在してもよい。
蓄電システムは、電力系統の周波数を測定し、所定周期で繰り返し電力系統の周波数偏差を算出する。そして、蓄電システムは、算出した周波数偏差と、蓄電システム制御装置から受信した個別制御係数とに基づき充放電指令値[W]を算出し、算出した充放電指令値で充放電するように蓄電池を制御する。
中央給電指令所システム、蓄電システム制御装置及び蓄電システム各々が実行する主たる処理をまとめると、以下の通りである。なお、以下で説明する第2乃至第6の実施形態は、少なくとも1つの処理を実行する主体が第1の実施形態と異なるバリエーションである。
中央給電指令所システム(処理装置100):需要情報を取得(例えば監視制御下の全発電所の総出力を元に算出することで取得)、需要情報と予め与えられた系統定数に基づき制御係数を算出、制御係数を蓄電システム制御装置に送信
蓄電池システム制御装置200:制御係数に基づき個別制御係数を算出、個別制御係数を蓄電システムに送信
蓄電システム300:周波数偏差を算出、周波数偏差と個別制御係数とに基づき充放電指令値を算出、蓄電池の充放電動作を制御
「中央給電指令所システムの構成」
次に、中央給電指令所システムの構成を詳細に説明する。中央給電指令所システムは、処理装置100を有する。処理装置100は、電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する。図2に、処理装置100の機能ブロック図の一例を示す。図示するように、処理装置100は、電力需要取得部101と、制御係数算出部102と、蓄電システム向け第1の送信部103とを有する。図29の機能ブロック図に示すように、制御係数算出部102は状態情報取得部1020を有することができる。
なお、処理装置100が備える各機能部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
図3は、処理装置100のハードウエア構成を例示するブロック図である。図3に示すように、処理装置100は、プロセッサ1A、メモリ2A、入出力インターフェイス3A、周辺回路4A、バス5Aを有する。周辺回路4Aには、様々なモジュールが含まれる。なお、周辺回路4Aを有さなくてもよい。
バス5Aは、プロセッサ1A、メモリ2A、周辺回路4A及び入出力インターフェイス3Aが相互にデータを送受信するためのデータ伝送路である。プロセッサ1Aは、例えばCPU(Central Processing Unit)やGPU(Graphics Processing Unit)などの演算処理装置である。メモリ2Aは、例えばRAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。入出力インターフェイス3Aは、入力装置(例:キーボード、マウス、マイク等)、外部装置、外部サーバ、外部センサー等から情報を取得するためのインターフェイスや、出力装置(例:ディスプレイ、スピーカ、プリンター、メーラ等)、外部装置、外部サーバ等に情報を出力するためのインターフェイスなどを含む。プロセッサ1Aは、各モジュールに指令を出し、それらの演算結果をもとに演算を行うことができる。
図2に戻り、各機能部の機能構成を説明する。電力需要取得部101は、現在の電力需要[W]を示す需要情報を取得する。例えば、中央給電指令所システムが監視制御する全発電所の総出力を元に算出する。本実施形態の電力需要取得部101は、監視制御対象の電力系統の電力需要を示す需要情報を取得する。
現在では、複数の一般送配電事業者各々が中央給電指令所システムを備え、各々の電力系統を監視制御している。「監視制御対象の電力系統」とは、自システム(中央給電指令所)が監視制御する電力系統を意味する。但し、FFC(Flat Frequency Control)でのLFCを実施する場合、自系統と連系する他系統に対しても、その周波数の品質に責任を持つという意味で、部分的に「監視制御対象の電力系統」といえる。この場合、電力需要取得部101は、自系統だけでなく、他系統の電力需要を示す需要情報をも取得してもよい。
電力需要取得部101は、監視制御対象の電力系統に電力を供給する電力供給装置(発電装置、系統用蓄電池等)各々の出力電力[W]を、各電力供給装置を制御する制御装置からリアルタイム処理で受信する。そして、電力需要取得部101は、各電力供給装置の出力電力の和を、現在の電力需要として算出する。
制御係数算出部102は、予め定められた系統定数と、電力需要取得部101により取得された需要情報で示される現在の電力需要とに基づき、制御係数を算出する。系統定数は、例えば発電特性や負荷特性に応じた定数と同期発電機構成や電力需要などに基づき予め定められる。系統定数は、電力系統毎に異なるが、算出にあたっては連系線で連系する電力系統全体を考慮して定められる。制御係数は、電力系統の周波数偏差と、周波数偏差に応じた複数の蓄電システム300全体での充放電指令値との関係を示す。本実施形態の制御係数算出部102は、系統定数と現在の電力需要との積を、制御係数として算出する。但し、制御係数の算出にあたっては、単なる積ではなく、周波数に責任を持つ監視制御範囲に基づき用いる電力需要の収集範囲を拡大や縮小したり、監視制御している複数の蓄電システム300全体での周波数制御用の充放電上限出力や出力変化速度等に基づき定数倍や増減するなどして決定する。更に、蓄電システム300全体が、あるまとまった個数の蓄電システム300単位で、複数の蓄電システム制御装置200により分担して監視制御されている場合には、蓄電システム制御装置200が各々監視制御下においている蓄電システム300全体での周波数制御用の充放電上限出力や出力変化速度等に基づき、各蓄電システム制御装置200毎に制御係数を算出してもよい。
制御係数算出部102は、定期的に、又は、不定期に、繰り返し制御係数を算出する。
例えば、制御係数算出部102は、需要情報で示される現在の電力需要と基準値とを定期的に(例:数分ごとに)比較してもよい。そして、現在の電力需要と基準値との差が基準値以上になると、それに応じて制御係数を新たに算出してもよい。この場合、現在の電力需要と基準値との差が基準値以上になると、基準値を変更してもよい。例えば、その時の現在の電力需要を新たな基準値にしてもよいし、その時の現在の電力需要とその時の基準値との平均値を新たな基準値にしてもよいし、その他の手法で新たな基準値を決定してもよい。
このようにすれば、電力需要の変動が大きい時間帯には制御係数を繰り返し算出する時間間隔を短くし(例:数分から十数分)、電力需要の変動が小さい時間帯には制御係数を繰り返し算出する時間間隔を長くする(例:十数分から数十分)ことができる。すなわち、状況に応じた適切な周期で、制御係数を繰り返し算出することができる。
他の例として、時間帯毎に制御係数を繰り返し算出する時間間隔が定められていてもよい。制御係数算出部102は、時間帯毎に定められた時間間隔で定期的に繰り返し制御係数を算出してもよい。例えば、電力需要の変動が比較的大きい第1の時間帯は時間t1(例:数分から十数分)毎に制御係数を繰り返し算出し、電力需要の変動が比較的小さい第2の時間帯は時間t2(例:十数分から数十分)毎に制御係数を繰り返し算出してもよい(t1≠t2)。なお、分割する時間帯の数は2つに限定されない。各時間帯において制御係数を繰り返し算出する時間間隔は、電力需要の過去の実績(季節・月、時間帯を考慮)や電力需要予測等に基づき決定することができる。この例においても、状況に応じた適切な周期で、制御係数を繰り返し算出することができる。またリアルタイムに現在の電力需要を示す需要情報を収集できない場合でも、過去の実績をもとに推定・予測した電力需要値を用いることで、系統定数に基づいて制御係数を繰り返し算出することができる。
他の例として、制御係数算出部102は、予め定められた1つの時間間隔(例:数分から数十分、定周期更新)で定期的に繰り返し制御係数を算出してもよい。この例の場合、状況に応じて時間間隔を変動させることはできないが、電力需要の監視や時間帯の監視が不要になるので、制御係数算出部102の処理負担を軽減できる。
蓄電システム向け第1の送信部103は、制御係数算出部102により算出された制御係数を、複数の蓄電システム300を制御する蓄電システム制御装置200に送信する。蓄電システム向け第1の送信部103は、制御係数算出部102により繰り返し算出される制御係数を、算出される都度(制御係数の算出と同じ周期で)、蓄電システム制御装置200に送信することができる。蓄電システム制御装置200が複数ある場合は、複数の蓄電システム制御装置200に共通の制御係数を送信することもできるが、各蓄電システム制御装置200が監視制御下に置く複数の蓄電システム300全体で担当できる周波数制御用の充放電出力上限値等が異なる場合などは、蓄電システム制御装置200毎に、個別の制御係数を送信することもできる。
なお、蓄電システム向け第1の送信部103は、充放電指令値を算出するために利用されるその他のパラメータの値を、蓄電システム制御装置200に送信してもよい。その他のパラメータは、ローパスフィルタの時定数、ハイパスフィルタの時定数、周波数などの不感帯の設定範囲、PI(Proportional-Integral)制御のためのPゲイン及びIゲイン、複数の蓄電システム300全体又は各単体に分担させる充放電電力の上限[W]、及び、蓄電システム300全体又は各単体の単位時間当たりの充放電電力の変化量の上限を示す上限レート[W/分]等が挙げられる。なお、この“その他のパラメータ”は、制御係数の中に含んでも良い。
図29に示す状態情報取得部1020が複数の蓄電システム300全体での調整能力を示す調整力情報を取得する。調整能力は、例えば、需給調整市場や送配電事業者などとの契約等で決定した周波数制御用の充放電電力上限値や、負荷周波数制御のための上限放電電力[W]、上限充電電力[W]、単位時間当たりの充放電変化速度[W/分]などである。制御係数算出部102は、調整力情報で示される複数の蓄電システム300全体での調整能力に基づき、制御係数や、その他のパラメータの値を決定することができる(その他のパラメータの値の決定手法は設計的事項)。
状態情報取得部1020は、個々の蓄電システム300から蓄電システム300各々の調整能力を示す調整力情報を受信してもよいし、蓄電システム制御装置200から、蓄電システム制御装置200が監視制御下におく複数の蓄電システム300全体の調整能力を示す調整力情報を受信してもよい。
なお、状態情報取得部1020は、蓄電システム制御装置200から、複数の蓄電システム300全体での調整能力を示す調整力情報(負荷周波数制御のための上限放電電力[W]や上限充電電力[W]などで表される調整能力の大きさを把握できる情報。上限放電電力と上限充電電力とを個別に含んでも良いし、上限放電電力と上限充電電力の和を含んでも良い)を所定周期(数秒毎や数分毎など、蓄電システム制御装置200が蓄電システム300の情報を収集、若しくは予測・推定できる頻度に応じた適切な周期が用いられる。所定周期は不定周期でもよい)で繰り返し受信してもよい。そして、制御係数算出部102は、その他のパラメータの少なくとも一部の値を所定周期で繰り返し決定し、蓄電システム制御装置200に送信してもよい。なお、この“その他のパラメータ”は、制御係数の中に含んでも良い。
蓄電システム向け第1の送信部103は、複数のその他のパラメータの値を同じタイミングで送信してもよいし、異なるタイミングで送信してもよい。例えば、蓄電システム向け第1の送信部103は、あるパラメータの値を制御係数と同じタイミングで繰り返し送信してもよい。その他、蓄電システム向け第1の送信部103は、あるパラメータの値を、制御係数と異なるタイミングで異なる周期で送信してもよい。
次に、図4のフローチャートを用いて、処理装置100が制御係数を算出し、蓄電システム制御装置200に送信する処理の流れの一例を説明する。
S10では、制御係数算出部102は、制御係数を新たに算出するタイミングの到来を監視する。
例えば、制御係数算出部102は、需要情報で示される現在の電力需要と基準値との差が基準値以上になると、制御係数を新たに算出するタイミングと判断する。他の例として、制御係数算出部102は、前回の制御係数算出からの経過時間が定められた時間に達すると、制御係数を新たに算出するタイミングと判断してもよい。他の例として、制御係数算出部102は、現在の時刻が定められた時刻になると、制御係数を新たに算出するタイミングと判断してもよい。
制御係数を新たに算出するタイミングと判断すると(S10のYes)、制御係数算出部102は、予め定められた系統定数と、現在の電力需要とに基づき、新たな制御係数を算出する(S11)。そして、蓄電システム向け第1の送信部103は、S11で算出された制御係数を、蓄電システム制御装置200に送信する(S12)。以降、同様の処理を繰り返す。
「蓄電システム制御装置200の構成」
次に、蓄電システム制御装置200の構成を詳細に説明する。図5に、蓄電システム制御装置200の機能ブロック図の一例を示す。図示するように、蓄電システム制御装置200は、受信部201と、個別制御係数算出部202と、送信部203とを有する。
なお、蓄電システム制御装置200が備える機能部は、任意のコンピュータのCPU、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。蓄電システム制御装置200のハードウエア構成の一例は、処理装置100と同様、図3で示される。
図5に戻り、各機能部の機能構成を説明する。受信部201は、処理装置100から送信された制御係数を受信する。受信部201は、さらに、処理装置100からその他のパラメータの値を受信してもよい。その他のパラメータは、ローパスフィルタの時定数、ハイパスフィルタの時定数、不感帯の設定範囲、PI制御のためのPゲイン及びIゲイン、複数の蓄電システム300全体又は各単体に分担させる充放電電力の上限[W]、及び、蓄電システム300全体又は各単体の単位時間当たりの充放電電力の変化量の上限を示す上限レート[W/分]等が挙げられる。
個別制御係数算出部202は、受信部201が受信した制御係数に基づき、蓄電システム300ごとに個別制御係数を算出する。個別制御係数は、電力系統の周波数偏差と、周波数偏差に応じた各蓄電システム300での充放電指令値[W]との関係を示す。
