JP7118769B2 - Manufacturing method of plastic working material - Google Patents

Manufacturing method of plastic working material Download PDF

Info

Publication number
JP7118769B2
JP7118769B2 JP2018122510A JP2018122510A JP7118769B2 JP 7118769 B2 JP7118769 B2 JP 7118769B2 JP 2018122510 A JP2018122510 A JP 2018122510A JP 2018122510 A JP2018122510 A JP 2018122510A JP 7118769 B2 JP7118769 B2 JP 7118769B2
Authority
JP
Japan
Prior art keywords
metal material
solid lubricant
plastic working
manufacturing
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018122510A
Other languages
Japanese (ja)
Other versions
JP2020001060A (en
Inventor
信夫 金丸
栄一 鈴木
香司 岩屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018122510A priority Critical patent/JP7118769B2/en
Publication of JP2020001060A publication Critical patent/JP2020001060A/en
Application granted granted Critical
Publication of JP7118769B2 publication Critical patent/JP7118769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Description

本発明は、塑性加工材の製造方法に関する。 The present invention relates to a method of manufacturing a plastically worked material.

金属製の管材や棒材を製造するための押出加工は、金属材料を塑性変形によって加工する。上記押出加工における押出性では、金属材料が変形中に割れ等により破壊することなく、金属材料の特性を高めたり、所定の寸法形状に加工されたりすることが重要となる。押出性は、金属材料の温度、コンテナ、ダイス、ステム、マンドレル等の金型の温度及び変形速度等の押出条件や組成、組織等の金属材料の特性といった多くの要因に依拠する。また、金属材料の押出性に影響を及ぼす要因の一つとして、金型表面および金属材料表面の相互作用により生じる熱伝達、摩擦及び摩耗が挙げられる。従って、金属材料と、押出時のコンテナ、ダイス、ステム、マンドレル等の金型との間における断熱性及び潤滑性は、押出性に影響を及ぼす要因となる。 Extrusion for manufacturing metal pipes and bars processes metal materials by plastic deformation. For extrudability in the above-described extrusion process, it is important that the metal material not break due to cracks or the like during deformation, enhance the properties of the metal material, or be processed into a predetermined size and shape. Extrudability depends on many factors such as the temperature of the metal material, extrusion conditions such as the temperature and deformation speed of molds such as containers, dies, stems and mandrels, and the properties of the metal material such as composition and structure. In addition, one of the factors that affect the extrudability of metal materials is heat transfer, friction, and wear caused by the interaction between the mold surface and the metal material surface. Therefore, the heat insulation and lubricity between the metal material and the mold such as a container, die, stem, mandrel, etc. during extrusion are factors that affect extrudability.

例えば、押出加工では、ビレットをダイスのビレット孔に装入し、ステムによりコンテナ内のビレットに押出力を与え、この押出力によってビレットをダイスの隙間に通して成形するというのが一般的である。この押出加工では、ダイス、マンドレル、コンテナ内周壁には焼付きが多く発生することから、比較的短期間でこの焼付きの程度が過度に至ってダイス、マンドレル、コンテナとビレットの摩擦力が増大してしまうため、ダイス、マンドレル、コンテナ等の金型の寿命が短くなるおそれがある。 For example, in extrusion processing, it is common to insert a billet into a billet hole in a die, apply an extrusion force to the billet in a container with a stem, and pass the billet through the gap of the die by this extrusion force to shape it. . In this extrusion process, the dies, mandrels, and the inner peripheral wall of the container often seize, and in a relatively short period of time, the degree of seizing becomes excessive, increasing the frictional force between the dies, mandrels, containers, and the billet. This may shorten the life of dies such as dies, mandrels and containers.

従来技術では、加工時の摩擦低減や摩耗による金型の損傷を抑制することを目的として、熱安定性及び塗膜形成性に優れる固体潤滑剤を金型に塗布することが開示されている(特開2001-240887号公報参照)。 In the prior art, it is disclosed to apply a solid lubricant with excellent thermal stability and coating film formation to the mold for the purpose of reducing friction during processing and suppressing damage to the mold due to wear ( See JP-A-2001-240887).

