JP7118270B2 - Air-conditioning system control device, air-conditioning system control method, and air-conditioning system - Google Patents

Air-conditioning system control device, air-conditioning system control method, and air-conditioning system Download PDF

Info

Publication number
JP7118270B2
JP7118270B2 JP2021528596A JP2021528596A JP7118270B2 JP 7118270 B2 JP7118270 B2 JP 7118270B2 JP 2021528596 A JP2021528596 A JP 2021528596A JP 2021528596 A JP2021528596 A JP 2021528596A JP 7118270 B2 JP7118270 B2 JP 7118270B2
Authority
JP
Japan
Prior art keywords
heat storage
operation plan
air
refrigerant
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021528596A
Other languages
Japanese (ja)
Other versions
JPWO2020255375A1 (en
Inventor
芸青 范
信 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020255375A1 publication Critical patent/JPWO2020255375A1/en
Application granted granted Critical
Publication of JP7118270B2 publication Critical patent/JP7118270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、空調機の運転計画を作成して制御する空調システムの制御装置、空調システムの制御方法及び空調システムに関する。 The present invention relates to an air-conditioning system control device, an air-conditioning system control method, and an air-conditioning system that create and control an operation plan for an air-conditioner.

従来、建物の負荷を予測し、予測した負荷に基づいて空調機の運転計画を作成し、作成した運転計画で空調機を稼働させる空調システムがある(例えば、特許文献1参照)。この空調システムでは、建物の負荷を考慮した運転計画が作成されているため、空調を効率的に行うことができ、消費電力の低減が図られている。 Conventionally, there is an air conditioning system that predicts the load of a building, creates an operation plan for air conditioners based on the predicted load, and operates the air conditioners according to the created operation plan (see Patent Document 1, for example). In this air-conditioning system, since an operation plan is created in consideration of the load of the building, air-conditioning can be performed efficiently, and power consumption can be reduced.

特開2011-214794号公報JP 2011-214794 A

ところで、従来、冷媒を循環させて生成した冷熱を蓄熱槽に蓄熱する蓄熱運転及び蓄熱槽の冷熱を用いて空調を行う蓄熱利用運転を行う蓄熱空調機と、冷媒を循環させて空調を行う複数の冷媒空調機とを備えた空調システムがある。 By the way, conventionally, there are heat storage air conditioners that perform heat storage operation in which cold heat generated by circulating a refrigerant is stored in a heat storage tank and heat storage use operation in which air conditioning is performed using the cold heat in the heat storage tank. There is an air conditioning system with a refrigerant air conditioner of

この種の空調システムにおいて、特許文献1のように各空調機を運転計画に基づいて運転させる制御が考えられる。しかしながら、特許文献1では、運転予定の空調機が故障した場合の運転計画の再計画について何ら検討されていない。このため空調機の故障が発生して以降の運転では、消費電力の低減効果を得られない可能性があった。 In this type of air-conditioning system, it is conceivable to control each air conditioner to operate based on an operation plan, as in Patent Document 1. However, Patent Literature 1 does not consider re-planning of the operation plan when an air conditioner scheduled to operate fails. For this reason, there is a possibility that the power consumption reduction effect cannot be obtained in the operation after the occurrence of the failure of the air conditioner.

本発明はこのような点を鑑みなされたもので、空調機が故障した場合にも消費電力の低減を図ることが可能な空調システムの制御装置、空調システムの制御方法及び空調システムを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an air-conditioning system controller, an air-conditioning system control method, and an air-conditioning system capable of reducing power consumption even when an air conditioner fails. With the goal.

本発明に係る空調システムの制御装置は、冷媒を循環させて空調を行う複数の冷媒空調機と、冷媒を循環させて生成した冷熱を蓄熱槽に蓄熱する蓄熱運転及び蓄熱槽の冷熱を用いて空調を行う蓄熱利用運転を行う蓄熱空調機と、を有し、建物内を空調する空調システムの制御装置であって、気象予報データを取得する情報取得部と、建物の将来の期間における負荷を予測する負荷予測部と、負荷予測部で予測された負荷と気象予報データとに基づいて空調システムの消費電力が削減されるように運転計画を作成する運転計画作成部と、運転計画に従って空調システムの運転を制御する制御指令指示部と、複数の冷媒空調機のそれぞれの故障を検知する故障検知部と、故障検知部で故障が検知された場合に、故障が発生した故障機を修復するために要する修復時間を予測する修復時間予測部と、を備え、運転計画作成部は、故障が検知された場合、修復時間に基づいて運転計画を再計画するものである。 A control device for an air conditioning system according to the present invention uses a plurality of refrigerant air conditioners that perform air conditioning by circulating a refrigerant, a heat storage operation that stores the cold heat generated by circulating the refrigerant in a heat storage tank, and the cold heat in the heat storage tank. A control device for an air-conditioning system that air-conditions a building, comprising: a heat-storage air conditioner that performs heat-storage operation for air-conditioning, and an information acquisition unit that acquires weather forecast data; A load prediction unit that predicts; an operation plan creation unit that creates an operation plan so as to reduce the power consumption of the air conditioning system based on the load predicted by the load prediction unit and weather forecast data; and an air conditioning system according to the operation plan. a control command instruction unit that controls the operation of a plurality of refrigerant air conditioners; a failure detection unit that detects failures in each of a plurality of refrigerant air conditioners; and a repair time predicting unit for predicting a repair time required for repair, and the operation planning unit re-plans the operation plan based on the repair time when a failure is detected.

本発明によれば、故障機を修復するために要する修復時間を予測し、予測結果に基づいて運転計画を再計画するので、冷媒空調機の故障が発生した場合にも消費電力の低減を図ることができる。 According to the present invention, the repair time required to repair a failed unit is predicted, and the operation plan is rescheduled based on the predicted result, so power consumption can be reduced even when a refrigerant air conditioner fails. be able to.

実施の形態の空調システムの構成を示す図である。It is a figure showing composition of an air-conditioning system of an embodiment. 実施の形態の空調システムの制御装置の機能的な構成を示す図である。It is a figure which shows the functional structure of the control apparatus of the air conditioning system of embodiment. 実施の形態に係る故障データベースの一例を示す図である。It is a figure which shows an example of the fault database which concerns on embodiment. 実施の形態に係る空調システムの制御装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of the control apparatus of the air conditioning system which concerns on embodiment. 実施の形態に係る空調システムの制御装置における故障対応運転制御の流れを示すフローチャートである。4 is a flow chart showing the flow of failure handling operation control in the control device for the air conditioning system according to the embodiment. 実施の形態に係る空調システムの各空調機の外気温度-COP特性を示す図である。FIG. 4 is a diagram showing outside air temperature-COP characteristics of each air conditioner of the air conditioning system according to the embodiment; 実施の形態に係る空調システムにおいて予測された建物の負荷を運転計画と共に示した図である。It is the figure which showed the load of the building predicted in the air-conditioning system which concerns on embodiment with an operation plan. 図7の運転計画から再計画された再計画後の運転計画を示す図で、冷媒空調機Aが18時までに復旧しない場合の例を示す図である。FIG. 8 is a diagram showing an operation plan after re-planning based on the operation plan of FIG. 7 and showing an example in which the refrigerant air conditioner A is not restored by 18:00; 図7及び図8に対応した図であって、冷媒空調機B及び蓄熱空調機Cのそれぞれの運転期間の変化を示す図である。FIG. 9 is a diagram corresponding to FIGS. 7 and 8 and showing changes in the operation period of each of the refrigerant air conditioner B and the heat storage air conditioner C. FIG. 図7の運転計画から再計画された再計画後の運転計画を示す図で、冷媒空調機Aが18時までに復旧する場合の例を示す図である。FIG. 8 is a diagram showing an operation plan after re-planning based on the operation plan of FIG. 7 and showing an example in which the refrigerant air conditioner A is restored by 18:00; 図10に対応した図であって、各空調機のそれぞれの運転期間の変化を示す図である。FIG. 11 is a diagram corresponding to FIG. 10 and showing changes in the operation period of each air conditioner; 実施の形態に係る空調システムの制御装置における運転計画の再計画の説明図で、能力条件がある場合の例を示す図である。FIG. 10 is an explanatory diagram of re-planning of the operation plan in the control device of the air-conditioning system according to the embodiment, and is a diagram showing an example when there is a capacity condition; 図12の運転計画から再計画された再計画後の運転計画を示す図で、冷媒空調機Aが18時までに復旧しない場合の例を示す図である。FIG. 13 is a diagram showing an operation plan after re-planning based on the operation plan of FIG. 12 and showing an example in which the refrigerant air conditioner A is not restored by 18:00. 図12の運転計画から再計画された再計画後の運転計画を示す図で、冷媒空調機Aが18時までに復旧する場合の例を示す図である。FIG. 13 is a diagram showing an operation plan after re-planning based on the operation plan of FIG. 12 and showing an example in which the refrigerant air conditioner A is restored by 18:00.

以下、本発明の実施の形態について、図面を用いて詳細に説明する。また、本実施の形態で説明する各種具体的な設定例は一例を示すだけであり、特にこれらに限定されない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Also, various specific setting examples described in the present embodiment are merely examples, and the present invention is not particularly limited to these.

