JP7120040B2 - Electromagnetic forming method and electromagnetic forming apparatus - Google Patents

Electromagnetic forming method and electromagnetic forming apparatus Download PDF

Info

Publication number
JP7120040B2
JP7120040B2 JP2019007794A JP2019007794A JP7120040B2 JP 7120040 B2 JP7120040 B2 JP 7120040B2 JP 2019007794 A JP2019007794 A JP 2019007794A JP 2019007794 A JP2019007794 A JP 2019007794A JP 7120040 B2 JP7120040 B2 JP 7120040B2
Authority
JP
Japan
Prior art keywords
conductive member
joined
electromagnetic forming
electromagnetic
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019007794A
Other languages
Japanese (ja)
Other versions
JP2020116590A (en
Inventor
紘次朗 山口
克典 高橋
幹文 森脇
正規 中井
浩一郎 市原
泰裕 冨永
直樹 氏平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019007794A priority Critical patent/JP7120040B2/en
Publication of JP2020116590A publication Critical patent/JP2020116590A/en
Application granted granted Critical
Publication of JP7120040B2 publication Critical patent/JP7120040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、電磁成形方法および電磁成形装置に関する。 The present invention relates to an electromagnetic forming method and an electromagnetic forming apparatus.

電磁成形法は、磁界のエネルギを導電性材料に加えることによって該導電性材料を変形加工する、塑性加工法の一つである。この電磁成形法によれば、例えば、瞬間的に高い電磁力を導電性材料に与えることにより該導電性材料を他の部材に衝突させて、該導電性材料と他の部材を接合することができる。 The electromagnetic forming method is one of plastic working methods in which a conductive material is deformed by applying energy of a magnetic field to the conductive material. According to this electromagnetic forming method, for example, by applying a high electromagnetic force momentarily to a conductive material, the conductive material collides with another member, thereby joining the conductive material and the other member. can.

具体的に、特許文献1には、細幅の長い導体板をコの字型に形成した一巻コイルを使用し、この一巻コイルの上板と下板との間に金属薄板を重ねて配設し、この一巻コイルに大電流を瞬間的に流し、電磁誘導の法則を利用して、この重ねて配設した金属薄板に渦電流を生じさせて、この重ねて配設した金属薄板を接合する方法が提案されている。 Specifically, in Patent Document 1, a one-turn coil formed by forming a narrow long conductor plate in a U-shape is used, and a thin metal plate is stacked between the upper and lower plates of this one-turn coil. A large current is instantaneously passed through the one-turn coil to generate an eddy current in the stacked metal sheets by utilizing the law of electromagnetic induction, thereby generating an eddy current in the stacked metal sheets. have been proposed.

特許第3751153号Patent No. 3751153

ところで、部材の機械的強度を向上させるために、この部材と補強部材を複合材料として組み合わせる(複合化する)ことで補強したいという要請がある。しかし、補強部材によっては、高い機械的強度を有する一方で、熱に対して弱い材料がある。例えば、カーボンファイバは高強度で高弾性率を有するものの、鋼板材料との複合化を行う場合、200~300℃のとき、カーボン拡散が活性化され、機械的強度が劣る炭化物を生成する虞がある。特に、複合化の手法として溶接や鋳造などが行われる場合、カーボンファイバは上記炭化物を容易に生成してしまい、複合化された部材の強度向上に寄与し得ない。これに対し、上述した電磁接合法では、金属と金属を衝突させることによって接合するため、接合される金属が高温になりにくい。 By the way, in order to improve the mechanical strength of a member, there is a demand for reinforcement by combining (compositing) this member and a reinforcing member as a composite material. However, depending on the reinforcing member, there are materials that have high mechanical strength but are vulnerable to heat. For example, although carbon fiber has high strength and high elastic modulus, when it is combined with a steel plate material, carbon diffusion is activated at 200 to 300° C., and there is a risk of forming carbides with poor mechanical strength. be. In particular, when welding, casting, or the like is used as a method of compositing, the carbon fiber easily forms the above-mentioned carbides and cannot contribute to improving the strength of the compositing member. On the other hand, in the above-described electromagnetic joining method, metals are joined by colliding with each other, so that the temperature of the metals to be joined is less likely to be high.