特開2001-240887号公報JP-A-2001-240887

上記固体潤滑剤の使用により、押出、鍛造等の加工時の摩擦は低減される。しかしながら、従来の固体潤滑剤を塗工した金型では、塗膜の耐久性が十分ではなく、押出加工を重ねる毎に金属材料表面の面積が拡大し潤滑剤がきれて、金型との摩擦により加工後の塑性加工材の表面に焼付き等による疵が生じてしまうおそれがある。これらの課題は、特にチタン、チタン合金、ニッケル合金、ジルカロイ等の耐熱性を有する難加工性の金属材料の熱間塑性加工において改善が望まれている。 Use of the solid lubricant reduces friction during processing such as extrusion and forging. However, with conventional molds coated with solid lubricants, the durability of the coating film is not sufficient, and each time the extrusion process is repeated, the surface area of the metal material expands and the lubricant wears off, causing friction with the mold. Due to this, there is a risk that flaws due to seizure or the like may occur on the surface of the plastically worked material after working. These problems are particularly desired in the hot plastic working of heat-resistant and difficult-to-work metallic materials such as titanium, titanium alloys, nickel alloys, and zircaloys.

本発明は、このような事情に鑑みてなされたものであり、熱間塑性加工時の摩擦を低減し、塑性加工材表面の焼付き等による疵の発生を抑制できる塑性加工材の製造方法の提供を目的とする。 The present invention has been made in view of such circumstances, and provides a method for manufacturing a plastically worked material that can reduce friction during hot plastic working and suppress the occurrence of flaws due to seizure or the like on the surface of the plastically worked material. for the purpose of providing

本発明者らは、上記の課題を解決するため、チタン、チタン合金、ニッケル合金、ジルカロイ等の難加工性の金属材料の塑性加工性を高める方法の検討を行った。 In order to solve the above problems, the present inventors have studied a method for improving the plastic workability of difficult-to-work metal materials such as titanium, titanium alloys, nickel alloys, and zircaloys.

上記課題を解決するためになされた本発明の一態様は、難加工性の金属材料の表面のJIS-B0601(2001年)に準拠して測定される算術平均粗さ(Ra)をショットブラストにより1.5μm以上25.0μm以下に調整する工程と、上記金属材料の表面に固体潤滑剤を塗布する工程と、上記金属材料を塑性加工する工程とを備える塑性加工材の製造方法である。 One aspect of the present invention, which has been made to solve the above problems, measures the arithmetic mean roughness (Ra) of the surface of a difficult-to-work metal material according to JIS-B0601 (2001) by shot blasting. A method for producing a plastically worked material, comprising the steps of adjusting the thickness to 1.5 μm or more and 25.0 μm or less, applying a solid lubricant to the surface of the metal material, and plastically working the metal material.

当該塑性加工材の製造方法は、難加工性の金属材料を塑性加工の前処理工程として、金属材料の表面の算術平均粗さ(Ra)をショットブラストにより1.5μm以上25.0μm以下に調整して固体潤滑剤を塗布することにより、上記金属材料の表面に固体潤滑剤を定着させることができる。その結果、上記金属材料と金型との摩擦による固体潤滑剤の除去を抑制し、難加工性の金属材料表面の固体潤滑剤の定着性を向上できるので、塑性加工時の摩擦を低減し、塑性加工材表面の焼付き等による疵の発生を抑制できる。 In the method of manufacturing the plastic working material, the arithmetic mean roughness (Ra) of the surface of the difficult-to-work metal material is adjusted to 1.5 μm or more and 25.0 μm or less by shot blasting as a pretreatment step for plastic working. The solid lubricant can be fixed on the surface of the metal material by applying the solid lubricant by pressing. As a result, it is possible to suppress the removal of the solid lubricant due to friction between the metal material and the mold, and improve the adherence of the solid lubricant to the surface of the difficult-to-work metal material. It is possible to suppress the occurrence of flaws due to seizure on the surface of the plastically worked material.

本発明の塑性加工材の製造方法は、塑性加工時の摩擦を低減し、塑性加工材表面の焼付き等による疵の発生を抑制できる。 The method of manufacturing a plastically worked material according to the present invention can reduce friction during plastic working and suppress the occurrence of flaws due to seizure or the like on the surface of the plastically worked material.

本発明の塑性加工材の製造方法に用いる金属材料である中空ビレットの断面図である。1 is a cross-sectional view of a hollow billet, which is a metal material used in the method of manufacturing a plastically worked material of the present invention; FIG. 本発明の塑性加工材の製造方法の一実施形態における熱間押出加工時の押出装置の概略断面図である。1 is a schematic cross-sectional view of an extrusion device during hot extrusion processing in one embodiment of the method for manufacturing a plastically worked material of the present invention. FIG.

以下、本発明の一実施形態に係る塑性加工材の製造方法について説明する。 A method of manufacturing a plastically worked material according to one embodiment of the present invention will be described below.