例えば、α=α×(X/X)の式で個別制御係数を算出してもよい。αは第nの蓄電システム300の個別制御係数(nは1以上の整数)、αは制御係数、Xは第nの蓄電システム300の調整能力(負荷周波数制御のための上限放電電力[W]又は上限充電電力[W])、Xは蓄電システム制御装置200が監視制御下におく複数の蓄電システム300全体での調整能力(負荷周波数制御のための上限放電電力[W]又は上限充電電力[W])を示す。上限放電電力の絶対値と上限充電電力の絶対値は、同じでも良いし、同じでなくても良い。状況に応じて、放電側の制御係数αや個別制御係数αと、充電側の制御係数αや個別制御係数αの値が変わる。即ち、制御係数は、周波数偏差の軸と充放電出力の軸で表現する関数で表される。
は、予め蓄電システム制御装置200に登録されていてもよい。その他、蓄電システム制御装置200は、各蓄電システム300から収集する所定の情報(周波数制御に利用可能な充放電出力の上限値X’など)をもとに所定周期で繰り返し、Xを算出しても良いし、各蓄電システム300からXを受信してもよい。
送信部203は、個別制御係数算出部202により算出された個別制御係数を蓄電システム300各々に送信する。
蓄電システム制御装置200は、処理装置100から制御係数を受信すると、それに応じて個別制御係数を算出し、蓄電システム300に送信することができる。すなわち、蓄電システム制御装置200は、制御係数の受信と同じ周期で、個別制御係数の算出及び送信を行うことができる。なお、蓄電システム制御装置200は、制御係数の受信と異なる周期で、個別制御係数の算出及び送信を行ってもよい。
ところで、受信部201がその他のパラメータの値を処理装置100から受信した場合、送信部203は、その他のパラメータの値の少なくとも一部の値を蓄電システム300に送信する。送信するその他のパラメータは、ローパスフィルタの時定数、ハイパスフィルタの時定数、不感帯の設定範囲、PI制御のためのPゲイン及びIゲイン、各蓄電システム300に分担させる負荷周波数制御のための充放電電力の上限、及び、各蓄電システム300の単位時間当たりの充放電電力の変化量の上限を示す上限レート等が挙げられる。各蓄電システム300に分担させる負荷周波数制御のための充放電電力の上限Xは、複数の蓄電システム300全体での調整能力Xと、各蓄電システムの上限の充放電電力X’から算出される。例えば、蓄電システム制御装置200は、各蓄電システム300に分担させる調整能力X(≦X’)をX=ΣXを満たすように算出することができる。
また、受信部201がその他のパラメータの値を処理装置100から受信しない場合、個別制御係数算出部202が、その他のパラメータを算出し、送信部203が、その他のパラメータの値を蓄電システム300に送信してもよい。この場合、パラメータ算出のポリシーやルールが中央給電指令所等から示されていること等が想定される。送信するその他のパラメータは、ローパスフィルタの時定数、ハイパスフィルタの時定数、不感帯の設定範囲、PI制御のためのPゲイン及びIゲイン、各蓄電システム300に分担させる充放電電力の上限、及び、各蓄電システム300の単位時間当たりの充放電電力の変化量の上限を示す上限レート等が挙げられる。
次に、図6のフローチャートを用いて、蓄電システム制御装置200が個別制御係数を算出し、蓄電システム300に送信する処理の流れの一例を説明する。
受信部201により新たな制御係数が受信されると(S20のYes)、個別制御係数算出部202は、受信された制御係数に基づき、各蓄電システム300の個別制御係数を算出する(S21)。そして、送信部203は、S21で算出された個別制御係数を、各蓄電システム300に送信する(S22)。以降、同様の処理を繰り返す。
「蓄電システム300の構成」
次に、蓄電システム300の構成を詳細に説明する。図7に、蓄電システム300の機能ブロック図の一例を示す。図示するように、蓄電システム300は、受信部301と、周波数偏差算出部302と、指令値決定部303と、蓄電池制御部304とを有する。
なお、蓄電システム300が備える機能部は、任意のコンピュータのCPU、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
図8に、蓄電システム300のハードウエア構成の一例を示す。図示するように、蓄電システム300は、GW(ゲートウエイ)と、EMS(Energy Management System)端末と、PCS(Power Conditioning System)/蓄電池を有する。また蓄電システム300は、周波数測定部、を有している。図8では、PCSが保有する例を示しているが、周波数測定部はPCS外にあってもよい。これらは互いに有線及び/又は無線で通信可能に構成されている。EMS端末のハードウエア構成の一例は、処理装置100と同様、図3で示される。
図7に戻り、各機能部の機能構成を説明する。受信部301は、個別制御係数を蓄電システム制御装置200から受信する。なお、受信部301は、その他のパラメータの値を蓄電システム制御装置200から受信してもよい。その他のパラメータは、ローパスフィルタの時定数、ハイパスフィルタの時定数、不感帯の設定範囲、PI制御のためのPゲイン及びIゲイン、各蓄電システム300に分担させる充放電電力の上限、及び、単位時間当たりの充放電電力の変化量の上限を示す上限レート等が挙げられる。
周波数偏差算出部302は、電力系統の周波数を測定し、測定結果に基づき周波数偏差を算出する。周波数偏差算出部302は、所定周期で繰り返し周波数偏差を算出する。ここでの所定周期は、例えば、系統周波数の1サイクル毎の17msecや20msec、その他、1秒毎などが例示される。周期が短い程リアルタイム性が増し、現在の電力系統の需給状態に応じた応答をさせることができるが、周波数偏差の計測誤差が大きくなる懸念がある。一方、計測誤差を低減するために複数の周波数偏差計測値を用いた平均化処理等を行うため算出周期が1秒~数秒程度毎等にすると、リアルタイム性を若干損なうことになる。所定周期は、要求性能等に応じて適宜選択できる。周波数偏差算出部302は、例えばPCSにより実現される。
指令値決定部303は、個別制御係数と、周波数偏差とに基づき、所定周期で、自蓄電システム300の充放電指令値を決定する。指令値決定部303は、例えば、個別制御係数と周波数偏差との積を、充放電指令値として決定することができる。指令値決定部303は、EMS端末又はPCSにより実現してもよい。
なお、指令値決定部303は、受信部301が受信したその他のパラメータの値をさらに利用して、自蓄電システム300の充放電指令値を決定してもよい。その他のパラメータは、ローパスフィルタの時定数、ハイパスフィルタの時定数、不感帯の設定範囲、PI制御のためのPゲイン及びIゲイン、各蓄電システム300に分担させる充放電電力の上限、及び、単位時間当たりの充放電電力の変化量の上限を示す上限レート等が挙げられる。
図9を用いて、その他のパラメータの値を利用して充放電指令値を決定する処理の一例を説明する。図示する例では、周波数偏差Δf算出ブロック、ローパスフィルタブロック、不感帯/制御係数ブロック、PI制御ゲインブロック、ハイパスフィルタブロック、分担上限ブロック及びレートリミッタブロックの順に各ブロックからの出力値が入力され、最終的に充放電指令として出力される。
周波数偏差Δf算出ブロックでは、電力系統の周波数偏差が算出され、出力される。当該ブロックは周波数偏差算出部302により実現される。以降のブロックは、指令値決定部303により実現される。
ローパスフィルタブロックでは、遮断周期十数秒程度以下の短周期成分が除去され、出力される。不感帯/制御係数ブロックでは、入力された周波数偏差が不感帯(例えば±0.02Hz)の設定範囲内か否かが判断される。不感帯の設定範囲外である場合、入力された周波数偏差の値に応じて、当該部の個別制御係数αnとの積が算出され、出力される。一方、不感帯の設定範囲内である場合、「0」が出力される。PI制御ゲインブロックでは、Pゲイン及びIゲインに基づきPI制御処理がなされる。ハイパスフィルタブロックでは、入力された値から遮断周期十数分程度以上の長周期成分が除去され、出力される。
分担上限ブロックでは、入力された値と蓄電システム300に分担させる充放電電力の上限との比較がなされる。入力された値が蓄電システム300に分担させる充放電電力の上限を超える場合は、蓄電システム300に分担させる充放電電力の上限が出力される。入力された値が蓄電システム300に分担させる充放電電力の上限を超えない場合は、入力された値が出力される。
レートリミッタブロックでは、以前に出力された充放電指令値と入力された値とに基づき値の変化率(変化速度)が算出され、上限レートとの比較がなされる。算出された変化率が上限レートを超える場合は、変化率が上限レート以下となる(例:上限レートとなる)値を算出し、充放電指令値として出力する。算出された変化率が上限レートを超えない場合は、入力された値を充放電指令値として出力する。
図7に戻り、蓄電池制御部304は、指令値決定部303により決定された充放電指令値に基づき、蓄電池の充放電を実施する。すなわち、蓄電池制御部304は、充放電指令値通りに充放電するように、蓄電池の充放電を制御する。蓄電池制御部304は、PCSにより実現される。
次に、図10のフローチャートを用いて、蓄電システム300が充放電指令値を算出し、蓄電池の充放電を制御する処理の流れの一例を説明する。
S30では、周波数偏差算出部302は、周波数偏差を新たに算出するタイミングの到来を監視する。例えば、周波数偏差算出部302は、前回の周波数偏差算出からの経過時間が定められた時間(数十ミリ秒や、数秒など)に達すると、周波数偏差を新たに算出するタイミングと判断してもよい。
周波数偏差を新たに算出するタイミングと判断すると(S30のYes)、周波数偏差算出部302は、周波数偏差を算出する(S31)。そして、指令値決定部303は、周波数偏差と個別制御係数とに基づき、充放電指令値を決定する(S32)。なお、指令値決定部303は、その他のパラメータをさらに利用して、充放電指令値を決定してもよい。
その後、蓄電池制御部304は、決定された充放電指令値に基づき、蓄電池の充放電を制御する(S33)。なお、蓄電池制御部304は、次の充放電指令値が決定されるまで、当該充放電指令値に基づいた蓄電池の充放電の制御を継続してもよい。以降、同様の処理を繰り返す。
なお、周波数偏差算出部302が周波数偏差を算出し、指令値決定部303が充放電指令値を算出する時間間隔は、受信部301が個別制御係数やその他のパラメータの値を蓄電システム制御装置200から受信する時間間隔よりも短い。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、出力応動遅れが比較的小さい蓄電池(及び蓄電池全体)を、電力系統の負荷周波数制御に利用することができる。また、その時々の電力系統の需給状態と電力系統全体の制御を考慮した系統定数とを用いて算出された最適な制御係数やその他のパラメータを用いて、蓄電池の制御内容を決定することができる。このため、短周期の周波数変動に対しても良好な負荷周波数制御の効果が得られる。
また、本実施形態の電力制御システムでは、系統定数と、その時々の総電力需要とに基づき算出される最適な個別制御係数と、自システムで算出した周波数偏差と、に基づき充放電指令値を算出することができる。このような本実施形態の電力制御システムは、個別制御係数(分担係数)を、各蓄電池のSOC(state of charge)状態や蓄電池(や蓄電池群全体)が分担する電力を考慮して算出する特許文献2及び3に開示の方法で決定する場合に比べて、電力系統全体の制御状況(需要情報や、他の電力系統との連系情報、及び連系状態と関連する系統定数など)を個別蓄電池制御に反映させることができる。このため、より負荷周波数制御の効果を高めることができる。
また、蓄電システム300が周波数偏差を算出し、充放電指令値を算出する本実施形態の場合、中央給電指令所システムが周波数偏差に基づき各蓄電システム300の充放電指令値を算出し、各蓄電システム300に送信する場合に比べて、蓄電システム300への情報送信の頻度を抑制することができる。結果、通信負担を軽減できる。
<第2の実施形態>
「電力制御システムの全体像及び概要」
本実施形態の電力制御システムでは、中央給電指令所システム、蓄電システム制御装置及び蓄電システム各々が実行する処理が以下の通りである。
中央給電指令所システム(処理装置100):需要情報を取得(例えば監視制御下の全発電所の総出力を元に算出することで取得)、需要情報と予め与えられた系統定数に基づき制御係数を算出、制御係数に基づき個別制御係数を算出、個別制御係数を蓄電システム制御装置に送信
蓄電池システム制御装置200:個別制御係数を蓄電システムに送信
蓄電システム300:周波数偏差を算出、周波数偏差と個別制御係数とに基づき充放電指令値を算出、蓄電池の充放電動作を制御
本実施形態の電力制御システムは、個別制御係数を算出する主体が中央給電指令所システム(処理装置100)になる点で、第1の実施形態と異なる。その他の構成は、第1の実施形態と同様である。
「中央給電指令所システムの構成」
中央給電指令所システムは、処理装置100を有する。図11に、処理装置100の機能ブロック図の一例を示す。図示するように、処理装置100は、電力需要取得部101と、制御係数算出部102と、個別制御係数算出部104と、蓄電システム向け第2の送信部105とを有する。処理装置100のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。なお、電力需要取得部101及び制御係数算出部102の構成は、第1の実施形態と同様であるので、ここでの説明は省略する。
個別制御係数算出部104は、制御係数算出部102が算出した制御係数に基づき、蓄電システム300ごとに個別制御係数を算出する。個別制御係数算出部104は、第1の実施形態で説明した個別制御係数算出部202と同様な手法で、各蓄電システム300の個別制御係数を算出することができる。なお、処理装置100は、蓄電システム制御装置200から、個別制御係数を算出するためのパラメータの値(X、X等)を受信することができる。処理装置100は、所定周期で繰り返し、個別制御係数を算出するためのパラメータの値(X、X等)を受信してもよい。
