JP7110754B2 - Active energy ray-curable resin composition, coating agent using the same, and sheet - Google Patents

Active energy ray-curable resin composition, coating agent using the same, and sheet Download PDF

Info

Publication number
JP7110754B2
JP7110754B2 JP2018118105A JP2018118105A JP7110754B2 JP 7110754 B2 JP7110754 B2 JP 7110754B2 JP 2018118105 A JP2018118105 A JP 2018118105A JP 2018118105 A JP2018118105 A JP 2018118105A JP 7110754 B2 JP7110754 B2 JP 7110754B2
Authority
JP
Japan
Prior art keywords
acrylate
meth
resin composition
molecular weight
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018118105A
Other languages
Japanese (ja)
Other versions
JP2019218500A (en
Inventor
敦子 小西
修平 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018118105A priority Critical patent/JP7110754B2/en
Publication of JP2019218500A publication Critical patent/JP2019218500A/en
Application granted granted Critical
Publication of JP7110754B2 publication Critical patent/JP7110754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、活性エネルギー線硬化性樹脂組成物に関し、さらに詳しくは、例えば硬化塗膜とした際に、基材への密着性、塗膜の伸び、弾性率および強度に優れ、更に表面タック感がなく、耐薬品性に優れ、加工性等にも優れる活性エネルギー線硬化性樹脂組成物であり、とりわけ加飾成型用途に適した活性エネルギー線硬化性樹脂組成物、およびそれを用いたコーティング剤、ならびにシートに関するものである。 The present invention relates to an active energy ray-curable resin composition. Active energy ray-curable resin composition having excellent chemical resistance, excellent workability, etc., and is particularly suitable for decorative molding applications, and a coating agent using the same , as well as sheets.

ポリカーボネートやポリメチルメタクリレート等のプラスチック基材は、加工性、耐衝撃性、透明性等の光学物性にも優れることから、家電製品や車載用製品、液晶ディスプレイ部材等に幅広く用いられている。 Plastic substrates such as polycarbonate and polymethyl methacrylate are widely used for home appliances, automotive products, liquid crystal display members, etc., because they are excellent in optical properties such as workability, impact resistance, and transparency.

しかしながら、これらのプラスチック基材は、表面に傷がつきやすいことから、耐擦傷性を付与するために、上記プラスチック基材表面に対しハードコート剤によるコーティングが行われることがある。上記ハードコート剤としては、プラスチック基材への密着性に優れることや、硬化速度が速く生産性の向上に寄与する等の理由から、活性エネルギー線硬化性樹脂組成物が用いられることが多い。 However, since the surface of these plastic substrates is easily scratched, the surface of the plastic substrate is sometimes coated with a hard coating agent in order to impart scratch resistance. As the hard coating agent, an active energy ray-curable resin composition is often used because of its excellent adhesion to plastic substrates and high curing speed, which contributes to improved productivity.

また、上記活性エネルギー線硬化性樹脂組成物は、意匠性を付与するための加飾成型を施す際に用いられることもある。
加飾成型の方法としては、従来から、顔料を熱可塑性樹脂に練り込み成型したり、成型後の樹脂製品表面に塗料をスプレー塗装したりして、加飾する方法がある。しかしながら、これらの手法は、複雑な形の成型品に対する適用が難しい。
そこで、金型を使用したインサート成型やインモールド成型、さらに近年では、金型が不要なTOM成型(Three dimension Overlay Method(3次元表面被覆工法))等の三次元成型によって、上記加飾成型を行うことにより、複雑な形の成型品に対する加飾成型の適用が検討されている。
In addition, the active energy ray-curable resin composition is sometimes used in decorative molding for imparting design properties.
As a method of decorative molding, conventionally, there is a method of kneading a pigment into a thermoplastic resin and molding it, or a method of spray coating a paint on the surface of a molded resin product to decorate. However, these techniques are difficult to apply to complex-shaped moldings.
Therefore, insert molding and in-mold molding using molds, and in recent years, three-dimensional molding such as TOM molding (three dimension overlay method (three-dimensional surface coating method)) that does not require a mold is used to achieve the above-mentioned decorative molding. By doing so, the application of decorative molding to molded products with complicated shapes is being studied.

そして、上記のような三次元成型等において使用される活性エネルギー線硬化性樹脂組成物においては、特に、複雑な形状に成型してもクラックが生じないといった加工性、型に対する追従性、および伸度が求められる。
また、上記活性エネルギー線硬化性樹脂組成物が成型品の最表面材料に用いられる場合には、表面の硬度や耐擦傷性が求められる。特に、手指と接触する可能性のある成型品においては、上記のような特性の他、表面タック感の抑制や、日焼け止めやハンドクリーム等に対する耐薬品性が求められる。
In addition, in the active energy ray-curable resin composition used in the above-mentioned three-dimensional molding, etc., it is particularly important to have workability such that cracks do not occur even when molded into a complicated shape, conformability to molds, and elongation. degree is required.
Moreover, when the active energy ray-curable resin composition is used as the outermost surface material of a molded product, surface hardness and scratch resistance are required. In particular, molded articles that may come into contact with fingers require suppression of surface tackiness and chemical resistance to sunscreens, hand creams, etc., in addition to the properties described above.

ここで、例えば下記の特許文献1には、ポリカーボネート系ポリウレタンと無黄変ポリイソシアネートとを含有する樹脂組成物の反応硬化物からなる表皮層を有する加飾成型シートが開示されている。そして、特許文献1には、上記加飾成型シートを用いた成型品が、複雑な表面形状を形成するとともに、耐擦傷性に優れると示されている。
また、例えば下記の特許文献2には、フリル基を含む化合物と、重合性化合物と、重合開始剤とを含んでなる加飾シート用組成物および成型加工品の製造方法が開示されている。そして、特許文献2には、上記組成物を用いた加飾シートが、種々の成型加工に対応可能な優れたハードコート性と成型性とを高いレベルで両立することが示されている。
Here, for example, Patent Document 1 below discloses a decorative molded sheet having a skin layer made of a reaction-cured product of a resin composition containing a polycarbonate-based polyurethane and a non-yellowing polyisocyanate. Patent Document 1 discloses that a molded product using the decorative molded sheet forms a complicated surface shape and has excellent scratch resistance.
Further, for example, Patent Document 2 below discloses a decorative sheet composition comprising a compound containing a furyl group, a polymerizable compound, and a polymerization initiator, and a method for producing a molded article. Patent Document 2 discloses that a decorative sheet using the above composition achieves both excellent hard coat properties and moldability at a high level, which are compatible with various molding processes.

特開2014-128922号公報JP 2014-128922 A 特開2017-193694号公報JP 2017-193694 A

しかしながら、上記特許文献1に開示の樹脂組成物は、熱硬化剤としてポリイソシアネートを含有するものであり、塗膜の硬化を完成させるためには、熱をかけたり、熟成期間を設けたりする必要があるため、生産性に劣るものである。
また、上記特許文献2に開示の組成物は、ハードコート性や耐薬品性には優れるものの、様々な成型方法に対応することができるような伸びを有しておらず、この点において課題が残る。
However, the resin composition disclosed in Patent Document 1 contains polyisocyanate as a heat curing agent, and in order to complete the curing of the coating film, it is necessary to apply heat or provide an aging period. Therefore, it is inferior in productivity.
In addition, although the composition disclosed in Patent Document 2 is excellent in hard coat properties and chemical resistance, it does not have elongation that can be applied to various molding methods, and there is a problem in this respect. remain.

本発明は、このような事情に鑑みなされたもので、硬化させた際に、基材への密着性、伸び、弾性率および強度に優れ、更に表面タック感がなく、耐薬品性に優れ、加工性・生産性にも優れ、とりわけ加飾成型用途に適している、活性エネルギー線硬化性樹脂組成物およびそれを用いたコーティング剤、ならびにシートを提供する。 The present invention has been made in view of such circumstances, and when cured, it has excellent adhesion to the substrate, elongation, elastic modulus and strength, has no surface tackiness, and has excellent chemical resistance. Provided are an active energy ray-curable resin composition, a coating agent using the same, and a sheet, which are excellent in processability and productivity and particularly suitable for use in decorative molding.

本発明者らは、前記課題を解決するため鋭意研究を重ねた。その研究の過程で、活性エネルギー線硬化性樹脂組成物の主たる成分としてウレタン(メタ)アクリレートを用いることを検討した。そして、上記ウレタン(メタ)アクリレートの材料として、そのウレタン反応において用いるイソシアネートに、脂環構造含有ポリイソシアネートを用い、上記ウレタン反応において用いるポリオールに、数平均分子量300以下の低分子量ポリオールと、数平均分子量500以上の高分子量ポリエステル系ポリオールを併用したものを用い、さらに、上記ウレタン(メタ)アクリレートのウレタン結合濃度を特定の範囲とすることを行った。その結果、上記活性エネルギー線硬化性樹脂組成物によって、基材への密着性、伸び、弾性率および強度に優れ、更に表面タック感のない硬化塗膜が形成できることを見出した。 The present inventors have made intensive studies in order to solve the above problems. In the process of the research, the use of urethane (meth)acrylate as a main component of the active energy ray-curable resin composition was examined. Then, as the material of the urethane (meth)acrylate, the isocyanate used in the urethane reaction is an alicyclic structure-containing polyisocyanate, and the polyol used in the urethane reaction is a low molecular weight polyol having a number average molecular weight of 300 or less, and a number average polyol. A high-molecular-weight polyester-based polyol having a molecular weight of 500 or more was used in combination, and the urethane bond concentration of the urethane (meth)acrylate was set to a specific range. As a result, it was found that the above active energy ray-curable resin composition can form a cured coating film which is excellent in adhesion to substrates, elongation, elastic modulus and strength, and which is free from surface tackiness.

すなわち、本発明は、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の反応物であるウレタン(メタ)アクリレート(A)を含有する活性エネルギー線硬化性樹脂組成物であって、
上記ポリオール(a2)が、数平均分子量60~300の低分子量ポリオール(a2-1)および数平均分子量500~20,000の高分子量ポリエステル系ポリオール(a2-2)を含み、
上記ウレタン(メタ)アクリレート(A)のウレタン結合濃度が3.5mmol/g以上である活性エネルギー線硬化性樹脂組成物を、第1の要旨とする。
That is, the present invention provides an active energy ray containing a urethane (meth)acrylate (A) which is a reaction product of an alicyclic structure-containing polyisocyanate (a1), a polyol (a2), and a hydroxyl group-containing (meth)acrylate (a3). A curable resin composition,
The polyol (a2) contains a low molecular weight polyol (a2-1) having a number average molecular weight of 60 to 300 and a high molecular weight polyester polyol (a2-2) having a number average molecular weight of 500 to 20,000,
A first gist is an active energy ray-curable resin composition in which the urethane (meth)acrylate (A) has a urethane bond concentration of 3.5 mmol/g or more.

また、本発明は、上記活性エネルギー線硬化性樹脂組成物を含有してなるコーティング剤を第2の要旨とする。さらに、本発明は、上記活性エネルギー線硬化性樹脂組成物の硬化体からなるシートを第3の要旨とする。 Moreover, this invention makes a 2nd summary the coating agent formed by containing the said active-energy-ray-curable resin composition. Furthermore, the third aspect of the present invention is a sheet comprising a cured product of the active energy ray-curable resin composition.

このように、本発明の活性エネルギー線硬化性樹脂組成物は、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の反応物であるウレタン(メタ)アクリレート(A)を含有するものである。そして、上記ポリオール(a2)として、数平均分子量60~300の低分子量ポリオール(a2-1)および数平均分子量500~20,000の高分子量ポリエステル系ポリオール(a2-2)を併用し、上記ウレタン(メタ)アクリレート(A)のウレタン結合濃度が3.5mmol/g以上である。このため、本発明の活性エネルギー線硬化性樹脂組成物により形成される硬化塗膜や、本発明の活性エネルギー線硬化性樹脂組成物を含有してなるコーティング剤により形成される硬化塗膜は、基材への密着性、伸び、弾性率および強度に優れ、更に表面タック感がなく、耐薬品性に優れ、加工性・生産性にも優れ、とりわけ加飾成型用途に優れるといった効果を奏する。
そして、上記のような効果を奏することから、本発明の活性エネルギー線硬化性樹脂組成物は、各種基材へのコーティング剤や、成型用シート、およびその保護層の材料、加飾フィルム用ハードコートの材料として有用である。
Thus, the active energy ray-curable resin composition of the present invention is a urethane (meth) which is a reaction product of an alicyclic structure-containing polyisocyanate (a1), a polyol (a2), and a hydroxyl group-containing (meth)acrylate (a3). ) containing acrylate (A). Then, as the polyol (a2), a low molecular weight polyol (a2-1) having a number average molecular weight of 60 to 300 and a high molecular weight polyester polyol (a2-2) having a number average molecular weight of 500 to 20,000 are used in combination. (Meth)acrylate (A) has a urethane bond concentration of 3.5 mmol/g or more. Therefore, a cured coating film formed from the active energy ray-curable resin composition of the present invention and a cured coating film formed from a coating agent containing the active energy ray-curable resin composition of the present invention are It has excellent adhesion to substrates, elongation, elastic modulus and strength, has no surface tackiness, has excellent chemical resistance, has excellent workability and productivity, and is particularly suitable for decorative molding.
Since the above effects are achieved, the active energy ray-curable resin composition of the present invention can be used as a coating agent for various substrates, as a material for molding sheets and their protective layers, and as a hard material for decorative films. It is useful as a coat material.