<塑性加工材の製造方法>
当該塑性加工材の製造方法は、チタン及びチタン合金材等の耐熱合金、およびその製造方法に関するものである。当該塑性加工材の製造方法は、難加工性の金属材料の表面のJIS-B0601(2001年)に準拠して測定される算術平均粗さ(Ra)をショットブラストにより1.5μm以上25.0μm以下に調整する工程と、上記金属材料の表面に固体潤滑剤を塗布する工程と、上記金属材料を塑性加工する工程とを備える。また、当該塑性加工材の製造方法は、上記金属材料を加熱する工程を有することが好ましい。上記加熱工程は、上記固体潤滑剤塗布工程の前及び後のどちらで行ってもよい。
<Method for manufacturing plastically worked material>
The manufacturing method of the plastically worked material relates to heat-resistant alloys such as titanium and titanium alloy materials, and manufacturing methods thereof. In the method for producing the plastic work material, the arithmetic average roughness (Ra) measured according to JIS-B0601 (2001) of the surface of the difficult-to-work metal material is shot blasted to 1.5 μm or more and 25.0 μm. a step of applying a solid lubricant to the surface of the metal material; and a step of plastic working the metal material. Moreover, it is preferable that the method for manufacturing the plastically worked material includes a step of heating the metal material. The heating step may be performed either before or after the solid lubricant application step.

当該塑性加工材の製造方法は、難加工性の金属材料(ビレット)の表面をショットブラストにより所定の算術平均粗さに調整後に上記金属材料の表面に固体潤滑剤を塗布することにより、塑性加工時の潤滑性を確保できるとともに、塑性加工材の外面欠陥を抑制することができる。より具体的には、当該塑性加工材の製造方法によれば、難加工性の金属材料の塑性加工においても、ダイス、コンテナ、ステム、マンドレル等の金型等と上記金属材料との間に良好な潤滑性を確保することができる。その結果、金型と上記金属材料との間の摩擦を減少させて、塑性加工中に起こりやすい焼付き、かじり(摺動面の異常磨耗)等の欠陥を抑制でき、表面品質に優れ、かつ寸法精度の良い塑性加工材を製造できる。また、加工中の金属材料と金型等との間の離型が滑らかになり、金型等の使用期間を向上できる。さらに、塑性加工材の表面疵を低減できるので、チタン、チタン合金、ニッケル合金、ジルカロイ等の難加工性の金属材料の塑性加工材の歩留り及び生産性の向上によるコストダウンと品質向上が可能となる。 In the method for producing the plastically worked material, the surface of a difficult-to-work metal material (billet) is adjusted to a predetermined arithmetic mean roughness by shot blasting, and then the surface of the metal material is coated with a solid lubricant to perform plastic working. It is possible to secure the lubricity at the time and suppress the outer surface defects of the plastically worked material. More specifically, according to the method for producing a plastically worked material, even in the plastic working of a difficult-to-work metal material, there is good adhesion between the metal material and a mold such as a die, container, stem, or mandrel. lubricity can be ensured. As a result, the friction between the mold and the metal material can be reduced, and defects such as seizure and galling (abnormal wear of the sliding surface) that tend to occur during plastic working can be suppressed, and the surface quality is excellent. It is possible to manufacture plastic processed materials with good dimensional accuracy. In addition, the release between the metal material being processed and the mold or the like becomes smooth, and the life of the mold or the like can be extended. In addition, since the surface defects of plastically worked materials can be reduced, it is possible to reduce costs and improve quality by improving the yield and productivity of plastically worked metal materials such as titanium, titanium alloys, nickel alloys, and zircaloy, which are difficult to work. Become.

上記塑性加工の具体例としては、例えば自由鍛造、閉塞鍛造、前方押出、後方押出、ラジアル鍛造、アップセット鍛造、ドロー鍛造等が挙げられる。 Specific examples of the plastic working include free forging, closed forging, forward extrusion, backward extrusion, radial forging, upset forging, and draw forging.

[算術平均粗さ調整工程]
本工程では、難加工性の金属材料の表面のJIS-B0601(2001年)に準拠して測定される算術平均粗さ(Ra)をショットブラストにより1.5μm以上25.0μm以下に調整する。本工程により難加工性の金属材料表面の固体潤滑剤の定着性を向上できる。
[Arithmetic Mean Roughness Adjustment Step]
In this step, the arithmetic mean roughness (Ra) of the surface of the hard-to-work metal material measured according to JIS-B0601 (2001) is adjusted to 1.5 μm or more and 25.0 μm or less by shot blasting. This step can improve the fixability of the solid lubricant on the surface of the hard-to-work metal material.

本発明に用いられるインゴット、ビレット等の難加工性の金属材料は、例えばチタン、チタン合金、ニッケル合金、ジルカロイ等の耐熱合金などの難加工性の金属材料が適する。 Hard-to-work metal materials such as ingots and billets used in the present invention are suitable for hard-to-work metal materials such as titanium, titanium alloys, nickel alloys, and heat-resistant alloys such as zircaloy.

