JP7111049B2 - Textile structures and pressure vessels - Google Patents

Textile structures and pressure vessels Download PDF

Info

Publication number
JP7111049B2
JP7111049B2 JP2019074831A JP2019074831A JP7111049B2 JP 7111049 B2 JP7111049 B2 JP 7111049B2 JP 2019074831 A JP2019074831 A JP 2019074831A JP 2019074831 A JP2019074831 A JP 2019074831A JP 7111049 B2 JP7111049 B2 JP 7111049B2
Authority
JP
Japan
Prior art keywords
fiber
elasticity
low
liner
fiber bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019074831A
Other languages
Japanese (ja)
Other versions
JP2020172970A (en
Inventor
勇人 福井
隆太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2019074831A priority Critical patent/JP7111049B2/en
Priority to PCT/JP2020/012552 priority patent/WO2020209034A1/en
Publication of JP2020172970A publication Critical patent/JP2020172970A/en
Application granted granted Critical
Publication of JP7111049B2 publication Critical patent/JP7111049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

本発明は、ライナにおける胴体部及びドーム部を外側から覆う繊維強化基材を有する繊維構造体及び圧力容器に関する。 TECHNICAL FIELD The present invention relates to a fiber structure and a pressure vessel having a fiber-reinforced base material covering the body portion and the dome portion of the liner from the outside.

近年、天然ガスを燃料とする自動車が低公害車として注目されており、より低公害のものとして、燃料電池を動力源とする自動車も注目されている。燃料電池の燃料として水素ガスを燃料タンクに収容する自動車もあるが、燃料タンクとなる圧力容器の重量が重く燃費が悪くなる。この不都合を解消するため、ガスバリア性を有するライナ(内殻)を耐圧性の繊維強化複合材層で覆った圧力容器が提案されている。 In recent years, automobiles that use natural gas as fuel have attracted attention as low-pollution vehicles, and automobiles that use fuel cells as a power source have also attracted attention as low-pollution vehicles. There are automobiles that contain hydrogen gas as fuel for the fuel cell in the fuel tank, but the weight of the pressure vessel serving as the fuel tank is heavy, resulting in poor fuel efficiency. In order to solve this problem, a pressure vessel has been proposed in which a gas barrier liner (inner shell) is covered with a pressure-resistant fiber-reinforced composite material layer.

このような圧力容器において、一般に、ライナは円筒状の胴体部の中心軸線の延びる方向(以下、軸方向とする)の両端側に曲面状のドーム部を有する形状である。圧力容器内には数十MPaの圧力になるようにガスが充填されるが、繊維強化複合材層により、ライナが補強されている。 In such a pressure vessel, the liner generally has a curved dome portion on both ends in the direction in which the central axis of the cylindrical body extends (hereinafter referred to as the axial direction). The pressure vessel is filled with gas to a pressure of several tens of MPa, and the liner is reinforced with a fiber-reinforced composite material layer.

このような圧力容器において、使用時に高圧のガスが充填されるとライナには大きな内圧が作用する。この内圧によりライナに荷重が加わるが、胴体部とドーム部では、加わる荷重の大きさ、荷重の加わる方向が異なるため、胴体部とドーム部の境界付近で繊維強化複合材層に歪みが生じやすい。この歪みにより、繊維強化複合材層の各層の間に層間せん断応力が生じ、繊維強化複合材層の層間剥離が生じて、圧力容器の強度が低下する虞がある。この層間剥離を原因とした圧力容器の強度の低下を抑制するために、例えば、特許文献1では、胴体部とドーム部との境界付近に、繊維強化複合材層を貫通するピンを設け、層間剥離を抑制している。 When such a pressure vessel is filled with high-pressure gas during use, a large internal pressure acts on the liner. This internal pressure applies a load to the liner, but since the magnitude and direction of the applied load are different between the body and the dome, the fiber-reinforced composite material layer tends to be distorted near the boundary between the body and the dome. . Due to this strain, an interlaminar shear stress is generated between the fiber reinforced composite material layers, delamination of the fiber reinforced composite material layers may occur, and the strength of the pressure vessel may be reduced. In order to suppress the decrease in the strength of the pressure vessel due to this delamination, for example, in Patent Document 1, a pin penetrating the fiber reinforced composite material layer is provided near the boundary between the body portion and the dome portion, Suppresses peeling.

特開2010-249146号公報JP 2010-249146 A

ところが、特許文献1においては、繊維強化複合材層における層間剥離を抑制するためのピンを必要とし、部品点数が増加して製造コストが嵩んでしまっている。
本発明の目的は、部品を増やさずに繊維強化複合材層における層間剥離を抑制できる繊維構造体及び圧力容器を提供することにある。
However, in Patent Literature 1, a pin is required to suppress delamination in the fiber-reinforced composite material layer, which increases the number of parts and increases the manufacturing cost.
An object of the present invention is to provide a fiber structure and a pressure vessel capable of suppressing delamination in fiber-reinforced composite material layers without increasing the number of parts.

上記問題点を解決するための繊維構造体は、円筒状の胴体部と、前記胴体部の中心軸線の延びる軸方向に沿って前記胴体部に連続し、前記中心軸線に向けて先すぼみする形状のドーム部と、前記ドーム部の先すぼみした先端に設けられる口金部と、を有するライナを備えるとともに、前記ライナにおける前記胴体部及び前記ドーム部を外側から覆う繊維強化基材を有する繊維構造体であって、前記繊維強化基材にマトリックス樹脂を含浸硬化させた繊維強化複合材層によって前記ライナを補強する圧力容器を構成し、前記繊維強化基材は、前記ライナの周方向へ糸主軸方向が延びるように前記胴体部及び前記ドーム部に配列された第1繊維束と、前記第1繊維束と織物を形成する第2繊維束とを有し、前記軸方向に沿う前記胴体部と前記ドーム部との境を境界とした場合、前記繊維強化基材は、前記第1繊維束として、他の第1繊維束よりも弾性率の高い高弾性繊維束を有するとともに、他の第1繊維束として、前記高弾性繊維束よりも弾性率の低い低弾性繊維束を有し、前記高弾性繊維束は前記境界を含んで前記胴体部に配列されていることを要旨とする。 A fiber structure for solving the above problems includes a cylindrical body, and a shape that is continuous with the body along the axial direction in which the central axis of the body extends and tapers toward the central axis. and a mouthpiece provided at the tapering tip of the dome portion, and a fiber-reinforced base material covering the body portion and the dome portion of the liner from the outside. A pressure vessel that reinforces the liner with a fiber-reinforced composite material layer in which the fiber-reinforced base material is impregnated with a matrix resin and cured, and the fiber-reinforced base material extends in the circumferential direction of the liner and in the yarn main axis direction. and a second fiber bundle forming a woven fabric together with the first fiber bundle. When the boundary with the dome portion is defined as a boundary, the fiber-reinforced base material has, as the first fiber bundles, high-elasticity fiber bundles having a higher elastic modulus than the other first fiber bundles, and the other first fiber bundles. The gist is that a low-elasticity fiber bundle having a lower modulus of elasticity than the high-elasticity fiber bundle is included as the bundle, and the high-elasticity fiber bundle is arranged in the body portion including the boundary.

これによれば、ライナの境界付近において、軸方向に沿った境界から胴体部寄りの部分は、ライナの軸方向に直交する方向(以下、径方向とする)への寸法がドーム部より大きく、内圧応力が大きく作用する部分であり、しかも、ライナの径方向への寸法がドーム部から変化する場所であり、内圧を受けて変形し易い部分である。この変形し易い境界を含むように高弾性繊維束を配列することで、圧力容器の繊維強化複合材層における、胴体部付近の剛性を高め、当該繊維強化複合材層により、内圧を受けたときのライナの変形を抑制できる。 According to this, in the vicinity of the boundary of the liner, the portion closer to the body portion from the boundary along the axial direction has a dimension in the direction perpendicular to the axial direction of the liner (hereinafter referred to as the radial direction) larger than that of the dome portion. It is a portion where a large internal pressure stress acts, and moreover, it is a portion where the radial dimension of the liner changes from that of the dome portion, and is a portion that is easily deformed by the internal pressure. By arranging the high-elasticity fiber bundles so as to include this easily deformable boundary, the rigidity of the fiber-reinforced composite material layer of the pressure vessel near the body portion is increased, and when the internal pressure is received by the fiber-reinforced composite material layer, deformation of the liner can be suppressed.

また、軸方向に沿った境界よりもドーム部寄りの部分は、ライナの径方向への寸法が胴体部よりも小さくなる部分であり、胴体部と比べると、内圧を受けて変形し難い部分である。 In addition, the portion closer to the dome than the boundary along the axial direction is the portion where the dimension in the radial direction of the liner is smaller than that of the body, and compared to the body, it is a portion that is less likely to deform due to internal pressure. be.

よって、ライナの境界付近において、境界を含むように胴体部に高弾性繊維束を配列し、この高弾性繊維束によって、ライナが内圧を受けたときの変形を抑制することで、境界を境にして胴体部とドーム部とで変形量に大きな差が生じることを抑制し、境界付近を曲げようとする力を抑制できる。その結果として、境界付近に発生するモーメントを抑え、モーメントに起因して繊維強化複合材層に発生する層間せん断応力を抑制でき、繊維強化複合材層に層間剥離が発生することを抑制できる。 Therefore, in the vicinity of the boundary of the liner, highly elastic fiber bundles are arranged in the body part so as to include the boundary. Therefore, it is possible to suppress the occurrence of a large difference in the amount of deformation between the body portion and the dome portion, and suppress the force that tends to bend the vicinity of the boundary. As a result, the moment generated near the boundary can be suppressed, the interlaminar shear stress generated in the fiber reinforced composite material layer due to the moment can be suppressed, and the occurrence of delamination in the fiber reinforced composite material layer can be suppressed.