特に、上記脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記脂環構造含有ポリイソシアネート(a1)の割合が30重量%以上であると、より弾性率に優れた硬化塗膜を得ることができる。 In particular, the ratio of the alicyclic structure-containing polyisocyanate (a1) to the total of the alicyclic structure-containing polyisocyanate (a1), the polyol (a2), and the hydroxyl group-containing (meth)acrylate (a3) is 30% by weight or more. Then, a cured coating film having a more excellent elastic modulus can be obtained.

また、上記脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記脂環構造含有ポリイソシアネート(a1)と低分子量ポリオール(a2-1)の合計の割合が40重量%以上であると、より表面タック感が抑制され、弾性率に優れた硬化塗膜を得ることができる。 Further, the alicyclic structure-containing polyisocyanate (a1) and the low molecular weight polyol (a2- When the total proportion of 1) is 40% by weight or more, the surface tackiness is further suppressed, and a cured coating film having an excellent elastic modulus can be obtained.

さらに、上記脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記脂環構造含有ポリイソシアネート(a1)の割合が30~60重量%であり、上記低分子量ポリオール(a2-1)の割合が10~40重量%であり、上記高分子量ポリエステル系ポリオール(a2-2)の割合が10~50重量%であり、上記水酸基含有(メタ)アクリレート(a3)の割合が1~15重量%であると、より表面タック感が抑制され、伸び、弾性率および強度に優れた硬化塗膜を得ることができる。 Furthermore, the ratio of the alicyclic structure-containing polyisocyanate (a1) to the total of the alicyclic structure-containing polyisocyanate (a1), the polyol (a2), and the hydroxyl group-containing (meth)acrylate (a3) is 30 to 60% by weight. %, the proportion of the low molecular weight polyol (a2-1) is 10 to 40% by weight, the proportion of the high molecular weight polyester polyol (a2-2) is 10 to 50% by weight, and the hydroxyl group-containing ( When the proportion of the meth)acrylate (a3) is 1 to 15% by weight, the surface tackiness is further suppressed, and a cured coating film excellent in elongation, elastic modulus and strength can be obtained.

また、上記低分子量ポリオール(a2-1)が、分岐構造を有していると、硬化塗膜にした際にウレタン結合同士の会合が抑制され、適度な結晶性と柔軟性のバランスを付与することができる。 In addition, when the low-molecular-weight polyol (a2-1) has a branched structure, association between urethane bonds is suppressed when a cured coating film is formed, and a suitable balance between crystallinity and flexibility is imparted. be able to.

そして、上記水酸基含有(メタ)アクリレート(a3)が、分子中に(メタ)アクリロイル基を1個有する(メタ)アクリレートであると、硬化塗膜に適度な架橋構造を付与し、かつ、伸長性を付与できるようになる。 Then, when the hydroxyl group-containing (meth)acrylate (a3) is a (meth)acrylate having one (meth)acryloyl group in the molecule, it imparts an appropriate crosslinked structure to the cured coating film and has elongation. can be given.

つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限られるものではない。 Next, an embodiment of the present invention will be described in detail. However, the present invention is not limited to this embodiment.

本発明の活性エネルギー線硬化性樹脂組成物(以下、「樹脂組成物」と略すことがある)は、特定のウレタン(メタ)アクリレート(A)を用いて得られるものである。上記樹脂組成物(溶剤を除く)中の、上記ウレタン(メタ)アクリレート(A)の含有割合は、通常、50重量%以上であり、好ましくは70重量%以上、より好ましくは90重量%以上、更に好ましくは95重量%以上である。そして、本発明において、上記樹脂組成物は、溶剤を除き、上記ウレタン(メタ)アクリレート(A)のみからなる場合も含まれる。 以下に、上記ウレタン(メタ)アクリレート(A)の詳細や、上記活性エネルギー線硬化性樹脂組成物に適宜含有される各成分材料について説明する。 The active energy ray-curable resin composition (hereinafter sometimes abbreviated as "resin composition") of the present invention is obtained using a specific urethane (meth)acrylate (A). The content of the urethane (meth)acrylate (A) in the resin composition (excluding the solvent) is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it is 95% by weight or more. In the present invention, the resin composition may be composed only of the urethane (meth)acrylate (A) excluding the solvent. Details of the urethane (meth)acrylate (A) and each component material appropriately contained in the active energy ray-curable resin composition are described below.

《ウレタン(メタ)アクリレート(A)》
本発明で用いられる上記ウレタン(メタ)アクリレート(A)は、脂環構造含有ポリイソシアネート(a1)、ポリオール(a2)、および水酸基含有(メタ)アクリレート(a3)を用いて反応させてなる反応生成物である。そして、上記ポリオール(a2)が、数平均分子量60~300の低分子量ポリオール(a2-1)および数平均分子量500~20,000の高分子量ポリエステル系ポリオール(a2-2)を含む。
すなわち、本発明で用いられる上記ウレタン(メタ)アクリレート(A)は、脂環構造含有ポリイソシアネート(a1)由来の構造単位、数平均分子量60~300の低分子量ポリオール(a2-1)由来の構造単位、数平均分子量500~20,000の高分子量ポリエステル系ポリオール(a2-2)由来の構造単位、水酸基含有(メタ)アクリレート(a3)由来の構造単位を備えた化合物である。
なお、本発明の作用効果の観点から、上記ポリオール(a2)全体の50重量%以上、特には80重量%以上が上記低分子量ポリオール(a2-1)および高分子量ポリエステル系ポリオール(a2-2)からなることが好ましく、上記ポリオール(a2)の全てが上記低分子量ポリオール(a2-1)および高分子量ポリエステル系ポリオール(a2-2)からなることが、より好ましい。
<<Urethane (meth)acrylate (A)>>
The urethane (meth)acrylate (A) used in the present invention is a reaction product obtained by reacting an alicyclic structure-containing polyisocyanate (a1), a polyol (a2), and a hydroxyl group-containing (meth)acrylate (a3). It is a thing. The polyol (a2) contains a low molecular weight polyol (a2-1) having a number average molecular weight of 60 to 300 and a high molecular weight polyester polyol (a2-2) having a number average molecular weight of 500 to 20,000.
That is, the urethane (meth)acrylate (A) used in the present invention has structural units derived from the alicyclic structure-containing polyisocyanate (a1), and a structure derived from the low molecular weight polyol (a2-1) having a number average molecular weight of 60 to 300. It is a compound having a unit, a structural unit derived from a high molecular weight polyester polyol (a2-2) having a number average molecular weight of 500 to 20,000, and a structural unit derived from a hydroxyl group-containing (meth)acrylate (a3).
From the viewpoint of the effects of the present invention, 50% by weight or more, particularly 80% by weight or more of the entire polyol (a2) is the low-molecular-weight polyol (a2-1) and the high-molecular-weight polyester-based polyol (a2-2). and more preferably all of the polyol (a2) consists of the low-molecular-weight polyol (a2-1) and the high-molecular-weight polyester-based polyol (a2-2).

そして、上記ウレタン(メタ)アクリレート(A)のウレタン結合濃度は3.5mmol/g以上である。好ましくは、上記ウレタン(メタ)アクリレート(A)のウレタン結合濃度は、3.5~6mmol/gであり、より好ましくは4~5.5mmol/gである。なお、上記ウレタン結合濃度は、上記ウレタン(メタ)アクリレート(A)の組成から上記ウレタン(メタ)アクリレート(A)中のウレタン結合[-NHC(=O)O-]の割合を算出した値である。具体的には、脂環構造含有ポリイソシアネート(a1)のイソシアネート官能基数をN、脂環構造含有ポリイソシアネート(a1)のモル質量をM(g/mol)、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対する脂環構造含有ポリイソシアネート(a1)の割合をP(重量%)としたとき、上記ウレタン結合濃度は、下記に示す式(1)により求めることができる。
(N×1000/M)×(P/100) ・・・(1)
このように、上記ウレタン(メタ)アクリレート(A)のウレタン結合濃度が高いことから、特に、本発明の活性エネルギー線硬化性樹脂組成物により形成される硬化塗膜に高弾性率を付与することができる。
The urethane bond concentration of the urethane (meth)acrylate (A) is 3.5 mmol/g or more. Preferably, the urethane bond concentration of the urethane (meth)acrylate (A) is 3.5 to 6 mmol/g, more preferably 4 to 5.5 mmol/g. The urethane bond concentration is a value obtained by calculating the ratio of urethane bonds [-NHC(=O)O-] in the urethane (meth)acrylate (A) from the composition of the urethane (meth)acrylate (A). be. Specifically, the number of isocyanate functional groups of the alicyclic structure-containing polyisocyanate (a1) is N, the molar mass of the alicyclic structure-containing polyisocyanate (a1) is M (g/mol), and the alicyclic structure-containing polyisocyanate (a1) , the polyol (a2), and the ratio of the alicyclic structure-containing polyisocyanate (a1) to the total of the hydroxyl group-containing (meth)acrylate (a3) is P (% by weight), the urethane bond concentration is expressed by the following formula: (1) can be obtained.
(N×1000/M)×(P/100) (1)
As described above, since the urethane bond concentration of the urethane (meth)acrylate (A) is high, it is possible to impart a high elastic modulus to a cured coating film formed from the active energy ray-curable resin composition of the present invention. can be done.

なお、本発明において、(メタ)アクリルとはアクリルあるいはメタクリルを、(メタ)アクリロイルとはアクリロイルあるいはメタクリロイルを、(メタ)アクリレートとはアクリレートあるいはメタクリレートをそれぞれ意味するものである。 In the present invention, (meth)acryl means acryl or methacryl, (meth)acryloyl means acryloyl or methacryloyl, and (meth)acrylate means acrylate or methacrylate.

[脂環構造含有ポリイソシアネート(a1)]
上記脂環構造含有ポリイソシアネート(a1)としては、例えば、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、水添ジフェニルメタンジイソシアネート等があげられる。
これらは1種を単独で用いてもよいし、2種以上組み合わせて用いてもよい。
なかでも、硬化塗膜の伸びの観点から、上記脂環構造含有ポリイソシアネート(a1)が、ジイソシアネートであることが好ましい。同様の観点から、より好ましくはイソホロンジイソシアネート、1,4-ビス(イソシアナトメチル)シクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサンであり、特に好ましくは1,3-ビス(イソシアナトメチル)シクロヘキサンである。
[Alicyclic structure-containing polyisocyanate (a1)]
Examples of the alicyclic structure-containing polyisocyanate (a1) include isophorone diisocyanate, norbornene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, hydrogenated diphenylmethane diisocyanate, and the like. is given.
These may be used individually by 1 type, and may be used in combination of 2 or more types.
Among them, the alicyclic structure-containing polyisocyanate (a1) is preferably a diisocyanate from the viewpoint of elongation of the cured coating film. From the same viewpoint, isophorone diisocyanate, 1,4-bis(isocyanatomethyl)cyclohexane, and 1,3-bis(isocyanatomethyl)cyclohexane are more preferred, and 1,3-bis(isocyanatomethyl) is particularly preferred. is cyclohexane.

特に、前記ウレタン(メタ)アクリレート(A)の構成材料である、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記脂環構造含有ポリイソシアネート(a1)の割合が30重量%以上であると、より弾性率に優れた硬化塗膜を得ることができる。そして、上記脂環構造含有ポリイソシアネート(a1)の割合は、好ましくは30~60重量%、より好ましくは35~57重量%、更に好ましくは40~55重量%である。 In particular, with respect to the sum of the alicyclic structure-containing polyisocyanate (a1), the polyol (a2), and the hydroxyl group-containing (meth)acrylate (a3), which are constituent materials of the urethane (meth)acrylate (A), the alicyclic When the ratio of the structure-containing polyisocyanate (a1) is 30% by weight or more, a cured coating film having a more excellent elastic modulus can be obtained. The proportion of the alicyclic structure-containing polyisocyanate (a1) is preferably 30 to 60% by weight, more preferably 35 to 57% by weight, still more preferably 40 to 55% by weight.

[ポリオール(a2)]
上記ポリオール(a2)としては、先に述べたように、数平均分子量60~300の低分子量ポリオール(a2-1)と、数平均分子量500~20,000の高分子量ポリエステル系ポリオール(a2-2)とを併用したものが用いられる。
[Polyol (a2)]
As the polyol (a2), as described above, a low molecular weight polyol (a2-1) having a number average molecular weight of 60 to 300 and a high molecular weight polyester polyol (a2-2) having a number average molecular weight of 500 to 20,000 ) are used in combination.

