JP4001180B2 - Active energy ray-curable resin composition for film protective layer and film using the same - Google Patents

Active energy ray-curable resin composition for film protective layer and film using the same Download PDF

Info

Publication number
JP4001180B2
JP4001180B2 JP2006275140A JP2006275140A JP4001180B2 JP 4001180 B2 JP4001180 B2 JP 4001180B2 JP 2006275140 A JP2006275140 A JP 2006275140A JP 2006275140 A JP2006275140 A JP 2006275140A JP 4001180 B2 JP4001180 B2 JP 4001180B2
Authority
JP
Japan
Prior art keywords
film
resin composition
active energy
energy ray
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006275140A
Other languages
Japanese (ja)
Other versions
JP2007131837A (en
Inventor
直登 城所
展行 小池
茂年 西澤
俊之 清成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2006275140A priority Critical patent/JP4001180B2/en
Publication of JP2007131837A publication Critical patent/JP2007131837A/en
Application granted granted Critical
Publication of JP4001180B2 publication Critical patent/JP4001180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、フィルム、シート等の基材の保護層として用いることができ、高硬度の硬化被膜を形成するフィルム用活性エネルギー線硬化型樹脂組成物に関する。さらには、該組成物の硬化被膜からなる保護層を有するフィルム及び該組成物の硬化物からなる光学シートに関する。   The present invention relates to an active energy ray-curable resin composition for a film that can be used as a protective layer for a substrate such as a film or sheet and forms a hardened cured film. Furthermore, the present invention relates to a film having a protective layer made of a cured film of the composition and an optical sheet made of a cured product of the composition.

物品は、その物品同士の接触、他の物品と接触、あるいは置かれる環境の影響を受け、傷付いたり、変形したりする外的な変化やその物品を構成する材料が劣化する内的な変化を受ける。このような変化を防ぐために、物品の表面に保護層を設けたり、物品そのものを強化したりすることがなされている。   An article is affected by the contact between the articles, contact with other articles, or the environment in which the article is placed, and external changes that are damaged or deformed or internal changes that degrade the materials that make up the article Receive. In order to prevent such a change, a protective layer is provided on the surface of the article, or the article itself is strengthened.

プラスチックは、加工性が良い、軽量、安価等の理由で、各種分野で使用されている。しかし、加工性が良い反面、柔らかく、表面に傷が付き易いなどの欠点がある。この欠点を改良するために、ハードコート材をコーティングし、表面に保護層を設けることが一般的である。このハードコート材として、シリコン系樹脂組成物、アクリル系樹脂組成物、メラミン系樹脂組成物等の熱硬化型樹脂組成物が用いられてきたが、硬化時間が長い、熱に弱いプラスチックフィルム基材には適用できない等の欠点があった。   Plastics are used in various fields for reasons such as good processability, light weight, and low cost. However, the processability is good, but there are drawbacks such as softness and easy scratching on the surface. In order to improve this drawback, it is common to coat a hard coat material and provide a protective layer on the surface. Thermosetting resin compositions such as silicon-based resin compositions, acrylic resin compositions, and melamine-based resin compositions have been used as the hard coat material. However, there were drawbacks such as inapplicable.

近年、活性エネルギー線硬化型樹脂組成物が、(1)速硬化性であること、(2)エネルギーコストが低いこと、(3)低温で硬化が可能であること等の利点を有するため、ハードコート材として、急速に採用されている。とりわけ、紫外線などの活性エネルギー線の照射により、直ちに硬化し硬い被膜を形成するため加工処理スピードが速く、硬さ、耐擦傷性、耐汚染性等に優れ、連続加工処理ができるため、フィルム用ハードコート材としては主流になっている。   In recent years, the active energy ray-curable resin composition has advantages such as (1) fast curing, (2) low energy cost, and (3) curing at low temperature. It has been adopted rapidly as a coating material. Especially, it is hardened immediately by irradiation of active energy rays such as ultraviolet rays, so it forms a hard film, so the processing speed is fast, it has excellent hardness, scratch resistance, stain resistance, etc. It has become mainstream as a hard coat material.

ハードコート材を保護層にしたフィルムを表面に設けた液晶ディスプレイ、プラズマディスプレイ、タッチパネルディスプレイ等の表示体が、急速に普及している。とりわけ、液晶ディスプレイは大型化し、かつ不特定多数の消費者に使用されるようになったため、それに用いるハードコート材には、より高い硬度、耐擦傷性、硬化時のフィルムのカールが小さいものが要求されている。さらに最近では、ハードコート層を有するフィルムや成形体を所定の形状に裁断する場合に、切断面に欠け、割れ等が発生して不良品とならないように、ハードコート材には良好な裁断性が求められている。   Display bodies such as a liquid crystal display, a plasma display, and a touch panel display, which are provided with a film having a hard coat material as a protective layer on the surface, are rapidly spreading. In particular, liquid crystal displays have become larger and are used by an unspecified number of consumers, so hard coat materials used for them have higher hardness, scratch resistance, and curling of the film when cured. It is requested. More recently, when a film or molded body having a hard coat layer is cut into a predetermined shape, the hard coat material has good cutting properties so that the cut surface will not be chipped or cracked, resulting in a defective product. Is required.

物品に保護層を設ける方法として、フィルム状の転写材上に積層した保護層を、転写後に成形体の最外層になるように転写する方法がある。家電、自動車等の分野の物品にこの転写法が採用されており、冷蔵庫の外板、携帯電話の筐体等にも使用されている。この転写材上に積層した保護層にも活性エネルギー線硬化型樹脂組成物を用いることができるが、不特定多数の消費者が使用するため、より高い硬度、耐擦傷性が要求され、かつ転写の際の作業性を高めるため、転写材のカールが小さいことが要求されている。   As a method for providing a protective layer on an article, there is a method in which a protective layer laminated on a film-like transfer material is transferred so that it becomes the outermost layer of a molded article after transfer. This transfer method is used for articles in the fields of home appliances, automobiles, etc., and is also used for outer plates of refrigerators, mobile phone casings, and the like. The active energy ray-curable resin composition can also be used for the protective layer laminated on the transfer material, but since it is used by an unspecified number of consumers, higher hardness and scratch resistance are required, and transfer In order to improve the workability at the time of transfer, it is required that the transfer material has a small curl.

また、活性エネルギー線樹脂組成物は、紫外線などの活性エネルギー線の照射により、直ちに硬化し硬い被膜を形成するため、活性エネルギー線樹脂組成物を型に接触された状態で硬化させると、その型を転写でき、特殊な形状を有する成形体を製造できる。例えば、フレネルレンズシート等の光学シートは、この方法で製造されている。この製法においても、より高い硬度、耐擦傷性が要求され、かつ作業性を高めるため、硬化被膜のカールが小さい活性エネルギー線硬化型樹脂組成物が要求されている。   Moreover, since the active energy ray resin composition is immediately cured by irradiation with active energy rays such as ultraviolet rays to form a hard film, when the active energy ray resin composition is cured while being in contact with the mold, the mold Can be transferred, and a molded body having a special shape can be produced. For example, an optical sheet such as a Fresnel lens sheet is manufactured by this method. Also in this production method, an active energy ray curable resin composition having a small curl of the cured film is required for higher hardness and scratch resistance and to improve workability.

このような活性エネルギー線硬化型樹脂組成物として、分子中に少なくとも2個以上の(メタ)アクリロイル基と水酸基とを有する放射線硬化型多官能(メタ)アクリレートとポリイソシアネートとを反応させた多官能ウレタンアクリレートを含有する放射線硬化型樹脂組成物が提案されている(例えば、特許文献1参照。)。しかしながら、この放射線硬化型樹脂組成物の具体例として開示されているペンタエリスリトールトリアクリレートとイソホロンジイソシアネートとを付加反応させた多官能ウレタンアクリレートは、硬化収縮が大きいため硬化後のカールが大きく、フィルム基材との密着性が不十分であり、裁断性が悪いため不良品率が高いという問題があった。   As such an active energy ray-curable resin composition, a polyfunctional product obtained by reacting a radiation curable polyfunctional (meth) acrylate having at least two (meth) acryloyl groups and a hydroxyl group in the molecule with a polyisocyanate. A radiation curable resin composition containing urethane acrylate has been proposed (for example, see Patent Document 1). However, the polyfunctional urethane acrylate obtained by addition reaction of pentaerythritol triacrylate and isophorone diisocyanate, which is disclosed as a specific example of this radiation curable resin composition, has a large curling shrinkage due to a large curing shrinkage. There was a problem that the defective product rate was high due to insufficient adhesion to the material and poor cutting properties.

また、(メタ)アクリロイル基と水酸基とを分子内に有する化合物と、1,4−シクロヘキシルジイソシアネートとを反応させたウレタンアクリレートを含有する活性エネルギー線硬化型樹脂組成物が提案されている(例えば、特許文献2参照。)。この活性エネルギー線硬化型樹脂組成物は、上記特許文献1に記載の組成物と同様に硬化収縮が大きいため硬化後のカールが大きく、フィルム基材との密着性が不十分であり、裁断性が悪いため不良品率が高いという問題があった。
特開2001−113648号公報 特開2002−338628号公報
Moreover, an active energy ray-curable resin composition containing a urethane acrylate obtained by reacting a compound having a (meth) acryloyl group and a hydroxyl group in the molecule with 1,4-cyclohexyl diisocyanate has been proposed (for example, (See Patent Document 2). Since this active energy ray-curable resin composition has a large cure shrinkage as in the composition described in Patent Document 1, the curl after curing is large, the adhesion to the film substrate is insufficient, and the cutting property is low. However, there was a problem that the defective product rate was high.
JP 2001-113648 A JP 2002-338628 A

本発明が解決しようとする課題は、活性エネルギー線硬化型樹脂組成物をフィルム、シート等の基材に塗布後、紫外線などの活性エネルギー線の照射により硬化した際に発生するカールが小さく、高硬度、高耐擦傷性であり、さらに裁断時に欠け、割れのない硬化被膜を得ることができるフィルム保護層用活性エネルギー線硬化型樹脂組成物、その硬化被膜からなる保護層を有するフィルム、及び該組成物の硬化物からなる光学シートを提供することである。   The problem to be solved by the present invention is that curling generated when an active energy ray-curable resin composition is applied to a substrate such as a film or sheet and then cured by irradiation with active energy rays such as ultraviolet rays is small and high. An active energy ray-curable resin composition for a film protective layer that has a hardness, high scratch resistance, and can obtain a cured film that is not cracked or cracked during cutting, a film having a protective layer comprising the cured film, and the film It is to provide an optical sheet comprising a cured product of the composition.

本発明者らは、鋭意研究した結果、ノルボルナンジイソシアネートと、ビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレートとの付加反応物であるウレタンアクリレート、1分子中に3個以上の(メタ)アクリロイル基を有する多官能アクリレート及び/又は側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系重合体に、α,β−不飽和カルボン酸を反応させた(メタ)アクリロイル基を有する重合体を含有する活性エネルギー線硬化型樹脂組成物を用いると、上記の課題が解決されることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies and as a result, and norbornane diisocyanate, bi scan (2- (meth) acryloyloxyethyl) urethane acrylate is an addition reaction product of hydroxyethyl isocyanurate wetting over preparative, 3 or more in one molecule It has a (meth) acryloyl group obtained by reacting a polyfunctional acrylate having a (meth) acryloyl group and / or a glycidyl (meth) acrylate polymer having an epoxy group in the side chain with an α, β-unsaturated carboxylic acid. When the active energy ray-curable resin composition containing a polymer is used, the above-described problems are solved, and the present invention has been completed.