算術平均粗さ調整手段であるショットブラストのショットの材質としては、例えばアルミナ、スチール、ステンレス、セラミック等が好ましい。これらの中でも、固体潤滑剤の上記金属材料の表面に対する定着性を向上する観点から、スチールが好ましい。 Alumina, steel, stainless steel, ceramic, and the like are preferable as the material of the shot for shot blasting, which is the means for adjusting the arithmetic mean roughness. Among these, steel is preferable from the viewpoint of improving the fixability of the solid lubricant to the surface of the metal material.

算術平均粗さ調整後の難加工性の金属材料の表面のJIS-B0601(2001年)に準拠して測定される算術平均粗さ(Ra)の下限としては、1.5μmであり、上記算術平均粗さが1.5μm未満の場合、固体潤滑剤が上記金属材料の表面に十分に定着しないおそれがある。また、上記算術平均粗さ(Ra)の上限としては、25.0μmであり上記算術平均粗さが25.0μmを超える場合、塑性加工材の表面性状に影響を及ぼすおそれがある。 The lower limit of the arithmetic mean roughness (Ra) measured in accordance with JIS-B0601 (2001) of the surface of the difficult-to-work metal material after adjusting the arithmetic mean roughness is 1.5 μm. If the average roughness is less than 1.5 μm, the solid lubricant may not sufficiently adhere to the surface of the metal material. The upper limit of the arithmetic mean roughness (Ra) is 25.0 μm, and if the arithmetic mean roughness exceeds 25.0 μm, the surface properties of the plastically worked material may be affected.

[固体潤滑剤塗布工程]
本工程では、算術平均粗さ調整工程により、算術平均粗さが調整された難加工性の金属材料の表面に固体潤滑剤を塗布する。本工程により、塑性加工時に、金型と上記金属材料(ビレット)との接触面に固体潤滑剤が介在するので、金型等の塑性加工工具と上記金属材料との間に生ずる摩擦力が低減されるとともに、塑性加工工具と上記金属材料との接触面における焼付き、かじり等の欠陥の発生を抑制できる。
[Solid Lubricant Application Process]
In this step, a solid lubricant is applied to the surface of the difficult-to-work metal material whose arithmetic mean roughness has been adjusted in the arithmetic mean roughness adjusting step. Through this process, a solid lubricant intervenes on the contact surface between the metal mold and the metal material (billet) during plastic working, thereby reducing the frictional force generated between the plastic working tool such as the metal mold and the metal material. In addition, it is possible to suppress the occurrence of defects such as seizure and galling on the contact surface between the plastic working tool and the metal material.

(固体潤滑剤)
固体潤滑剤としては、特に限定されない。例えば、黒鉛系潤滑剤等が挙げられる。
(solid lubricant)
The solid lubricant is not particularly limited. Examples include graphite-based lubricants.

黒鉛系潤滑剤としては、例えば黒鉛粉末が挙げられる。黒鉛粉末としては、天然黒鉛粉末等を用いることができる。黒鉛粉末としては、複数の種類の黒鉛を混合して用いることができる。 Examples of graphite-based lubricants include graphite powder. Natural graphite powder or the like can be used as the graphite powder. As the graphite powder, a mixture of different types of graphite can be used.

固体潤滑剤は塗布層形成性を改善するため、溶媒中に分散させてもよい。溶媒としては水が挙げられる。 A solid lubricant may be dispersed in a solvent in order to improve coating layer formability. Solvents include water.

(塗布方法)
固体潤滑剤の塗布方法としては、例えば80℃~120℃の範囲で予熱後に刷毛塗り等による塗布が挙げられる。
(Application method)
As a method of applying the solid lubricant, for example, after preheating in the range of 80° C. to 120° C., application by brush coating or the like can be mentioned.

[加熱工程]
加熱工程では、難加工性の金属材料を所定の温度まで加熱する。上記金属材料は、加熱炉もしくはインダクションヒーター(高周波誘導加熱装置)により加熱し、600℃以上1300℃以下の範囲の温度に昇温する。本工程により塑性加工材の組織の均質化を図ることができるとともに、塑性加工性がより向上する。
[Heating process]
In the heating step, the hard-to-work metal material is heated to a predetermined temperature. The metal material is heated by a heating furnace or an induction heater (high-frequency induction heating device) to a temperature in the range of 600° C. or higher and 1300° C. or lower. By this process, the structure of the plastically worked material can be homogenized, and the plastic workability is further improved.

加熱工程は、固体潤滑剤塗布工程後に行ってもよいし、固体潤滑剤塗布工程前に行ってもよい。 The heating step may be performed after the solid lubricant application step or before the solid lubricant application step.