蓄電システム向け第2の送信部105は、個別制御係数算出部104により算出された蓄電システム300各々の個別制御係数を、蓄電システム制御装置200に送信する。
個別制御係数算出部104は、制御係数算出部102により制御係数が算出される都度(制御係数の算出と同じ周期で)、個別制御係数を算出することができる。そして、蓄電システム向け第2の送信部105は、個別制御係数算出部104により個別制御係数が算出される都度(個別制御係数の算出と同じ周期で)、個別制御係数を蓄電システム制御装置200に送信することができる。
次に、図12のフローチャートを用いて、処理装置100が制御係数及び個別制御係数を算出し、蓄電システム制御装置200に送信する処理の流れの一例を説明する。
S40では、制御係数算出部102は、制御係数を新たに算出するタイミングの到来を監視する。
例えば、制御係数算出部102は、需要情報で示される現在の電力需要と基準値との差が基準値以上になると、制御係数を新たに算出するタイミングと判断する。他の例として、制御係数算出部102は、前回の制御係数算出からの経過時間が定められた時間(例えば30分や1時間など)に達すると、制御係数を新たに算出するタイミングと判断してもよい。
制御係数を新たに算出するタイミングと判断すると(S40のYes)、制御係数算出部102は、予め定められた系統定数と、現在の電力需要とに基づき、新たな制御係数を算出する(S41)。その後、個別制御係数算出部104は、新たに算出された制御係数に基づき、蓄電システム300ごとに個別制御係数を算出する(S42)。
そして、蓄電システム向け第2の送信部105は、S42で算出された蓄電システム300各々の個別制御係数を、蓄電システム制御装置200に送信する(S43)。以降、同様の処理を繰り返す。
「蓄電システム制御装置200の構成」
図13に、蓄電システム制御装置200の機能ブロック図の一例を示す。図示するように、蓄電システム制御装置200は、受信部201と、送信部203とを有する。蓄電システム制御装置200のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。受信部201は、処理装置100から各蓄電システム300の個別制御係数を受信する。送信部203は、各蓄電システム300に、受信部201が受信した各蓄電システム300の個別制御係数を送信する。蓄電システム制御装置200は、処理装置100から個別制御係数を受信する都度(個別制御係数の受信と同じ周期で)、個別制御係数を蓄電システム300に送信することができる。
「蓄電システム300の構成」
蓄電システム300の構成は、第1の実施形態と同様である。
「変形例」
中央給電指令所システム(処理装置100)は、蓄電システム制御装置200を介さず、個別制御係数を直接各蓄電システム300に送信してもよい。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1の実施形態と同様な作用効果を実現できる。
<第3の実施形態>
「電力制御システムの全体像及び概要」
本実施形態の電力制御システムでは、中央給電指令所システム、蓄電システム制御装置及び蓄電システム各々が実行する処理が以下の通りである。
中央給電指令所システム(処理装置100):需要情報を取得(例えば監視制御下の全発電所の総出力を元に算出することで取得)、需要情報と予め与えられた系統定数に基づき制御係数を算出、制御係数を蓄電システム制御装置に送信
蓄電池システム制御装置200:制御係数を蓄電システムに送信
蓄電システム300:周波数偏差を算出、制御係数に基づき個別制御係数を算出、周波数偏差と個別制御係数とに基づき充放電指令値を算出、蓄電池の動作を制御
本実施形態の電力制御システムは、個別制御係数を算出する主体が蓄電システム300になる点で、第1の実施形態と異なる。その他の構成は、第1の実施形態と同様である。
「中央給電指令所システムの構成」
中央給電指令所システムは、処理装置100を有する。処理装置100の構成は、第1の実施形態と同様である。
「蓄電システム制御装置200の構成」
図13に、蓄電システム制御装置200の機能ブロック図の一例を示す。図示するように、蓄電システム制御装置200は、受信部201と、送信部203とを有する。蓄電システム制御装置200のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。受信部201は、処理装置100から制御係数を受信する。送信部203は、各蓄電システム300に、受信部201が受信した制御係数を送信する。蓄電システム制御装置200は、処理装置100から制御係数を受信する都度、制御係数を蓄電システム300に送信することができる。
「蓄電システム300の構成」
図14に、蓄電システム300の機能ブロック図の一例を示す。図示するように、蓄電システム300は、受信部301と、周波数偏差算出部302と、指令値決定部303と、蓄電池制御部304と、個別制御係数算出部305とを有する。蓄電システム300のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。なお、周波数偏差算出部302、指令値決定部303及び蓄電池制御部304の機能構成は、第1の実施形態と同様であるので、ここでの説明は省略する。
受信部301は、蓄電システム制御装置200から制御係数を受信する。
個別制御係数算出部305は、制受信部301が受信した制御係数に基づき、自蓄電システム300の個別制御係数を算出する。個別制御係数算出部305は、第1の実施形態で説明した個別制御係数算出部202と同様な手法で、各蓄電システム300の個別制御係数を算出することができる。なお、蓄電システム300は、蓄電システム制御装置200から、個別制御係数を算出するためのパラメータの値(X等)を受信することができる。蓄電システム300は、所定周期で繰り返し、個別制御係数を算出するためのパラメータの値(X等)を受信してもよい。
「変形例」
中央給電指令所システム(処理装置100)は、蓄電システム制御装置200を介さず、制御係数を直接各蓄電システム300に送信してもよい。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1の実施形態と同様な作用効果を実現できる。
<第4の実施形態>
「電力制御システムの全体像及び概要」
本実施形態の電力制御システムでは、中央給電指令所システム、蓄電システム制御装置及び蓄電システム各々が実行する処理が以下の通りである。
中央給電指令所システム(処理装置100):需要情報を取得(例えば監視制御下の全発電所の総出力を元に算出することで取得)、需要情報を蓄電システム制御装置に送信
蓄電池システム制御装置200:需要情報と予め与えられた系統定数に基づき制御係数を算出、制御係数に基づき個別制御係数を算出、個別制御係数を蓄電システムに送信
蓄電システム300:周波数偏差を算出、周波数偏差と個別制御係数とに基づき充放電指令値を算出、蓄電池の動作を制御
本実施形態の電力制御システムは、制御係数を算出する主体が蓄電システム制御装置200になる点で、第1の実施形態と異なる。その他の構成は、第1の実施形態と同様である。
「中央給電指令所システムの構成」
中央給電指令所システムは、処理装置100を有する。図15に、処理装置100の機能ブロック図の一例を示す。図示するように、処理装置100は、電力需要取得部101と、蓄電システム向け第4の送信部111とを有する。処理装置100のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。なお、電力需要取得部101の機能構成は、第1の実施形態と同様であるので、ここでの説明は省略する。
蓄電システム向け第4の送信部111は、電力需要取得部101により取得された現在の電力需要を示す需要情報を、蓄電システム制御装置200に送信する。蓄電システム向け第4の送信部111は、電力需要取得部101により取得される都度(需要情報の取得と同じ周期で)、需要情報を蓄電システム制御装置200に送信することができる。
「蓄電システム制御装置200の構成」
図16に、蓄電システム制御装置200の機能ブロック図の一例を示す。図示するように、蓄電システム制御装置200は、受信部201と、個別制御係数算出部202と、送信部203と、制御係数算出部204とを有する。蓄電システム制御装置200のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。なお、個別制御係数算出部202及び送信部203の機能構成は第1の実施形態と同様であるので、ここでの説明は省略する。
受信部201は、処理装置100より需要情報を受信する。制御係数算出部204は、第1の実施形態で説明した制御係数算出部102と同様な手法で、制御係数を算出することができる。蓄電システム制御装置200は、処理装置100から系統定数を受信してもよい。その他、オペレータが蓄電システム制御装置200に系統定数を入力してもよい。
個別制御係数算出部202は、制御係数算出部204により制御係数を算出される都度(制御係数の算出と同じ周期で)、個別制御係数を算出することができる。そして、送信部203は、個別制御係数算出部202により個別制御係数を算出される都度(個別制御係数の算出と同じ周期で)、算出された個別制御係数を蓄電システム300に送信することができる。
「蓄電システム300の構成」
蓄電システム300の構成は、第1の実施形態と同様である。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1の実施形態と同様な作用効果を実現できる。
<第5の実施形態>
「電力制御システムの全体像及び概要」
本実施形態の電力制御システムでは、中央給電指令所システム、蓄電システム制御装置及び蓄電システム各々が実行する処理が以下の通りである。
中央給電指令所システム(処理装置100):需要情報を取得(例えば監視制御下の全発電所の総出力を元に算出することで取得)、需要情報を蓄電システム制御装置に送信
蓄電池システム制御装置200:需要情報と予め与えられた系統定数に基づき制御係数を算出、制御係数を蓄電システムに送信
蓄電システム300:周波数偏差を算出、制御係数に基づき個別制御係数を算出、周波数偏差と個別制御係数とに基づき充放電指令値を算出、蓄電池の動作を制御
本実施形態の電力制御システムは、制御係数を算出する主体が蓄電システム制御装置200になり、個別制御係数を算出する主体が蓄電システム300になる点で、第1の実施形態と異なる。その他の構成は、第1の実施形態と同様である。
「中央給電指令所システムの構成」
中央給電指令所システムは、処理装置100を有する。処理装置100の構成は、第4の実施形態と同様である。
「蓄電システム制御装置200の構成」
図17に、蓄電システム制御装置200の機能ブロック図の一例を示す。図示するように、蓄電システム制御装置200は、受信部201と、送信部203と、制御係数算出部204とを有する。蓄電システム制御装置200のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。受信部201は、処理装置100より需要情報を受信する。制御係数算出部204の機能構成は、第4の実施形態と同様である。送信部203は、制御係数算出部204により算出された制御係数を蓄電システム300に送信する。送信部203は、制御係数算出部204により制御係数を算出される都度(制御係数の算出と同じ周期で)、制御係数を蓄電システム300に送信することができる。
「蓄電システム300の構成」
蓄電システム300の構成は、第3の実施形態と同様である。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1の実施形態と同様な作用効果を実現できる。
<第6の実施形態>
「電力制御システムの全体像及び概要」
本実施形態の電力制御システムでは、中央給電指令所システム、蓄電システム制御装置及び蓄電システム各々が実行する処理が以下の通りである。
中央給電指令所システム(処理装置100):需要情報を取得(例えば監視制御下の全発電所の総出力を元に算出することで取得)、需要情報を蓄電システム制御装置に送信
蓄電池システム制御装置200:需要情報を蓄電システムに送信
蓄電システム300:周波数偏差を算出、需要情報と予め与えられた系統定数に基づき制御係数を算出、制御係数に基づき個別制御係数を算出、周波数偏差と個別制御係数とに基づき充放電指令値を算出、蓄電池の動作を制御
本実施形態の電力制御システムは、制御係数及び個別制御係数を算出する主体が蓄電システム300になる点で、第1の実施形態と異なる。その他の構成は、第1の実施形態と同様である。
「中央給電指令所システムの構成」
中央給電指令所システムは、処理装置100を有する。処理装置100の構成は、第4及び第5の実施形態と同様である。
「蓄電システム制御装置200の構成」
図13に、蓄電システム制御装置200の機能ブロック図の一例を示す。図示するように、蓄電システム制御装置200は、受信部201と、送信部203とを有する。蓄電システム制御装置200のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。受信部201は、処理装置100から需要情報を受信する。送信部203は、各蓄電システム300に、受信部201が受信した需要情報を送信する。蓄電システム制御装置200は、処理装置100から需要情報を受信する都度(需要情報の受信と同じ周期で)、需要情報を蓄電システム300に送信することができる。
「蓄電システム300の構成」
図18に、蓄電システム300の機能ブロック図の一例を示す。図示するように、蓄電システム300は、受信部301と、周波数偏差算出部302と、指令値決定部303と、蓄電池制御部304と、個別制御係数算出部305と、制御係数算出部306とを有する。蓄電システム300のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。なお、周波数偏差算出部302、指令値決定部303及び蓄電池制御部304の機能構成は、第1の実施形態と同様であるので、ここでの説明は省略する。また、個別制御係数算出部305の機能構成は、第3の実施形態と同様であるので、ここでの説明は省略する。
