JP7108715B2 - 乳房障害の治療をモニターするための組成物および方法 - Google Patents

乳房障害の治療をモニターするための組成物および方法 Download PDF

Info

Publication number
JP7108715B2
JP7108715B2 JP2020560632A JP2020560632A JP7108715B2 JP 7108715 B2 JP7108715 B2 JP 7108715B2 JP 2020560632 A JP2020560632 A JP 2020560632A JP 2020560632 A JP2020560632 A JP 2020560632A JP 7108715 B2 JP7108715 B2 JP 7108715B2
Authority
JP
Japan
Prior art keywords
breast
image
images
breast image
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020560632A
Other languages
English (en)
Other versions
JP2021511186A (ja
JPWO2019145896A5 (ja
Inventor
パー ホール
ミカエル エリクソン
Original Assignee
パー ホール
ミカエル エリクソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パー ホール, ミカエル エリクソン filed Critical パー ホール
Publication of JP2021511186A publication Critical patent/JP2021511186A/ja
Publication of JPWO2019145896A5 publication Critical patent/JPWO2019145896A5/ja
Application granted granted Critical
Publication of JP7108715B2 publication Critical patent/JP7108715B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/138Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • Primary Health Care (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Pulmonology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Quality & Reliability (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Image Analysis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Description

背景
抗ホルモン化合物、例えば、選択的エストロゲン受容体モジュレーター(例えば、タモキシフェン)およびアロマターゼ阻害剤は、乳癌に対して、予防のために、および補助療法として使用されている。補助療法は、再発のリスクを低減させるために、一次療法に加えて与えられる。すべての検出可能な疾患は除去されたが、検出されていない疾患の存在が理由で再燃のリスクが残る場合に、補助療法が与えられる。手術および他の治療の後に疾患が残っていない場合、さらなる治療は、定義によれば、補助的なものではない。乳癌の予防としてタモキシフェンがいくつかの治験で試験され、健康な女性に与えた場合に、乳癌のリスクを50%程度低減させることが証明された。予防または補助療法のためにタモキシフェンが投与される場合、追跡するための検出可能な疾患がないという単純な理由のために、療法の効果をモニターすることが以前はできなかった。
マンモグラフィ密度は、線維腺組織からなる、マンモグラムの白色(X線撮影で不透明な)部分である。マンモグラフィ密度は乳癌のリスクと密接に関連していることが、当技術分野において周知である。マンモグラムで見られる密度が非常に低い女性と比較して、密度が高い女性は乳癌のリスクが6倍近く高い。さらに、タモキシフェンは、予防のためにタモキシフェンを使用している健康な女性であるか、補助療法下の乳癌患者であるかにかかわらず、治療した女性の大部分でマンモグラフィ密度に影響することが、少数の研究によって過去数年にわたって示された。データは、マンモグラフィ密度が低減した女性のみがタモキシフェン療法に応答することを示唆する。したがって、マンモグラフィ密度は、リスク因子としてだけでなく、療法応答の代用としても使用することができる。
乳腺密度はマンモグラフィなどの視覚的技法によって確認され、乳房内の線維腺組織の増大、すなわち、乳房における間質細胞および上皮細胞の増殖を反映する。乳腺密度は、密度の程度に基づいて、4クラス:クラスA(乳房はほぼ完全に脂肪である);B(線維腺密度が散在している);C(乳房は不均一に密であり、これによって、小さな腫瘤が不明瞭になる可能性がある);およびD(乳房は極度に密であり、これによって、マンモグラフィの感度が低下する、すなわちマスキングされる)に、臨床的に分類される(ACR BI-RADS Atlas 5th Edition, breast composition, 2013(非特許文献1))。
米国の少なくとも30州で、高密度乳房を有するかどうかを対象に知らせるように医師に要求している。現在、乳腺密度を変えるまたは低下させるための確立されたルーチンはないが、対象は、健康な生活様式を選択することに気付かされ、定期的なマンモグラムを受けて、乳腺密度の変化をモニターし、超音波などのさらなる検査を受けることを考慮する。
乳腺密度中に存在することは、対象の乳癌などの乳房障害の検出を隠す可能性がある。さらに、高マンモグラフィ密度それ自体が乳癌の強いリスク因子である[Boyd et al. J. Natl. Cancer Inst. 1995, May 3:87(9):670:5(非特許文献2)]。上皮および間質からなる、乳房における密領域は、X線撮影で密である。上皮および間質はマンモグラムで明るく見えるが、脂肪組織は放射線透過性であり、暗く見える。乳癌のリスクのマーカーであることに加えて、密度変化は、予防的設定(Cuzick et al. J. Natl. Cancer Inst. 2011 May 4:103(9): 744-52(非特許文献3))と補助的設定(Li et al. J. Clin. Oncol. 2013, Jun 20:31(18):2249-56(非特許文献4), Nyante et al. J. Natl. Cancer Inst. 2015 Feb 6; 107(3)(非特許文献5))の両方で、療法、例えば内分泌療法に対する応答の優れた代用であることが示された。内分泌療法に応答する患者または健常個体は、非応答者と比較して、密度の有意な低下を有する。
しかし、マンモグラフィ密度は、異なった理由で、現在、最適以下で測定される。第1に、同じ女性からの異なる時点でのマンモグラムは、異なる割合の乳房が画像に取り込まれる可能性があるので、必ずしも比較できるとは限らない。非生物学的影響またはアーティファクトをともなう密度の差異が取り込まれる。第2に、任意の時点でのマンモグラフィ密度の測定は、マンモグラムを撮っている間に乳房がマンモグラフィ機中でどれだけ圧迫されたかの影響を強く受けるので、比較できない。圧迫ルーチンは、病院の放射線技師によって個々に決定され、圧迫された乳房の厚さは、マンモグラフィ機のベンダー間で一貫性なく報告される。乳房圧迫を制御せず、機械によって報告される圧迫された乳房の厚さを正規化しない密度測定方法は、したがって、測定値に非生物学的成分を取り込む。
放射線科医および他の医療関係者は、乳房における様々な異常を特定するためにマンモグラフィ画像を調べる。Cumulusは、アナログマンモグラムでマンモグラフィ密度を測定するためのゴールドスタンダードである(Byng et al. Radiographics. 1998;18:1587-98(非特許文献6))。Cumulusの欠点は、これが、画像中の異なる乳房割合を考慮せず、圧迫を、および圧迫された乳房の厚さを考慮せず、労力が大きくかかり、読み取る者の経験に大きく依存することである(Burton et al. Breast Cancer Res. 2016;18:130(非特許文献7))。
いくつかの市販のツールは、デジタルRAWマンモグラムで、自動化された密度を測定するが、非生物学的な差異を取り込むという同じ懸念を依然としてともなう[Chen et al. Transl. Oncol. 2015 Dec. 8(6):435-445(非特許文献8)]。RAW画像は、変換後画像に変換される前の、病院のワークフローの短い時間枠の間でしか利用可能ではない。GE、Hologic、Philips、Sectra、およびSiemensなどのマンモグラフィ機のベンダーは異なる変換方法を使用しており、これが、変換後画像を比較するのを難しくする。
デジタルマンモグラフィシステムでマンモグラフィ画像を解析する場合、画像はデジタルワークステーション中に表示され、異なる検査からのマンモグラムを比較することが可能である。比較に使用される画像は、同じオブジェクトであるが、異なる時間で取得され、異なる画像化システムで取得され、および/または異なるディスプレイ設定を使用して取得される可能性がある。
比較のために乳房のマンモグラフィ画像を表示する目的で、異なるタイプの画像整列プロトコルが用いられている。例えば、頭尾方向視図の画像のための1つの整列プロトコルは、胸壁がビューポートの中央垂直軸で合うように、左および右の頭尾方向乳房視図を並べて配置することを含み得る。当業者に公知である同様の配置は、内外斜位方向視図のためにも存在する。他の画像整列ストラテジーは、乳房の解剖学的特徴、例えば、乳首および/または胸壁に基づく整列を含む。頭尾方向画像では、例えば、各ペアの画像の中にある乳首は、水平に整列されるように、すなわち、同じ高さにあるように位置し得る。内外斜位方向画像については、乳首または胸筋のいずれかが、整列のための特徴として選択され得る。
いくつかの特許および出願は、マンモグラフィ画像を処理する方法を記載している。US20090220139A1(特許文献1)は、オブジェクトによって規定されるマンモグラムのオブジェクト領域を囲む輪郭線を検出するための手段を記載している。
US9,311,717B2(特許文献2)は、腺の輪郭がオーバーレイされた乳房画像を処理し、表示するためのシステムを記載している。
US20160019690A1(特許文献3)は、複数の物理的にスケーリングされたマンモグラフィ画像を整列させるための方法およびシステムを記載している。
US9,615,805(特許文献4)およびUS20150023576A1(特許文献5)は、乳房画像で実施される形状解析手順に基づいて少なくとも2つの乳房画像を整列させる方法を記載している。
ベンダーを問わず変換後画像の密度を測定し、かつ整列および乳房圧迫を考慮する、自動化されたツールは、現在存在しない。大抵のデジタル画像は変換後画像として保存され、治療応答および密度変化を経時的にモニターするためには正確な測定が必要とされるので、これは残念なことである。
US20090220139A1 US9,311,717B2 US20160019690A1 US9,615,805 US20150023576A1
ACR BI-RADS Atlas 5th Edition, breast composition, 2013 Boyd et al. J. Natl. Cancer Inst. 1995, May 3:87(9):670:5 Cuzick et al. J. Natl. Cancer Inst. 2011 May 4:103(9): 744-52 Li et al. J. Clin. Oncol. 2013, Jun 20:31(18):2249-56 Nyante et al. J. Natl. Cancer Inst. 2015 Feb 6; 107(3) Byng et al. Radiographics. 1998;18:1587-98 Burton et al. Breast Cancer Res. 2016;18:130 Chen et al. Transl. Oncol. 2015 Dec. 8(6):435-445
概要
画像の由来を問わずマンモグラフィ画像の効率的な診断的レビューを容易にする方法およびシステムが、本明細書において記載される。本明細書において記載される方法およびシステムは、放射線科医および他の医療関係者が、臨床的に許容される時間枠内で、マンモグラム間で、例えばマンモグラフィ密度の差異を迅速に比較および検出し、それらの所見を報告することを可能にする。本明細書において記載される方法およびシステムは、密度変化が、療法応答の信頼できる強い代用であるということが証明されているので、経時的な密度変化を測定することを向上させる。本明細書において記載される方法およびシステムは、乳癌などの乳房障害の状況または転帰を、診断、予測、およびモニターするために乳房画像を処理するための改良法を提供し、それ以外の場合はマンモグラフィ乳腺密度(MBD)のマスキングが理由で検出するのが難しい乳房障害を検出する能力を高める。
したがって、臨床的に許容される時間枠内で、例えばマンモグラフィ密度の差異をマンモグラム間で迅速に比較し、検出し、それらの所見を報告することを可能にするために、その由来を問わず、マンモグラフィ画像の効率的な診断的レビューを容易にするマンモグラフィシステムを有することが望ましい。
本明細書において記載される方法およびシステムは、具体的には、ベンダーを問わず変換後画像の密度を測定し、整列および乳房圧迫を考慮する、自動化されたツールを提供することによって、未だ対処されていない医学的ニーズに対処する。したがって、一局面では、本開示は、(a)コンピュータ処理システムにおいて、対象の複数の乳房画像および画像を含むデータインプットを受け取る工程;ならびに、(b)(i)複数の乳房画像に対して閾値処理方法を実施し、複数の乳房画像における乳房領域をマーキングする、段階;(ii)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す、乳房領域の整列に最適な位置に、移動させる段階;および、(iv)相互画像情報の領域を含む整列画像をコンピュータによって生成する段階、をさらに含む整列アルゴリズムを、複数の乳房画像に適用する工程を含む、コンピュータ実装方法を提供する。
別の局面では、コンピュータによって実行される場合に、対象の複数の乳房画像を整列させるための方法をコンピュータに実行させる実行可能命令を保存する非一時的コンピュータ可読媒体が本明細書において提供され、方法は、(a)複数の乳房画像および画像メタデータを含むデータインプットを得る工程;(b)(i)複数の乳房画像に対して閾値処理方法を実施し、複数の乳房画像における乳房領域をマーキングする、段階;(ii)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す整列に最適な位置に、移動させる段階;および、(iv)相互画像情報の領域を含む整列画像をコンピュータによって生成する段階、をさらに含む整列アルゴリズムを、複数の乳房画像に適用する工程;ならびに、(c)統計的機械学習モデルに基づいて、整列画像中の相互画像情報の領域からの密度測定値を決定する工程を含む、コンピュータ実装方法を提供する。
本明細書において記載される態様のいずれかでは、データインプットは、ある期間にわたって、例えば、同じ女性が乳房障害についてモニターされる期間にわたって得られた複数(例えば、2つ以上)の乳房画像および画像メタデータを含むことができる。したがって、いくつかの態様では、方法は、(d)ある期間、例えば、モニターされる期間にわたって、密度測定値を提示する工程をさらに含む。いくつかの態様では、方法は、(e)ある期間、例えば、モニターされる期間にわたって、密度測定値を表示する工程をさらに含む。密度測定値は、臨床医、例えば、放射線科医もしくは主治医に、または対象、例えば患者に、提示または表示され得る。
いくつかの態様では、方法は、(i)整列画像または(ii)複数の乳房画像のそれぞれにおける乳房領域の相互画像情報からテクスチャ特徴を抽出する工程をさらに含む。いくつかの態様では、テクスチャ特徴は、特徴変数を生成するために、さらに階層化され、コンパイルされる。いくつかの態様では、画像メタデータは、圧迫された乳房の報告された厚さ、機械の報告されたX線管電圧、マンモグラフィの機種、および機械特異的な乳房厚圧迫定数、またはこれらの組み合わせを含む。いくつかの態様では、本開示は、複数の乳房画像および画像メタデータを得る工程、および乳房圧迫スコアを生成するために、画像メタデータに基づいて、乳房圧迫スコアアルゴリズムを複数の乳房画像に適用する工程を含むコンピュータ実装方法を提供する。
いくつかの態様では、方法は、統計的機械学習モデルに基づいて決定された、整列画像中の相互画像情報の領域からの密度測定値を含む生物医学的アウトプットを生成する工程をさらに含む。いくつかの態様では、乳房画像は、2D画像、3D画像、MRI画像、CTスキャン画像、またはマンモグラフィ画像である。いくつかの態様では、マンモグラフィ画像は、デジタル画像、アナログ画像、RAW画像、変換後画像、正規化画像、またはデジタル的にスケーリングされた画像である。
いくつかの態様では、方法は、(a)対象の乳房の第1の整列画像および第2の整列画像を生成する工程;ならびに、(b)第2の整列画像の相互画像情報の領域からの平均密度測定値を第1の整列画像の相互画像情報の領域からの平均密度測定値と比較する工程をさらに含む。いくつかの態様では、第1の整列画像は対象の右乳房のものであり、第2の整列画像は対象の左乳房のものである。他の態様では、対象の乳房の第1の整列画像は参照時間からのものであり、第2の整列画像は目的の時間からのものである。
いくつかの態様では、本明細書において記載される方法は、整列画像に少なくとも部分的に基づいて、対象の治療レジメンを指定する工程をさらに含む。いくつかの態様では、本明細書において記載される方法は、整列画像に少なくとも部分的に基づいて指定された治療レジメンに従って治療を提供する工程をさらに含む。治療レジメンを指定する工程、および指定された治療レジメンに従って治療を提供する工程は、臨床医もしくは医師に指示を与えること、または対象もしくは患者に治療を施す行為を含むことができることが理解されるであろう。例示的な治療レジメンは、本明細書において記載される。
いくつかの態様では、本明細書において記載される方法は、整列画像に少なくとも部分的に基づいて対象の治療を容易にするために、提示情報を提供する工程、をさらに含む。いくつかの態様では、本明細書において記載される方法は、整列画像に少なくとも部分的に基づいて対象の治療を容易にするために、診断情報のグラフ提示を提供する工程であって、その結果、情報が、整列されていない、または異なるように整列された画像に基づく同等の情報と比べて、経時的な変化の検出を向上させる、工程をさらに含む。
一局面では、デジタル処理デバイスによって実行可能な命令を含むコンピュータプログラムでエンコードされた非一時的コンピュータ可読保存媒体が提供され、非一時的コンピュータ可読保存媒体は、(a)対象の複数の乳房画像および画像を含むインプットデータを得るように構成されるソフトウェアモジュール;(b)(i)複数の乳房画像に対して閾値処理方法を実施して、乳房画像における乳房領域をマーキングする、段階;(ii)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)バイナリマスクを、互いへ向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す最適な位置に、移動させる段階;(iv)相互画像情報の領域を含む整列画像を生成する段階を含む整列アルゴリズムを適用するように構成される、ソフトウェアモジュール;ならびに、(c)相互画像情報の領域から密度測定値を決定するためのソフトウェアモジュールを含む。
上記のように、いくつかの態様では、ソフトウェアモジュールは、ある期間にわたって、例えば、同じ女性が乳房障害についてモニターされる期間にわたって、密度測定値を提示または表示する。したがって、いくつかの態様では、ソフトウェアモジュールは、(d)ある期間、例えば、モニターされる期間にわたって、密度測定値を提示するようにさらに構成される。いくつかの態様では、ソフトウェアモジュールは、(e)ある期間、例えば、モニターされる期間にわたって、密度測定値を表示するようにさらに構成される。上記のように、密度測定値は、臨床医、例えば、放射線科医もしくは主治医に、または対象、例えば、患者に提示または表示され得る。
いくつかの態様では、非一時的コンピュータ可読保存媒体は、相互画像情報に乳房圧迫スコアアルゴリズムを適用することによって乳房圧迫スコアを生成するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。他の態様では、非一時的コンピュータ可読保存媒体は、対象の治療レジメンを指定するように構成されるソフトウェアモジュールをさらに含む。
別の局面では、(a)実行可能命令を実施するように構成されるオペレーティングシステムとメモリデバイスとを含む、デジタル処理デバイス;(b)(i)対象の複数のマンモグラフィ画像を受け取るように構成されるソフトウェアモジュール;(ii)(1)複数の乳房画像に対して閾値処理方法を実施して、乳房画像における乳房領域をマーキングする、段階;(2)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(3)バイナリマスクを、互いに向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す最適な位置に、移動させる段階;および、(4)相互画像情報の領域を含む整列画像を生成する段階を含む整列アルゴリズムを複数の画像に適用するように構成される、ソフトウェアモジュール;ならびに(iii)対象の乳腺密度の変化を経時的に解析するように構成されるソフトウェアモジュールを含むデジタル処理デバイスによって実行可能な命令を含む、コンピュータプログラムを含む、コンピュータ実装システムが提供される。
いくつかの態様では、システムは、乳房圧迫スコアを生成するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。他の態様では、システムは、整列画像の相互画像情報の領域の乳腺密度測定値を経時的に比較する生物医学的アウトプットを生成するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。さらに他の態様では、システムは、対象の乳腺密度マスキングまたは乳癌または両方の、状況または転帰を、診断、予測、またはモニターし、タモキシフェン応答者またはタモキシフェン非応答者として対象を指定し、対象の治療レジメンを指定するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。
別の局面では、対象の乳房障害の状況または転帰を、診断、予測、またはモニターするためのコンピュータ実装方法であって、本明細書において記載される方法に従って対象の乳腺密度状況を決定する工程を含む、コンピュータ実装方法が本明細書において記載される。
別の局面では、本明細書において記載される方法に従って対象の密度測定値を経時的に決定する工程を含む療法に対する応答者または非応答者として対象を指定するコンピュータ実装方法が本明細書において記載される。いくつかの態様では、療法はタモキシフェンを含む術前補助療法または補助療法である。
別の局面では、乳房障害を有するか、または有するリスクがある対象の治療方法が本明細書において記載され、方法は、(a)本明細書において記載される方法のいずれかに従って対象を試験する工程;および(b)有効量の低用量タモキシフェンを対象に送達する工程を含む。いくつかの態様では、低用量タモキシフェンは、単位用量あたり、0.5mg、1mg、1.5mg、2mg、2.5mg、3mg、3.5mg、4mg、4.5mg、5mg、5.5mg、6mg、6.5mg、7mg、7.5mg、8mg、8.5mg、9mg、9.5mg、または10mgのタモキシフェンである。いくつかの態様では、低用量タモキシフェンは、経口的に、局所的に、管内に、または非経口的に投与される。一局面では、本発明は、低用量タモキシフェンが乳房障害を軽減させることを提供する。
いくつかの態様では、乳房障害は乳腺密度マスキングまたは乳癌である。
[本発明1001]
a.コンピュータ処理システムにおいて、対象の複数の乳房画像および画像メタデータを含むデータインプットを受け取る工程;ならびに
b.