すなわち、本発明は、ノルボルナンジイソシアネート(a−1)と、ビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート(a−2)との付加反応物であるウレタンアクリレート(A)、1分子中に3個以上の(メタ)アクリロイル基を有する多官能アクリレート(B)及び/又は側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系重合体に、α,β−不飽和カルボン酸を反応させた(メタ)アクリロイル基を有する重合体(C)を含有することを特徴とするフィルム保護層用活性エネルギー線硬化型樹脂組成物及びその硬化被膜からなる保護層を有するフィルムを提供するものである。 That is, the present invention includes a norbornane diisocyanate (a-1), bi scan (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate wetting over preparative (a-2) an addition reaction in which a urethane acrylate (A) Α, β-unsaturated carboxylic acid to polyfunctional acrylate (B) having 3 or more (meth) acryloyl groups in one molecule and / or glycidyl (meth) acrylate polymer having an epoxy group in the side chain providing a fill arm having a protective layer made of-reacted (meth) polymer (C) characterized as a film protective layer for the active energy ray curable resin composition and a cured film that contains an acryloyl group and To do.

本発明の活性エネルギー線硬化型樹脂組成物は、フィルム、シート等の基材に塗布後、紫外線などの活性エネルギー線の照射により硬化した際に、硬化収縮が小さく、かつ高硬度、高耐擦傷性の硬化被膜を得ることができるので、フィルム用保護層として有用である。また、硬化時に発生するカールが小さいことから大型のフィルムにも適用することができる。さらに、本発明の活性エネルギー線硬化型樹脂組成物の硬化被膜は、フィルムとともに所定の形状・大きさに裁断する際に、硬化被膜に割れや欠けを生じないので、不良品率を低減できる。したがって、本発明の活性エネルギー線硬化型樹脂組成物は、液晶ディスプレイ等の大画面ディスプレイの光学フィルム用保護層の材料として好適である。   The active energy ray-curable resin composition of the present invention is small in curing shrinkage and has high hardness and high scratch resistance when cured by irradiation with active energy rays such as ultraviolet rays after being applied to a substrate such as a film or sheet. This is useful as a protective layer for a film. Moreover, since the curl which generate | occur | produces at the time of hardening is small, it can apply also to a large sized film. Furthermore, when the cured film of the active energy ray-curable resin composition of the present invention is cut into a predetermined shape and size together with the film, the cured film is not cracked or chipped, so the defective product rate can be reduced. Therefore, the active energy ray-curable resin composition of the present invention is suitable as a material for a protective layer for an optical film of a large screen display such as a liquid crystal display.

また、本発明の活性エネルギー線硬化型樹脂組成物は、家電製品、携帯電話の筐体等のプラスチック成形体の保護層としても用いることができる。この場合、保護層はフィルム状の転写材として作製した後、プラスチック成形体の最外層となるよう転写する転写法により形成する方法にも適用できる。   The active energy ray-curable resin composition of the present invention can also be used as a protective layer for plastic molded articles such as home appliances and mobile phone casings. In this case, the protective layer can also be applied to a method of forming by a transfer method in which the protective layer is prepared as a film-like transfer material and then transferred to become the outermost layer of the plastic molded body.

以下に本発明を詳細に説明する。本発明で用いるウレタンアクリレート(A)は、ノルボルナンジイソシアネート(a−1)と、ビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート(a−2)とを付加反応させた化合物である。このウレタンアクリレート(A)を用いることで、基材に塗布後、紫外線などの活性エネルギー線の照射により硬化した際に発生するカールが小さく、高硬度の硬化被膜が得られ、該硬化被膜を有するフィルムや成形体を切断、裁断する際に発生する割れや欠けが抑制できる。なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」及び「(メタ)アクリル酸」についても同様である。 The present invention is described in detail below. Urethane acrylate (A) used in the present invention, the norbornane diisocyanate (a-1), bi scan (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate wetting over preparative (a-2) and a compound obtained by addition reaction It is . By using this urethane acrylate (A), after application to a substrate, small curl that occurs when cured by irradiation with active energy rays such as ultraviolet rays, the cured film of high hardness is obtained, the cured film It is possible to suppress cracks and chippings that occur when cutting and cutting the film or molded body . Contact name in the present invention, the term "(meth) acrylate" refers to either or both of methacrylates and acrylates also applies "(meth) acryloyl group" and "(meth) acrylic acid".

前記ウレタンアクリレート(A)は、ノルボルナンジイソシアネート(a−1)と、ビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート(a−2)との付加反応により得られる。この付加反応で用いるノルボルナンジイソシアネート(a−1)中のイソシアネート1当量に対するビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート(a−2)の割合は、水酸基当量として、通常、0.1〜50の範囲であり、好ましくは、0.1〜10、特に好ましくは、0.9〜1.2である。また、ノルボルナンジイソシアネート(a−1)とビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート(a−2)との反応温度は、30〜150℃、好ましくは、50〜100℃の範囲である。なお、反応の終点は、例えば、イソシアネート基を示す2,250cm−1の赤外線吸収スペクトルの消失や、JIS K 7301−1995に記載の方法でイソシアネート基含有率を求めることで確認することができる。 The urethane acrylate (A) is obtained by an addition reaction between norbornane diisocyanate (a-1) and bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate (a-2). The ratio of bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate (a-2) to 1 equivalent of isocyanate in norbornane diisocyanate (a-1) used in this addition reaction is usually 0. It is the range of 1-50, Preferably, it is 0.1-10, Most preferably, it is 0.9-1.2. The reaction temperature between norbornane diisocyanate (a-1) and bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate (a-2) is in the range of 30 to 150 ° C, preferably 50 to 100 ° C. It is. In addition, the end point of reaction can be confirmed by calculating | requiring an isocyanate group content rate by the loss | disappearance of the infrared absorption spectrum of 2,250cm < -1 > which shows an isocyanate group, or the method as described in JISK7301-1995, for example.

さらに、前記付加反応の反応時間を短くする目的で、触媒を用いることができる。このような触媒としては、例えば、塩基性触媒(ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン、アンモニア等のアミン類、トリブチルホスフィン、トリフェニルフォシフィン等のホスフィン類)や酸性触媒(ナフテン酸銅、ナフテン酸コバルト、ナフテン酸亜鉛、トリブトキシアルミニウム、テトラブトキシトリチタニウム、テトラブトキシジルコニウム等の金属アルコキシド類、塩化アルミニウム等のルイス酸類、ジブチルスズラウレート、ジブチルスズアセテート等のスズ化合物)が挙げられる。これらの中でも、酸性触媒が好ましく、さらにスズ化合物が最も好ましい。触媒は、ノルボルナンジイソシアネート(a−1)100質量部に対し、通常、0.1〜1質量部加える。   Furthermore, a catalyst can be used for the purpose of shortening the reaction time of the addition reaction. Examples of such catalysts include basic catalysts (amines such as pyridine, pyrrole, triethylamine, diethylamine, dibutylamine and ammonia, phosphines such as tributylphosphine and triphenylphosphifin) and acidic catalysts (copper naphthenate). And metal alkoxides such as cobalt naphthenate, zinc naphthenate, tributoxyaluminum, tetrabutoxytrititanium, and tetrabutoxyzirconium, Lewis acids such as aluminum chloride, and tin compounds such as dibutyltin laurate and dibutyltin acetate). Among these, an acidic catalyst is preferable, and a tin compound is most preferable. A catalyst adds 0.1-1 mass part normally with respect to 100 mass parts of norbornane diisocyanate (a-1).

また、前記付加反応の際に必要に応じて、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等の溶剤を用いることができる。さらには、イソシアネートと反応する部位を持たないラジカル重合性化合物、例えば、後述する多官能アクリレート(B)のうち、水酸基又はアミノ基を有さず、比較的粘度が低いものを溶剤として用いても良い。これらの溶剤及びラジカル重合性化合物は、単独で用いることも、2種以上を併用することもできる。   In addition, a solvent such as toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, or the like can be used as necessary during the addition reaction. Furthermore, a radically polymerizable compound having no site that reacts with isocyanate, for example, a polyfunctional acrylate (B) described later which does not have a hydroxyl group or amino group and has a relatively low viscosity may be used as a solvent. good. These solvents and radical polymerizable compounds can be used alone or in combination of two or more.

本発明の活性エネルギー線硬化型樹脂組成物は、前記ウレタンアクリレート(A)の他に、1分子中に3個以上の(メタ)アクリロイル基を有する多官能アクリレート(B)及び/又は側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系重合体に、α,β−不飽和カルボン酸を反応させた(メタ)アクリロイル基を有する重合体(C)を含有する。   In addition to the urethane acrylate (A), the active energy ray-curable resin composition of the present invention has a polyfunctional acrylate (B) having 3 or more (meth) acryloyl groups in one molecule and / or a side chain. A polymer (C) having a (meth) acryloyl group obtained by reacting an α, β-unsaturated carboxylic acid with a glycidyl (meth) acrylate polymer having an epoxy group is contained.

前記多官能アクリレート(B)としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリエチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリプロピレンオキシド変性グリセリントリ(メタ)アクリレート、トリエチレンオキシド変性グリセリントリ(メタ)アクリレート、トリエピクロロヒドリン変性グリセリントリ(メタ)アクリレート、1,3,5−トリアクロイルヘキサヒドロ−s−トリアジン、トリス(2−アクリロイルオキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、テトラエチレンオキシド変性ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレンオキシド変性ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート(例えば、日本化薬株式会社製「カヤラッドD−310」)、アルキル変性ジペンタエリスリトールテトラアクリレート(例えば、日本化薬株式会社製「カヤラッドD−320」)、ε−カプロラクトン変性ジペンタエリスリトールヘキサアクリレート(例えば、日本化薬株式会社製「カヤラッドDPCA−20」)、ジペンタエリスリトールペンタメタアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサエチレンオキサイド変性ソルビトールヘキサ(メタ)アクリレート、ヘキサキス(メタクリロイルオキシエチル)シクロトリホスファゼン(例えば、共栄社化学株式会社製「PPZ」)等が挙げられる。これらの多官能アクリレートの中でも、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(2−アクリロイルオキシエチル)イソシアヌレートは、硬化被膜の硬度を高める効果が大きいため好ましい。これらの多官能アクリレートは、単独で用いることも、2種以上を併用することもできる。   Examples of the polyfunctional acrylate (B) include trimethylolpropane tri (meth) acrylate, triethylene oxide-modified trimethylolpropane tri (meth) acrylate, tripropylene oxide-modified glycerol tri (meth) acrylate, and triethylene oxide-modified glycerol tri ( (Meth) acrylate, triepichlorohydrin-modified glycerin tri (meth) acrylate, 1,3,5-triacroylhexahydro-s-triazine, tris (2-acryloyloxyethyl) isocyanurate, pentaerythritol tri (meth) Acrylate, pentaerythritol tetra (meth) acrylate, tetraethylene oxide modified pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) Acrylate, diethylene oxide-modified ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, alkyl-modified dipentaerythritol pentaacrylate (for example, “Kayarad D-310” manufactured by Nippon Kayaku Co., Ltd.), alkyl-modified di Pentaerythritol tetraacrylate (for example, “Kayarad D-320” manufactured by Nippon Kayaku Co., Ltd.), ε-caprolactone-modified dipentaerythritol hexaacrylate (for example, “Kayarad DPCA-20” manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol Pentamethacrylate, dipentaerythritol hexa (meth) acrylate, hexaethylene oxide modified sorbitol hexa (meth) acrylate, hexakis (methacryloyl) And oxyethyl) cyclotriphosphazene (for example, “PPZ” manufactured by Kyoeisha Chemical Co., Ltd.). Among these polyfunctional acrylates, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and tris (2-acryloyloxyethyl) isocyanurate have the effect of increasing the hardness of the cured film. It is preferable because it is large. These polyfunctional acrylates can be used alone or in combination of two or more.