したがって、繊維強化基材を形成する第1繊維束の弾性率を調節するだけで、繊維強化複合材層における層間剥離の発生を抑制でき、例えば、層間剥離を抑制するためのピンや、繊維層の追加を必要とせず、繊維強化複合材層における層間剥離の発生を抑制できる。 Therefore, the occurrence of delamination in the fiber-reinforced composite material layer can be suppressed only by adjusting the elastic modulus of the first fiber bundle that forms the fiber-reinforced base material. It is possible to suppress the occurrence of delamination in the fiber-reinforced composite material layer without requiring the addition of.

また、繊維構造体について、前記低弾性繊維束は、前記高弾性繊維束よりも弾性率が低い第1低弾性繊維束、及び、前記第1低弾性繊維束よりも弾性率が高く、かつ前記高弾性繊維束よりも弾性率が低い第2低弾性繊維束を有し、前記繊維強化基材において、前記ドーム部には、前記軸方向に沿って前記高弾性繊維束に隣り合う前記低弾性繊維束として前記第1低弾性繊維束が配列され、前記胴体部には、前記軸方向に沿って前記高弾性繊維束に隣り合う前記低弾性繊維束として前記第2低弾性繊維束が配列され、前記ドーム部において、前記軸方向に沿って前記第1低弾性繊維束に隣り合う前記低弾性繊維束として前記第2低弾性繊維束が配列されていてもよい。 Further, with respect to the fiber structure, the low-elasticity fiber bundle includes a first low-elasticity fiber bundle having a lower elastic modulus than the high-elasticity fiber bundle, and a higher elastic modulus than the first low-elasticity fiber bundle, and In the fiber-reinforced base material, the dome portion includes the low-elasticity fiber bundle adjacent to the high-elasticity fiber bundle along the axial direction. The first low-elasticity fiber bundles are arranged as fiber bundles, and the second low-elasticity fiber bundles are arranged as the low-elasticity fiber bundles adjacent to the high-elasticity fiber bundles in the body portion along the axial direction. In the dome portion, the second low-elasticity fiber bundles may be arranged as the low-elasticity fiber bundles adjacent to the first low-elasticity fiber bundles along the axial direction.

これによれば、ライナの境界は、ライナの径方向への寸法が胴体部よりも小さくなり、しかも、ライナの径方向への寸法が変化する場所であり、内圧を受けて変形し難い部分である。この変形し難い部分に、低弾性繊維束の中でも、第2低弾性繊維束よりも弾性率の低い第1低弾性繊維束を配列し、内圧を受けたときの変形を許容するようにした。よって、圧力容器において、内圧を受けたとき、境界を挟んだ両側でのライナの変形量に大きな差が生じることを抑制し、境界付近を曲げようとする力を抑制できる。その結果として、境界付近に発生するモーメントを抑え、モーメントに起因して繊維強化複合材層に発生する層間せん断応力を抑制でき、繊維強化複合材層に層間剥離が発生することを抑制できる。 According to this, the boundary of the liner is a place where the radial dimension of the liner is smaller than that of the body portion, where the radial dimension of the liner changes, and where it is difficult to deform under internal pressure. be. Among the low-elasticity fiber bundles, the first low-elasticity fiber bundles having a lower modulus of elasticity than the second low-elasticity fiber bundles are arranged in this portion that is difficult to deform, thereby allowing deformation when subjected to internal pressure. Therefore, when the pressure vessel receives internal pressure, it is possible to suppress a large difference in the amount of deformation of the liner on both sides of the boundary, and to suppress the force that tends to bend the vicinity of the boundary. As a result, the moment generated near the boundary can be suppressed, the interlaminar shear stress generated in the fiber reinforced composite material layer due to the moment can be suppressed, and the occurrence of delamination in the fiber reinforced composite material layer can be suppressed.

また、ライナの胴体部及びドーム部において、高弾性繊維束及び第1低弾性繊維束が配列された部分以外は、第2低弾性繊維束が配列され、この第2低弾性繊維束により、ライナを径方向に補強できる。 Further, in the body portion and the dome portion of the liner, the second low-elasticity fiber bundles are arranged except for the portions where the high-elasticity fiber bundles and the first low-elasticity fiber bundles are arranged. can be radially reinforced.

また、繊維構造体について、前記繊維強化基材において、前記軸方向に沿って前記境界を挟んだ前記胴体部及び前記ドーム部に前記高弾性繊維束が配列され、前記胴体部及び前記ドーム部の残りの部分において前記低弾性繊維束が配列されていてもよい。 Further, with respect to the fiber structure, in the fiber-reinforced base material, the high-elasticity fiber bundles are arranged in the body portion and the dome portion sandwiching the boundary along the axial direction, and the body portion and the dome portion The low-elasticity fiber bundles may be arranged in the remaining portion.

これによれば、軸方向に沿って境界を挟んだ両側に高弾性繊維束を配列した。境界付近は、ライナの径方向への寸法が変化する場所であり、内圧を受けて変形し易い部分である。圧力容器において、変形し易い部分に高弾性繊維束を配列して繊維強化複合材層の剛性を高め、内圧を受けたときの変形を抑制できる。 According to this, high-elasticity fiber bundles were arranged on both sides across the boundary along the axial direction. The vicinity of the boundary is a place where the dimension of the liner in the radial direction changes, and is a portion that is likely to deform due to internal pressure. In a pressure vessel, by arranging high-elasticity fiber bundles in easily deformable portions, the rigidity of the fiber-reinforced composite material layer is increased, and deformation when subjected to internal pressure can be suppressed.

また、繊維構造体について、前記繊維強化基材において、前記軸方向に沿って前記胴体部から前記口金部に至るまで前記高弾性繊維束が配列されるとともに、前記胴体部に前記低弾性繊維束が配列されていてもよい。 Further, with respect to the fiber structure, in the fiber-reinforced base material, the high-elasticity fiber bundles are arranged along the axial direction from the body portion to the mouthpiece, and the low-elasticity fiber bundles are arranged in the body portion. may be arranged.

これによれば、高弾性繊維束と低弾性繊維束との2種類で繊維強化基材を構成するため、簡単な構成で繊維強化複合材層に層間剥離が発生することを抑制できる。
また、繊維構造体について、前記繊維強化基材は、前記第1繊維束と、前記第2繊維束とを織って製織された織物を前記ライナに捲回した構造であってもよい。
According to this, since the fiber-reinforced base material is composed of two types of high-elasticity fiber bundles and low-elasticity fiber bundles, it is possible to suppress the occurrence of delamination in the fiber-reinforced composite material layer with a simple configuration.
Further, with respect to the fiber structure, the fiber-reinforced base material may have a structure in which a fabric woven by weaving the first fiber bundle and the second fiber bundle is wound around the liner.

これによれば、ライナの外側に繊維強化基材を製造する方法として、フィラメントワインディングがある。この方法では、繊維束を1本ずつライナに巻いていくため、生産性が低い。しかし、第1繊維束と第2繊維束で織物を製織しつつ、織物をライナに巻き付けていく方法であれば、フィラメントワインディングと比べると、生産性を高めることができる。 According to this, filament winding is a method for producing a fiber-reinforced base material on the outside of the liner. With this method, the productivity is low because the fiber bundles are wound around the liner one by one. However, a method of winding the fabric around the liner while weaving the fabric from the first fiber bundle and the second fiber bundle can improve productivity compared to filament winding.

上記問題点を解決するための圧力容器は、円筒状の胴体部と、前記胴体部の中心軸線の延びる軸方向に沿って前記胴体部に連続し、前記中心軸線に向けて先すぼみする形状のドーム部と、前記ドーム部の先すぼみした先端に設けられる口金部と、を有するライナを備えるとともに、前記ライナにおける前記胴体部及び前記ドーム部を外側から覆う繊維強化基材を有する繊維構造体を有し、前記繊維強化基材にマトリックス樹脂を含浸硬化させた繊維強化複合材層によって前記ライナを補強する圧力容器であって、前記繊維構造体が請求項1~請求項5のうちいずれか一項に記載の繊維構造体であることを要旨とする。 A pressure vessel for solving the above problems has a cylindrical body, and a shape that is continuous with the body along the axial direction in which the central axis of the body extends and tapers toward the central axis. A fiber structure comprising a liner having a dome portion and a mouthpiece portion provided at a tapering tip of the dome portion, and having a fiber-reinforced base material covering the body portion and the dome portion of the liner from the outside. and wherein the liner is reinforced by a fiber-reinforced composite material layer obtained by impregnating and curing the fiber-reinforced base material with a matrix resin, wherein the fiber structure is any one of claims 1 to 5 The gist is that it is the fiber structure according to the above item.

これによれば、ライナの境界付近において、軸方向に沿った境界から胴体部寄りの部分は、ライナの軸方向に直交する方向(以下、径方向とする)への寸法がドーム部より大きく、内圧応力が大きく作用する部分であり、しかも、ライナの径方向への寸法がドーム部から変化する場所であり、内圧を受けて変形し易い部分である。この変形し易い境界を含むように高弾性繊維束を配列することで、圧力容器の繊維強化複合材層における、胴体部付近の剛性を高め、当該繊維強化複合材層により、内圧を受けたときのライナの変形を抑制できる。 According to this, in the vicinity of the boundary of the liner, the portion closer to the body portion from the boundary along the axial direction has a dimension in the direction perpendicular to the axial direction of the liner (hereinafter referred to as the radial direction) larger than that of the dome portion. It is a portion where a large internal pressure stress acts, and moreover, it is a portion where the radial dimension of the liner changes from that of the dome portion, and is a portion that is easily deformed by the internal pressure. By arranging the high-elasticity fiber bundles so as to include this easily deformable boundary, the rigidity of the fiber-reinforced composite material layer of the pressure vessel near the body portion is increased, and when the internal pressure is received by the fiber-reinforced composite material layer, deformation of the liner can be suppressed.