i.該複数の乳房画像に対して閾値処理方法を実施し、該複数の乳房画像における乳房領域をマーキングする、段階;
ii.該複数の乳房画像のそれぞれにおける該乳房領域を、レイヤーにおいてスーパーインポーズする段階;
iii.乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す、該乳房領域の整列に最適な位置に、移動させる段階;および
iv.相互画像情報の領域を含む整列画像をコンピュータによって生成する段階
を含む整列アルゴリズムを、該複数の乳房画像に適用する工程
を含む、コンピュータ実装方法。
[本発明1002]
(i)整列画像または(ii)前記複数の乳房画像のそれぞれにおける前記乳房領域の相互画像情報からテクスチャ特徴を抽出する工程
をさらに含む、本発明1001の方法。
[本発明1003]
前記テクスチャ特徴が、特徴変数を生成するために、さらに階層化され、コンパイルされる、本発明1002の方法。
[本発明1004]
前記画像メタデータが、圧迫された乳房の報告された厚さ、機械の報告されたX線管電圧、マンモグラフィの機種、および機械特異的な乳房厚圧迫定数、またはこれらの組み合わせを含む、先行本発明のいずれかの方法。
[本発明1005]
乳房圧迫スコアを生成するために、画像メタデータに基づいて、前記複数の乳房画像に対して乳房圧迫スコアアルゴリズムを適用する工程
をさらに含む、先行本発明のいずれかの方法。
[本発明1006]
統計的機械学習モデルに基づいて決定された、前記整列画像中の相互画像情報の前記領域からの密度測定値を含む生物医学的アウトプットを生成する工程
をさらに含む、先行本発明のいずれかの方法。
[本発明1007]
前記乳房画像が、2D画像、3D画像、MRI画像、CTスキャン画像、またはマンモグラフィ画像である、先行本発明のいずれかの方法。
[本発明1008]
前記マンモグラフィ画像が、デジタル画像、アナログ画像、RAW画像、変換後画像、正規化画像、またはデジタル的にスケーリングされた画像である、本発明1007の方法。
[本発明1009]
a.前記対象の乳房の第1の整列画像および第2の整列画像を生成する工程;ならびに
b.該第2の整列画像の相互画像情報の前記領域からの平均密度測定値を該第1の整列画像の相互画像情報の前記領域からの平均密度測定値と比較する工程
をさらに含む、先行本発明のいずれかの方法。
[本発明1010]
a.前記第1の整列画像が前記対象の右乳房のものであり、前記第2の整列画像が前記対象の左乳房のものであること;または
b.前記対象の乳房の前記第1の整列画像が参照時間からのものであり、前記第2の整列画像が目的の時間からのものであること
をさらに含む、先行本発明のいずれかの方法。
[本発明1011]
前記整列画像に少なくとも部分的に基づいて、前記対象の治療レジメンを指定する工程
をさらに含む、本発明1001の方法。
[本発明1012]
前記整列画像に少なくとも部分的に基づいて前記対象の治療を容易にするために、提示情報を提供する工程
をさらに含む、本発明1001の方法。
[本発明1013]
前記整列画像に少なくとも部分的に基づいて前記対象の治療を容易にするために、診断情報のグラフ提示を提供する工程であって、その結果、該情報が、非整列画像に基づく同等の情報と比べて、経時的な変化の検出を向上させる、工程
をさらに含む、本発明1001の方法。
[本発明1014]
コンピュータによって実行される場合に、対象の複数の乳房画像を整列させるための方法を該コンピュータに実行させる実行可能命令をそこに保存する非一時的コンピュータ可読媒体であって、該方法が、
a.複数の乳房画像および画像メタデータを含むデータインプットを得る工程;
b.
i.該複数の乳房画像に対して閾値処理方法を実施し、該複数の乳房画像における乳房領域をマーキングする、段階;
ii.該複数の乳房画像のそれぞれにおける該乳房領域を、レイヤーにおいてスーパーインポーズする段階;
iii.乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す整列の最適な位置に、移動させる段階;および
iv.相互画像情報の領域を含む整列画像を生成する段階
を含む整列アルゴリズムを、該複数の乳房画像に適用する工程;ならびに
c.統計的機械学習モデルに基づいて、該整列画像中の相互画像情報の該領域からの密度測定値を決定する工程
を含む、非一時的コンピュータ可読媒体。
[本発明1015]
(d)ある期間にわたって前記密度測定値を提示する工程
をさらに含む、本発明1014の非一時的コンピュータ可読媒体。
[本発明1016]
a.対象の複数の乳房画像および画像メタデータを含むインプットデータを得るように構成されるソフトウェアモジュール;
b.
i.該複数の乳房画像に対して閾値処理方法を実施して、該乳房画像における乳房領域をマーキングする、段階;
ii.該複数の乳房画像のそれぞれにおける該乳房領域を、レイヤーにおいてスーパーインポーズする段階;
iii.バイナリマスクを、互いへ向けて、該乳房画像のピクセル強度が互いに対して最小の差異を示す最適な位置に、移動させる段階;
iv.相互画像情報の領域を含む整列画像を生成する段階
を含む整列アルゴリズムを適用するように構成される、ソフトウェアモジュール;ならびに
c.相互画像情報の領域から密度測定値を決定するためのソフトウェアモジュール
を含む、デジタル処理デバイスによって実行可能な命令を含むコンピュータプログラムでエンコードされた、非一時的コンピュータ可読保存媒体。
[本発明1017]
(d)ある期間にわたって前記密度測定値を提示する工程
をさらに含む、本発明1016の保存媒体。
[本発明1018]
前記相互画像情報に乳房圧迫スコアアルゴリズムを適用することによって乳房圧迫スコアを生成するように構成される1つまたは複数のソフトウェアモジュール
をさらに含む、本発明1016の保存媒体。
[本発明1019]
前記対象の治療レジメンを指定するように構成されるソフトウェアモジュール
をさらに含む、本発明1016の保存媒体。
[本発明1020]
a.実行可能命令を実施するように構成されるオペレーティングシステムとメモリデバイスとを含む、デジタル処理デバイス;
b.
i.対象の複数のマンモグラフィ画像を受け取るように構成されるソフトウェアモジュール;
ii.
1.該複数の乳房画像に対して閾値処理方法を実施して、該乳房画像における乳房領域をマーキングする、段階;
2.該複数の乳房画像のそれぞれにおける該乳房領域を、レイヤーにおいてスーパーインポーズする段階;
3.バイナリマスクを、互いへ向けて、該乳房画像のピクセル強度が互いに対して最小の差異を示す最適な位置に、移動させる段階;および
4.相互画像情報の領域を含む整列画像を生成する段階
含む整列アルゴリズムを該複数の画像に適用するように構成される、ソフトウェアモジュール;ならびに
iii.対象の乳腺密度の変化を経時的に解析するように構成されるソフトウェアモジュール
を含むデジタル処理デバイスによって実行可能な命令を含む、コンピュータプログラム
を含む、コンピュータ実装システム。
[本発明1021]
乳房圧迫スコアを生成するように構成される1つまたは複数のソフトウェアモジュール
をさらに含む、本発明1020のシステム。
[本発明1022]
整列画像の相互画像情報の前記領域の前記乳腺密度測定値を経時的に比較する生物医学的アウトプットを生成するように構成される1つまたは複数のソフトウェアモジュール
をさらに含む、本発明1020のシステム。
[本発明1023]
対象の乳腺密度マスキングまたは乳癌または両方の、状況または転帰を、診断、予測、またはモニターし、タモキシフェン応答者またはタモキシフェン非応答者として対象を指定し、該対象の治療レジメンを指定するように構成される、1つまたは複数のソフトウェアモジュール
をさらに含む、本発明1020のシステム。
[本発明1024]
対象の乳房障害の状況または転帰を、診断、予測、またはモニターするためのコンピュータ実装方法であって、本発明1001~1010のいずれかの方法に従って該対象の乳腺密度状況を決定する工程を含む、コンピュータ実装方法。
[本発明1025]
療法に対する応答者または非応答者として対象を指定するコンピュータ実装方法であって、本発明1001~1010のいずれかの方法に従って該対象の密度測定値を経時的に決定する工程を含む、コンピュータ実装方法。
[本発明1026]
前記療法がタモキシフェンを含む術前補助療法または補助療法である、本発明1025の方法。
[本発明1027]
乳房障害を有するか、または有するリスクがある対象の治療方法であって、
a.本発明1001~1010の方法のいずれかに従って該対象を試験する工程;および
b.有効量の低用量タモキシフェンを該対象に送達する工程
を含む、治療方法。
[本発明1028]
前記低用量タモキシフェンが、単位用量あたり、0.5mg、1mg、1.5mg、2mg、2.5mg、3mg、3.5mg、4mg、4.5mg、5mg、5.5mg、6mg、6.5mg、7mg、7.5mg、8mg、8.5mg、9mg、9.5mg、または10mgのタモキシフェンである、本発明1027の方法。
[本発明1029]
前記低用量タモキシフェンが、経口的に、局所的に、管内に、または非経口的に投与される、本発明1027または本発明1028のいずれかの方法。
[本発明1030]
前記乳房障害が乳腺密度マスキングまたは乳癌である、本発明1024~1029のいずれかの方法。
[本発明1031]
前記低用量タモキシフェンが前記乳房障害を軽減させる、本発明1027~1030のいずれかの方法。
前述の局面および本開示の付随する利点の多くは、これらが、添付の図面と併せて解釈される場合に、以下の詳細な説明を参照することにより、よりよく理解されるようになるので、より容易に認識されるようになるであろう。
オペレーティングシステム(110)、メモリデバイス(130)、保存デバイス(150)、ディスプレイ(120)、および放射線科医などのシステムの操作者による使用のためのキーボードおよびマウスなどのインプットデバイス(140)で構成されるデジタルプロセッサデバイス(100)を含み、画像取得ユニット(210)、例えば、マンモグラフィシステム、X線システム、MRIなどから、または画像保存ユニットまたはデバイス(220)から、直接的に、またはネットワークインターフェースを使用して、複数の乳房画像および画像メタデータを受け取るように構成される例示的なコンピュータ実装システム(600)のブロック図である。デジタル処理デバイスは、複数の乳房画像の整列のための1つまたは複数のソフトウェアモジュールを含み、乳房圧迫スコアアルゴリズムを実行して、複数の乳房画像および画像メタデータを使用して複数の乳房画像について乳房圧迫スコアを生成するコンピュータプログラム(300)を走らせるように構成される。デジタル処理デバイスはまた、アウトプット(400)、例えば、対象の乳房の整列画像ならびに/または対象から取得した複数の乳房画像および画像メタデータに基づいて、対象の乳房の密度測定値(例えば、パーセント密度、密領域、非密領域、乳房領域、乳房圧迫スコアおよびマンモグラムヘッダメタデータ)の変化を示す生物医学的報告を生成するようにも構成される。該システムは、デジタル処理ユニットにすべてのインプット、乳房画像およびアウトプットをデータベース(500)中に保存させるように構成される。 本明細書において記載される例示的な整列方法のフローチャート図を示す。 図3A、3B、および3Cは、胸部組織のマンモグラムを示す。図3Aは、乳房画像のサイズが同じ対象からの3つの異なるマンモグラムで多少類似している1例を示す。図3Bおよび3Cは、同じ放射線技師によって2分間間隔で撮られた同じ乳房の2つのマンモグラムを示す。図3Bでは、マンモグラフィ機における乳房配置の差異を示すために、マンモグラムをスーパーインポーズした。図3Cでは、実施例に記載されているように、密度測定値より前に、最小の乳房サイズを示す画像(図3Bで外形が描かれる上部の乳房)に2つの画像をデジタル的に整列させた。 図4Aおよび4Bは、閉経前および閉経後の女性における治療に応答した密度変化のノモグラムを示す。 STRATUSの機械学習のための訓練データセットで使用されたマンモグラムペアの数に関して、マンモグラフィ機のタイプごとの、RAW画像と変換後画像の間のパーセント密度のSpearmanの順位相関rを示す。図は、検証データセットからの結果を示す。 検証データセットにおけるRAW画像と変換後画像の間の95%CI(点線)との一致を比較する、標準化パーセント密度を用いたBland-Altman適合プロットを示す。検証データセットには、4,000個までのマンモグラムで訓練を受けた、すべてのマンモグラフィ機からのマンモグラムが含まれていた。グラフは、プロット中の密度測定値の数(右側のスケール)を示すように、赤色から白色への色変化で強化した。RAWマンモグラムと変換後マンモグラムの間の標準化平均密度差異は0.01であり、標準偏差は0.28であった。 RAWマンモグラムおよび変換後マンモグラムを有する8タイプのマンモグラフィ機、およびアナログマンモグラムタイプの間の、STRATUS平均パーセントマンモグラフィ密度と95%信頼区間の比較を示す。パーセントマンモグラフィ密度は、(0~10のスケールに)平方根変換し、年齢、BMI、および乳房圧迫スコアに対して調整した。乳房圧迫スコアは、機械のX線管電圧、乳房圧迫力、圧迫の間に記録された乳房圧迫の厚さ、および乳房の厚さに関する機械特異的な報告を較正するためのマンモグラフィ機特異的な定数を使用して計算した。変換後画像(アナログ画像も数に入れる)を有する39,186人の女性が含まれており、同様にRAW画像を有する31,075人の女性も含まれていた。28,908人の女性は、変換後マンモグラムとRAWマンモグラムの両方を有していた。女性のBMIに関する情報が不明であったので、Siemens機械(N=136の変換後およびN=113のRAW)ならびにHologic機械(N=1,098の変換後およびN=214のRAW)についてマンモグラムの数は制限されていた。 サブ解析では、BMIを調整因子としての乳房領域で置き換えた。これは、RAWマンモグラムおよび変換後マンモグラムにおいて、4.3という同じ平均パーセントマンモグラフィ密度を示し、機械間で有意差はなかった(データ非表示)。 図8Aおよび8Bは、本明細書において記載される方法を使用した、非整列画像および整列画像を示す。1~2年間隔で2つの時点で撮った整列マンモグラムおよび非整列マンモグラムを有する55,073人の女性における、パーセントマンモグラフィ密度の年次変化の比較。青色の近似曲線(非線形回帰)は、95%CIで、平均パーセント密度の年次変化を示す。丸ドットは、ベースラインにおける年齢ごとの密度平均を示す。緑色の曲線は、20~40のBMIを有する女性に対するベースラインにおけるBMIによって階層化された密度変化を示す。整列密度変化および非整列密度変化は、45~55歳の女性において、より明白な発生を示した。40歳の女性、N=2,499における年次平均パーセント密度低下は、整列密度測定値で0.7(95%CI 0.4~0.9)であり、非整列密度測定値で1.9(95%CI 1.7~2.2)であった。50歳の女性、N=1,878について対応する数は、1.9(CI 1.7~2.1)および2.7(CI 2.5~3.0)であった。 低用量タモキシフェンの無作為化二重盲検6群プラセボ対照試験の臨床試験計画。
定義
本明細書において使用する場合、用語「1つ(a)」、「1つ(an)」、および「その(the)」は、文脈において別段示さない限り、複数の意味を含む。
本明細書において使用する場合、「予防的療法」は、乳癌と診断されるリスクを低下させるために、乳癌のリスクが高い健常個体に施される療法を指す。
本明細書において使用する場合、「補助療法」は、乳癌の一次療法に続き、かつ再発のリスクを低下させるために、患者に施される療法を指す。乳癌の場合の補助全身療法は、再発を遅らせる、生存期間を延長する、または対象を治癒させるために、一次療法のすぐ後に通常開始する。
本明細書において使用する場合、「術前補助療法」は、乳癌の手術に先行し、かつ腫瘍量を低下させるために患者に施される療法を指す。
本明細書において使用する場合、「乳腺密度マスキング」は、マンモグラフィの高密度領域と腫瘍の両方の様子が同様であることにより、マンモグラフィの感度が低下することが理由で、マンモグラムにおいて隠されており検出されない腫瘍を指す。
本明細書において使用する場合、用語「タモキシフェン」は、(Z)-2-[4-(1,2-ジフェニル-1-ブテニル)フェノキシ]-N,N-ジメチルエタンアミンを指す。タモキシフェンは、E異性体またはE異性体とZ異性体の組み合わせを指すこともできる。
本明細書および特許請求の範囲において使用する場合、用語「含む(comprising)」、「含む(containing)」、および「含む(including)」は、包括的であり、非制限的であり、さらなる列挙されていない要素、構成成分、または方法工程を除外しない。したがって、用語「含む(comprising)」および「含む(including)」は、より制限的な用語「からなる」および「から本質的になる」を包含する。
本明細書において使用する場合、用語「剤形」は、本開示の化合物または組成物が患者に送達される形態を意味する。剤形は、その投与または送達の経路、例えば、限定されることなく、経口、非経口、局所、経皮、経乳頭、および管内送達に適した任意の形態で対象に送達される、本開示の化合物または組成物を指す。
本明細書において使用する場合、用語「対象」、「患者」、および「個体」は、本明細書において互換的に使用することができ、ヒトなどの哺乳動物を指す。哺乳動物としては、イヌ、ネコなどのペット動物、ラット、マウスなどの実験動物、ならびにウシおよびウマなどの家畜も挙げられる。別段の指定がない限り、哺乳動物は任意のジェンダーまたは性別のものでもよい。
本明細書において使用する場合、用語「単位剤形」は、対象のための単位投薬量に適した、物理的に分けられている単位を指し、各単位は、適切な薬学的賦形剤とともに所望の治療効果をもたらすように計算された所定量の活性物質を含む。
本明細書において使用する場合、「単位用量」は、1用量/1回/単一経路/単一接触点、すなわち、1投与イベントで投与される任意の治療剤または活性剤の用量である。本明細書において使用する場合、「分割投与」は、(1)1種または複数種の活性剤が少なくとも1日2回患者に投与される投与レジメン;(2)即時放出のために活性剤の一部が製剤化され、遅延放出またはパルス放出のために活性剤の一部が製剤化される、1種または複数種の活性剤を含む薬学的組成物の1日1回の投与;および(3)制御放出または持続性放出のために製剤化された活性剤を含む薬学的組成物の1日1回の投与、を指す。
本明細書において使用する場合、「乳房障害」は、乳腺密度をともなう、乳房の任意の疾患、状態または障害を指す。疑義を避けるために明記すると、本発明において、乳房障害は乳腺密度マスキングおよび乳癌を含む。
本明細書において使用する場合、「乳癌」は乳房細胞の任意の悪性腫瘍を意味する。乳癌は、前癌、初期癌、非転移性癌、転移前の癌、局部進行癌、および転移性癌のステージを含めた任意のステージの乳癌であってもよい。乳癌は侵襲性乳癌または上皮内乳癌であり得る。いくつかのタイプの乳癌が存在する。例示的な乳癌としては、限定されないが、上皮内乳管癌(DCIS)、上皮内小葉癌(LCIS)、侵襲性(または浸潤性)小葉癌(ILC)、侵襲性(または浸潤性)乳管癌(IDC)、微小浸潤乳癌(MIC)、炎症性乳癌、ER陽性(ER+)乳癌、ER陰性(ER-)乳癌、HER2+乳癌、トリプルネガティブ乳癌(TNBC)、腺様嚢胞(腺嚢)癌、低悪性度腺扁平上皮癌、髄様癌、粘液(もしくは、コロイド)癌、乳頭癌、管状癌、化生性癌、または微小乳頭癌が挙げられる。単一乳癌腫瘍は、これらのタイプの組み合わせでもよく、または侵襲性と上皮内癌の混合物でもよい。
DCISは、最も一般的な非侵襲性の乳癌である。これは、乳管の内側を覆う細胞を含む。DCISでは、細胞は、管壁を越えて周囲の胸部組織中に広がっていない。5例の新しい乳癌症例のうち約1例はDCISであると考えられる。LCISは、前癌性の新生物である。これは、侵襲性癌の素因を示し得る。LCISは、上皮内(乳管または小葉)乳癌の約15%しか占めない。
IDCは最も侵襲性の乳癌である。その名の通り、これは、乳管から始まり、次いで、周囲の脂肪組織に侵入する癌腫である。約8~10の侵襲性乳癌は浸潤性乳管癌である。IDCは、癌性組織を切除するための手術、および放射線療法によって治療されることが多い。さらに、IDCを治療するために、内分泌療法(例えば、タモキシフェン)および/または免疫療法(例えば、トラスツズマブ)と組み合わせた化学療法が使用されることが多い。
ILCは、乳房の小葉で発生し、周囲の組織に侵入した癌である。10例の侵襲性乳癌の約1例はILCである。ILCは、癌性組織を切除するための手術、および放射線療法によって治療される。さらに、ILCを治療するために、内分泌療法(例えば、タモキシフェン)および/または免疫療法(例えば、トラスツズマブ)と組み合わせた化学療法が使用されることが多い。
炎症性乳癌は、すべての乳癌の約1%~3%を占める。炎症性乳癌では、癌細胞は、皮膚中のリンパ管を遮断し、その結果、乳房を赤くし、温かく感じさせる。影響を受けた乳房は、大きくなるかもしくは硬くなる、敏感になる、または痒くなる可能性がある。炎症性乳癌は、化学療法、免疫療法、放射線療法、および場合によっては手術で治療される。
ER+乳癌は、癌性細胞の表面にエストロゲン受容体が存在することによって特徴付けられる。ER+癌細胞の増殖は、エストロゲンの有効性と関係がある(ホルモン依存的またはホルモン感受性乳癌)。およそ、すべての乳癌の80%がER+乳癌である。ER+乳癌に対する治療選択は、ERを遮断するタモキシフェンなどの内分泌剤、またはエストロゲンの生成を低減させるアロマターゼ阻害剤を含む。
詳細な説明
本開示は、対象の乳房障害の状況および転帰を、診断、予測、およびモニターするための、システム、媒体、および方法を提供する。別の局面では、本開示は、療法および治療レジメンに対する応答者または非応答者として対象を指定するための方法も提供する。
有利な局面では、本開示は、それらを必要とする対象からの複数の乳房画像を整列させ、整列画像に対して密度測定を実施するためのシステム、媒体、および方法を提供する。いくつかの態様では、システム、媒体、および方法は、乳房圧迫スコアアルゴリズムを使用して乳房圧迫スコアを画像に割り当てることをさらに含む。乳房圧迫スコアは、以下に記載の統計的機械学習モデルを使用して密度測定値を決定するのに有用である。別の局面では、本開示は、対象の乳房における密度測定値の変化を経時的に測定するためのシステム、媒体、および方法を提供する。いくつかの態様では、方法は完全に自動化される。