そこで、本発明は、電磁接合法の上述した利点を利用して、接合された部材の強度を向上できる、新たな接合方法を提案するもので、例えば、補強部材を導電性材料と被接合部材との間に配置した状態で、補強部材、導電性材料、及び被接合部材を接合させる電磁成形方法と電磁成形装置を提供することを目的とする。 Therefore, the present invention proposes a new joining method that can improve the strength of joined members by utilizing the above-described advantages of the electromagnetic joining method. An object of the present invention is to provide an electromagnetic forming method and an electromagnetic forming apparatus for joining a reinforcing member, a conductive material, and a member to be joined in a state of being arranged between.

この目的を達成するために、請求項1に係る、導電性部材に電磁力を与えて前記導電性部材を被接合部材に衝突させることにより前記導電性部材と前記被接合部材を接合させる電磁成形装置は、
前記導電性部材は、前記電磁力を発生する磁場によって前記導電性部材に誘導される電流の流れる方向と同じ方向に流れる補助電流を印加する回路に接続されており、
前記回路が、
前記導電性部材を挟む一対のローラであって、少なくとも一方は、少なくとも外周面が導電性材料で形成された一対のローラと、
前記外周面が導電性材料で形成されたローラに接続された直流電源を有することを特徴とする。
In order to achieve this object, according to claim 1, there is provided electromagnetic forming for bonding the conductive member and the member to be joined by applying an electromagnetic force to the conductive member and causing the conductive member to collide with the member to be joined. The device
The conductive member is connected to a circuit that applies an auxiliary current flowing in the same direction as the current induced in the conductive member by the magnetic field that generates the electromagnetic force ,
the circuit
a pair of rollers sandwiching the conductive member, at least one of which has at least an outer peripheral surface formed of a conductive material;
It is characterized by having a DC power supply connected to a roller whose outer peripheral surface is formed of a conductive material .

請求項2に係る実施形態の電磁成形装置は、
前記一対のローラの少なくとも一方に駆動連結されたモータを有することを特徴とする。
The electromagnetic forming apparatus of the embodiment according to claim 2 ,
A motor drivingly connected to at least one of the pair of rollers is provided.

また、請求項3に係る、電磁成形方法は、
請求項1又は2のいずれかに記載の電磁成形装置を用いて、
導電性部材被接合部材との間に補強部材を配置し、
前記導電性部材に電磁力を与えて、前記補強部材を挟んだ状態で前記導電性部材を前記被接合部材に衝突させることを特徴とする。
Further, according to claim 3, the electromagnetic forming method is
Using the electromagnetic forming apparatus according to either claim 1 or 2,
Disposing a reinforcing member between the conductive member and the member to be joined ,
An electromagnetic force is applied to the conductive member to cause the conductive member to collide with the member to be joined while sandwiching the reinforcing member.

請求項4に係る実施形態の電磁成形方法は、
前記導電性部材に補助電流を流すことを特徴とする。
The electromagnetic forming method of the embodiment according to claim 4 ,
An auxiliary current is passed through the conductive member.

請求項5に係る実施形態の電磁成形方法は、
前記導電性部材が、アルミニウム、又は鉄、若しくはそれらのいずれかを含む合金であることを特徴とする。
The electromagnetic forming method of the embodiment according to claim 5 ,
The conductive member is characterized by being aluminum, iron, or an alloy containing either of them.

請求項6に係る実施形態の電磁成形方法は、
前記補強部材がカーボンファイバを含むことを特徴とする。
The electromagnetic forming method of the embodiment according to claim 6 ,
The reinforcing member is characterized by containing carbon fiber.

本願の請求項1に記載の発明によれば、補助電流が導電性部材に流れる、導電性部材と被接合部材を接合する電磁成形装置を提供できる。補助電流が、導電性部材に流れ、導電性部材を発熱させることで、導電性部材は可塑化し、導電性部材と被接合部材の接合が容易になる。また、補助電流が導電性部材に流れることで、導電性部材に与えられる電磁力が増幅され、導電性部材を被接合部材に衝突させる力が増加し、導電性部材と被接合部材の接合が確実に行われる。これにより、接合界面の品質が向上した接合部材を提供できる。
また、導電性部材と被接合部材が接合された後、回転可能なローラを備えることで、導電性部材を移動させることが容易な電磁成形装置を提供できる。
According to the invention of claim 1 of the present application, it is possible to provide an electromagnetic forming apparatus for joining a conductive member and a member to be joined, in which an auxiliary current flows through the conductive member. Auxiliary current flows through the conductive member to heat the conductive member, thereby plasticizing the conductive member and facilitating the joining of the conductive member and the member to be joined. In addition, since the auxiliary current flows through the conductive member, the electromagnetic force applied to the conductive member is amplified, and the force that causes the conductive member to collide with the member to be joined increases, and the conductive member and the member to be joined are joined. sure to be done. As a result, it is possible to provide a bonding member with improved bonding interface quality.
Further, it is possible to provide an electromagnetic forming apparatus that can easily move the conductive member by providing a roller that can be rotated after the conductive member and the member to be joined are joined.