図1は、実施の形態の空調システムの構成を示す図である。
空調システムは、空調機Aと、空調機Bと、蓄熱空調機Cと、制御装置1とを有する。空調機Aは、室外機10と、室外機10に冷媒配管で接続された室内機11とを備えている。空調機Bは、室外機20と、室外機10に冷媒配管で接続された室内機21とを備えている。空調機A及び冷媒空調機Bは、圧縮機、凝縮器、減圧装置及び蒸発器に冷媒が循環する冷媒回路を備え、冷媒回路を冷媒が圧縮と膨張とを繰り返しながら循環することにより、建物40内の冷房を行う。
Drawing 1 is a figure showing composition of an air-conditioning system of an embodiment.
The air conditioning system has an air conditioner A, an air conditioner B, a heat storage air conditioner C, and a control device 1 . The air conditioner A includes an outdoor unit 10 and an indoor unit 11 connected to the outdoor unit 10 by refrigerant pipes. The air conditioner B includes an outdoor unit 20 and an indoor unit 21 connected to the outdoor unit 10 by refrigerant piping. The air conditioner A and the refrigerant air conditioner B each include a refrigerant circuit in which refrigerant circulates through a compressor, a condenser, a decompression device, and an evaporator. Air conditioning inside.

蓄熱空調機Cは、室外機30と、室内機31と、蓄熱槽32とを備えている。室外機30と蓄熱槽32とは、冷媒配管で接続されて冷媒回路を構成している。蓄熱槽32と室内機31とは、水等の熱媒体が通過する熱媒体配管で接続されて熱媒体回路を構成している。蓄熱空調機Cは、冷媒回路に冷媒を循環させて生成した冷温熱を蓄熱槽32に蓄熱する蓄熱運転と、蓄熱槽32に蓄えた冷温熱を、熱媒体回路に設けた循環ポンプ(図示せず)により熱媒体を循環させて室内に導くことで、建物40の冷房を行う蓄熱利用運転とを行う。以下、空調機A、空調機B及び蓄熱空調機Cを区別しないときは、単に空調機という。 The heat storage air conditioner C includes an outdoor unit 30 , an indoor unit 31 , and a heat storage tank 32 . The outdoor unit 30 and the heat storage tank 32 are connected by a refrigerant pipe to form a refrigerant circuit. The heat storage tank 32 and the indoor unit 31 are connected by a heat medium pipe through which a heat medium such as water passes to form a heat medium circuit. The heat storage air conditioner C has a heat storage operation in which cold and hot heat generated by circulating the refrigerant in the refrigerant circuit is stored in the heat storage tank 32, and a circulation pump (not shown) provided in the heat medium circuit. A heat storage utilization operation for cooling the building 40 is performed by circulating the heat medium and leading it indoors. Hereinafter, when the air conditioner A, the air conditioner B, and the heat storage air conditioner C are not distinguished, they are simply referred to as air conditioners.

この空調システムは、事前に作成した運転計画に従って運転するシステムである。運転計画は、昼間の電力使用量がピークになる時間帯は、蓄熱空調機Cが蓄熱利用運転を行うことで空調し、それ以外の時間帯は、冷媒空調機A又は冷媒空調機Bが運転することで空調するように作成される。また、どのタイミングでどの空調機を稼働させるかは、建物40の負荷、各空調機の運転効率及び外気温度等を考慮して決められる。運転計画の詳細については改めて説明する。 This air conditioning system is a system that operates according to an operation plan prepared in advance. The operation plan is that during the daytime when power consumption peaks, the heat storage air conditioner C performs heat storage utilization operation for air conditioning, and during the other time periods, the refrigerant air conditioner A or the refrigerant air conditioner B operates. It is created to be air-conditioned. Also, which air conditioner is operated at which timing is determined in consideration of the load on the building 40, the operating efficiency of each air conditioner, the outside air temperature, and the like. The details of the operation plan will be explained later.

空調機A、空調機B及び蓄熱空調機Cには、図示省略するが、温度センサ、湿度センサ及び流量センサなどの複数のセンサが設けられており、これらの各センサで取得されたセンサデータが制御装置1に入力されるようになっている。 Although not shown, the air conditioner A, the air conditioner B, and the heat storage air conditioner C are provided with a plurality of sensors such as a temperature sensor, a humidity sensor, and a flow rate sensor. It is designed to be input to the control device 1 .

制御装置1は、空調システムの運転計画の作成及び運転計画に基づいた空調システムの制御等を行う。 The control device 1 creates an operation plan for the air conditioning system and controls the air conditioning system based on the operation plan.

図2は、実施の形態の空調システムの制御装置の機能的な構成を示す図である。
制御装置1は、情報取得部2と、負荷予測部3と、運転計画作成部4と、故障検知部5と、修復時間予測部6と、制御指令指示部7とを備えている。
FIG. 2 is a diagram illustrating a functional configuration of the control device for the air conditioning system according to the embodiment.
The control device 1 includes an information acquisition section 2 , a load prediction section 3 , an operation plan creation section 4 , a failure detection section 5 , a repair time prediction section 6 and a control command instruction section 7 .

情報取得部2は、気象予報データ、負荷データ、故障データ、電力データ及びセンサデータ等を取得する。気象予報データとは、少なくとも外気温度を含むデータであり、例えば1時間毎の外気温度の予報データである。負荷データとは、負荷予測部で負荷を予測するにあたって必要な設定温度等である。故障データとは、現在故障している空調機と故障の内容とを特定する情報である。電力データとは、各空調機の過去の消費電力量である。センサデータとは、例えば、温度、湿度、冷媒量、圧力、水流量等である。情報取得部2は、更に、GPS又は交通情報等を取得するようにしてもよい。 The information acquisition unit 2 acquires weather forecast data, load data, failure data, power data, sensor data, and the like. The weather forecast data is data including at least the outdoor temperature, for example, hourly forecast data of the outdoor temperature. The load data is set temperature or the like necessary for the load prediction unit to predict the load. The failure data is information specifying the air conditioner that is currently out of order and the content of the failure. The power data is the past power consumption of each air conditioner. Sensor data are, for example, temperature, humidity, amount of refrigerant, pressure, water flow rate, and the like. The information acquisition unit 2 may further acquire GPS or traffic information.

負荷予測部3は、過去の負荷実績、負荷データ及び気象予報データに基づいて将来の期間における建物40の負荷を予測する。負荷は、室内温度を設定温度にするために必要な熱量である。負荷予測部3は、具体的には例えば、負荷予測部3は、翌日の1日分の1時間毎の負荷を予測する。「将来の期間」は自由に設定可能であり、以下では、翌日の負荷を予測するものとして説明する。なお、負荷予測部3における負荷の予測方法は、本実施の形態では特に限定するものではなく、任意の方法で予測すればよい。 The load prediction unit 3 predicts the load of the building 40 in the future period based on past actual load results, load data, and weather forecast data. The load is the amount of heat required to bring the indoor temperature to the set temperature. Specifically, for example, the load prediction unit 3 predicts the hourly load for the next day. The "future period" can be freely set, and the following description will be given assuming that the load for the next day is predicted. Note that the method of predicting the load in the load prediction unit 3 is not particularly limited in this embodiment, and any method may be used for prediction.

運転計画作成部4は、空調システムの運転計画を作成する。運転計画とは、どの空調機を何時から何時まで運転させるかといった発停の情報である。運転計画作成部4は、負荷予測部3で予測された翌日の負荷及び気象予報データに基づいて、空調システムの消費電力が削減されるように翌日の運転計画を作成する。 The operation plan creation unit 4 creates an operation plan for the air conditioning system. The operation plan is start/stop information such as which air conditioner is to be operated from what time to what time. The operation plan creation unit 4 creates an operation plan for the next day based on the load and weather forecast data for the next day predicted by the load prediction unit 3 so that the power consumption of the air conditioning system is reduced.

運転計画作成部4は、運転計画を実行中に、後述の修復時間予測部6から修復時間情報を受信すると、運転計画の再計画を行う。運転計画作成部4における運転計画及び再計画の作成方針については改めて説明する。 When the operation plan creation unit 4 receives restoration time information from the restoration time prediction unit 6 described later during execution of the operation plan, it re-plans the operation plan. The policy for creating the operation plan and the re-planning in the operation plan creating section 4 will be explained again.

故障検知部5は、冷媒空調機A及び冷媒空調機Bの故障を検知する。故障検知部5は、冷媒空調機A及び冷媒空調機Bから取得したセンサデータに基づいて故障を検知しても良いし、冷媒空調機A及び冷媒空調機Bのそれぞれから出力される故障信号を入力することで故障を検知するようにしてもよい。故障検知部5は、故障を検知すると、故障の内容を含む故障情報を修復時間予測部6に送信する。 The failure detection unit 5 detects failures of the refrigerant air conditioners A and B. FIG. The failure detection unit 5 may detect a failure based on sensor data acquired from the refrigerant air conditioner A and the refrigerant air conditioner B, or may detect a failure signal output from each of the refrigerant air conditioner A and the refrigerant air conditioner B. You may make it detect a failure by inputting. Upon detecting a failure, the failure detection unit 5 transmits failure information including details of the failure to the repair time prediction unit 6 .

修復時間予測部6は、故障情報を受信すると、故障の内容に応じて、その故障から修復するために要する修復時間を予測する。修復時間予測部6は、予め記憶された故障データベースに基づいて修復時間を予測する。 Upon receiving the failure information, the repair time predicting unit 6 predicts the repair time required for repairing the failure according to the details of the failure. A repair time prediction unit 6 predicts a repair time based on a pre-stored failure database.

図3は、実施の形態に係る故障データベースの一例を示す図である。
図3には、過去の故障対応データが日付と共に登録されたデータベースの例を示しているが、故障データベースには、少なくとも故障内容と、故障内容に応じた修復時間とが登録されていればよい。
FIG. 3 is a diagram illustrating an example of a failure database according to the embodiment;
FIG. 3 shows an example of a database in which past failure response data are registered together with dates, but the failure database only needs to register at least the details of the failure and the repair time corresponding to the details of the failure. .