本明細書において記載されるシステム、媒体、および方法は、従来の方法と比べて予期しない利点を提供する。本方法は、整列画像において同じまたは実質的に同じ量の組織が見られるように、同じ女性からのマンモグラムを整列させることを可能にする。図3Aは、3つの異なる乳房画像のサイズおよび配向が実質的に同じであるか、または類似している場合を図示する。しかし、異なる時間におよび/もしくは異なる機械を使用して撮られた同じ女性のマンモグラムが乳房の同じ部分を示さない、または各画像の乳房のサイズおよび/もしくは配向が異なる場合が多い。これは図3Bに図示される。このことによって、密度の差異が生物学的因子(例えば、腫瘍の進行もしくは退縮)によるのか、または同じ女性から撮られた画像の差異によるのかを決定することが難しくなる。経時的な密度変化の正確な決定のためには、図3Cに図示するように画像が整列することが重要である。本明細書において記載されるシステム、媒体、および方法は、画像中の乳房のサイズもしくは配向、乳房圧迫の量、または胸部組織を画像化するのに使用されるマンモグラフィ機を問わず、異なるマンモグラム画像の整列を可能にすることによって、上記の問題に対する解決法を提供する。本明細書において記載されるシステム、媒体、および方法は、整列画像に基づいて、乳房障害の向上した治療も提供する。
整列
図2は、本明細書において記載される整列方法の一態様のフローチャート図を示す。一態様では、本開示は、(a)対象の複数の乳房画像および画像メタデータを含むデータインプットを得る工程;(b)(i)複数の乳房画像に対して閾値処理方法を実施し、複数の乳房画像における乳房領域をマーキングする、段階;(ii)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す、乳房領域の整列の最適な位置に、移動させる段階;および、(iv)相互画像情報の領域を含むアウトプット整列画像を生成する段階、をさらに含む整列アルゴリズムを、複数の乳房画像に適用する工程を含む、コンピュータ実装方法を提供する。いくつかの態様では、方法は完全に自動化される。
乳房領域またはバックグラウンドのいずれかとしてのインプット乳房画像(例えば、最初に取り込まれたマンモグラム画像、または乳房画像のスケーリングされたもしくは正規化されたバージョン)の一部分(バイナリ画像を生成するために、1つまたは複数のカーネル画像の対応する領域に対する多項式適合に少なくとも部分的に基づく。例えば、インプット乳房画像における各ピクセル(または、ボクセル)は、1つまたは複数のカーネル画像の対応する領域に対する多項式適合に基づいて、乳房領域またはバックグラウンドとして標識され得る。この関連で、カーネル画像の対応する領域が閾値のオーダー(例えば、オーダー3以上)を満たす多項式と適合する場合、乳房画像の一部分は、乳房領域として標識され得る。しかし、カーネル画像のどれも、閾値のオーダーを満たす多項式と適合した対応する領域を有さない場合、乳房画像の一部分はバックグラウンドとして標識され得る。画像の白色部分は標識された乳房領域であり、暗い部分はバックグラウンドであろう。
いくつかの態様では、方法は、整列画像中の相互画像情報の領域からテクスチャ特徴を抽出する工程をさらに含む。いくつかの態様では、特徴は、整列画像に対する閾値処理方法と少なくとも1つの輪郭追跡方法とのサイクルを適用することによって、抽出される。いくつかの態様では、抽出は、特徴変数への特徴の階層化をさらに含む。いくつかの態様では、抽出は、(a)整列画像に対する閾値処理方法と少なくとも1つの輪郭追跡方法とのサイクル;および(b)特徴変数への特徴の階層化を適用することをさらに含む。
テクスチャ特徴抽出(特徴測定)の適切な閾値処理方法としては、Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yenが挙げられる。適切な輪郭追跡方法としては、Skeletonizeが挙げられる。したがって、いくつかの態様では、閾値処理方法と輪郭追跡方法とのサイクルは、Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yen、およびSkeletonizeを含む。
本発明の目的に有用な適切な特徴としては、面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率が挙げられる。したがって、いくつかの態様では、閾値処理方法と輪郭追跡方法とのサイクルによって測定される特徴は、面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率を含む。
態様のいくつかでは、特徴の階層化は、乳房領域におけるテクスチャのサイズによって実施される。態様のいくつかでは、特徴は、特徴変数を形成するために階層化される。他の態様では、特徴は階層化され、特徴変数の行にコンパイルされる。
いくつかの態様では、テクスチャ特徴の抽出および階層化および特徴変数へのコンパイルは、複数の乳房画像の整列の前に、複数の乳房画像に対して実施される。
一局面では、抽出および階層化は、乳房画像メタデータタグならびに/または機械取得パラメータ(個々に、およびまとめて、以降「画像メタデータ」と称される)などのさらなるインプットデータを得ることをさらに含む。いくつかの態様では、画像メタデータとしては、非限定例として、使用されるX線照射(例えば、機械のX線管電圧、キロボルト、および管電流)、乳房に対する圧迫力、および圧迫された乳房の厚さ、マンモグラフの機種、機械特異的な厚み圧迫定数が挙げられる。いくつかの態様では、これらの画像メタデータは、特徴変数の単一行に加えられ、コンパイルされる。
乳房圧迫
一局面では、本発明は、乳房圧迫スコアを生成するために、複数の乳房画像および画像メタデータを含むデータインプットに基づいて、複数の画像に対して乳房圧迫スコアアルゴリズムを適用する工程をさらに含むコンピュータ実装方法を提供する。いくつかの態様では、コンピュータ実装方法は、(a)乳房圧迫力、圧迫された乳房の報告された厚さ、機械の報告されたX線管電圧、マンモグラフィの機種、機械特異的な乳房厚圧迫定数が報告された画像メタデータを含むデータインプットを得ること;(ii)乳房圧迫スコアを生成するために、画像メタデータを含むデータインプットに基づいて、複数の画像に対して乳房圧迫スコアアルゴリズムを適用することを含む。
いくつかの態様では、乳房圧迫スコアアルゴリズムは、複数の画像における相互情報領域に適用される。他の態様では、乳房圧迫スコアアルゴリズムは、複数の乳房画像における乳房領域マーキングに適用される。さらに他の態様では、乳房圧迫スコアアルゴリズムは、整列画像における相互情報領域に適用される。
そのような方法は、複数の乳房画像において、連続的におよび同時に各画像に対する乳房圧迫スコアを生成するために、複数の乳房画像を処理することができることが、当業者によって認識されるであろう。いくつかの態様では、本発明の目的に適切な画像メタデータとしては、限定されることなく、1つまたは複数のメタデータ、例えば、報告された乳房圧迫力、圧迫された乳房の報告された厚さ、機械の報告されたX線管電圧、マンモグラフィの機種、および機械特異的な乳房厚圧迫定数が挙げられる。
いくつかの態様では、乳房圧迫スコアは密度測定に使用される画像特徴である。乳房圧迫スコアは機械学習によって決定された乳房圧迫スコアと比較することができ、実施例に記載されているように、コンパレータとして使用される統計的機械学習モデルに組み入れることができる。
いくつかの態様では、方法は、マンモグラムあたり、≧500個の特徴変数、≧600個、≧700個、≧800個、≧900個、≧1000個の特徴変数を生成する。いくつかの態様では、システム、媒体、および方法は、マンモグラムあたり1027個までの特徴変数を生成する。
いくつかの態様では、方法は、特徴変数を生成するより前に乳房画像を前処理する。そのような前処理は、乳房画像に対して品質チェックを実施すること、乳房画像を物理的にまたはデジタル的にスケーリングすること、ピクセル(または、ボクセル)サイズによって画像を正規化すること、画像を再度方向付けすることなどを含む。
乳房画像は、対象の乳房の任意の適切な画像でもよい。当業者は、複数のタイプのマンモグラフィ画像、例えば、乳房の最上部から撮った乳房の視図を含む頭尾方向、および胸部の中心から乳房の側部まで撮った乳房の視図を含む内外斜位方向が存在することを認識するであろう。さらなる補足的視図としては、内外、外内、外内斜位、後期内外(late mediolateral)、段階斜位(step oblique)、スポット、スポット圧迫、ダブルスポット圧迫、拡大、拡張頭尾-XCCLおよびXCCM、腋窩などが挙げられる。
乳房画像は、単一平面上の画像投影、概観画像、レンダリングされた画像(例えば、多平面再フォーマット画像)、または一連の空間的に関連した画像または容積測定画像に由来する画像、例えば、トモシンセシス画像を含めた様々な画像化モダリティから得ることができる。画像は、任意のマンモグラフィシステムのベンダー、例えば、Phillips、General Electric (GE)、Volpara、Sectra、Hologic、Siemensなどからのものでもよい。
いくつかの態様では、乳房画像は、DICOMフォーマット化フルフィールドデジタルマンモグラフィ(FFDM)画像である。他の態様では、乳房画像はアナログマンモグラフィ画像である。さらに他の態様では、乳房画像は、2D画像、3D画像(例えば、トモシンセシス画像)、MRI画像、CTスキャン画像などである。さらに他の態様では、乳房画像は、デジタル画像、アナログ画像、RAW画像、変換後画像、正規化画像、または物理的またはデジタル的にスケーリングされた画像である。
他の態様では、方法は生物医学的アウトプットを生成する工程をさらに含む。さらに他の態様では、方法は、対象の乳房障害を診断、予測、またはモニターする工程をさらに含む。いくつかの態様では、乳房障害は乳腺密度マスキングまたは乳癌である。
さらに他の態様では、方法は、療法に対する応答者または非応答者として対象をさらに指定する。いくつかの態様では、療法は、化学療法または内分泌療法、例えば、タモキシフェンまたはアロマターゼ阻害剤を含む、術前補助療法、補助療法である。
さらに他の態様では、方法は、乳房障害と診断された、または乳房障害を有するリスクがある対象のための治療レジメンをさらに指定する。いくつかの態様では、治療レジメンは有効量の低用量タモキシフェンを含む。いくつかの態様では、低用量タモキシフェンは、0.01~10mgの低用量タモキシフェンである。
いくつかの態様では、低用量タモキシフェンは、単位用量あたり、0.5mg、1mg、1.5mg、2mg、2.5mg、3mg、3.5mg、4mg、4.5mg、5mg、5.5mg、6mg、6.5mg、7mg、7.5mg、8mg、8.5mg、9mg、9,5mg、または10mgのタモキシフェンである。
本発明の別の局面では、本開示は、コンピュータによって実行される場合に、対象の複数の乳房画像を整列させるための方法をコンピュータに実行させる実行可能命令を保存する非一時的コンピュータ可読保存媒体を提供し、方法は、(a)複数の乳房画像および画像メタデータを含むデータインプットを得る工程;(b)(i)複数の乳房画像に対して閾値処理方法を実施し、複数の乳房画像における乳房領域をマーキングする、段階;(ii)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、複数の乳房画像のピクセル強度が互いに対して最小の差異を示す、乳房領域の整列の最適な位置に、移動させる段階;および(iv)相互画像情報の領域を含むアウトプット整列画像を生成する段階、を含む整列アルゴリズムを、複数の乳房画像に適用する工程を含む。いくつかの態様では、方法は、整列画像中の相互画像情報の領域からテクスチャ特徴を抽出する工程をさらに含む。他の態様では、方法は、整列画像中の相互画像情報の領域から乳房圧迫スコアを生成する工程をさらに含む。
乳房領域またはバックグラウンドのいずれかとしてのインプット乳房画像(例えば、最初に取り込まれたマンモグラフィ画像、または物理的もしくはデジタル的にスケーリングされたもしくは正規化されたバージョンの乳房画像)の一部分(バイナリ画像を生成するために、1つまたは複数のカーネル画像の対応する領域に対する多項式適合に少なくとも部分的に基づく。例えば、インプット乳房画像における各ピクセル(または、ボクセル)は、1つまたは複数のカーネル画像の対応する領域に対する多項式適合に基づいて、乳房領域またはバックグラウンドとして標識され得る。この関連で、カーネル画像の対応する領域が閾値のオーダー(例えば、オーダー3以上)を満たす多項式と適合する場合、乳房画像の一部分は、乳房領域として標識され得る。しかし、カーネル画像のどれも、閾値のオーダーを満たす多項式と適合した対応する領域を有さない場合、乳房画像の一部分はバックグラウンドとして標識され得る。画像の白色部分は標識された乳房領域であり、暗い部分はバックグラウンドであろう。
いくつかの態様では、特徴は、整列画像に対する閾値処理方法と少なくとも1つの輪郭追跡方法とのサイクルを適用することによって、抽出される。いくつかの態様では、抽出は、特徴変数への特徴の階層化をさらに含む。いくつかの態様では、抽出は、(a)整列画像に対する閾値処理方法と少なくとも1つの輪郭追跡方法とのサイクル;および(b)特徴変数への特徴の階層化を適用することをさらに含む。
テクスチャ特徴抽出(特徴測定)の適切な閾値処理方法としては、Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yenが挙げられる。適切な輪郭追跡方法としては、Skeletonizeが挙げられる。したがって、いくつかの態様では、閾値処理方法と輪郭追跡方法とのサイクルは、Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yen、およびSkeletonizeを含む。
本発明の目的に有用な適切な特徴としては、面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率が挙げられる。したがって、いくつかの態様では、閾値処理方法と輪郭追跡方法とのサイクルによって測定される特徴は、面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率を含む。
態様のいくつかでは、特徴の階層化は、乳房領域におけるテクスチャのサイズによって実施される。態様のいくつかでは、特徴は、特徴変数を形成するために階層化される。他の態様では、特徴は階層化され、特徴変数の行にコンパイルされる。
いくつかの態様では、本明細書において開示される方法を含む非一時的コンピュータ可読保存媒体は、対象の複数の乳房画像および乳房画像メタデータを得ることをさらに含む。いくつかの態様では、乳房画像メタデータとしては、非限定例として、報告された、使用されるX線照射(例えば、管電圧、キロボルト、および管電流)、乳房に対する報告された圧迫力、ならびに圧迫中の乳房の報告された厚さ、報告されたマンモグラフィタイプ、ならびに報告された機械特異的な乳房厚圧迫定数が挙げられる。いくつかの態様では、本明細書において開示される方法を含む非一時的コンピュータ可読保存媒体は、乳房圧迫スコアを生成するために、乳房画像メタデータに基づいて、複数の画像に対して乳房圧迫スコアアルゴリズムを適用することをさらに含む。
少なくとも1つの態様では、本開示は、コンピュータによって実行される場合に、(i)画像メタデータを含むデータインプットを得る工程;および(ii)画像メタデータを含むデータインプットに基づいて、複数の画像に対して乳房圧迫スコアアルゴリズムを適用する工程であって、乳房圧迫スコアを生成する、工程を含む、乳房圧迫スコアをコンピュータ計算するための方法をコンピュータに実行させる実行可能命令を保存する非一時的コンピュータ可読媒体を提供する。
いくつかの態様では、これらのさらなるインプットデータ(例えば、画像メタデータ)が特徴変数の単一行に加えられ、コンパイルされる。
いくつかの態様では、本明細書において開示される方法を含む非一時的コンピュータ可読保存媒体は、マンモグラムあたり、≧500個の特徴変数、≧600個、≧700個、≧800個、≧900個、≧1000個の特徴変数を生成する。いくつかの態様では、本明細書において開示される方法を含む非一時的コンピュータ可読媒体は、マンモグラムあたり1027個までの特徴変数を生成する。
いくつかの態様では、方法を含む非一時的コンピュータ可読媒体は、特徴変数を生成するより前に乳房画像を前処理する。そのような前処理は、乳房画像に対して品質チェックを実施すること、乳房画像を物理的またはデジタル的にスケーリングすること、ピクセル(または、ボクセル)サイズによって画像を正規化すること、画像を再度方向付けすることなどを含む。
いくつかの態様では、方法を含む非一時的コンピュータ可読保存媒体は、複数の乳房画像および整列画像の相互画像情報の領域から密度測定値を決定することをさらに含む。
他の態様では、方法を含む非一時的コンピュータ可読保存媒体は、生物医学的アウトプットを生成することをさらに含む。さらに他の態様では、方法を含む非一時的コンピュータ可読保存媒体は、対象の乳房障害を診断、予測、またはモニターすることをさらに含む。いくつかの態様では、乳房障害は乳腺密度マスキングまたは乳癌である。
さらに他の態様では、方法を含む非一時的コンピュータ可読保存媒体は、療法に対する応答者または非応答者として対象を指定することをさらに含む。いくつかの態様では、療法は、化学療法または内分泌療法、例えば、タモキシフェンまたはアロマターゼ阻害剤を含む、術前補助療法または補助療法である。
さらに他の態様では、方法を含む非一時的コンピュータ可読保存媒体は、乳房障害と診断された、または乳房障害を有するリスクがある対象のための治療レジメンを指定することをさらに含む。いくつかの態様では、治療レジメンは有効量の低用量タモキシフェンを含む。いくつかの態様では、低用量タモキシフェンは、単位用量あたり0.01mg~10mgである。いくつかの態様では、低用量タモキシフェンは、単位用量あたり、0.5mg、1mg、1.5mg、2mg、2.5mg、3mg、3.5mg、4mg、4.5mg、5mg、5.5mg、6mg、6.5mg、7mg、7.5mg、8mg、8.5mg、9mg、9.5mg、または10mgのタモキシフェンである。
別の局面では、本開示は、対象の乳房障害を診断、予測、またはモニターするためのコンピュータ実装方法を提供し、方法は、(a)複数の乳房画像および画像メタデータを含むデータインプットを得る工程;(b)(i)複数の乳房画像に対して閾値処理方法を実施し、複数の乳房画像における乳房領域をマーキングする、段階;(ii)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、複数の乳房画像のうちの乳房画像のそれぞれのピクセル強度が互いに対して最小の差異を示す整列の最適な位置に、移動させる段階;および、(iv)相互画像情報の領域を含む整列画像を生成する段階を含む整列アルゴリズムを、複数の乳房画像に適用する工程;(d)統計的機械学習モデルに基づいて、相互画像情報の領域における症例特異的密度測定値を決定する工程を含む。
いくつかの態様では、対象の乳房障害を診断、予測、またはモニターするためのコンピュータ実装方法は、本明細書において開示される乳房圧迫スコアの生成のために、乳房圧迫スコア生成アルゴリズムを複数の乳房画像に適用する工程をさらに含む。
ある特定の態様では、乳癌は侵襲性癌または上皮内乳癌である。
いくつかの態様では、乳癌は、DCIS、LCIS、ILC、IDC、MIC、炎症性乳癌、ER陽性(ER+)乳癌、HER2+乳癌、腺様嚢胞(腺嚢)癌、低悪性度腺扁平上皮癌、髄様癌、粘液(もしくは、コロイド)癌、乳頭癌、管状癌、化生性癌、または微小乳頭癌であり得る。少なくとも1つの態様では、単一乳癌腫瘍は前述の組み合わせでもよく、または侵襲性と上皮内癌の混合物でもよい。
いくつかの態様では、乳房障害は増大した乳腺密度である。例えば、乳房障害は、BIRADsのクラスCまたはクラスDの乳腺密度乳腺密度マスキング)である。いくつかの態様では、対象は、クラスCまたはクラスDの乳腺密度に分類される増大したマンモグラフィ乳腺密度を有する。
本開示は、対象の乳房における密度測定値の変化を決定するためのコンピュータ実装方法を提供し、方法は、(a)対象の乳房の第1の整列画像および第2の整列画像を生成する工程;ならびに、(b)第2の整列画像の相互画像情報の領域からの平均密度測定値を第1の整列画像の相互画像情報の領域からの平均密度測定値と比較する工程を含む。いくつかの態様では、第1の整列画像は対象の右乳房からであり、第2の整列画像は対象の左乳房からである。他の態様では、対象の乳房の第1の整列画像は参照年(例えば、画像化のための、対象の最初のまたは早期の乳房スキャン)からであり、第2の整列画像は、対象のその同じ乳房の後期の(目的の)年からの整列画像である。したがって、本発明は、好都合なことに、他の乳房および乳房における経時的なモニタリング変化と比べて、対象の2つ(右および左)の乳房のそれぞれにおける乳腺密度の変化を検出するための方法を提供する。
本開示は、対象の乳房における密度測定値の変化を決定するためのコンピュータ実装方法を提供し、方法は、(a)(i)参照年からの複数の乳房画像および画像メタデータ、ならびに(i)目的の年からの複数の乳房画像およびメタデータを含むデータインプットを得る工程;(b)(i)(参照年および目的の年からの)複数の乳房画像に対して閾値処理方法を実施し、(参照年および目的の年からの)複数の乳房画像における乳房領域をマーキングする、段階;(ii)(参照年および目的の年からの)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す整列の最適な位置に、移動させる段階;ならびに(iv)相互画像情報の領域を含む整列画像を生成する段階を含む整列アルゴリズムを、(参照年および目的の年からの)複数の乳房画像に適用する工程;(c)参照密度測定値または予測データセットまたは統計的機械学習モデルの1つまたは複数との比較に基づいて、(参照年および目的の年からの)複数の乳房画像における相互画像情報の領域において密度測定値を決定する工程;ならびに(d)生物医学的アウトプットを生成する工程を含む。
いくつかの態様では、対象の乳房における密度測定値の変化を決定するためのコンピュータ実装方法は、本明細書において開示される乳房圧迫スコアの生成のために、乳房圧迫スコア生成アルゴリズムを複数の乳房画像に適用する工程をさらに含む。
本開示は、コンピュータによって実行される場合に、対象の乳房障害を診断、予測、またはモニターするための方法をコンピュータに実行させる実行可能命令を保存する非一時的コンピュータ可読保存媒体を提供し、方法は、(a)複数の乳房画像および画像メタデータを含むデータインプットを得る工程;(b)(i)複数の乳房画像に対して閾値処理方法を実施し、複数の乳房画像における乳房領域をマーキングする、段階;(ii)複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)乳房領域マーキングにおけるバイナリマスクを、互いへ向けて、乳房画像のピクセル強度が互いに対して最小の差異を示す、複数の乳房画像のそれぞれにおける乳房領域の整列の最適な位置に、移動させる段階;および(iv)相互画像情報の領域を含む整列画像を生成する段階を含む整列アルゴリズムを、複数の乳房画像に適用する工程;(c)参照密度測定値または参照予測データセットまたは統計的機械学習モデルの1つまたは複数との比較に基づいて、相互画像情報の領域における症例特異的密度測定値を決定する工程を含む。