本願の請求項2に記載の発明によれば、導電性部材と被接合部材が接合された後、ローラが回転し、導電性部材を移動させることで、次の接合の準備を行う電磁成形装置を提供できる。 According to the invention of claim 2 of the present application, after the conductive member and the member to be joined are joined, the roller rotates to move the conductive member, thereby preparing for the next joining. can provide

本願の請求項3に記載の発明によれば、導電性部材と被接合部材との間に補強部材を配置した状態で導電性部材と被接合部材を接合する電磁成形方法を提供できる。これにより、補強部材、導電性材料、及び被接合部材を接合して、強度が向上した接合部材を提供できる。 According to the third aspect of the present invention, it is possible to provide an electromagnetic forming method for joining a conductive member and a member to be joined with a reinforcing member disposed between the conductive member and the member to be joined. Thereby, the reinforcing member, the conductive material, and the member to be joined can be joined to provide a joining member having improved strength.

本願の請求項4に記載の発明によれば、補助電流が導電性部材に流れる、導電性部材と被接合部材を接合する電磁成形方法を提供できる。補助電流が、導電性部材に流れ、導電性部材を発熱させることで、導電性部材は可塑化し、導電性部材と被接合部材の接合が容易になる。また、補助電流が導電性部材に流れることで、導電性部材に与えられる電磁力が増幅され、導電性部材を被接合部材に衝突させる力が増加し、導電性部材と被接合部材の接合が確実に行われる。これにより、接合界面の品質が向上した接合部材を提供できる。 According to the fourth aspect of the present invention, it is possible to provide an electromagnetic forming method for joining a conductive member and a member to be joined, in which an auxiliary current flows through the conductive member. Auxiliary current flows through the conductive member to heat the conductive member, thereby plasticizing the conductive member and facilitating the joining of the conductive member and the member to be joined. In addition, since the auxiliary current flows through the conductive member, the electromagnetic force applied to the conductive member is amplified, and the force that causes the conductive member to collide with the member to be joined increases, and the conductive member and the member to be joined are joined. sure to be done. As a result, it is possible to provide a bonding member with improved bonding interface quality.

本願の請求項5に記載の発明によれば、導電性の高いアルミニウム、又は抵抗発熱の大きい鉄を接合する電磁成形方法を提供できる。アルミニウムを導電性部材として接合する場合、補助電流がアルミニウムに流れることで、アルミニウムに与えられる電磁力が増幅され、アルミニウムを被接合部材に衝突させる力が増加し、アルミニウムと被接合部材の接合が確実に行われる。また、鉄を導電性部材として接合する場合、補助電流が鉄に流れ、鉄を発熱させることで、鉄は可塑化し、鉄と被接合部材の接合が容易になる。これにより、接合界面の品質が向上した接合部材を提供できる。 According to the fifth aspect of the invention of the present application, it is possible to provide an electromagnetic forming method for joining highly conductive aluminum or iron with large resistance heat generation. When joining aluminum as a conductive member, an auxiliary current flows through the aluminum, amplifying the electromagnetic force applied to the aluminum, increasing the force that causes the aluminum to collide with the member to be joined, and bonding aluminum to the member to be joined. sure to be done. Also, when iron is used as a conductive member to be joined, an auxiliary current flows through the iron to heat the iron, thereby plasticizing the iron and facilitating the joining of the iron and the member to be joined. As a result, it is possible to provide a bonding member with improved bonding interface quality.

本願の請求項6に記載の発明によれば、機械的強度の高いカーボンファイバを補強部材として含んで、導電性部材と被接合部材を接合する電磁成形方法を提供できる。これにより、補強部材、導電性材料、及び被接合部材を接合して、強度が向上した接合部材を提供できる。 According to the invention of claim 6 of the present application, it is possible to provide an electromagnetic molding method that includes a carbon fiber having a high mechanical strength as a reinforcing member and joins a conductive member and a member to be joined. Thereby, the reinforcing member, the conductive material, and the member to be joined can be joined to provide a joining member having improved strength.