故障には、例えば、通信異常、音異常、センサ異常、能力異常、水漏れ、室外機異常、循環ポンプ異常、振動異常、電気電子異常及び冷媒漏れ等がある。図3の故障データベースには、これらの故障内容と、その故障内容に応じた故障対応と、修復時間と、が対応付けて記憶されている。故障データベースは、運用開始時にはデフォルトのものを用意しておき、故障が発生する度に、実際の修復時間に応じて更新するようにしてもよい。 Failures include, for example, communication anomalies, sound anomalies, sensor anomalies, performance anomalies, water leaks, outdoor unit anomalies, circulation pump anomalies, vibration anomalies, electrical and electronic anomalies, and coolant leakage. In the failure database of FIG. 3, these failure details, failure countermeasures corresponding to the failure details, and repair times are stored in association with each other. A default failure database may be prepared at the start of operation, and updated in accordance with the actual repair time each time a failure occurs.

故障対応には、故障機を再起動する等して自動的に修復する「自動修復」と、遠隔地からの操作によって修復する「遠隔操作」と、作業員が現地に赴いて修復する「現地保守」とがある。 For troubleshooting, there are "automatic repair" that automatically repairs by restarting the failed machine, "remote operation" that repairs by operating from a remote location, and "on-site repair" that repairs by workers visiting the site. There is "maintenance".

図3の「フィードバック情報」とは、作業員からのフィードバック情報に基づいて修復時間を予測することを示している。つまり、冷媒漏れの異常であれば、作業員による現地での保守作業が必要である。したがって、修復時間は、作業員が現地に駆け付けるまでに要する時間と、現地にて作業員が作業する作業時間とを加算した時間となる。修復時間予測部6は、修復時間が「フィードバック情報」であるときは、作業員の携帯端末に異常の内容をメール等で通知する。その通知を確認した作業員から、現地に駆け付けるまでに要する時間と作業時間とを加算した時間の応答を受けると、その時間を修復時間とする。なお、作業時間は、作業員が決めるのではなく、修復時間予測部6が決めるようにし、作業員からは現地に駆け付けるまでに要する時間のみをフィードバックするようにしてもよい。 “Feedback information” in FIG. 3 indicates that the repair time is predicted based on the feedback information from the worker. In other words, if there is an abnormality in refrigerant leakage, on-site maintenance work by a worker is required. Therefore, the repair time is the sum of the time required for the worker to rush to the site and the work time for the worker to perform the work at the site. When the repair time is "feedback information", the repair time prediction unit 6 notifies the contents of the abnormality to the mobile terminal of the worker by e-mail or the like. When receiving a reply from the worker who confirmed the notification of the time required to rush to the site plus the work time, the time is set as the repair time. The work time may be determined not by the worker but by the repair time prediction unit 6, and only the time required for the worker to arrive at the site may be fed back.

遠隔保守による修復の際には、遠隔に居る作業者に限らず、安全性を確保した上で、据付現地のプラント管理員又は警備員等の現地要員が対応してもよい。現地要員が対応する場合には、空調システムに設けた表示装置(図示せず)の操作画面に故障対応手順を例えば画像で表示すればよい。現地要員が故障対応できるようにすれば、遠隔地から行う場合に比べて修復時間を短縮することが可能である。このように現地要員による故障対応を行った場合には、その対応内容を修復時間と共に故障データベースに記録するとよい。 Repair by remote maintenance is not limited to a remote operator, and may be handled by local personnel such as a plant manager or a security guard at the installation site after ensuring safety. When local staff responds, the failure response procedure may be displayed, for example, as an image on the operation screen of a display device (not shown) provided in the air conditioning system. If local personnel can handle failures, it is possible to shorten the repair time compared to doing it from a remote location. When the on-site staff responds to the failure in this manner, the content of the response should be recorded in the failure database together with the repair time.

制御指令指示部7は、運転計画作成部4で作成された運転計画で運転がされるように、冷媒空調機A、冷媒空調機B及び蓄熱空調機Cのそれぞれに対する制御指令を行う。 The control command instruction unit 7 issues control commands to each of the refrigerant air conditioner A, the refrigerant air conditioner B, and the heat storage air conditioner C so that they are operated according to the operation plan created by the operation plan creation unit 4 .

図4は、実施の形態に係る空調システムの制御装置のハードウェア構成を示す図である。
制御装置1は、CPU8と、メモリ9aと、通信装置9bと、を備えている。CPU8とメモリ9a内に記憶されたプログラムとによって、情報取得部2と、負荷予測部3と、運転計画作成部4と、故障検知部5と、修復時間予測部6と、制御指令指示部7と、が機能的に構成されている。
FIG. 4 is a diagram showing the hardware configuration of the control device of the air conditioning system according to the embodiment.
The control device 1 includes a CPU 8, a memory 9a, and a communication device 9b. An information acquisition unit 2, a load prediction unit 3, an operation plan creation unit 4, a failure detection unit 5, a repair time prediction unit 6, and a control command instruction unit 7 are operated by the CPU 8 and programs stored in the memory 9a. and are functionally configured.

図5は、実施の形態に係る空調システムの制御装置における故障対応運転制御の流れを示すフローチャートである。ここでは、ある建物40における空調システムの翌日の運転計画を前日に立案し、運転計画で運転している最中に、冷媒空調機Aで故障が発生した例で説明する。 FIG. 5 is a flow chart showing the flow of failure handling operation control in the control device for the air conditioning system according to the embodiment. Here, an example will be described in which an operation plan for the next day of the air conditioning system in a certain building 40 is drawn up the day before, and a failure occurs in the refrigerant air conditioner A during operation according to the operation plan.

負荷予測部3は、予め設定された時刻に翌日の負荷予測を行う(ステップS1)。運転計画部は、予測された負荷と気象予報データとに基づいて空調システムの運転計画を作成する(ステップS2)。運転計画で運転中に、冷媒空調機Aで故障が発生した場合(ステップS3)、修復時間予測部6は、修復に要する時間を予測する(ステップS4)。すなわち、故障が発生した場合、故障検知部5は、故障の内容を含む故障情報を修復時間予測部6に送信し、修復時間予測部6は故障情報を受信すると、修復時間の予測を行う。運転計画作成部4は、修復時間に基づいて運転計画を再計画する(ステップS5)。 The load prediction unit 3 predicts the load for the next day at a preset time (step S1). The operation planning unit creates an operation plan for the air conditioning system based on the predicted load and weather forecast data (step S2). When a failure occurs in the refrigerant air conditioner A during operation according to the operation plan (step S3), the repair time prediction unit 6 predicts the time required for repair (step S4). That is, when a failure occurs, the failure detection unit 5 transmits failure information including details of the failure to the repair time prediction unit 6, and the repair time prediction unit 6 receives the failure information and predicts the repair time. The operation plan creating unit 4 re-plans the operation plan based on the repair time (step S5).

ステップS5において、運転計画作成部4は、修復時間に基づいて、故障機が運転計画で運転開始すると計画された予定時刻までに復旧し、予定時刻に運転できると判断した場合、予定時刻に故障機を運転させる条件で運転計画を再計画する。一方、運転計画作成部4は、修復時間に基づいて、故障機が運転計画で運転開始すると計画された予定時刻までに復旧できない場合、予定時刻に故障機を運転させない条件で運転計画を再計画する。 In step S5, the operation plan creation unit 4, based on the repair time, determines that the malfunctioning equipment will be restored by the scheduled time scheduled to start operation in the operation plan, and if it is determined that the equipment can be operated at the scheduled time, the failure will occur at the scheduled time. Re-plan the operation plan under the conditions to operate the machine. On the other hand, based on the recovery time, the operation plan creation unit 4 re-plans the operation plan under the condition that the failed unit is not operated at the scheduled time if the failed unit cannot be restored by the scheduled time when it starts operating according to the operation plan. do.

そして、制御指令指示部7は、運転計画作成部4で作成された運転計画で運転がされるように、運転計画に基づく制御指令を各空調機に送信する(ステップS6)。 Then, the control command instructing unit 7 transmits a control command based on the operation plan to each air conditioner so that the operation plan created by the operation plan creating unit 4 is performed (step S6).

次に、運転計画作成部4における運転計画の作成方針について説明する。 Next, the operation plan creation policy in the operation plan creation unit 4 will be described.

運転計画作成部4は、昼間の電力使用量がピークになる時間帯、具体的には例えば、外気温度が、予め設定された蓄熱利用開始温度(例えば35℃)以上の時間帯では蓄熱空調機Cで蓄熱利用運転を行う運転計画を作成する。蓄熱空調機Cの蓄熱利用運転の運用計画は、蓄熱槽32の容量、夜間移行率の向上、ピークカット及び冷温水安定蓄熱の方針に基づいて作成される。 The operation plan creation unit 4 operates the heat storage air conditioner during the time period when the power consumption peaks in the daytime, specifically, for example, during the time period when the outside air temperature is equal to or higher than a preset heat storage utilization start temperature (for example, 35 ° C.). At C, create an operation plan for the heat storage utilization operation. The operation plan for the heat storage utilization operation of the heat storage air conditioner C is created based on the policy of the capacity of the heat storage tank 32, improvement of the night shift rate, peak cut, and cold/hot water stable heat storage.

運転計画作成部4は、外気温度が蓄熱利用開始温度未満の時間帯では、冷媒空調機A、冷媒空調機B及び蓄熱空調機Cの蓄熱運転について、これらがそれぞれ高効率で運転されるように運転計画を作成する。以下、具体的に説明する。 The operation plan creation unit 4 sets the heat storage operation of the refrigerant air conditioner A, the refrigerant air conditioner B, and the heat storage air conditioner C so that each of them is operated at high efficiency in the time period when the outside air temperature is less than the heat storage utilization start temperature. Create an operation plan. A specific description will be given below.