また、軸方向に沿った境界よりもドーム部寄りの部分は、ライナの径方向への寸法が胴体部よりも小さくなる部分であり、胴体部と比べると、内圧を受けて変形し難い部分であり、変形量の小さい部分である。 In addition, the portion closer to the dome than the boundary along the axial direction is the portion where the dimension in the radial direction of the liner is smaller than that of the body, and compared to the body, it is a portion that is less likely to deform due to internal pressure. This is a portion with a small amount of deformation.

よって、圧力容器において、軸方向に沿った境界を含む胴体部に高弾性繊維束を配列し、この高弾性繊維束によって、ライナが内圧を受けたときの変形を抑制することで、境界を境にして胴体部とドーム部とで変形量に大きな差が生じることを抑制し、境界付近を曲げようとする力を抑制できる。その結果として、境界付近に発生するモーメントを抑え、モーメントに起因して繊維強化複合材層に発生する層間せん断応力を抑制でき、繊維強化複合材層に層間剥離が発生することを抑制できる。 Therefore, in the pressure vessel, high-elasticity fiber bundles are arranged in the body portion including the boundary along the axial direction, and the high-elasticity fiber bundles suppress deformation of the liner when subjected to internal pressure. As a result, it is possible to suppress the occurrence of a large difference in the amount of deformation between the body portion and the dome portion, and suppress the force that tends to bend the vicinity of the boundary. As a result, the moment generated near the boundary can be suppressed, the interlaminar shear stress generated in the fiber reinforced composite material layer due to the moment can be suppressed, and the occurrence of delamination in the fiber reinforced composite material layer can be suppressed.

したがって、繊維強化基材を形成する第1繊維束の弾性率を調節するだけで、繊維強化複合材層における層間剥離の発生を抑制でき、例えば、層間剥離を抑制するためのピンや、繊維層の追加を必要とせず、繊維強化複合材層における層間剥離の発生を抑制できる。 Therefore, the occurrence of delamination in the fiber-reinforced composite material layer can be suppressed only by adjusting the elastic modulus of the first fiber bundle that forms the fiber-reinforced base material. It is possible to suppress the occurrence of delamination in the fiber-reinforced composite material layer without requiring the addition of.

本発明によれば、部品を増やさずに繊維強化複合材層における層間剥離を抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, the delamination in a fiber reinforced composite material layer can be suppressed, without increasing components.

高圧タンクを模式的に示す断面図。Sectional drawing which shows a high pressure tank typically. 繊維構造体を模式的に示す斜視図。The perspective view which shows a fiber structure typically. 繊維強化基材を模式的に示す正面図。The front view which shows a fiber-reinforced base material typically. 高圧タンクの胴体部及びドーム部を示す図。The figure which shows the body part and dome part of a high-pressure tank. 高圧タンクの胴体部及びドーム部を示す断面図。Sectional drawing which shows the body part and dome part of a high-pressure tank. 織機による繊維構造体の製造方法を模式的に示す図。The figure which shows typically the manufacturing method of the fiber structure by a loom. (a)は緯糸を緯入れした状態を模式的に示す図、(b)は筬打ち動作後の状態を模式的に示す図、(c)はライナに繊維強化基材を巻き取った状態を模式的に示す図。(a) is a diagram schematically showing the state in which the weft yarn is inserted, (b) is a diagram schematically showing the state after the beating operation, and (c) is the state in which the fiber reinforced base material is wound around the liner. The figure shown typically. 別例の高圧タンクの胴体部及びドーム部を示す図。The figure which shows the body part and dome part of the high-pressure tank of another example. 別例の高圧タンクの胴体部及びドーム部を示す断面図。Sectional drawing which shows the body part and dome part of the high pressure tank of example of another. 別例の高圧タンクの胴体部及びドーム部を示す図。The figure which shows the body part and dome part of the high-pressure tank of another example. 別例の高圧タンクの胴体部及びドーム部を示す断面図。Sectional drawing which shows the body part and dome part of the high pressure tank of example of another.

以下、繊維構造体、及び圧力容器を高圧タンクに具体化した一実施形態を図1~図7に従って説明する。
図1に示すように、圧力容器としての高圧タンク10は、細長中空状のライナ12と、ライナ12の外側を覆う繊維強化基材19と、を有する繊維構造体21における繊維強化基材19にマトリックス樹脂(ドットハッチングで示す)を含浸硬化させて構成されている。高圧タンク10は、マトリックス樹脂が含浸硬化した繊維強化基材19よりなる繊維強化複合材層11によってライナ12を補強し、高圧タンク10の耐圧性(機械的強度)を確保している。
An embodiment in which the fiber structure and the pressure vessel are embodied in a high-pressure tank will be described below with reference to FIGS. 1 to 7. FIG.
As shown in FIG. 1, a high pressure tank 10 as a pressure vessel includes a fiber reinforced base material 19 in a fiber structure 21 having an elongated hollow liner 12 and a fiber reinforced base material 19 covering the outside of the liner 12. It is constructed by impregnating and curing a matrix resin (indicated by dot hatching). The high-pressure tank 10 has a liner 12 reinforced by a fiber-reinforced composite material layer 11 made of a fiber-reinforced base material 19 impregnated with a matrix resin and cured to ensure pressure resistance (mechanical strength) of the high-pressure tank 10 .

ライナ12は、樹脂製であり、細長中空状である。ライナ12の中心軸線Lの延びる方向を軸方向Yとする。ライナ12は、円筒状の胴体部13を備える。胴体部13の中心軸線はライナ12の中心軸線Lと一致する。ライナ12は、胴体部13の軸方向Y両端にドーム部14を有する。ドーム部14の軸方向は、ライナ12の軸方向と一致する。また、ライナ12は、各ドーム部14の先端側に口金部15を備える。 The liner 12 is made of resin and has an elongated hollow shape. An axial direction Y is the direction in which the center axis L of the liner 12 extends. The liner 12 has a cylindrical body 13 . The central axis of the body portion 13 coincides with the central axis L of the liner 12 . The liner 12 has dome portions 14 at both ends in the axial direction Y of the body portion 13 . The axial direction of the dome portion 14 coincides with the axial direction of the liner 12 . In addition, the liner 12 is provided with a base portion 15 on the tip side of each dome portion 14 .

繊維構造体21は、この実施形態では炭素繊維を強化繊維として備える。なお、強化繊維は炭素繊維に限らず、ガラス繊維や炭化ケイ素系セラミック繊維やアラミド繊維、超高分子量ポリエチレン繊維等を使用してもよい。 The fiber structure 21 comprises carbon fibers as reinforcing fibers in this embodiment. The reinforcing fibers are not limited to carbon fibers, and glass fibers, silicon carbide ceramic fibers, aramid fibers, ultra-high molecular weight polyethylene fibers, and the like may be used.

図2又は図3に示すように、繊維構造体21は、第1繊維束としての複数本の経糸22と、第2繊維束としての複数本の緯糸23とを平織りして製織された織物24を捲回し、積層した構造である。経糸22と緯糸23は互いに直交して配列されている。複数本の経糸22は、ライナ12の軸方向Yへ互いに平行な状態で胴体部13及び各ドーム部14に配列されている。各経糸22の糸主軸方向X1は、胴体部13及びドーム部14においてライナ12の周方向Xへ直線的に延びている。なお、ライナ12において、ライナ12の中心軸線Lに直交する方向を径方向Zとする。 As shown in FIG. 2 or 3, the fiber structure 21 is a fabric 24 woven by plain weaving a plurality of warp yarns 22 as a first fiber bundle and a plurality of weft yarns 23 as a second fiber bundle. is wound and laminated. The warp yarns 22 and the weft yarns 23 are arranged perpendicular to each other. A plurality of warp yarns 22 are arranged in the body portion 13 and each dome portion 14 in parallel to each other in the axial direction Y of the liner 12 . The yarn main axis direction X1 of each warp yarn 22 extends linearly in the circumferential direction X of the liner 12 in the body portion 13 and the dome portion 14 . In addition, in the liner 12, the direction perpendicular to the central axis L of the liner 12 is defined as the radial direction Z. As shown in FIG.

複数本の緯糸23は、ライナ12の周方向Xへ互いに平行な状態で配列されている。経糸22と緯糸23は直交して配列され、経糸22の糸主軸方向X1の延びる方向をライナ12の周方向Xに一致させることで、ライナ12を径方向Zに補強し、緯糸23の糸主軸方向X2をライナ12の軸方向Yに一致させることで、ライナ12を軸方向Yに補強している。 The plurality of weft yarns 23 are arranged parallel to each other in the circumferential direction X of the liner 12 . The warp yarns 22 and the weft yarns 23 are arranged orthogonally. The liner 12 is reinforced in the axial direction Y by matching the direction X2 with the axial direction Y of the liner 12 .

図1に示すように、各ドーム部14は、ライナ12の軸方向Yに沿って各ドーム部14の先端に向かうに従い先すぼみとなる形状である。ライナ12は、当該ライナ12の軸方向Yに沿った胴体部13と各ドーム部14との境に、ライナ12の周方向全体に亘って存在する境界Rを有する。径方向Zに沿ったライナ12の寸法を、ライナ12の外径とする。境界Rは、胴体部13からドーム部14に向かう方向において、ライナ12の外径が小さくなる位置に存在する。 As shown in FIG. 1 , each dome portion 14 has a shape that tapers toward the tip of each dome portion 14 along the axial direction Y of the liner 12 . The liner 12 has a boundary R extending along the entire circumferential direction of the liner 12 at the boundary between the body portion 13 and each dome portion 14 along the axial direction Y of the liner 12 . The dimension of the liner 12 along the radial direction Z is the outer diameter of the liner 12 . The boundary R exists at a position where the outer diameter of the liner 12 becomes smaller in the direction from the body portion 13 toward the dome portion 14 .