本発明の実施形態に係る、電磁成形装置を示す概略図である。1 is a schematic diagram of an electromagnetic forming apparatus according to an embodiment of the present invention; FIG. 電磁力が導電性部材に与えられていないときの、導電性部材、被接合部材、及び補強部材の状態を示す概略図である。FIG. 4 is a schematic diagram showing states of the conductive member, the joined member, and the reinforcing member when no electromagnetic force is applied to the conductive member; 電磁力が導電性部材に与えられたときの、導電性部材、被接合部材、及び補強部材の状態を示す概略図である。FIG. 4 is a schematic diagram showing states of a conductive member, a member to be joined, and a reinforcing member when an electromagnetic force is applied to the conductive member;

以下、添付図面を参照して、本発明に係る電磁成形方法の実施形態を、その成形を行う電磁成形装置と共に説明する。 An embodiment of an electromagnetic forming method according to the present invention will be described below together with an electromagnetic forming apparatus for performing the forming, with reference to the accompanying drawings.

[1.電磁成形装置]
図1は、本発明の実施形態に係る電磁成形装置100の概略構成を示す。電磁成形装置100は導電性部材を被接合部材に接合する成形装置である。
[1. Electromagnetic forming device]
FIG. 1 shows a schematic configuration of an electromagnetic forming apparatus 100 according to an embodiment of the invention. An electromagnetic forming apparatus 100 is a forming apparatus that joins a conductive member to a member to be joined.

[1.1:電磁成形装置の概要]
図1に示すように、電磁成形装置100は、概略、下部構造10と、該下部構造10の上に配置された上部構造12を有する。
[1.1: Overview of the electromagnetic forming device]
As shown in FIG. 1, an electromagnetic forming apparatus 100 generally includes a base structure 10 and a top structure 12 positioned over the base structure 10 .

下部構造10は、図1の手前側から奥側に向かって伸びる直方体形状の導体14を含む。導体14は、パルス発生回路16に電気的に接続されている。パルス発生回路16は、一般的な充放電回路からなり、直流電源18、コンデンサ20、及びスイッチ22を含み、導体14に大電流を瞬間的に流すことができるように構成されている。 The lower structure 10 includes a rectangular parallelepiped conductor 14 extending from the front side to the back side of FIG. Conductor 14 is electrically connected to pulse generation circuitry 16 . The pulse generation circuit 16 is composed of a general charging/discharging circuit, includes a DC power supply 18, a capacitor 20, and a switch 22, and is configured to allow a large current to flow through the conductor 14 instantaneously.

下部構造10はまた、導体14の上方に配置される導電性部材24(詳細については後述する。)の両端部26,28に当接する電極30,32を有する。電極30,32は、直流電源34を含む回路36に電気的に接続され、接合時に導電性部材24に電流(補助電流)を流すように構成される。 Substructure 10 also includes electrodes 30 and 32 that abut opposite ends 26 and 28 of a conductive member 24 (described in greater detail below) located above conductor 14 . The electrodes 30, 32 are electrically connected to a circuit 36 including a DC power supply 34 and configured to apply current (auxiliary current) to the conductive member 24 during bonding.

実施形態において、電極30,32はそれぞれ、導電性部材24の上面と下面に接触する一対のローラ38,40を有する。例えば、4つのローラ38,40のいずれか一つがモータ42に駆動連結されてもよい。実施形態では、手前側下側のローラ40がモータ42に連結されている。したがって、この実施形態では、モータ42の駆動に基づいて、図1の奥側から手前側に向かって導電性部材24を移動させることができる。 In embodiments, electrodes 30 and 32 each have a pair of rollers 38 and 40 that contact the top and bottom surfaces of conductive member 24 . For example, any one of the four rollers 38 , 40 may be drivingly connected to the motor 42 . In the embodiment, the near side lower roller 40 is connected to a motor 42 . Therefore, in this embodiment, the conductive member 24 can be moved from the back side to the front side in FIG. 1 based on the driving of the motor 42 .

ローラ38,40は、少なくとも外周面が導電性の材料で形成されており、例えばブラシ44,46を介して導電性部材24に直流電源34から電流が印加されるように構成されている。 At least the outer peripheral surfaces of the rollers 38 and 40 are made of a conductive material, and are configured such that a current is applied to the conductive member 24 from the DC power supply 34 via brushes 44 and 46, for example.