図6は、実施の形態に係る空調システムの各空調機の外気温度-COP特性を示す図である。図6において、「A空調」は冷媒空調機Aの外気温度-COP特性を示している。「B空調」は冷媒空調機Bの外気温度-COP特性を示している。「C空調」は蓄熱空調機Cの外気温度-COP特性を示している。この図示方法は、図6以降の図においても同様である。 FIG. 6 is a diagram showing outside air temperature-COP characteristics of each air conditioner in the air conditioning system according to the embodiment. In FIG. 6, "A air conditioning" indicates the outside air temperature-COP characteristic of the refrigerant air conditioner A. In FIG. "B air conditioning" indicates the outside air temperature-COP characteristics of the refrigerant air conditioner B; “C air conditioning” indicates the outside air temperature-COP characteristic of the heat storage air conditioner C. FIG. This illustration method is the same in the drawings after FIG. 6 .

本実施の形態の空調システムの各空調機は、図6に示すように互いに異なる外気温度-COP特性を有している。運転計画作成部4は、各空調機を、それぞれ自身のCOPが最大となる外気温度を含む外気温度範囲で運転させることを条件とした高効率運転条件を有する。運転計画作成部4は、この高効率運転条件を満たすように最適化した、冷媒空調機A、冷媒空調機B及び蓄熱空調機Cの蓄熱運転、の運転計画を作成する。COPとは、成績係数であり、冷却能力を消費電力で割ったものである。 Each air conditioner of the air conditioning system of the present embodiment has different outside air temperature-COP characteristics as shown in FIG. The operation plan creation unit 4 has high efficiency operation conditions under which each air conditioner is operated within an outside temperature range including the outside temperature at which the COP of each air conditioner is maximized. The operation plan creation unit 4 creates an operation plan for the heat storage operation of the refrigerant air conditioner A, the refrigerant air conditioner B, and the heat storage air conditioner C optimized to satisfy the high efficiency operation conditions. COP is the coefficient of performance, which is the cooling capacity divided by the power consumption.

図6の例では、冷媒空調機Aは、外気温度が28℃のときにCOPが最大となる特性を有し、外気温度が20℃~29℃の範囲を冷媒空調機Aの運転期間とする。冷媒空調機Bは、外気温度が30℃のときにCOPが最大となる特性を有し、外気温度が29℃~35℃の範囲を冷媒空調機Bの運転期間とする。また、蓄熱空調機Cは、外気温度が12℃のときにCOPが最大となる特性を有する。蓄熱空調機Cは、外気温度が一日の中で低くなる早朝の時間帯で蓄熱運転を行って蓄熱槽32への蓄冷を行う。蓄熱運転では、早朝の時間帯の夜間電力を利用し、冷凍サイクルの効率高い外気環境を利用することで、CO発生量が少なく環境にやさしいシステムを構築できる。In the example of FIG. 6, the refrigerant air conditioner A has a characteristic that the COP is maximum when the outside air temperature is 28° C., and the operation period of the refrigerant air conditioner A is the outside temperature range of 20° C. to 29° C. . Refrigerant air conditioner B has a characteristic that the COP is maximized when the outside temperature is 30°C. In addition, the heat storage air conditioner C has a characteristic that the COP is maximized when the outside air temperature is 12°C. The heat storage air conditioner C stores cold in the heat storage tank 32 by performing the heat storage operation in the early morning hours when the outside air temperature is low. In heat storage operation, by using nighttime power in the early morning hours and the highly efficient outside air environment of the refrigeration cycle, it is possible to build an environment-friendly system that generates less CO2 .

図7は、実施の形態に係る空調システムにおいて予測された建物の負荷を運転計画と共に示した図である。図7において横軸は時間、縦軸は負荷[kWh]である。また、図7には、気象予報データに基づく各時間における外気温度も示している。
図7の例では、8時から負荷が生じ、12時~15時の間に負荷がピークとなり、それ以降、20時まで負荷が減少する負荷予測となっている。負荷の変化と外気温度の変化とは概ね対応しており、外気温度が高くなれば負荷も増える。つまり、外気温度が高くなれば、冷房負荷も増える傾向となっている。
FIG. 7 is a diagram showing a building load predicted in the air conditioning system according to the embodiment together with an operation plan. In FIG. 7, the horizontal axis is time and the vertical axis is load [kWh]. FIG. 7 also shows the outside air temperature at each hour based on the weather forecast data.
In the example of FIG. 7, the load is predicted to start at 8:00, reach a peak between 12:00 and 15:00, and then decrease until 20:00. Changes in the load generally correspond to changes in the outside temperature, and the load increases as the outside temperature rises. In other words, when the outside air temperature rises, the cooling load tends to increase.

この例では、気象予報データに基づいて、12時~15時の間、外気温度が35℃を超えることが予測されている。このため、12時~15時の間は、蓄熱空調機Cを蓄熱利用運転で運転させて空調を行う計画となっている。また、6時の時点で外気温度が12℃であり、蓄熱空調機Cが高効率運転できる運転期間である。このため、6時に、蓄熱空調機Cの蓄熱運転を開始する計画となっている。蓄熱空調機Cの蓄熱運転の終了時刻は、次のようにして決まる。蓄熱空調機Cの蓄熱運転は、12時~15時の間の合計負荷に対応する蓄熱量C1が蓄熱槽32に蓄熱されるように計画される。蓄熱量C1と蓄熱空調機Cの能力とから運転所要時間が決まるため、蓄熱運転の終了時刻が決まる。 In this example, the outside temperature is predicted to exceed 35° C. between 12:00 and 15:00 based on weather forecast data. Therefore, from 12:00 to 15:00, it is planned to operate the heat storage air conditioner C in the heat storage utilization operation for air conditioning. At 6 o'clock, the outside air temperature is 12° C., which is an operation period during which the heat storage air conditioner C can be operated with high efficiency. Therefore, it is planned to start the heat storage operation of the heat storage air conditioner C at 6:00. The end time of the heat storage operation of the heat storage air conditioner C is determined as follows. The heat storage operation of the heat storage air conditioner C is planned so that the heat storage tank 32 stores a heat storage amount C1 corresponding to the total load from 12:00 to 15:00. Since the required operation time is determined from the heat storage amount C1 and the capacity of the heat storage air conditioner C, the end time of the heat storage operation is determined.

8時~12時、15時~20時までの間は、図6に示した各空調機の外気温度-COP特性と、気象予報データに基づく外気温度とに基づき、冷媒空調機A又は冷媒空調機Bのうち高効率で運転を行える方を選択して運転するように計画される。この例では、8時~10時の間は、外気温度が20℃~29℃、10時~12の間は外気温度が29℃~35℃である。このため、8時~10時は、冷媒空調機Aが運転し、10時~12時は、冷媒空調機Bが運転する計画となっている。15時以降も同様の考え方で運転計画が作成され、15時~18時は冷媒空調機B、18時~20時は冷媒空調機Aが運転する計画となっている。 From 8:00 to 12:00 and from 15:00 to 20:00, refrigerant air conditioner A or refrigerant air conditioner is operated based on the outside air temperature-COP characteristics of each air conditioner shown in FIG. 6 and the outside air temperature based on weather forecast data. It is planned to select and operate one of machine B that can be operated with high efficiency. In this example, the outside air temperature is 20° C. to 29° C. from 8:00 to 10:00, and the outside temperature is 29° C. to 35° C. from 10:00 to 12:00. Therefore, it is planned that the refrigerant air conditioner A operates from 8:00 to 10:00 and the refrigerant air conditioner B operates from 10:00 to 12:00. After 15:00, an operation plan is created based on the same concept, and the refrigerant air conditioner B is to be operated from 15:00 to 18:00, and the refrigerant air conditioner A is to be operated from 18:00 to 20:00.

次に、故障発生時の運転計画の再計画について説明する。ここでは、図7に示した運転計画で8時に冷媒空調機Aが運転を開始した直後に、冷媒空調機Aが故障した場合の例で説明する。 Next, replanning of the operation plan when a failure occurs will be described. Here, an example will be described in which the refrigerant air conditioner A fails immediately after the refrigerant air conditioner A starts operating at 8 o'clock in the operation plan shown in FIG. 7 .

運転計画作成部4は、修復時間の予測結果に基づいて、まず、各時間に、どの空調機を運転するかを再計画する。つまり、修復時間が例えば5時間と予測された場合には、8時~10時に運転する予定だった冷媒空調機Aの代わりに、冷媒空調機Bを運転することを決定する。また、故障機である冷媒空調機Aは、次に運転開始すると計画された予定時刻である18時までに復旧できるため、18時には冷媒空調機Aを運転することを決定する。一方、修復時間が例えば12時間と予測された場合には、冷媒空調機Aは、次の予定時刻である18時までに復旧できないため、冷媒空調機Aの代わりに、冷媒空調機Bを18時から20時に運転することを決定する。 The operation plan creating unit 4 first re-plans which air conditioner is to be operated at each time based on the prediction result of the repair time. That is, when the restoration time is predicted to be five hours, for example, it is decided to operate refrigerant air conditioner B instead of refrigerant air conditioner A, which was scheduled to operate from 8:00 to 10:00. In addition, since the refrigerant air conditioner A, which is the malfunctioning machine, can be restored by 18:00, which is the scheduled start time, it is decided to operate the refrigerant air conditioner A at 18:00. On the other hand, if the restoration time is predicted to be 12 hours, for example, refrigerant air conditioner A cannot be restored by 18:00, which is the next scheduled time. Decide to drive from 12:00 to 20:00.