前記(メタ)アクリロイル基を有する重合体(C)は、側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系重合体に、α,β−不飽和カルボン酸を反応させた(メタ)アクリロイル基を有する重合体である。前記(メタ)アクリロイル基を有する重合体(C)の製造方法は、特に限定はなく、従来の公知の方法で製造することができるが、例えば、下記の製造方法が挙げられる。   The polymer (C) having the (meth) acryloyl group has a (meth) acryloyl group obtained by reacting a glycidyl (meth) acrylate polymer having an epoxy group on the side chain with an α, β-unsaturated carboxylic acid. It is a polymer having. The production method of the polymer (C) having the (meth) acryloyl group is not particularly limited, and can be produced by a conventionally known method. Examples thereof include the following production methods.

前記重合体(C)は、側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系重合体又は共重合体のエポキシ基の一部あるいは全部に、(メタ)アクリル酸又はカルボキシル基とアクリロイル基とを有する化合物を反応させ、(メタ)アクリロイル基を導入する方法により製造できる。   The polymer (C) has a (meth) acrylic acid or carboxyl group and an acryloyl group on part or all of the epoxy group of a glycidyl (meth) acrylate polymer or copolymer having an epoxy group in the side chain. It can manufacture by the method of making the compound which has it react and introduce | transducing a (meth) acryloyl group.

前記側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系重合体は、原料として、グリシジル(メタ)アクリレート、脂環式エポキシ基を有する(メタ)アクリレート(例えば、ダイセル化学工業株式会社製「CYCLOMER M100」、「CYCLOMER A200」)、4−ヒドロキシブチルアクリレートグリシジルエーテル等のエポキシ基を有する(メタ)アクリレートを用いて、これらを単独重合することにより得られる。   The glycidyl (meth) acrylate-based polymer having an epoxy group in the side chain is made of glycidyl (meth) acrylate or (meth) acrylate having an alicyclic epoxy group (for example, “CYCLOMER M100 manufactured by Daicel Chemical Industries, Ltd.”). ”,“ CYCLOMER A200 ”), and (meth) acrylate having an epoxy group such as 4-hydroxybutyl acrylate glycidyl ether, and obtained by homopolymerizing them.

また、側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系共重合体は、前記エポキシ基を有する(メタ)アクリレートと、(メタ)アクリル酸エステル、スチレン、酢酸ビニル、アクリロニトリル等のカルボキシル基を有しないα,β−不飽和単量体とを原料として、2種以上の単量体を共重合することにより得られる。なお、前記カルボキシル基を有しないα,β−不飽和単量体の代わりにカルボキシル基を有するα,β−不飽和単量体を用いた場合は、グリシジル(メタ)アクリレートとの共重合反応の際、架橋反応を生じ、高粘度化やゲル化を起こすため好ましくない。   A glycidyl (meth) acrylate copolymer having an epoxy group in the side chain has a (meth) acrylate having the epoxy group and a carboxyl group such as (meth) acrylate, styrene, vinyl acetate, acrylonitrile. It can be obtained by copolymerizing two or more monomers using a raw α, β-unsaturated monomer. When an α, β-unsaturated monomer having a carboxyl group is used instead of the α, β-unsaturated monomer having no carboxyl group, the copolymerization reaction with glycidyl (meth) acrylate is carried out. At this time, it is not preferable because a crosslinking reaction is caused to increase the viscosity and gelation.

前記側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系重合体又は共重合体と反応するα,β−不飽和カルボン酸としては、例えば、(メタ)アクリル酸、カルボキシル基とアクリロイル基とを有する化合物(例えば、大阪有機化学株式会社製「ビスコート2100」)等が挙げられる。   Examples of the α, β-unsaturated carboxylic acid that reacts with the glycidyl (meth) acrylate polymer or copolymer having an epoxy group in the side chain include, for example, (meth) acrylic acid, a carboxyl group, and an acryloyl group. Examples thereof include compounds (for example, “Biscoat 2100” manufactured by Osaka Organic Chemical Co., Ltd.).

上記の製造方法で得られる(メタ)アクリロイル基を有する重合体(C)の重量平均分子量は、5,000〜80,000が好ましく、5,000〜50,000がより好ましく、8,000〜35,000がさらに好ましい。重量平均分子量が、5,000以上で硬化収縮を小さくする効果が大きく、80,000以下で硬度が十分に高いものとなる。   The weight average molecular weight of the polymer (C) having a (meth) acryloyl group obtained by the above production method is preferably 5,000 to 80,000, more preferably 5,000 to 50,000, and 8,000 to 35,000 is more preferred. When the weight average molecular weight is 5,000 or more, the effect of reducing curing shrinkage is large, and when it is 80,000 or less, the hardness is sufficiently high.

また、(メタ)アクリロイル基を有する重合体(C)の(メタ)アクリロイル基当量は、100〜400g/eqが好ましく、200〜300g/eqがさらに好ましい。(メタ)アクリロイル基を有する重合体(C)の(メタ)アクリロイル基当量がこの範囲であれば、硬化収縮を小さくでき、硬度も十分に高くすることができる。   The (meth) acryloyl group equivalent of the polymer (C) having a (meth) acryloyl group is preferably from 100 to 400 g / eq, more preferably from 200 to 300 g / eq. When the (meth) acryloyl group equivalent of the polymer (C) having a (meth) acryloyl group is within this range, curing shrinkage can be reduced and the hardness can be sufficiently increased.

上記の製造方法で(メタ)アクリロイル基を有する重合体(C)を製造する際には、上記の(メタ)アクリロイル基を有する重合体(C)の重量平均分子量や(メタ)アクリロイル基当量を満たすように、使用する単量体や重合体の種類、これらの使用量等を適宜選択すると良い。   When producing the polymer (C) having a (meth) acryloyl group by the above production method, the weight average molecular weight and (meth) acryloyl group equivalent of the polymer (C) having the (meth) acryloyl group are determined. It is preferable to appropriately select the types of monomers and polymers to be used, the amount of these used, and the like so as to satisfy the requirements.

前記多官能アクリレート(B)として、ジペンタエリスリトールペンタアクリレート(5官能アクリレート)、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート)を用いた場合、硬化被膜の硬度を高くすることができるが、硬化収縮が大きいためカールがやや大きくなる傾向にある。そこで、前記(メタ)アクリロイル基を有する重合体(C)を併用することにより、硬化収縮が小さくなるので、カールを抑制しつつ硬化被膜の硬度も高くすることができる。   When dipentaerythritol pentaacrylate (pentafunctional acrylate) or dipentaerythritol hexaacrylate (hexafunctional acrylate) is used as the polyfunctional acrylate (B), the hardness of the cured film can be increased, but curing shrinkage is reduced. The curl tends to be slightly larger due to its large size. Therefore, when the polymer (C) having the (meth) acryloyl group is used in combination, the curing shrinkage is reduced, so that the hardness of the cured film can be increased while curling is suppressed.

前記ウレタンアクリレート(A)と、前記多官能アクリレート(B)及び重合体(C)の合計との配合比率(質量基準)は、(A):(B+C)=10:90〜90:10が好ましく、より好ましくは(A):(B+C)=15:85〜80:20である。配合比率がこの範囲であれば、高い硬度を保ちつつ、硬化収縮を小さくできカールを抑制し、かつ良好な裁断性を得ることができる。   The blending ratio (mass basis) of the urethane acrylate (A) and the polyfunctional acrylate (B) and the polymer (C) is preferably (A) :( B + C) = 10: 90 to 90:10. More preferably, (A) :( B + C) = 15: 85 to 80:20. If the blending ratio is within this range, curing shrinkage can be reduced while curling is suppressed while maintaining high hardness, and good cutting properties can be obtained.

また、本発明の活性エネルギー線硬化型樹脂組成物には、その他のラジカル重合性化合物として、N−ビニルカプロラクタム、N−ビニルピロリドン、N−ビニルカルバゾール、ビニルピリジン、アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、t−オクチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7−アミノ−3,7−ジメチルオクチル(メタ)アクリレート、アクリロイルモルホリン、ラウリル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチレンジエチレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メチルトリエチレンジグリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等のモノアクリレートを加えても良い。   The active energy ray-curable resin composition of the present invention includes other radical polymerizable compounds such as N-vinylcaprolactam, N-vinylpyrrolidone, N-vinylcarbazole, vinylpyridine, acrylamide, N, N-dimethyl ( (Meth) acrylamide, isobutoxymethyl (meth) acrylamide, t-octyl (meth) acrylamide, diacetone (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3,7-dimethyl Octyl (meth) acrylate, acryloylmorpholine, lauryl (meth) acrylate, dicyclopentadienyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate Rate, tetrahydrofurfuryl (meth) acrylate, ethylenediethylene glycol (meth) acrylate, butoxyethyl (meth) acrylate, methyltriethylene diglycol (meth) acrylate, phenoxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, etc. The monoacrylate may be added.

さらに、本発明の活性エネルギー線硬化型樹脂組成物に、カルボキシル基、リン酸基、スルホン酸基等の酸基を有するラジカル重合性化合物、アミノ基、アルコキシシリル基、アルコキシチタニル基を有するラジカル重合性化合物を加えると、基材との密着性を高めることができるので好ましい。一方、フルオロカーボン鎖、ジメチルシロキサン鎖、炭素原子数12以上のハイドロカーボン鎖を有するラジカル重合性化合物を用いると、保護層の表面滑り性、耐汚染性、耐指紋付着性等の表面性を高めることができるので好ましい。   Further, the active energy ray-curable resin composition of the present invention has a radical polymerizable compound having an acid group such as a carboxyl group, a phosphoric acid group or a sulfonic acid group, a radical polymerization having an amino group, an alkoxysilyl group or an alkoxy titanyl group. It is preferable to add a functional compound because the adhesion to the substrate can be improved. On the other hand, when a radically polymerizable compound having a fluorocarbon chain, a dimethylsiloxane chain, or a hydrocarbon chain having 12 or more carbon atoms is used, the surface properties of the protective layer such as surface slipperiness, stain resistance, and fingerprint resistance can be improved. Is preferable.

本発明の活性エネルギー線硬化型樹脂組成物は、活性エネルギー線を照射すると硬化する組成物をいう。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線のような電離放射線をいう。この活性エネルギー線として紫外線を用いる場合には、活性エネルギー線硬化型樹脂組成物中に光重合開始剤(D)を添加する。また、必要であればさらに光増感剤を添加する。一方、電子線、α線、β線、γ線のような電離放射線を用いる場合には、光重合開始剤や光増感剤を用いなくても速やかに硬化するので、特にこれらを添加する必要はない。   The active energy ray-curable resin composition of the present invention refers to a composition that cures when irradiated with active energy rays. The active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When ultraviolet rays are used as the active energy ray, a photopolymerization initiator (D) is added to the active energy ray-curable resin composition. If necessary, a photosensitizer is further added. On the other hand, when ionizing radiation such as electron beam, α-ray, β-ray, and γ-ray is used, it cures quickly without using a photopolymerization initiator or photosensitizer. There is no.

前記光重合開始剤(D)は、分子内開裂型光重合開始剤と水素引き抜き型光重合開始剤とに大別できる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシル−フェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、オリゴ2−ヒドロキシ−2−メチル−1−[4−(1−メチルビニル)フェニル]プロパノン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]−フェニル}−2−メチル−プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6−トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。   The photopolymerization initiator (D) can be roughly classified into an intramolecular cleavage type photopolymerization initiator and a hydrogen abstraction type photopolymerization initiator. Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy. 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thio) Methylphenyl) propan-1-one, oligo 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone, 1- [4- (2-hydroxyethoxy) -phenyl] -2- Hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy Acetophenone compounds such as 2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoin Benzoins such as benzoin methyl ether and benzoin isopropyl ether; acylphosphine oxide compounds such as 2,4,6-trimethylbenzoin diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; benzyl, And methylphenylglyoxyester.