各口金部15は金属製(例えばステンレス製)である。各口金部15は、ドーム部14との接続部15aを備えるとともに、ライナ12内の空間と連通する孔部15bを備える。ライナ12の軸方向Y一端側の口金部15の孔部15bにはバルブ(図示せず)が装着され、ライナ12の軸方向Y他端側の口金部15の孔部15bには螺子(図示せず)が螺合され、閉塞されている。各口金部15の接続部15aの外面は曲面状であり、接続部15aの外面はドーム部14の外面の一部を構成している。 Each base portion 15 is made of metal (for example, made of stainless steel). Each base portion 15 has a connection portion 15 a with the dome portion 14 and a hole portion 15 b communicating with the space inside the liner 12 . A valve (not shown) is mounted in the hole 15b of the mouthpiece 15 on the one end side in the axial direction Y of the liner 12, and a screw (not shown) is fitted in the hole 15b of the mouthpiece 15 on the other end side in the axial direction Y of the liner 12. not shown) are screwed together and closed. The outer surface of the connecting portion 15a of each base portion 15 is curved, and the outer surface of the connecting portion 15a constitutes a part of the outer surface of the dome portion 14. As shown in FIG.

図2の破線又は図4の破線に示すように、繊維強化基材19は、境界Rを含むように位置するように胴体部13に配列された経糸22として高弾性経糸22aを有する。高弾性経糸22aは、炭素繊維の中でも弾性率の高い繊維束であり、ライナ12を覆う他の炭素繊維よりも弾性率の高い高弾性繊維束である。高弾性経糸22aとしては、弾性率300~350GPaの繊維束を用いるのが好ましい。高弾性経糸22aを配列する範囲は、ライナ12が内圧を受けて荷重が加わったときの変形を抑制できる範囲であればよく、具体的には境界Rを含んでいればよい。そして、繊維強化基材19は、胴体部13に高弾性経糸22aが配列された部分として、高弾性経糸部K1を有する。 As shown by the dashed line in FIG. 2 or the dashed line in FIG. 4, the fiber-reinforced base material 19 has highly elastic warp threads 22a as the warp threads 22 arranged on the body portion 13 so as to include the boundary R. The high-elasticity warp yarns 22 a are fiber bundles having a high elastic modulus among carbon fibers, and are high-elasticity fiber bundles having a higher elastic modulus than other carbon fibers covering the liner 12 . As the highly elastic warp yarns 22a, it is preferable to use fiber bundles having an elastic modulus of 300 to 350 GPa. The range in which the highly elastic warp yarns 22a are arranged may be a range capable of suppressing deformation when the liner 12 receives internal pressure and a load is applied. The fiber-reinforced base material 19 has a high-elasticity warp portion K1 as a portion in which the high-elasticity warp yarns 22a are arranged in the trunk portion 13 .

図4の1点鎖線に示すように、繊維強化基材19は、軸方向Yに沿って高弾性経糸部K1から口金部15に向けたドーム部14の一部分に配列された経糸22として第1低弾性経糸22bを有する。第1低弾性経糸22bは、高弾性経糸22aよりも弾性率が低い炭素繊維よりなる低弾性繊維束である。第1低弾性経糸22bとしては、弾性率200~280GPaの繊維束を用いるのが好ましい。 As shown by the dashed line in FIG. 4, the fiber reinforced base material 19 is arranged in a portion of the dome portion 14 along the axial direction Y from the high-elasticity warp portion K1 toward the base portion 15 as the first warp yarns 22. It has low elastic warp yarns 22b. The first low-elasticity warp yarns 22b are low-elasticity fiber bundles made of carbon fibers having a lower elastic modulus than the high-elasticity warp yarns 22a. As the first low-elasticity warp yarns 22b, it is preferable to use fiber bundles having an elastic modulus of 200 to 280 GPa.

第1低弾性経糸22bは、軸方向Yに沿って高弾性経糸22aに隣り合い、かつ境界Rからドーム部14の一部分に亘って配列されている。そして、繊維強化基材19は、ドーム部14の一部分に第1低弾性経糸22bが配列された部分として、第1低弾性経糸部K2を有し、第1低弾性経糸部K2は、ライナ12の軸方向Yに沿って高弾性経糸部K1に連続する。そして、境界Rを挟んだ軸方向Yの両側に高弾性経糸部K1と第1低弾性経糸部K2が位置している。 The first low-elasticity warp yarns 22b are arranged adjacent to the high-elasticity warp yarns 22a along the axial direction Y and over a portion of the dome portion 14 from the boundary R. The fiber-reinforced base material 19 has a first low-elasticity warp portion K2 as a portion in which the first low-elasticity warp yarns 22b are arranged in a portion of the dome portion 14. The first low-elasticity warp portion K2 is along the axial direction Y of the high-elasticity warp portion K1. On both sides of the boundary R in the axial direction Y, the high elastic warp portion K1 and the first low elastic warp portion K2 are positioned.

図4の実線に示すように、繊維強化基材19は、ライナ12において高弾性経糸22a及び第1低弾性経糸22bが配列された部分以外に配列された経糸22として第2低弾性経糸22cを備える。第2低弾性経糸22cは、ドーム部14において、第1低弾性経糸22bが配列された部分から口金部15に至るまでのドーム部14の残りの部分に配列され、軸方向Yに沿って第1低弾性経糸部K2の第1低弾性経糸22bに隣り合うように配列されている。また、第2低弾性経糸22cは、胴体部13において、ライナ12の軸方向Y両側の高弾性経糸22a同士の間の部分に配列され、各高弾性経糸部K1の高弾性経糸22aに隣り合うように配列されている。 As shown by the solid line in FIG. 4, the fiber-reinforced base material 19 includes the second low-elasticity warp yarns 22c as the warp yarns 22 arranged in the liner 12 other than the portion where the high-elasticity warp yarns 22a and the first low-elasticity warp yarns 22b are arranged. Prepare. The second low-elasticity warp yarns 22c are arranged in the remaining part of the dome part 14 from the part where the first low-elasticity warp yarns 22b are arranged to the base part 15, It is arranged so as to be adjacent to the first low-elasticity warp yarns 22b of the one low-elasticity warp portion K2. The second low-elasticity warp yarns 22c are arranged in the body portion 13 between the high-elasticity warp yarns 22a on both sides in the axial direction Y of the liner 12, and are adjacent to the high-elasticity warp yarns 22a of each high-elasticity warp portion K1. are arranged as

第2低弾性経糸22cは、第1低弾性経糸22bよりも弾性率が高く、かつ高弾性経糸22aよりも弾性率が低い炭素繊維よりなる低弾性繊維束である。第2低弾性経糸22cとしては、弾性率280~300GPaの繊維束を用いるのが好ましい。そして、繊維強化基材19は、胴体部13の一部分及びドーム部14の一部分に第2低弾性経糸22cが配列された部分として、第2低弾性経糸部K3を有する。胴体部13に設けられた第2低弾性経糸部K3は、ライナ12の軸方向Yに沿って高弾性経糸部K1に連続し、ドーム部14に設けられた第2低弾性経糸部K3は、ライナ12の軸方向Yに沿って第1低弾性経糸部K2に連続する。 The second low-elasticity warp yarns 22c are low-elasticity fiber bundles made of carbon fibers having a higher elastic modulus than the first low-elasticity warp yarns 22b and a lower elastic modulus than the high-elasticity warp yarns 22a. As the second low-elasticity warp yarns 22c, it is preferable to use fiber bundles having an elastic modulus of 280 to 300 GPa. The fiber-reinforced base material 19 has a second low-elasticity warp portion K3 as a portion in which the second low-elasticity warp yarns 22c are arranged in a portion of the body portion 13 and a portion of the dome portion 14 . The second low-elasticity warp portion K3 provided in the body portion 13 is continuous with the high-elasticity warp portion K1 along the axial direction Y of the liner 12, and the second low-elasticity warp portion K3 provided in the dome portion 14 is It is continuous with the first low-elasticity warp portion K2 along the axial direction Y of the liner 12 .

図5に示すように、本実施形態では、高圧タンク10は、軸方向Yの一端から他端に向けて、第2低弾性経糸部K3、第1低弾性経糸部K2、高弾性経糸部K1、第2低弾性経糸部K3、高弾性経糸部K1、第1低弾性経糸部K2及び第2低弾性経糸部K3の順序で経糸部が並んでいる。そして、軸方向Yにおける両境界Rよりも胴体部13寄りの一部分が、高弾性経糸22aによって最も剛性が高く、両境界Rよりもドーム部14寄りの一部分が、第1低弾性経糸22bによって最も剛性が低くなっている。 As shown in FIG. 5, in the present embodiment, the high-pressure tank 10 has a second low-elasticity warp portion K3, a first low-elasticity warp portion K2, and a high-elasticity warp portion K1 from one end to the other end in the axial direction Y. , the second low-elasticity warp portion K3, the high-elasticity warp portion K1, the first low-elasticity warp portion K2, and the second low-elasticity warp portion K3. A portion closer to the trunk portion 13 than both boundaries R in the axial direction Y has the highest rigidity due to the high-elasticity warp yarns 22a, and a portion closer to the dome portion 14 than both boundaries R has the highest rigidity due to the first low-elasticity warp yarns 22b. Rigidity is low.

次に、高圧タンク10の製造方法を説明する。
高圧タンク10を製造する際は、経糸22としての高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cと、緯糸23を平織りしつつ、製職された織物24をライナ12に巻き付けていく。なお、以下の説明では、高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cを纏めて経糸22として説明する場合と、必要に応じて、経糸22を高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cと明記して説明する場合とがある。
Next, a method for manufacturing the high-pressure tank 10 will be described.
When manufacturing the high-pressure tank 10, the high-elasticity warp yarns 22a, the first low-elasticity warp yarns 22b, and the second low-elasticity warp yarns 22c as the warp yarns 22 and the weft yarns 23 are plain-woven, and the manufactured fabric 24 is placed on the liner 12. I'm going to wrap it around. In the following description, the high-elasticity warp yarns 22a, the first low-elasticity warp yarns 22b, and the second low-elasticity warp yarns 22c will be collectively referred to as the warp yarns 22, and if necessary, the warp yarns 22 will be referred to as the high-elasticity warp yarns 22a, In some cases, the first low-elasticity warp yarn 22b and the second low-elasticity warp yarn 22c are specified for explanation.