乳房領域またはバックグラウンドのいずれかとしてのインプット乳房画像(例えば、最初に取り込まれたマンモグラム画像、または乳房画像のスケーリングもしくは正規化されたバージョン)の一部分(バイナリ画像を生成するために、1つまたは複数のカーネル画像の対応する領域に対する多項式適合に少なくとも部分的に基づく。例えば、インプット乳房画像における各ピクセル(または、ボクセル)は、1つまたは複数のカーネル画像の対応する領域に対する多項式適合に基づいて、乳房領域またはバックグラウンドとして標識され得る。この関連で、カーネル画像の対応する領域が閾値のオーダー(例えば、オーダー3以上)を満たす多項式と適合する場合、乳房画像の一部分は、乳房領域として標識され得る。しかし、カーネル画像のどれも、閾値のオーダーを満たす多項式と適合した対応する領域を有さない場合、乳房画像の一部分はバックグラウンドとして標識され得る。画像の白色部分は標識された乳房領域であり、暗い部分はバックグラウンドであろう。
いくつかの態様では、方法は、整列画像中の相互画像情報の領域からテクスチャ特徴を抽出する工程をさらに含む。いくつかの態様では、特徴は、整列画像に対する閾値処理方法と少なくとも1つの輪郭追跡方法とのサイクルを適用することによって、抽出される。いくつかの態様では、抽出は、特徴変数への特徴の階層化をさらに含む。いくつかの態様では、抽出は、(a)整列画像に対する閾値処理方法と少なくとも1つの輪郭追跡方法とのサイクル;および(b)特徴変数への特徴の階層化を適用することをさらに含む。
テクスチャ特徴抽出(特徴測定)の適切な閾値処理方法としては、Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yenが挙げられる。適切な輪郭追跡方法としては、Skeletonizeが挙げられる。したがって、いくつかの態様では、閾値処理方法と輪郭追跡方法とのサイクルは、Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yen、およびSkeletonizeを含む。
本発明の目的に有用な適切な特徴としては、面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率が挙げられる。したがって、いくつかの態様では、閾値処理方法と輪郭追跡方法とのサイクルによって測定される特徴は、面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率を含む。
態様のいくつかでは、特徴の階層化は、乳房領域におけるテクスチャのサイズによって実施される。態様のいくつかでは、特徴は、特徴変数を形成するために階層化される。他の態様では、特徴は階層化され、特徴変数の行にコンパイルされる。
いくつかの態様では、テクスチャ特徴の抽出および階層化および特徴変数へのコンパイルは、複数の乳房画像の整列の前に、複数の乳房画像に対して実施される。
いくつかの態様では、非一時的コンピュータ可読保存媒体は、乳房画像メタデータなどのさらなるインプットデータを得ることをさらに含む。いくつかの態様では、画像メタデータとしては、非限定例として、使用されるX線照射(例えば、キロボルト、および管電流)、乳房に対する圧迫力、ならびに圧迫中の乳房の厚さが挙げられる。いくつかの態様では、これらのさらなるインプットデータが特徴変数の単一行に加えられ、コンパイルされる。
いくつかの態様では、非一時的コンピュータ可読媒体は、マンモグラムあたり、≧500個の特徴変数、≧600個、≧700個、≧800個、≧900個、≧1000個の特徴変数を生成することをさらに含む。いくつかの態様では、システム、媒体、および方法は、マンモグラムあたり、1027個までの特徴変数を生成する。
いくつかの態様では、方法は、特徴変数を生成するより前に乳房画像を前処理する。そのような前処理は、乳房画像に対して品質チェックを実施すること、乳房画像を物理的またはデジタル的にスケーリングすること、ピクセル(または、ボクセル)サイズによって画像を正規化すること、画像を再度方向付けすることなどを含む。
いくつかの態様では、コンピュータによって実行される場合に、対象の乳房障害を診断、予測、またはモニターするための方法をコンピュータに実行させる実行可能命令を保存する非一時的コンピュータ可読保存媒体であって、方法が、本明細書において開示される乳房圧迫スコアの生成のために、乳房圧迫スコア生成アルゴリズムを複数の乳房画像に適用する工程をさらに含む、非一時的コンピュータ可読保存媒体。そのような方法は、複数の乳房画像において、連続的におよび同時に各画像に対する乳房圧迫スコアを生成するために、複数の乳房画像を処理することができることが、当業者によって認識されるであろう。
いくつかの態様では、本発明の目的に適切な画像メタデータは、1つまたは複数の画像メタデータ、例えば、報告された乳房圧迫力、圧迫された乳房の報告された厚さ、機械の報告されたX線管電圧、マンモグラフィの機種、および機械特異的な乳房厚圧迫定数、またはこれらの組み合わせを含む。
乳房画像は、対象の乳房の任意の適切な画像でもよい。当業者は、複数のタイプのマンモグラフィ画像、例えば、乳房の最上部から撮った乳房の視図を含む頭尾方向、および胸部の中心から乳房の側部まで撮った乳房の視図を含む内外斜位方向が存在することを認識するであろう。さらなる補足的視図としては、内外、外内、外内斜位、後期内外、段階斜位、スポット、スポット圧迫、ダブルスポット圧迫、拡大、拡張頭尾-XCCLおよびXCCM、腋窩などが挙げられる。
乳房画像および画像メタデータは、単一平面上の画像投影、概観画像、レンダリングされた画像(例えば、多平面再フォーマット画像)または一連の空間的に関連した画像または容積測定画像に由来する画像、例えば、トモシンセシス画像を含めた様々な画像化モダリティから得ることができる。画像は、任意のマンモグラフィシステムのベンダー、例えば、Phillips、General Electric (GE)、Volpara、Sectra、Hologic、Siemensなどからのものでもよい。
いくつかの態様では、乳房画像は、DICOMフォーマット化フルフィールドデジタルマンモグラフィ(FFDM)画像である。他の態様では、乳房画像はアナログマンモグラフィ画像である。さらに他の態様では、乳房画像は、2D画像、3D画像(例えば、トモシンセシス画像)、MRI画像、CTスキャン画像などである。さらに他の態様では、乳房画像は、デジタル画像、アナログ画像、RAW画像、変換後画像、正規化画像、または物理的またはデジタル的にスケーリングされた画像である。
別の局面では、本開示は、(a)対象の複数の乳房画像および画像を含むインプットデータを得るように構成されるソフトウェアモジュール;(b)(i)複数の乳房画像に対して閾値処理方法を実施して、乳房画像における乳房領域をマーキングする、段階;(ii)対象の乳房領域の整列画像を形成するために、複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(iii)バイナリマスクを、互いへ向けて、ピクセル強度が最小の差異を示す最適な位置に、移動させる段階;および、(iv)相互画像情報の領域を含む整列画像を生成する段階を含む整列アルゴリズムを適用するように構成されるソフトウェアモジュールを含むコンピュータ処理デバイスによって実行可能な命令を含むコンピュータプログラムでエンコードされた非一時的コンピュータ可読保存媒体を提供する。
いくつかの態様では、非一時的コンピュータ可読保存媒体は、(i)複数の乳房画像および画像メタデータを含むデータインプットを得ること;(ii)データインプットに対して乳房圧迫スコアアルゴリズムを適用することを含む乳房圧迫スコアアルゴリズムを適用するように構成される1つまたは複数のソフトウェアモジュールをさらに含む。乳房圧迫スコアアルゴリズムの適用によって、乳房圧迫スコアが生成される。いくつかの態様では、メタデータは、報告された乳房圧迫力、圧迫された乳房の報告された厚さ、機械の報告されたX線管電圧、マンモグラフィの機種、および機械特異的な乳房厚圧迫定数、またはこれらの組み合わせの1つまたは複数であり得る。
いくつかの態様では、非一時的コンピュータ可読保存媒体は、乳房圧迫スコアを含む相互画像情報の領域から平均密度測定値を決定するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。
他の態様では、非一時的コンピュータ可読保存媒体は、生物医学的アウトプットを生成するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。さらに他の態様では、アプリケーションは、対象の乳房障害を診断、予測、またはモニターするように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。いくつかの態様では、乳房障害は乳腺密度マスキングまたは乳癌またはこれらの組み合わせである。
さらに他の態様では、非一時的コンピュータ可読保存媒体は、療法に対する応答者または非応答者として対象を指定するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。いくつかの態様では、療法は、術前補助もしくは補助化学療法または内分泌療法、例えば、タモキシフェン、またはこれらの組み合わせを含む。
さらに他の態様では、非一時的コンピュータ可読保存媒体は、乳房障害と診断された、または乳房障害を有するリスクがある対象のための治療レジメンを指定するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。いくつかの態様では、治療レジメンは有効量の低用量タモキシフェンを含む。いくつかの態様では、治療レジメンは、0.01mg~10mgの低用量タモキシフェンを含む。いくつかの態様では、低用量タモキシフェンは、単位用量あたり、0.5mg、1mg、1.5mg、2mg、2.5mg、3mg、3.5mg、4mg、4.5mg、5mg、5.5mg、6mg、6.5mg、7mg、7.5mg、8mg、9mg、9.5mg、または10mgのタモキシフェンである。
本発明の別の局面では、本開示は、(a)実行可能命令を実施するように構成されるオペレーティングシステムとメモリデバイスとを含むデジタル処理デバイス/プロセッサ;(b)(i)対象の複数のマンモグラフィ画像および画像メタデータを受け取るように構成されるソフトウェアモジュール;(ii)(1)複数の乳房画像に対して閾値処理方法を実施して、乳房画像における乳房領域をマーキングする、段階;(2)対象の乳房領域の整列画像を形成するために、複数の乳房画像のそれぞれにおける乳房領域を、レイヤーにおいてスーパーインポーズする段階;(3)バイナリマスクを、互いへ向けて、ピクセル強度が最小の差異を示す最適な位置に、移動させる段階;および、(4)相互画像情報の領域を含むアウトプット整列画像を生成する段階を含む整列アルゴリズムを複数の画像に適用するように構成されるソフトウェアモジュール;ならびに(iii)対象の乳腺密度の変化を経時的に解析するように構成されるソフトウェアモジュールを含むデジタル処理デバイスによって実行可能な命令を含むコンピュータプログラムを含む、コンピュータ実装システムを提供する。
いくつかの態様では、システムは、(i)複数の乳房画像および画像メタデータを含むデータインプットを得ること;(ii)データインプットに対して乳房圧迫スコアアルゴリズムを適用することを含む乳房圧迫スコアアルゴリズムを適用するように構成される1つまたは複数のソフトウェアモジュールをさらに含む。乳房圧迫スコアアルゴリズムの適用によって、乳房圧迫スコアが生成される。いくつかの態様では、メタデータは、報告された乳房圧迫力、圧迫された乳房の報告された厚さ、機械の報告されたX線管電圧、マンモグラフィの機種、および機械特異的な乳房厚圧迫定数、またはこれらの組み合わせの1つまたは複数を含むことができる。
いくつかの態様では、システムは、生物医学的アウトプットを生成するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。さらに他の態様では、システムは、対象の乳房障害を診断、予測、またはモニターするように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。いくつかの態様では、乳房障害は乳腺密度マスキングまたは乳癌である。
さらに他の態様では、システムは、療法に対する応答者または非応答者として対象を指定するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。いくつかの態様では、療法は、術前補助もしくは補助化学療法および/または内分泌療法、例えば、タモキシフェンを含む。
さらに他の態様では、システムは、乳房障害と診断された、または乳房障害を有するリスクがある対象のための治療レジメンを指定するように構成される、1つまたは複数のソフトウェアモジュールをさらに含む。いくつかの態様では、治療レジメンは有効量の低用量タモキシフェンを含む。いくつかの態様では、治療レジメンは、0.01mg~10mgの低用量タモキシフェンを含む。いくつかの態様では、低用量タモキシフェンは、単位用量あたり、0.5mg、1mg、1.5mg、2mg、2.5mg、3mg、3.5mg、4mg、4.5mg、5mg、5.5mg、6mg、6.5mg、7mg、7.5mg、8mg、9mg、9.5mg、および10mgのタモキシフェンである。
生物医学的アウトプット
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、1つもしくは複数の生物医学的アウトプットまたはそれらの使用を含む。いくつかの態様では、生物医学的アウトプットは、1つまたは複数の症例特異的密度測定値を含む。いくつかの態様では、症例特異的密度測定値としては、非限定例として、パーセント密度、密領域、非密領域、乳房領域、相互画像の領域、乳房圧迫スコア、および画像メタデータヘッダが挙げられる。いくつかの態様では、生物医学的アウトプットは、治療に応答した密度変化の臨床像に対するノモグラムを含む。他の態様では、生物医学的インプットは、対象の整列乳房画像を含む。
いくつかの態様では、1つまたは複数の症例特異的密度測定値は、1つまたは複数の予測データセットと比較することによって決定される。予測データセットは、本明細書において開示されるシステム、媒体、および方法によって生成される画像解析特徴変数(R-データセット)を(RAW)画像参照密度測定値とマッチさせ、相関させ、スケーリングされた主成分分析(PCA)に特徴変数を供することを含む、本発明のシステム、媒体、および方法によって、本明細書において開示されるように生成された。
いくつかの態様では、症例特異的アウトプットの密度測定値と1つもしくは複数の予測データセットまたは参照密度測定値との比較は、Spearmanのランク係数解析、Bland-Altman適合プロット解析、Leveneの検定、Studentのt検定、乳房圧迫スコア、またはこれらの組み合わせに基づく。
少なくとも1つの態様では、症例特異的アウトプットの密度測定値と本明細書(実施例)において記載されるものなどの統計的機械学習モデルとの比較。
いくつかの態様では、生物医学的アウトプットは、1つまたは複数の密度測定値の経時的変化を含む。いくつかの態様では、1年の症例特異的アウトプットの密度測定値は、別の年の症例特異的アウトプットにおける密度測定値と比較され、Spearmanのランク係数解析、Bland-Altman適合プロット解析、Leveneの検定、Studentのt検定、乳房圧迫スコア、またはこれらの組み合わせに基づく。
いくつかの態様では、生物医学的アウトプットは症例特異的特徴をさらに含む。いくつかの態様では、症例特異的特徴は階層化される。
いくつかの態様では、生物医学的アウトプットは、診断アウトプット、予想アウトプット、または予後アウトプットをさらに含む。他の態様では、診断アウトプットは、対象の乳腺密度の変化を含む。いくつかの態様では、予後アウトプットは、対象における乳癌の再発の尤度、または療法に対する、例えば、化学療法もしくは内分泌療法を含む術前補助療法もしくは補助療法に対する応答者もしくは非応答者としての対象の指定を含む。いくつかの態様では、予想アウトプットは、治療レジメンに対する対象の応答を予測することを含む。
分類子(特徴変数)
いくつかの態様では、1つまたは複数の特徴変数を生成するためのシステム、媒体、および方法が、本明細書においてさらに開示される。いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、(a)複数の乳房画像および画像メタデータを含むデータインプットを得ること;(b)複数の乳房画像に対して閾値処理方法を実施し、複数の乳房画像における乳房領域をマーキングすること;(c)データインプットに基づいて乳房圧迫スコアを計算すること;(d)複数の画像に対する閾値処理方法と少なくとも1つの輪郭追跡方法との1または複数のサイクルを適用することによって、乳房領域からテクスチャ特徴を抽出すること;(e)特徴を特徴変数に階層化することを含むコンピュータ実装方法を使用して、特徴変数を生成する。いくつかの態様では、分類子は乳房圧迫スコアを含む。いくつかの態様では、コンピュータ実装方法は、メタデータに基づいて、複数の乳房画像に対して乳房圧迫スコアアルゴリズムを適用して、乳腺密度スコアを生成することをさらに含む。
いくつかの態様では、特徴変数は、(a)複数の画像を整列させて、相互画像情報の領域を含む整列画像を形成すること;(b)複数の画像からデータインプットを得て、乳房圧迫スコアを計算すること;(c)相互画像情報の領域からテクスチャ特徴を抽出することを含む、本明細書において開示されるシステム、媒体、および方法によって生成される、画像特性である。いくつかの態様では、抽出は、(a)整列画像に対する閾値処理方法と少なくとも1つの輪郭追跡方法とのサイクル;および(b)特徴変数への特徴の階層化を適用することをさらに含む。いくつかの態様では、画像特性は、メタデータに基づいて、複数の乳房画像に対して乳房圧迫スコアアルゴリズムを適用して、乳腺密度スコアを生成することによって生成される、乳房圧迫スコアである。
テクスチャ特徴抽出(特徴測定)の適切な閾値処理方法としては、Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yenが挙げられる。適切な輪郭追跡方法としては、Skeletonizeが挙げられる。したがって、いくつかの態様では、閾値処理方法と輪郭追跡方法とのサイクルは、Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yen、およびSkeletonizeを含む。
本発明の目的に有用な適切な特徴としては、面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率が挙げられる。したがって、いくつかの態様では、閾値処理方法と輪郭追跡方法とのサイクルによって測定される特徴は、面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率を含む。
態様のいくつかでは、特徴の階層化は、乳房領域におけるテクスチャのサイズによって実施される。他の態様では、特徴は特徴変数の行にコンパイルされる。
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、乳房画像メタデータなどのさらなるインプットデータおよび/または機械取得パラメータを得ることをさらに含む。いくつかの態様では、機械取得パラメータとしては、非限定例として、使用されるX線照射(例えば、キロボルト、および管電流)、乳房に対する圧迫力、および圧迫中の乳房の厚さが挙げられる。いくつかの態様では、これらのさらなるインプットデータが特徴変数の単一行に加えられ、コンパイルされる。
いくつかの態様では、システム、媒体、および方法は、マンモグラムあたり、≧500個の特徴変数、≧600個、≧700個、≧800個、≧900個、≧1000個の特徴変数を生成する。いくつかの態様では、システム、媒体、および方法は、マンモグラムあたり、1027個までの特徴変数を生成する。
いくつかの態様では、システム、媒体、および方法は、特徴変数を生成するより前に乳房画像を前処理する。そのような前処理は、乳房画像に対して品質チェックを実施すること、乳房画像を物理的またはデジタル的にスケーリングすること、ピクセル(または、ボクセル)サイズによって画像を正規化すること、画像を再度方向付けすることなどを含む。
いくつかの態様では、システム、媒体、および方法は、乳房画像を含むインプットデータを読み取ることによって開始する。いくつかの態様では、乳房画像は、DICOMフォーマット化フルフィールドデジタルマンモグラフィ(FFDM)画像である。他の態様では、乳房画像はアナログマンモグラフィ画像である。さらに他の態様では、乳房画像は、2D画像、3D画像(例えば、トモシンセシス画像)、MRI画像、CTスキャン画像などである。さらに他の態様では、乳房画像は、デジタル画像、アナログ画像、RAW画像、変換後画像、正規化画像、または物理的またはデジタル的にスケーリングされた画像である。
システム、媒体、および方法は、一度に単一の乳房画像を、または同時に複数の乳房画像を読み取るように構成される。これは、手動もしくはバッチで行われ得るか、または完全に自動化され得る。いくつかの態様では、本発明のシステム、媒体、および方法は完全に自動化される。
システム、媒体、および方法は、品質管理を実施し、アーティファクトについて画像を精査する。本明細書において開示される方法によって非生物学的アーティファクトが解析から除去されることは、本発明の一局面である。(1)コンピュータプログラムが画像を読み取る。画像がアーティファクトを含む低品質のものであることが分かると、画像は、アーティファクトで品質チェックマークが付けられる。(2)画像は、正規化された画像解像度にデジタル的にスケーリングされる。いくつかの態様では、この正規化されたサイズは、ピクセル(または、ボクセル)サイズあたり200ミクロンである。いくつかの態様では、アナログ画像は、実際のマンモグラム領域の周りの任意の枠を除去するために、トリミングされる。(3)コンピュータプログラムは、乳房の胸壁が常に同じ側に現れるように、例えば、胸壁が常にマンモグラムの左側面に現れるように、画像をフリップする。(4)コンピュータプログラムは、マンモグラムが陰画として現れるかどうかを検出し、次いで、ピクセル強度表示が逆転されると、ルックアップテーブルを反転させる。
いくつかの態様では、コンピュータプログラムは、複数の画像に対する報告された乳房圧迫力、圧迫された乳房の報告された厚さ、機械の報告されたX線管電圧、マンモグラフィの機種、および機械特異的な乳房厚圧迫定数に関する情報などの画像メタデータを検索する。乳房圧迫スコアは、検索された情報に基づいて計算される。
いくつかの態様では、複数の乳房画像の各乳房画像の乳房領域は、本明細書において開示されるように相互画像情報の領域を特定または決定するために、特徴変数を生成した後に整列される。いくつかの態様では、(複数の乳房画像に属する)各乳房画像における相互画像情報の各領域における密度測定値は、整列前の予測データと比較することによって決定される。各乳房画像における各相互画像情報の密度測定値は平均される。他の態様では、密度測定値は、整列画像の乳房領域における相互画像情報の領域に関して決定される。他の態様では、各乳房画像における各相互画像情報の密度測定値は別々に使用される。
デジタル処理デバイス