一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル−4−フェニルベンゾフェノン、4,4’−ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4’−メチル−ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’−ジメチル−4−メトキシベンゾフェノン等のベンゾフェノン系化合物;2−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ−ケトン、4,4’−ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10−ブチル−2−クロロアクリドン、2−エチルアンスラキノン、9,10−フェナンスレンキノン、カンファーキノン、フェニル グリオキシリック アシッド メチル エステル、オシキ−フェニル−アセチック アシッド2−[2−オキソ−2−フェニル−アセトキシ−エトキシ]−エチルエステルとオキシ−フェニル−アセチック アシッド2−[2−ヒドロキシ−エトキシ]−エチルエステルの混合物等が挙げられる。これらの光重合開始剤(D)は、単独で用いることも、2種以上を併用することもできる。   On the other hand, examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone, o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide. Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 A thioxanthone compound such as dimethylthioxanthone, 2,4-diethylthioxanthone, and 2,4-dichlorothioxanthone; an aminobenzophenone compound such as Michler's ketone and 4,4′-diethylaminobenzophenone; 2-chloroacridone, 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone, phenyl glyoxylic acid methyl ester, oxy-phenyl-acetic acid 2- [2-oxo-2-phenyl- And a mixture of acetoxy-ethoxy] -ethyl ester and oxy-phenyl-acetic acid 2- [2-hydroxy-ethoxy] -ethyl ester. These photopolymerization initiators (D) can be used alone or in combination of two or more.

また、上記に挙げた光重合開始剤(D)の中でも、水酸基を有する光重合開始剤を用いると、硬化被膜の硬度、耐擦傷性が向上するので好ましい。このような光重合開始剤としては、例えば、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、オリゴ2−ヒドロキシ−2−メチル−1−[4−(1−メチルビニル)フェニル]プロパノン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]−フェニル}−2−メチル−プロパン−1−オン、1−ヒドロキシシクロヘキシル−フェニルケトン等が挙げられる。   Further, among the photopolymerization initiators (D) listed above, it is preferable to use a photopolymerization initiator having a hydroxyl group because the hardness and scratch resistance of the cured film are improved. Examples of such a photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one and oligo 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl. ] Propanone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy 2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, 1-hydroxycyclohexyl-phenyl ketone and the like.

さらに、光重合開始剤(D)として、前記水酸基を有する光重合開始剤に加え、アシルホスフィンオキシド系光重合開始剤を用いると、フィルム基材との密着性が向上し、フィルムのカールが抑制できるので好ましい。このアシルホスフィンオキシド系光重合開始剤としては、例えば、2,4,6−トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド等が挙げられる。   Furthermore, when an acylphosphine oxide photopolymerization initiator is used as the photopolymerization initiator (D) in addition to the photopolymerization initiator having a hydroxyl group, adhesion with the film substrate is improved and curling of the film is suppressed. It is preferable because it is possible. Examples of the acylphosphine oxide photopolymerization initiator include 2,4,6-trimethylbenzoin diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like.

一方、前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン類、o−トリルチオ尿素等の尿素類、ナトリウムジエチルジチオホスフェート、s−ベンジルイソチウロニウム−p−トルエンスルホネート等の硫黄化合物等が挙げられる。   On the other hand, examples of the photosensitizer include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. And the like.

これらの光重合開始剤及び光増感剤の使用量は、活性エネルギー線硬化型樹脂組成物中の樹脂成分100質量部に対し、各々0.1〜20質量%が好ましく、0.5〜10質量%がより好ましい。   The amount of these photopolymerization initiators and photosensitizers used is preferably 0.1 to 20% by weight, preferably 0.5 to 10%, based on 100 parts by weight of the resin component in the active energy ray-curable resin composition. The mass% is more preferable.

また、本発明の活性エネルギー線硬化型樹脂組成物には、必要に応じて各種添加剤を添加しても良い。このような添加剤としては、例えば、重合禁止剤、酸化防止剤、レベリング剤、消泡剤、塗面改良剤(ぬれ性、スリップ性改良剤等)、可塑剤、着色剤等が挙げられる。   Moreover, you may add various additives to the active energy ray hardening-type resin composition of this invention as needed. Examples of such additives include polymerization inhibitors, antioxidants, leveling agents, antifoaming agents, coating surface improvers (such as wettability and slip property improvers), plasticizers, and colorants.

さらに、本発明の活性エネルギー線硬化型樹脂組成物に、フィルム基材への塗工適性を付与するため、粘度調整用の希釈溶剤を加えても良い。希釈溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素;メタノール、エタノール、イソプロピルアルコール等のアルコール類;酢酸エチル、エチルソルブアセテート等のエステル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類などが挙げられる。これらの溶剤は、単独で用いることも、2種以上を併用することもできる。   Furthermore, a diluting solvent for viscosity adjustment may be added to the active energy ray-curable resin composition of the present invention in order to impart applicability to the film substrate. Examples of the diluent solvent include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol and isopropyl alcohol; esters such as ethyl acetate and ethyl sorbacetate; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. Etc. These solvents can be used alone or in combination of two or more.

本発明の活性エネルギー線硬化型樹脂組成物の硬化被膜は、発生する硬化収縮が小さく、かつ高硬度、高耐擦傷性に優れるため、カールに起因する影響をフィルム基材に与えることなく保護できる。さらに、該硬化被膜を有するフィルムを裁断する際に、切断面に割れや欠けを生じないので、裁断時の不良品率を低減できる。このため、本発明の活性エネルギー線硬化型樹脂組成物の硬化被膜は各種フィルム基材の保護層として有効である。このフィルム基材としては、図柄や易接着層を設けたものであっても良い。高硬度、高耐擦傷性を発揮させるには、硬化被膜の厚さは、通常0.5〜500μmが好ましく、より好ましくは3〜50μmであり、特に好ましくは4〜30μmである。   The cured coating of the active energy ray-curable resin composition of the present invention has a small curing shrinkage and is excellent in high hardness and high scratch resistance, so that it can protect without affecting the film base material due to curling. . Furthermore, since the cut surface is not cracked or chipped when the film having the cured film is cut, the defective product rate at the time of cutting can be reduced. For this reason, the cured film of the active energy ray-curable resin composition of the present invention is effective as a protective layer for various film substrates. As this film base material, a pattern or an easily adhesive layer may be provided. In order to exhibit high hardness and high scratch resistance, the thickness of the cured coating is usually preferably 0.5 to 500 μm, more preferably 3 to 50 μm, and particularly preferably 4 to 30 μm.

本発明の活性エネルギー線硬化型樹脂組成物の硬化被膜を有するフィルムは、前記活性エネルギー線硬化型樹脂組成物をフィルム基材上に、該樹脂組成物の乾燥後の質量として、通常0.5〜500g/m(塗膜厚0.5〜500μm)、好ましくは3〜50g/m(塗膜厚3〜50μm)、特に好ましくは4〜30g/m(塗膜厚4〜30μm)になるように塗布し、乾燥後、活性エネルギー線を照射し、硬化被膜を形成させることにより得ることができる。なお、該樹脂組成物の乾燥後の質量が0.5g/m未満では、基材の影響を受け硬度が上がらず、500g/m以上では、硬化時の重合熱で基材の変形等が起きる不具合が発生するため、500g/m以上の膜厚を形成する際は、冷却等の工夫が必要になる。 The film having a cured coating of the active energy ray-curable resin composition of the present invention is usually 0.5% as the mass of the active energy ray-curable resin composition on the film substrate after drying the resin composition. ˜500 g / m 2 (coat thickness 0.5 to 500 μm), preferably 3 to 50 g / m 2 (coat thickness 3 to 50 μm), particularly preferably 4 to 30 g / m 2 (coat thickness 4 to 30 μm) It can apply | coat, and after drying, it can obtain by irradiating an active energy ray and forming a cured film. In addition, when the mass after drying of the resin composition is less than 0.5 g / m 2 , the hardness is not increased due to the influence of the substrate, and when it is 500 g / m 2 or more, the deformation of the substrate is caused by the polymerization heat at the time of curing. Therefore, when forming a film thickness of 500 g / m 2 or more, a device such as cooling is required.

前記フィルム基材の材質としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリプロピレン、ポリエチレン、ポリメチルペンテン−1等のポリオレフィン系樹脂;トリアセチルセルロース等のセルロース系樹脂;ポリスチレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ノルボルネン系樹脂(例えば、日本ゼオン株式会社製「ゼオノア」)、変性ノルボルネン系樹脂(例えば、(JSR株式会社製「アートン」)、環状オレフィン共重合体(例えば、三井化学株式会社製「アペル」)等が挙げられる。これらの材質の中でも、トリアセチルセルロースは、本発明の活性エネルギー線硬化型樹脂組成物の硬化被膜との間で優れた密着性を示すので好ましい。また、これらの樹脂からなる基材を2種以上貼り合わせて用いても良い。これらのフィルム基材は、シート状であっても良く、フィルム基材の厚さは、20〜500μmが好ましい。   Examples of the material for the film substrate include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resins such as polypropylene, polyethylene, and polymethylpentene-1; and cellulose resins such as triacetyl cellulose. Polystyrene resin, polyamide resin, polycarbonate resin, norbornene resin (for example, “Zeonor” manufactured by Nippon Zeon Co., Ltd.), modified norbornene resin (for example, “Arton” manufactured by JSR Corporation), cyclic olefin copolymer (for example, And “Apel” manufactured by Mitsui Chemicals, Inc.) Among these materials, triacetyl cellulose exhibits excellent adhesion with the cured film of the active energy ray-curable resin composition of the present invention. So preferable Further, a substrate made of these resins may be used by laminating two or more. These film substrate may be a sheet, the thickness of the film substrate, 20 to 500 [mu] m is preferred.

本発明の活性エネルギー線硬化型樹脂組成物をフィルム基材に塗布する方法としては、例えば、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、スプレーコート、かけ渡しコート、ディップコート、スピンナーコート、ホイーラーコート、刷毛塗り、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコート等が挙げられる。また、オフセット印刷、活版印刷等の印刷方式でも良い。これらの中でも、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、ワイヤーバーコート、フローコートは、より厚みが一定な塗膜が得られるため好ましい。   Examples of the method for applying the active energy ray-curable resin composition of the present invention to a film substrate include gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, transfer coating, dip coating, and spinner coating. Wheeler coat, brush coating, solid coating with silk screen, wire bar coat, flow coat and the like. Also, printing methods such as offset printing and letterpress printing may be used. Among these, gravure coating, roll coating, comma coating, air knife coating, kiss coating, wire bar coating, and flow coating are preferable because a coating film having a more constant thickness can be obtained.

また、プラスチック成形体を本発明の活性エネルギー線硬化型樹脂組成物の硬化被膜によって保護する方法として、上記の硬化被膜を形成させたフィルムを、プラスチックの賦型前に、硬化被膜が最表面になるようにプラスチック表面に貼り付け、その後、プラスチックを該フィルムとともに賦型する方法もある。プラスチック表面への該フィルムの貼り付けは、フィルムとプラスチックとを高温で溶融接着しても、接着剤を用いて接着しても構わない。また、プラスチックを賦型した成形体に、硬化被膜を形成させたフィルムを該成形体の外形に合わせて二次成形したものを貼り付けても良い。   Further, as a method of protecting the plastic molded body with the cured film of the active energy ray-curable resin composition of the present invention, the cured film is formed on the outermost surface before molding the plastic. There is also a method of pasting on the surface of the plastic so that the plastic is molded together with the film. The film may be attached to the plastic surface by melting and bonding the film and the plastic at a high temperature or by using an adhesive. Moreover, you may affix on the molded object which shape | molded the plastics what carried out the secondary shaping | molding of the film in which the cured film was formed according to the external shape of this molded object.