なお、故障からの復旧が例えば再起動等の自動修復で可能で、修復時間が例えば5分と予測された場合、当初の運転計画通りに運転する。つまり、予め設定された設定時間(例えば、10分)内で修復できるのであれば、故障が発生しても、当初の運転計画通りに運転する。 It should be noted that recovery from failure is possible by automatic recovery such as restarting, and if the recovery time is predicted to be 5 minutes, for example, the system is operated according to the initial operation plan. In other words, if the failure can be repaired within a preset set time (for example, 10 minutes), the system will operate according to the initial operation plan even if a failure occurs.

図8は、図7の運転計画から再計画された再計画後の運転計画を示す図で、冷媒空調機Aが18時までに復旧しない場合の例を示す図である。図9は、図7及び図8に対応した図であって、冷媒空調機B及び蓄熱空調機Cのそれぞれの運転期間の変化の説明図である。図9には、冷媒空調機B及び蓄熱空調機Cのそれぞれの外気温度-COP特性を示している。また、図9において、B-1は、冷媒空調機Bの当初の運転計画での運転期間である。B-2は、冷媒空調機Bの再計画後の運転期間である。C-1は、蓄熱空調機Cの蓄熱運転の、当初の運転計画での運転期間である。C-2は、蓄熱空調機Cの蓄熱運転の、再計画後の運転期間である。この図示方法は、図9以降の図においても同様である。図10は、図7の運転計画から再計画された再計画後の運転計画を示す図で、冷媒空調機Aが18時までに復旧する場合の例を示す図である。図11は、図10に対応した図であって、各空調機のそれぞれの運転期間の変化を示す図である。 FIG. 8 is a diagram showing an operation plan after re-planning based on the operation plan of FIG. 7, showing an example in which the refrigerant air conditioner A is not restored by 18:00. FIG. 9 is a diagram corresponding to FIGS. 7 and 8, and is an explanatory diagram of changes in the operating periods of the refrigerant air conditioner B and the heat storage air conditioner C, respectively. FIG. 9 shows the outside air temperature-COP characteristics of the refrigerant air conditioner B and the heat storage air conditioner C, respectively. In FIG. 9, B-1 is the operation period of the refrigerant air conditioner B in the initial operation plan. B-2 is the operating period of the refrigerant air conditioner B after re-planning. C-1 is the operation period of the heat storage operation of the heat storage air conditioner C in the initial operation plan. C-2 is the operation period of the heat storage operation of the heat storage air conditioner C after re-planning. This illustration method is the same for the figures after FIG. 9 . FIG. 10 is a diagram showing an operation plan after re-planning based on the operation plan of FIG. 7, showing an example in which the refrigerant air conditioner A is restored by 18:00. FIG. 11 is a diagram corresponding to FIG. 10 and showing changes in the operation period of each air conditioner.

当初の運転計画では、各空調機がそれぞれ高効率で運転できる外気温度範囲で運転する運転計画となっていた。しかし、冷媒空調機Aの故障により、冷媒空調機Bは、自己が高効率できる外気温度範囲外の外気温度で運転する必要が生じるため、冷媒空調機Bの運転効率が低下する。 The initial operation plan was to operate each air conditioner within the outside air temperature range in which it can be operated with high efficiency. However, due to the failure of the refrigerant air conditioner A, the refrigerant air conditioner B needs to be operated at an outside air temperature outside the outside air temperature range in which the refrigerant air conditioner B can operate with high efficiency, so the operating efficiency of the refrigerant air conditioner B is lowered.

そこで、再計画では、冷媒空調機Bの運転効率の低下を抑える方針で運転計画を作成する。具体的には、冷媒空調機Bに対応する外気温度範囲の上限温度を、COPが最大となる温度側に補正する。そして、補正後の上限温度を有する外気温度範囲で冷媒空調機Bが運転されるように冷媒空調機Bの再計画を行うと共に、補正後の上限温度と、負荷予測部3で予測された負荷とに基づいて、蓄熱空調機Cの蓄熱運転及び蓄熱利用運転の再計画を行う。 Therefore, in the re-planning, an operation plan is created with a policy of suppressing the deterioration of the operation efficiency of the refrigerant air conditioner B. Specifically, the upper limit temperature of the outside air temperature range corresponding to the refrigerant air conditioner B is corrected to the temperature side at which the COP is maximized. Then, the refrigerant air conditioner B is rescheduled so that the refrigerant air conditioner B is operated in the outside air temperature range having the corrected upper limit temperature, and the corrected upper limit temperature and the load predicted by the load prediction unit 3 , re-planning of the heat storage operation and the heat storage utilization operation of the heat storage air conditioner C is performed.

この例では、冷媒空調機Bに対応する外気温度範囲の上限温度を35℃から32℃に補正している。この補正に伴い、冷媒空調機Bは、故障機に代えて8時から運転を開始した後、外気温度が32℃となる11時まで運転する計画となる。そして、冷媒空調機Aが18時までに復旧しない場合は、図8に示すように、冷媒空調機Bは、外気温度がピークを過ぎて32℃に下がった16時から、当初の予定では冷媒空調機Bが運転終了する予定の18時までに加えて、更に故障機に代えて20時まで運転する計画となる。一方、冷媒空調機Aが18時までに復旧する場合は、図10に示すように、冷媒空調機Bは、外気温度がピークを過ぎて32℃に下がった16時から18時まで運転し、18時から20時までは、故障から復旧した冷媒空調機Aが運転する計画となる。 In this example, the upper limit temperature of the outside air temperature range corresponding to the refrigerant air conditioner B is corrected from 35°C to 32°C. With this correction, the refrigerant air conditioner B is planned to start operating at 8:00 in place of the malfunctioning machine and then operate until 11:00 when the outside air temperature reaches 32°C. If the refrigerant air conditioner A is not restored by 18:00, as shown in FIG. In addition to 18:00 when the air conditioner B is scheduled to stop operating, it is planned to operate until 20:00 in place of the malfunctioning machine. On the other hand, when the refrigerant air conditioner A is restored by 18:00, as shown in FIG. From 18:00 to 20:00, the refrigerant air conditioner A, which has been restored from the failure, is planned to operate.

そして、冷媒空調機Bに対応する外気温度範囲の上限温度を35℃から32℃に補正したことに伴い、外気温度が32℃以上となる11時~16時は、蓄熱空調機Cの蓄熱利用運転を行うように計画する。 Then, with the correction of the upper limit temperature of the outside air temperature range corresponding to the refrigerant air conditioner B from 35 ° C to 32 ° C, from 11:00 to 16:00 when the outside temperature is 32 ° C or higher, the heat storage air conditioner C Plan to do the driving.

ここで、冷媒空調機Bに対応する外気温度範囲の上限温度を35℃から32℃に補正したことに伴い、冷媒空調機Bは、11時~12時までと15時~16時までの間、運転しないことになる。冷媒空調機Bが運転しないことになった時間帯の負荷は、蓄熱空調機Cの蓄熱利用運転で処理する。このため、運転計画作成部4は、11時~12時までと15時~16時までとの合計負荷に対応する蓄熱量である補正熱量C2を算出し、補正熱量C2を、当初の運転計画時よりも更に蓄熱槽32に蓄熱するように蓄熱空調機Cの蓄熱運転を再計画する。この再計画により、この例では、蓄熱空調機Cの蓄熱運転の運転時間が8時から10時まで延長された計画となっている。 Here, with the correction of the upper limit temperature of the outside air temperature range corresponding to refrigerant air conditioner B from 35° C. to 32° C., refrigerant air conditioner B is operated between 11:00 and 12:00 , will not drive. The load during the period when the refrigerant air conditioner B does not operate is handled by the heat storage use operation of the heat storage air conditioner C. Therefore, the operation plan creation unit 4 calculates the corrected heat amount C2, which is the heat storage amount corresponding to the total load from 11:00 to 12:00 and from 15:00 to 16:00, and uses the corrected heat amount C2 as the initial operation plan. The heat storage operation of the heat storage air conditioner C is rescheduled so that more heat is stored in the heat storage tank 32 than the time. As a result of this re-planning, in this example, the operation time of the heat storage operation of the heat storage air conditioner C is extended from 8:00 to 10:00.

ここで、運転効率について検討すると、冷媒空調機Bは、冷媒空調機Bに対応する外気温度範囲の上限温度を35℃から32℃に補正したことに伴い、冷媒空調機Bの運転時間が短くなっている。具体的には、再計画後の運転計画は、11時~12時までと15時~16時までといった、いわば負荷がピークとなる時間帯における冷媒空調機Bの運転を停止している。つまり、冷媒空調機Bについて、運転効率が悪い外気温度範囲での運転時間を短縮しているため、故障が発生した場合にも、消費電力の低減を図ることができる。 Here, when considering the operation efficiency, the operating time of the refrigerant air conditioner B is shortened due to the correction of the upper limit temperature of the outside air temperature range corresponding to the refrigerant air conditioner B from 35 ° C. to 32 ° C. It's becoming Specifically, in the operation plan after re-planning, the operation of the refrigerant air conditioner B is stopped during peak load times, such as 11:00 to 12:00 and 15:00 to 16:00. That is, since the operation time of the refrigerant air conditioner B is shortened in the outside air temperature range where the operation efficiency is low, it is possible to reduce the power consumption even if a failure occurs.