図6に示すように、織物24の製織は、例えば、経糸22のうち、上下に分かれて配列された経糸22の開口を行う2枚の綜絖枠31a,31bを備えた平織織機で行う。なお、図7(a)に示すように、経糸22は、ライナ12の軸方向Yに沿って複数配列されているが、その複数の経糸22のうち、高弾性経糸部K1を形成する部分には高弾性経糸22aが配列され、第1低弾性経糸部K2を形成する部分には第1低弾性経糸22bが配列されている。さらに、複数の経糸22のうち、第2低弾性経糸部K3を形成する部分には第2低弾性経糸22cが配列されている。 As shown in FIG. 6, the fabric 24 is woven, for example, by a plain loom equipped with two heald frames 31a and 31b for shedding the vertically arranged warp yarns 22. As shown in FIG. As shown in FIG. 7(a), a plurality of warp yarns 22 are arranged along the axial direction Y of the liner 12. , the high-elasticity warp yarns 22a are arranged, and the first low-elasticity warp yarns 22b are arranged in the portion forming the first low-elasticity warp portion K2. Further, among the plurality of warps 22, second low-elasticity warp yarns 22c are arranged in a portion forming the second low-elasticity warp portion K3.

図6に示すように、平織織機は、上下のうちの一方の経糸22を供給する経糸ビーム32と、上下のうちの他方の経糸22を供給する経糸ビーム33とが上下に配置された構造を有する。一方の経糸ビーム32から送り出される経糸22は一方の綜絖枠31aにより開口動作が行われ、他方の経糸ビーム33から送り出される経糸22は他方の綜絖枠31bにより開口動作が行われるようになっている。なお、綜絖枠31a,31bの目は図において黒丸で示されている。筬34は綜絖枠31a,31bと織り前35との間に配置されている。緯糸23は、上下に分かれた経糸22同士の開口に対して緯入れ機構(図示せず)により緯入れ(挿入)されるようになっている。経糸22の送り出し方向において、織り前35よりも先にはライナ12が回転可能に支持されている。ライナ12は、中心軸線Lを回転中心として回転する。 As shown in FIG. 6, the plain loom has a structure in which a warp beam 32 that supplies one of the upper and lower warp yarns 22 and a warp beam 33 that supplies the other of the upper and lower warp yarns 22 are arranged vertically. have. The warp yarns 22 delivered from one warp beam 32 are shed by one heald frame 31a, and the warp yarns 22 delivered from the other warp beam 33 are shed by the other heald frame 31b. . The meshes of the heald frames 31a and 31b are indicated by black circles in the figure. The reed 34 is arranged between the heald frames 31 a and 31 b and the cloth fell 35 . The weft yarn 23 is inserted (inserted) into the opening between the vertically divided warp yarns 22 by a weft insertion mechanism (not shown). The liner 12 is rotatably supported ahead of the cloth fell 35 in the feeding direction of the warp yarns 22 . The liner 12 rotates about the central axis L as the center of rotation.

上記の平織織機で繊維強化基材19を製織する場合、図7(a)に示すように、経糸ビーム32,33から引き出された複数本の経糸22の端部をライナ12の外周面に、例えば粘着テープ製の固定部材36によって固定する。経糸22は、ライナ12の軸方向Yに沿って胴体部13及びドーム部14に配列される。詳細には、経糸22は、ライナ12の軸方向Y一端から中央部まで、第2低弾性経糸22c、第1低弾性経糸22b、高弾性経糸22a及び第2低弾性経糸22cの順序で配列され、軸方向Yの中央部から軸方向Y他端まで、第2低弾性経糸22c、高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cの順序で配列されている。 When the fiber-reinforced base material 19 is woven with the above plain loom, as shown in FIG. For example, it is fixed by a fixing member 36 made of adhesive tape. The warp yarns 22 are arranged in the body portion 13 and the dome portion 14 along the axial direction Y of the liner 12 . Specifically, the warp yarns 22 are arranged in the order of the second low-elasticity warp yarns 22c, the first low-elasticity warp yarns 22b, the high-elasticity warp yarns 22a, and the second low-elasticity warp yarns 22c from one end in the axial direction Y of the liner 12 to the central portion. , from the central portion in the axial direction Y to the other end in the axial direction Y, the second low-elasticity warp yarns 22c, the high-elasticity warp yarns 22a, the first low-elasticity warp yarns 22b, and the second low-elasticity warp yarns 22c are arranged in this order.

ライナ12を回転させない状態で、綜絖枠31a,31bを交互に上下方向に移動させることにより、一方の綜絖枠31aと、他方の綜絖枠31bとが逆方向に移動される。そして、経糸22は隣接するもの同士で交互に上下に開き、その都度形成される経糸開口37に対して、緯糸23が緯入れ(挿入)される。 By alternately moving the heald frames 31a and 31b vertically without rotating the liner 12, the one heald frame 31a and the other heald frame 31b are moved in opposite directions. Adjacent warp yarns 22 are alternately opened vertically, and the weft yarn 23 is inserted into the warp opening 37 formed each time.

そして、緯糸23が緯入れされて、筬34の筬打ち動作が行われ、綜絖枠31a,31bが逆方向に移動されて開口状態が変更されて、次の緯入れ動作が行われる。これらの動作が繰り返されて経糸22と緯糸23とが平織された織物24の一部が製織されるとともに、ライナ12に織物24の一部が一体化された状態が形成される。 Then, the weft yarn 23 is inserted, the reed 34 is beaten, the heddle frames 31a and 31b are moved in the opposite direction to change the open state, and the next weft insertion operation is performed. These operations are repeated to partially weave the fabric 24 in which the warp yarns 22 and the weft yarns 23 are plain woven, and form a state in which the fabric 24 is partially integrated with the liner 12 .

図7(b)に示すように、緯糸23は筬34の筬打ち動作により固定部材36に向けて送り込まれる。
その後、図7(c)に示すように、ライナ12を中心軸線Lを回転中心に回転させて織物24をライナ12に巻き取らせつつ、続けて、上記と同様に織物24の製織を行う。その結果、ドーム部14及び胴体部13の全体を覆う状態で織物24がライナ12に巻き付けられていく。そして、織物24が所要する積層数となるまで巻き付けられることで、ライナ12の外周面に繊維強化基材19が製造されるとともに、ライナ12の外面を繊維強化基材19で覆った繊維構造体21が製造される。
As shown in FIG. 7(b), the weft yarn 23 is sent toward the fixing member 36 by the beating action of the reed 34. As shown in FIG.
Thereafter, as shown in FIG. 7(c), the liner 12 is rotated about the central axis L to wind the fabric 24 around the liner 12, and the fabric 24 is continuously weaved in the same manner as described above. As a result, the fabric 24 is wound around the liner 12 so as to cover the entire dome portion 14 and body portion 13 . The fiber reinforced base material 19 is manufactured on the outer peripheral surface of the liner 12 by winding the woven fabric 24 until the required number of layers is obtained, and the fiber structure is obtained by covering the outer surface of the liner 12 with the fiber reinforced base material 19. 21 is produced.

繊維構造体21の繊維強化基材19については、境界Rを含んだ胴体部13寄りの一部分に高弾性経糸部K1が形成され、この高弾性経糸部K1に隣り合うように口金部15寄りのドーム部14の一部分に第1低弾性経糸部K2が形成される。さらに、ライナ12における高弾性経糸部K1及び第1低弾性経糸部K2以外の部分に第2低弾性経糸部K3が形成される。 As for the fiber reinforced base material 19 of the fiber structure 21, a highly elastic warp portion K1 is formed in a portion near the trunk portion 13 including the boundary R, and a portion near the mouthpiece portion 15 is formed adjacent to the highly elastic warp portion K1. A first low-elasticity warp portion K2 is formed in a portion of the dome portion 14 . Further, a second low-elasticity warp portion K3 is formed in a portion of the liner 12 other than the high-elasticity warp portion K1 and the first low-elasticity warp portion K2.

上記のように構成された繊維構造体21にマトリックス樹脂を含浸硬化させることにより、繊維強化基材19にマトリックス樹脂が含浸硬化し、繊維強化複合材層11がライナ12の外側に形成され、ライナ12の外側が繊維強化複合材層11で覆われた高圧タンク10が製造される。マトリックス樹脂の含浸硬化は、例えば、RTM(レジン・トランスファー・モールディング)法で行なわれる。 By impregnating and curing the matrix resin in the fiber structure 21 configured as described above, the matrix resin is impregnated and cured in the fiber reinforced base material 19, and the fiber reinforced composite material layer 11 is formed on the outside of the liner 12. A high-pressure tank 10 is manufactured in which the outside of 12 is covered with a fiber-reinforced composite material layer 11 . The impregnation curing of the matrix resin is performed, for example, by the RTM (resin transfer molding) method.

次に、高圧タンク10の作用を説明する。
高圧タンク10は、例えば燃料電池自動車の燃料電池の水素源として使用される。高圧タンク10は図示しない配管がバルブに連結された状態で使用され、水素ガスの充填時には充填用の配管から水素ガスが高圧タンク10に充填される。高圧タンク10内には例えば数十MPaの圧力になるように水素ガスが充填される。
Next, the action of the high pressure tank 10 will be described.
The high-pressure tank 10 is used, for example, as a hydrogen source for a fuel cell in a fuel cell vehicle. The high-pressure tank 10 is used in a state in which a pipe (not shown) is connected to a valve, and when filling hydrogen gas, the high-pressure tank 10 is filled with hydrogen gas from the filling pipe. The high-pressure tank 10 is filled with hydrogen gas to a pressure of, for example, several tens of MPa.