受信部301は、蓄電システム制御装置200から需要情報を受信する。制御係数算出部306は、第1の実施形態で説明した制御係数算出部102と同様な手法で、制御係数を算出することができる。蓄電システム300は、処理装置100又は蓄電システム制御装置200から系統定数を受信してもよい。その他、オペレータが蓄電システム300に系統定数を入力してもよい。
「変形例」
中央給電指令所システム(処理装置100)は、蓄電システム制御装置200を介さず、需要情報を直接各蓄電システム300に送信してもよい。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1の実施形態と同様な作用効果を実現できる。
<第7の実施形態>
「電力制御システムの全体像及び構成」
本実施形態は、制御係数の算出方法が第1乃至第6の実施形態と異なる。その他の構成は、第1乃至第6の実施形態と同様である。
第1乃至第6の実施形態では、「監視制御対象の電力系統の系統定数」と「監視制御対象の電力系統の現在の電力需要」との積に基づき、制御係数を決定した。本実施形態では、「監視制御対象の電力系統の系統定数」と「監視制御対象の電力系統の現在の電力需要」との積、及び、「監視制御対象の電力系統に連系している1つ又は複数の電力系統各々の系統定数」と「各々の現在の電力需要の積」の各々の和に基づき、制御係数を決定する。
本実施形態の処理装置100の電力需要取得部101は、監視制御対象の電力系統の現在の電力需要を示す需要情報、及び、監視制御対象の電力系統に連系した他の電力系統各々の現在の電力需要を示す需要情報及び系統定数を取得する。電力需要取得部101は、他の電力系統各々の現在の電力需要を示す需要情報を、他の電力系統を監視制御する中央給電指令所システムから受信することができる。なお、監視制御対象の電力系統に連系した他の電力系統各々の系統定数は、適当なタイミングで、他の電力系統を監視制御する中央給電指令所システムのオペレータから系統定数の情報を入手し、中央給電指令所システムのオペレータが手動で入力しても良い。
そして、処理装置100が制御係数を算出する構成(第1乃至第3の実施形態)を前提とする場合、処理装置100は、「監視制御対象の電力系統の系統定数」と「監視制御対象の電力系統の現在の電力需要」との積、及び、「監視制御対象の電力系統に連系している1つ又は複数の電力系統各々の系統定数」と「各々の現在の電力需要の積」の各々の和、を制御係数として算出する。
なお、蓄電システム制御装置200又は蓄電システム300が制御係数を算出する構成(第4乃至第6の実施形態)を前提とする場合、処理装置100により取得された当該需要情報及び系統定数が、蓄電システム制御装置200や蓄電システム300に送信される。そして、蓄電システム制御装置200や蓄電システム300は、「監視制御対象の電力系統の系統定数」と「監視制御対象の電力系統の現在の電力需要」との積、及び、「監視制御対象の電力系統に連系している1つ又は複数の電力系統各々の系統定数」と「各々の現在の電力需要の積」の各々の和、を制御係数として算出する。
但し、制御係数の算出にあたっては、単なる上記和ではなく、周波数に責任を持つ監視制御範囲に基づき用いる電力需要の収集範囲を拡大や縮小したり、監視制御している複数の蓄電システム300全体での周波数制御用の充放電上限出力や出力変化速度等に基づき定数倍や増減するなどして決定する。更に、蓄電システム300全体が、あるまとまった個数の蓄電システム300単位で、複数の蓄電システム制御装置200により分担して監視制御されている場合には、蓄電システム制御装置200が各々監視制御下においている蓄電システム300全体での周波数制御用の充放電上限出力や出力変化速度等に基づき、各蓄電システム制御装置200毎に制御係数を算出してもよい。
処理装置100、蓄電システム制御装置200及び蓄電システム300のその他の構成は、第1乃至第6の実施形態と同様である。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1乃至第6の実施形態と同様な作用効果を実現できる。
<第8の実施形態>
「電力制御システムの全体像及び概要」
本実施形態では、発電機と系統用蓄電池を含む電力供給装置、及び蓄電システム300を互いに異なる手法で制御する点で、第1乃至第7の実施形態と異なる。電力供給装置及び蓄電システム300の制御方法の違いは、以下の通りである。
電力供給装置:中央給電指令所システムが周波数偏差に基づき出力指令値を算出
蓄電システム300:中央給電指令所システムから出力指令値を受信せず、蓄電システムが周波数偏差に基づき充放電指令値を算出
なお、本実施形態では、FFC(Flat Frequency Control)での負荷周波数制御を発電機と系統用蓄電池に適用する。
「中央給電指令所システムの構成」
中央給電指令所システムは、処理装置100を有する。図19に、処理装置100の機能ブロック図の一例を示す。図示するように、処理装置100は、電力需要取得部101と、制御係数算出部102と、蓄電システム向け第1の送信部103と、周波数偏差算出部106と、電力供給装置指令値決定部107と、電力供給装置向け送信部108とを有する。処理装置100のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。なお、電力需要取得部101、制御係数算出部102及び蓄電システム向け第1の送信部103の構成は、第1の実施形態と同様であるので、ここでの説明は省略する。
周波数偏差算出部106は、電力系統の周波数を測定若しくは収集し、測定若しくは収集結果に基づき周波数偏差を算出する。周波数偏差算出部106は、所定周期で繰り返し周波数偏差を算出する。
電力供給装置指令値決定部107は、系統定数と、需要情報で示される電力需要と、周波数偏差との中の少なくとも一つに基づき、電力供給装置全体での出力指令値を決定する。なお、電力供給装置指令値決定部107は、発電機全体での出力指令値、及び、系統用蓄電池全体での出力指令値を個別に決定してもよい。以下の実施例で、演算式の一例を示す。需要情報で示される電力需要は、監視制御対象の電力系統の現在の電力需要、及び、監視制御対象の電力系統に連系している1つ又は複数の電力系統の現在の電力需要を示す。
例えば、電力供給装置指令値決定部107は、蓄電システム300の指令値決定部303による充放電指令値の決定と同様、図9に示す流れで、電力供給装置全体での出力指令値を決定してもよい。図9の各ブロックで用いられる各種値は、電力供給装置用に調整される。なお、発電機全体での出力指令値及び系統用蓄電池全体での出力指令値を個別に決定する場合、図9の各ブロックで用いられる各種値は、発電機用、及び、系統用蓄電池用に調整される。
例えば、発電機用の周波数フィルタは、長周期帯を通過するように設定されてもよい。このようにすれば、長周期帯の周波数変動を調整するための出力指令値が決定される。そして、系統用蓄電池用の周波数フィルタは、中周期帯を通過するように設定されてもよい。このようにすれば、中周期帯の周波数変動を調整するための出力指令値が決定される。そして、蓄電システム300の充放電指令値を決定するために用いられる周波数フィルタは、短周期帯を通過するように設定されてもよい。このようにすれば、短周期帯の周波数変動を調整するための充放電指令値が決定される。
すなわち、出力応動遅れが比較的大きい発電機が長周期帯の周波数変動の調整を担い、出力応動遅れは小さいが充放電指令を通信を介して受ける系統用蓄電池が中周期帯の周波数変動の調整を担い、出力応動遅れが比較的小さく、且つ通信を介した充放電指令を用いない蓄電システム300が短周期帯の周波数変動の調整を担う。これにより最適な周波数制御が可能になり、発電機、系統用蓄電池、及び蓄電システム300が利用する調整能力の和、即ち調整力総量を少なくすることができる。
その他、電力供給装置指令値決定部107は、FFCによる周波数維持責任がある対象電力系統全体の「系統定数」と、対象電力系統の「現在の電力需要」と、「周波数偏差」と、の積として算出される「周波数変動の調整に必要な出力値(地域要求量AR)」から、複数の蓄電システム300の分担分と想定(推定)される値、を差し引いた値を、発電機全体での出力値として決定してもよい。なぜなら、処理装置100は、蓄電システム300の充放電指令値を決定するためのパラメータ(制御係数、その他のパラメータなど)の値や制御モデル(ロジック)を把握できるので、これらの情報と周波数偏差の情報を用いて、複数の蓄電システム300が分担していると想定される値を算出することができる。このように、発電機と系統用蓄電池向けの出力指令値算出において、複数の蓄電システム300の分担分を差し引く処理を行うことで、最適な周波数制御が可能になり、発電機、系統用蓄電池、及び蓄電システム300が利用する調整能力の和、即ち調整力総量を少なくすることができる。
なお、その他のパラメータは、ローパスフィルタの時定数、ハイパスフィルタの時定数、不感帯の設定範囲、PID制御のためのPゲイン、Iゲイン及びDゲイン、複数の蓄電システム300に分担させる充放電電力[W]の上限、及び、単位時間当たりの充放電電力の変化量の上限を示す上限レート等が挙げられる。
なお、発電機や系統用蓄電池向けのARから、複数の蓄電システム300が担うARを差し引く際、各々が担うARスペクトルの分担帯域が異なる場合(例えば、図9のLPF、不感帯、PIゲイン、HPF、の一連の処理で算出されるAR成分は、発電機や系統用蓄電池や蓄電システムなどの制御対象に応じてAR成分のうち適当なバンド内のスペクトル分のみを抽出している)が想定されるため、発電機や系統用蓄電池向けのARから、複数の蓄電システム300が担うARを差し引く処理を行う制御モデル(ロジック)は、通常の制御モデル(ロジック)設計指針等に基づき適宜決定する。
例えば、更に、上述のようにして発電機全体での出力指令値を算出した後、電力供給装置指令値決定部107は、任意の方法で、発電機全体での出力指令値を各発電機に割り振る。例えば、各発電機に均等に割り振ってもよいし、各発電機の発電コストに応じて割り振ってもよいし、各発電機の出力変化速度の大小に応じて按分してもよい。
同様に、上述のようにして系統用蓄電池全体での出力指令値を算出した後、電力供給装置指令値決定部107は、任意の方法で、系統用蓄電池全体での出力指令値を各系統用蓄電池に割り振る。例えば、各系統用蓄電池に均等に割り振ってもよいし、各系統用蓄電池のSOCに応じて割り振ってもよいし、各系統用蓄電池の定格出力[W]の大小や定格容量[Wh]の大小、及び出力変化速度[W/sec]の大小に応じて按分してもよい。
電力供給装置指令値決定部107は、周波数偏差算出部106が周波数偏差を算出する都度(周波数偏差の算出と同じ周期で)、発電機の出力指令値を算出することができる。例えば、2~10秒程度毎に算出する。監視制御対象の電力系統の規模(電力需要の総量)が小さい程、算出周期を短く(頻度を多く)することが望ましい。
電力供給装置向け送信部108は、電力供給装置の出力指令値を、各電力供給装置又は各電力供給装置の制御装置に送信する。出力指令値を受信した発電機や系統用蓄電池の制御システムは、出力指令値で出力するように発電機や系統用蓄電池を制御する。
なお、本実施形態の場合、蓄電システム向け第1の送信部103が蓄電システム制御装置200に制御係数を送信する時間間隔は、電力供給装置向け送信部108が出力指令値を送信する時間間隔よりも大きい。すなわち、処理装置100から蓄電システム制御装置200に情報を送信する時間間隔は、処理装置100から発電機や系統用蓄電池の制御装置等に情報を送信する時間間隔よりも大きい。
次に、図20のフローチャートを用いて、処理装置100が電力供給装置の出力指令値を算出し、送信する処理の流れの一例を説明する。
S50では、周波数偏差算出部106は、周波数偏差を新たに算出するタイミングの到来を監視する。例えば、周波数偏差算出部106は、前回の周波数偏差算出からの経過時間が定められた時間(例えば5秒)に達すると、周波数偏差を新たに算出するタイミングと判断してもよい。
周波数偏差を新たに算出するタイミングと判断すると(S50のYes)、周波数偏差算出部106は、周波数偏差を算出する(S51)。そして、電力供給装置指令値決定部107は、周波数偏差に基づき、電力供給装置の出力指令値を決定する(S52)。
その後、電力供給装置向け送信部108は、決定された出力指令値を各電力供給装置又は各電力供給装置の制御装置に送信する(S53)。以降、同様の処理を繰り返す。
本実施形態では、発電機や系統用蓄電池向け(電力供給装置向け)の出力指令値は、中央給電指令所システムが周波数偏差に基づき算出する。そして、蓄電システム300向けの充放電指令値は、蓄電システム300が周波数偏差に基づき算出する。そして、発電機や系統用蓄電池は受信した出力指令値に基づき発電機や系統用蓄電池の出力を制御し、蓄電システム300は自身が算出した充放電指令値に基づき充放電を制御する。これら発電機や系統用蓄電池の出力制御と蓄電システム300の充放電制御のタイミングを合わせるために、あらかじめ、中央給電指令所システム(処理装置100)、発電機や系統用蓄電池、蓄電システム制御装置200、蓄電システム300、とで時刻情報が同期していることが望ましい。また、制御タイミングを合わせるための情報を用いても良い(例えば、斉時を起点とした制御を行うなどのルール)。
「蓄電システム制御装置200の構成」
蓄電システム制御装置200の構成は、第1乃至第7の実施形態と同様である。
「蓄電システム300の構成」
蓄電システム300の構成は、第1乃至第7の実施形態と同様である。
「変形例」
ここでは、第1の実施形態の処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107及び電力供給装置向け送信部108を追加した構成を説明したが、第2乃至第7の実施形態の処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107及び電力供給装置向け送信部108を追加してもよい。