下部構造10はさらに、導電性部材24の上方に配置される補強部材48(詳細については後述する。)の両端部50,52を保持する保持機構54,56を有する。実施形態において、これらの保持機構54,56はそれぞれ一対のローラを備えている。また、4つのローラの少なくとも一つがモータ58に駆動連結されてもよい。実施形態では、手前側上側のローラがモータ58に連結されている。したがって、この実施形態では、モータ58の駆動に基づいて、図1の奥側から手前側に向かって補強部材48を移動することができる。 Substructure 10 further includes retaining mechanisms 54 and 56 that retain opposite ends 50 and 52 of reinforcing member 48 (described in greater detail below) positioned above conductive member 24 . In an embodiment, each of these retaining mechanisms 54, 56 comprises a pair of rollers. Also, at least one of the four rollers may be drivingly connected to the motor 58 . In the embodiment, the upper front roller is connected to the motor 58 . Therefore, in this embodiment, the reinforcing member 48 can be moved from the back side to the front side in FIG. 1 based on the driving of the motor 58 .

電磁成形装置100の上部構造12は、図1の手前側から奥側に向かって伸びる、直方体形状の剛性の高い固定部60を備える。 The upper structure 12 of the electromagnetic forming apparatus 100 includes a highly rigid rectangular parallelepiped fixing portion 60 extending from the front side to the back side of FIG.

上部構造12はまた、補強部材48の上方に配置される被接合部材62(詳細については後述する。)の両端部64,66を保持する保持機構68,70を有する。実施形態において、これらの保持機構68,70はそれぞれ一対のローラを備えている。また、4つのローラの少なくとも一つがモータ72に駆動連結されてもよい。実施形態では、手前側上側のローラがモータ72に連結されている。したがって、この実施形態では、モータ72の駆動に基づいて、図1の奥側から手前側に向かって被接合部材62を移動することができる。 The upper structure 12 also has holding mechanisms 68 and 70 for holding opposite ends 64 and 66 of a joined member 62 (details of which will be described later) located above the reinforcing member 48 . In an embodiment, each of these retaining mechanisms 68,70 comprises a pair of rollers. Also, at least one of the four rollers may be drivingly connected to the motor 72 . In the embodiment, the upper front roller is connected to the motor 72 . Therefore, in this embodiment, the members to be joined 62 can be moved from the back side to the front side in FIG. 1 based on the driving of the motor 72 .

[1.2:成形方法]
上述の構成を有する電磁成形装置100を用いた成形方法の一例を説明する。実際の成形にあたって、図1の手前側から奥側に向かって伸びる板状の導電性部材24は、両端部26,28が電極30,32に保持された状態で、導体14の上方に該導体14との間に隙間をあけて設置される。実施形態において、補強部材48は綱又は紐のような複数のストランドからなり、図1の手前側から奥側に向かって配置され、両端部50,52が保持機構54,56に保持された状態で、導電性部材24の上面の略中央部に載せられる。被接合部材62は、図1の手前側から奥側に向かって伸びる板状の部材で、固定部60の下に配置される。実施形態では、被接合部材62の幅は導電性部材24の幅と同一又はほぼ同一である。したがって、被接合部材62は、その全面が補強部材48を挟んで導電性部材24のほぼ全面に対向している。説明のために、図1において被接合部材62と導電性部材24は、それらの間に十分な隙間をあけて示されているが、実際の成形にあたって、被接合部材62と導電性部材24との距離は両者の接合に最も適した値に設定される。
[1.2: Molding method]
An example of a forming method using the electromagnetic forming apparatus 100 having the above configuration will be described. In actual molding, the plate-like conductive member 24 extending from the front side to the back side of FIG. 14 with a gap between them. In the embodiment, the reinforcing member 48 is composed of a plurality of strands such as ropes or cords, and is arranged from the front side to the back side of FIG. , and placed on the substantially central portion of the upper surface of the conductive member 24 . The joined member 62 is a plate-shaped member extending from the near side to the far side of FIG. In embodiments, the width of the joined members 62 is the same or nearly the same as the width of the conductive members 24 . Therefore, the entire surface of the member to be joined 62 faces substantially the entire surface of the conductive member 24 with the reinforcing member 48 interposed therebetween. For the sake of explanation, the member to be joined 62 and the conductive member 24 are shown with a sufficient gap between them in FIG. is set to a value most suitable for joining the two.