そして、上記低分子量ポリオール(a2-1)の数平均分子量は、好ましくは80~300、より好ましくは100~200である。また、上記高分子量ポリエステル系ポリオール(a2-2)の数平均分子量は、好ましくは500~10,000、より好ましくは600~3,000、更に好ましくは700~2,200である。このようにすることにより、より高弾性率、高伸度を付与しやすく、物性を微調整することができるようになる。 The number average molecular weight of the low molecular weight polyol (a2-1) is preferably 80-300, more preferably 100-200. The number average molecular weight of the high molecular weight polyester polyol (a2-2) is preferably 500 to 10,000, more preferably 600 to 3,000, still more preferably 700 to 2,200. By doing so, a higher elastic modulus and a higher elongation can be easily imparted, and the physical properties can be finely adjusted.

なお、本発明において、数平均分子量は、JIS K 1557に準拠して測定した水酸基価に基づいて算出した数平均分子量とする。具体的には、水酸基価を測定し、末端基定量法により、(56.1×1000×価数)/水酸基価 [mgKOH/g]で算出する。上記式中において、価数は1分子中の水酸基の数である。 In addition, let number average molecular weight be the number average molecular weight calculated based on the hydroxyl value measured based on JISK1557 in this invention. Specifically, the hydroxyl value is measured and calculated by (56.1×1000×valence)/hydroxyl value [mgKOH/g] by the terminal group quantification method. In the above formula, the valence is the number of hydroxyl groups in one molecule.

前記ウレタン(メタ)アクリレート(A)の構成材料である、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記低分子量ポリオール(a2-1)の割合は、好ましくは10~40重量%、より好ましくは12~30重量%、更に好ましくは14~25重量%である。
また、前記ウレタン(メタ)アクリレート(A)の構成材料である、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記高分子量ポリエステル系ポリオール(a2-2)の割合は、好ましくは10~50重量%、より好ましくは15~45重量%、更に好ましくは20~40重量%である。
さらに、前記ウレタン(メタ)アクリレート(A)の構成材料である、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記脂環構造含有ポリイソシアネート(a1)と低分子量ポリオール(a2-1)の合計の割合は、好ましくは40重量%以上、より好ましくは50~90重量%、更に好ましくは55~80重量%である。このような範囲とすることにより、表面タック感が抑制され、弾性率に優れた硬化塗膜を得ることができる。
The low molecular weight polyol ( The proportion of a2-1) is preferably 10 to 40% by weight, more preferably 12 to 30% by weight, still more preferably 14 to 25% by weight.
In addition, with respect to the total of the alicyclic structure-containing polyisocyanate (a1), the polyol (a2), and the hydroxyl group-containing (meth)acrylate (a3), which are the constituent materials of the urethane (meth)acrylate (A), the above high molecular weight The proportion of the polyester polyol (a2-2) is preferably 10 to 50 wt%, more preferably 15 to 45 wt%, still more preferably 20 to 40 wt%.
Furthermore, with respect to the total of the alicyclic structure-containing polyisocyanate (a1), the polyol (a2), and the hydroxyl group-containing (meth)acrylate (a3), which are constituent materials of the urethane (meth)acrylate (A), the alicyclic The total ratio of the structure-containing polyisocyanate (a1) and the low-molecular-weight polyol (a2-1) is preferably 40% by weight or more, more preferably 50 to 90% by weight, still more preferably 55 to 80% by weight. By setting it to such a range, the feeling of surface tack is suppressed, and a cured coating film excellent in elastic modulus can be obtained.

特に、上記低分子量ポリオール(a2-1)と高分子量ポリエステル系ポリオール(a2-2)との比率(a2-1/a2-2)が、重量比で、20/80~80/20であることが、より高弾性率、高伸度を付与しやすく、物性を微調整することができるため、好ましい。同様の観点から、上記比率(重量比)は、より好ましくは、(a2-1/a2-2)=22/78~70/30、特に好ましくは、(a2-1/a2-2)=25/75~60/40の範囲である。 In particular, the ratio (a2-1/a2-2) between the low molecular weight polyol (a2-1) and the high molecular weight polyester polyol (a2-2) is 20/80 to 80/20 by weight. However, it is preferable because it is easy to impart a higher elastic modulus and a higher elongation and the physical properties can be finely adjusted. From the same point of view, the above ratio (weight ratio) is more preferably (a2-1/a2-2) = 22/78 to 70/30, particularly preferably (a2-1/a2-2) = 25 /75 to 60/40.

上記低分子量ポリオール(a2-1)としては、具体的には、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、ジメチロールプロパン、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、ペンタエリスリトールジアクリレート、1,9-ノナンジオール、2-メチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール等の脂肪族アルコール類、1,4-シクロヘキサンジオール、シクロヘキシルジメタノール、トリシクロデカンジメタノール等の脂環族ジオール類、ビスフェノールA等のビスフェノール類、キシリトールやソルビトール等の糖アルコール類等があげられ、これらは1種または2種以上を併用して用いることができる。
これらの中でも、硬化塗膜にした場合の適度な結晶性付与、および柔軟性付与の観点から、分岐構造を有するものが好ましく、特に、分岐構造を有する脂肪族鎖を有するジオールが好ましい。また、硬化塗膜の黄変性の観点から、芳香環や不飽和基を含まない構造の化合物がより好ましく、特に好ましくは脂肪族ジオール類、更に好ましくはネオペンチルグリコールである。
Specific examples of the low-molecular-weight polyol (a2-1) include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, dimethylolpropane, neopentyl glycol, 2,2-diethyl-1,3 -propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, 2-methyl-1,3-trimethylenediol, 1,5 -pentamethylenediol, 1,6-hexamethylenediol, 3-methyl-1,5-pentamethylenediol, 2,4-diethyl-1,5-pentamethylenediol, pentaerythritol diacrylate, 1,9-nonanediol , 2-methyl-1,3-hexanediol, 2-methyl-1,8-octanediol and other aliphatic alcohols, 1,4-cyclohexanediol, cyclohexyldimethanol, tricyclodecanedimethanol and other alicyclic Examples include diols, bisphenols such as bisphenol A, and sugar alcohols such as xylitol and sorbitol, and these can be used singly or in combination of two or more.
Among these, diols having a branched structure are preferred, and diols having an aliphatic chain having a branched structure are particularly preferred, from the viewpoint of imparting appropriate crystallinity and flexibility to a cured coating film. From the viewpoint of yellowing of the cured coating film, more preferred are compounds having a structure that does not contain an aromatic ring or an unsaturated group, particularly preferred are aliphatic diols, and still more preferred is neopentyl glycol.

また、上記高分子量ポリエステル系ポリオール(a2-2)としては、例えば、多価アルコールと多価カルボン酸との縮合重合物;環状エステル(ラクトン)の開環重合物;多価アルコール、多価カルボン酸および環状エステルの3種類の成分による反応物等があげられる。 Examples of the high-molecular-weight polyester-based polyol (a2-2) include condensation polymers of polyhydric alcohols and polycarboxylic acids; ring-opening polymers of cyclic esters (lactones); polyhydric alcohols and polycarboxylic acids; A reactant with three kinds of components such as an acid and a cyclic ester can be mentioned.

上記多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオール等)、トリシクロデカンジメタノール、ビスフェノール類(ビスフェノールA等)、糖アルコール類(キシリトールやソルビトール等)等があげられる。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, 2-methyl-1,3-tri methylenediol, 1,5-pentamethylenediol, neopentyl glycol, 1,6-hexamethylenediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5-pentamethylenediol, 2,4- Diethyl-1,5-pentamethylenediol, glycerin, trimethylolpropane, trimethylolethane, cyclohexanediols (1,4-cyclohexanediol, etc.), tricyclodecanedimethanol, bisphenols (bisphenol A, etc.), sugar alcohols (xylitol, sorbitol, etc.) and the like.

上記多価カルボン酸としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸等があげられる。 Examples of polyvalent carboxylic acids include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; alicyclic dicarboxylic acids such as -cyclohexanedicarboxylic acid;

上記環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等があげられる。 Examples of the cyclic ester include propiolactone, β-methyl-δ-valerolactone, ε-caprolactone and the like.

前記ポリオール(a2)全体としては、硬化塗膜とした際に、伸長性を付与できる点から、2官能(水酸基数が2個)のポリオールを用いることが好ましく、さらに2官能のポリオールと3官能(水酸基数が3個)のポリオールを併用してもよい。 As the polyol (a2) as a whole, it is preferable to use a bifunctional (having two hydroxyl groups) polyol from the viewpoint of imparting extensibility to a cured coating film. A polyol (having three hydroxyl groups) may be used in combination.

[水酸基含有(メタ)アクリレート(a3)]
上記水酸基含有(メタ)アクリレート(a3)としては、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のアルキル基の炭素数が1~16(好ましくは1~12)のヒドロキシアルキル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、脂肪酸変性-グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート等の(メタ)アクリロイル基を1個有する化合物;グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート等の(メタ)アクリロイル基を2個有する化合物;ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、コハク酸変性ペンタエリスリトールトリ(メタ)アクリレート等の(メタ)アクリロイル基を3個以上有する化合物等があげられる。
これらは1種を単独で用いてもよいし、2種以上組み合わせて用いてもよい。
[Hydroxyl group-containing (meth)acrylate (a3)]
Specific examples of the hydroxyl group-containing (meth)acrylate (a3) include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl ( Hydroxyalkyl (meth)acrylates having 1 to 16 (preferably 1 to 12) carbon atoms in the alkyl group such as meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 2-hydroxyethyl acryloyl phosphate, 2-(meth)acrylate Acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth)acrylate, dipropylene glycol (meth)acrylate, fatty acid-modified glycidyl (meth)acrylate, polyethylene glycol mono(meth)acrylate, polypropylene glycol mono (Meth)acrylates, compounds having one (meth)acryloyl group such as 2-hydroxy-3-(meth)acryloyloxypropyl (meth)acrylate; glycerin di(meth)acrylate, 2-hydroxy-3-acryloyl- Compounds having two (meth)acryloyl groups such as oxypropyl methacrylate; pentaerythritol tri(meth)acrylate, caprolactone-modified pentaerythritol tri(meth)acrylate, ethylene oxide-modified pentaerythritol tri(meth)acrylate, dipentaerythritol penta ( Compounds having 3 or more (meth)acryloyl groups such as meth)acrylate, caprolactone-modified dipentaerythritol penta(meth)acrylate, ethylene oxide-modified dipentaerythritol penta(meth)acrylate, succinic acid-modified pentaerythritol tri(meth)acrylate, etc. etc.
These may be used individually by 1 type, and may be used in combination of 2 or more types.

これらの中でも、分子中に(メタ)アクリロイル基を1個有する水酸基含有(メタ)アクリレートが、硬化塗膜に適度な架橋構造を付与し、かつ、伸長性を付与できる理由から好ましく、より好ましくは、ヒドロキシアルキル(メタ)アクリレートであり、更に好ましくは2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレートであり、反応性および汎用性に優れる点で殊に好ましくは2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレートである。 Among these, a hydroxyl group-containing (meth) acrylate having one (meth) acryloyl group in the molecule is preferable because it can impart an appropriate crosslinked structure to the cured coating film and can impart extensibility, and more preferably , hydroxyalkyl (meth)acrylates, more preferably 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6 - hydroxyhexyl (meth) acrylate and caprolactone-modified 2-hydroxyethyl (meth) acrylate, particularly preferably 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate in terms of excellent reactivity and versatility acrylate, 4-hydroxybutyl (meth)acrylate, and caprolactone-modified 2-hydroxyethyl (meth)acrylate.

そして、前記ウレタン(メタ)アクリレート(A)の構成材料である、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記水酸基含有(メタ)アクリレート(a3)の割合は、好ましくは1~15重量%、より好ましくは2~13重量%、更に好ましくは2~10重量%である。 Then, the hydroxyl group-containing The proportion of (meth)acrylate (a3) is preferably 1 to 15 wt%, more preferably 2 to 13 wt%, still more preferably 2 to 10 wt%.

[ウレタン(メタ)アクリレート(A)の調製]
本発明で用いられるウレタン(メタ)アクリレート(A)は、例えば、前記脂環構造含有ポリイソシアネート(a1)、低分子量ポリオール(a2-1)、高分子量ポリエステル系ポリオール(a2-2)、水酸基含有(メタ)アクリレート(a3)を用いて、反応器に一括または別々に仕込み反応させることにより製造することができるが、低分子量ポリオール(a2-1)および高分子量ポリエステル系ポリオール(a2-2)と、脂環構造含有ポリイソシアネート(a1)とを予め反応させて得られる反応生成物に、水酸基含有(メタ)アクリレート(a3)を反応させることが、反応の安定性や副生成物の低減等の点から有用である。
特に、有機溶剤中に、脂環構造含有ポリイソシアネート(a1)と、低分子量ポリオール(a2-1)とを加えて反応させた後、高分子量ポリエステル系ポリオール(a2-2)を更に加えて反応させ、その結果得られた反応物に、水酸基含有(メタ)アクリレート(a3)を反応させて、目的とするウレタン(メタ)アクリレート(A)を製造すると、良好にウレタン(メタ)アクリレート(A)を製造することができる。
[Preparation of urethane (meth)acrylate (A)]
The urethane (meth)acrylate (A) used in the present invention includes, for example, the alicyclic structure-containing polyisocyanate (a1), low molecular weight polyol (a2-1), high molecular weight polyester polyol (a2-2), hydroxyl group-containing (Meth)acrylate (a3) can be produced by charging a reactor all at once or separately and reacting with a low-molecular-weight polyol (a2-1) and a high-molecular-weight polyester-based polyol (a2-2). , The reaction product obtained by pre-reacting with the alicyclic structure-containing polyisocyanate (a1) is reacted with the hydroxyl group-containing (meth)acrylate (a3) to improve the stability of the reaction and the reduction of by-products. useful from the point of view.
In particular, an alicyclic structure-containing polyisocyanate (a1) and a low-molecular-weight polyol (a2-1) are added to an organic solvent for reaction, and then a high-molecular-weight polyester-based polyol (a2-2) is further added for reaction. Then, the reaction product obtained as a result is reacted with the hydroxyl group-containing (meth)acrylate (a3) to produce the desired urethane (meth)acrylate (A). can be manufactured.