図11に示す処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107及び電力供給装置向け送信部108を追加した構成とする場合、蓄電システム向け第2の送信部105が蓄電システム制御装置200に個別制御係数を送信する時間間隔は、電力供給装置向け送信部108が各電力供給装置や各電力供給装置の制御装置に出力指令値を送信する時間間隔よりも大きい。すなわち、処理装置100から蓄電システム制御装置200に情報を送信する時間間隔は、処理装置100から各電力供給装置や各電力供給装置の制御装置に情報を送信する時間間隔よりも大きい。
また、ここでは、処理装置100が発電機や系統用蓄電池全体での出力指令値を算出した後、各発電機や系統用蓄電池の出力指令値を算出し、各発電機や系統用蓄電池の制御装置に送信した。変形例として、処理装置100は、予め、各発電機や系統用蓄電池の制御装置に分担係数を送信しておいてもよい。そして、処理装置100は、発電機や系統用蓄電池全体での出力指令値を、各発電機や系統用蓄電池の制御装置に送信してもよい。この場合、各発電機や系統用蓄電池の制御装置は、発電機や系統用蓄電池全体での出力指令値と、分担係数との積を、自発電機の出力指令値として算出する。
「実施例1」
以下、図21を用いて、実施例1を説明する。系統Aが、監視制御対象の電力系統である。系統Aは、FFCを実施している電力系統であり、系統Bは、TBC(Tie line Bias Control)を実施している電力系統である。そして、系統Aと系統Bが連系線を介して連系しており、蓄電システムは系統A内に存在しているとする。当該実施例では、式(1-1)の演算式を用いて、系統Aの発電機全体での地域要求量ARFFCが算出される。ここで、P及びPは、系統A及び系統Bの現在の電力需要の値、K及びKは、系統A及び系統Bの系統定数であり、KとKが等しいとする。Δfは周波数偏差である。なお、発電機向けの出力指令値の算出にあたっては、ARFFCから周波数フィルタにより所望の周波数成分のみを抽出してもよいし、複数の蓄電システム300の分担分を差し引いてもよい。
そして、式(1-3)又は式(1-3)´に基づき、蓄電システム300全体での地域要求量ARが算出される。なお、蓄電システム向けの出力指令値の算出にあたっては、周波数フィルタにより所望の周波数成分のみを抽出してもよい。
ちなみに、系統Aに連系した系統Bの発電機全体での地域要求量ARTBCは、式(1-2)で算出される。ΔPは連系線潮流偏差である。
は系統Aで用いる系統定数であり、Kは系統Bで用いる系統定数であるが、ここでは両者が等しいとしている。Pは系統Aの現在の電力需要であり、Pは系統Bの現在の電力需要である。Δfは周波数偏差であり、ΔPは連系線の潮流偏差である。
なお、ここでは電力供給装置として発電機を含む実施例を示したが、電力供給装置が系統用蓄電池である場合、又、電力供給装置が系統用蓄電池及び発電機を含む場合も同様の演算式を採用することができる。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1乃至第7の実施形態と同様の作用効果を実現できる。また、発電機や系統用蓄電池と蓄電システム300とを異なる手法で制御できるので、特に出力応動遅れが比較的小さい蓄電システムを、中央給電指令所システムから送られる通信遅延等が想定される指令値を用いることなく、ローカルで計測した周波数偏差に基づいた制御ができるため、周波数偏差を、より良い値にすることが可能になる。また、発電機と蓄電システム両方を同じ手法で一律に制御する場合に比べて、蓄電システムが各々小規模で多数広域に分散しており通信コスト等に制約がある場合等に応じて制御手法を変えられるなど、制御方法の自由度が高まる。
<第9の実施形態>
「電力制御システムの全体像及び概要」
本実施形態では、電力供給装置、及び蓄電システム300を互いに異なる手法で制御する点で、第1乃至第7の実施形態と異なる。電力供給装置及び蓄電システム300の制御方法の違いは、以下の通りである。
電力供給装置:中央給電指令所システムが周波数偏差と連系線潮流偏差に基づき出力指令値を算出
蓄電システム300:蓄電システムが周波数偏差に基づき充放電指令値を算出
なお、本実施形態では、TBCでの負荷周波数制御を発電機に適用する。
「中央給電指令所システムの構成」
中央給電指令所システムは、処理装置100を有する。図22に、処理装置100の機能ブロック図の一例を示す。図示するように、処理装置100は、電力需要取得部101と、制御係数算出部102と、蓄電システム向け第1の送信部103と、周波数偏差算出部106と、電力供給装置指令値決定部107と、電力供給装置向け送信部108と、連系線潮流偏差算出部112とを有する。処理装置100のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。なお、電力需要取得部101、制御係数算出部102及び蓄電システム向け第1の送信部103の機能構成は、第1の実施形態と同様であるので、ここでの説明は省略する。また、周波数偏差算出部106及び電力供給装置向け送信部108の機能構成は、第8の実施形態と同様であるので、ここでの説明は省略する。
連系線潮流偏差算出部112は、監視制御対象の電力系統と、監視制御対象の電力系統に連系した他の電力系統との連系線の潮流偏差を算出する。
電力供給装置指令値決定部107は、系統定数と、需要情報で示される電力需要と、周波数偏差と、連系線の潮流偏差とに基づき、電力供給装置全体での出力指令値を決定する。なお、電力供給装置指令値決定部107は、発電機全体での出力指令値、及び、系統用蓄電池全体での出力指令値を個別に決定してもよい。以下の実施例で、演算式の一例を示す。需要情報で示される電力需要は、監視制御対象の電力系統の現在の電力需要を示す。
例えば、電力供給装置指令値決定部107は、図27に示す流れにおいて、監視制御対象の電力系統の系統定数と、需要情報で示される電力需要と、周波数偏差と、連系線潮流偏差と、を用いて算出される地域要求量ARを平滑化ブロック(LPF的な役割を行い、遮断周期数十秒程度以下の高周波成分を除去する)へ入力し、その出力値を不感帯ブロック(±数十MW程度等、動作させないAR量を設定する)に入力し、その出力値をPI制御ブロックへ入力し、その出力値をバンドパスフィルタブロック(蓄電システム300に分担させる成分以外の成分のみ抽出する等を行うことが可能。このブロックは、用いない場合も想定される。)へ入力し、その出力値を電力供給装置全体での出力指令値として決定してもよい。なお、発電機全体での出力指令値及び系統用蓄電池全体での出力指令値を個別に決定する場合、図27の各ブロックで用いられる各種値は、発電機用、及び、系統用蓄電池用に調整される。
例えば、発電機用の周波数フィルタ(バンドパスフィルタ)は、長周期帯(例えば、遮断周期2πTcで表現される周期成分として20分~数十分程度の成分)を通過するように設定されてもよい。このようにすれば、長周期帯の周波数変動を調整するための出力指令値が決定される。また、系統用蓄電池用の周波数フィルタは中周期帯(例えば、遮断周期2πTcで表現される周期成分として数分~十数分程度の成分)を通過するように設定されてもよい。このようにすれば、中周期帯の周波数変動を調整するための出力指令値が決定される。そして、蓄電システム300において充放電指令値を決定するために用いられる周波数フィルタ(例えば、図9のLPFとHPFで選択される帯域など)は、短周期帯(例えば、遮断周期2πTcで表現される周期成分として十数秒~数分程度の成分)を通過するように設定されてもよい。このようにすれば、短周期帯の周波数変動を調整するための充放電指令値が決定される。
すなわち、出力応動遅れが比較的大きい発電機が長周期帯の周波数変動の調整を担い、出力応動遅れは小さいが充放電指令を通信を介して受ける系統用蓄電池が中周期帯の周波数変動の調整を担い、出力応動遅れが比較的小さく、且つ通信を介した充放電指令を用いない、蓄電システム300が短周期帯の周波数変動の調整を担う。これにより最適な周波数制御が可能になり、発電機、系統用蓄電池、及び蓄電システム300が利用する調整能力の和、即ち調整力総量を少なくすることができる。
その他、電力供給装置指令値決定部107は、「系統定数」と「監視制御対象の電力系統の現在の電力需要」と「周波数偏差」との積に、連系線の潮流偏差を足し合わせた地域要求量ARを用いて算出される「周波数変動の調整に必要な出力値」から、複数の蓄電システム300の分担分を差し引いた値を、電力供給装置全体での出力指令値として決定してもよい。処理装置100は、蓄電システム300の充放電指令値を決定するためのパラメータ(制御係数、その他のパラメータ)の値を把握しているので、これらと周波数偏差とを用いて、複数の蓄電システム300の分担分を算出することができる。
なお、その他のパラメータは、ローパスフィルタの時定数、ハイパスフィルタの時定数、不感帯の設定範囲、PID制御のためのPゲイン、Iゲイン、及びDゲイン、複数の蓄電システム300に分担させる充放電電力の上限[W]、及び、単位時間当たりの充放電電力の変化量の上限を示す上限レート[W/分]等が挙げられる。
例えば上述のようにして電力供給装置全体での出力指令値を算出した後、電力供給装置指令値決定部107は、任意の方法で、電力供給装置全体での出力指令値を各電力供給装置に割り振る。例えば、各電力供給装置に均等に割り振ってもよいし、任意の按分比率で各電力供給装置に按分してもよいし。
電力供給装置指令値決定部107は、周波数偏差算出部106が周波数偏差を算出する都度(例えば3秒毎)、電力供給装置の出力指令値を算出することができる。
電力供給装置向け送信部108は、各電力供給装置の出力指令値を、各電力供給装置又はその制御装置に送信する。出力指令値を受信した電力供給装置またはその制御装置は、出力指令値で出力するように電力供給装置を制御する。
なお、本実施形態の場合、蓄電システム向け第1の送信部103が蓄電システム制御装置200に制御係数を送信する時間間隔は、電力供給装置向け送信部108が電力供給装置又はその制御装置に出力指令値を送信する時間間隔よりも大きい。すなわち、処理装置100から蓄電システム制御装置200に情報を送信する時間間隔は、処理装置100から電力供給装置又はその制御装置に情報を送信する時間間隔よりも大きい。
処理装置100が発電機と系統用蓄電池の出力指令値を算出し、送信する処理の流れの一例は、第8の実施形態と同様である。
「蓄電システム制御装置200の構成」
蓄電システム制御装置200の構成は、第1乃至第8の実施形態と同様である。
「蓄電システム300の構成」
蓄電システム300の構成は、第1乃至第8の実施形態と同様である。
「変形例」
ここでは、第1の実施形態の処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107及び電力供給装置向け送信部108を追加した構成を説明したが、第2乃至第7の実施形態の処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107及び電力供給装置向け送信部108を追加してもよい。
図11に示す処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107及び電力供給装置向け送信部108を追加した構成とする場合、蓄電システム向け第2の送信部105が蓄電システム制御装置200に個別制御係数を送信する時間間隔は、電力供給装置向け送信部108が電力供給装置またはその制御装置に出力指令値を送信する時間間隔よりも大きい。すなわち、処理装置100から蓄電システム制御装置200に情報を送信する時間間隔は、処理装置100から電力供給装置またはその制御装置に情報を送信する時間間隔よりも大きい。
また、ここでは、処理装置100が電力供給装置全体での出力指令値を算出した後、各電力供給装置の出力指令値を算出し、各電力供給装置またはその制御装置に送信した。変形例として、処理装置100は、予め、各電力供給装置またはその制御装置に分担係数を送信しておいてもよい。そして、処理装置100は、電力供給装置全体での出力指令値を、各電力供給装置またはその制御装置に送信してもよい。この場合、各電力供給装置またはその制御装置は、電力供給装置全体での出力指令値と、分担係数との積を、自電力供給装置の出力指令値として算出する。
「実施例2」
以下、図23を用いて、実施例2を説明する。系統Aが、監視制御対象の電力系統である。系統Aは、TBCを実施している電力系統であり、系統Bも、TBCを実施している電力系統である。そして、系統Aと系統Bが連系線を介して連系しており、蓄電システムは系統A内に存在しているとする。当該実施例では、式(2-1)の演算式を用いて、系統Aの発電機全体での地域要求量ARTBCが算出される。ここで、P及びPは、系統A及び系統Bの現在の電力需要の値、K及びKは、系統A及び系統Bの系統定数であり、KとKが等しいとする。Δfは周波数偏差である。なお、発電機向けの出力指令値の算出にあたっては、ARTBCから周波数フィルタにより所望の周波数成分のみを抽出してもよいし、複数の蓄電システム300の分担分を差し引いてもよい。
そして、式(2-3)又は式(2-3)´に基づき、蓄電システム300全体での地域要求量ARが算出される。なお、蓄電システム向けの出力指令値の算出にあたっては、周波数フィルタにより所望の周波数成分のみを抽出してもよい。
ちなみに、系統Aに連系した系統Bの発電機全体での地域要求量ARTBCは、式(2-2)で算出される。ΔPは連系線潮流偏差である。なお、系統Bは、図21の式(1-1)の演算式を用いて(系統定数は変更)、発電機全体での出力指令値を算出してもよい。その場合、系統Bは、FFCを実施する電力系統になる。
繰り返しになるが、Kは系統Aの系統定数であり、Kは系統Bの系統定数である。Pは系統Aの現在の電力需要であり、Pは系統Bの現在の電力需要である。Δfは周波数偏差であり、ΔPは連系線の潮流偏差である。