上述のように導電性部材24,補強部材48,及び被接合部材62を配置した状態で電源34が起動し、電極30から電極32に向かって流れる補助電流74を導電性部材24に印加する。補助電流74により2つの効果が得られる。一つは、導電性部材24が、補助電流74によって発熱することで可塑化し、被接合部材62に衝突したときにこれに接合し易くなることである。もう一つは、後述する電磁力76が補助電流74によって増幅されることにより、導電性部材24がより加速されて被接合部材62に対する衝突力及びその結果として接合力が増加することである。 With the conductive member 24 , the reinforcing member 48 , and the member to be joined 62 arranged as described above, the power source 34 is activated to apply an auxiliary current 74 flowing from the electrode 30 to the electrode 32 to the conductive member 24 . Auxiliary current 74 has two effects. One is that the conductive member 24 is plasticized by heat generated by the auxiliary current 74 and becomes easier to join to the member 62 to be joined when it collides with the member 62 . The other is that the electromagnetic force 76, which will be described later, is amplified by the auxiliary current 74, so that the conductive member 24 is further accelerated to increase the collision force against the member 62 to be joined and, as a result, the joining force.

上述の状態で、導体14に接続されるパルス発生回路16は、約10kA~約200kA、パルス幅約100μsec以下のシングルパルスからなる、一点鎖線で示されるパルス電流78を導体14に印加する。 In the state described above, the pulse generating circuit 16 connected to the conductor 14 applies to the conductor 14 a pulsed current 78 indicated by a dashed line consisting of a single pulse of about 10 kA to about 200 kA and a pulse width of about 100 μsec or less.

これにより、一点鎖線で示される瞬間的な磁場80が導体14の周りに発生する。同時に、電磁誘導により、パルス電流78と逆方向(図1における奥側から手前側に向かう方向)に、二点鎖線で示される誘導電流82が、導電性部材24の内部に流れる。その結果、二点鎖線で示される上方に向かう電磁力76が、磁場80と誘導電流82に直交する方向に発生し、導電性部材24が上方の被接合部材62に向けて瞬間的に付勢されてこの被接合部材62に大きな力で衝突し、導電性部材24と被接合部材62が補強部材48を挟んだ状態で接合する。導電性部材24が被接合部材62に衝突するときの衝撃は固定部60に吸収される。 This produces an instantaneous magnetic field 80 around the conductor 14, indicated by the dashed line. At the same time, due to electromagnetic induction, an induced current 82 indicated by a two-dot chain line flows inside the conductive member 24 in the opposite direction to the pulse current 78 (the direction from the back side to the front side in FIG. 1). As a result, an upward electromagnetic force 76 indicated by a two-dot chain line is generated in a direction perpendicular to the magnetic field 80 and the induced current 82, momentarily urging the conductive member 24 upward toward the member 62 to be joined. Then, the conductive member 24 and the member to be joined 62 are joined with the reinforcing member 48 interposed therebetween. The impact when the conductive member 24 collides with the member 62 to be joined is absorbed by the fixed portion 60 .

導電性部材24、補強部材48と被接合部材62が接合された後、電極30,32のローラ38,40が回転し、奥側から手前側に向かって導電性部材24を移動させる。同時に又はその後、保持機構54,56のローラも回転し、奥側から手前側に向かって補強部材48を移動させる。さらに、保持機構68,70のローラも回転し、奥側から手前側に向かって被接合部材62を移動させる。これにより、次の接合が上述の方法と同様に行われる。 After the conductive member 24, the reinforcing member 48, and the member 62 to be joined are joined, the rollers 38, 40 of the electrodes 30, 32 are rotated to move the conductive member 24 from the back side to the front side. Simultaneously or thereafter, the rollers of the holding mechanisms 54 and 56 are also rotated to move the reinforcing member 48 from the back side to the front side. Furthermore, the rollers of the holding mechanisms 68 and 70 are also rotated to move the member 62 to be welded from the back side to the front side. Thereby, the next joining is performed in the same way as the method described above.

上述した実施形態において、例えば、図2,3に示すように、導電性部材24はアルミニウムのフィルム又はプレートにより構成され、補強部材48は多数のカーボンファイバ(単繊維)を束ねた長繊維束のフィラメント又は多数のフィラメントからなるトウを複数並列配置して構成され、被接合部材62はアルミニウムのフィルム又はプレートで構成される。 In the above-described embodiment, as shown in FIGS. 2 and 3, the conductive member 24 is made of an aluminum film or plate, and the reinforcing member 48 is made of a long fiber bundle of a large number of carbon fibers (single fibers). A plurality of tows composed of filaments or a large number of filaments are arranged in parallel, and the member to be joined 62 is composed of an aluminum film or plate.