いくつかの態様では、本明細書において記載されるシステム、媒体、および方法は、デジタル処理デバイスまたはその使用を含む。さらなる態様では、デジタル処理デバイスは、デバイスの機能を実行する1つまたは複数のハードウェア中央処理ユニット(CPU)またはプロセッサを含み、こうしたハードウェア中央処理デバイス(CPU)またはプロセッサであり得る。プロセッサの非限定例としては、マイクロプロセッサ、デジタル信号プロセッサ、グラフィック処理ユニットなどが挙げられる。さらに別の態様では、デジタル処理デバイスは、実行可能命令を実施するように構成されるオペレーティングシステムをさらに含む。さらに他の態様では、デジタル処理デバイスは、マイクロプロセッサ、デジタル信号プロセッサ、グラフィック処理ユニット、およびデータ取得ユニットなどのプロセッサを含む。いくつかの態様では、デジタル処理デバイスは、コンピュータネットワークに接続されてもよい。さらなる態様では、デジタル処理デバイスは、ワールドワイドウェブにアクセスするようにインターネットに接続されてもよい。さらに別の態様では、プロセッサは、クラウドコンピューティングインフラストラクチャに接続されてもよい。他の態様では、デジタル処理デバイスはイントラネットに接続されてもよい。他の態様では、プロセッサは、メモリデバイスまたはデータ保存デバイスに接続されてもよい。
本明細書における説明によれば、適切なプロセッサとしては、非限定例として、サーバコンピュータ、デスクトップコンピュータ、ラップトップコンピュータ、ノートブックコンピュータ、サブノートブックコンピュータ、ネットブックコンピュータ、ネットパッドコンピュータ、セットトップコンピュータ、ハンドヘルドコンピュータ、インターネットアプライアンス、モノのインターネット、モバイルスマートフォン、タブレットコンピュータ、携帯情報端末、ビデオゲームコンソール、および乗り物が挙げられる。当業者は、多くのスマートフォンが本明細書において記載されるシステムでの使用に適することを認識するであろう。当業者は、任意のコンピュータネットワーク接続性を有する、テレビ、ビデオプレーヤー、およびデジタル音楽プレーヤーが本明細書において記載されるシステムでの使用に適することも認識するであろう。適切なタブレットコンピュータとしては、当業者に公知である、ブックレット、スレート、およびコンバーチブル構成を有するものが挙げられる。
他の態様では、デジタルプロセッサデバイスは実行可能命令を実施するように構成されるオペレーティングシステムを含む。オペレーティングシステムは、例えば、プログラムおよびデータを含むソフトウェアであり、これは、デバイスのハードウェアを管理し、アプリケーションの実行のためのサービスを提供する。当業者は、適切なサーバオペレーティングシステムとしては、非限定例として、FreeBSD、OpenBSD、NetBSD(登録商標)、Linux、Apple(登録商標)、Mac OS X Server(登録商標)、Oracle(登録商標)、Solaris(登録商標)、Windows Server(登録商標)、VMware、およびNovell Netware(登録商標)が挙げられることを認識するであろう。当業者は、適切なパーソナルコンピュータオペレーティングシステムとしては、非限定例として、Microsoft(登録商標)、Windows(登録商標)、Apple(登録商標)、Mac OS X(登録商標)、UNIX(登録商標)、およびUnix様オペレーティングシステム、例えば、GNU/Linux(登録商標)が挙げられることを認識するであろう。いくつかの態様では、オペレーティングシステムはクラウドコンピューティングによって提供される。当業者は、適切なモバイルスマートフォンオペレーティングシステムとしては、非限定例として、Nokia Symbian OS(登録商標)、Apple, iOS(登録商標)、Research in Motion(登録商標)、Blackberry OS(登録商標)、Google(登録商標)Android(登録商標)、Microsoft Windows Phone OS(登録商標)、Microsoft Windows Mobile OS(登録商標)、Linux(登録商標)、およびPalm WebOS(登録商標)が挙げられることも認識するであろう。
いくつかの態様では、デバイスは保存および/またはメモリデバイスを含む。保存および/またはメモリデバイスは、データまたはプログラムを一時的に、または永久的に保存するのに使用される、1つまたは複数の物理的機器である。いくつかの態様では、デバイスは揮発性メモリであり、保存情報を維持するために電力を必要とする。他の態様では、デバイスは不揮発性メモリであり、デジタル処理デバイスが電力供給されていない場合でも保存情報を保持する。さらなる態様では、不揮発性メモリはフラッシュメモリーを含む。他の態様では、不揮発性メモリはダイナミックランダムアクセスメモリ(DRAM)を含む。さらに他の態様では、不揮発性メモリは強誘電体ランダムアクセスメモリ(FRAM)を含む。さらに他の態様では、不揮発性メモリは相変化ランダムアクセスメモリ(PRAM)を含む。他の態様では、デバイスは保存デバイスであり、これには、非限定例として、CD-ROM、DVD、フラッシュメモリドライブ、磁気テープドライブ、磁気ディスクドライブ、光ディスクドライブ、ソリッドステートドライブ、およびクラウドコンピューティングベースのストレージが含まれる。さらなる態様では、保存および/またはメモリデバイスは、本明細書において開示されるものなどのデバイスの組み合わせである。
いくつかの態様では、デジタル処理デバイスは、視覚情報を使用者に送るためのディスプレイを含む。いくつかの態様では、ディスプレイは陰極線管(CRT)である。他の態様では、ディスプレイは液晶ディスプレイ(LCD)である。さらなる態様では、ディスプレイは薄膜トランジスタ液晶ディスプレイ(TFT-LCD)である。他の態様では、ディスプレイは有機発光ダイオード(OLED)である。様々な他の態様では、OLEDディスプレイはパッシブマトリックスOLED(PMOLED)またはアクティブマトリクスOLED(AMOLED)ディスプレイである。いくつかの態様では、ディスプレイはプラズマディスプレイである。他の態様では、ディスプレイはビデオプロジェクタである。さらなる態様では、ディスプレイは本明細書において開示されるものなどのデバイスの組み合わせである。
いくつかの態様では、デジタルプロセッサデバイスは使用者から情報を受け取るためのインプットデバイスを含む。いくつかの態様では、使用者は、乳腺密度または乳癌などの乳房障害を有する対象、医療専門家、研究者、分析者、またはこれらの組み合わせである。いくつかの態様では、医療専門家は、医師、看護師、医師の助手、薬剤師、医療コンサルタント、または他の病院専門家もしくは医療専門家である。いくつかの態様では、インプットデバイスはキーボードである。いくつかの態様では、インプットデバイスはポインティングデバイスであり、非限定例として、マウス、トラックボール、トラックパッド、ジョイスティック、ゲームコントローラ、またはスタイラスである。他の態様では、インプットデバイスは、タッチスクリーンまたはマルチタッチスクリーンである。さらに他の態様では、インプットデバイスは、音声または音響のインプットを取り込むためのマイクロフォンである。さらに他の態様では、インプットデバイスは動作または視覚のインプットを取り込むためのビデオカメラである。さらなる態様では、インプットデバイスは本明細書において開示されるものなどのデバイスの組み合わせである。
図1は、オペレーティングシステム(110)、メモリデバイス(130)、保存デバイス(150)、ディスプレイ(120)、および放射線科医などのシステムの操作者による使用のためのキーボードおよびマウスなどのインプットデバイス(140)、で構成されるデジタルプロセッサデバイス(100)を含み、画像取得ユニット(210)、例えば、マンモグラフィシステム、X線システム、MRIなどから、または画像保存ユニットまたはデバイス(220)から、直接的に、またはネットワークインターフェースを使用して、複数の乳房画像および画像メタデータを受け取るように構成される、例示的なコンピュータ実装システム(600)を提供する。デジタル処理デバイスは、複数の乳房画像の整列のための1つまたは複数のソフトウェアモジュールを含み、乳房圧迫スコアアルゴリズムを実行して、複数の乳房画像および画像メタデータを使用して複数の乳房画像について乳房圧迫スコアを生成するコンピュータプログラム(300)を走らせるように構成される。デジタル処理デバイスはまた、アウトプット(400)、例えば、対象の乳房の整列画像ならびに/または対象から取得した複数の乳房画像および画像メタデータに基づいて、対象の乳房の密度測定値(例えば、パーセント密度、密領域、非密領域、乳房領域、乳房圧迫スコアおよびマンモグラムヘッダメタデータ)の変化を示す生物医学的報告を生成するようにも構成される。該システムは、デジタル処理ユニットにすべてのインプット、乳房画像およびアウトプットをデータベース(500)中に保存させるように構成される。
非一時的コンピュータ可読保存媒体
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、任意でネットワークを形成したデジタル処理デバイスのオペレーティングシステムによって実行可能な命令を含むプログラムでエンコードされた、1つまたは複数の非一時的コンピュータ可読保存媒体を含む。さらなる態様では、コンピュータ可読保存媒体はデジタル処理デバイスの有形成分である。さらに別の態様では、コンピュータ可読媒体は、デジタル処理デバイスから任意で取り外し可能である。いくつかの態様では、コンピュータ可読保存媒体としては、非限定例として、CD-ROMS、DVD、フラッシュメモリドライブ、磁気テープドライブ、磁気ディスクドライブ、光ディスクドライブ、ソリッドステートドライブ、ならびにクラウドコンピューティングベースのシステムおよびサービスなどが挙げられる。さらなる態様では、プログラムおよび命令は、永久的に、実質的に永久的に、半永久的に、または非一時的に媒体にエンコードされる。さらなる態様では、プログラムおよび命令はストリーミング媒体にエンコードされる。
コンピュータプログラム
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、少なくとも1つのコンピュータプログラムまたはその使用を含む。コンピュータプログラムは、指定されたタスクを実施するために書かれた、デジタル処理デバイスのコンピュート(CPUまたはマイクロプロセッサなど)で実行可能な一連の命令を含む。コンピュータ可読命令は、特定のタスクを実施する、または抽象データ型を実装する、コンピュート、プログラムモジュール、例えば、関数、オブジェクト、アプリケーション、アプリケーションプログラミングインタフェース(API)、データ構造などとして実装され得る。本明細書において提供される開示に照らせば、当業者は、コンピュータプログラムは様々な言語の様々なバージョンで書かれ得ることを認識するであろう。
コンピュータ可読命令の機能性は、様々な環境で所望されるように組み合わされるか、または分配され得る。いくつかの態様では、コンピュータプログラムは1つまたは複数の一連の命令を含む。他の態様では、コンピュータプログラムは複数の一連の命令を含む。いくつかの態様では、コンピュータプログラムは1つの位置から提供される。他の態様では、コンピュータプログラムは複数の位置から提供される。様々な態様では、コンピュータプログラムは、1つまたは複数のソフトウェアモジュールを含む。様々な態様では、コンピュータプログラムは、1つまたは複数のウェブアプリケーション、1つまたはモバイルアプリケーション、1つまたは複数のスタンドアロンアプリケーション、1つまたは複数のウェブブラウザプラグイン、アドイン、またはこれらの組み合わせを、部分的に、または全体的に含む。
ウェブアプリケーション
いくつかの態様では、コンピュータプログラムはウェブアプリケーションを含む。本明細書において提供される開示に照らせば、当業者は、様々な態様において、ウェブアプリケーションが1つまたは複数のソフトウェアフレームワークおよび1つまたは複数のデータベースシステムを利用することを認識するであろう。いくつかの態様では、ウェブアプリケーションは、JAVA、Microsoft.NET、またはRuby on Rails(RoR)などのソフトウェアフレームワークで作成される。いくつかの態様では、ウェブアプリケーションは、非限定例として、リレーショナル、非リレーショナル、オブジェクト指向、連想型、およびXMLデータベースシステムを含めた、1つまたは複数のデータベースシステムを利用する。さらなる態様では、適切なリレーショナルデータベースシステムとしては、非限定例として、Microsoft(登録商標)SQL Server、mySQL(登録商標)、noSQL、およびOracle(登録商標)が挙げられる。当業者は、様々な態様において、ウェブアプリケーションは、1つまたは複数の言語の1つまたは複数のバージョンで書かれることも認識するであろう。ウェブアプリケーションは、1つまたは複数のマークアップ言語、プレゼンテーション定義言語、クライアントサイドスクリプト言語、サーバサイドコーディング言語、データベース照会言語、またはこれらの組み合わせで書かれ得る。いくつかの態様では、ウェブアプリケーションは、マークアップ言語、例えば、ハイパーテキストマークアップ言語(HTML)、拡張可能ハイパーテキストマークアップ言語(XHTML)、または拡張可能マークアップ言語(XML)である程度書かれる。いくつかの態様では、ウェブアプリケーションは、プレゼンテーション定義言語、例えばカスケーディングスタイルシート(CSS)である程度書かれる。いくつかの態様では、ウェブアプリケーションは、クライアントサイドスクリプト言語、例えば、非同期JavascriptおよびXML(AJAX)、Flash(登録商標)Actionscript、Javascript、またはSilverlight(登録商標)である程度書かれる。いくつかの態様では、ウェブアプリケーションは、サーバサイドコーディング言語、例えば、Active Server Pages(ASP)、ColdFusion(登録商標)、Perl、Java(商標)、JavaServer Pages(JSP)、Hypertext Preprocessor(PHP)、Python(商標)、Ruby、Tel、Smalltalk、WebDNA(登録商標)、またはGroovyである程度書かれる。いくつかの態様では、ウェブアプリケーションは、データベース照会言語、例えば、構造化照会言語(SQL)である程度書かれる。いくつかの態様では、ウェブアプリケーションは、エンタープライズサーバー製品、例えば、IBM(登録商標)Lotus Domino(登録商標)を統合する。いくつかの態様では、ウェブアプリケーションはメディアプレーヤ要素を含む。様々なさらなる態様では、メディアプレーヤ要素は、非限定例として、Adobe(登録商標)Flash(登録商標)、HTML 5、Apple(登録商標)QuickTime(登録商標)、Microsoft(登録商標)Silverlight(登録商標)、Java(商標)、およびUnity(登録商標)を含めた、多くの適切なマルチメディア技術の1つまたは複数を利用する。
モバイルアプリケーション
いくつかの態様では、コンピュータプログラムは、モバイルデジタル処理デバイスに提供されるモバイルアプリケーションを含む。いくつかの態様では、モバイルアプリケーションは、それが製造されるときにモバイルデジタル処理デバイスに提供される。他の態様では、モバイルアプリケーションは、本明細書において記載されるコンピュータネットワークを介してモバイルデジタル処理デバイスに提供される。
本明細書において提供される開示を考慮すれば、モバイルアプリケーションは、当技術分野に公知であるハードウェア、言語、および開発環境を使用して、当業者に公知である技法によって、作成される。当業者は、モバイルアプリケーションはいくつかの言語で書かれることを認識するであろう。適切なプログラミング言語としては、非限定例として、C、C++、C#、Objective-C、Java(商標)、Javascript、Pascal、Object Pascal、Python(商標)、Ruby、VB、NET、WML、およびCSSをともなう、もしくはともなわないXHTML/HTML、またはこれらの組み合わせが挙げられる。[0080]適切なモバイルアプリケーション開発環境は、いくつかのソースから利用可能である。市販の開発環境としては、非限定例として、AirplaySDK、alcheMo、Appcelerator(登録商標)、Celsius、Bedrock、Flash Lite、NET Compact Framework、Rhomobile、およびWorkLight Mobile Platformが挙げられる。非限定例として、Lazarus、MobiFlex、MoSync、およびPhonegapを含めた、他の開発環境は無料で利用可能である。さらに、モバイルデバイス製造者が、非限定例として、iPhoneおよびiPad (iOS) SDK、Android(商標)SDK、BlackBerry(登録商標)SDK、BREW SDK、Palm(登録商標)OS SDK、Symbian SDK、webOS SDK、およびWindows(登録商標)Mobile SDKを含めたソフトウェア開発者キットを配布する。
当業者は、非限定例として、Apple(登録商標)App Store、Android(商標)Market、BlackBerry(登録商標)App World、PalmデバイスのためのApp Store、webOSのためのApp Catalog、Windows(登録商標)Marketplace for Mobile、Nokia(登録商標)デバイスのためのOvi Store、Samsung(登録商標)Apps、およびNintendo(登録商標)DSi Shopを含めたいくつかの商業的なフォーラムが、モバイルアプリケーションの配布に利用可能であることを認識するであろう。
スタンドアロンアプリケーション
いくつかの態様では、コンピュータプログラムはスタンドアロンアプリケーションを含み、これは、独立のコンピュータプロセスとして走らされ、既存のプロセスへのアドオンではない、例えばプラグインではないプログラムである。当業者は、スタンドアロンアプリケーションはコンパイルされることが多いことを認識するであろう。コンパイラは、プログラミング言語で書かれているソースコードをアセンブリ言語または機械コードなどのバイナリオブジェクトコードへ変換するコンピュータプログラムである。
適切なコンパイルされたプログラミング言語としては、非限定例として、C、C++、Objective-C、COBOL、Delphi、Eiffel、Java(商標)、Lisp、Python(商標)、Visual Basic、およびVB .NET、またはこれらの組み合わせが挙げられる。コンパイル処理は、少なくとも部分的には、実行可能なプログラムを作成するために実施されることが多い。いくつかの態様では、コンピュータプログラムは、1つまたは複数の実行可能なコンパイルされたアプリケーションを含む。
ソフトウェアモジュール
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、ソフトウェア、サーバ、および/もしくはデータベースモジュール、またはこれらの使用を含む。本明細書において提供される開示を考慮すれば、ソフトウェアモジュールは、当技術分野に公知である機械、ソフトウェア、および言語を使用して、当業者に公知である技法によって、作成される。本明細書において開示されるソフトウェアモジュールは、数多くの方法で実装される。様々な態様では、ソフトウェアモジュールは、ファイル、コードのセクション、プログラムミングオブジェクト、プログラミング構造、またはこれらの組み合わせを含む。さらなる様々な態様では、ソフトウェアモジュールは、複数のファイル、コードの複数のセクション、複数のプログラムミングオブジェクト、複数のプログラミング構造、またはこれらの組み合わせを含む。様々な態様では、1つまたは複数のソフトウェアモジュールは、非限定例として、ウェブアプリケーション、モバイルアプリケーション、およびスタンドアロンアプリケーションを含む。いくつかの態様では、ソフトウェアモジュールは、1つのコンピュータプログラムまたはアプリケーション中に存在する。他の態様では、ソフトウェアモジュールは、1つより多いコンピュータプログラムまたはアプリケーション中に存在する。いくつかの態様では、ソフトウェアモジュールは1つの機械でホストされる。他の態様では、ソフトウェアモジュールは1より多い機械でホストされる。さらなる態様では、ソフトウェアモジュールはクラウドコンピューティングプラットフォームでホストされる。いくつかの態様では、ソフトウェアモジュールは1位置において1つまたは複数の機械でホストされる。他の態様では、ソフトウェアモジュールは1より多い位置において1つまたは複数の機械でホストされる。
データベース
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、1つまたは複数のデータベース、データソース、またはこれらの使用を含む。本明細書において提供される開示を考慮すれば、当業者は、多くのデータベースが癌データの保存および検索に適することを認識するであろう。様々な態様では、適切なデータベースとしては、非限定例として、リレーショナルデータベース、非リレーショナルデータベース、オブジェクト指向のデータベース、オブジェクトデータベース、実体関連モデルデータベース、連想型データベース、およびXMLデータベースが挙げられる。いくつかの態様では、データベースはインターネットベースである。さらなる態様では、データベースはウェブベースである。さらに別の態様では、データベースはクラウドコンピューティングベースである。他の態様では、データベースは1つまたは複数のローカルコンピュータ保存デバイスに基づく。
いくつかの態様では、データベースまたはデータソースは、医療記録、臨床ノート、ゲノムデータベース、生物医学的データベース、臨床試験データベース、科学的データベース、またはこれらの組み合わせより選択される。いくつかの態様では、1つまたは複数のデータベースまたはソースは、公的に利用可能なデータベース、独自のデータベース、またはこれらの組み合わせを含む。
データ伝送
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、症例特異的アウトプット、生物医学的アウトプット、生物医学的報告、分類子、またはこれらの組み合わせの伝送をさらに含む。いくつかの態様では、アウトプット、報告、および/または分類子は、電子的に伝送される。いくつかの態様では、症例特異的アウトプット、生物医学的アウトプット、生物医学的報告、および/または分類子は、ウェブアプリケーションを介して伝送される。いくつかの態様では、ウェブアプリケーションはサービスとしてのソフトウェアとして実装される。