そして、ウレタン(メタ)アクリレート(A)を収率良く得るために、脂環構造含有ポリイソシアネート(a1)、低分子量ポリオール(a2-1)、高分子量ポリエステル系ポリオール(a2-2)、水酸基含有(メタ)アクリレート(a3)のモル比が、下記の通りであることが好ましい。 Then, in order to obtain a urethane (meth)acrylate (A) in good yield, an alicyclic structure-containing polyisocyanate (a1), a low molecular weight polyol (a2-1), a high molecular weight polyester polyol (a2-2), a hydroxyl group-containing The molar ratio of (meth)acrylate (a3) is preferably as follows.

脂環構造含有ポリイソシアネート(a1)、低分子量ポリオール(a2-1)、高分子量ポリエステル系ポリオール(a2-2)の反応には、公知の反応手段を用いることができる。その際、例えば、脂環構造含有ポリイソシアネート(a1)中のイソシアネート基とポリオール中の水酸基(低分子量ポリオール(a2-1)中の水酸基と高分子量ポリエステル系ポリオール(a2-2)中の水酸基の合計)が、モル比で、通常、イソシアネート基:水酸基=2:1~20:19程度にすることにより、イソシアネート基を残存させた末端イソシアネート基含有ウレタン(メタ)アクリレートを得ることができる。そして、その末端イソシアネート基に対し、水酸基含有(メタ)アクリレート(a3)との付加反応が可能となる。 Known reaction means can be used for the reaction of the alicyclic structure-containing polyisocyanate (a1), the low-molecular-weight polyol (a2-1), and the high-molecular-weight polyester-based polyol (a2-2). At that time, for example, the isocyanate group in the alicyclic structure-containing polyisocyanate (a1) and the hydroxyl group in the polyol (the hydroxyl group in the low molecular weight polyol (a2-1) and the hydroxyl group in the high molecular weight polyester polyol (a2-2) (total) is generally about 2:1 to 20:19 in terms of molar ratio of isocyanate groups:hydroxyl groups, to obtain a terminal isocyanate group-containing urethane (meth)acrylate with residual isocyanate groups. Then, the terminal isocyanate group can undergo an addition reaction with the hydroxyl group-containing (meth)acrylate (a3).

上記脂環構造含有ポリイソシアネート(a1)と、低分子量ポリオール(a2-1)と、高分子量ポリエステル系ポリオール(a2-2)とを予め反応させて得られる反応生成物と、水酸基含有(メタ)アクリレート(a3)との付加反応にも、公知の反応手段を用いることができる。 A reaction product obtained by pre-reacting the alicyclic structure-containing polyisocyanate (a1), the low molecular weight polyol (a2-1), and the high molecular weight polyester polyol (a2-2), and a hydroxyl group-containing (meth) Known reaction means can also be used for the addition reaction with the acrylate (a3).

反応生成物と水酸基含有(メタ)アクリレート(a3)との反応モル比は、例えば、脂環構造含有ポリイソシアネート(a1)のイソシアネート基が2個で、水酸基含有(メタ)アクリレート(a3)の水酸基が1個である場合は、反応生成物:水酸基含有(メタ)アクリレート(a3)が、1:2程度であり、脂環構造含有ポリイソシアネート(a1)のイソシアネート基が3個で、水酸基含有(メタ)アクリレート(a3)の水酸基が1個である場合は、反応生成物:水酸基含有(メタ)アクリレート(a3)が、1:3程度である。 The reaction molar ratio between the reaction product and the hydroxyl group-containing (meth)acrylate (a3) is, for example, two isocyanate groups in the alicyclic structure-containing polyisocyanate (a1) and hydroxyl groups in the hydroxyl group-containing (meth)acrylate (a3). is one, the reaction product: the hydroxyl group-containing (meth)acrylate (a3) is about 1:2, the alicyclic structure-containing polyisocyanate (a1) has three isocyanate groups, and the hydroxyl group-containing ( When the meth)acrylate (a3) has one hydroxyl group, the ratio of the reaction product to the hydroxyl group-containing (meth)acrylate (a3) is about 1:3.

この反応生成物と水酸基含有(メタ)アクリレート(a3)との付加反応においては、反応系の残存イソシアネート基含有率が、好ましくは0.3重量%以下、より好ましくは0.1重量%以下になる時点で反応を終了させることにより、未反応成分を低減でき、ウレタン(メタ)アクリレート(A)が再現性良く得られる。 In the addition reaction between the reaction product and the hydroxyl group-containing (meth)acrylate (a3), the residual isocyanate group content in the reaction system is preferably 0.3% by weight or less, more preferably 0.1% by weight or less. By terminating the reaction at a point in time, unreacted components can be reduced, and urethane (meth)acrylate (A) can be obtained with good reproducibility.

そして、反応条件に関しては、例えば、反応温度は、ウレタン(メタ)アクリレート(A)を収率良く得るために、30~80℃程度の範囲に設定するのが好ましいが、反応熱を制御できる点から、60~70℃で反応を行うのが適当であり、反応時間は、通常2~10時間、好ましくは3~8時間である。 Regarding the reaction conditions, for example, the reaction temperature is preferably set in the range of about 30 to 80° C. in order to obtain the urethane (meth)acrylate (A) in good yield, but the reaction heat can be controlled. Therefore, it is suitable to carry out the reaction at 60 to 70° C., and the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.

上記脂環構造含有ポリイソシアネート(a1)と、低分子量ポリオール(a2-1)と、高分子量ポリエステル系ポリオール(a2-2)との反応、更にその反応生成物と水酸基含有(メタ)アクリレート(a3)との反応においては、反応を促進する目的で触媒を用いることも好ましく、上記触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、トリメチル錫ヒドロキシド、テトラ-n-ブチル錫、ビスアセチルアセトナート亜鉛、ジルコニウムトリス(アセチルアセトネート)エチルアセトアセテート、ジルコニウムテトラアセチルアセトネート等の有機金属化合物、オクテン酸錫、ヘキサン酸亜鉛、オクテン酸亜鉛、ステアリン酸亜鉛、2-エチルヘキサン酸ジルコニウム、ナフテン酸コバルト、塩化第1錫、塩化第2錫、酢酸カリウム等の金属塩、トリエチルアミン、トリエチレンジアミン、ベンジルジエチルアミン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、N,N,N',N'-テトラメチル-1,3-ブタンジアミン、N-メチルモルホリン、N-エチルモルホリン等のアミン系触媒、硝酸ビスマス、臭化ビスマス、ヨウ化ビスマス、硫化ビスマス等の他、ジブチルビスマスジラウレート、ジオクチルビスマスジラウレート等の有機ビスマス化合物や、2-エチルヘキサン酸ビスマス塩、ナフテン酸ビスマス塩、イソデカン酸ビスマス塩、ネオデカン酸ビスマス塩、ラウリル酸ビスマス塩、マレイン酸ビスマス塩、ステアリン酸ビスマス塩、オレイン酸ビスマス塩、リノール酸ビスマス塩、酢酸ビスマス塩、ビスマスリビスネオデカノエート、ジサリチル酸ビスマス塩、ジ没食子酸ビスマス塩等の有機酸ビスマス塩等のビスマス系触媒等があげられ、中でも、ジブチル錫ジラウレート、1,8-ジアザビシクロ[5,4,0]-7-ウンデセンが好適である。
これらは1種単独で用いてもよいし、2種以上併せて用いることもできる。
Reaction of the above alicyclic structure-containing polyisocyanate (a1), low molecular weight polyol (a2-1), and high molecular weight polyester polyol (a2-2), further reaction product and hydroxyl group-containing (meth)acrylate (a3) ), it is also preferable to use a catalyst for the purpose of promoting the reaction. Examples of the catalyst include dibutyltin dilaurate, dibutyltin diacetate, trimethyltin hydroxide, tetra-n-butyltin, bisacetyl Organometallic compounds such as zinc acetonate, zirconium tris(acetylacetonate) ethylacetoacetate, zirconium tetraacetylacetonate, tin octoate, zinc hexanoate, zinc octenoate, zinc stearate, zirconium 2-ethylhexanoate, naphthene metal salts such as cobalt acid, stannous chloride, stannic chloride, potassium acetate, triethylamine, triethylenediamine, benzyldiethylamine, 1,4-diazabicyclo[2,2,2]octane, 1,8-diazabicyclo[5, Amine catalysts such as 4,0]-7-undecene, N,N,N',N'-tetramethyl-1,3-butanediamine, N-methylmorpholine, N-ethylmorpholine, bismuth nitrate, bismuth bromide , bismuth iodide, bismuth sulfide, etc., organic bismuth compounds such as dibutylbismuth dilaurate, dioctylbismuth dilaurate, bismuth 2-ethylhexanoate, bismuth naphthenate, bismuth isodecanoate, bismuth neodecanoate, lauric acid Organic acid bismuth salts such as bismuth salts, bismuth maleates, bismuth stearates, bismuth oleates, bismuth linoleates, bismuth acetates, bismuth ribs neodecanoate, bismuth disalicylate, and bismuth digallate and bismuth-based catalysts such as dibutyltin dilaurate and 1,8-diazabicyclo[5,4,0]-7-undecene are preferred.
These may be used individually by 1 type, and can also be used in combination of 2 or more types.

上記触媒の配合量は、通常、反応成分の総和に対して5~1,000ppmであり、好ましくは10~500ppm、より好ましくは20~200ppmである。 The blending amount of the above catalyst is usually 5 to 1,000 ppm, preferably 10 to 500 ppm, more preferably 20 to 200 ppm, based on the total sum of the reaction components.

また、上記反応においては、更に重合禁止剤を用いることが好ましい。上記重合禁止剤としては、重合禁止剤として用いられている公知一般のものを使用することができ、例えば、p-ベンゾキノン、ナフトキノン、トルキノン、2,5-ジフェニル-p-ベンゾキノン、ハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、メチルハイドロキノン、モノ-t-ブチルハイドロキノン等のキノン類、4-メトキシフェノール、2,6-ジ-tert-ブチルクレゾール等の芳香族類、p-t-ブチルカテコール等を挙げることができる。中でも芳香族類が好ましく、4-メトキシフェノール、2,6-ジ-tert-ブチルクレゾールが特に好ましい。
これらは1種単独で用いてもよいし、2種以上併せて用いることもできる。
Moreover, in the above reaction, it is preferable to further use a polymerization inhibitor. As the polymerization inhibitor, known general ones that are used as polymerization inhibitors can be used. 5-di-t-butylhydroquinone, methylhydroquinone, mono-t-butylhydroquinone and other quinones, 4-methoxyphenol, 2,6-di-tert-butylcresol and other aromatics, pt-butylcatechol etc. can be mentioned. Among them, aromatics are preferred, and 4-methoxyphenol and 2,6-di-tert-butylcresol are particularly preferred.
These may be used individually by 1 type, and can also be used in combination of 2 or more types.

上記反応の際には、先に述べたように、有機溶剤を使用することが好ましい。上記有機溶剤としては、例えば、アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類、エチルセロソルブ等のセロソルブ類、トルエン、キシレン等の芳香族類、酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類等があげられる。これらの有機溶剤は、単独で用いてもよいし2種以上を併用してもよい。
また、本発明の活性エネルギー線硬化性樹脂組成物中における有機溶剤の含有量は、通常1~90重量%、好ましくは10~80重量%、より好ましくは20~70重量%、更に好ましくは30~60重量%である。すなわち、上記有機溶剤の含有量が少なすぎると、著しく高粘度となりハンドリング性が損なわれるおそれがあり、上記有機溶剤の含有量が多すぎると、反応速度が低下することで生産性に悪影響を及ぼすおそれがあるからである。
As mentioned above, it is preferable to use an organic solvent in the above reaction. Examples of the organic solvent include ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone; cellosolves such as ethyl cellosolve; aromatics such as toluene and xylene; etc. can be given. These organic solvents may be used alone or in combination of two or more.
In addition, the content of the organic solvent in the active energy ray-curable resin composition of the present invention is usually 1 to 90% by weight, preferably 10 to 80% by weight, more preferably 20 to 70% by weight, still more preferably 30% by weight. ~60% by weight. That is, if the content of the organic solvent is too small, the viscosity may be significantly increased and the handling property may be impaired. Because it is possible.