上記加熱工程における加熱温度の下限としては、金属材料の高温での変形能の観点から600℃以上が好ましく、650℃以上がより好ましい。上記加熱温度の上限としては、固体潤滑剤の高温での保持性の観点から900℃以下が好ましく、850℃以下がより好ましい。 The lower limit of the heating temperature in the heating step is preferably 600° C. or higher, more preferably 650° C. or higher, from the viewpoint of deformability of the metal material at high temperatures. The upper limit of the heating temperature is preferably 900° C. or lower, more preferably 850° C. or lower, from the viewpoint of retention of the solid lubricant at high temperatures.

[塑性加工工程]
塑性加工工程は、算術平均粗さ調整工程、固体潤滑剤塗布工程及び加熱工程後の上記金属材料を塑性加工する。
[Plastic working process]
The plastic working process plastically works the metal material after the arithmetic mean roughness adjusting process, the solid lubricant applying process and the heating process.

本実施形態においては、上記金属材料の塑性加工工程の一例として、中心部に貫通孔が設けられた中空ビレットを金属材料として熱間押出加工により、金属管を製造する場合について説明する。 In the present embodiment, as an example of the plastic working process of the metal material, a case of manufacturing a metal pipe by hot extrusion using a hollow billet having a through hole in the center as the metal material will be described.

図1は、当該塑性加工材の製造方法に用いる金属材料である中空ビレット1の断面図である。図2は、当該塑性加工材の製造方法の一実施形態における熱間押出加工時の押出装置の概略断面図である。当該塑性加工材の製造方法に用いる金属材料である中空ビレット1は、難加工性金属材料11により製造され、外周面及び内周面に固体潤滑剤の塗布層12を有する。管材の製造に用いられる押出装置10は、コンテナ3の一端側にダイス2が装着されている。また、金型となる押出装置10は、常温から900℃の範囲に昇温される。 FIG. 1 is a cross-sectional view of a hollow billet 1, which is a metal material used in the method of manufacturing the plastically worked material. FIG. 2 is a schematic cross-sectional view of an extrusion device during hot extrusion processing in one embodiment of the method for manufacturing the plastically worked material. A hollow billet 1, which is a metal material used in the method of manufacturing the plastically worked material, is manufactured from a difficult-to-work metal material 11, and has solid lubricant coating layers 12 on the outer and inner peripheral surfaces. A die 2 is attached to one end side of a container 3 in an extrusion device 10 used for manufacturing a pipe material. Also, the temperature of the extruder 10, which serves as a mold, is raised from room temperature to 900°C.

上記構成の押出装置10において、金属材料の熱間押出加工は次のように行う。始めに、図2に示すように、コンテナ3のビレット孔内に中空ビレット1が装着される。また、中空ビレット1の貫通孔には圧力媒体13を介してマンドレル9が挿入されるとともに、中空ビレット1の後端面には圧力媒体13を介してシールピストン7が配置されている。 In the extrusion apparatus 10 configured as described above, hot extrusion of the metal material is performed as follows. First, as shown in FIG. 2, the hollow billet 1 is mounted in the billet hole of the container 3 . A mandrel 9 is inserted into the through hole of the hollow billet 1 via a pressure medium 13 , and a seal piston 7 is arranged on the rear end surface of the hollow billet 1 via a pressure medium 13 .

このような構成において、ステム8を作動させてシールピストン7を中空ビレット1の押出方向Fの方向に押圧すると、中空ビレット1がダイス2とマンドレル9とで形成される環状空隙から押し出される。そして、ダイス2の内径に対応する外径と、マンドレル9のダイス側先端部の外径に対応する内径とを有する管材15が製造される。 In such a configuration, when the stem 8 is actuated to push the sealing piston 7 in the extrusion direction F of the hollow billet 1 , the hollow billet 1 is extruded from the annular space formed by the die 2 and the mandrel 9 . Then, a tube member 15 having an outer diameter corresponding to the inner diameter of the die 2 and an inner diameter corresponding to the outer diameter of the tip of the mandrel 9 on the die side is manufactured.