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、1つまたは複数のデータ、結果、アウトプット、情報、生物医学的アウトプット、生物医学的報告、および/または分類子を伝送するためのアウトプット手段を含む1つまたは複数の伝送デバイスをさらに含む。いくつかの態様では、アウトプット手段は、データ、結果、要求、および/または情報を伝送する任意の形態をとり、モニター、印刷されたフォーマット、プリンタ、コンピュータ、プロセッサ、メモリ位置、またはこれらの組み合わせを含む。いくつかの態様では、伝送デバイスは、情報を伝送するための1つまたは複数のプロセッサ、コンピュータ、および/またはコンピュータシステムを含む。
いくつかの態様では、伝送は、有形伝送媒体、および/または搬送波伝送媒体を含む。いくつかの態様では、有形伝送媒体は、同軸ケーブル;銅線および光ファイバを含み、コンピュータシステム内のバスを構成する線を含む。いくつかの態様では、搬送波伝送媒体は、電気信号もしくは電磁信号、または音波もしくは光波、例えば、無線周波数(RF)および赤外線(IR)データ通信中に生成されるものの形態をとる。
いくつかの態様では、アウトプット、報告、および/または分類子は、1人または複数人の使用者に伝送される。いくつかの態様では、1人または複数人の使用者は、乳腺密度または乳癌などの乳房障害を罹患する対象、医療専門家、研究者、分析者、またはこれらの組み合わせである。いくつかの態様では、医療専門家は、医師、看護師、医師の助手、薬剤師、医療コンサルタント、または他の病院関係者もしくは医療関係者である。
例示的な使用
いくつかの態様では、本明細書において開示されるシステム、媒体、および方法は、対象の乳腺密度および乳癌などの乳房障害の状況または転帰を、診断、予測、またはモニターするのに有用であるだけでなく、治療レジメンに対する応答を予測するのにも有用である。
一局面では、システム、媒体、および方法、ならびに本明細書において開示される薬学的組成物が、乳房障害、術前補助、補助、および予防的設定を低減するのに特に有用な患者集団が、ある特定の態様において、本明細書において提供される。タモキシフェン療法などを用いる補助内分泌物から恩恵を受ける患者は、本明細書において開示されるシステム、媒体、および方法によって特定され得る。同様に、非応答者も特定され、非応答者は、好都合なことに、代替治療のために選択され得る。
予防的設定では、密度変化は、タモキシフェン応答の優れたマーカーであることも実証された。40年より長くにわたって、再発のリスクを低減させるために、20mgのタモキシフェンが乳癌患者で使用されている。20mgのタモキシフェンが完全に健康な女性において乳癌のリスクを低減させることも示されている。しかし、タモキシフェン治療は、閉経期症状、まれに子宮内膜癌および血栓塞栓症と類似している副作用と関連する(Mallick S, Benson R, Julka PK; Breast cancer prevention with anti-estrogens: review of the current evidence and future directions; Breast Cancer. 2016 Mar;23(2):170-7)。副作用は、おそらく、かなりのリスク低減効果にもかかわらずタモキシフェンが予防的設定で使用されない1つの理由である。乳癌のリスクに影響を及ぼす因子は、密度に影響を及ぼすことが公知である。
一局面では、本開示は、本明細書において開示されるシステム、媒体、および方法を使用して特定された対象を、単位用量あたり0.1mg~10mgの範囲の低用量のタモキシフェンまたはその塩を含む組成物で治療する方法を提供する。タモキシフェンまたはその塩を含む組成物は、0.1mg、0.5mg、1mg、2mg、2.5mg、3mg、4mg、5mg、6mg、7mg、7.5mg、8mg、および10mgの単位用量で対象に投与される。組成物は、1日1回、1日2回、1日3回、1日4回、2日に1回、週2回、週1回、2週間に1回、月2回、月1回、年4回、6か月に1回、または年1回投与され得る。しかし、症例の詳細(例えば、対象、疾患、含まれる病態、および治療が予防的であるかどうか)を考慮して、特定の投与様式および投薬レジメンが担当臨床医によって選択されるであろう。治療は、数日から数か月、またはさらに数年の期間にわたって、1日1回または1日複数回の用量の化合物を必要とし得る。
低用量タモキシフェンおよびその塩を含む組成物は当技術分野において公知の方法によって調製することができる。タモキシフェンおよびその塩の合成調製のためのいくつかの方法は、当技術分野において公知である(EP 0168175 A1; Miller et al. J. Org. Chem., 1985, 50 (12), pp 2121-2123; Maji et al. Int J Nanomedicine. 2014; 9:3107-3118.)。いくつかの態様では、エンドキシフェンを含む組成物は賦形剤をさらに含む。そのような賦形剤は、意図された投与経路に適合し得る。
低用量タモキシフェンまたはその塩を含む組成物は、経口的に、局所的に、管内(乳房の乳管内)に、または非経口的に対象に投与され得る。
経口使用を意図した組成物は、固体または流体のいずれかの単位剤形で調製することができる。少なくともいくつかの態様では、組成物は、錠剤、カプレット剤、カプセル剤、丸剤、粉末剤、トローチ剤、エリキシル剤、懸濁剤、シロップ剤、カシェ剤、チューインガム、糖衣錠、ロゼンジ剤などとして、経口送達のために製剤化される。錠剤、カプレット剤、およびカプセル剤は、消化管における崩壊および吸収を制御するか、または遅延させ、それによって、より長い期間にわたって持続的作用をもたらすために、当技術分野において公知の技法によって、コーティングされてよく、またはコーティングされなくてもよい。錠剤は腸溶錠でもよく、カプレット剤は腸溶カプレット剤でもよく、カプセル剤は腸溶カプセル剤でもよい。いくつかの態様では、カプセル剤は硬カプセル剤でもよく、または軟カプセル剤でもよい。
本開示は、乳腺密度および/もしくは乳癌などの乳房障害を有する、または有するリスクがある対象の治療で使用するために、低用量タモキシフェンまたはその塩を含む組成物の1つまたは複数を含む治療用キットをさらに提供する。キットの内容物を凍結乾燥することができ、キットは、凍結乾燥成分の再構成に適した溶媒をさらに含むことができる。キットの個々の成分は、別々の容器に包装され、医薬製品の製造、使用、または販売を規制する政府機関によって定められる形態の通知がそのような容器に付随すると考えられ、通知は、対象の投与のための使用または販売に関する製造機関による承認を反映する。
実施例1
データベース構築;特徴分類
データセット(KARMA)
予測器構築のための潜在的な訓練ケースの最大の可能なプールを確立するために、41,353人の乳癌を有さない女性からのマンモグラフィ画像を、同じマンモグラムからの入手可能なRAW画像および変換後画像(General Electrics、Philips、Sectra、Hologic、SIEMENS、FUJI、Agfa、Array Group、およびVidarから入手可能)とともにKARMAからサンプリングした。
ソフトウェアアプリケーション
米国国立衛生研究所(http://rsb.info.nih.gov/ij/index.html.2017年3月30日にアクセスした)によって開発された、JavaベースのソフトウェアであるImageJプログラミングフレームワークを、本発明の一局面、すなわち、コンピュータプログラム(以降「STRATUS」)を開発するために改変した。
データインプット
41,353人の女性の同じマンモグラムからのRAW画像および変換後画像を使用して、FDAに承認された密度測定ツールであるVuComp M-Vuツールを使用して乳腺密度を解析し、測定した。これは、ソフトウェアアプリケーションSTRATUSの学習および検証のための参照測定値として扱った。次いで、上記由来の同じRAW画像および変換後画像(インプット画像)をSTRATUSによる解析(特徴抽出、学習および検証)に供した。
STRATUSによって、同じマンモグラム乳房画像からの変換後画像およびRAW画像の1027個の画像特徴を解析した。(画像処理デバイス中の)STRATUSプロセッサは、乳房画像、フォーマット化フルフィールドデジタル、およびアナログマンモグラム(DICOM(http://dicom.nema.org/.2017年3月30日にアクセスした)を、デジタル画像については、さらにマンモグラフィ機取得パラメータを含む画像メタデータ含むデータインプットを読み取ることによって開始した。画像は、デジタルベンダー(General Electric、Sectra、Philips、Hologic、SIEMENS、FUJI、Agfa)およびデジタル化アナログベンダー、Array Corp.およびVidarからのフルフィールドデジタルマンモグラムであった。
画像の前処理
STRATUSによって画像を前処理した。前処理は、品質チェックおよびアーティファクトの除去、デジタルスケーリング、ピクセルサイズの正規化、必要に応じて画像を方向付けることを含んでいた。STRATUSによって、乳房画像を品質チェックし、問題のある品質の疑わしい乳房画像アウトプットファイルにマークした。アーティファクトに関して画像を精査し、存在すれば、それを除去した。画像を200ミクロンピクセルサイズにさらに正規化した。アナログマンモグラムは、物理的にスケーリングして(例えば、トリミングして)、実際のマンモグラム領域の周りの枠を除去した。STRATUSによって画像をフリップし、それによって、乳房の胸壁がマンモグラムの左側に常に現れた。STRATUSによって、画像のピクセル表示を検出し、マンモグラムが陰画として現れれば(すなわち、ピクセル強度表示が逆転された場合)、ルックアップテーブルを反転させた。
乳房圧迫スコア
STRATUSによって、乳房の画像中のメタデータタグから情報を検索し、機械取得パラメータ、マンモグラフィ中に使用された圧迫力、圧迫された乳房の厚さ、および各マンモグラフィの機種に特異的なX線管電圧(個々に、およびまとめて、「画像メタデータ」)をSTRATUS中にプログラムした。乳房圧迫スコアは、この情報に基づいて、X線管電圧に圧迫された乳房の厚さを掛けることによって、計算した。
特徴分類
STRATUSによって、乳房画像を閾値処理方法に供し、乳房領域をマーキングした。画像の品質(STRATUSによって検出される、アナログ、デジタル、RAW変換後)に応じて、閾値処理方法、Intermodes、Triangle、またはMeansを使用した。
STRATUSによって、乳房画像中のテクスチャを特定し、測定して、マンモグラフィ密度を測定するための基準を作った。乳房画像のテクスチャは、十五(15)の閾値処理方法(Otsu、RenyiEntropy、Huang、Intermodes、IsoData、Li、MaxEntropy、Mean、MinError、Minimum、Moments、Percentile、Shanbhag、Triangle、Yen)と輪郭追跡方法(Skeletonize)とのサイクルに画像を供することによって、抽出、すなわち、特定した。(i)全セグメント化乳房領域および(ii)閾値処理された画像粒子のピクセルサイズによって規定されたサブ領域において、20種の特徴(面積、最小、平均、最大、標準偏差、モーダル、重心、中心、周囲長、バウンディング、適合、形状、総合、中央値、歪度、尖度、制限、丸さ、固体度、面積率)を各サイクルについて測定した。
特徴分類に含まれるさらなる画像特徴は、マンモグラフィ機取得パラメータおよびマンモグラムヘッダに含まれる他の画像メタデータであった。そのようなマンモグラフィ取得パラメータは、使用されるX線照射(キロボルト、および管電流)、圧迫力、および圧迫中の乳房の厚さを含んでいた。
すべての抽出画像特徴は各閾値処理方法について測定され、マンモグラムあたり1027個までの変数を有する一行にその順序でコンパイルされる。
実施例2
予測器構築&密度測定
機械学習を使用して乳房画像および画像メタデータから密度測定値を測定するための予測器構築のために、実施例1由来の1027個の特徴変数(乳房圧迫スコアを含む)を、同じマンモグラムに対して、FDAに承認されたVuComp M-Vuツールを使用して得られた、密度のRAW画像参照測定値に関連させるように、STRATUSを構成した。
学習工程は、r-project.orgによって開発されたRプログラミングフレームワークを使用し、STRATUSプログラミングフレームワーク内のプログラムとして走らせた。実施例1由来の、STRATUSによる1027個の画像解析変数を、Rデータセットとしてロードした。乳腺密度の(RAW)画像参照測定値を、実施例1においてSTRATUSによって生成された対応する処理した1027個の画像特徴変数とマッチさせた。スケーリングされた主成分分析(PCA)を特徴変数に対して実施し、PCAデータに基づいて予測データセットを作成した。
最初の画像参照測定値(パーセント密度、密領域、乳房領域)に変換アルゴリズム、すなわち平方根変換を適用するようにSTRATUSを構成した(Solomon, S., R., & Sawilowsky, S. S. (2009). Impact of rank-based normalizing transformations on the accuracy of test scores. Journal of Modern Applied Statistical Methods, 8(2), 448-462)。変換アルゴリズムの適用によって、正規形に近い分布へ参照測定値を変換した。
Rパッケージ「penalized」を使用して、一般化線形罰則付きラッソ回帰モデルに適合させた。10分割交差検証によるモデル適合の100個のループを使用して、最終的なモデルのための推定値に罰則を与えるために使用される平均ラムダを計算した。この手順は、密度測定値(パーセント密度、密領域、および乳房領域)について行った。
次いで、結果の密度測定値を2で累乗することによって、結果の密度測定値を最初の密度分布へ逆変換した。独立の検証データセットにおいて測定の正確性を検定した(図5)。訓練および検証をともなうこの2工程の手順を、機械あたり4,000個までのマンモグラムを使用して、マンモグラムおよびマンモグラフィ機の各タイプに対して実施して、密度を測定する統計的機械学習アルゴリズム(「統計的機械学習モデル」)を生成した。統計モデルは、乳房圧迫スコアで訓練を受けており、かつ乳房圧迫スコアを含むので、同じマンモグラフィ機ベンダーからの任意の新しいマンモグラムに対して密度を測定する。
後処理
解析した各マンモグラムについてのアルゴリズム(統計的機械学習モデル)アウトプット記録は、乳房におけるパーセント密度、密領域、非密領域、乳房領域、乳房圧迫スコア、およびマンモグラムヘッダメタデータを含む。
実施例3
画像の整列
複数の乳房画像を整列させるために、整列アルゴリズムを開発し、これをSTRATUSに組み入れた。整列ツールはスタンドアローンコンピュータプログラムでもよく、または追加物でもよい。図7で観察されるように、乳房画像の整列は、画像間の非生物学的変動性を経時的に低減させる。
いくつかの技法が整列画像に利用可能である(Thevenaz, U.E. Ruttimann, M. Unser, A Pyramid Approach to Subpixel Registration Based on Intensity, IEEE Transactions on Image Processing, vol. 7, no. 1, pp. 27-41, January 1998; US20160019690; US20150023576; US20060245629; US20090060300)。
本明細書において使用される変換登録方法は、最初の画像領域の最大の部分を保持しており、以下の最終的解析(実施例4)で使用した。整列プロトコルは、いくつかのマンモグラムを時系列で解析するために、および変換後画像とRAW画像またはアナログ画像との間で見られ得るピクセル強度の差異に対して感度が高くないように開発した。
STRATUSの整列ツールは、複数の乳房画像(例えば、フルフィールドデジタルマンモグラムのペア)を読み取るため、および画像を整列させるために、ImageJのTurboRegプラグインを使用した。画像を整列させるために、STRATUSによって、アルゴリズムツールを複数の画像に適用した。最初に、閾値処理プロセス/方法、Intermodes、Triangle、またはMeansを使用して、各乳房領域をマーキングした。
閾値処理方法の選択は、画像の品質(デジタル、アナログ、RAW変換後であり、STRATUSで検出される)に依存する。
次いで、乳房領域マーキング(マーク)からのバイナリマスクを使用して、乳房領域のスーパーインポーズを、レイヤーにおいて互いに重なり合うように、ガイドした。例えば、第1の画像または参照もしくはソース画像の乳房領域を第2の画像または目的の画像の乳房領域上にオーバーレイした(スーパーインポーズした)。スーパーインポーズは、参照またはソース画像の上に目的の画像をオーバーレイすることによって実施することもでき、本発明の一態様であることを理解されたい。
画像を整列させるために、最小二乗平均、すなわち、Marquardt-Levenbergアルゴリズム(Levenberg, Kenneth (1944). "A Method for the Solution of Certain Non-Linear Problems in Least Squares". Quarterly of Applied Mathematics. 2: 164-168; Marquardt, Donald (1963). "An Algorithm for Least-Squares Estimation of Nonlinear Parameters". SIAM Journal on Applied Mathematics. 11 (2): 431-441)に基づく変換技法を使用して、バイナリマスクを、互いへ向けて、ピクセル強度が最小の差異に達する最適な位置に、移動させた。したがって、位置決め技法は、ピクセル強度の差異をともなう整列画像、例えば、RAWマンモグラムおよび変換後マンモグラムに対して感度が高くない。したがって、整列ツールは、画像中のピクセル強度の差異に依拠する必要がない。画像中の実際の乳房領域ピクセル情報はマスク位置とリンクしており、それに応じて移動される。移動中に、画像中のピクセルの内部の位置決めは保持される(すなわち、歪められない)。相互画像情報の外側の画像のいかなる部分もトリミングされる。バイナリマスクを使用した整列の前後のスーパーインポーズした画像のマージした画像またはスナップショットは、移動座標とともにアウトプットファイルに保存される。
後処理
次いで、整列画像の密度測定を上記の実施例1および2で示す順序で実施した。
実施例4
3つのスウェーデンのデータセット
70,877人の女性(KARMAコホート)が、スウェーデンの4つのマンモグラフィユニットにおける、2011年1月~2013年3月の間のマンモグラフィスクリーニングに参加した(Gabrielsson M et al.; Cohort profile: The Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA); International Journal of Epidemiology, 2017)。参加者は血液を提供し、ウェブベースのアンケートに答え、RAWデジタルマンモグラムおよび変換後デジタルマンモグラムが保存された。女性は、身長および体重、乳癌の家族歴、初経年齢、出産経歴、第一子年齢、閉経状況、およびホルモン補充療法(HRT)の使用経験を報告した。侵襲性および上皮内の乳癌症例は、癌治療のためのスウェーデン情報ネットワーク(Swedish Information Network for Cancer treatment)(INCA)の国家乳癌品質登録(national breast cancer quality register)を介して特定した。
集団ベースのLIBRO1試験は、ストックホルム地域において2001年から2008年の間に診断された、侵襲性および上皮内乳癌症例を含んでいた。頻度マッチングを使用して、同年齢の2,443乳癌症例をKARMA試験からの利用可能な対照と年齢をマッチさせた。第3のスウェーデンの試験は集団ベースのSASBAC試験であり、これは、1993年から1995年の間に侵襲性および上皮内乳癌と診断された1,194人の女性、およびサンプリングされ、年齢について頻度マッチングされた1,086の対照密度を含んでいた(Li J et. al; High-throughput mammographic density measurement: a tool for risk prediction of breast cancer; Breast Cancer Research 2012, 14:R114)。すべての症例について診断前のアナログフィルムを収集し、対照のために、採用日に最も近い画像を収集した。LIBRO1およびSASBACにおける症例および対照も、KARMAで使用されたものと同じ一連の質問からの同じ生活様式因子で寄与した。
密度測定値
密度測定値(パーセント密度、密領域、および乳房領域)を実施例1および2に記載されているように測定した。アナログ画像に対する密度測定値は、SABAC試験(Li J et. al; High-throughput mammographic density measurement: a tool for risk prediction of breast cancer; Breast Cancer Research 2012, 14)において利用可能なすべての女性を用いて開発した。密度測定値は、一方の乳房で学習し、反対側の乳房で検証することによって、実施例1および2に記載されているデジタル画像と同じアルゴリズムを使用して訓練した。
リスク推定および識別
記載したデータセット(KARMA、SABAC、およびLIBRO1)からのサンプルを使用して、異なる種類の画像に由来する密度測定値と乳癌発生率の関連を推定した。これは、異なるタイプのマンモグラムを用いて症例および対照と対比するために行い;RAWマンモグラムを有する症例 対 RAWマンモグラムを有する対照、変換後症例 対 変換後対照、変換後 対 アナログ、およびアナログ 対 アナログを対比した。
第1のリスク推定は、KARMA試験の1,732対照と1年の幅で年齢がマッチした利用可能な433事象の乳癌症例を使用して、2年間のフォローアップをともなう入れ子状態の症例-対照試験サンプルに対して行った(表1)。リスク関連は、RAWマンモグラムおよび変換後マンモグラムの密度測定値を別々に使用して推定した(RAW症例 対 RAW対照;変換後症例 対 変換後対照を対比する)。
第2のリスク推定セットは、1年の幅でSASBACからの利用可能な1,086の対照と年齢をマッチさせることが可能な、LIBRO1試験における1,194の乳癌症例と定義された(アナログ症例 対 アナログ対照)。
第3のリスク推定セットは、KARMAコホートからの利用可能な2,999の対照と1年の幅で年齢がマッチした、2,443のLIBRO1症例と定義された(アナログ症例 対 デジタル対照)。
時系列画像の整列