この場合、成形された接合部材84において、アルミニウムのフィルム又はプレートからなる導電性部材24とアルミニウムのフィルム又はプレートからなる被接合部材62の接合界面には電磁成形で特徴的な波状模様86が表れる。 In this case, in the formed joint member 84, a wave pattern 86 characteristic of electromagnetic forming appears at the joint interface between the conductive member 24 made of an aluminum film or plate and the joined member 62 made of an aluminum film or plate. .

上述した実施形態において、導電性部材24は、アルミニウム以外の導電性材料、例えば鉄であってもよい。また、補強部材48は、カーボンファイバ以外の繊維材料、例えばガラス繊維であってもよい。さらに、被接合部材62は、アルミニウム以外の金属材料、例えばステンレスであってもよい。いずれにしても、導電性部材、補強部材、被接合部材には、最終成形品に要求される強度を満足するように適当な材料が選択可能である。 In the embodiments described above, the conductive member 24 may be a conductive material other than aluminum, such as iron. Also, the reinforcing member 48 may be made of a fiber material other than carbon fiber, such as glass fiber. Furthermore, the member to be joined 62 may be made of a metal material other than aluminum, such as stainless steel. In any case, suitable materials can be selected for the conductive member, the reinforcing member, and the member to be joined so as to satisfy the strength required for the final molded product.

その他、上述の実施形態において、電極30,32は、それぞれ一対のローラ38,40によって構成したが、導電性部材24の両端部26,28を保持する保持具(例えば、クランプ又はバイス)を電極として利用してもよい。また、補強部材48の両端部50,52を保持する保持機構54,56も、ローラに限るものでなく、その他の保持具(例えば、クランプ又はバイス)であってもよい。同様に、被接合部材62の両端部64,66を保持する機構68,70も、ローラに限るものでなく、その他の保持具(例えば、クランプ又はバイス)であってもよい。 In addition, in the above-described embodiment, the electrodes 30, 32 are each constituted by a pair of rollers 38, 40, but the holders (for example, clamps or vices) that hold the ends 26, 28 of the conductive member 24 may be used instead of the electrodes. may be used as Moreover, the holding mechanisms 54 and 56 that hold both ends 50 and 52 of the reinforcing member 48 are not limited to rollers, and may be other holding tools (for example, clamps or vices). Similarly, the mechanisms 68, 70 for holding both ends 64, 66 of the joined member 62 are not limited to rollers, and may be other holders (for example, clamps or vices).

100:電磁成形装置
24:導電性部材
34:直流電源
36:回路
38,40:ローラ
42:モータ
48:補強部材
62:被接合部材
74:補助電流
76:電磁力
80:磁場
82:誘導電流
100: Electromagnetic forming device 24: Conductive member 34: DC power supply 36: Circuits 38, 40: Roller 42: Motor 48: Reinforcing member 62: Joined member 74: Auxiliary current 76: Electromagnetic force 80: Magnetic field 82: Induced current

Claims (6)

導電性部材に電磁力を与えて前記導電性部材を被接合部材に衝突させることにより前記導電性部材と前記被接合部材を接合させる電磁成形装置であって、
前記導電性部材は、前記電磁力を発生する磁場によって前記導電性部材に誘導される電流の流れる方向と同じ方向に流れる補助電流を印加する回路に接続されており、
前記回路が、
前記導電性部材を挟む一対のローラであって、少なくとも一方は、少なくとも外周面が導電性材料で形成された一対のローラと、
前記外周面が導電性材料で形成されたローラに接続された直流電源を有することを特徴とする電磁成形装置。
An electromagnetic forming apparatus that joins the conductive member and the member to be joined by applying an electromagnetic force to the conductive member and causing the conductive member to collide with the member to be joined,
The conductive member is connected to a circuit that applies an auxiliary current flowing in the same direction as the current induced in the conductive member by the magnetic field that generates the electromagnetic force ,
the circuit
a pair of rollers sandwiching the conductive member, at least one of which has at least an outer peripheral surface formed of a conductive material;
An electromagnetic forming apparatus comprising a DC power supply connected to a roller whose outer peripheral surface is formed of a conductive material .
前記一対のローラの少なくとも一方に駆動連結されたモータを有することを特徴とする請求項1に記載の電磁成形装置。 2. An electromagnetic forming apparatus according to claim 1 , further comprising a motor drivingly connected to at least one of said pair of rollers. 請求項1又は2のいずれかに記載の電磁成形装置を用いて、
導電性部材被接合部材との間に補強部材を配置し、
前記導電性部材に電磁力を与えて、前記補強部材を挟んだ状態で前記導電性部材を前記被接合部材に衝突させることを特徴とする電磁成形方法。
Using the electromagnetic forming apparatus according to either claim 1 or 2,
Disposing a reinforcing member between the conductive member and the member to be joined ,
An electromagnetic forming method, wherein an electromagnetic force is applied to the conductive member to cause the conductive member to collide with the member to be joined with the reinforcing member sandwiched therebetween.
前記導電性部材に補助電流を流すことを特徴とする請求項3に記載の電磁成形方法。 4. The electromagnetic forming method according to claim 3 , wherein an auxiliary current is passed through said conductive member. 前記導電性部材が、アルミニウム、又は鉄、若しくはそれらのいずれかを含む合金であることを特徴とする請求項3又は4のいずれかに記載の電磁成形方法。 5. The electromagnetic forming method according to claim 3 , wherein said conductive member is aluminum, iron, or an alloy containing either of them. 前記補強部材がカーボンファイバを含むことを特徴とする請求項3~5のいずれかに記載の電磁成形方法。 The electromagnetic molding method according to any one of claims 3 to 5 , wherein the reinforcing member contains carbon fiber.
JP2019007794A 2019-01-21 2019-01-21 Electromagnetic forming method and electromagnetic forming apparatus Active JP7120040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019007794A JP7120040B2 (en) 2019-01-21 2019-01-21 Electromagnetic forming method and electromagnetic forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007794A JP7120040B2 (en) 2019-01-21 2019-01-21 Electromagnetic forming method and electromagnetic forming apparatus