さらに、材質がプラスチックや金属等の成形された物品に保護層を設ける方法として、予め本発明の活性エネルギー線硬化型樹脂組成物の硬化被膜からなる保護層を設けた転写フィルムを用いる方法がある。この場合、転写材の保護層が転写後に物品の最外層になるように、水圧転写法等の転写方法を用いて、物品の表面に貼り付ける。この転写材に柄や金属薄層を設けた場合には、物品に意匠性を付与すると同時に、その表面に高い硬度、高い耐擦傷性を付与することができる。また、本発明の活性エネルギー線硬化型樹脂組成物は、硬化収縮が小さいので、該樹脂組成物を用いた転写フィルムのカールが小さく、転写の際の作業性も高い。   Further, as a method of providing a protective layer on an article formed of a material such as plastic or metal, there is a method of using a transfer film provided with a protective layer made of a cured coating of the active energy ray-curable resin composition of the present invention in advance. . In this case, the transfer material is attached to the surface of the article using a transfer method such as a hydraulic transfer method so that the protective layer of the transfer material becomes the outermost layer of the article after the transfer. When a pattern or a thin metal layer is provided on this transfer material, it is possible to impart design properties to the article and at the same time impart high hardness and high scratch resistance to the surface. Moreover, since the active energy ray-curable resin composition of the present invention has a small cure shrinkage, the curl of the transfer film using the resin composition is small, and the workability at the time of transfer is high.

本発明の活性エネルギー線硬化型樹脂組成物に、活性エネルギー線として紫外線を照射する場合には、光発生源として、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ケミカルランプ、ブラックライトランプ、水銀−キセノンランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、太陽光、LED等が挙げられる。また、閃光的に照射するキセノン−フラッシュランプを使用すると、フィルム基材への熱の影響が小さくなるので有効である。   When the active energy ray-curable resin composition of the present invention is irradiated with ultraviolet rays as an active energy ray, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a chemical lamp, black is used as a light generation source. Examples thereof include a light lamp, a mercury-xenon lamp, a short arc lamp, a helium / cadmium laser, an argon laser, sunlight, and an LED. Use of a flashing xenon-flash lamp is effective because the influence of heat on the film substrate is reduced.

活性エネルギー線として電子線を照射する場合、30〜300kVの加速電圧の電子線加速装置を用いるのが好ましい。また、フィルム基材の樹脂が、電子線で黄変し易い芳香族骨格を有する場合や電子線で劣化し易い場合、例えば、フィルム基材にセルロース系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂等を用いる場合には、加速電圧を30〜150kVにすると、フィルム基材の黄変や劣化が防止できる。   When irradiating an electron beam as an active energy ray, it is preferable to use an electron beam accelerator having an acceleration voltage of 30 to 300 kV. In addition, when the resin of the film base has an aromatic skeleton that is easily yellowed by an electron beam or when the resin is easily deteriorated by an electron beam, for example, a cellulose-based resin, a polyester-based resin, a polystyrene-based resin, a polyamide is used as the film base. In the case of using a system resin, a polycarbonate system resin, or the like, when the acceleration voltage is set to 30 to 150 kV, yellowing or deterioration of the film base material can be prevented.

以下、実施例及び比較例によって本発明をさらに具体的に説明する。なお、以下の例において、「%」及び「部」は、質量基準である。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the following examples, “%” and “part” are based on mass.

(合成例1)ウレタンアクリレート(1)の合成
攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル250部、ノルボルナンジイソシアネート(以下、「NBDI」という。)206部、メトキシハイドロキノン0.5部、ジブチル錫ジアセテート0.5部を仕込み、空気を吹き込みながら、70℃に昇温した後、ペンタエリスリトールトリアクリレート(以下、「PE3A」という。)/ペンタエリスリトールテトラアクリレート(以下、「PE4A」という。)混合物(質量比75/25の混合物)795部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm−1の赤外線吸収スペクトルが消失するまで反応を行い、ウレタンアクリレート(1)/PE4A混合物(質量比80/20の混合物、不揮発分80%の酢酸ブチル溶液)を得た。
Synthesis Example 1 Synthesis of Urethane Acrylate (1) In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 250 parts of butyl acetate, 206 parts of norbornane diisocyanate (hereinafter referred to as “NBDI”), and methoxy. After adding 0.5 part of hydroquinone and 0.5 part of dibutyltin diacetate and raising the temperature to 70 ° C. while blowing air, pentaerythritol triacrylate (hereinafter referred to as “PE3A”) / pentaerythritol tetraacrylate (hereinafter referred to as “PE3A”) , "PE4A") 795 parts of a mixture (a mixture with a mass ratio of 75/25) was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating an isocyanate group disappeared, and then a urethane acrylate (1) / PE4A mixture (a mixture with a mass ratio of 80/20, non-volatile). 80% butyl acetate solution).

(合成例2)ウレタンアクリレート(2)の合成
攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル576部、NBDI206、メトキシハイドロキノン1.2部、ジブチル錫ジアセテート1.2部を仕込み、70℃に昇温した後、ジペンタエリスリトールペンタアクリレート(以下、「DPPA」という。)/ジペンタエリスリトールヘキサアクリレート(以下、「DPHA」という。)混合物(質量比50/50の混合物)2096部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm−1の赤外線吸収スペクトルが消失するまで反応を行い、ウレタンアクリレート(2)/DPHA混合物(質量比54/46の混合物、不揮発分80%の酢酸ブチル溶液)を得た。
Synthesis Example 2 Synthesis of Urethane Acrylate (2) In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 576 parts of butyl acetate, NBDI 206, 1.2 parts of methoxyhydroquinone, dibutyltin diacetate After charging 2 parts and heating to 70 ° C., a dipentaerythritol pentaacrylate (hereinafter referred to as “DPPA”) / dipentaerythritol hexaacrylate (hereinafter referred to as “DPHA”) mixture (with a mass ratio of 50/50) 2096 parts of the mixture was added dropwise over 1 hour. After completion of the dropwise addition, the mixture is reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating an isocyanate group disappears, and then a urethane acrylate (2) / DPHA mixture (a mixture with a mass ratio of 54/46, non-volatile). 80% butyl acetate solution).

(合成例3)ウレタンアクリレート(3)の合成
攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル252部、NBDI206部、メトキシハイドロキノン0.5部、ジブチル錫ジアセテート0.5部を仕込み、空気を吹き込みながら、70℃に昇温した後、ビス(2−アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート(以下、「BAHIC」という。)/トリス(2−アクリロイルオキシエチル)イソシアヌレート(以下、「TAIC」という。)混合物(質量比56/44の混合物)1318部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm−1の赤外線吸収スペクトルが消失するまで反応を行い、ウレタンアクリレート(3)/TAIC混合物(質量比62/38の混合物、不揮発分80%の酢酸ブチル溶液)を得た。
Synthesis Example 3 Synthesis of Urethane Acrylate (3) In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 252 parts of butyl acetate, 206 parts of NBDI, 0.5 part of methoxyhydroquinone, dibutyltin diacetate 0 .5 parts was charged and heated to 70 ° C. while blowing air, and then bis (2-acryloyloxyethyl) hydroxyethyl isocyanurate (hereinafter referred to as “BAHIC”) / tris (2-acryloyloxyethyl) isocyanate. 1318 parts of a nurate (hereinafter referred to as “TAIC”) mixture (mixture having a mass ratio of 56/44) was added dropwise over 1 hour. After completion of the dropwise addition, the mixture is reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating the isocyanate group disappears, and then urethane acrylate (3) / TAIC mixture (mixture of mass ratio 62/38, non-volatile) 80% butyl acetate solution).

(合成例4)ウレタンアクリレート(4)の合成
攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル254部、イソホロンジイソシアネート(以下、「IPDI」という。)222部、メトキシハイドロキノン0.5部、ジブチル錫ジアセテート0.5部を仕込み、70℃に昇温した後、PE3A/PE4A混合物(質量比75/25の混合物)795部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm−1の赤外線吸収スペクトルが消失するまで反応を行い、ウレタンアクリレート(4)/PE4A混合物(質量比80/20の混合物、不揮発分80%の酢酸ブチル溶液)を得た。
Synthesis Example 4 Synthesis of Urethane Acrylate (4) In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 254 parts of butyl acetate, 222 parts of isophorone diisocyanate (hereinafter referred to as “IPDI”), methoxy After adding 0.5 part of hydroquinone and 0.5 part of dibutyltin diacetate and heating to 70 ° C., 795 parts of a PE3A / PE4A mixture (mixture having a mass ratio of 75/25) was added dropwise over 1 hour. After completion of the dropwise addition, the mixture is reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating an isocyanate group disappears, and then a urethane acrylate (4) / PE4A mixture (a mixture with a mass ratio of 80/20, non-volatile). 80% butyl acetate solution).

(合成例5)ウレタンアクリレート(5)の合成
攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル566部、ヘキサメチレンジイソシアネート(以下、「HDI」という。)168部、メトキシハイドロキノン0.5部、ジブチル錫ジアセテート0.5部を仕込み、70℃に昇温した後、DPPA/DPHA混合物(質量比50/50の混合物)2096部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm−1の赤外線吸収スペクトルが消失するまで反応を行い、ウレタンアクリレート(5)/DPHA混合物(質量比54/46の混合物、不揮発分80%)を得た。
Synthesis Example 5 Synthesis of Urethane Acrylate (5) In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 566 parts of butyl acetate, 168 parts of hexamethylene diisocyanate (hereinafter referred to as “HDI”), After adding 0.5 part of methoxyhydroquinone and 0.5 part of dibutyltin diacetate and raising the temperature to 70 ° C., 2096 parts of a DPPA / DPHA mixture (mixture having a mass ratio of 50/50) was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating the isocyanate group disappeared, and then a urethane acrylate (5) / DPHA mixture (a mixture with a mass ratio of 54/46, non-volatile). 80%).

(合成例6)ウレタンアクリレート(6)の合成
攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル264部、メチレンビス(4−シクロヘキシルイソシアネート)(以下、「水添MDI」という。)262部、メトキシハイドロキノン0.5部、ジブチル錫ジアセテート0.5部を仕込み、70℃に昇温した後、PE3A/PE4A混合物(質量比75/25の混合物)795部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm−1の赤外線吸収スペクトルが消失するまで反応を行い、ウレタンアクリレート(6)/PE4A混合物(質量比81/19の混合物、不揮発分80%の酢酸ブチル溶液)を得た。
(Synthesis Example 6) Synthesis of Urethane Acrylate (6) In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 264 parts of butyl acetate, methylenebis (4-cyclohexylisocyanate) (hereinafter “hydrogenated MDI”) 262 parts, methoxyhydroquinone 0.5 parts and dibutyltin diacetate 0.5 parts were charged and the temperature was raised to 70 ° C., then 795 parts of a PE3A / PE4A mixture (a mixture with a mass ratio of 75/25) was added for 1 hour. It was dripped over. After completion of the dropwise addition, the mixture was reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating an isocyanate group disappeared, and a urethane acrylate (6) / PE4A mixture (a mixture of mass ratio 81/19, nonvolatile) 80% butyl acetate solution).