高圧タンク10に水素ガスが充填されると高圧タンク10内の圧力が高くなり、ライナ12が内側から押圧される。ライナ12には軸方向Y及び径方向Zへの荷重が加わり、内圧応力が発生する。この実施形態では、緯糸23により、ライナ12は軸方向Yへ補強され、経糸22により、ライナ12は径方向Zに補強されており、高圧タンク10の変形が抑止される。 When the high-pressure tank 10 is filled with hydrogen gas, the pressure inside the high-pressure tank 10 increases, and the liner 12 is pressed from the inside. A load is applied to the liner 12 in the axial direction Y and the radial direction Z, and internal pressure stress is generated. In this embodiment, the weft yarns 23 reinforce the liner 12 in the axial direction Y, and the warp yarns 22 reinforce the liner 12 in the radial direction Z, thereby suppressing deformation of the high-pressure tank 10 .

上記実施形態によれば、以下のような作用効果を得ることができる。
(1)ライナ12における境界R付近のうち、軸方向Yに沿う境界Rよりも胴体部13寄りの部分は内圧による荷重が加わって変形しやすい部分である。この変形しやすい部分において、境界Rを含むように高弾性経糸22aを配列して高弾性経糸部K1を設け、繊維強化複合材層11における剛性を高め、ライナ12の変形を抑制するようにした。一方、軸方向Yに沿う境界Rよりもドーム部14寄りの部分は、胴体部13寄りの部分と比べて変形し難い部分である。このため、境界R付近において、高弾性経糸部K1により、胴体部13とドーム部14とで変形量に大きな差が生じることを抑制し、境界R付近を曲げようとする力を抑制できる。その結果として、境界R付近に発生するモーメントを抑制し、モーメントに起因した繊維強化複合材層11における層間せん断応力を抑制でき、繊維強化複合材層11に層間剥離が発生することを抑制できる。
According to the above embodiment, the following effects can be obtained.
(1) In the vicinity of the boundary R in the liner 12, the portion closer to the body portion 13 than the boundary R along the axial direction Y is a portion that is easily deformed by the load due to the internal pressure. In this easily deformable portion, the highly elastic warp yarns 22a are arranged so as to include the boundary R to provide a highly elastic warp yarn portion K1, thereby increasing the rigidity of the fiber-reinforced composite material layer 11 and suppressing the deformation of the liner 12. . On the other hand, the portion closer to the dome portion 14 than the boundary R along the axial direction Y is a portion that is less deformable than the portion closer to the body portion 13 . Therefore, in the vicinity of the boundary R, the highly elastic warp portion K1 suppresses a large difference in the amount of deformation between the body portion 13 and the dome portion 14, thereby suppressing the force that tends to bend the vicinity of the boundary R. As a result, the moment generated near the boundary R can be suppressed, the interlaminar shear stress in the fiber reinforced composite material layer 11 caused by the moment can be suppressed, and the occurrence of delamination in the fiber reinforced composite material layer 11 can be suppressed.

(2)境界R付近のうち、ドーム部14寄りの部分は内圧を受けて変形し難い部分である。この変形し難い部分に第1低弾性経糸部K2を設け、ライナ12の変形を強く抑制しないようにした。そして、高弾性経糸部K1と第1低弾性経糸部K2を境界Rを挟んで設けることで、ライナ12の変形量に大きな差が生じることを抑制し、境界R付近を曲げようとする力を抑制できる。その結果として、境界R付近に発生するモーメントを抑制し、モーメントに起因した繊維強化複合材層11における層間せん断応力を抑制でき、繊維強化複合材層11に層間剥離が発生することを抑制できる。 (2) A portion near the dome portion 14 in the vicinity of the boundary R is a portion that is less likely to deform due to internal pressure. The first low-elasticity warp portion K2 is provided in this hard-to-deform portion so that the deformation of the liner 12 is not strongly suppressed. By arranging the high-elasticity warp portion K1 and the first low-elasticity warp portion K2 across the boundary R, a large difference in the amount of deformation of the liner 12 is suppressed, and the force that tends to bend the vicinity of the boundary R is reduced. can be suppressed. As a result, the moment generated near the boundary R can be suppressed, the interlaminar shear stress in the fiber reinforced composite material layer 11 caused by the moment can be suppressed, and the occurrence of delamination in the fiber reinforced composite material layer 11 can be suppressed.

(3)胴体部13及びドーム部14に第2低弾性経糸22cを配列した第2低弾性経糸部K3を設けた。この第2低弾性経糸部K3により、ライナ12において高弾性経糸部K1及び第1低弾性経糸部K2以外の部分を補強できる。 (3) The body portion 13 and the dome portion 14 are provided with the second low-elasticity warp portions K3 in which the second low-elasticity warp yarns 22c are arranged. The second low-elasticity warp portion K3 can reinforce the portion of the liner 12 other than the high-elasticity warp portion K1 and the first low-elasticity warp portion K2.

(4)ライナ12の外側に繊維強化基材19を備える繊維構造体21を製造する方法として、フィラメントワインディングがある。しかし、この方法では、糸を1本ずつライナ12に巻いていくため、生産性が低い。本実施形態では、経糸22と緯糸23で織物24を製織しつつ、その経糸22の種類を高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cに変えながら織物24をライナ12に巻き付けていくため、フィラメントワインディングと比べると、生産性を高めることができる。 (4) Filament winding is a method for manufacturing the fiber structure 21 having the fiber-reinforced base material 19 on the outside of the liner 12 . However, in this method, the yarn is wound around the liner 12 one by one, resulting in low productivity. In this embodiment, the fabric 24 is woven with the warp yarns 22 and the weft yarns 23, and the fabric 24 is made into a liner by changing the type of the warp yarns 22 to the high-elasticity warp yarns 22a, the first low-elasticity warp yarns 22b, and the second low-elasticity warp yarns 22c. 12, productivity can be improved compared to filament winding.

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○ 図8又は図9に示すように、繊維強化基材19は、境界Rよりも胴体部13寄りの一部分から口金部15に至るまで配列された高弾性経糸22aを有する。高弾性経糸22aは、軸方向Yに沿って胴体部13から境界Rを越えて口金部15に至るまで配列されており、境界Rを含むように配列されている。そして、繊維強化基材19は、境界Rよりも胴体部13寄りの部分から口金部15に至るまで高弾性経糸部K1を有する。また、繊維強化基材19は、ライナ12の軸方向Y両側の高弾性経糸部K1に挟まれた部分に配列された第2低弾性経糸22cを有し、高弾性経糸部K1以外の部分に、第2低弾性経糸22cで構成された第2低弾性経糸部K3を有する。
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
○ As shown in FIG. 8 or FIG. 9 , the fiber-reinforced base material 19 has highly elastic warp yarns 22 a arranged from a portion closer to the trunk portion 13 than the boundary R to the mouthpiece portion 15 . The highly elastic warp yarns 22a are arranged along the axial direction Y from the body portion 13 to the mouthpiece portion 15 across the boundary R, and are arranged so as to include the boundary R. The fiber-reinforced base material 19 has a highly elastic warp portion K1 from a portion closer to the body portion 13 than the boundary R to the mouthpiece portion 15 . In addition, the fiber-reinforced base material 19 has second low-elasticity warp yarns 22c arranged in portions sandwiched between the high-elasticity warp portions K1 on both sides in the axial direction Y of the liner 12. , and a second low-elasticity warp portion K3 composed of the second low-elasticity warp yarns 22c.

このように構成した場合であっても、ライナ12において変形しやすい境界Rを含むように高弾性経糸部K1を配列して剛性を高め、境界R付近での変形を抑制するようにした。このため、境界R付近において、胴体部13とドーム部14とで変形量に大きな差が生じることを抑制し、境界R付近で曲げが発生することを抑制できる。その結果として、境界R付近にモーメントが発生することを抑制し、モーメントに起因した繊維強化複合材層11における層間せん断応力の発生を抑制でき、繊維強化複合材層11に層間剥離が発生することを抑制できる。 Even in such a configuration, the high-elasticity warp portions K1 are arranged so as to include the easily deformable boundary R in the liner 12 to increase rigidity and suppress deformation in the vicinity of the boundary R. Therefore, in the vicinity of the boundary R, it is possible to suppress the occurrence of a large difference in the amount of deformation between the body portion 13 and the dome portion 14, thereby suppressing the occurrence of bending in the vicinity of the boundary R. As a result, it is possible to suppress the occurrence of a moment near the boundary R, suppress the occurrence of interlaminar shear stress in the fiber reinforced composite material layer 11 caused by the moment, and delaminate the fiber reinforced composite material layer 11. can be suppressed.

また、経糸22として、高弾性経糸22aと第2低弾性経糸22cを用い、ライナ12の軸方向Y両側で高弾性経糸22aと第2低弾性経糸22cに分けて配列する必要がないため、繊維構造体21の製造が容易となる。 In addition, since the high-elasticity warp yarns 22a and the second low-elasticity warp yarns 22c are used as the warp yarns 22, it is not necessary to arrange the high-elasticity warp yarns 22a and the second low-elasticity warp yarns 22c separately on both sides of the liner 12 in the axial direction Y. Manufacture of the structure 21 becomes easy.