なお、ここでは電力供給装置として発電機を含む実施例を示したが、電力供給装置が系統用蓄電池である場合、又、電力供給装置が系統用蓄電池及び発電機を含む場合も同様の演算式を採用することができる。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1乃至第8の実施形態と同様な作用効果を実現できる。また、本実施形態によれば、発電機や系統用蓄電池と蓄電システム300とを異なる手法で制御でき、特に発電機や系統用蓄電池をTBCで制御する場合、蓄電システムは周波数偏差のみを考慮したFFC的な制御になるため、周波数偏差を、より良い値にすることが可能になる。そして、発電機や系統用蓄電池と蓄電システム両方を同じ手法で一律に制御する場合に比べて、蓄電システムが各々小規模で多数広域に分散しており通信コスト等に制約がある場合等に応じて制御手法を変えられるなど、制御方法の自由度が高まる。
<第10の実施形態>
「電力制御システムの全体像及び概要」
本実施形態では、一部の蓄電システム300と他の蓄電システム300とを互いに異なる手法で制御するとともに、電力供給装置と一部の蓄電システム300とを互いに異なる手法で制御する点で、第1乃至第9の実施形態と異なる。発電機、一部の蓄電システム300、他の蓄電システム300の制御方法の違いは、以下の通りである。
電力供給装置:中央給電指令所システムが周波数偏差に基づき(さらに連系線潮流偏差に基づいてもよい)出力指令値を算出
一部の蓄電システム300(以下、「第1の蓄電システム300」):蓄電システムが周波数偏差に基づき充放電指令値を算出
他の蓄電システム300(以下、「第2の蓄電システム300」):中央給電指令所システムが周波数偏差に基づき(さらに連系線潮流偏差に基づいてもよい)出力指令値を算出
なお、本実施形態では、TBC又はFFCでの負荷周波数制御を電力供給装置及び第2の蓄電システム300に適用する。
「中央給電指令所システムの構成」
中央給電指令所システムは、処理装置100を有する。図24に、処理装置100の機能ブロック図の一例を示す。図示するように、処理装置100は、電力需要取得部101と、制御係数算出部102と、蓄電システム向け第1の送信部103と、周波数偏差算出部106と、電力供給装置指令値決定部107と、電力供給装置向け送信部108と、蓄電システム指令値決定部109と、蓄電システム向け第3の送信部110とを有する。なお、連系線潮流偏差算出部112をさらに有してもよい。処理装置100のハードウエア構成は、第1の実施形態と同様である。
以下、各機能部の機能構成を説明する。なお、電力需要取得部101、制御係数算出部102及び蓄電システム向け第1の送信部103の機能構成は、第1の実施形態と同様であるので、ここでの説明は省略する。また、周波数偏差算出部106、電力供給装置指令値決定部107、電力供給装置向け送信部108及び連系線潮流偏差算出部112の機能構成は、第8及び第9の実施形態と同様であるので、ここでの説明は省略する。
蓄電システム指令値決定部109は、系統定数と、需要情報で示される電力需要と、周波数偏差とに基づき、第2の蓄電システム300全体での充放電指令値を決定する。蓄電システム指令値決定部109は、さらに連系線の潮流偏差に基づき、第2の蓄電システム300全体での充放電指令値を決定してもよい。蓄電システム指令値決定部109は、電力供給装置指令値決定部107による電力供給装置全体での出力指令値の決定と同様にして、第2の蓄電システム300全体での充放電指令値を決定することができる。なお、発電機、系統用蓄電池、第1の蓄電システム300、及び第2の蓄電システム300各々が担う周波数帯域を異ならせることができる。第2の蓄電システム300と系統用蓄電池は同じ周波数帯域を担わせることもできる。
例えば上述のようにして第2の蓄電システム300全体での充放電指令値を算出した後、蓄電システム指令値決定部109は、任意の方法で、第2の蓄電システム300全体での充放電指令値を各第2の蓄電システム300に割り振る。例えば、各第2の蓄電システム300の周波数調整用の充放電電力の上限値(定格出力など、周波数調整用に利用できる出力の上限値)に応じて割り振ってもよいし、各第2の蓄電システム300の応答特性(一次遅れなど)やレートリミットの値に応じて按分してもよい。
蓄電システム指令値決定部109は、周波数偏差算出部106が周波数偏差を算出する都度(周波数偏差の算出と同じ周期、例えば4秒など)、第2の蓄電システム300の充放電指令値を算出することができる。
蓄電システム向け第3の送信部110は、各第2の蓄電システム300の充放電指令値を、各第2の蓄電システム300に送信する。蓄電システム向け第3の送信部110は、蓄電システム制御装置200を経由して、蓄電システム300に充放電指令値を送信してもよいし、蓄電システム制御装置200を経由せずに、蓄電システム300に充放電指令値を送信してもよい。充放電指令値を受信した第2の蓄電システム300は、充放電指令値で充放電するように蓄電池を制御する。
なお、本実施形態の場合、蓄電システム向け第1の送信部103が第1の蓄電システム300に向けて制御係数を送信する時間間隔は、蓄電システム向け第3の送信部110が第2の蓄電システム300に向けて充放電指令値を送信する時間間隔よりも大きい。すなわち、処理装置100から第1の蓄電システム300に向けて情報を送信する時間間隔は、処理装置100から第2の蓄電システム300に向けて情報を送信する時間間隔よりも大きい。
「蓄電システム制御装置200の構成」
蓄電システム制御装置200の構成は、第1乃至第9の実施形態と同様である。
「蓄電システム300の構成」
第1の蓄電システム300の構成は、第1乃至第9の実施形態と同様である。
第2の蓄電システム300は、処理装置100から送信された充放電指令値を受信すると、当該充放電指令値で充放電するように蓄電池を制御する。すなわち、第2の蓄電システム300は、受信した充放電指令値に基づき蓄電池を制御する機能を備えればよく、周波数偏差の算出、充放電指令値の算出、制御係数の算出、個別制御係数の算出等を実行する機能を備える必要がない。
「変形例」
ここでは、第1の実施形態の処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107、電力供給装置向け送信部108、蓄電システム指令値決定部109及び蓄電システム向け第3の送信部110等を追加した構成を説明したが、第2乃至第7の実施形態の処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107、電力供給装置向け送信部108、蓄電システム指令値決定部109及び蓄電システム向け第3の送信部110を追加してもよい。
図11に示す処理装置100に周波数偏差算出部106、電力供給装置指令値決定部107、電力供給装置向け送信部108、蓄電システム指令値決定部109及び蓄電システム向け第3の送信部110を追加した構成とする場合、蓄電システム向け第2の送信部105が第1の蓄電システム300に向けて個別制御係数を送信する時間間隔は、蓄電システム向け第3の送信部110が第2の蓄電システム300に向けて充放電指令値を送信する時間間隔よりも大きい。すなわち、処理装置100から第1の蓄電システム300に向けて情報を送信する時間間隔は、処理装置100から第2の蓄電システム300に向けて情報を送信する時間間隔よりも大きい。
また、ここでは、処理装置100が電力供給装置全体での出力指令値を算出した後、各電力供給装置の出力指令値を算出し、各電力供給装置またはその制御装置に送信した。変形例として、処理装置100は、予め、各電力供給装置またはその制御装置に分担係数を送信しておいてもよい。そして、処理装置100は、電力供給装置全体での出力指令値を、各電力供給装置またはその制御装置に送信してもよい。この場合、各電力供給装置またはその制御装置は、電力供給装置全体での出力指令値と、分担係数との積を、自電力供給装置の出力指令値として算出する。
また、ここでは、処理装置100が第2の蓄電システム300全体での充放電指令値を算出した後、各第2の蓄電システム300の充放電指令値を算出し、各第2の蓄電システム300に送信した。変形例として、処理装置100は、予め、各第2の蓄電システム300に分担係数を送信しておいてもよい。そして、処理装置100は、第2の蓄電システム300全体での充放電指令値を、各第2の蓄電システム300に送信してもよい。この場合、各第2の蓄電システム300は、第2の蓄電システム300全体での充放電指令値と、分担係数との積を、自装置(第2の蓄電システム300)の充放電指令値として算出する。
「実施例3」
以下、図25を用いて、実施例3を説明する。系統Aが、監視制御対象の電力系統である。系統Aは、TBCを実施している電力系統であり、系統Bも、TBCを実施している電力系統である。そして、系統Aと系統Bが連系線を介して連系しており、第1及び第2の蓄電システムは系統A内に存在しているとする。当該実施例では、式(3-1)の演算式を用いて、系統Aの発電機及び第2の蓄電システム300全体での地域要求量ARTBCが算出される。なお、出力指令値の算出にあたっては、ARTBCから周波数フィルタにより所望の周波数成分のみを抽出してもよいし、地域要求量ARTBCから複数の第1の蓄電システム300の分担分を差し引いてもよい。
そして、式(3-3)又は式(3-3)´に基づき、第1の蓄電システム300全体での地域要求量ARが算出される。なお、蓄電池向けの出力指令値の算出にあたっては、周波数フィルタにより所望の周波数成分のみを抽出してもよい。
ちなみに、系統Aに連系した系統Bの発電機全体での地域要求量ARTBCは、式(3-2)で算出される。なお、系統Bは、図21の式(1-1)の演算式を用いて(系統定数は変更)、発電機全体での出力指令値を算出してもよい。その場合、系統Bは、FFCを実施する電力系統になる。
は系統Aの系統定数であり、Kは系統Bの系統定数である。Pは系統Aの現在の電力需要であり、Pは系統Bの現在の電力需要である。Δfは周波数偏差であり、ΔPは連系線の潮流偏差である。
「実施例4」
以下、図26を用いて、実施例4を説明する。系統Aが、監視制御対象の電力系統である。当該実施例では、式(4-1)の演算式を用いて、系統Aの発電機及び第2の蓄電システム300全体での地域要求量ARFFCが算出される。なお、出力指令値の算出にあたっては、周波数フィルタにより所望の周波数成分のみを抽出してもよいし、地域要求量ARFFCから複数の第1の蓄電システム300の分担分を差し引いてもよい。
そして、式(4-3)又は式(4-3)´に基づき、第1の蓄電システム300全体での地域要求量ARが算出される。なお、蓄電システム向けの出力指令値の算出にあたっては、周波数フィルタにより所望の周波数成分のみを抽出してもよい。
ちなみに、系統Aに連系した系統Bの発電機全体での地域要求量ARTBCは、式(4-2)で算出される。なお、系統Bは、図21の式(1-1)の演算式を用いて(系統定数は変更)、発電機全体での出力指令値を算出してもよい。その場合、系統Bは、FFCを実施する電力系統になる。
は系統Aの系統定数であり、Kは系統Bの系統定数である。Pは系統Aの現在の電力需要であり、Pは系統Bの現在の電力需要である。Δfは周波数偏差であり、ΔPは連系線の潮流偏差である。
なお、ここでは電力供給装置として発電機を含む実施例を示したが、電力供給装置が系統用蓄電池である場合、又、電力供給装置が系統用蓄電池及び発電機を含む場合も同様の演算式を採用することができる。
「作用効果」
以上説明した本実施形態の電力制御システムによれば、第1乃至第9の実施形態と同様な作用効果を実現できる。また、発電機や系統用蓄電池と蓄電システム300とを異なる手法で制御できるので、両方を同じ手法で一律に制御する場合に比べて、制御方法の自由度が高まる。さらに、一部の蓄電システム300と他の蓄電システム300を異なる手法で制御できるので、全ての蓄電システム300を同じ手法で一律に制御する場合に比べて、制御方法の自由度が高まる。
<変形例>
すべての実施形態に適用可能な変形例を説明する。蓄電システム300は、監視制御対象の電力系統に繋がったもの(監視制御対象の電力系統内に存在するということ)であってもよいし、監視制御対象の電力系統に連系した他の電力系統に繋がったもの(主たる監視制御対象の電力系統以外の電力系統内に存在するということ)であってもよいし、これらが混在してもよい。
すべての実施形態に適用可能な他の変形例を説明する。ここでは、制御係数の決定方法の変形例を提供する。上記実施形態の一例では、系統定数と現在の電力需要との積を制御係数として算出した。変形例では、制御係数の上限を予め設定しておく。そして、系統定数と現在の電力需要との積が当該上限を超えない場合、系統定数と現在の電力需要との積を制御係数として決定する。一方、系統定数と現在の電力需要との積が当該上限を超える場合、当該上限を制御係数として決定する。上限は、例えば、複数の蓄電システム300全体に分担させる充放電電力の上限値[W]を、所定期間内(例えば、過去1年間、1ヵ月、l週間、1時間など)の周波数偏差の標準偏差[Hz]で割った値としてもよい。また例えば、上限は、複数の蓄電システム300全体で担われる周波数制御用の充放電電力上限値の定数倍として決定してもよい。例えば、充電電力の上限値が50MWで、放電電力の上限値も50MWの場合、50MWの10~40倍[MW/Hz]で、500[MW/Hz]~2000[MW/Hz]などとしてもよい。充電電力の上限値が40MWで、放電電力の上限値が30MWと、絶対値が異なる場合は、充電側と放電側で異なる制御係数の上限を設定してもよい。
すべての実施形態に適用可能な他の変形例を説明する。ここでは、制御係数の決定方法の変形例を提供する。上記実施形態では、系統定数と現在の電力需要との積を、制御係数として算出した。変形例では、制御係数を、複数の蓄電システム300全体に分担させる充放電電力の上限値[W]を考慮して、予め設定しておく。例えば、制御係数は、複数の蓄電システム300全体で担われる周波数制御用の充放電電力上限値の定数倍として決定してもよい。例えば、充電電力の上限値が10MWで、放電電力の上限値も10MWの場合、10MWの10~40倍[MW/Hz]で、100[MW/Hz]~400[MW/Hz]などとしてもよい。また例えば、充電電力の上限値が60MWで、放電電力の上限値も60MWの場合、60MWを周波数偏差0.2Hzで割って、300[MW/Hz]としてもよいし、0.1Hzで割って600[MW/Hz]としてもよい。充電電力の上限値が40MWで、放電電力の上限値が30MWと、絶対値が異なる場合は、充電側と放電側で異なる制御係数を用いても良い。