(合成例7)ウレタンアクリレート(7)の合成
攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル240部、1,4−シクロヘキシルジイソシアネート(以下、「CHDI」という。)166部、メトキシハイドロキノン0.5部、ジブチル錫ジアセテート0.5部を仕込み、70℃に昇温した後、PE3A/PE4A混合物(質量比75/25の混合物)795部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm−1の赤外線吸収スペクトルが消失するまで反応を行い、ウレタンアクリレート(7)/PE4A混合物(質量比79/21の混合物、不揮発分80%の酢酸ブチル溶液)を得た。
Synthesis Example 7 Synthesis of Urethane Acrylate (7) In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 240 parts of butyl acetate and 1,4-cyclohexyl diisocyanate (hereinafter referred to as “CHDI”). 166 parts, 0.5 part of methoxyhydroquinone and 0.5 part of dibutyltin diacetate were charged and the temperature was raised to 70 ° C., and then 795 parts of a PE3A / PE4A mixture (mixture with a mass ratio of 75/25) was added dropwise over 1 hour. did. After completion of the dropwise addition, the mixture was reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 showing the isocyanate group disappeared, and a urethane acrylate (7) / PE4A mixture (mixture with a mass ratio of 79/21, non-volatile) 80% butyl acetate solution).

(合成例8)アクリロイル基を有する重合体(1)の合成
攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、グリシジルメタクリレート(以下、「GMA」という。)250部、ラウリルメルカプタン1.6部、メチルイソブチルケトン(以下、「MIBK」という。)1000部及び2,2’−アゾビスイソブチロニトリル(以下、「AIBN」という。)7.5部を仕込み、窒素気流下で攪拌しながら、1時間かけて90℃に昇温し、90℃で1時間反応させた。次いで、90℃で攪拌しながら、GMA750部、ラウリルメルカプタン4.4部、AIBN22.5部からなる混合液を2時間かけて滴下した後、100℃で3時間反応させた。その後、AIBN10部を仕込み、さらに100℃で1時間反応させた後、120℃付近に昇温し、2時間反応させた。60℃まで冷却し、窒素導入管を、空気導入管に付け替え、アクリル酸(以下、「AA」という。)507部、メトキノン2.0部、トリフェニルホスフィン5.4部を加えて混合した後、空気で反応液をバブリングしながら、110℃まで昇温し、8時間反応させた。その後、メトキノン1.4部を加え、室温まで冷却後、不揮発分が50%になるように、MIBKを加え、アクリロイル基を有する重合体(1)(不揮発分50%のMIBK溶液)を得た。なお、得られたアクリロイル基を有する重合体(1)の重量平均分子量は11,000(GPCによるポリスチレン換算による)で、アクリロイル基当量は300g/eqであった。
(Synthesis Example 8) Synthesis of polymer (1) having acryloyl group In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 250 parts of glycidyl methacrylate (hereinafter referred to as “GMA”), lauryl mercaptan 1.6 parts, 1000 parts of methyl isobutyl ketone (hereinafter referred to as “MIBK”) and 7.5 parts of 2,2′-azobisisobutyronitrile (hereinafter referred to as “AIBN”) were charged in a nitrogen stream. The mixture was heated to 90 ° C. over 1 hour while being stirred at 50 ° C. and reacted at 90 ° C. for 1 hour. Next, while stirring at 90 ° C., a mixed solution consisting of 750 parts of GMA, 4.4 parts of lauryl mercaptan, and 22.5 parts of AIBN was dropped over 2 hours, and then reacted at 100 ° C. for 3 hours. Thereafter, 10 parts of AIBN was charged and further reacted at 100 ° C. for 1 hour, and then heated to around 120 ° C. and reacted for 2 hours. After cooling to 60 ° C., the nitrogen inlet tube is replaced with an air inlet tube, 507 parts of acrylic acid (hereinafter referred to as “AA”), 2.0 parts of methoquinone, and 5.4 parts of triphenylphosphine are added and mixed. While bubbling the reaction solution with air, the temperature was raised to 110 ° C. and reacted for 8 hours. Thereafter, 1.4 parts of methoquinone was added, and after cooling to room temperature, MIBK was added so that the nonvolatile content was 50%, to obtain a polymer (1) having an acryloyl group (MIBK solution having a nonvolatile content of 50%). . In addition, the weight average molecular weight of the obtained polymer (1) having an acryloyl group was 11,000 (in terms of polystyrene by GPC), and the acryloyl group equivalent was 300 g / eq.

参考例1)
合成例1で得られたウレタンアクリレート(1)/PE4A混合物(質量比80/20の混合物、不揮発分80%の酢酸ブチル溶液)125部、1−ヒドロキシシクロヘキシル−フェニルケトン(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア 184」;以下、「HCPK」という。)5部、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド(BASFジャパン株式会社製「ルシリン TPO」;以下、「TPO」という。)2部、酢酸エチル33部、及び酢酸ブチル42部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
( Reference Example 1)
125 parts of urethane acrylate (1) / PE4A mixture obtained in Synthesis Example 1 (mixture with a mass ratio of 80/20, butyl acetate solution with a nonvolatile content of 80%), 1-hydroxycyclohexyl-phenylketone (Ciba Specialty Chemicals Co., Ltd.) "Irgacure 184" manufactured by company; hereinafter referred to as "HCPK") 5 parts, 2,4,6-trimethylbenzoyldiphenylphosphine oxide ("Lucirin TPO" manufactured by BASF Japan Ltd .; hereinafter referred to as "TPO") 2 parts Then, 33 parts of ethyl acetate and 42 parts of butyl acetate were mixed, heated to 40 ° C. and mixed to obtain a uniform active energy ray-curable resin composition.

参考例2)
合成例1で得られたウレタンアクリレート(2)/PE4A混合物(質量比80/20の混合物、不揮発分80%の酢酸ブチル溶液)100部、DPHA/DPPA混合物(質量比70/30の混合物)20部、HCPK3部、TPO4部、酢酸エチル33部、及び酢酸ブチル47部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
( Reference Example 2)
100 parts of the urethane acrylate (2) / PE4A mixture obtained in Synthesis Example 1 (mixture with a mass ratio of 80/20, butyl acetate solution with a nonvolatile content of 80%), DPHA / DPPA mixture (mixture with a mass ratio of 70/30) 20 Part, HCPK 3 parts, TPO 4 parts, ethyl acetate 33 parts, and butyl acetate 47 parts were mixed, heated to 40 ° C. and mixed to obtain an active energy ray-curable resin composition.

参考例3)
合成例1で得られたウレタンアクリレート(1)/PE4A混合物(質量比80/20の混合物、不揮発分80%の酢酸ブチル溶液)50部、DPHA/DPPA混合物(質量比70/30の混合物)20部、合成例8で得られたアクリロイル基を有する重合体(1)(不揮発分50%のMIBK溶液)80部、HCPK2部、TPO1.5部、酢酸エチル33部、及び酢酸ブチル17部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
( Reference Example 3)
50 parts of the urethane acrylate (1) / PE4A mixture obtained in Synthesis Example 1 (mixture with a mass ratio of 80/20, butyl acetate solution with a nonvolatile content of 80%), DPHA / DPPA mixture (mixture with a mass ratio of 70/30) 20 80 parts of the acryloyl group-containing polymer (1) obtained in Synthesis Example 8 (MIBK solution having a nonvolatile content of 50%), 2 parts of HCPK, 1.5 parts of TPO, 33 parts of ethyl acetate, and 17 parts of butyl acetate And heated to 40 ° C. and mixed to obtain an active energy ray-curable resin composition.

参考例4)
合成例2で得られたウレタンアクリレート(2)/DPHA混合物(質量比54/46の混合物、不揮発分80%の酢酸ブチル溶液)75部、合成例8で得られたアクリロイル基を有する重合体(1)(不揮発分50%のMIBK溶液)80部、TPO2部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン(チバ・スペシャルティ・ケミカルズ株式会社製「ダロキュア 1173」;以下、「HMPO」という。)4部、酢酸エチル33部、及び酢酸ブチル12部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
( Reference Example 4)
75 parts of urethane acrylate (2) / DPHA mixture obtained in Synthesis Example 2 (mixture with a mass ratio of 54/46, butyl acetate solution having a nonvolatile content of 80%), polymer having an acryloyl group obtained in Synthesis Example 8 ( 1) (MIBK solution having a nonvolatile content of 50%) 80 parts, TPO 2 parts, 2-hydroxy-2-methyl-1-phenylpropan-1-one (“Darocur 1173” manufactured by Ciba Specialty Chemicals Co., Ltd.); 4 parts, 33 parts of ethyl acetate, and 12 parts of butyl acetate were mixed, heated to 40 ° C. and mixed to obtain an active energy ray-curable resin composition.

(実施例
合成例3で得られたウレタンアクリレート(3)/TAIC混合物(質量比62/38の混合物、不揮発分80%の酢酸ブチル溶液)37.5部、DPHA/DPPA混合物(質量比70/30の混合物)70部、HCPK2部、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア 819」;以下、「BAPO」という。)1部、酢酸エチル33部、及び酢酸ブチル59.5部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
(Example 1 )
Urethane acrylate (3) / TAIC mixture obtained in Synthesis Example 3 (mixture with a mass ratio of 62/38, butyl acetate solution with a nonvolatile content of 80%), 37.5 parts, DPHA / DPPA mixture (mixture with a mass ratio of 70/30) ) 70 parts, 2 parts HCPK, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (“Irgacure 819” manufactured by Ciba Specialty Chemicals Co., Ltd .; hereinafter referred to as “BAPO”) 1 part, ethyl acetate 33 And 59.5 parts of butyl acetate were mixed, heated to 40 ° C. and mixed to obtain a uniform active energy ray-curable resin composition.

参考
合成例1で得られたウレタンアクリレート(1)/PE4A混合物(質量比80/20の混合物、不揮発分80%の酢酸ブチル溶液)50部、DPHA/DPPA混合物(質量比70/30の混合物)10部、PE4A20部、TAIC30部、HCPK4部、TPO1部、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア 2959」;以下、「HHPO」という。)1部、酢酸エチル33部、及び酢酸ブチル57部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
( Reference Example 5 )
50 parts of the urethane acrylate (1) / PE4A mixture obtained in Synthesis Example 1 (mixture with a mass ratio of 80/20, butyl acetate solution with a nonvolatile content of 80%), DPHA / DPPA mixture (mixture with a mass ratio of 70/30) 10 Part, PE4A 20 parts, TAIC 30 parts, HCPK 4 parts, TPO 1 part, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (Ciba Specialty Chemicals) “Irgacure 2959” manufactured by Co., Ltd .; hereinafter referred to as “HHPO”) 1 part, 33 parts of ethyl acetate and 57 parts of butyl acetate are mixed, heated to 40 ° C. and mixed to obtain an active energy ray-curable resin. A composition was obtained.

(比較例1)
合成例4で得られたウレタンアクリレート(4)/PE4A混合物(質量比80/20の混合物、不揮発分80%の酢酸ブチル溶液)100部、DPHA/DPPA混合物(質量比70/30の混合物)20部、HCPK3部、TPO4部、酢酸エチル33部、及び酢酸ブチル47部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
(Comparative Example 1)
100 parts of urethane acrylate (4) / PE4A mixture obtained in Synthesis Example 4 (mixture with a mass ratio of 80/20, butyl acetate solution with a nonvolatile content of 80%), DPHA / DPPA mixture (mixture with a mass ratio of 70/30) 20 Part, HCPK 3 parts, TPO 4 parts, ethyl acetate 33 parts, and butyl acetate 47 parts were mixed, heated to 40 ° C. and mixed to obtain an active energy ray-curable resin composition.

(比較例2)
合成例5で得られたウレタンアクリレート(5)/DPHA混合物(質量比54/46の混合物、不揮発分80%)75部、TAIC40部、HCPK1.5部、BAPO1部、酢酸エチル33部、及び酢酸ブチル52部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
(Comparative Example 2)
75 parts of urethane acrylate (5) / DPHA mixture (mixture of mass ratio 54/46, nonvolatile content 80%) obtained in Synthesis Example 5, TAIC 40 parts, HCPK 1.5 parts, BAPO 1 part, ethyl acetate 33 parts, and acetic acid 52 parts of butyl was mixed, heated to 40 ° C. and mixed to obtain a uniform active energy ray-curable resin composition.