上記押し出時においては、ダイス2の内周面及び中空ビレット1間、並びにマンドレル9の外周面及び中空ビレット1間には、固体潤滑剤の塗布層12が介在しているので、良好な潤滑性を確保することができる。その結果、ダイス2の内周面及び中空ビレット1間並びにマンドレル9の外周面及び中空ビレット1間の摩擦を減少させて、管材15の表面欠陥を抑制でき、表面品質に優れ、かつ寸法精度を良好にできる。また、加工後の塑性加工材と金型等との間の離型が滑らかになり、金型等の使用期間を向上できる。 At the time of extrusion, the coating layer 12 of the solid lubricant is interposed between the inner peripheral surface of the die 2 and the hollow billet 1 and between the outer peripheral surface of the mandrel 9 and the hollow billet 1, so that good lubrication is achieved. can ensure the integrity of the As a result, the friction between the inner peripheral surface of the die 2 and the hollow billet 1 and between the outer peripheral surface of the mandrel 9 and the hollow billet 1 can be reduced to suppress surface defects of the tube material 15, resulting in excellent surface quality and dimensional accuracy. can do well. In addition, the release between the plastically worked material and the mold after working becomes smooth, and the life of the mold can be extended.

(利点)
当該塑性加工材の製造方法にあっては、塑性加工時の摩擦を低減し、塑性加工材表面の焼付き等による疵の発生を抑制できるので、難加工性の金属材料からなる塑性加工材の歩留り及び生産性の向上によるコストダウンと品質向上が可能となる。
(advantage)
In the method for manufacturing a plastically worked material, friction during plastic working can be reduced, and the occurrence of flaws due to seizure, etc. on the surface of the plastically worked material can be suppressed. It is possible to reduce costs and improve quality by improving yield and productivity.

(その他の実施形態)
本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えることも可能である。
(Other embodiments)
The present invention is not limited by the following examples, and appropriate modifications can be made within the scope of the gist of the present invention.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be carried out with appropriate modifications within the scope of the gist of the present invention. All of them are included in the technical scope of the present invention.

[試験No.1~No.11]
中空ビレットについて下記の工程を行い、試験No.1~No.11の塑性加工材を作製した。
[Test No. 1 to No. 11]
The hollow billet was subjected to the following steps, and test no. 1 to No. Eleven plastic worked materials were produced.

[算術平均粗さ調整工程]
(難加工性金属材料)
難加工性金属材料(ビレット)として、チタンからなる中空ビレットを使用した。
[Arithmetic Mean Roughness Adjustment Step]
(hard-to-work metal material)
A hollow billet made of titanium was used as a hard-to-work metal material (billet).

(ショットブラスト)
中空ビレットの外周面及び内周面にショットブラストを行った。ショットの材質として、アルミナ(JIS-R6001(1998年)に規定される粒度:F46及びF80)又はスチールグリッド(100番)を用いた。
(Shot blast)
Shot blasting was performed on the outer peripheral surface and the inner peripheral surface of the hollow billet. Alumina (Grit size: F46 and F80 specified in JIS-R6001 (1998)) or steel grid (No. 100) was used as the shot material.

(中空ビレットの算術平均粗さ(Ra)の測定)
JIS-B0601(2001年)に準拠してショットブラスト後の中空ビレットの外周面及び内周面の算術平均粗さ(Ra)を測定した。各中空ビレットの算術平均粗さ(Ra)を表2に示す。
(Measurement of arithmetic mean roughness (Ra) of hollow billet)
The arithmetic average roughness (Ra) of the outer peripheral surface and the inner peripheral surface of the hollow billet after shot blasting was measured according to JIS-B0601 (2001). Table 2 shows the arithmetic mean roughness (Ra) of each hollow billet.

[固体潤滑剤塗布工程]
ショットブラスト後の中空ビレットの外周面及び内周面に、80以上120℃以下の範囲で予熱した後、固体潤滑剤として黒鉛潤滑剤A及び黒鉛潤滑剤Bを刷毛塗りにより塗布した。
[Solid Lubricant Application Process]
After preheating the outer and inner peripheral surfaces of the hollow billet after shot blasting in the range of 80 to 120° C., graphite lubricant A and graphite lubricant B were applied as solid lubricants by brushing.

固体潤滑剤の組成として、下記の2種類を用いた。
(1)黒鉛潤滑剤A
微粒子黒鉛を水に分散させて用いた。粘度は1200Pa・s~3500Pa・sの範囲に調整した。
(2)黒鉛潤滑剤B
超微粒子黒鉛及び微粒子黒鉛を水に分散させて用いた。粘度は1200Pa・s~3500Pa・sの範囲に調整した。
The following two types were used as the composition of the solid lubricant.
(1) Graphite lubricant A
Fine graphite particles were used by dispersing them in water. The viscosity was adjusted in the range of 1200 Pa·s to 3500 Pa·s.
(2) Graphite lubricant B
Ultrafine graphite particles and fine graphite particles were used by dispersing them in water. The viscosity was adjusted in the range of 1200 Pa·s to 3500 Pa·s.

[加熱工程]
次に、中空ビレットをインダクションヒーターにより750℃で7分間加熱した。
[Heating process]
The hollow billet was then heated at 750° C. for 7 minutes with an induction heater.