上記ウレタン(メタ)アクリレート(A)中におけるエチレン性不飽和基の含有数は、1~10であることが好ましく、より好ましくは1~6、特に好ましくは1~3である。 The number of ethylenically unsaturated groups contained in the urethane (meth)acrylate (A) is preferably 1-10, more preferably 1-6, and particularly preferably 1-3.

上記ウレタン(メタ)アクリレート(A)の重量平均分子量は、好ましくは3,000~100,000であり、より好ましくは5,000~50,000、特に好ましくは10,000~40,000、殊更に好ましくは15,000~30,000である。ウレタン(メタ)アクリレート(A)の重量平均分子量が小さすぎると、硬化塗膜中のエチレン性不飽和基濃度が相対的に大きくなり、硬化塗膜とした際に塗膜の伸長性が得られ難い傾向がみられ、ウレタン(メタ)アクリレート(A)の重量平均分子量が大きすぎると、粘度が高くなり反応制御が難しくなる傾向があり、また、硬化塗膜中のエチレン性不飽和基濃度が相対的に小さくなり架橋密度が低くなるため硬化塗膜の伸長性は得られるものの弾性率が低くなる傾向がみられる。 The weight average molecular weight of the urethane (meth)acrylate (A) is preferably 3,000 to 100,000, more preferably 5,000 to 50,000, particularly preferably 10,000 to 40,000, and more preferably 10,000 to 40,000. preferably 15,000 to 30,000. If the weight-average molecular weight of the urethane (meth)acrylate (A) is too small, the concentration of ethylenically unsaturated groups in the cured coating film becomes relatively large, and the cured coating film cannot obtain extensibility. If the weight average molecular weight of the urethane (meth)acrylate (A) is too large, the viscosity tends to increase and the reaction control tends to be difficult, and the ethylenically unsaturated group concentration in the cured coating film Since it becomes relatively small and the crosslink density becomes low, although the stretchability of the cured coating film is obtained, the elastic modulus tends to be low.

なお、上記重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフ(Waters社製、「ACQUITY APCシステム」)に、カラム:ACQUITY APC XT 450を1本、ACQUITY APC XT 200を1本、ACQUITY APC XT 45を2本の計4本を直列にして用いることにより測定される。 The weight-average molecular weight is the weight-average molecular weight in terms of standard polystyrene molecular weight. and two ACQUITY APC XT 45 in series.

また、上記ウレタン(メタ)アクリレート(A)の粘度は、先に述べた有機溶剤の含有量により調整されるものであるが、20℃において、10~100,000mPa・sであることが好ましく、より好ましくは100~50,000mPa・s、更に好ましくは1,000~25,000mPa・sである。粘度が低すぎると、塗工性が低下する傾向がみられ、粘度が高すぎると、ハンドリングが困難になったり、塗工性が低下する傾向がみられる。
なお、上記粘度は、B型粘度計を用いて測定される。
In addition, the viscosity of the urethane (meth)acrylate (A) is adjusted by the content of the organic solvent described above, and is preferably 10 to 100,000 mPa·s at 20°C. It is more preferably 100 to 50,000 mPa·s, still more preferably 1,000 to 25,000 mPa·s. If the viscosity is too low, the coating properties tend to deteriorate, and if the viscosity is too high, the handling tends to become difficult and the coating properties tend to deteriorate.
In addition, the said viscosity is measured using a Brookfield viscometer.

《その他の材料》
本発明の活性エネルギー線硬化性樹脂組成物においては、硬化性を付与するために、さらに光重合開始剤を含有させることが好ましい。
《Other materials》
The active energy ray-curable resin composition of the present invention preferably further contains a photopolymerization initiator in order to impart curability.

上記光重合開始剤としては、光の作用によりラジカルを発生するものであれば特に限定されず、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4'-メチル-ジフェニルサルファイド、3,3',4,4'-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類;等があげられる。なお、これら光重合開始剤は、1種単独で用いてもよいし2種以上を併用することもできる。 The photopolymerization initiator is not particularly limited as long as it generates radicals by the action of light. Examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and benzyldimethyl. ketal, 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxy-cyclohexyl-phenyl-ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl ) acetophenones such as butanone, 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone oligomer; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, etc. benzoins; benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone , 2,4,6-trimethylbenzophenone, 4-benzoyl-N,N-dimethyl-N-[2-(1-oxo-2-propenyloxy)ethyl]benzenemethanaminium bromide, (4-benzoylbenzyl)trimethyl Benzophenones such as ammonium chloride; Thioxanthones such as hydroxy)-3,4-dimethyl-9H-thioxanthon-9-one mesochloride; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4 ,4-trimethyl-pentylphosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide; and the like. In addition, these photoinitiators may be used individually by 1 type, and can also use 2 or more types together.

また、上記光重合開始剤の助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4'-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4'-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。これら助剤も1種単独で用いてもよいし2種以上併せて用いることもできる。 Further, as an auxiliary agent for the photopolymerization initiator, triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, 4- Ethyl dimethylaminobenzoate, (n-butoxy)ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4- It is also possible to use diisopropylthioxanthone or the like in combination. These auxiliaries may be used singly or in combination of two or more.

上記光重合開始剤の含有量については、前記特定のウレタン(メタ)アクリレート(A)100重量部に対して、0.1~20重量部であることが好ましく、より好ましくは0.5~10重量部であり、更に好ましくは1~7.5重量部である。上記含有量が少なすぎると硬化不良となり塗膜が形成されにくくなる傾向があり、多すぎると硬化塗膜の黄変の原因となり、着色の問題が起こりやすい傾向がある。 The content of the photopolymerization initiator is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, relative to 100 parts by weight of the specific urethane (meth)acrylate (A). parts by weight, more preferably 1 to 7.5 parts by weight. If the content is too low, curing will be poor and the coating film will tend to be difficult to form.

さらに、本発明の活性エネルギー線硬化性樹脂組成物には、前記特定のウレタン(メタ)アクリレート(A)や、上記光重合開始剤以外に、酸化防止剤、難燃剤、帯電防止剤、充填剤、レベリング剤、安定剤、補強剤、艶消し剤等を配合することも可能である。更に、架橋剤として、熱により架橋を引き起す作用をもつ化合物、具体的にはエポキシ化合物、アジリシン化合物、メラミン化合物、イソシアネート化合物、キレート化合物等も使用できる。 Furthermore, in addition to the specific urethane (meth)acrylate (A) and the photopolymerization initiator, the active energy ray-curable resin composition of the present invention contains an antioxidant, a flame retardant, an antistatic agent, and a filler. , a leveling agent, a stabilizer, a reinforcing agent, a delustering agent, and the like. Furthermore, as a cross-linking agent, compounds having the action of inducing cross-linking by heat, specifically epoxy compounds, azilysine compounds, melamine compounds, isocyanate compounds, chelate compounds and the like can be used.

《活性エネルギー線硬化性樹脂組成物》
本発明の活性エネルギー線硬化性樹脂組成物は、前記特定のウレタン(メタ)アクリレート(A)に、光重合開始剤等の各種添加剤を所定の配合量にて配合し、混合することにより製造することができる。
<<Active energy ray-curable resin composition>>
The active energy ray-curable resin composition of the present invention is produced by adding various additives such as a photopolymerization initiator in a predetermined blending amount to the specific urethane (meth)acrylate (A) and mixing them. can do.

上記活性エネルギー線硬化性樹脂組成物は、上記各配合成分を、常温(25℃±10℃)または場合によっては常温~60℃の温度範囲に加温し混合することにより調製することができる。好ましくは、光重合開始剤を除く各成分を、予め常温もしくは上記温度範囲の加温状態で予備混合(0.5~30時間)した後に、光重合開始剤を混合することにより、上記活性エネルギー線硬化性樹脂組成物を調製することである。 The above-mentioned active energy ray-curable resin composition can be prepared by heating each of the above ingredients to room temperature (25° C.±10° C.) or in a temperature range of room temperature to 60° C. and mixing. Preferably, each component excluding the photopolymerization initiator is preliminarily mixed (0.5 to 30 hours) at room temperature or in a heated state in the above temperature range, and then the photopolymerization initiator is mixed to obtain the above active energy. It is to prepare a radiation-curable resin composition.

このようにして得られる活性エネルギー線硬化性樹脂組成物としては、その粘度が、20℃において、10~100,000mPa・sであることが好ましく、より好ましくは100~50,000mPa・s、更に好ましくは1,000~25,000mPa・sである。粘度が低すぎると、塗工性が低下する傾向がみられ、粘度が高すぎると、ハンドリングが困難になったり、塗工性が低下する傾向がみられる。
なお、上記粘度は、B型粘度計を用いて測定される。
The active energy ray-curable resin composition thus obtained preferably has a viscosity of 10 to 100,000 mPa s, more preferably 100 to 50,000 mPa s at 20° C. It is preferably 1,000 to 25,000 mPa·s. If the viscosity is too low, the coating properties tend to deteriorate, and if the viscosity is too high, the handling tends to become difficult and the coating properties tend to deteriorate.
In addition, the said viscosity is measured using a Brookfield viscometer.

《コーティング剤、シート》
本発明の活性エネルギー線硬化性樹脂組成物としては、例えば、コーティング剤用途に用いられる。
《Coating agents, sheets》
The active energy ray-curable resin composition of the present invention is used, for example, as a coating agent.

また、上記活性エネルギー線硬化性樹脂組成物をシートとして用いることもでき、基材に塗工して塗膜を形成した後、活性エネルギー線を照射して塗膜を硬化し、これを剥離することによりシートを作製することができる。 Further, the active energy ray-curable resin composition can also be used as a sheet. A sheet can be produced by this.

なお、本発明において、「シート」とは、シートおよびフィルムを概念的に包含するものである。 In the present invention, the term "sheet" conceptually includes sheets and films.

本発明の活性エネルギー線硬化性樹脂組成物を塗工する対象となる基材としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリスチレン系樹脂等やそれらの成型品(フィルム、シート、カップ等)等のプラスチック基材、それらの複合基材、またはガラス繊維や無機物を混合した前記材料の複合基材等、金属(アルミニウム、銅、鉄、SUS、亜鉛、マグネシウム、これらの合金等)や、ガラス等の基材上にプライマー層を設けた基材等があげられる。 Substrates to be coated with the active energy ray-curable resin composition of the present invention include polyolefin resins, polyester resins, polycarbonate resins, acrylic resins, acrylonitrile-butadiene-styrene copolymers (ABS), and polystyrene. Plastic substrates such as system resins and their molded products (films, sheets, cups, etc.), composite substrates thereof, or composite substrates of the above materials mixed with glass fibers and inorganic substances, metals (aluminum, copper, (iron, SUS, zinc, magnesium, alloys thereof, etc.), and substrates such as glass having a primer layer provided thereon.

本発明の活性エネルギー線硬化性樹脂組成物の塗工方法としては、例えば、スプレー、シャワー、ディッピング、ロール、スピン、スクリーン印刷等のようなウェットコーティング法があげられ、通常は常温下にて、基材に塗工すればよい。 Examples of the method for applying the active energy ray-curable resin composition of the present invention include wet coating methods such as spraying, showering, dipping, rolling, spinning, and screen printing. What is necessary is just to apply to a base material.

基材上に塗工された活性エネルギー線硬化性樹脂組成物を硬化させる際に使用する活性エネルギー線としては、例えば、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のし易さ、価格等から紫外線照射による硬化が有利である。なお、電子線照射を行う場合は、前述の光重合開始剤を用いなくても硬化し得る。 Examples of the active energy ray used for curing the active energy ray-curable resin composition coated on the substrate include light rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, and infrared rays, X rays, γ rays, and the like. In addition to electromagnetic waves, electron beams, proton beams, neutron beams, etc. can be used, but curing by ultraviolet irradiation is advantageous in terms of curing speed, availability of irradiation equipment, price, and the like. When electron beam irradiation is performed, curing can be performed without using the above-mentioned photopolymerization initiator.

紫外線照射により本発明の活性エネルギー線硬化性樹脂組成物を硬化させる際には、150~450nm波長域の光を発する高圧水銀ランプ、超高圧水銀ランプ、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、LED等を用いて、通常30~3,000mJ/cm2(好ましくは100~1,500mJ/cm2)の紫外線を照射すればよい。
紫外線照射後は、必要に応じて加熱を行って硬化の完全化を図ることもできる。その際の加熱条件としては、例えば、温度120~200℃等があげられる。
When curing the active energy ray-curable resin composition of the present invention by ultraviolet irradiation, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical A lamp, an electrodeless discharge lamp, an LED, or the like may be used to irradiate ultraviolet rays at a dose of usually 30 to 3,000 mJ/cm 2 (preferably 100 to 1,500 mJ/cm 2 ).
After the ultraviolet irradiation, heating may be performed as necessary to complete curing. The heating conditions at that time include, for example, a temperature of 120 to 200°C.

塗工膜厚(硬化後の膜厚)としては、通常、紫外線硬化型の塗膜として光重合開始剤が均一に反応するべく光線透過を鑑みると、0.5~100μmであればよく、好ましくは0.7~30μmであり、より好ましくは1~10μmである。 The coating film thickness (film thickness after curing) is usually 0.5 to 100 μm, preferably 0.5 to 100 μm, in consideration of light transmission so that the photopolymerization initiator uniformly reacts as an ultraviolet curable coating film. is 0.7 to 30 μm, more preferably 1 to 10 μm.