(比較例3)
合成例6で得られたウレタンアクリレート(6)/PE4A混合物(質量比81/19の混合物、不揮発分80%の酢酸ブチル溶液)37.5部、DPHA/DPPA混合物(質量比70/30の混合物)70部、HCPK2部、BAPO1部、酢酸エチル33部、及び酢酸ブチル59.5部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
(Comparative Example 3)
Urethane acrylate (6) / PE4A mixture obtained in Synthesis Example 6 (mixture with a mass ratio of 81/19, butyl acetate solution with a nonvolatile content of 80%), 37.5 parts, DPHA / DPPA mixture (mixture with a mass ratio of 70/30) ) 70 parts, 2 parts of HCPK, 1 part of BAPO, 33 parts of ethyl acetate, and 59.5 parts of butyl acetate were mixed after heating to 40 ° C. to obtain an active energy ray-curable resin composition.

(比較例4)
合成例7で得られたウレタンアクリレート(7)/PE4A混合物(質量比79/21の混合物、不揮発分80%の酢酸ブチル溶液)62.5部、DPHA/DPPA混合物(質量比70/30の混合物)50部、HCPK2部、TPO1.5部、酢酸エチル33部、及び酢酸ブチル54.5部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
(Comparative Example 4)
62.5 parts of urethane acrylate (7) / PE4A mixture obtained in Synthesis Example 7 (mixture with a mass ratio of 79/21, butyl acetate solution with a nonvolatile content of 80%), DPHA / DPPA mixture (mixture with a mass ratio of 70/30) ) 50 parts, HCPK 2 parts, TPO 1.5 parts, ethyl acetate 33 parts, and butyl acetate 54.5 parts were mixed, heated to 40 ° C. and mixed to obtain an active energy ray-curable resin composition. .

(比較例5)
合成例1で得られたウレタンアクリレート(1)/PE4A混合物(質量比80/20の混合物、不揮発分80%の酢酸ブチル溶液)50部、DPHA/DPPA混合物(質量比70/30の混合物)10部、PE4A20部、TAIC30部、TPO6部、酢酸エチル33部、及び酢酸ブチル57部を混合し、40℃に加熱後混合して均一にし、活性エネルギー線硬化型樹脂組成物を得た。
(Comparative Example 5)
50 parts of the urethane acrylate (1) / PE4A mixture obtained in Synthesis Example 1 (mixture with a mass ratio of 80/20, butyl acetate solution with a nonvolatile content of 80%), DPHA / DPPA mixture (mixture with a mass ratio of 70/30) 10 Part, 20 parts of PE4A, 30 parts of TAIC, 6 parts of TPO, 33 parts of ethyl acetate, and 57 parts of butyl acetate were mixed after heating to 40 ° C. to obtain an active energy ray-curable resin composition.

上記の実施例1及び参考例1〜4で得られた活性エネルギー線硬化型樹脂組成物の各成分の配合組成を表1に、比較例1〜5で得られた活性エネルギー線硬化型樹脂組成物の各成分の配合組成を表2に示す。 Table 1 shows the composition of each component of the active energy ray-curable resin compositions obtained in Example 1 and Reference Examples 1 to 4 , and the active energy ray-curable resin compositions obtained in Comparative Examples 1 to 5 Table 2 shows the composition of each component of the product.

(評価用フィルムの作製)
上記の実施例1、参考例1〜4及び比較例1〜5で得られた活性エネルギー線硬化型樹脂組成物をトリアセチルセルロース(TAC)製フィルム(富士写真フィルム社製「TAC」、厚さ:80μm)又はポリエチレンテレフタレート(PET)製フィルム(東洋紡社製コスモシャインA4100、厚さ:100μm、易接着処理面に塗工)上に、ワイヤーバーを用いて塗布し、60℃で1分間加熱後、空気雰囲気下で紫外線照射装置(日本電池株式会社製「部S30型UV照射装置」、ランプ:120W/cmメタルハライドランプ2灯、ランプ高さ:20cm、照射光量:0.5J/cm)を用いて紫外線を照射し、膜厚が10μm、20μm及び30μmの硬化被膜を有するフィルムを得た。
(Production of evaluation film)
The active energy ray-curable resin compositions obtained in Example 1 above , Reference Examples 1 to 4 and Comparative Examples 1 to 5 were converted into triacetyl cellulose (TAC) film ("TAC" manufactured by Fuji Photo Film Co., Ltd., thickness). : 80 μm) or polyethylene terephthalate (PET) film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd., thickness: 100 μm, coated on easy-adhesion treated surface) using a wire bar, and heated at 60 ° C. for 1 minute In an air atmosphere, an ultraviolet irradiation device (“Part S30 type UV irradiation device” manufactured by Nippon Battery Co., Ltd., lamp: 120 W / cm 2 metal halide lamps, lamp height: 20 cm, irradiation light quantity: 0.5 J / cm 2 ) The film was irradiated with ultraviolet rays to obtain films having cured films with film thicknesses of 10 μm, 20 μm and 30 μm.

(評価用フィルムの表面硬度評価)
上記で得られた評価用フィルム(硬化被膜の膜厚:20μm)の硬化被膜の表面について、JIS K5600−5−4:1999に準拠し、500g荷重で鉛筆硬度を測定し、下記の基準により表面硬度を評価した。
◎:鉛筆硬度が4H以上
○:鉛筆硬度が3H
×:鉛筆硬度が2H以下
(Evaluation of surface hardness of evaluation film)
About the surface of the cured film of the film for evaluation (cured film thickness: 20 μm) obtained above, the pencil hardness is measured with a load of 500 g in accordance with JIS K5600-5-4: 1999, and the surface according to the following criteria. Hardness was evaluated.
◎: Pencil hardness is 4H or more ○: Pencil hardness is 3H
X: Pencil hardness is 2H or less

(評価用フィルムの耐擦傷性評価)
上記で得られた評価用フィルム(硬化被膜の膜厚:10μm)の硬化被膜の表面について、JIS K6404−16:1999に準拠し、クロックメーター形摩擦試験器、直径2.8cm円形摩擦子、スチールウール#0000、荷重1.5kg、100往復の条件で評価し、下記の基準により耐摩擦傷性を目視判定した。
○:傷なし
△:傷が1〜4本
×:傷が5本以上
(Evaluation of scratch resistance of evaluation film)
Regarding the surface of the cured film of the evaluation film (cured film thickness: 10 μm) obtained above, in accordance with JIS K6404-16: 1999, a clock meter type friction tester, 2.8 cm diameter circular friction element, steel Evaluation was made under the conditions of wool # 0000, load 1.5 kg, 100 reciprocations, and the abrasion scratch resistance was visually determined according to the following criteria.
○: No scratch Δ: 1 to 4 scratches ×: 5 or more scratches

(評価用フィルムのカール性評価)
上記で得られた評価用フィルム(硬化被膜の膜厚:10μm)から、100mm×100mm試験片を切り出し、23℃、65%RHの雰囲気下に24時間放置後、試験片の4端について、隣接する2点間の長さを測定し、隣接する2点間で最も小さい長さと他2点間の長さとを測定し、下式によってカール値を算出する。
カール値(mm)=100−(最小隣接2点間長さ+他の隣接2点間長さ)/2
(Evaluation of curl of evaluation film)
A 100 mm × 100 mm test piece was cut out from the evaluation film (cured film thickness: 10 μm) obtained above, and left for 24 hours in an atmosphere of 23 ° C. and 65% RH, and then adjacent to the four ends of the test piece. The length between the two points is measured, the smallest length between the two adjacent points and the length between the other two points are measured, and the curl value is calculated by the following equation.
Curl value (mm) = 100− (minimum length between two adjacent points + length between two adjacent points) / 2

上記で得られたカール値から、下記の基準によりカール性の評価を行った。
◎:カール値が10mm以下
○:カール値が10mmを超え、12mm以下
×:カール値が12mmを超える
From the curl value obtained above, the curl property was evaluated according to the following criteria.
A: Curl value is 10 mm or less B: Curl value exceeds 10 mm, 12 mm or less ×: Curl value exceeds 12 mm

(硬化被膜の基材に対する密着性評価)
上記で得られた評価用フィルム(硬化被膜の膜厚:10μm)に、JIS K5600−5−6:1999に準拠して、フィルムの硬化被膜表面に1mm間隔で縦、横6本の切れ目を入れて25個の碁盤目を作った。次に、市販のセロハンテープをその表面に密着させた後、一気に剥がしたとき、剥離せずに残ったマス目の数を数え、下記の基準により密着性を評価した。
○:残ったマス目の数が25個
△:残ったマス目の数が24個
×:残ったマス目の数が24個未満
(Evaluation of adhesion of cured film to substrate)
In accordance with JIS K5600-5-6: 1999, the film for evaluation obtained above (cured film thickness: 10 μm) is cut in 6 vertical and horizontal cuts at 1 mm intervals on the cured film surface of the film. Made 25 grids. Next, after the commercially available cellophane tape was brought into close contact with the surface and then peeled off at once, the number of cells remaining without being peeled was counted, and the adhesion was evaluated according to the following criteria.
○: Number of remaining squares is 25 Δ: Number of remaining squares is 24 ×: Number of remaining squares is less than 24

(評価用フィルムの裁断性評価)
上記で得られた評価用フィルム(硬化被膜の膜厚:30μm)を株式会社ダンベル製のスーパーダンベル(JIS K7113−1995に記載の2号形試験片の形状)のダンベルカッターを用いて打ち抜いた。次に、打ち抜いた評価用フィルムの裁断部を顕微鏡で確認し、下記の基準で裁断性を評価した.
○:裁断部の割れ、欠け、亀裂の大きさが0.1mm以下で切断部が滑らかなもの。
×:裁断部の割れ、欠け、亀裂の大きさが0.1mmを超える箇所があり、切断部が滑らかでないもの。
(Evaluation of cutting properties of evaluation film)
The film for evaluation (film thickness of the cured coating: 30 μm) obtained above was punched out using a dumbbell cutter made of Dumbbell Co., Ltd. Super Dumbbell (shape of No. 2 type test piece described in JIS K7113-1995). Next, the cutting part of the evaluation film punched out was confirmed with a microscope, and the cutting property was evaluated according to the following criteria.
○: Cracks, chips and cracks in the cut part are 0.1 mm or less and the cut part is smooth.
X: The cut part has cracks, chips and cracks where the size of the crack exceeds 0.1 mm, and the cut part is not smooth.

上記の評価結果を表1及び2に示す。   The evaluation results are shown in Tables 1 and 2.

Figure 0004001180
Figure 0004001180

Figure 0004001180
Figure 0004001180

表1に示した実施例1の評価結果から、本発明のフィルム用活性エネルギー線硬化型樹脂組成物の硬化被膜を有するフィルムは、カールが小さく、表面硬度が高く、耐擦傷性、裁断性に優れることが分かった。また、本発明のフィルム用活性エネルギー線硬化型樹脂組成物の硬化被膜は、フィルム基材との密着性にも優れることが分かった。
From the evaluation results of Example 1 shown in Table 1, the film having a cured coating of the active energy ray-curable resin composition for a film of the present invention has small curl, high surface hardness, scratch resistance, and cutting ability. I found it excellent. Moreover, it turned out that the cured film of the active energy ray hardening-type resin composition for films of this invention is excellent also in adhesiveness with a film base material.

表2に示した比較例1〜5の評価結果から、下記のことが分かった。   From the evaluation results of Comparative Examples 1 to 5 shown in Table 2, the following was found.