ところで、電力需要のピークを抑えるピークカットの観点から、冷媒空調機を予め設定された上限能力値に能力を制限して運転を行わせる能力条件がある場合がある。以下、能力条件がある場合の運転計画について説明する。 By the way, from the viewpoint of peak shaving to suppress peaks in electric power demand, there may be a capacity condition for operating the refrigerant air conditioner with its capacity limited to a preset upper limit capacity value. The operation plan when there are capacity conditions will be described below.

図12は、実施の形態に係る空調システムの制御装置における運転計画の再計画の説明図で、能力条件がある場合の例を示す図である。
この例では、冷媒空調機Bに対して、上限能力値MAXを例えば10kWh等に制限する場合の例を示している。能力条件がある運転計画の作成方針は、上記で説明した能力条件がない場合と基本的には同様であり、以下、能力条件がない場合と相違する点を中心に説明する。
FIG. 12 is an explanatory diagram of replanning of the operation plan in the control device for the air conditioning system according to the embodiment, and is a diagram showing an example in which there is a capacity condition.
In this example, the upper limit capacity value MAX of the refrigerant air conditioner B is limited to, for example, 10 kWh. The policy for creating an operation plan with capacity conditions is basically the same as the above-described case without capacity conditions, and the points different from those without capacity conditions will be mainly explained below.

運転計画作成部は、能力条件を満たすように運転計画を作成する。すなわち、冷媒空調機Bに対して能力制限がかかることで、冷媒空調機Bが、8時から12時まで運転すると共に、冷媒空調機Bの上限能力値MAXを超える負荷部分は、蓄熱空調機Cの蓄熱利用運転で処理するようにしている。つまり、10時から12時と15時から17時の間は、冷媒空調機Bと蓄熱空調機Cの両方が運転する。 The operation plan creating unit creates an operation plan so as to satisfy the capacity conditions. That is, since the refrigerant air conditioner B is limited in capacity, the refrigerant air conditioner B operates from 8:00 to 12:00, and the load portion exceeding the upper limit capacity value MAX of the refrigerant air conditioner B is the heat storage air conditioner. I am trying to process it with the heat storage utilization operation of C. That is, between 10:00 and 12:00 and between 15:00 and 17:00, both the refrigerant air conditioner B and the heat storage air conditioner C operate.

蓄熱空調機Cの蓄熱運転の運転計画は、10時~12時までの負荷のうち上限能力値MAXを超える負荷と、12時~15時までの負荷と、15時~17時までの負荷のうち上限能力値MAXを超える負荷と、の合計負荷に対応する蓄熱量を蓄熱槽32に蓄熱するように計画される。 The operation plan for the heat storage operation of the heat storage air conditioner C is the load from 10:00 to 12:00 that exceeds the upper limit capacity value MAX, the load from 12:00 to 15:00, and the load from 15:00 to 17:00. It is planned to store in the heat storage tank 32 a heat storage amount corresponding to the total load of the load exceeding the upper limit capacity value MAX.

図13は、図12の運転計画から再計画された再計画後の運転計画を示す図で、冷媒空調機Aが18時までに復旧しない場合の例を示す図である。図14は、図12の運転計画から再計画された再計画後の運転計画を示す図で、冷媒空調機Aが18時までに復旧する場合の例を示す図である。なお、能力条件がある場合の各空調機に対応する外気温度範囲は、図9及び図11と同様である。
上記の能力条件がない場合と同様、再計画後の運転計画は、負荷がピークになる時間帯における冷媒空調機Bの運転時間を短縮し、消費電力の低減を図ることが可能な運転計画となっている。
FIG. 13 is a diagram showing an operation plan after re-planning based on the operation plan of FIG. 12, showing an example in which the refrigerant air conditioner A is not restored by 18:00. FIG. 14 is a diagram showing an operation plan after re-planning based on the operation plan of FIG. 12, showing an example in which the refrigerant air conditioner A is restored by 18:00. The outside air temperature range corresponding to each air conditioner when there is a capacity condition is the same as in FIGS. 9 and 11. FIG.
As in the case without the above capacity conditions, the operation plan after re-planning is an operation plan that can reduce the operating time of the refrigerant air conditioner B during the time period when the load peaks and reduce the power consumption. It's becoming

以上説明したように、本実施の形態の空調システムの制御装置1は、冷媒を循環させて空調を行う複数の冷媒空調機A、Bと、冷媒を循環させて生成した冷熱を蓄熱槽32に蓄熱する蓄熱運転及び蓄熱槽32の冷熱を用いて空調を行う蓄熱利用運転を行う蓄熱空調機Cと、を有し、建物40内を空調する空調システムの制御装置1である。空調システムの制御装置1は、気象予報データを取得する情報取得部2と、建物40の将来の期間における負荷を予測する負荷予測部3と、負荷予測部3で予測された負荷と気象予報データとに基づいて空調システムの消費電力が削減されるように運転計画を作成する運転計画作成部4とを備える。また、空調システムの制御装置1は、運転計画に従って空調システムの運転を制御する制御指令指示部7と、複数の冷媒空調機A、Bのそれぞれの故障を検知する故障検知部5と、故障検知部5で故障が検知された場合に、故障が発生した故障機を修復するために要する修復時間を予測する修復時間予測部6と、を備える。運転計画作成部4は、故障が検知された場合、修復時間に基づいて運転計画を再計画する。 As described above, the control device 1 of the air conditioning system of the present embodiment includes the plurality of refrigerant air conditioners A and B that perform air conditioning by circulating the refrigerant, and the cold heat generated by circulating the refrigerant to the heat storage tank 32. A control device 1 for an air conditioning system that air-conditions the inside of a building 40, having a heat storage air conditioner C that performs a heat storage operation that stores heat and a heat storage use operation that performs air conditioning using the cold heat of a heat storage tank 32. The control device 1 of the air conditioning system includes an information acquisition unit 2 that acquires weather forecast data, a load prediction unit 3 that predicts the load of the building 40 in the future period, and the load predicted by the load prediction unit 3 and the weather forecast data. and an operation plan creating unit 4 for creating an operation plan so as to reduce the power consumption of the air conditioning system based on the above. The control device 1 for the air-conditioning system includes a control command instruction unit 7 for controlling the operation of the air-conditioning system according to the operation plan, a failure detection unit 5 for detecting failures in each of the plurality of refrigerant air conditioners A and B, and a failure detection A repair time prediction unit 6 for predicting a repair time required for repairing a malfunctioning machine in which a failure has occurred when a failure is detected by the unit 5 . The operation plan creation unit 4 re-plans the operation plan based on the repair time when a failure is detected.

このように、故障機を修復するために要する修復時間を予測し、予測結果に基づいて運転計画を再計画するので、冷媒空調機の故障が発生した場合にも、消費電力の低減を図ることができる。 In this way, the repair time required to repair the failed unit is predicted, and the operation plan is rescheduled based on the predicted result, so power consumption can be reduced even if a refrigerant air conditioner fails. can be done.

本実施の形態1において運転計画作成部4は、修復時間に基づいて、故障機が運転計画で運転開始すると計画された予定時刻までに復旧し、予定時刻に運転できると判断した場合、予定時刻に故障機を運転させる条件で運転計画を再計画する。 In the first embodiment, if the operation plan creation unit 4 determines that the malfunctioning machine will be restored by the scheduled time scheduled to start operation in the operation plan based on the repair time and can be operated at the scheduled time, the scheduled time The operation plan is rescheduled under the condition that the faulty machine is to be operated.

このように、故障機が予定時刻に運転できると判断した場合、予定時刻に故障機を運転させる条件で運転計画を作成できる。 In this way, when it is determined that the malfunctioning machine can be operated at the scheduled time, an operation plan can be created under the condition that the malfunctioning machine will be operated at the scheduled time.

本実施の形態1において運転計画作成部4は、修復時間に基づいて、故障機が運転計画で運転開始すると計画された予定時刻までに復旧できない場合、予定時刻に故障機を運転させない条件で運転計画を再計画する。 In the first embodiment, the operation plan creation unit 4 operates under the condition that the failed equipment is not operated at the scheduled time based on the repair time when the failed equipment cannot be restored by the scheduled time when the operation of the failed equipment starts according to the operation plan. Re-plan your plan.

このように、故障機が予定時刻に運転できないと判断した場合、予定時刻に故障機を運転させる条件で運転計画を作成できる。 In this way, when it is determined that the malfunctioning machine cannot be operated at the scheduled time, an operation plan can be created under the condition that the malfunctioning machine will be operated at the scheduled time.

本実施の形態1において複数の冷媒空調機A、B及び蓄熱空調機Cの蓄熱運転のそれぞれは、互いに異なる外気温度-COP特性を有する。運転計画作成部4は、複数の冷媒空調機A、B及び蓄熱空調機Cの蓄熱運転のそれぞれを、自身のCOPが最大となる外気温度を含む外気温度範囲で運転させることを条件とした高効率運転条件を有する。運転計画作成部4は、気象予報データに含まれる外気温度が、予め設定された蓄熱利用開始温度以上の時間帯では蓄熱空調機Cに蓄熱利用運転を行わせ、外気温度が蓄熱利用開始温度未満の時間帯では、高効率運転条件を満たすように運転計画を作成する。 In Embodiment 1, each of the plurality of refrigerant air conditioners A and B and the heat storage operation of the heat storage air conditioner C has different outside air temperature-COP characteristics. The operation plan creation unit 4 sets the heat storage operation of each of the plurality of refrigerant air conditioners A and B and the heat storage air conditioner C under the condition of operating in an outside temperature range including the outside temperature at which the own COP is maximum. Has efficient operating conditions. The operation plan creation unit 4 causes the heat storage air conditioner C to perform the heat storage use operation in the time zone when the outside air temperature included in the weather forecast data is equal to or higher than the preset heat storage use start temperature, and the outside air temperature is less than the heat storage use start temperature. During this period, an operation plan is created so as to satisfy high-efficiency operation conditions.