活性エネルギー線硬化性樹脂組成物を用いて塗膜を形成した後、これを硬化する際に、上記樹脂組成物中に有機溶剤が残存している場合、有機溶剤を乾燥除去してから硬化することが好ましい。上記乾燥条件としては、好ましくは温度40~120℃で1~20分間、より好ましくは温度50~100℃で2~10分間である。 After forming a coating film using an active energy ray-curable resin composition, if an organic solvent remains in the resin composition when curing it, the organic solvent is removed by drying and then cured. is preferred. The drying conditions are preferably 40 to 120° C. for 1 to 20 minutes, more preferably 50 to 100° C. for 2 to 10 minutes.

本発明の活性エネルギー線硬化性樹脂組成物は、複雑な形状に成型してもクラックが生じないといった加工性、型に対する追従性、および伸度が高く、基材への密着性も高い。さらに、表面タック感がなく、耐薬品性(日焼け止めやハンドクリーム等に対する耐性)に優れることから、手指と接触する可能性のある成型品の形成材料として優れている。とりわけ、加飾成型用途に適している。
そして、これらの特性により、例えば、プラスチック部品等の表面に対して施工されるハードコート剤や、スマートフォン等の携帯電話,自動車用の内外装部品,サインポール,理容機器,アミューズメント機器等における表層部分の形成材料等に使用することができる。
INDUSTRIAL APPLICABILITY The active energy ray-curable resin composition of the present invention has high workability such that cracks do not occur even when molded into a complicated shape, conformability to molds, and high elongation, and also has high adhesion to substrates. Furthermore, since it has no surface tackiness and excellent chemical resistance (resistance to sunscreens, hand creams, etc.), it is excellent as a material for forming molded articles that may come into contact with fingers. It is especially suitable for decorative molding applications.
Due to these characteristics, for example, hard coating agents applied to the surface of plastic parts, etc., mobile phones such as smartphones, interior and exterior parts for automobiles, sign poles, hairdressing equipment, amusement equipment, etc. It can be used as a forming material for

以下、実施例をあげて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
なお、例中「部」、「%」とあるのは、重量基準を意味する。
また、重量平均分子量、数平均分子量および粘度の測定に関しては、前述の方法に従って測定した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
In addition, "parts" and "%" in the examples mean weight standards.
The weight average molecular weight, number average molecular weight and viscosity were measured according to the methods described above.

〔実施例1〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)250g(1.29モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}120.7g(1.16モル)、希釈溶剤として酢酸エチル500gを仕込み、50℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が1.2%以下となった時点で、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、3-メチル-1,5-ペンタメチレンジオール、水酸基価63mgKOH/g、数平均分子量1,780}114g(0.06モル)を加え、70℃で反応させた。残存イソシアネート基が0.6%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)15.0g(0.13モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A-1)の酢酸エチル50%溶液を得た(A-1の重量平均分子量:23,950、溶液粘度:13,300mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A-1)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Example 1]
In a flask equipped with an internal thermometer, a stirrer and a condenser, 250 g (1.29 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1)) {molecular weight: 104} 120.7 g (1.16 mol) and 500 g of ethyl acetate as a dilution solvent were charged and heated at 50°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate group is 1.2% or less, bifunctional polyester polyol (corresponding to (a2-2) of the present invention) {composition: adipic acid, isophthalic acid, 3-methyl-1,5-penta 114 g (0.06 mol) of methylene diol, a hydroxyl value of 63 mg KOH/g and a number average molecular weight of 1,780} were added and reacted at 70°C. When the residual isocyanate groups became 0.6% or less, it was cooled to 60° C., and 15.0 g (0.13 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention) and 2 as a polymerization inhibitor ,6-di-tert-butyl cresol 0.4 g was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated, and the urethane acrylate compound (A-1). (weight average molecular weight of A-1: 23,950, solution viscosity: 13,300 mPa·s/20° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) was further mixed with 100 parts of the urethane acrylate compound (A-1) in the above solution. , to obtain an active energy ray-curable resin composition.

〔実施例2〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)218g(1.12モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}87.5g(0.84モル)、希釈溶剤として酢酸エチル500gを仕込み、50℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が2.9%以下となった時点で、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、1,6-ヘキサメチレンジオール、水酸基価121mgKOH/g、数平均分子量927}173g(0.19モル)を加え、70℃で反応させた。残存イソシアネート基が0.8%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)21.7g(0.19モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A-2)の酢酸エチル50%溶液を得た(A-2の重量平均分子量:19,000、溶液粘度:8,000mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A-2)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Example 2]
In a flask equipped with an internal thermometer, a stirrer, and a condenser tube, 218 g (1.12 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1) of (a2-1)) {molecular weight: 104} 87.5 g (0.84 mol) and 500 g of ethyl acetate as a dilution solvent were charged and heated at 50°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate group is 2.9% or less, a bifunctional polyester polyol (corresponding to (a2-2) of the present invention) {composition: adipic acid, isophthalic acid, 1,6-hexamethylenediol, hydroxyl group 173 g (0.19 mol) having a molecular weight of 121 mg KOH/g and a number average molecular weight of 927} was added and reacted at 70°C. When the residual isocyanate groups became 0.8% or less, it was cooled to 60° C., and 21.7 g (0.19 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention) and 2 as a polymerization inhibitor. ,6-di-tert-butyl cresol 0.4 g was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated, and the urethane acrylate compound (A-2). (weight average molecular weight of A-2: 19,000, solution viscosity: 8,000 mPa·s/20° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) was further mixed with 100 parts of the urethane acrylate compound (A-2) in the above solution. , to obtain an active energy ray-curable resin composition.

〔実施例3〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)203g(1.04モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}87g(0.84モル)、希釈溶剤として酢酸エチル500gを仕込み、50℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が2.2%以下となった時点で、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、3-メチル-1,5-ペンタメチレンジオール、水酸基価63mgKOH/g、数平均分子量1,780}185g(0.10モル)を加え、70℃で反応させた。残存イソシアネート基が0.9%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)24.6g(0.21モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A-3)の酢酸エチル50%溶液を得た(A-3の重量平均分子量:15,700、溶液粘度:5,100mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A-3)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Example 3]
In a flask equipped with an internal thermometer, a stirrer, and a condenser, 203 g (1.04 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1)) {molecular weight: 104} 87 g (0.84 mol) and 500 g of ethyl acetate as a dilution solvent were charged and heated at 50°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate groups are 2.2% or less, a bifunctional polyester polyol (corresponding to (a2-2) of the present invention) {composition: adipic acid, isophthalic acid, 3-methyl-1,5-penta 185 g (0.10 mol) of methylene diol, a hydroxyl value of 63 mg KOH/g and a number average molecular weight of 1,780} were added and reacted at 70°C. When the residual isocyanate groups became 0.9% or less, it was cooled to 60° C., and 24.6 g (0.21 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention) and 2 as a polymerization inhibitor ,6-di-tert-butyl cresol 0.4 g was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated, and the urethane acrylate compound (A-3). (weight average molecular weight of A-3: 15,700, solution viscosity: 5,100 mPa·s/20° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) was further mixed with 100 parts of the urethane acrylate compound (A-3) in the above solution. , to obtain an active energy ray-curable resin composition.

〔実施例4〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)216g(1.11モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}96.7g(0.93モル)、希釈溶剤として酢酸エチル500gを仕込み、50℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が1.9%以下となった時点で、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、3-メチル-1,5-ペンタメチレンジオール、水酸基価63mgKOH/g、数平均分子量1,780}165g(0.09モル)を加え、70℃で反応させた。残存イソシアネート基が0.8%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)21.9g(0.19モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A-4)の酢酸エチル50%溶液を得た(A-4の重量平均分子量:17,700、溶液粘度:6,300mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A-4)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Example 4]
In a flask equipped with an internal thermometer, a stirrer, and a condenser, 216 g (1.11 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1)) {molecular weight: 104} 96.7 g (0.93 mol) and 500 g of ethyl acetate as a dilution solvent were charged and heated at 50°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate group is 1.9% or less, bifunctional polyester polyol (corresponding to (a2-2) of the present invention) {composition: adipic acid, isophthalic acid, 3-methyl-1,5-penta 165 g (0.09 mol) of methylene diol, a hydroxyl value of 63 mg KOH/g and a number average molecular weight of 1,780} were added and reacted at 70°C. When the residual isocyanate groups became 0.8% or less, it was cooled to 60° C., and 21.9 g (0.19 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention) and 2 as a polymerization inhibitor ,6-di-tert-butyl cresol 0.4 g was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated, and the urethane acrylate compound (A-4). (weight average molecular weight of A-4: 17,700, solution viscosity: 6,300 mPa·s/20° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) was further mixed with 100 parts of the urethane acrylate compound (A-4) in the above solution. , to obtain an active energy ray-curable resin composition.

〔実施例5〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)236g(1.21モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}111g(1.06モル)、希釈溶剤として酢酸ブチル500gを仕込み、50℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が1.5%以下となった時点で、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、3-メチル-1,5-ペンタメチレンジオール、水酸基価63mgKOH/g、数平均分子量1,780}136g(0.08モル)を加え、70℃で反応させた。残存イソシアネート基が0.7%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)17.6g(0.15モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A-5)の酢酸ブチル50%溶液を得た(A-5の重量平均分子量:22,400、溶液粘度:20,900mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A-5)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Example 5]
In a flask equipped with an internal thermometer, a stirrer, and a condenser, 236 g (1.21 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1)) {molecular weight: 104} 111 g (1.06 mol) and 500 g of butyl acetate as a dilution solvent were charged and heated at 50°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate group is 1.5% or less, bifunctional polyester polyol (corresponding to (a2-2) of the present invention) {composition: adipic acid, isophthalic acid, 3-methyl-1,5-penta 136 g (0.08 mol) of methylene diol, a hydroxyl value of 63 mg KOH/g and a number average molecular weight of 1,780} were added and reacted at 70°C. When the residual isocyanate groups became 0.7% or less, it was cooled to 60° C., and 17.6 g (0.15 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention) and 2 as a polymerization inhibitor ,6-di-tert-butyl cresol 0.4 g was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated, and the urethane acrylate compound (A-5). (weight average molecular weight of A-5: 22,400, solution viscosity: 20,900 mPa·s/20° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) was further mixed with 100 parts of the urethane acrylate compound (A-5) in the above solution. , to obtain an active energy ray-curable resin composition.

〔実施例6〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)233g(1.20モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}93.6g(0.90モル)、希釈溶剤として酢酸エチル500gを仕込み、50℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が3.1%以下となった時点で、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、1,6-ヘキサメチレンジオール、水酸基価121mgKOH/g、数平均分子量927}139g(0.15モル)を加え、70℃で反応させた。残存イソシアネート基が1.3%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)34.8g(0.30モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A-6)の酢酸エチル50%溶液を得た(A-6の重量平均分子量:10,940、溶液粘度:2,200mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A-6)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Example 6]
Into a flask equipped with an internal thermometer, a stirrer and a condenser, 233 g (1.20 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1)) {molecular weight: 104} 93.6 g (0.90 mol) and 500 g of ethyl acetate as a dilution solvent were charged and heated at 50°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate group is 3.1% or less, bifunctional polyester polyol (corresponding to (a2-2) of the present invention) {composition: adipic acid, isophthalic acid, 1,6-hexamethylenediol, hydroxyl group 139 g (0.15 mol) having a molecular weight of 121 mg KOH/g and a number average molecular weight of 927} was added and reacted at 70°C. When the residual isocyanate groups became 1.3% or less, it was cooled to 60° C., and 34.8 g (0.30 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention) and 2 as a polymerization inhibitor ,6-di-tert-butyl cresol 0.4 g was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated, and the urethane acrylate compound (A-6). (weight average molecular weight of A-6: 10,940, solution viscosity: 2,200 mPa·s/20° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) was further mixed with 100 parts of the urethane acrylate compound (A-6) in the above solution. , to obtain an active energy ray-curable resin composition.

〔比較例1〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)181g(0.93モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}48.7g(0.47モル)、希釈溶剤として酢酸ブチル300gを仕込み、50℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が7.4%以下となった時点で、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、3-メチル-1,5-ペンタメチレンジオール、水酸基価63mgKOH/g、数平均分子量1,780}415g(0.23モル)を加え、70℃で反応させた。残存イソシアネート基が2.1%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)55.1g(0.47モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A’-1)の酢酸ブチル30%溶液を得た(A’-1の重量平均分子量:13,200、溶液粘度:7,000mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A’-1)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 1]
181 g (0.93 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1)) {molecular weight: 104} 48.7 g (0.47 mol) and 300 g of butyl acetate as a dilution solvent were added and heated at 50°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate groups are 7.4% or less, a bifunctional polyester polyol (corresponding to (a2-2) of the present invention) {composition: adipic acid, isophthalic acid, 3-methyl-1,5-penta 415 g (0.23 mol) of methylene diol, a hydroxyl value of 63 mg KOH/g and a number average molecular weight of 1,780} were added and reacted at 70°C. When the residual isocyanate groups became 2.1% or less, it was cooled to 60° C., and 55.1 g (0.47 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention) and 2 as a polymerization inhibitor ,6-di-tert-butyl cresol 0.4 g was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated, and a urethane acrylate compound (A′-1 ) was obtained (weight average molecular weight of A′-1: 13,200, solution viscosity: 7,000 mPa·s/20° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) are mixed with 100 parts of the urethane acrylate compound (A'-1) in the above solution. to obtain an active energy ray-curable resin composition.