[塑性加工工程]
次に、熱間押出装置に加熱した中空ビレットを装着後、ラム加工速度5mm/秒~10mm/秒で熱間押出加工して塑性加工材として管材を製造した。各中空ビレットの外観寸法、押出後の管材の寸法及び質量、並びに押出比を表1に示す。なお、押出比は中空ビレットの断面積に対する押出加工後の管材の断面積比をいう。
[Plastic working process]
Next, after mounting the heated hollow billet on a hot extruder, it was hot extruded at a ram processing speed of 5 mm/sec to 10 mm/sec to produce a tubular material as a plastically worked material. Table 1 shows the external dimensions of each hollow billet, the dimensions and mass of the tube material after extrusion, and the extrusion ratio. The extrusion ratio refers to the cross-sectional area ratio of the tube material after extrusion to the cross-sectional area of the hollow billet.

Figure 0007118769000001
Figure 0007118769000001

[評価]
(表面疵深さ)
試験No.1~No.11の塑性加工材の先端500mm~1000mmにかけて、試験片を採取し、目視での疵外表面部が最も深い部位の断面を切出し、該当部の写真撮影を行い、疵深さを直接、測定した。これらの方法にて試験No.1~No.11の塑性加工材の外周面の焼付きによる表面疵深さを測定した。これらの測定結果を表2に示す。
[evaluation]
(Surface flaw depth)
Test no. 1 to No. A test piece was sampled from 500 mm to 1000 mm at the tip of the plastically worked material of No. 11, and the cross section of the portion where the outer surface of the flaw was visually the deepest was cut out, and the relevant portion was photographed. The depth of the flaw was directly measured. . Test no. 1 to No. The surface flaw depth due to seizure on the outer peripheral surface of the plastically worked material No. 11 was measured. These measurement results are shown in Table 2.

(表面性状)
試験No.1~No.11の塑性加工材の表面性状について外観評価を行った。評価基準は以下の通りとした。これらの評価結果を表2に示す。
A:爪で触った時に引っ掛かる疵であるが、補修することなく、冷間加工等の2次加工が可能である。
B:外表面に光を照らすとわずかに筋状の疵が見られるが、部分的な補修で2次加工が可能である。
C:軸方向に筋状の疵が見られ、かじりが発生している。疵深さ相当量の研削等により全面的に疵を除去することで2次加工が可能である。
(Surface texture)
Test no. 1 to No. Appearance evaluation was performed on the surface properties of 11 plastically worked materials. The evaluation criteria were as follows. These evaluation results are shown in Table 2.
A: Although it is a flaw that can be caught when touched with a fingernail, secondary processing such as cold working is possible without repair.
B: Slight streak-like flaws are seen when the outer surface is illuminated with light, but secondary processing is possible by partial repair.
C: Streak-like flaws are observed in the axial direction, and galling occurs. Secondary processing can be performed by removing flaws from the entire surface by grinding or the like corresponding to the depth of the flaw.

Figure 0007118769000002
Figure 0007118769000002

表2に示すように、塑性加工材である管材の表面の算術平均粗さ(Ra)を1.5μm以上25.0μm以下に調整後、固体潤滑剤を塗布した試験No.1~試験No.8の表面疵の深さは70μm以下であった。一方、比較例の表面疵の深さは、196μm~538μmの範囲であった。上記結果から、当該塑性加工材の製造方法は、難加工性の金属材料を用いても塑性加工時の摩擦を低減し、塑性加工材表面の焼付き等による疵の発生を抑制でき、塑性加工材及びその加工製品の歩留りや生産性の向上によるコストダウンと品質向上することが可能であることが判明した。 As shown in Table 2, test no. 1 to test No. The depth of surface flaws of No. 8 was 70 μm or less. On the other hand, the depth of the surface flaws in the comparative examples was in the range of 196 μm to 538 μm. From the above results, the method for manufacturing the plastic working material can reduce friction during plastic working even if a difficult-to-work metal material is used, and can suppress the occurrence of flaws due to seizure on the surface of the plastic working material. It was found that it is possible to reduce costs and improve quality by improving the yield and productivity of materials and their processed products.

本発明の塑性加工材の製造方法は、上述のように、塑性加工時の摩擦を低減し、塑性加工材表面の焼付き等による疵の発生を抑制できるので、難加工性の金属材料の塑性加工をする際に好適に用いることができる。 As described above, the method for producing a plastically worked material of the present invention can reduce friction during plastic working and suppress the occurrence of flaws due to seizure on the surface of the plastically worked material. It can be suitably used when processing.