比較例1は、ノルボルナンジイソシアネートではなく、イソホロンジイソシアネートを用いて合成したウレタンアクリレート(4)を用いた例であるが、この樹脂組成物の硬化被膜を有するフィルムは、カールが大きく(フィルム基材がTACの場合)、耐擦傷性、裁断性が不十分であることが分かった。また、この樹脂組成物の硬化被膜は、フィルム基材との密着性も不十分であることが分かった。   Comparative Example 1 is an example using urethane acrylate (4) synthesized using isophorone diisocyanate instead of norbornane diisocyanate, but the film having a cured coating of this resin composition has a large curl (the film substrate is In the case of TAC), it was found that the scratch resistance and cutting properties were insufficient. Moreover, it turned out that the cured film of this resin composition is also insufficient in adhesiveness with a film base material.

比較例2は、ノルボルナンジイソシアネートではなく、ヘキサメチレンジイソシアネートを用いて合成したウレタンアクリレート(5)を含有する活性エネルギー線硬化型樹脂組成物の例であるが、この樹脂組成物の硬化被膜を有するフィルムは、カールが大きく、耐擦傷性、裁断性が不十分であることが分かった。また、この樹脂組成物の硬化被膜は、フィルム基材との密着性も不十分であることが分かった。   Comparative Example 2 is an example of an active energy ray-curable resin composition containing urethane acrylate (5) synthesized using hexamethylene diisocyanate instead of norbornane diisocyanate. A film having a cured coating of this resin composition Was found to have a large curl and insufficient scratch resistance and cutting properties. Moreover, it turned out that the cured film of this resin composition is also insufficient in adhesiveness with a film base material.

比較例3は、ノルボルナンジイソシアネートではなく、メチレンビス(4−シクロヘキシルイソシアネート)を用いて合成したウレタンアクリレート(6)を含有する活性エネルギー線硬化型樹脂組成物の例であるが、この樹脂組成物の硬化被膜を有するフィルムは、カールが大きく、表面硬度が低く、耐擦傷性が不十分であることが分かった。また、この樹脂組成物の硬化被膜は、フィルム基材との密着性も不十分であることが分かった。   Comparative Example 3 is an example of an active energy ray-curable resin composition containing urethane acrylate (6) synthesized using methylene bis (4-cyclohexyl isocyanate) instead of norbornane diisocyanate. It was found that a film having a coating film has large curl, low surface hardness, and insufficient scratch resistance. Moreover, it turned out that the cured film of this resin composition is also insufficient in adhesiveness with a film base material.

比較例4は、ノルボルナンジイソシアネートではなく、1,4−シクロヘキシルジイソシアネートを用いて合成したウレタンアクリレート(7)を含有する活性エネルギー線硬化型樹脂組成物の例であるが、この樹脂組成物の硬化被膜を有するフィルムは、カールが大きく(フィルム基材がTACの場合)、表面硬度が低く、耐擦傷性、裁断性が不十分であることが分かった。また、この樹脂組成物の硬化被膜は、フィルム基材との密着性も不十分であることが分かった。
は、表面硬度が低く、カールが大きく、密着性、裁断性にも劣ることが分かった。
Comparative Example 4 is an example of an active energy ray-curable resin composition containing urethane acrylate (7) synthesized using 1,4-cyclohexyl diisocyanate instead of norbornane diisocyanate. The cured film of this resin composition It was found that the film having a large curl (when the film substrate is TAC), the surface hardness is low, and the scratch resistance and the cutting property are insufficient. Moreover, it turned out that the cured film of this resin composition is also insufficient in adhesiveness with a film base material.
Was found to have low surface hardness, large curl, and poor adhesion and cutting.

比較例5は、ノルボルナンジイソシアネートではなく、イソホロンジイソシアネートを用いて合成したウレタンアクリレート(4)を含有する活性エネルギー線硬化型樹脂組成物の例であるが、この樹脂組成物の硬化被膜を有するフィルムは、表面硬度が低く、耐擦傷性が不十分であることが分かった。また、この樹脂組成物の硬化被膜は、フィルム基材との密着性も不十分であることが分かった。   Comparative Example 5 is an example of an active energy ray-curable resin composition containing urethane acrylate (4) synthesized using isophorone diisocyanate instead of norbornane diisocyanate. A film having a cured coating of this resin composition is It was found that the surface hardness was low and the scratch resistance was insufficient. Moreover, it turned out that the cured film of this resin composition is also insufficient in adhesiveness with a film base material.

Claims (5)

ノルボルナンジイソシアネート(a−1)と、ビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート(a−2)との付加反応物であるウレタンアクリレート(A)、1分子中に3個以上の(メタ)アクリロイル基を有する多官能アクリレート(B)及び/又は側鎖にエポキシ基を有するグリシジル(メタ)アクリレート系重合体に、α,β−不飽和カルボン酸を反応させた(メタ)アクリロイル基を有する重合体(C)を含有することを特徴とするフィルム保護層用活性エネルギー線硬化型樹脂組成物。 And norbornane diisocyanate (a-1), bi scan (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate wetting over preparative (a-2) an addition reaction in which a urethane acrylate (A), in one molecule 3 An α, β-unsaturated carboxylic acid was reacted with a polyfunctional acrylate (B) having at least one (meth) acryloyl group and / or a glycidyl (meth) acrylate polymer having an epoxy group on the side chain (meta ) An active energy ray-curable resin composition for a film protective layer, comprising a polymer (C) having an acryloyl group. 前記多官能アクリレート(B)が、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート及びトリス(2−アクリロイルオキシエチル)イソシアヌレートからなる群から選ばれる少なくとも1種の多官能アクリレートである請求項1記載のフィルム保護層用活性エネルギー線硬化型樹脂組成物。   The polyfunctional acrylate (B) is at least one selected from the group consisting of pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and tris (2-acryloyloxyethyl) isocyanurate. The active energy ray-curable resin composition for a film protective layer according to claim 1, which is a polyfunctional acrylate. 光重合開始剤(D)として、水酸基を有する光重合開始剤を含有する請求項1記載のフィルム保護層用活性エネルギー線硬化型樹脂組成物。   The active energy ray-curable resin composition for a film protective layer according to claim 1, comprising a photopolymerization initiator having a hydroxyl group as the photopolymerization initiator (D). 光重合開始剤(D)として、水酸基を有する光重合開始剤及びアシルホスフィンオキシド系光重合開始剤を含有する請求項1記載のフィルム保護層用活性エネルギー線硬化型樹脂組成物。   The active energy ray-curable resin composition for a film protective layer according to claim 1, comprising a photopolymerization initiator having a hydroxyl group and an acylphosphine oxide photopolymerization initiator as the photopolymerization initiator (D). 請求項1〜4のいずれか1項記載のフィルム保護層用活性エネルギー線硬化型樹脂組成物の硬化被膜からなる保護層を有することを特徴とするフィルム。   A film comprising a protective layer comprising a cured film of the active energy ray-curable resin composition for a film protective layer according to any one of claims 1 to 4.
JP2006275140A 2005-10-12 2006-10-06 Active energy ray-curable resin composition for film protective layer and film using the same Active JP4001180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006275140A JP4001180B2 (en) 2005-10-12 2006-10-06 Active energy ray-curable resin composition for film protective layer and film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005297609 2005-10-12
JP2006275140A JP4001180B2 (en) 2005-10-12 2006-10-06 Active energy ray-curable resin composition for film protective layer and film using the same

Publications (2)

Publication Number Publication Date
JP2007131837A JP2007131837A (en) 2007-05-31
JP4001180B2 true JP4001180B2 (en) 2007-10-31

Family

ID=38153750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006275140A Active JP4001180B2 (en) 2005-10-12 2006-10-06 Active energy ray-curable resin composition for film protective layer and film using the same

Country Status (1)

Country Link
JP (1) JP4001180B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657478B (en) * 2007-03-08 2011-07-27 Dic株式会社 Active energy ray-curable resin composition, active energy ray-curable coating material, and method for forming protective layer
TW200904841A (en) * 2007-03-29 2009-02-01 Dainippon Ink & Chemicals Active energy ray curing type resin composition for casting and hardening object
JP5229555B2 (en) * 2008-09-30 2013-07-03 Dic株式会社 Active energy ray-curable resin composition for coating and film substrate
JP2010083959A (en) * 2008-09-30 2010-04-15 Dic Corp Active energy ray-curable resin composition for coating, and film substrate
WO2010110135A1 (en) * 2009-03-23 2010-09-30 Dic株式会社 Adhesive protective film, screen panel, and portable electronic terminal
JP5769625B2 (en) * 2009-07-31 2015-08-26 名阪真空工業株式会社 Display film and method for producing the same
JPWO2011034035A1 (en) * 2009-09-18 2013-02-14 Dic株式会社 Active energy ray-curable resin composition, cured product and film thereof
JP2011208032A (en) * 2010-03-30 2011-10-20 Dic Corp Active energy ray curable resin composition and film substrate
JP6519986B2 (en) * 2014-05-09 2019-05-29 凸版印刷株式会社 Curable composition, surface layer film forming substrate using the same, method of producing surface layer film forming substrate
CN106459323A (en) * 2014-06-12 2017-02-22 三菱丽阳株式会社 Active energy beam-curable resin composition, resin molded articles, and method for producing resin molded articles
JP6481302B2 (en) * 2014-09-17 2019-03-13 三菱瓦斯化学株式会社 Curable resin composition, cured product and laminate
JPWO2016043242A1 (en) * 2014-09-19 2017-06-29 株式会社巴川製紙所 Film laminate and polarizing plate
JP6862733B2 (en) * 2015-09-24 2021-04-21 荒川化学工業株式会社 Active energy ray-curable resin composition for optics and film for optics
US20200123408A1 (en) * 2017-12-15 2020-04-23 Rohm And Haas Electronic Materials Llc Uv-curing acrylic resin compositions for thermoformable hard coat applications
JP2020164840A (en) * 2019-03-27 2020-10-08 荒川化学工業株式会社 Ultraviolet curable adhesive composition for protective film, cured product, and protective sheet

Also Published As

Publication number Publication date
JP2007131837A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4001180B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
JP4003800B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
KR100864349B1 (en) Actinic Radiation Curable Resin Composition For Film Protection Layer and Film and Optical Sheet Made by Using the Same
JP5470957B2 (en) Active energy ray-curable resin composition for film protective layer
JP5679465B2 (en) UV curable hard coat resin composition
KR102190726B1 (en) Uv-curing acrylic resin compositions for thermoformable hardcoat applications
JP2018111793A (en) Ultraviolet-curable resin composition and hard coat film
JP5082354B2 (en) Protective adhesive film
KR101391241B1 (en) Method of manufacturing clear hard coating film for optical use
JP2014189566A (en) Active energy ray-curable composition for cyclic olefin resin and cyclic olefin resin film using the composition
JP6451627B2 (en) Active energy ray-curable resin composition and automobile headlamp lens
JP2019085558A (en) Active energy ray curable resin composition and coating agent
JP2009173755A (en) Coating composition for plastic base material, and composite coating film formed from the same
JP6135234B2 (en) Active energy ray-curable composition for cyclic olefin resin and cyclic olefin resin film using the same
JP6874787B2 (en) Active energy ray-curable resin composition, cured product and laminate
JP7199185B2 (en) Antireflection hard coat film for molding
JP5255962B2 (en) Active energy ray-curable film-forming composition
JP5817295B2 (en) Active energy ray-curable resin composition, cured product thereof, and film
WO2007043570A1 (en) Active energy ray-curable resin composition for film protection layer, film using same and optical sheet
JP5892799B2 (en) Urethane (meth) acrylate that forms a cured product having elongation and excellent scratch resistance, and a photocurable resin composition containing the same
TW201802132A (en) Active energy ray curable composition
JP7110754B2 (en) Active energy ray-curable resin composition, coating agent using the same, and sheet
JP6331115B2 (en) Cyclic olefin resin film
JP2020002348A (en) Active energy ray curable resin composition, coating agent using the same, and sheet
JP5893493B2 (en) Hard coat composition for thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4001180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250