〔比較例2〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)227g(1.17モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}81.2g(0.78モル)、希釈溶剤として酢酸エチル300gを仕込み、50℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が5.4%以下となった時点で、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、3-メチル-1,5-ペンタメチレンジオール、水酸基価63mgKOH/g、数平均分子量1,780}346g(0.19モル)を加え、70℃で反応させた。残存イソシアネート基が1.7%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)45.9g(0.40モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A’-2)の酢酸エチル30%溶液を得た(A’-2の重量平均分子量:13,300、溶液粘度:9,000mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A’-2)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 2]
In a flask equipped with an internal thermometer, a stirrer, and a condenser, 227 g (1.17 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1) of (a2-1)) {molecular weight: 104} 81.2 g (0.78 mol) and 300 g of ethyl acetate as a dilution solvent were charged and heated at 50°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate groups are 5.4% or less, a bifunctional polyester polyol (corresponding to (a2-2) of the present invention) {composition: adipic acid, isophthalic acid, 3-methyl-1,5-penta 346 g (0.19 mol) of methylene diol, a hydroxyl value of 63 mg KOH/g and a number average molecular weight of 1,780} were added and reacted at 70°C. When the residual isocyanate groups became 1.7% or less, it was cooled to 60° C., and 45.9 g (0.40 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention) and 2 as a polymerization inhibitor ,6-di-tert-butyl cresol 0.4 g was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated, and a urethane acrylate compound (A′-2 ) was obtained (weight average molecular weight of A′-2: 13,300, solution viscosity: 9,000 mPa·s/20° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) are mixed with 100 parts of the urethane acrylate compound (A'-2) in the above solution. to obtain an active energy ray-curable resin composition.

〔比較例3〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)162g(0.84モル)、2官能のポリエステルポリオール(本発明の(a2-2)に該当){組成:アジピン酸、イソフタル酸、3-メチル-1,5-ペンタメチレンジオール、水酸基価63mgKOH/g、数平均分子量1,780}739g(0.42モル)を仕込み、反応触媒としてジブチル錫ジラウレート0.1gを加え60℃で反応させた。残存イソシアネート基が3.9%以下となった時点で、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)98.4g(0.85モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A’-3)を得た(A’-3の重量平均分子量:10,000、粘度:50,000mPa・s/60℃)。
上記溶液中のウレタンアクリレート系化合物(A’-3)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 3]
Into a flask equipped with an internal thermometer, a stirrer and a condenser, 162 g (0.84 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), a bifunctional polyester polyol ( Corresponding to (a2-2) of the present invention) {Composition: adipic acid, isophthalic acid, 3-methyl-1,5-pentamethylenediol, hydroxyl value 63 mg KOH/g, number average molecular weight 1,780} 739 g (0.42) mol) was charged, and 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 60°C. When the residual isocyanate groups became 3.9% or less, 98.4 g (0.85 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention), 2,6-di- 0.4 g of tert-butyl cresol was further charged and reacted at 60° C. When the residual isocyanate groups became 0.1% or less, the reaction was terminated to obtain a urethane acrylate compound (A′-3) ( A′-3 weight average molecular weight: 10,000, viscosity: 50,000 mPa·s/60° C.).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) are mixed with 100 parts of the urethane acrylate compound (A'-3) in the above solution. to obtain an active energy ray-curable resin composition.

〔比較例4〕
内温計、撹拌機、冷却管を備えたフラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン(本発明の(a1)に該当)418g(2.15モル)、ネオペンチルグリコール(本発明の(a2-1)に該当){分子量:104}179g(1.72モル)、希釈溶剤として酢酸エチル300gを仕込み、70℃で加温した。ネオペンチルグリコール(本発明の(a2-1)に該当)が溶解した後、反応触媒としてジブチル錫ジラウレート0.1gを加え、70℃で反応させた。残存イソシアネート基が4.0%以下となった時点で60℃まで冷却し、2-ヒドロキシエチルアクリレート(本発明の(a3)に該当)102g(0.88モル)、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.4gを更に仕込み、60℃で反応させ、残存イソシアネート基が0.1%以下となった時点で反応を終了し、ウレタンアクリレート系化合物(A’-4)の酢酸エチル30%溶液を得た(A’-4の重量平均分子量:3,900、溶液粘度:10,000mPa・s/20℃)。
上記溶液中のウレタンアクリレート系化合物(A’-4)100部に対し、さらに光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製、「オムニラッド184」))4部を混合し、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 4]
Into a flask equipped with an internal thermometer, a stirrer and a condenser, 418 g (2.15 mol) of 1,3-bis(isocyanatomethyl)cyclohexane (corresponding to (a1) of the present invention), neopentyl glycol ( (a2-1)) {molecular weight: 104} 179 g (1.72 mol) and 300 g of ethyl acetate as a dilution solvent were charged and heated at 70°C. After the neopentyl glycol (corresponding to (a2-1) of the present invention) was dissolved, 0.1 g of dibutyltin dilaurate was added as a reaction catalyst and reacted at 70°C. When the residual isocyanate groups became 4.0% or less, it was cooled to 60° C., and 102 g (0.88 mol) of 2-hydroxyethyl acrylate (corresponding to (a3) of the present invention), 2,6 as a polymerization inhibitor, - 0.4 g of di-tert-butyl cresol was further charged and reacted at 60 ° C. When the residual isocyanate group became 0.1% or less, the reaction was terminated, and the urethane acrylate compound (A'-4) A 30% solution of ethyl acetate was obtained (weight average molecular weight of A'-4: 3,900, solution viscosity: 10,000 mPa·s/20°C).
4 parts of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, "Omnilad 184")) are mixed with 100 parts of the urethane acrylate compound (A'-4) in the above solution. to obtain an active energy ray-curable resin composition.

このようにして得られた活性エネルギー線硬化性樹脂組成物を用い、下記の通りに評価用サンプルを作製し、そのサンプルに対し、伸度、弾性率、強度、表面タック評価、耐薬品性について、下記の通り評価した。その結果を後記の表1に示す。なお、後記の表1に、活性エネルギー線硬化性樹脂組成物の構成成分であるウレタンアクリレート系化合物(A-1~A-6、A'-1~A'-4)の材料組成(%)(本発明のa1,a2-1,a2-2,a3のそれぞれに該当する各材料の使用割合)、およびそのウレタンアクリレート系化合物の組成から上記ウレタンアクリレート系化合物中のウレタン結合[-NHC(=O)O-]の割合を前述の式(1)に従い算出した値(ウレタン結合濃度(mmol/g))を、併せて示す。 Using the active energy ray-curable resin composition thus obtained, a sample for evaluation was prepared as follows, and the sample was evaluated for elongation, elastic modulus, strength, surface tack evaluation, and chemical resistance. , was evaluated as follows. The results are shown in Table 1 below. In addition, in Table 1 below, the material composition (%) of the urethane acrylate compounds (A-1 to A-6, A'-1 to A'-4) that are the constituent components of the active energy ray-curable resin composition (Use ratio of each material corresponding to each of a1, a2-1, a2-2, and a3 of the present invention), and from the composition of the urethane acrylate compound, the urethane bond [-NHC (= The value (urethane bond concentration (mmol/g)) calculated according to the above formula (1) for the proportion of O)O-] is also shown.

[評価用サンプルの作製]
活性エネルギー線硬化性樹脂組成物を離型性ポリエチレンテレフタレート(PET)フィルム上にアプリケーターで塗布し、乾燥機にて60℃で30分間乾燥後、高圧水銀ランプ(80W)1灯を用いて、18cmの高さから3.4m/minのコンベア速度で2パスの紫外線照射(積算照射量800mJ/cm2)を行い、硬化塗膜(膜厚:100μm)を得た。ついで、この硬化塗膜をダンベルで打ち抜いて、幅15mm、長さ75mmとなるように短冊状サンプルを作製した後、PETフィルムから硬化塗膜を剥離し、評価用サンプル片とした。
[Preparation of sample for evaluation]
The active energy ray-curable resin composition was applied onto a release polyethylene terephthalate (PET) film with an applicator, dried in a dryer at 60°C for 30 minutes, and dried with a single high-pressure mercury lamp (80 W) to a thickness of 18 cm. Two passes of ultraviolet irradiation (cumulative irradiation amount: 800 mJ/cm 2 ) were carried out from a height of 3.4 m/min at a conveyor speed to obtain a cured coating film (thickness: 100 μm). Then, this cured coating film was punched out with a dumbbell to prepare a strip-shaped sample having a width of 15 mm and a length of 75 mm, and then the cured coating film was peeled off from the PET film to obtain a sample piece for evaluation.

<伸度>
温度23℃、湿度50%下で、引っ張り試験機「AG-X」(島津製作所社製)を用い、JIS K 7127に準拠して、サンプルの引っ張り試験を行った。引っ張り速度は10mm/minで、塗膜の破断点における伸度を測定し、下記の基準にて評価した。
◎・・・200%以上。
○・・・100%以上200%未満。
×・・・100%未満。
<Elongation>
The sample was subjected to a tensile test according to JIS K 7127 using a tensile tester "AG-X" (manufactured by Shimadzu Corporation) at a temperature of 23°C and a humidity of 50%. The tensile speed was 10 mm/min, and the elongation at the breaking point of the coating film was measured and evaluated according to the following criteria.
A: 200% or more.
○: 100% or more and less than 200%.
x: Less than 100%.

<弾性率>
温度23℃、湿度50%下で、引っ張り試験機「AG-X」(島津製作所社製)を用い、JIS K 7127に準拠して、サンプルの引っ張り試験を行った。引っ張り速度は10mm/minで、塗膜の伸張変形の変位1~2%の領域における弾性率を測定し、下記の基準にて評価した。
◎・・・20(N/mm2)以上。
○・・・10(N/mm2)以上20(N/mm2)未満。
×・・・10(N/mm2)未満。
<Elastic modulus>
The sample was subjected to a tensile test according to JIS K 7127 using a tensile tester "AG-X" (manufactured by Shimadzu Corporation) at a temperature of 23°C and a humidity of 50%. The tensile speed was 10 mm/min, and the elastic modulus was measured in the range of 1 to 2% of the displacement of extensional deformation of the coating film, and evaluated according to the following criteria.
A: 20 (N/mm 2 ) or more.
◯: 10 (N/mm 2 ) or more and less than 20 (N/mm 2 ).
×: Less than 10 (N/mm 2 ).

<強度>
温度23℃、湿度50%下で、引っ張り試験機「AG-X」(島津製作所社製)を用い、JIS K 7127に準拠して、サンプルの引っ張り試験を行った。引っ張り速度は10mm/minで、塗膜の破断点における強度を測定し、下記の基準にて評価した。
◎・・・15(N/mm2)以上。
○・・・5(N/mm2)以上15(N/mm2)未満。
×・・・5(N/mm2)未満。
<Strength>
The sample was subjected to a tensile test according to JIS K 7127 using a tensile tester "AG-X" (manufactured by Shimadzu Corporation) at a temperature of 23°C and a humidity of 50%. The tensile speed was 10 mm/min, and the strength at the breaking point of the coating film was measured and evaluated according to the following criteria.
A: 15 (N/mm 2 ) or more.
○: 5 (N/mm 2 ) or more and less than 15 (N/mm 2 ).
×: Less than 5 (N/mm 2 ).

<表面タック評価>
サンプルの表面のタックの有無を、下記の基準にて指触により評価した。
◎・・・タックが全く感じられない。
○・・・指を強く押し付けると、わずかにタックが感じられる。
×・・・指を押し付けるとタックが感じられる。
<Surface tack evaluation>
The presence or absence of tack on the surface of the sample was evaluated by finger touch according to the following criteria.
A: No tack is felt at all.
◯: Slight tackiness is felt when a finger is strongly pressed.
x: A tack is felt when a finger is pressed.

<耐薬品性(i)>
サンプルの表面に、エタノールを含ませたウェス(日本製紙クレシア社製、「キムワイプ」)を、500gの重量で押し当て、その状態のまま10往復させた。その後、下記の基準にて、サンプル表面の状態を目視評価した。
○・・・サンプル表面に変化がない。
△・・・サンプル表面がわずかに白濁または傷がついている。
×・・・サンプル表面が白濁している。
<Chemical resistance (i)>
A waste cloth (“Kimwipe” manufactured by Nippon Paper Crecia Co., Ltd.) impregnated with ethanol was pressed against the surface of the sample with a weight of 500 g, and the sample was reciprocated 10 times in this state. After that, the condition of the sample surface was visually evaluated according to the following criteria.
Good: No change on the sample surface.
Δ: The surface of the sample is slightly opaque or scratched.
x: The surface of the sample is cloudy.