1 中空ビレット(金属材料)
2 ダイス
3 コンテナ
7 シールピストン
8 ステム
9 マンドレル
10 押出装置
11 難加工性金属材料
12 固体潤滑剤の塗布層
13 圧力媒体
15 管材
F 中空ビレットの押出方向
1 Hollow billet (metal material)
2 Die 3 Container 7 Seal piston 8 Stem 9 Mandrel 10 Extrusion device 11 Difficult-to-work metal material 12 Coated layer of solid lubricant 13 Pressure medium 15 Tube member F Extrusion direction of hollow billet

Claims (2)

チタン又はチタン合金の表面のJIS-B0601(2001年)に準拠して測定される算術平均粗さ(Ra)をショットブラストにより1.5μm以上25.0μm以下に調整する工程と、
上記チタン又は上記チタン合金の表面に固体潤滑剤を塗布する工程と、
上記チタン又は上記チタン合金を塑性加工する工程と
を備える塑性加工材の製造方法。
A step of adjusting the arithmetic mean roughness (Ra) of the titanium or titanium alloy surface measured according to JIS-B0601 (2001) to 1.5 μm or more and 25.0 μm or less by shot blasting;
applying a solid lubricant to the surface of the titanium or titanium alloy ;
and a step of plastic working the titanium or titanium alloy .
上記ショットブラストのショットの材質がスチールである請求項1に記載の塑性加工材の製造方法。2. The method of manufacturing a plastically worked material according to claim 1, wherein the material of the shot for said shot blasting is steel.
JP2018122510A 2018-06-27 2018-06-27 Manufacturing method of plastic working material Active JP7118769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018122510A JP7118769B2 (en) 2018-06-27 2018-06-27 Manufacturing method of plastic working material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122510A JP7118769B2 (en) 2018-06-27 2018-06-27 Manufacturing method of plastic working material

Publications (2)

Publication Number Publication Date
JP2020001060A JP2020001060A (en) 2020-01-09
JP7118769B2 true JP7118769B2 (en) 2022-08-16

Family

ID=69098024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122510A Active JP7118769B2 (en) 2018-06-27 2018-06-27 Manufacturing method of plastic working material

Country Status (1)

Country Link
JP (1) JP7118769B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624758B2 (en) * 1988-03-28 1997-06-25 株式会社東芝 Header processing material and method of manufacturing the same
JPH09143552A (en) * 1995-11-27 1997-06-03 Daido Steel Co Ltd Method for forging precipitation hardening type stainless steel

Also Published As

Publication number Publication date
JP2020001060A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
KR101814227B1 (en) Lubrication processes for enhanced forgeability
JP6214751B2 (en) Articles, systems, and methods for forging alloys
CN104607580A (en) Forging forming technology of aluminum alloy straight-flanked ring with extra-large specification
JP2016512172A5 (en)
CN109013734B (en) Extrusion preparation method of titanium alloy thin-wall section
CN1230138A (en) Plug and mandrel bar for rolling of seamless steel pipe and method of mfg. seamless steel pipe
CN111215474A (en) Manufacturing method of martensite stainless steel continuous casting billet extrusion seamless tube
CN111889535B (en) Preparation method of zirconium alloy bar
JP7118769B2 (en) Manufacturing method of plastic working material
JP4677998B2 (en) DIE FOR HOT EXTRUSION PROCESS AND METHOD FOR PRODUCING HOT EXTRUSION MATERIAL
JP5672215B2 (en) Surface processing crack sensitivity evaluation method and apparatus
CN103909125A (en) Brake and extrusion forming method for iso-wall-thickness elbows
RU2722939C1 (en) Method of making complex profile axisymmetric parts
TWI706817B (en) Extrusion device and extrusion method thereof
JP4967974B2 (en) Glass lubricant for hot extrusion, method for hot extrusion of metal material using the same, and method for manufacturing metal tube
JP2015107496A (en) Production method of hollow extruded article, and hollow extruded article
RU2598414C2 (en) Method of making mandrel for piercing rolling
JP2005131667A (en) Manufacturing method for hot-extruded seamless steel tube
CN117531864B (en) High-efficiency preparation method of bimetal seamless composite pipe
RU2806565C1 (en) Method for restoring outer surface of piercing mill mandrels and stamp for its implementation
JPH09192724A (en) Manufacture of seamless steel tube by hot extrusion
CN104119996A (en) Lubricating liquid suitable for surface lubricating of pure aluminum blanks and preparation method thereof
RU2419504C1 (en) Method of producing thin-wall shells
Kosmatskiy et al. TECNICA ITALIANA-Italian Journal of Engineering Science
RU2497626C1 (en) Method of rifled barrel production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7118769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150