このように、運転計画作成部4は、高効率運転条件を満たすように運転計画を作成するため、消費電力の低減を図った最適な運転を行うことができる。 In this way, the operation plan creating unit 4 creates an operation plan that satisfies the high-efficiency operation conditions, so that optimum operation with reduced power consumption can be performed.

本実施の形態の運転計画作成部4は、再計画の際、故障機以外の冷媒空調機について、冷媒空調機に対応する外気温度範囲の上限温度を、COPが最大となる温度側に補正し、補正後の外気温度範囲で冷媒空調機が運転されるように冷媒空調機の再計画を行う。また、運転計画作成部4は、補正後の上限温度と、負荷予測部3で予測された負荷とに基づいて蓄熱運転及び蓄熱利用運転の再計画を行う。 When re-planning, the operation plan creation unit 4 of the present embodiment corrects the upper limit temperature of the outside air temperature range corresponding to the refrigerant air conditioners other than the malfunctioning unit to the temperature side at which the COP is maximized. , the refrigerant air conditioner is rescheduled so that the refrigerant air conditioner is operated within the corrected outside air temperature range. Further, the operation plan creation unit 4 reschedules the heat storage operation and the heat storage utilization operation based on the corrected upper limit temperature and the load predicted by the load prediction unit 3 .

このように、故障が発生した場合、故障機以外の冷媒空調機について、冷媒空調機に対応する外気温度範囲の上限温度を、COPが最大となる温度側に補正するため、冷媒空調機の運転時間は、負荷がピークになる時間帯における運転時間が短くなる。したがって、故障が発生した際の再計画においても、消費電力の低減を図った運転計画を作成できる。 In this way, when a failure occurs, the upper limit temperature of the outside air temperature range corresponding to the refrigerant air conditioners other than the failed air conditioner is corrected to the temperature side at which the COP is maximized. As for time, the operating time is shorter in the time period when the load peaks. Therefore, even in re-planning when a failure occurs, it is possible to create an operation plan designed to reduce power consumption.

本実施の形態の運転計画作成部4は、補正後の上限温度と負荷予測部3で予測された負荷とに基づいて蓄熱槽32の蓄熱量の補正熱量を算出し、補正熱量を蓄熱槽32に蓄熱するように蓄熱運転の再計画を行う。 The operation plan creation unit 4 of the present embodiment calculates the corrected heat amount of the heat storage amount of the heat storage tank 32 based on the corrected upper limit temperature and the load predicted by the load prediction unit 3, The heat storage operation is rescheduled so that heat is stored in

これにより、負荷がピークになる時間帯における冷媒空調機の運転時間を短くしたことにより処理不足となる熱量を補正熱量でカバーした運転計画を作成できる。 As a result, it is possible to create an operation plan in which the amount of heat that is insufficiently processed due to shortening the operation time of the refrigerant air conditioner during the peak load time period is covered by the corrected amount of heat.

本実施の形態の運転計画作成部4は、複数の冷媒空調機A、Bを、予め設定された上限能力値に能力を制限して運転を行わせる能力条件がある場合、能力条件を満たすように運転計画を作成する。 When there is a capacity condition for operating the plurality of refrigerant air conditioners A and B by limiting their capacity to a preset upper limit capacity value, the operation plan creating unit 4 of the present embodiment satisfies the capacity condition. to create an operation plan.

このように、能力条件がある場合にも運転計画の作成及び再計画が可能である。 In this way, it is possible to create and reschedule an operation plan even when there are capacity conditions.

本実施の形態の修復時間予測部6は、故障内容と故障内容に応じた修復時間とを対応付けて記憶した故障データベースを参照して修復時間を予測する。 The repair time prediction unit 6 of the present embodiment predicts the repair time by referring to a failure database in which failure contents and repair times corresponding to the failure contents are stored in association with each other.

このように、修復時間予測部6は、故障データベースを参照して修復時間を予測できる。 Thus, the repair time prediction unit 6 can predict the repair time by referring to the failure database.

なお、上記実施の形態における各温度及び時間等の具体的数値は一例を示したに過ぎず、それらは実使用条件等に応じて適宜設定すれば良い。 It should be noted that the specific numerical values of each temperature, time, etc. in the above-described embodiment are only examples, and they may be appropriately set according to the actual use conditions and the like.

1 制御装置、2 情報取得部、3 負荷予測部、4 運転計画作成部、5 故障検知部、6 修復時間予測部、7 制御指令指示部、8 CPU、9a メモリ、9b 通信装置、10 室外機、11 室内機、20 室外機、21 室内機、30 室外機、31 室内機、32 蓄熱槽、40 建物、A 冷媒空調機、B 冷媒空調機、C 蓄熱空調機。 1 control device, 2 information acquisition unit, 3 load prediction unit, 4 operation plan creation unit, 5 failure detection unit, 6 restoration time prediction unit, 7 control command instruction unit, 8 CPU, 9a memory, 9b communication device, 10 outdoor unit , 11 indoor unit, 20 outdoor unit, 21 indoor unit, 30 outdoor unit, 31 indoor unit, 32 heat storage tank, 40 building, A refrigerant air conditioner, B refrigerant air conditioner, C thermal storage air conditioner.

Claims (10)