図3Bを見ると、整列していない画像という問題が明らかになる。同じ女性からの2つの画像を互いにスーパーインポーズした。乳房のほとんどは、下部乳房(緑色の境界を示す)の画像中に見られた。これに対して、画像中の上部乳房(赤色の境界を有する)は乳房の大部分を欠き、それによって、密領域の部分も欠く。上部乳房領域(赤色の輪郭によって外形が描かれる)は185cm2であった。下部乳房(緑色の輪郭によって外形が描かれる)について、対応する領域は197cm2であった。次いで、実施例3に記載されている本発明の整列ツールを使用して、2つの画像を整列させ、整列プロセスの結果として、2つの乳房領域は、今や185cm2(相互画像情報の領域)であった(図3C)。
2つのデータセットを使用して、整列ツールを評価した。第1に、KARMA参加者の11,409人について、2つのマンモグラムを互いに数分以内に撮り、これは、おそらく生物学的変化が理由ではない可能性がある密度測定値の差異を研究するための機会を提供した。このデータセットでは、同じ訪問からの2つの画像を整列させて、実施例3に記載されているプロセスに従って、整列画像を作成した。密領域は、実施例2に記載されているようにSTRATUSの整列ツールを使用して、整列画像における相互画像情報の領域中で測定した。
第2に、2ラウンドの陰画スクリーニング(N=55,073)を通過したすべてのKARMA参加者を使用して、整列画像の密度測定値が通常の密度測定値と異なるかどうかを試験した。密領域は、各スクリーニング時に左または右乳房において測定し、平均密領域は、実施例1および2に記載されているようにSTRATUSを使用して計算した。
統計的方法
STRATUと参照密度測定値の一致を、Spearmanの順位相関係数およびBland-Altman適合プロット(Spearman, C. (1907). "Demonstration of Formulae for True Measurement of Correlation ". The American Journal of Psychology. 18 (2): 161-169. doi:10.2307/1412408; Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135-160)を使用して調べた。
異なるマンモグラムタイプ(アナログ、デジタル、RAW変換後)のマンモグラフィ密度測定値の間の差異を、年齢、BMI、ならびに2つのマンモグラフィ機関連因子、すなわち、X線管の電圧および圧迫された乳房の厚さに対して調整された、マンモグラフィのパーセント密度の最小二乗平均を使用して、調べた。
別々の3つの症例-対照試験サンプルにおいて、および組み合わせたすべての試験サンプルにおいて、条件付きロジスティック回帰を使用して、マンモグラフィ密度と乳癌の関連を推定した。潜在的リスク関連交絡因子を評価するために構築された3つのモデル。第1のモデルはパーセント密度および年齢を含んでおり、第2のモデルはBMI、パーセント密度、および年齢を含んでおり、完全なモデルは、HRTの使用経験、閉経状況、および乳癌の家族歴、ならびにパーセント密度、年齢およびBMIを含んでいた。完全なモデルへのX線管電圧、乳房の厚さ、および試験サンプルのインジケーターの追加は、推定値を変化させず、したがって、これらは最終的なモデルで除外された。オッズ比は、95%Wald信頼区間を用いて、標準偏差ごとに計算した。モデルの識別能力は、受信者動作曲線下面積(AUC)および95%Wald信頼区間を用いて計算した。
整列効果は、各整列状況について、最初の測定値から最後の測定値を最初に引くことによって計算した。密度差異は、整列画像および非整列画像について、平均および標準偏差として別々にさらに集計した。整列画像と非整列画像を比較した際の標準偏差および平均の差異は、Leveneの検定(Levene, H. (1960). Robust tests for equality of variances. In Contributions to Probability and Statistics; Essays in Honor of Harold Hotelling, I. Olkin editor, 278-292. Stanford, California: Stanford University Press)、およびStudentのt検定(Student [William Sealy Gosset] (1908). The probable error of a mean. Biometrika, Volume VI, March, 1908, No.1)を使用して検定した。
長期的な密度解析は、整列画像および非整列画像について、1年ごとの密度変化を最初に別々に計算することによって実施した。1年ごとの密領域の変化は、最初の測定値から最後の測定値を引き、検査間の年数で割ることによって計算した。密度変化の平均および標準偏差は、Studentのt検定およびLeveneの検定を使用して、同じ方法で計算した。年齢およびBMIごとの年次密度変化は、局所多項回帰を使用してモデル化し、プロットした。
すべての検定は、5%有意水準を用いる両側性であった。すべての解析は、統計ソフトウェアSAS v9.4を使用して実施した。
結果
合計で、KARMA、LIBRO1、およびSASBAC試験からの45,417人の女性が、6つベンダーからの9つの異なるタイプのマンモグラムからのRAWマンモグラムおよび変換後マンモグラムで寄与した(表1)。3つの症例-対照試験サンプルにおいて、マンモグラフィ密度リスク関連を推定した(表1)。
(表1)STRATUSによって測定されたマンモグラフィ密度の乳癌のリスクを計算するのに使用される3つの症例-対照試験サンプルの説明
Figure 0007108715000001
1デジタル画像
2アナログ画像
3つの試験サンプルの全女性:2,876症例および5,817対照
RAWマンモグラムと変換後マンモグラムに対する測定値間の相関は、すべてのマンモグラフィ機に対してほぼ0.9であった(図5)。相関は、密度訓練セッションで使用される画像の数の増加とともに増加し、訓練が機械あたり4,000画像までに基づく場合、Spearman r=0.933(最小=0.923、最大=0.936)に達した。Bland-Altman適合プロットは、RAWマンモグラムと変換後マンモグラムの間で一致を示し、標準化平均差は0.01であり、標準偏差は0.28であった(図6)。年齢、BMI、X線管電圧、および乳房の厚さについて調整した後に、9つのマンモグラムタイプ間の平均パーセントマンモグラフィ密度において、有意差は見られなかった(p>0.05)(図7)。BMIを調整因子としての乳房領域で置き換えた場合、マンモグラフィ機間で同じ非有意差が見られた(データ非表示)。
完全なモデルのパーセント密度に対するオッズ比は、3つの研究の標準偏差あたり、1.5(CI 1.3~1.7)~1.7(CI 1.6~1.8)の間の範囲であり;組み合わせたオッズ比はOR 1.6(1.3~1.8)であった(表2)。
(表2)変換後マンモグラム、RAWマンモグラム、およびアナログマンモグラムにおける密度測定値からの標準偏差ごとの推定値の能力を対比する、3つのユニークな症例-対照試験サンプルにおける乳癌のオッズ比および95%信頼区間
Figure 0007108715000002
1 変換後マンモグラムからの密度測定値を有する、433症例および1,732対照
2 RAWマンモグラムからの密度測定値を有する、433症例および1,732対照
3 変換後マンモグラムからの密度測定値を有する2,443症例およびアナログマンモグラムからの密度測定値を有する2,999対照
4アナログマンモグラムからの密度測定値を有する、1,194症例および1,086対照
5モデル1-パーセント密度および年齢
6モデル2-パーセント密度、年齢、およびBMI
7モデル3-パーセント密度、年齢、BMI、HRTの使用経験、閉経状況、および乳癌の家族歴
完全なモデルの識別能力は、3つの試験サンプルにおいて、AUC 0.60(CI 0.57~0.63)~0.63(CI 0.60~0.65)の間の範囲であり;3つの試験サンプルについて組み合わせたAUCは0.62(0.60~0.64)であった(表3)。
(表3)変換後マンモグラム、RAWマンモグラム、およびアナログマンモグラムにおける密度測定値からの推定値の能力を対比する、3つのユニークな症例-対照試験サンプルにおける識別能力(AUC)および95%信頼区間
Figure 0007108715000003
1 変換後マンモグラムからの密度測定値を有する、433症例および1,732対照
2 RAWマンモグラムからの密度測定値を有する、433症例および1,732対照
3 変換後マンモグラムからの密度測定値を有する2,443症例およびアナログマンモグラムからの密度測定値を有する2,999対照
4アナログマンモグラムからの密度測定値を有する1,194症例および1,086対照
5モデル1-パーセント密度および年齢
6モデル2-パーセント密度、年齢、およびBMI
7モデル3-パーセント密度、年齢、BMI、HRTの使用経験、閉経状況、および乳癌の家族歴
整列パーセント密度測定値は、数分以内に撮った2つの連続したマンモグラムを有する11,409人の女性において、非整列密領域の測定値と比較して、有意に低い変動性を示した(SD 8.0対28.6、p<0.001)(表4)。
(表4)2つの時点で撮った非整列マンモグラムおよび整列マンモグラムの密度測定値の変動性の比較
Figure 0007108715000004
1 N=デジタル画像を有する11,409人の女性。画像は平均して1分間隔で撮った。平均年齢57(SD 9,8)、BMI 26(SD 4.7)。
2 N=変換後デジタル画像を有する55,073人の女性。画像は平均して2年の間隔で撮った。平均年齢55(SD 10.0)、BMI 25(SD 4.2)。
3 Leveneの検定によって、整列マンモグラムと非整列マンモグラムの測定値間の等分散性について検定した。すべての密度測定値差は正規分布した。
Spearmanのランク係数rを使用して、整列マンモグラムと非整列マンモグラムの密度測定値の間の相関を計算した。2年間隔で撮った整列マンモグラムと非整列マンモグラムからの測定値の間の相関は、パーセント密度についてr=0.64であり、密領域についてr=0.60であった。
2つのマンモグラムが1~2年間隔で撮られた55,073人の女性におけるパーセント密度の年次変化を比較した場合、パーセント密度は整列画像において有意に低い平均年次低下を示したが、密領域は示さなかった(0.9対1.5(SD 4.3対5.0)、p<0.001、表4)。図8Aおよび8Bでは、55,073人の女性について、整列および非整列パーセントマンモグラフィ密度の年次変化をプロットする。黒色の適合ラインは、95%CIを有する平均パーセント密度の年次変化を示し、丸ドットは、ベースラインにおける年齢ごとの密度平均を示す。灰色の曲線は、ベースラインにおいて規定されたBMIサブグループによって階層化された密度変化を示す。整列測定値および非整列測定値の間の最大の差異は女性の人生のうちの妊娠可能な部分の間で見られること、および整列測定値について信頼区間がより小さいことが理解され得る。
考察
本発明はマンモグラムのタイプ、または画像間の技術的差異によって制限されることなく、経時的なマンモグラフィ密度の変化の比較を可能にするツールを開示する。STRATUSは、異なるマンモグラフィ機およびマンモグラムタイプからのマンモグラムに対して、マンモグラフィ密度のハイスループット測定を実施する。結果として、リスク評価は、異なるタイプのマンモグラムの組み合わせを含む3つの独立の試験サンプルにおいて密度リスク関連を推定した場合に、画像のタイプの影響を受けなかった。さらに、整列プロトコルは、マンモグラム間の非生物学的変動性を低減させた。
マンモグラフィ密度は、ホルモンの曝露および乳癌の家族歴に関する情報を組み合わせる確立されたリスクモデル(Eriksson M et al.; A clinical model for identifying the short-term risk of breast cancer; Breast Cancer Res. 2017 Mar 14;19(1):29)に匹敵する識別能力を有する、乳癌リスクの強いマーカーである。いくつかの市販のソフトウェアはマンモグラフィ密度を測定するが、すべてRAW画像を必要とする。本発明は、STRATUSを用いて、画像タイプがリスク推定値識別的能力に影響を及ぼさないことを開示する(表2 & 3)。
経時的に真の密度変化を確認する理由はいくつかある。縦断的研究によって、経時的なマンモグラフィ密度の変化の個体差は乳癌リスクと関係がないことが示された(Lokate M., Stellato R.K. et al.; Age-related Changes in Mammographic Density and Breast Cancer Risk; American Journal of Epidemiology Advance Access published May 22, 2013, DOI: 10.1093/aje/kws446)。しかし、この結果は非整列画像に基づいていた。図3で明らかにされるように、マンモグラム間の技術的差異は、経時的な密度測定の比較に影響を及ぼす。これは、閉経前の女性に特に当てはまり、これは、生理周期中の(Hovhannisyan G, Chow L et al.; Differences in measured mammographic density in the menstrual cycle; Cancer Epidemiol Biomarkers Prev. 2009 Jul;18(7):1993-9)、乳房サイズ(Hussain Z., Roberts N.; Estimation of breast volume and its variation during the menstrual cycle using MRI and stereology; Br. J. Radiol. 1999 Mar, 72(855),236-45)、パーセント密度(Chan S, SU MY. et al.; Menstrual cycle-related fluctuations in breast density measured by using three- dimensional MR imaging; Radiology 2011 Dec, 261(3):744-51)、および密領域(Iversen A., Frydenberg H. et al.; Cyclic endogenous estrogen and progesterone vary by mammographic density phenotypes in premenopausal women; Eur. J. Cancer Prev. 2016 Jan 25(1):9-18)の変化の反映である可能性がある。
乳房サイズはまた、BMIの影響を強く受け、これは、さらには、閉経前および閉経後の女性のエストロゲンレベルと強く関係がある(Gretchen L. Gierach et al.; Relationship of Serum Estrogens and Metabolites with Area and Volume Mammographic Densities; Horm Cancer. 2015 Jun; 6(0): 107-119)。これは、整列密度測定値は、技術的画像化差異だけでなく、経時的なBMIの変化にも影響を受ける可能性があることを意味する。
経時的な密度変化を研究する別の理由は、いくつかの研究が、密度変化が、補助および予防的設定において、治療応答に対する著しく優れた代用であることを示したことである(Mallick S, Benson R, Julka PK; Breast cancer prevention with anti-estrogens: review of the current evidence and future directions; Breast Cancer. 2016 Mar;23(2):170-7)。補助療法の最初の2年間でマンモグラフィ密度が20%低下することによって、その後の15年にわたって乳癌死亡率がほぼ50%低減した(Li J, Humphreys K, Eriksson L, Edgren G, Czene K, Hall P.; Mammographic density reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmenopausal patients with breast cancer.; J Clin Oncol. 2013 Jun 20;31(18):2249-56)。この結果は、後の研究(Nyante SJ, Sherman ME, Pfeiffer RM, Berrington de Gonzalez A, Brinton LA, Aiello Bowles EJ, Hoover RN, Glass A, Gierach GL; Prognostic significance of mammographic density change after initiation of tamoxifen for ER-positive breast cancer; J Natl Cancer Inst. 2015 Feb 6;107(3))で確証された。したがって、補助抗ホルモン療法から恩恵を受ける患者が特定され得る。その結果、非応答者を特定することもでき、非応答者は代替治療のために選択され得る。予防的設定では、密度変化はまた、タモキシフェン応答の優れたマーカーであることが実証されている(Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ.; Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study.; J Natl Cancer Inst. 1995 May 3;87(9):670-5)。しかし、タモキシフェン治療は、閉経期症状、まれに子宮内膜癌および血栓塞栓症と類似している副作用と関連する(Mallick S, Benson R, Julka PK; Breast cancer prevention with anti-estrogens: review of the current evidence and future directions; Breast Cancer. 2016 Mar;23(2):170-7)。したがって、療法に応答し、乳癌発生率の低下をともなう恩恵を受ける可能性がある健康な女性のグループを治療することが極めて重要である。
画像を整列させるために、いくつかの技法が利用可能である(P. Thevenaz, U.E. Ruttimann, M. Unser, A Pyramid Approach to Subpixel Registration Based on Intensity, IEEE Transactions on Image Processing, vol. 7, no. 1, pp. 27-41, January 1998)。変換、リジッドボディ、スケーリングされた回転、アフィン、および双一次変換を試験した。図8Aおよび8Bは、非整列密度測定値と比較して、整列密度測定値が密度変化のレベルおよび速度が異なることを捕捉することを示す。いくつかのマンモグラムを時系列で解析するために整列プロトコルを開発し、これは、変換後画像とRAW画像またはアナログ画像との間で見られ得るピクセル強度の差異に依拠しない。図8Aは、非整列画像について、年齢およびBMIの関数としての平均マンモグラフィ密度変化(%)を示し、図8Bは、整列画像についての結果を示す。
本研究の強みは、同じ検査からのRAW画像および変換後画像の両方にアクセスし、同じ女性からの反復された、長期的な測定にアクセスする、大集団ベースのコホートを研究したことである。さらに、症例および対照を3つのユニークなスウェーデンの研究からの異なるタイプの画像と組み合わせるための症例-対照試験サンプルを構築した。
結論
STRATUSは、様々なソース(RAWデジタル画像および変換後デジタル画像、アナログフィルム)から得られたマンモグラムからマンモグラフィ密度を測定する、完全に自動化されたツールである。STRATUSによって提供される、追加の整列特徴は、マンモグラフィ密度の長期的な測定を向上させる。スクリーニングおよび臨床設定においてますます多くのマンモグラムが保存されることを考えれば、STRATUS由来のマンモグラフィ密度は、研究および臨床実践(clinical praxis)におけるリスク予測および治療応答に有用なツールである。
実施例5
低用量タモキシフェンの無作為化二重盲検6群プラセボ対照試験
本試験の主目標は、20mgのタモキシフェンと比較して、マンモグラフィ密度を低減させるその能力が劣っていない最小用量のタモキシフェンを特定することである。第2の目標は、20mg群と比較して、介入群における脱落レベルおよび副作用のレベルを評価することである。第3の目標は、血液中のタモキシフェン代謝物、タンパク質、脂質、およびホルモンのレベル、ならびに胸部組織の変化をタモキシフェン用量、生殖細胞系DNAの遺伝子多型と関連させ、それをタモキシフェン用量に関連したマンモグラフィ密度および副作用のレベルなどの他の第3の目標と関連させることである。
すべてスウェーデン国家マンモグラフィスクリーニングプログラムに参加した、年齢40~74の1440人の健康な女性対象はまた、本試験に加わるために招かれる。本試験に含まれるためには、対象は、組み入れから3か月以内に陰性マンモグラムを有さなければならない。本試験に適任であるためには、対象は、Volparaによって測定された、測定可能なマンモグラフィ密度、すなわち、≧4.5%の密度(容積測定)を有さなければならない。このレベルは、マンモグラフィ密度、乳腺画像報告データシステム(Breast Imaging Reporting and Data System)(BI-RADS)Aと同等である。マンモグラフィスクリーニング後に取り消された女性は、本試験に含まれない。図9は、試験計画を示す。
手短に言えば、対象は、6か月の期間にわたって本試験に従事する。参加者の中には、さらなる6か月または追跡研究の間、本試験に従事するものもいる。しかし、すべての対象は、6か月間タモキシフェンの薬物治療を受けている。
本試験の0日目(ベースライン)に、組み入れ基準および除外基準を満たす女性を6治療群(6コホート):タモキシフェン20mg、10mg、5mg、2.5mg、1mg、またはプラセボのうちの1つに無作為化する。すべての調査用製品(タモキシフェンおよびプラセボ)は、経口投与用の錠剤として提供し、ブリスターで提供する。すべての治療は、6か月間毎日行われる。女性は、6か月間毎日1錠剤服用するために十分な量のタモキシフェンを受け取る。服薬遵守は、i)Karma試験センターの最終的な訪問時に残っている錠剤の数を計算し、期待される使用量と比較することによって、ii)療法の遵守を対象としたウェブアンケートによって、試験の全体を通して評価する。参加者は、錠剤の80%より多くを服用する場合、承諾者と定義される。
本試験の0日目(ベースライン)に、24mlの血液を各対象から収集する。血漿ホルモン、血漿タンパク質、代謝マーカーについて血液を解析する。さらに、DNAを抽出し、血漿の一定分量を後の解析のためにバイオバンクする。正常な胸部組織の2つの生検を0か月目および6か月目に採ることを許可するかどうかを対象に質問する。2つの生検を行う意思がある対象は、ベースラインで生検を実施する。本試験の生検部分の参加は必須ではない。