○ 図10又は図11に示すように、繊維強化基材19は、境界Rを挟んで胴体部13寄りの一部分とドーム部14寄りの一部分に亘って配列された高弾性経糸22aを有し、その高弾性経糸22aの配列された部分に高弾性経糸部K1を有する。高弾性経糸22aは、軸方向Yに沿ってドーム部14における境界R寄りの一部分から境界Rを越えて胴体部13における境界R寄りの一部分にかけて配列されている。つまり、高弾性経糸22aは、境界Rを含むように配列されている。また、繊維強化基材19は、高弾性経糸部K1以外の部分に配列された第2低弾性経糸22cを有し、高弾性経糸部K1以外の部分に、第2低弾性経糸22cで構成された第2低弾性経糸部K3を有する。 ○ As shown in FIG. 10 or 11, the fiber reinforced base material 19 has highly elastic warp yarns 22a arranged over a portion near the body portion 13 and a portion near the dome portion 14 across the boundary R, A highly elastic warp portion K1 is provided at the portion where the highly elastic warp yarns 22a are arranged. The highly elastic warp yarns 22a are arranged along the axial direction Y from a portion of the dome portion 14 near the boundary R to a portion of the body portion 13 near the boundary R across the boundary R. That is, the highly elastic warp yarns 22a are arranged so as to include the boundary R. In addition, the fiber-reinforced base material 19 has the second low-elasticity warp yarns 22c arranged in a portion other than the high-elasticity warp portion K1, and the portion other than the high-elasticity warp portion K1 is composed of the second low-elasticity warp yarns 22c. It has a second low-elasticity warp portion K3.

このように構成した場合であっても、ライナ12において変形しやすい境界Rを含むように高弾性経糸部K1を配列して剛性を高め、境界R付近での変形を抑制するようにした。このため、境界R付近において、胴体部13とドーム部14とで変形量に大きな差が生じることを抑制し、境界R付近で曲げが発生することを抑制できる。その結果として、境界R付近にモーメントが発生することを抑制し、モーメントに起因した繊維強化複合材層11における層間せん断応力の発生を抑制でき、繊維強化複合材層11に層間剥離が発生することを抑制できる。 Even in such a configuration, the high-elasticity warp portions K1 are arranged so as to include the easily deformable boundary R in the liner 12 to increase rigidity and suppress deformation in the vicinity of the boundary R. Therefore, in the vicinity of the boundary R, it is possible to suppress the occurrence of a large difference in the amount of deformation between the body portion 13 and the dome portion 14, thereby suppressing the occurrence of bending in the vicinity of the boundary R. As a result, it is possible to suppress the occurrence of a moment near the boundary R, suppress the occurrence of interlaminar shear stress in the fiber reinforced composite material layer 11 caused by the moment, and delaminate the fiber reinforced composite material layer 11. can be suppressed.

○ 繊維構造体21を製造する方法として、平織織機で、高弾性経糸22a、及び高弾性経糸22aより低弾性率の低弾性繊維束を含む織物を製織した後、フィラメントワインディングによって織物の外側に強化繊維を巻き付けて繊維強化基材19を製織してもよい。 ○ As a method for manufacturing the fiber structure 21, after weaving a fabric containing the high-elasticity warp yarns 22a and low-elasticity fiber bundles having a lower elastic modulus than the high-elasticity warp yarns 22a with a plain loom, the outer side of the fabric is reinforced by filament winding. The fiber reinforced substrate 19 may be woven by winding the fibers.

○ 繊維構造体21を製造する方法として、高弾性経糸22a及び高弾性経糸22aより低弾性率の低弾性繊維束を含む経糸22をライナ12にフープ巻きして高弾性経糸部K1及び低弾性経糸部を形成した後、それらの外側に、緯糸23を積層したり、経糸22及び緯糸23を巻き付けて繊維強化基材19を製織してもよい。 ○ As a method for manufacturing the fiber structure 21, the high-elasticity warp 22a and the warp 22 containing the low-elasticity fiber bundle having a lower elastic modulus than the high-elasticity warp 22a are hoop-wound around the liner 12 to form the high-elasticity warp portion K1 and the low-elasticity warp. After forming the parts, the weft yarns 23 may be laminated on the outside thereof, or the warp yarns 22 and the weft yarns 23 may be wound to weave the fiber-reinforced base material 19 .

○ 繊維強化基材19は多層織りによって製織された多層織物であってもよい。例えば、繊維強化基材19は、経糸22が互いに平行に配列された複数の経糸層と、緯糸23が互いに平行に配列された複数の緯糸層と、経糸層と、緯糸層とを積層方向に結合する結合糸と、を備える。経糸層を製造する際、高弾性経糸22a、及び高弾性経糸22aより低弾性率の低弾性繊維束を用いる。 o The fiber reinforced substrate 19 may be a multi-layer fabric woven by multi-layer weaving. For example, the fiber-reinforced base material 19 includes a plurality of warp layers in which the warps 22 are arranged parallel to each other, a plurality of weft layers in which the wefts 23 are arranged in parallel, a warp layer, and a weft layer in the stacking direction. and a binding yarn for binding. When manufacturing the warp layers, the high-elasticity warp yarns 22a and the low-elasticity fiber bundles having a lower elastic modulus than the high-elasticity warp yarns 22a are used.

○ 実施形態では、繊維強化基材19は、平織りして製織された織物24を積層して構成したが、これに限らない。例えば、繊維強化基材19は、朱子織り又は綾織りして製織された織物を積層した構造であってもよい。 O In the embodiment, the fiber-reinforced base material 19 is configured by laminating the fabrics 24 woven by plain weaving, but it is not limited to this. For example, the fiber-reinforced base material 19 may have a structure in which fabrics woven by satin weave or twill weave are laminated.

○ 実施形態では、第1繊維束を経糸22とし、第2繊維束を緯糸23としたが、第1繊維束を緯糸23とし、第2繊維束を経糸22としてもよい。
○ ライナ12は、胴体部13の軸方向Yの一端側にドーム部14が連続し、胴体部13の軸方向Yの他端側には平坦面な底壁が連続した形状であってもよい。この場合、口金部15はドーム部14の存在する軸方向Y一端側のみに存在する。
In the embodiment, the first fiber bundle is the warp 22 and the second fiber bundle is the weft 23 , but the first fiber bundle may be the weft 23 and the second fiber bundle may be the warp 22 .
The liner 12 may have a shape in which the dome portion 14 is continuous with one end side of the body portion 13 in the axial direction Y, and a flat bottom wall is continuous with the other end side of the body portion 13 in the axial direction Y. . In this case, the base portion 15 exists only on the one end side in the axial direction Y where the dome portion 14 exists.

○ ライナ12全体をアルミニウム製とする代わりにアルミニウム合金製としたり、口金部15の材質をステンレスとは異なる金属で形成したりしてもよい。
○ ライナ12は、別体である胴体部13とドーム部14とを溶接して一体化したものでもよい。
O The liner 12 as a whole may be made of an aluminum alloy instead of being made of aluminum, or the mouthpiece 15 may be made of a metal other than stainless steel.
O The liner 12 may be formed by welding and integrating the body portion 13 and the dome portion 14 which are separate bodies.

○ ライナ12及び口金部15を金属で一体形成してもよい。
○ 高圧タンク10は燃料電池搭載電気自動車の水素源として搭載されて使用するものに限らず、例えば、水素エンジンの水素源やヒートポンプ等に適用してもよい。また、家庭用電源の燃料電池の水素源として使用してもよい。
(circle) the liner 12 and the mouthpiece part 15 may be integrally formed with a metal.
O The high-pressure tank 10 is not limited to being mounted and used as a hydrogen source for a fuel cell-equipped electric vehicle. It may also be used as a hydrogen source for a fuel cell for domestic power supply.

○ 圧力容器として水素を貯蔵する高圧タンクに限らず、例えば窒素、圧縮天然ガス等の他のガスを貯蔵す圧力容器に適用してもよい。 (circle) you may apply not only to the high-pressure tank which stores hydrogen as a pressure vessel but to the pressure vessel which stores other gases, such as nitrogen and compressed natural gas, for example.

L…中心軸線、R…境界、X…周方向、Y…軸方向、Z…径方向、X1,X2…糸主軸方向、10…圧力容器としての高圧タンク、11…繊維強化複合材層、12…ライナ、13…胴体部、14…ドーム部、15…口金部、19…繊維強化基材、21…繊維構造体、22…第1繊維束としての経糸、22a…高弾性繊維束としての高弾性経糸、22b…低弾性繊維束としての第1低弾性経糸、22c…低弾性繊維束としての第2低弾性経糸、23…第2繊維束としての緯糸、24…織物。 L... Central axis line, R... Boundary, X... Circumferential direction, Y... Axial direction, Z... Radial direction, X1, X2... Yarn main axis direction, 10... High pressure tank as a pressure vessel, 11... Fiber reinforced composite material layer, 12 Liner 13 Body portion 14 Dome portion 15 Base portion 19 Fiber-reinforced base material 21 Fiber structure 22 Warp as first fiber bundle 22a Height as high-elasticity fiber bundle Elastic warps 22b... First low-elastic warp as a low-elastic fiber bundle 22c... Second low-elastic warp as a low-elastic fiber bundle 23... Weft as a second fiber bundle 24... Woven fabric.