すべての実施形態に適用可能な他の変形例を説明する。FTC(Flat Tie Line Control)での負荷周波数制御を発電機や第2の蓄電システム300に適用してもよい。
すべての実施形態に適用可能な他の変形例を説明する。処理装置100は、中央給電指令所でなく、他の主体により利用されてもよい。例えば、複数の電力系統を束ねて監視制御する主体(複数の電力系統に跨って存在する分散電源を監視制御するアグリゲータや、複数の中央給電指令所システムを監視制御する広域運営機関など)が、処理装置100を利用してもよい。この場合、処理装置100の電力需要取得部101は、各中央給電指令所システムから、リアルタイム処理で現在の電力需要を示す需要情報や、各中央給電指令所システムが監視制御する蓄電システム300全体での調整能力を示す調整力情報(例えば、需給調整市場や送配電事業者などとの契約等で決定した周波数制御用の充放電電力上限値などや、負荷周波数制御のための上限放電電力[W]、上限充電電力[W]、単位時間当たりの充放電変化速度[W/分]など)を取得することができる。なお、制御に必要な系統定数やその他のパラメータの値は、予め処理装置100に与えられていてもよい。その他、処理装置100は外部装置からそれらの値を受信してもよい。
これら変形例においても、上記実施形態と同様な作用効果を実現できる。また、複数の中央給電指令所が監視制御する電力系統を統合的に監視制御することができるため、より高効率に蓄電システムの調整能力を活用することができる。
すべての実施形態に適用可能な他の変形例を説明する。図28に示すように、中央給電指令所システムは、分残電源システム制御装置を介して複数の分残電源システムをさらに制御してもよい。分残電源システムは、燃料電池、コージェネレーションシステム、太陽光発電装置、風力発電装置など、電力を発生(発電)させうる装置で、かつ、装置側で周波数偏差を計測・算出し、周波数偏差を用いた出力電力制御が可能な装置である。また、分残電源システムとして、ビルの空調機器、工場の生産機器など、電力をある程度継続的に消費させうる装置で、かつ、装置側で周波数偏差を計測・算出し、周波数偏差を用いた消費電力制御が可能な装置を含んでも良い。蓄電システム300の制御と同様にして、分残電源システムを制御することができる。この場合、演算に用いる各種パラメータ(出力電力の上下限値や変化幅等、また消費電力の上下限値や変化幅等)は分散電源用に調整される。また、太陽光発電装置や風力発電装置など、天候に依存して発電出力が変化する分散電源は、あらかじめ発電出力抑制(発電出力の許容上限値をPCSの定格出力の70%等に制限すること)を行うことで制御性を高める等、バイアス制御を行っても良い。
これら変形例においても、上記実施形態と同様な作用効果を実現できる。また、中央給電指令所が監視制御する対象(リソース)を拡大させることができるため、より高信頼で低コストに周波数制御用の調整力運用ができる。
以下、参考形態の例を付記する。
1. 電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置であって、
現在の電力需要を示す需要情報を取得する電力需要取得手段と、
予め定められた系統定数と、前記需要情報で示される電力需要とに基づき、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段と、
前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信手段と、
を有する処理装置。
2. 電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置であって、
現在の電力需要を示す需要情報を取得する電力需要取得手段と、
予め定められた系統定数と、前記需要情報で示される電力需要とに基づき、電力系統の周波数偏差と、前記周波数偏差に応じた複数の蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段と、
前記制御係数に基づき、前記周波数偏差と、前記周波数偏差に応じた前記蓄電システム各々の充放電指令値との関係を示す個別制御係数を、前記蓄電システムごとに算出する個別制御係数算出手段と、
前記個別制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第2の送信手段と、
を有する処理装置。
3. 1又は2に記載の処理装置において、
前記制御係数算出手段は、
複数の前記蓄電システム全体での調整能力を示す調整力情報を取得する状態情報取得手段を有し、
前記系統定数、前記需要情報で示される電力需要、及び、前記調整力情報で示される前記蓄電システム全体での調整能力の中の少なくとも一つに基づき、前記制御係数を算出する処理装置。
4. 1から3のいずれかに記載の処理装置において、
前記系統定数、及び、前記需要情報で示される電力需要の中の少なくとも一つに基づき、複数の前記電力供給装置の出力指令値を算出する電力供給装置指令値決定手段と、
前記出力指令値を、複数の前記電力供給装置又は前記電力供給装置各々の制御装置へ送信する電力供給装置向け送信手段と、
を有する処理装置。
5. 4に記載の処理装置において、
前記電力供給装置指令値決定手段は、前記制御係数に基づき算出される複数の前記蓄電システム全体での前記充放電指令値に基づき、前記出力指令値を算出する処理装置。
6. 4又は5に記載の処理装置において、
前記周波数偏差を算出する周波数偏差算出手段と、
前記電力供給装置指令値決定手段は、前記系統定数と、前記需要情報で示される電力需要と、前記周波数偏差とに基づき、前記出力指令値を算出する処理装置。
7. 6に記載の処理装置において、
監視制御対象の電力系統と、前記監視制御対象の電力系統に連系した他の電力系統との連系線の潮流偏差を算出する連系線潮流偏差算出手段をさらに有し、
前記電力供給装置指令値決定手段は、さらに前記連系線の潮流偏差に基づき、前記出力指令値を算出する処理装置。
8. 1に従属する4から7のいずれかに記載の処理装置において、
前記蓄電システム向け第1の送信手段が前記制御係数を送信する時間間隔は、前記電力供給装置向け送信手段が前記出力指令値を送信する時間間隔よりも大きい処理装置。
9. 2に従属する4から7のいずれかに記載の処理装置において、
前記蓄電システム向け第2の送信手段が前記個別制御係数を送信する時間間隔は、前記電力供給装置向け送信手段が前記出力指令値を送信する時間間隔よりも大きい処理装置。
10. 1から9のいずれかに記載の処理装置において、
前記制御係数算出手段は、前記需要情報で示される電力需要と基準値との差が基準値以上になると、前記制御係数を新たに算出する処理装置。
11. 1から9のいずれかに記載の処理装置において、
前記制御係数算出手段は、予め定められた時間間隔で前記制御係数を繰り返し算出する処理装置。
12. 11に記載の処理装置において、
前記制御係数算出手段は、予め時間帯毎に定められた時間間隔で、前記制御係数を繰り返し算出する処理装置。
13. 1から12のいずれかに記載の処理装置において、
前記制御係数算出手段は、前記周波数偏差と、複数の前記蓄電システムの中の第1の蓄電システム全体での充放電指令値との関係を示す前記制御係数を算出し、
前記系統定数と、前記需要情報で示される電力需要と、前記周波数偏差とに基づき、複数の前記蓄電システムの中の第2の蓄電システム各々の充放電指令値を決定する蓄電システム指令値決定手段と、
前記第2の蓄電システム各々の前記充放電指令値を、前記蓄電システム制御装置又は前記第2の蓄電システム各々に送信する蓄電システム向け第3の送信手段と、
をさらに有する処理装置。
14. 1に従属する13に記載の処理装置において、
前記蓄電システム向け第1の送信手段が前記制御係数を送信する時間間隔は、前記蓄電システム向け第3の送信手段が前記第2の蓄電システム各々の前記充放電指令値を送信する時間間隔よりも大きい処理装置。
15. 2に従属する13に記載の処理装置において、
前記蓄電システム向け第2の送信手段が前記個別制御係数を送信する時間間隔は、前記蓄電システム向け第3の送信手段が前記第2の蓄電システム各々の前記充放電指令値を送信する時間間隔よりも大きい処理装置。
16. 処理装置で生成され、電力系統の周波数偏差と、前記周波数偏差に応じた複数の蓄電システム全体での充放電指令値との関係を示す制御係数を受信する受信手段と、
前記制御係数に基づき、前記周波数偏差と、前記周波数偏差に応じた前記蓄電システム各々の充放電指令値との関係を示す個別制御係数を、前記蓄電システムごとに算出する個別制御係数算出手段と、
前記個別制御係数を前記蓄電システム各々に送信する送信手段と、
を有する蓄電システム制御装置。
17. 電力系統の周波数偏差と、前記周波数偏差に応じた自蓄電システムの充放電指令値との関係を示す個別制御係数を受信する受信手段と、
前記周波数偏差を算出する周波数偏差算出手段と、
前記個別制御係数と、前記周波数偏差とに基づき、自蓄電システムの充放電指令値を決定する指令値決定手段と、
決定された前記充放電指令値に基づき、蓄電池の充放電を制御する蓄電池制御手段と、
を有する蓄電システム。
18. 電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置が、
現在の電力需要を示す需要情報を取得する電力需要取得工程と、
予め定められた系統定数と、前記需要情報で示される電力需要とに基づき、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出工程と、
前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信工程と、
を実行する処理方法。
19. 電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置を、
現在の電力需要を示す需要情報を取得する電力需要取得手段、
予め定められた系統定数と、前記需要情報で示される電力需要とに基づき、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段、
前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信手段、
として機能させるプログラム。
1A プロセッサ
2A メモリ
3A 入出力I/F
4A 周辺回路
5A バス
100 処理装置
101 電力需要取得部
102 制御係数算出部
103 蓄電システム向け第1の送信部
104 個別制御係数算出部
105 蓄電システム向け第2の送信部
106 周波数偏差算出部
107 電力供給装置指令値決定部
108 電力供給装置向け送信部
109 蓄電システム指令値決定部
110 蓄電システム向け第3の送信部
111 蓄電システム向け第4の送信部
112 連系線潮流偏差算出部
200 蓄電システム制御装置
201 受信部
202 個別制御係数算出部
203 送信部
204 制御係数算出部
300 蓄電システム
301 受信部
302 周波数偏差算出部
303 指令値決定部
304 蓄電池制御部
305 個別制御係数算出部
306 制御係数算出部
1020 状態情報取得部

Claims (17)

  1. 電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置であって、
    現在の電力需要を示す需要情報を取得する電力需要取得手段と、
    予め定められた系統定数と、前記需要情報で示される電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段と、
    前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信手段と、
    を有する処理装置。
  2. 電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置であって、
    現在の電力需要を示す需要情報を取得する電力需要取得手段と、
    予め定められた系統定数と、前記需要情報で示される電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段と、
    前記制御係数に基づき、前記周波数偏差と、前記周波数偏差に応じた前記蓄電システム各々の充放電指令値との関係を示す個別制御係数を、前記蓄電システムごとに算出する個別制御係数算出手段と、
    前記個別制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第2の送信手段と、
    を有する処理装置。
  3. 請求項1又は2に記載の処理装置において、
    前記制御係数算出手段は、
    複数の前記蓄電システム全体での調整能力を示す調整力情報を取得する状態情報取得手段を有し、
    前記系統定数、前記需要情報で示される電力需要、及び、前記調整力情報で示される前記蓄電システム全体での調整能力の中の少なくとも一つに基づき、前記制御係数を算出する処理装置。
  4. 請求項1から3のいずれか1項に記載の処理装置において、
    前記系統定数、及び、前記需要情報で示される電力需要の中の少なくとも一つに基づき、複数の前記電力供給装置の出力指令値を算出する電力供給装置指令値決定手段と、
    前記出力指令値を、複数の前記電力供給装置又は前記電力供給装置各々の制御装置へ送信する電力供給装置向け送信手段と、
    を有する処理装置。
  5. 請求項4に記載の処理装置において、
    前記電力供給装置指令値決定手段は、前記制御係数に基づき算出される複数の前記蓄電システム全体での前記充放電指令値に基づき、前記出力指令値を算出する処理装置。