冷媒を循環させて空調を行う複数の冷媒空調機と、冷媒を循環させて生成した冷熱を蓄熱槽に蓄熱する蓄熱運転及び前記蓄熱槽の冷熱を用いて空調を行う蓄熱利用運転を行う蓄熱空調機と、を有し、建物内を空調する空調システムの制御装置であって、
気象予報データを取得する情報取得部と、
前記建物の将来の期間における負荷を予測する負荷予測部と、
前記負荷予測部で予測された前記負荷と前記気象予報データとに基づいて前記空調システムの消費電力が削減されるように運転計画を作成する運転計画作成部と、
前記運転計画に従って前記空調システムの運転を制御する制御指令指示部と、
前記複数の冷媒空調機のそれぞれの故障を検知する故障検知部と、
前記故障検知部で故障が検知された場合に、故障が発生した故障機を修復するために要する修復時間を予測する修復時間予測部と、を備え、
前記運転計画作成部は、故障が検知された場合、前記修復時間に基づいて運転計画を再計画する空調システムの制御装置。
A plurality of refrigerant air conditioners that perform air conditioning by circulating a refrigerant, a heat storage operation that stores cold heat generated by circulating the refrigerant in a heat storage tank, and a heat storage use operation that performs air conditioning using the cold heat in the heat storage tank. A control device for an air-conditioning system for air-conditioning a building, comprising:
an information acquisition unit that acquires weather forecast data;
a load prediction unit that predicts the load in the future period of the building;
an operation plan creation unit that creates an operation plan so as to reduce power consumption of the air conditioning system based on the load predicted by the load prediction unit and the weather forecast data;
a control command instruction unit that controls the operation of the air conditioning system according to the operation plan;
a failure detection unit that detects a failure of each of the plurality of refrigerant air conditioners;
a repair time prediction unit that predicts a repair time required to repair the failed machine in the event that a failure is detected by the failure detection unit;
The control device for an air-conditioning system, wherein the operation plan creating unit re-plans the operation plan based on the repair time when a failure is detected.
前記運転計画作成部は、前記修復時間に基づいて、前記故障機が前記運転計画で運転開始すると計画された予定時刻までに復旧し、前記予定時刻に運転できると判断した場合、前記予定時刻に前記故障機を運転させる条件で運転計画を再計画する請求項1記載の空調システムの制御装置。 If the operation plan creation unit determines that the malfunctioning machine will be restored by the scheduled time scheduled to start operation according to the operation plan based on the repair time and can be operated at the scheduled time, 2. The control device for an air conditioning system according to claim 1, wherein the operation plan is rescheduled under the conditions for operating the malfunctioning machine. 前記運転計画作成部は、前記修復時間に基づいて、前記故障機が前記運転計画で運転開始すると計画された予定時刻までに復旧できない場合、前記予定時刻に前記故障機を運転させない条件で運転計画を再計画する請求項1又は請求項2記載の空調システムの制御装置。 Based on the recovery time, the operation plan creation unit creates an operation plan under the condition that the failed unit is not operated at the scheduled time if the failed unit cannot be restored by the scheduled time when the operation of the failed unit starts according to the operation plan. 3. A control device for an air conditioning system according to claim 1 or claim 2, wherein the replanning is performed. 前記複数の冷媒空調機及び前記蓄熱空調機の前記蓄熱運転のそれぞれは、互いに異なる外気温度-COP特性を有し、
前記運転計画作成部は、
前記複数の冷媒空調機及び前記蓄熱空調機の前記蓄熱運転のそれぞれを、自身のCOPが最大となる外気温度を含む外気温度範囲で運転させることを条件とした高効率運転条件を有し、
前記気象予報データに含まれる外気温度が、予め設定された蓄熱利用開始温度以上の時間帯では前記蓄熱空調機に前記蓄熱利用運転を行わせ、前記外気温度が前記蓄熱利用開始温度未満の時間帯では、前記高効率運転条件を満たすように運転計画を作成する請求項1~請求項3の何れか一項に記載の空調システムの制御装置。
Each of the plurality of refrigerant air conditioners and the heat storage operation of the heat storage air conditioner has an outside air temperature-COP characteristic different from each other,
The operation plan creation unit,
A highly efficient operation condition on the condition that each of the heat storage operations of the plurality of refrigerant air conditioners and the heat storage air conditioner is operated in an outside temperature range including an outside temperature that maximizes its own COP,
When the outside air temperature contained in the weather forecast data is equal to or higher than a preset heat storage utilization start temperature, the heat storage air conditioner is caused to perform the heat storage utilization operation, and the outside air temperature is less than the heat storage utilization start temperature. The controller for an air conditioning system according to any one of claims 1 to 3, wherein an operation plan is created so as to satisfy the high-efficiency operation conditions.
前記運転計画作成部は、前記再計画の際、前記故障機以外の前記冷媒空調機について、前記冷媒空調機に対応する前記外気温度範囲の上限温度を、前記COPが最大となる温度側に補正し、補正後の前記外気温度範囲で前記冷媒空調機が運転されるように前記冷媒空調機の再計画を行うと共に、補正後の前記上限温度と、前記負荷予測部で予測された前記負荷とに基づいて前記蓄熱運転及び前記蓄熱利用運転の再計画を行う請求項4記載の空調システムの制御装置。 At the time of re-planning, the operation plan creation unit corrects the upper limit temperature of the outside air temperature range corresponding to the refrigerant air conditioners other than the malfunctioning unit to the temperature side at which the COP is maximized. Then, the refrigerant air conditioner is rescheduled so that the refrigerant air conditioner is operated in the corrected outside air temperature range, and the corrected upper limit temperature and the load predicted by the load prediction unit 5. The control device for an air conditioning system according to claim 4, wherein the re-planning of the heat storage operation and the heat storage utilization operation is performed based on. 前記運転計画作成部は、補正後の前記上限温度と前記負荷予測部で予測された前記負荷とに基づいて前記蓄熱槽の蓄熱量の補正熱量を算出し、前記補正熱量を前記蓄熱槽に蓄熱するように前記蓄熱運転の再計画を行う請求項5記載の空調システムの制御装置。 The operation plan creation unit calculates a corrected heat amount of the heat storage amount of the heat storage tank based on the corrected upper limit temperature and the load predicted by the load prediction unit, and stores the corrected heat amount in the heat storage tank. 6. The control device for an air conditioning system according to claim 5, wherein the replanning of the heat storage operation is performed. 前記運転計画作成部は、前記複数の冷媒空調機を、予め設定された上限能力値に能力を制限して運転を行わせる能力条件がある場合、前記能力条件を満たすように運転計画を作成する請求項1~請求項6の何れか一項に記載の空調システムの制御装置。 When there is a capacity condition for operating the plurality of refrigerant air conditioners with capacity limited to a preset upper limit capacity value, the operation plan creation unit creates an operation plan so as to satisfy the capacity condition. A control device for an air conditioning system according to any one of claims 1 to 6. 前記修復時間予測部は、故障内容と前記故障内容に応じた前記修復時間とを対応付けて記憶した故障データベースを参照して前記修復時間を予測する請求項1~請求項7の何れか一項に記載の空調システムの制御装置。 8. The repair time prediction unit according to any one of claims 1 to 7, wherein the repair time prediction unit predicts the repair time by referring to a failure database in which failure contents and the repair times corresponding to the failure contents are stored in association with each other. Control device for the air conditioning system according to 1. 冷媒を循環させて空調を行う複数の冷媒空調機と、冷媒を循環させて生成した冷熱を蓄熱槽に蓄熱する蓄熱運転及び前記蓄熱槽の冷熱を用いて空調を行う蓄熱利用運転を行う蓄熱空調機と、を有し、建物内を空調する空調システムの制御方法であって、
前記建物の将来の期間において発生すると予測した前記負荷と気象予報データとに基づいて前記空調システムの消費電力が削減されるように運転計画を作成し、運転計画に従って前記空調システムの運転を制御するようにしており、
前記冷媒空調機の故障が検知された場合に、故障が発生した故障機を修復するために要する修復時間を予測し、前記修復時間に基づいて運転計画を再計画する空調システムの制御方法。
A plurality of refrigerant air conditioners that perform air conditioning by circulating a refrigerant, a heat storage operation that stores cold heat generated by circulating the refrigerant in a heat storage tank, and a heat storage use operation that performs air conditioning using the cold heat in the heat storage tank. A control method for an air-conditioning system that air-conditions a building, comprising:
An operation plan is created so as to reduce the power consumption of the air conditioning system based on the load predicted to occur in the future period of the building and weather forecast data, and the operation of the air conditioning system is controlled according to the operation plan. and
A control method for an air-conditioning system, which, when a failure of the refrigerant air conditioner is detected, predicts a repair time required to repair the failed machine, and re-plans an operation plan based on the repair time.
冷媒を循環させて空調を行う複数の冷媒空調機と、冷媒を循環させて生成した冷熱を蓄熱槽に蓄熱する蓄熱運転及び前記蓄熱槽の冷熱を用いて空調を行う蓄熱利用運転を行う蓄熱空調機と、を有し、建物内を空調する空調システムであって、
制御装置を有し、
前記制御装置は、
気象予報データを取得する情報取得部と、
前記建物の将来の期間における負荷を予測する負荷予測部と、
前記負荷予測部で予測された前記負荷と前記気象予報データとに基づいて前記空調システムの消費電力が削減されるように運転計画を作成する運転計画作成部と、
前記運転計画に従って前記空調システムの運転を制御する制御指令指示部と、
前記複数の冷媒空調機のそれぞれの故障を検知する故障検知部と、
前記故障検知部で故障が検知された場合に、故障が発生した故障機を修復するために要する修復時間を予測する修復時間予測部と、を備え、
前記運転計画作成部は、故障が検知された場合、前記修復時間に基づいて運転計画を再計画する空調システム。
A plurality of refrigerant air conditioners that perform air conditioning by circulating a refrigerant, a heat storage operation that stores cold heat generated by circulating the refrigerant in a heat storage tank, and a heat storage use operation that performs air conditioning using the cold heat in the heat storage tank. and an air conditioning system for air conditioning a building,
having a controller,
The control device is
an information acquisition unit that acquires weather forecast data;
a load prediction unit that predicts the load in the future period of the building;
an operation plan creation unit that creates an operation plan so as to reduce power consumption of the air conditioning system based on the load predicted by the load prediction unit and the weather forecast data;
a control command instruction unit that controls the operation of the air conditioning system according to the operation plan;
a failure detection unit that detects a failure of each of the plurality of refrigerant air conditioners;
a repair time prediction unit that predicts a repair time required to repair the failed machine in the event that a failure is detected by the failure detection unit;
The air conditioning system, wherein the operation plan creation unit re-plans the operation plan based on the repair time when a failure is detected.
JP2021528596A 2019-06-21 2019-06-21 Air-conditioning system control device, air-conditioning system control method, and air-conditioning system Active JP7118270B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024724 WO2020255375A1 (en) 2019-06-21 2019-06-21 Control device for air-conditioning system, control method for air-conditioning system, and air-conditioning system

Publications (2)

Publication Number Publication Date
JPWO2020255375A1 JPWO2020255375A1 (en) 2021-10-28
JP7118270B2 true JP7118270B2 (en) 2022-08-15

Family

ID=74040381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021528596A Active JP7118270B2 (en) 2019-06-21 2019-06-21 Air-conditioning system control device, air-conditioning system control method, and air-conditioning system

Country Status (2)

Country Link
JP (1) JP7118270B2 (en)
WO (1) WO2020255375A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222477A (en) * 2021-12-13 2022-03-22 中国联合网络通信集团有限公司 Energy-saving control method and device for data center, storage medium and program product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064499A (en) 2005-08-29 2007-03-15 Hitachi Ltd Refrigeration air conditioner system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501981B2 (en) * 1991-09-26 1996-05-29 東京電力株式会社 Operation control device for heat source equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064499A (en) 2005-08-29 2007-03-15 Hitachi Ltd Refrigeration air conditioner system

Also Published As

Publication number Publication date
WO2020255375A1 (en) 2020-12-24
JPWO2020255375A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP5507199B2 (en) Air conditioner failure diagnosis system
US8527097B2 (en) Air conditioning management apparatus, air conditioning management method, air conditioning system, program, and recording medium
JP2009014233A (en) Air conditioner, and management system of air conditioner
JP2023530628A (en) Cooling equipment control method, cooling equipment control device, computer equipment and computer readable medium
JP4905939B2 (en) Operation control method for air conditioning system
CN104949276A (en) Air conditioner running state self-detecting method and system
JP6716238B2 (en) Refrigerating and air-conditioning device, control device, and computer program
CN102645006A (en) Energy-saving remote control system for central air conditioner and use method thereof
JP7118270B2 (en) Air-conditioning system control device, air-conditioning system control method, and air-conditioning system
WO2021177298A1 (en) Equipment management system
JP2007255759A (en) Air conditioner
JP2019060539A (en) Air conditioning device
JP4845814B2 (en) Air conditioner
CN108709281B (en) Control method and system of air conditioner, air conditioner and computer equipment
JP6351518B2 (en) Air conditioning system
JP3438551B2 (en) Air conditioner
JP6955231B2 (en) Maintenance support system
US11913659B2 (en) Systems and methods for monitoring operation of an HVAC system
KR20130022295A (en) Apparatus and method for driving an air conditioner
JP5131185B2 (en) Equipment control system
JP6815464B2 (en) Local management device, server management device, and management method
JP6608081B2 (en) Energy management apparatus and energy management method
JP2019023523A (en) Air conditioning system and indoor units
JP2012233600A (en) Air conditioning device
JP5701137B2 (en) Air conditioning apparatus, air conditioning method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220802

R150 Certificate of patent or registration of utility model

Ref document number: 7118270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150