Claims (6)

円筒状の胴体部と、
前記胴体部の中心軸線の延びる軸方向に沿って前記胴体部に連続し、前記中心軸線に向けて先すぼみする形状のドーム部と、
前記ドーム部の先すぼみした先端に設けられる口金部と、を有するライナを備えるとともに、
前記ライナにおける前記胴体部及び前記ドーム部を外側から覆う繊維強化基材を有する繊維構造体であって、
前記繊維強化基材にマトリックス樹脂を含浸硬化させた繊維強化複合材層によって前記ライナを補強する圧力容器を構成し、
前記繊維強化基材は、前記ライナの周方向へ糸主軸方向が延びるように前記胴体部及び前記ドーム部に配列された第1繊維束と、前記第1繊維束と織物を形成する第2繊維束とを有し、
前記軸方向に沿う前記胴体部と前記ドーム部との境を境界とした場合、
前記繊維強化基材は、前記第1繊維束として、他の第1繊維束よりも弾性率の高い高弾性繊維束を有するとともに、他の第1繊維束として、前記高弾性繊維束よりも弾性率の低い低弾性繊維束を有し、前記高弾性繊維束は前記境界を含んで前記胴体部に配列されていることを特徴とする繊維構造体。
a cylindrical body;
a dome portion continuous with the body portion along the axial direction in which the central axis of the body portion extends and having a shape that tapers toward the central axis;
a mouthpiece provided at the tapered tip of the dome, and
A fiber structure having a fiber-reinforced base material covering the body portion and the dome portion of the liner from the outside,
constructing a pressure vessel in which the liner is reinforced by a fiber-reinforced composite material layer obtained by impregnating and curing the fiber-reinforced base material with a matrix resin;
The fiber-reinforced base material includes first fiber bundles arranged in the body portion and the dome portion so that the yarn main axis direction extends in the circumferential direction of the liner, and second fiber bundles forming a woven fabric together with the first fiber bundles. having a bundle and
When the boundary between the body portion and the dome portion along the axial direction is defined as a boundary,
The fiber-reinforced base material has, as the first fiber bundles, high-elasticity fiber bundles having a higher elastic modulus than the other first fiber bundles, and as the other first fiber bundles, the high-elasticity fiber bundles having higher elasticity than the high-elasticity fiber bundles. A fiber structure comprising a low-elasticity fiber bundle having a low modulus, wherein the high-elasticity fiber bundle is arranged in the body portion including the boundary.
前記低弾性繊維束は、前記高弾性繊維束よりも弾性率が低い第1低弾性繊維束、及び、前記第1低弾性繊維束よりも弾性率が高く、かつ前記高弾性繊維束よりも弾性率が低い第2低弾性繊維束を有し、
前記繊維強化基材において、
前記ドーム部には、前記軸方向に沿って前記高弾性繊維束に隣り合う前記低弾性繊維束として前記第1低弾性繊維束が配列され、
前記胴体部には、前記軸方向に沿って前記高弾性繊維束に隣り合う前記低弾性繊維束として前記第2低弾性繊維束が配列され、
前記ドーム部において、前記軸方向に沿って前記第1低弾性繊維束に隣り合う前記低弾性繊維束として前記第2低弾性繊維束が配列されている請求項1に記載の繊維構造体。
The low-elasticity fiber bundles include a first low-elasticity fiber bundle having a lower elastic modulus than the high-elasticity fiber bundle, and a higher elastic modulus than the first low-elasticity fiber bundle and a higher elasticity than the high-elasticity fiber bundle. having a second low modulus fiber bundle with a low modulus;
In the fiber-reinforced base material,
In the dome portion, the first low-elasticity fiber bundles are arranged as the low-elasticity fiber bundles adjacent to the high-elasticity fiber bundles along the axial direction,
In the body portion, the second low-elasticity fiber bundles are arranged as the low-elasticity fiber bundles adjacent to the high-elasticity fiber bundles along the axial direction,
2. The fiber structure according to claim 1, wherein in the dome portion, the second low-elasticity fiber bundles are arranged as the low-elasticity fiber bundles adjacent to the first low-elasticity fiber bundles along the axial direction.
前記繊維強化基材において、前記軸方向に沿って前記境界を挟んだ前記胴体部及び前記ドーム部に前記高弾性繊維束が配列され、
前記胴体部及び前記ドーム部の残りの部分において前記低弾性繊維束が配列されている請求項1に記載の繊維構造体。
In the fiber-reinforced base material, the high-elasticity fiber bundles are arranged in the body portion and the dome portion sandwiching the boundary along the axial direction,
2. The fiber structure according to claim 1, wherein the low-elasticity fiber bundles are arranged in the remaining portions of the body portion and the dome portion.
前記繊維強化基材において、前記軸方向に沿って前記胴体部から前記口金部に至るまで前記高弾性繊維束が配列されるとともに、前記胴体部に前記低弾性繊維束が配列されている請求項1に記載の繊維構造体。 In the fiber-reinforced base material, the high-elasticity fiber bundles are arranged along the axial direction from the body portion to the mouthpiece, and the low-elasticity fiber bundles are arranged in the body portion. 2. The fiber structure according to 1. 前記繊維強化基材は、前記第1繊維束と、前記第2繊維束とを織って製織された織物を前記ライナに捲回した構造である請求項1~請求項4のうちいずれか一項に記載の繊維構造体。 The fiber-reinforced base material has a structure in which a fabric woven by weaving the first fiber bundle and the second fiber bundle is wound around the liner. The fiber structure according to . 円筒状の胴体部と、
前記胴体部の中心軸線の延びる軸方向に沿って前記胴体部に連続し、前記中心軸線に向けて先すぼみする形状のドーム部と、
前記ドーム部の先すぼみした先端に設けられる口金部と、を有するライナを備えるとともに、
前記ライナにおける前記胴体部及び前記ドーム部を外側から覆う繊維強化基材を有する繊維構造体を有し、
前記繊維強化基材にマトリックス樹脂を含浸硬化させた繊維強化複合材層によって前記ライナを補強する圧力容器であって、
前記繊維構造体が請求項1~請求項5のうちいずれか一項に記載の繊維構造体であることを特徴とする圧力容器。
a cylindrical body;
a dome portion continuous with the body portion along the axial direction in which the central axis of the body portion extends and having a shape that tapers toward the central axis;
a mouthpiece provided at the tapered tip of the dome, and
a fiber structure having a fiber-reinforced base material covering the body portion and the dome portion of the liner from the outside;
A pressure vessel in which the liner is reinforced by a fiber-reinforced composite material layer in which the fiber-reinforced base material is impregnated with a matrix resin and cured,
A pressure vessel, wherein the fiber structure is the fiber structure according to any one of claims 1 to 5.
JP2019074831A 2019-04-10 2019-04-10 Textile structures and pressure vessels Active JP7111049B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019074831A JP7111049B2 (en) 2019-04-10 2019-04-10 Textile structures and pressure vessels
PCT/JP2020/012552 WO2020209034A1 (en) 2019-04-10 2020-03-20 Fiber structure and pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074831A JP7111049B2 (en) 2019-04-10 2019-04-10 Textile structures and pressure vessels

Publications (2)

Publication Number Publication Date
JP2020172970A JP2020172970A (en) 2020-10-22
JP7111049B2 true JP7111049B2 (en) 2022-08-02

Family

ID=72751821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074831A Active JP7111049B2 (en) 2019-04-10 2019-04-10 Textile structures and pressure vessels

Country Status (2)

Country Link
JP (1) JP7111049B2 (en)
WO (1) WO2020209034A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7196871B2 (en) * 2020-02-19 2022-12-27 トヨタ自動車株式会社 high pressure tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022026A1 (en) 2003-08-28 2005-03-10 Mitsubishi Rayon Co., Ltd. High-performance pressure vessel and carbon fiber for pressure vessel
US20150192251A1 (en) 2014-01-07 2015-07-09 Composite Technology Development, Inc. High pressure carbon composite pressure vessel
JP2018179248A (en) 2017-04-20 2018-11-15 株式会社豊田自動織機 Fiber structure, pressure container and manufacturing method of fiber structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936146B2 (en) * 1978-02-23 1984-09-01 川重防災工業株式会社 pressure vessel
JP2010249146A (en) * 2009-04-10 2010-11-04 Toyota Motor Corp Gas tank and method of manufacturing the same
JP2011185360A (en) * 2010-03-09 2011-09-22 Toyota Motor Corp Method for manufacturing of high pressure gas tank
JP2012045826A (en) * 2010-08-27 2012-03-08 Toyota Motor Corp Method for manufacturing pressure container
JP5856447B2 (en) * 2011-11-17 2016-02-09 サムテック株式会社 Long high pressure vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022026A1 (en) 2003-08-28 2005-03-10 Mitsubishi Rayon Co., Ltd. High-performance pressure vessel and carbon fiber for pressure vessel
US20150192251A1 (en) 2014-01-07 2015-07-09 Composite Technology Development, Inc. High pressure carbon composite pressure vessel
JP2018179248A (en) 2017-04-20 2018-11-15 株式会社豊田自動織機 Fiber structure, pressure container and manufacturing method of fiber structure

Also Published As

Publication number Publication date
JP2020172970A (en) 2020-10-22
WO2020209034A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
CN110520667B (en) Fiber structure, pressure vessel, and method for producing fiber structure
CN107850259B (en) Pressure container with reinforced seal head
US11549643B2 (en) Pressure vessel and pressure-vessel manufacturing method
WO2019171889A1 (en) Fiber structure and pressure container
JP6975895B2 (en) Manufacturing method of FRP tubular body and FRP tubular body
JP7111049B2 (en) Textile structures and pressure vessels
JP7040347B2 (en) Pressure vessel and manufacturing method of pressure vessel
JP6493094B2 (en) Fiber structure and fiber reinforced composite
JP7040346B2 (en) Pressure vessel and manufacturing method of pressure vessel
WO2022254860A1 (en) Fiber structure
WO2021006081A1 (en) Fiber structure and method for manufacturing fiber structure
WO2023181951A1 (en) Fiber structure
JP7056394B2 (en) Fiber reinforced composites and woven base materials
JP2021091976A (en) Fiber structure
WO2013035518A1 (en) Woven fabric base material and fiber-reinforced composite material
JP2021091977A (en) Fiber structure
JP6652000B2 (en) Preform for fiber reinforced composite material and fiber reinforced composite material
US20200031061A1 (en) Fiber structure and fiber-reinforced composite
WO2012014613A1 (en) Fiber substrate and fiber-reinforced composite material
WO2020100797A1 (en) Spun yarn
CN113639187B (en) Three-dimensional woven high-performance hydrogen storage pressure vessel with reinforced fiber continuous filament structure
JP2013057143A (en) Woven fabric base material and fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R151 Written notification of patent or utility model registration

Ref document number: 7111049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151