Publications (2)

Publication Number Publication Date
JP2020116590A JP2020116590A (en) 2020-08-06
JP7120040B2 true JP7120040B2 (en) 2022-08-17

Family

ID=71889497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007794A Active JP7120040B2 (en) 2019-01-21 2019-01-21 Electromagnetic forming method and electromagnetic forming apparatus

Country Status (1)

Country Link
JP (1) JP7120040B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518180A (en) 1998-06-14 2002-06-25 パルサー・ウェルディング・リミテッド Inducing physical changes in metal objects
US20180311907A1 (en) 2017-04-28 2018-11-01 Faurecia Automotive Composites Method of assembling two pieces of different materials and assembly resulting from the method of assembling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307687A (en) * 1989-05-22 1990-12-20 Nippon Steel Corp Production of composite metallic plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518180A (en) 1998-06-14 2002-06-25 パルサー・ウェルディング・リミテッド Inducing physical changes in metal objects
US20180311907A1 (en) 2017-04-28 2018-11-01 Faurecia Automotive Composites Method of assembling two pieces of different materials and assembly resulting from the method of assembling

Also Published As

Publication number Publication date
JP2020116590A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
Tsujino et al. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens
JP5128159B2 (en) Resistance welding method
US11123818B2 (en) Welding of steel blanks
JP2012183550A (en) Resistance welding method, resistance-welded member, resistance welder and control apparatus thereof, control method and control program for resistance welder, and resistance welding evaluation method and evaluation program
JP6112209B2 (en) Resistance spot welding method and manufacturing method of welded structure
JP2009241136A (en) Series spot or indirect spot welding method for high tensile strength steel sheet
JP7120040B2 (en) Electromagnetic forming method and electromagnetic forming apparatus
CN105517746A (en) Seam welding method and seam welding device
KR20130108810A (en) Jig unit of welding device for sheet
JP4753411B2 (en) Energization control method for spot resistance welding
JP3320515B2 (en) Post-treatment method for spot welding
US3612813A (en) Method of forming a lightweight metal sandwich having a honeycomb core
JP2016059937A (en) Spot weld device
JP7310211B2 (en) Electromagnetic forming method and electromagnetic forming apparatus
JP3852824B2 (en) Laminated electromagnetic welding method for thin metal plates
US3016450A (en) Welding method
JP2907317B2 (en) Laser welding method for railway vehicle structures
JP2018078077A (en) Heating apparatus for heating and jointing
JP2017024040A (en) Ultrasonic bonding apparatus
JPH01317687A (en) Spot welding method for laminated steel plate
JP2014034059A (en) Electromagnetic welding method for colliding metallic jets, and magnetic flux generating coil
JP3021239B2 (en) Plate buckling prevention device for plate joints
JP3605456B2 (en) H-beam joining method
JP2014024119A (en) Resistance spot welding method
JPH10189358A (en) Iron-core reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R150 Certificate of patent or registration of utility model

Ref document number: 7120040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150