<耐薬品性(ii)>
サンプルの表面に、日焼け止め(ジョンソン・エンド・ジョンソン社製、「ニュートロジーナSPF45」)を0.02g/cm2塗布し、40℃で1時間放置後に拭取り、サンプル表面の状態を目視評価した。
○・・・サンプル表面に変化がない。
△・・・塗膜表面がわずかに白濁または傷がついている。
×・・・塗膜表面が白濁している。
<Chemical resistance (ii)>
A sunscreen (“Neutrogena SPF45” manufactured by Johnson & Johnson) was applied to the surface of the sample at 0.02 g/cm 2 , left at 40° C. for 1 hour, wiped off, and the condition of the sample surface was visually evaluated.
Good: No change on the sample surface.
Δ: The surface of the coating film is slightly opaque or scratched.
x: The coating film surface is cloudy.

Figure 0007110754000001
Figure 0007110754000001

上記の結果から、全ての実施例では、伸度,弾性率,強度がともに高く、さらに、表面タック評価や耐薬品性において高い評価が得られた。 From the above results, in all the examples, the elongation, elastic modulus and strength were all high, and furthermore, high evaluations were obtained in terms of surface tack evaluation and chemical resistance.

これに対し、比較例1~3の活性エネルギー線硬化性樹脂組成物は、そのウレタンアクリレート系化合物のウレタン結合濃度が低く、上記樹脂組成物の硬化体の弾性率への影響がみられ、特に表面タック評価や、日焼け止めに対する耐薬品性に劣る結果となった。また、比較例4の活性エネルギー線硬化性樹脂組成物からなる硬化塗膜は、伸度や、エタノールへの耐薬品性に劣る結果となった。 In contrast, in the active energy ray-curable resin compositions of Comparative Examples 1 to 3, the urethane bond concentration of the urethane acrylate compound is low, and the elastic modulus of the cured body of the resin composition is affected. The result was inferior in surface tack evaluation and chemical resistance to sunscreen. In addition, the cured coating film composed of the active energy ray-curable resin composition of Comparative Example 4 was inferior in elongation and chemical resistance to ethanol.

本発明の活性エネルギー線硬化性樹脂組成物は、複雑な形状に成型してもクラックが生じないといった加工性、型に対する追従性、および伸度が高く、基材への密着性も高い。さらに、表面タック感がなく、耐薬品性(日焼け止めやハンドクリーム等に対する耐性)に優れることから、手指と接触する可能性のある成型品の形成材料として優れている。とりわけ、加飾成型用途に適している。
そして、これらの特性により、例えば、プラスチック部品等の表面に対して施工されるハードコート剤や、スマートフォン等の携帯電話,自動車用の内外装部品,サインポール,理容機器,アミューズメント機器等における表層部分の形成材料等に使用することができる。また、上記特性を生かした、その他の用途に用いることもできる。
INDUSTRIAL APPLICABILITY The active energy ray-curable resin composition of the present invention has high workability such that cracks do not occur even when molded into a complicated shape, conformability to molds, and high elongation, and also has high adhesion to substrates. Furthermore, since it has no surface tackiness and excellent chemical resistance (resistance to sunscreens, hand creams, etc.), it is excellent as a material for forming molded articles that may come into contact with fingers. It is especially suitable for decorative molding applications.
Due to these characteristics, for example, hard coating agents applied to the surface of plastic parts, etc., mobile phones such as smartphones, interior and exterior parts for automobiles, sign poles, hairdressing equipment, amusement equipment, etc. It can be used as a forming material for In addition, it can be used for other applications that take advantage of the above characteristics.

Claims (8)

脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の反応物であるウレタン(メタ)アクリレート(A)を含有する活性エネルギー線硬化性樹脂組成物であって、
上記ポリオール(a2)が、数平均分子量60~300の低分子量ポリオール(a2-1)および数平均分子量500~20,000の高分子量ポリエステル系ポリオール(a2-2)を含み、
上記ウレタン(メタ)アクリレート(A)の構成材料である、脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記水酸基含有(メタ)アクリレート(a3)の割合が1~15重量%であり、
上記ウレタン(メタ)アクリレート(A)のウレタン結合濃度が3.5mmol/g以上であることを特徴とする活性エネルギー線硬化性樹脂組成物。
An active energy ray-curable resin composition containing a urethane (meth)acrylate (A) that is a reaction product of an alicyclic structure-containing polyisocyanate (a1), a polyol (a2), and a hydroxyl group-containing (meth)acrylate (a3) There is
The polyol (a2) contains a low molecular weight polyol (a2-1) having a number average molecular weight of 60 to 300 and a high molecular weight polyester polyol (a2-2) having a number average molecular weight of 500 to 20,000,
The hydroxyl group-containing (meth) ) the proportion of acrylate (a3) is 1 to 15% by weight,
An active energy ray-curable resin composition, wherein the urethane (meth)acrylate (A) has a urethane bond concentration of 3.5 mmol/g or more.
上記脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記脂環構造含有ポリイソシアネート(a1)の割合が30重量%以上であることを特徴とする請求項1記載の活性エネルギー線硬化性樹脂組成物。 The ratio of the alicyclic structure-containing polyisocyanate (a1) to the total of the alicyclic structure-containing polyisocyanate (a1), the polyol (a2), and the hydroxyl group-containing (meth)acrylate (a3) is 30% by weight or more. The active energy ray-curable resin composition according to claim 1, characterized by: 上記脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記脂環構造含有ポリイソシアネート(a1)と低分子量ポリオール(a2-1)の合計の割合が40重量%以上であることを特徴とする請求項1または2記載の活性エネルギー線硬化性樹脂組成物。 The alicyclic structure-containing polyisocyanate (a1) and the low molecular weight polyol (a2-1) are The active energy ray-curable resin composition according to claim 1 or 2, wherein the total ratio of is 40% by weight or more. 上記脂環構造含有ポリイソシアネート(a1),ポリオール(a2),および水酸基含有(メタ)アクリレート(a3)の合計に対し、上記脂環構造含有ポリイソシアネート(a1)の割合が30~60重量%であり、上記低分子量ポリオール(a2-1)の割合が10~40重量%であり、上記高分子量ポリエステル系ポリオール(a2-2)の割合が10~50重量%であり、上記水酸基含有(メタ)アクリレート(a3)の割合が1~15重量%であることを特徴とする請求項1~3のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The ratio of the alicyclic structure-containing polyisocyanate (a1) to the total of the alicyclic structure-containing polyisocyanate (a1), the polyol (a2), and the hydroxyl group-containing (meth)acrylate (a3) is 30 to 60% by weight. There, the proportion of the low molecular weight polyol (a2-1) is 10 to 40% by weight, the proportion of the high molecular weight polyester polyol (a2-2) is 10 to 50% by weight, and the hydroxyl group-containing (meth) 4. The active energy ray-curable resin composition according to any one of claims 1 to 3, wherein the proportion of acrylate (a3) is 1 to 15% by weight. 上記低分子量ポリオール(a2-1)が、分岐構造を有していることを特徴とする請求項1~4のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 5. The active energy ray-curable resin composition according to any one of claims 1 to 4, wherein the low molecular weight polyol (a2-1) has a branched structure. 上記水酸基含有(メタ)アクリレート(a3)が、分子中に(メタ)アクリロイル基を1個有する(メタ)アクリレートであることを特徴とする請求項1~5のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The activation energy according to any one of claims 1 to 5, wherein the hydroxyl group-containing (meth)acrylate (a3) is a (meth)acrylate having one (meth)acryloyl group in the molecule. A ray-curing resin composition. 請求項1~6のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物を含有してなることを特徴とするコーティング剤。 A coating agent comprising the active energy ray-curable resin composition according to any one of claims 1 to 6. 請求項1~6のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物の硬化体からなることを特徴とするシート。 A sheet comprising a cured body of the active energy ray-curable resin composition according to any one of claims 1 to 6.
JP2018118105A 2018-06-21 2018-06-21 Active energy ray-curable resin composition, coating agent using the same, and sheet Active JP7110754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018118105A JP7110754B2 (en) 2018-06-21 2018-06-21 Active energy ray-curable resin composition, coating agent using the same, and sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018118105A JP7110754B2 (en) 2018-06-21 2018-06-21 Active energy ray-curable resin composition, coating agent using the same, and sheet

Publications (2)

Publication Number Publication Date
JP2019218500A JP2019218500A (en) 2019-12-26
JP7110754B2 true JP7110754B2 (en) 2022-08-02

Family

ID=69096222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018118105A Active JP7110754B2 (en) 2018-06-21 2018-06-21 Active energy ray-curable resin composition, coating agent using the same, and sheet

Country Status (1)

Country Link
JP (1) JP7110754B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484090B2 (en) * 2018-06-21 2024-05-16 三菱ケミカル株式会社 Active energy ray-curable resin composition, and coating agent and sheet using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222451A (en) 2009-03-23 2010-10-07 Mitsubishi Chemicals Corp Radiation-curable composition, cured product using the same, and laminate
JP2010222568A (en) 2009-02-24 2010-10-07 Mitsubishi Chemicals Corp Active energy ray-curing resin composition, cured film and laminated body
JP2013133367A (en) 2011-12-26 2013-07-08 Toagosei Co Ltd Active energy ray-curable composition for forming optical film or sheet and the optical film or sheet
WO2014156581A1 (en) 2013-03-27 2014-10-02 第一工業製薬株式会社 Energy ray-curable resin composition
JP2017048301A (en) 2015-09-01 2017-03-09 ダイセル・オルネクス株式会社 Urethane (meth)acrylate, active energy ray-curable composition and cured product thereof
JP2019157091A (en) 2018-03-16 2019-09-19 三菱ケミカル株式会社 Active energy ray-curable resin composition, and coating agent and sheet using the same
JP2020002348A (en) 2018-06-21 2020-01-09 三菱ケミカル株式会社 Active energy ray curable resin composition, coating agent using the same, and sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143912A (en) * 1989-10-27 1991-06-19 Sanyo Chem Ind Ltd Water-based baking coating composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222568A (en) 2009-02-24 2010-10-07 Mitsubishi Chemicals Corp Active energy ray-curing resin composition, cured film and laminated body
JP2010222451A (en) 2009-03-23 2010-10-07 Mitsubishi Chemicals Corp Radiation-curable composition, cured product using the same, and laminate
JP2013133367A (en) 2011-12-26 2013-07-08 Toagosei Co Ltd Active energy ray-curable composition for forming optical film or sheet and the optical film or sheet
WO2014156581A1 (en) 2013-03-27 2014-10-02 第一工業製薬株式会社 Energy ray-curable resin composition
JP2017048301A (en) 2015-09-01 2017-03-09 ダイセル・オルネクス株式会社 Urethane (meth)acrylate, active energy ray-curable composition and cured product thereof
JP2019157091A (en) 2018-03-16 2019-09-19 三菱ケミカル株式会社 Active energy ray-curable resin composition, and coating agent and sheet using the same
JP2020002348A (en) 2018-06-21 2020-01-09 三菱ケミカル株式会社 Active energy ray curable resin composition, coating agent using the same, and sheet

Also Published As

Publication number Publication date
JP2019218500A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP4003800B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
KR101869579B1 (en) Active-energy-curable resin compositon and coating agent
KR100864349B1 (en) Actinic Radiation Curable Resin Composition For Film Protection Layer and Film and Optical Sheet Made by Using the Same
JP4001180B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
JP5665613B2 (en) Method for coating metal substrate
JP6798104B2 (en) Urethane (meth) acrylate manufacturing method
JP2014189566A (en) Active energy ray-curable composition for cyclic olefin resin and cyclic olefin resin film using the composition
JP2016194061A (en) Active energy ray-curable resin composition and method for producing the same, coating agent using the same, and sheet
JP6904047B2 (en) An active energy ray-curable adhesive composition and an adhesive composition for an acrylic resin member using the same.
JP7073814B2 (en) An active energy ray-curable resin composition, a coating agent using the same, and a sheet.
JP2016097507A (en) Laminate, rigid body, and method for manufacturing them
JP2019085558A (en) Active energy ray curable resin composition and coating agent
JP7110754B2 (en) Active energy ray-curable resin composition, coating agent using the same, and sheet
JP2016179966A (en) Photo-curing composition for nail makeup and nail cosmetics
JP6578692B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP7073815B2 (en) An active energy ray-curable resin composition, a coating agent using the same, and a sheet.
JP7484090B2 (en) Active energy ray-curable resin composition, and coating agent and sheet using the same
JP6596898B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP7073816B2 (en) An active energy ray-curable resin composition, a coating agent using the same, and a sheet.
JP7314630B2 (en) Active energy ray-curable resin composition, coating agent using the same, and sheet
TW201802132A (en) Active energy ray curable composition
JP5686228B1 (en) Active energy ray-curable composition, cured film thereof, and article having the cured film
JP2016124893A (en) Active energy ray-curable composition and coating-agent composition as well as novel cyclic urethane (meth)acrylate
JP7275748B2 (en) Active energy ray-curable resin composition and coating agent containing the same
JP7298112B2 (en) RESIN MOLDED PRODUCT AND RESIN MOLDED PRODUCTION METHOD

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R151 Written notification of patent or utility model registration

Ref document number: 7110754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151