  6. 請求項4又は5に記載の処理装置において、
    前記周波数偏差を算出する周波数偏差算出手段と、
    前記電力供給装置指令値決定手段は、前記系統定数と、前記需要情報で示される電力需要と、前記周波数偏差とに基づき、前記出力指令値を算出する処理装置。
  7. 請求項6に記載の処理装置において、
    監視制御対象の電力系統と、前記監視制御対象の電力系統に連系した他の電力系統との連系線の潮流偏差を算出する連系線潮流偏差算出手段をさらに有し、
    前記電力供給装置指令値決定手段は、さらに前記連系線の潮流偏差に基づき、前記出力指令値を算出する処理装置。
  8. 請求項1に従属する請求項4から7のいずれか1項に記載の処理装置において、
    前記蓄電システム向け第1の送信手段が前記制御係数を送信する時間間隔は、前記電力供給装置向け送信手段が前記出力指令値を送信する時間間隔よりも大きい処理装置。
  9. 請求項2に従属する請求項4から7のいずれか1項に記載の処理装置において、
    前記蓄電システム向け第2の送信手段が前記個別制御係数を送信する時間間隔は、前記電力供給装置向け送信手段が前記出力指令値を送信する時間間隔よりも大きい処理装置。
  10. 請求項1から9のいずれか1項に記載の処理装置において、
    前記制御係数算出手段は、前記需要情報で示される電力需要と基準値との差が基準値以上になると、前記制御係数を新たに算出する処理装置。
  11. 請求項1から9のいずれか1項に記載の処理装置において、
    前記制御係数算出手段は、予め定められた時間間隔で前記制御係数を繰り返し算出する処理装置。
  12. 請求項11に記載の処理装置において、
    前記制御係数算出手段は、予め時間帯毎に定められた時間間隔で、前記制御係数を繰り返し算出する処理装置。
  13. 請求項1から12のいずれか1項に記載の処理装置において、
    前記制御係数算出手段は、前記周波数偏差と、複数の前記蓄電システムの中の第1の蓄電システム全体での充放電指令値との関係を示す前記制御係数を算出し、
    前記系統定数と、前記需要情報で示される電力需要と、前記周波数偏差とに基づき、複数の前記蓄電システムの中の第2の蓄電システム各々の充放電指令値を決定する蓄電システム指令値決定手段と、
    前記第2の蓄電システム各々の前記充放電指令値を、前記蓄電システム制御装置又は前記第2の蓄電システム各々に送信する蓄電システム向け第3の送信手段と、
    をさらに有する処理装置。
  14. 請求項1に従属する請求項13に記載の処理装置において、
    前記蓄電システム向け第1の送信手段が前記制御係数を送信する時間間隔は、前記蓄電システム向け第3の送信手段が前記第2の蓄電システム各々の前記充放電指令値を送信する時間間隔よりも大きい処理装置。
  15. 請求項2に従属する請求項13に記載の処理装置において、
    前記蓄電システム向け第2の送信手段が前記個別制御係数を送信する時間間隔は、前記蓄電システム向け第3の送信手段が前記第2の蓄電システム各々の前記充放電指令値を送信する時間間隔よりも大きい処理装置。
  16. 電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置が、
    現在の電力需要を示す需要情報を取得する電力需要取得工程と、
    予め定められた系統定数と、前記需要情報で示される電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出工程と、
    前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信工程と、
    を実行する処理方法。
  17. 電力系統に電力を供給する複数の電力供給装置と、複数の蓄電システムとを制御する処理装置を、
    現在の電力需要を示す需要情報を取得する電力需要取得手段、
    予め定められた系統定数と、前記需要情報で示される電力需要との積、又は当該積を補正した値であって、電力系統の周波数偏差と、前記周波数偏差に応じた複数の前記蓄電システム全体での充放電指令値との関係を示す制御係数を算出する制御係数算出手段、
    前記制御係数を、複数の前記蓄電システムを制御する蓄電システム制御装置又は前記蓄電システム各々に送信する蓄電システム向け第1の送信手段、
    として機能させるプログラム。
JP2018045380A 2018-03-13 2018-03-13 処理装置、処理方法及びプログラム Active JP7120600B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045380A JP7120600B2 (ja) 2018-03-13 2018-03-13 処理装置、処理方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045380A JP7120600B2 (ja) 2018-03-13 2018-03-13 処理装置、処理方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2019161845A JP2019161845A (ja) 2019-09-19
JP7120600B2 true JP7120600B2 (ja) 2022-08-17

Family

ID=67992708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045380A Active JP7120600B2 (ja) 2018-03-13 2018-03-13 処理装置、処理方法及びプログラム

Country Status (1)

Country Link
JP (1) JP7120600B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199125A1 (ja) 2020-03-30 2021-10-07 三菱電機株式会社 蓄電池システム、および交流電力の系統の周波数の変動を抑制する方法
JP7444709B2 (ja) 2020-06-22 2024-03-06 一般財団法人電力中央研究所 広域負荷周波数制御装置、広域負荷周波数制御システム、及び広域負荷周波数制御方法
CN113471994A (zh) * 2021-06-29 2021-10-01 坎德拉(深圳)新能源科技有限公司 基于飞轮储能的电网复合调频系统及调频方法
WO2023145069A1 (ja) * 2022-01-31 2023-08-03 三菱電機株式会社 分散電源制御システム
WO2023157360A1 (ja) * 2022-02-15 2023-08-24 株式会社Ihi 電力システムの調整装置及び電力システムの調整プログラム
KR20240100861A (ko) * 2022-12-23 2024-07-02 서울과학기술대학교 산학협력단 계통연계형 배터리 에너지 저장 장치를 사용한 주파수 제어 시스템 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151781A (ja) 2003-11-19 2005-06-09 Chugoku Electric Power Co Inc:The 電力需要予測システムおよび電力系統の負荷周波数制御方法
JP2012050211A (ja) 2010-08-25 2012-03-08 Tokyo Electric Power Co Inc:The 電力系統蓄電システム
WO2014123188A1 (ja) 2013-02-08 2014-08-14 日本電気株式会社 電池制御装置、電池制御支援装置、電池制御システム、電池制御方法、電池制御支援方法、および記録媒体
JP2015037371A (ja) 2013-08-14 2015-02-23 富士電機株式会社 需給制御装置
WO2015037654A1 (ja) 2013-09-12 2015-03-19 日本電気株式会社 制御装置、蓄電装置、電池制御システム、電池制御装置、制御方法、電池制御方法および記録媒体
JP2015198526A (ja) 2014-04-02 2015-11-09 富士電機株式会社 電力系統における周波数制御方法及び周波数制御システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336901A (ja) * 1994-06-07 1995-12-22 Toshiba Corp 電力系統の周波数制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151781A (ja) 2003-11-19 2005-06-09 Chugoku Electric Power Co Inc:The 電力需要予測システムおよび電力系統の負荷周波数制御方法
JP2012050211A (ja) 2010-08-25 2012-03-08 Tokyo Electric Power Co Inc:The 電力系統蓄電システム
WO2014123188A1 (ja) 2013-02-08 2014-08-14 日本電気株式会社 電池制御装置、電池制御支援装置、電池制御システム、電池制御方法、電池制御支援方法、および記録媒体
JP2015037371A (ja) 2013-08-14 2015-02-23 富士電機株式会社 需給制御装置
WO2015037654A1 (ja) 2013-09-12 2015-03-19 日本電気株式会社 制御装置、蓄電装置、電池制御システム、電池制御装置、制御方法、電池制御方法および記録媒体
JP2015198526A (ja) 2014-04-02 2015-11-09 富士電機株式会社 電力系統における周波数制御方法及び周波数制御システム

Also Published As

Publication number Publication date
JP2019161845A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP7120600B2 (ja) 処理装置、処理方法及びプログラム
RU2601957C2 (ru) Способ и устройство управления энергетическими услугами на основе рыночных данных
US8341442B2 (en) Energy load management method and system
CN110120686B (zh) 一种基于电力系统在线惯量估计的新能源承载力预警方法
JP5647329B2 (ja) 新エネルギー発電所群の制御システム、およびその制御方法
US20130054987A1 (en) System and method for forcing data center power consumption to specific levels by dynamically adjusting equipment utilization
CN105406496B (zh) 一种基于实测频率响应辨识的孤立微电网调频控制方法
CN111555310B (zh) 一种新能源参与异步送端电网调频的方法
JP5576826B2 (ja) 風力発電装置群の制御システム及び制御方法
US11621563B2 (en) System for dynamic demand balancing in energy networks
JP2006042458A (ja) 周波数制御装置及び系統周波数制御方法
Nerkar et al. An analysis of the impact on frequency response with penetration of‎ RES in power system and modified virtual inertia controller
JP2012080680A (ja) 電源出力制御装置、需要電力制御システム、電源出力制御方法、および電源出力制御プログラム
JP2015173570A (ja) 自動周波数制御装置および自動周波数制御方法
CN115912503A (zh) 一种微网发电的调度方法、装置、设备及存储介质
Wada et al. Frequency control using fast demand response in power system with a large penetration of renewable energy sources
US11437825B2 (en) Hybrid renewable power plant
JP7108876B2 (ja) 群管理システム、電力制御装置、送信方法、プログラム
CN109980654B (zh) 一种电网高频事故下降负荷预测装置及过程
JP7117546B2 (ja) 電力制御装置、電力制御方法
JP6936097B2 (ja) 電力管理装置および電力管理方法
WO2012063576A1 (ja) 風力発電装置群の制御装置及び制御方法
JP7486798B2 (ja) 負荷周波数制御信号を推定する方法、プロセッサ、及びプログラム
WO2015136631A1 (ja) 制御システム、再生可能エネルギー発電システムまたは再生可能エネルギー発電設備等の制御方法
JP7065393B2 (ja) 電力制御装置、電力制御方法、プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220525

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220603

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220728

R150 Certificate of patent or registration of utility model

Ref document number: 7120600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150