参加者は、3つのウェブベースアンケートに記入する。1つのアンケートは、乳癌のリスクに影響を及ぼすいくつかの生活様式因子、例えば、初産年齢、母乳保育などに関するものであり、人口統計、病歴、生活の質、および併用薬物治療が参加者に提供される。第2のベースラインアンケートは、一般症状およびタモキシフェン関連症状に関するものであり、第3のアンケートは療法に対する遵守を扱う。体重、身長、およびウエストの測定を行い、対象の肥満指数(BMI)を確立する。ウェブベースアンケートは、コンピュータまたは特別に開発されたアプリ、すなわちKarmアプリを使用して答えることができる。Karmアプリの使用方法およびKarmアプリによるイベントの報告方法に関して、説明が与えられる。一般症状、タモキシフェン関連症状、服薬遵守、およびあり得る副作用と関係がある医療接触(health care contact)に関する質問に答えるために、1か月目、3か月目、および6か月目(試験の終わり)にリマインダーが送られる。
6か月の終わりに、各対象から24mlの血液を収集する。タモキシフェン代謝物、血漿ホルモン、血漿タンパク質、代謝マーカーを測定する。各対象のマンモグラム(密度測定の目的のためのみに、乳房あたり1画像)を撮る。6か月の期間の終わりに、BMIを決定するための体重、身長、およびウエストの測定を実施する。ベースラインで第1の生検を行った対象に対して、第2の生検を実施する。
主要エンドポイントは、マンモグラフィ密度および副作用のレベルの変化を6か月後に測定することである。特に、(6か月後に)20mg群の密度低減の中央値と同じ程度、またはそれより大きい密度低減を有する、介入群(プラセボ、1mg、2.5mg、5mg、10mg)の女性の割合における非劣性を検定する。治療企図(ITT)ベースで一次解析を実施する。面積ベースのマンモグラフィ密度の変化を決定する。「応答者」は、マンモグラフィ密度がベースラインと6か月の間で応答閾値を超えて低下する女性であると定義される。応答閾値は、20mgタモキシフェン群における女性のマンモグラフィ密度の低下の中央値と定義される。
20mg群と比較した、介入群における6か月後の脱落の割合の差異を、第2のエンドポイントとして測定する。タモキシフェンの中止から6か月後の、血液中のタモキシフェン代謝物、タンパク質、脂質、およびホルモンのレベル、胸部組織変化、生殖細胞系DNAの遺伝子多型、ならびにマンモグラフィ密度および副作用のレベルを、第3のエンドポイントとして測定した。
安全性エンドポイントは用量コホートごとにまとめ、プラセボはコホート全体にわたってプールする。治療下で発現した有害イベント(TEAE)は、器官別大分類(SOC)によるMedDRAの最新バージョン、および逐語的用語から分類される優先使用語を使用して、コード化される。TEAEおよび重大有害作用(SAE)の発生率および頻度は、SOCおよび優先使用語に従って、ならびに重症度および関連性によって、コホートごとにまとめる。AEの持続時間を決定し、とられた行動および転帰とともにリストに含めた。バイタルサイン、ECG、および安全性検査パラメータを、記述統計を使用して、予定された各時点でまとめる。投与後評価をベースライン測定と比較する。検査異常の発生率をまとめる。身体検査の所見をリストに提示する。
平均および個々のタモキシフェン血清中濃度-時間曲線を、各用量コホートについて表にする。薬物動態パラメータを各参加者について決定し、これを、記述統計(算術平均、標準偏差、変動係数、サンプルサイズ、最小値、最大値、および中央値)を使用して、コホートごとにまとめる。さらに、AUCおよびCmaxについて幾何平均を計算する。線形モデルを使用する解析を実施して、用量比例性、時間依存性、および累積、ならびに定常状態の達成(多回投与)を評価する。
実施例6
タモキシフェン治療に応答したマンモグラフィ密度変化の臨床像
ベースラインにおいて、およびフォローアップモニタリング期間にわたって、すべてのマンモグラムについての左および右乳房に対するマンモグラフィ密度を測定した。相対密度変化は、フォローアップ密度測定値からベースライン密度測定値を引き、次に、ベースライン密度測定値で割るようにして、各フォローアップマンモグラムについて計算した。
相対密度変化は、タモキシフェン治療コホートにおいて4つのカテゴリーに類別し、閉経前および閉経後の女性に対するノモグラムとして可視化した(図4Aおよび4B)。非応答密度カテゴリーは、ベースラインと比べて10%より大きく低下しなかったマンモグラムからの密度と定義した。閉経前の女性に対して1年あたり0.52%(2/38)の低下を、および閉経後の女性に対して1年あたり0.45%(1/21)の低下を加えることによって、退縮により乳房に天然に生じる密度変化をこの数に加えた。これは、2cm2密領域および1cm2密領域がそれぞれ、閉経前および閉経後に毎年低下するとして計算した(Eriksson 2018)。これを、それぞれ閉経前および閉経後の女性の間の平均密領域、すなわち、38cm2および21cm2で割った。
中間密度低下カテゴリーは、タモキシフェン治療コホートで観察される平均低下と定義した。経時的に、平均値の周りに10%の余地を使用する(図4Aおよび4B)。低応答密度カテゴリーは、非応答者と平均応答者の間の密度と定義した。高密度低下カテゴリーは、平均カテゴリーよりも低下した密度と定義した。
上記に基づいて、ベースラインからフォローアップの終わりまでの女性の時系列応答カテゴリーの平均として、4つのカテゴリーのうちの1つに各女性を類別することができる。
臨床医は、経時的に密度変化をマーキングすることによってノモグラム上で各女性をモニターすることができる。モニタリングは、治療レジメンを評価すること、または新しい治療レジメンを指定することに含まれ得る。
前述の考察は、例示および説明の目的で提示された。前述のことは、本開示を、本明細書において開示される1つの形態または複数の形態に制限することを意図するものではない。本開示は、1つまたは複数の態様、ならびにある特定の変形および修正の説明を含むが、他の変形および修正は、例えば、本開示を理解した後に、当業者の技能および知識内であり得るので、本発明の範囲内である。主張されるものに対する、代わりの、互換的な、および/または均等な構造、機能、範囲、または工程を含めた代替の態様を許される範囲で含む権利を、そのような代わりの、互換的な、および/または均等な構造、機能、範囲、または工程が本明細書において開示されるかどうかを問わず、かつ任意の特許性のある主題を公開することを意図せずに、得ることが意図される。
本明細書において開示されるタモキシフェン遊離塩基およびその塩を含む組成物は、合成的に調製したタモキシフェンおよび単離されたタモキシフェン用いて調製することができることを理解されたい。対象の投与は、組成物中に存在するタモキシフェンの量に基づくことをさらに理解されたい。
本明細書において言及されるすべての刊行物、特許、および特許出願は、個々の刊行物、特許、または特許出願のそれぞれが、参照によりその全体が組み入れられることが具体的におよび個々に示される場合と同じ程度に、参照によりその全体が組み入れられる。

Claims (20)

  1. a.コンピュータ処理システムにおいて、画像取得ユニットによって取得された対象の第1の乳房画像と、画像取得ユニットによって取得された対象の第2の乳房画像と、該第1および第2の乳房画像のそれぞれについての、圧迫された乳房の厚さ、マンモグラフィ機のX線管電圧、マンモグラフィの機種、およびマンモグラフィの機種に特異的な乳房厚圧迫定数のうちの少なくとも1つを含む画像メタデータを含むデータインプットを、使用された画像取得ユニットまたは画像保存ユニットから受け取る工程;ならびに
    b.
    i.該第1の乳房画像および該第2の乳房画像に対して閾値処理方法を実施し、該第1の乳房画像および該第2の乳房画像における各ピクセルを乳房領域またはバックグラウンドのいずれかとして標識したバイナリマスクを、該第1の乳房画像および該第2の乳房画像のそれぞれに対して生成する、段階;
    ii.該第1の乳房画像および該第2の乳房画像のそれぞれにおける該乳房領域を、レイヤーにおいてスーパーインポーズする段階;
    iii.該第1の乳房画像および該第2の乳房画像のそれぞれのバイナリマスクを、互いへ向けて、ピクセル強度が互いに対して最小の差異を示す、該第1の乳房画像および該第2の乳房画像のそれぞれにおける乳房領域の整列に最適な位置に、移動させる段階;および
    iv.該バイナリマスクに応じて移動された該第1の乳房画像および該第2の乳房画像において、相互に共通して乳房領域として標識された領域を、該第1の乳房画像および該第2の乳房画像のそれぞれにおいて相互画像情報の領域として同定する段階;
    を含む整列アルゴリズムを、該第1の乳房画像および該第2の乳房画像に適用する工程
    c.該整列アルゴリズム適用後の、乳房領域が整列された該第1の乳房画像および該第2の乳房画像を含む画像を保存する工程;
    d.該第1の乳房画像および該第2の乳房画像のそれぞれについて、該相互画像情報の領域からテクスチャ特徴を抽出する工程;ならびに
    e. 該第1の乳房画像および該第2の乳房画像のそれぞれについて、該抽出したテクスチャ特徴と該画像メタデータとから生成した特徴変数を統計的機械学習モデルに入力して、該相互画像情報の領域から密度測定値の出力を得る工程;
    を含む、コンピュータによって該対象の該第1の乳房画像および該第2の乳房画像における該密度測定値を得るための方法であって、
    該乳房厚圧迫定数は、乳房の厚さに関するマンモグラフィ機特異的な報告を較正するためのマンモグラフィ機特異的な定数であり、
    該密度測定値は、乳腺密度を含む、前記方法
  2. 前記特徴変数が、前記画像メタデータに基づいて計算された乳房圧迫スコアを含む請求項1記載の方法。
  3. 前記第1の乳房画像および前記第2の乳房画像が、それぞれ、アナログマンモグラムのデジタル化画像、デジタルマンモグラフィ機からのRAW画像、またはデジタルマンモグラフィ機からの変換後画像である、請求項1記載の方法。
  4. 前記第1の乳房画像および/または前記第2の乳房画像に対して、正規化された画像解像度にデジタル的に画像サイズをスケーリングする工程をさらに含む、請求項1記載の方法。
  5. 前記第1の乳房画像が前記対象の右乳房のものであり、前記第2の乳房画像が前記対象の左乳房のものである、請求項1記載の方法。
  6. 前記第1の乳房画像が第1の時間からのものであり、前記第2の乳房画像が該第1の時間とは異なる第2の時間からのものである、請求項1記載の方法。
  7. f.前記第1の乳房画像および前記第2の乳房画像の間で、前記密度測定値を比較する工程、
    をさらに含む、請求項1~6のいずれか一項記載の方法。
  8. f.前記該第1の乳房画像および前記第2の乳房画像のそれぞれの密度測定値に基づき、平均密度測定値を得る工程、
    をさらに含む、請求項1~6のいずれか一項記載の方法。
  9. g.前記対象の前記第1の乳房画像および前記第2の乳房画像とは異なる、前記対象の複数の乳房画像について、工程a~fを実行する工程;ならびに
    h.前記対象の前記第1の乳房画像および前記第2の乳房画像の平均密度測定値を、前記対象の前記複数の乳房画像の平均密度測定値と比較する工程
    をさらに含む、請求項8記載の方法。
  10. コンピュータによって実行されたときに、請求項1~9のいずれか一項の方法を該コンピュータに実行させる実行可能命令を保した、非一時的コンピュータ可読媒体。
  11. a.実行可能命令を実施するように構成されオペレーティングシステムとメモリデバイスとを含む、デジタル処理デバイス;
    b.
    i.画像取得ユニットによって取得された対象の第一の乳房画像と、画像取得ユニットによって取得された対象の第2の乳房画像と、該第1および第2の乳房画像のそれぞれについての、圧迫された乳房の厚さ、マンモグラフィ機のX線管電圧、マンモグラフィの機種、およびマンモグラフィの機種に特異的な乳房厚圧迫定数のうちの少なくとも1つを含む画像メタデータとを含む、データインプット、使用された画像取得ユニットまたは画像保存ユニットから受け取るように構成されソフトウェアモジュール;
    ii.
    1.該第1の乳房画像および該第2の乳房画像に対して閾値処理方法を実施して、該複第1の乳房画像および該第2の乳房画像における各ピクセルを乳房領域またはバックグラウンドのいずれかとして標識したバイナリマスクを、該第1の乳房画像および該第2の乳房画像のそれぞれに対して生成すること
    2.該第1の乳房画像および該第2の乳房画像のそれぞれにおける該乳房領域を、レイヤーにおいてスーパーインポーズすること
    3.該第1の乳房画像および該第2の乳房画像のそれぞれのバイナリマスクを、互いへ向けて、ピクセル強度が互いに対して最小の差異を示す、該第1の乳房画像および該第2の乳房画像のそれぞれにおける乳房領域の整列に最適な位置に、移動させること;および
    4.該バイナリマスクに応じて移動された該第1の乳房画像および該第2の乳房画像において、相互に共通して乳房領域として標識された領域を、該第1の乳房画像および該第2の乳房画像のそれぞれにおいて相互画像情報の領域として同定すること;
    含む整列アルゴリズムを該第1の乳房画像および該第2の乳房画像に適用するように構成され、ソフトウェアモジュール
    iii.該整列アルゴリズム適用後の、乳房領域が整列された該第1の乳房画像および該第2の乳房画像を含む画像を保存するように構成された、ソフトウェアモジュール;
    iv.該第1の乳房画像および該第2の乳房画像のそれぞれについて、該相互画像情報の領域からテクスチャ特徴を抽出するように構成された、ソフトウェアモジュール;ならびに、
    v.該第1の乳房画像および該第2の乳房画像のそれぞれについて、該抽出したテクスチャ特徴と該画像メタデータとから生成した特徴変数を統計的機械学習モデルに入力して、該相互画像情報の領域から密度測定値の出力を得るように構成された、ソフトウェアモジュール
    を含むデジタル処理デバイスによって実行可能な命令を含む、コンピュータプログラム
    を含む、システムであって、
    該乳房厚圧迫定数は、乳房の厚さに関するマンモグラフィ機特異的な報告を較正するためのマンモグラフィ機特異的な定数であり、
    該密度測定値は、乳腺密度を含む、前記システム
  12. 前記特徴変数が、前記画像メタデータに基づいて計算された乳房圧迫スコアを含む、請求項11記載のシステム。
  13. 前記第1の乳房画像および前記第2の乳房画像が、それぞれ、アナログマンモグラムのデジタル化画像、デジタルマンモグラフィ機からのRAW画像、またはデジタルマンモグラフィ機からの変換後画像である、請求項11記載のシステム。
  14. 前記コンピュータプログラムが、
    前記第1の乳房画像および前記第2の乳房画像に対して、正規化された画像解像度にデジタル的に画像サイズをスケーリングするように構成されたソフトウェアモジュール
    をさらに含む、請求項11記載のシステム。
  15. 前記第1の乳房画像が前記対象の右乳房のものであり、前記第2の乳房画像が前記対象の左乳房のものである、請求項11記載のシステム。
  16. 前記第1の乳房画像が第1の時間からのものであり、前記第2の乳房画像が該第1の時間とは異なる第2の時間からのものである、請求項11記載のシステム。
  17. 前記コンピュータプログラムが、
    vi.前記第1の乳房画像および前記第2の乳房画像の間で、前記密度測定値を比較するように構成されたソフトウェアモジュール
    をさらに含む、請求項11~16のいずれか一項記載のシステム。
  18. 前記コンピュータプログラムが、
    vi.前記該第1の乳房画像および前記第2の乳房画像のそれぞれの密度測定値に基づき、平均密度測定値を得るように構成されたソフトウェアモジュール
    をさらに含む、請求項11~16のいずれか一項記載のシステム。
  19. 前記コンピュータプログラムが、
    vii.前記対象の前記第1の乳房画像および前記第2の乳房画像の平均密度測定値を、前記対象の前記第1の乳房画像および前記第2の乳房画像とは異なる、前記対象の複数の乳房画像の平均密度測定値と比較するように構成されたソフトウェアモジュール
    をさらに含む、請求項18記載の方法。
  20. 前記コンピュータプログラムが、
    前記密度測定値を経時的に比較するように構成され1つまたは複数のソフトウェアモジュール
    をさらに含む、請求項11記載のシステム。
JP2020560632A 2018-01-25 2019-01-24 乳房障害の治療をモニターするための組成物および方法 Active JP7108715B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862622029P 2018-01-25 2018-01-25
US62/622,029 2018-01-25
PCT/IB2019/050606 WO2019145896A1 (en) 2018-01-25 2019-01-24 Compositions and methods for monitoring the treatment of breast disorders

Publications (3)

Publication Number Publication Date
JP2021511186A JP2021511186A (ja) 2021-05-06
JPWO2019145896A5 JPWO2019145896A5 (ja) 2022-03-09
JP7108715B2 true JP7108715B2 (ja) 2022-07-28

Family

ID=65767048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560632A Active JP7108715B2 (ja) 2018-01-25 2019-01-24 乳房障害の治療をモニターするための組成物および方法

Country Status (6)

Country Link
US (1) US20200360312A1 (ja)
EP (1) EP3743922A1 (ja)
JP (1) JP7108715B2 (ja)
CN (1) CN111937079A (ja)
AU (1) AU2019212585B2 (ja)
WO (1) WO2019145896A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272164B1 (en) * 2020-01-17 2022-03-08 Amazon Technologies, Inc. Data synthesis using three-dimensional modeling
DE102020212205A1 (de) 2020-09-28 2022-03-31 Siemens Healthcare Gmbh Individuelle Ermittlung der Brustkompression bei der Mammographie mit künstlicher Intelligenz
CN113539410B (zh) * 2021-06-07 2023-09-26 四川临丰医疗科技有限公司 一种基于大数据的医院药房药物智能分类推送设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090094A (ja) 2007-08-30 2009-04-30 Fujifilm Corp 画像整合のための方法および装置
JP2012135444A (ja) 2010-12-27 2012-07-19 Fujifilm Corp 撮影制御装置および撮影制御方法
JP2017527775A (ja) 2014-06-04 2017-09-21 アトッサ ジェネティックス インク. 分子マンモグラフィ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0168175B1 (en) 1984-06-12 1987-11-19 National Research Development Corporation Preparation of tamoxifen
US5359513A (en) * 1992-11-25 1994-10-25 Arch Development Corporation Method and system for detection of interval change in temporally sequential chest images
US7756317B2 (en) 2005-04-28 2010-07-13 Carestream Health, Inc. Methods and systems for automated detection and analysis of lesion on magnetic resonance images
DE102006021036B4 (de) 2006-04-28 2010-04-08 Image Diagnost International Gmbh Vorrichtung und Verfahren zur computergestützten Analyse von Mammogrammen
EP2310839A4 (en) * 2008-06-18 2011-08-03 Surgix Ltd METHOD AND SYSTEM FOR JOINING MULTIPLE PICTURES TO A PANORAMIC IMAGE
EP2369992A1 (en) * 2008-12-04 2011-10-05 Real Imaging Ltd. Method apparatus and system for determining a thermal signature
US20100298694A1 (en) * 2008-12-24 2010-11-25 Marrouche Nassir F Stroke risk assessment
WO2010079519A1 (en) * 2009-01-09 2010-07-15 Im3D S.P.A Method and system for the automatic recognition of lesions in a set of breast magnetic resonance images
KR101111055B1 (ko) * 2009-10-12 2012-02-15 서울대학교산학협력단 디지털 유방 x-선 영상에서 유방 밀도 자동 측정 방법
CN103582455B (zh) * 2011-02-14 2016-12-28 罗切斯特大学 基于锥形束乳房ct图像的计算机辅助检测和诊断的方法和装置
DE102011080905B4 (de) * 2011-08-12 2014-03-27 Siemens Aktiengesellschaft Verfahren zur Visualisierung der Registrierungsqualität medizinischer Bilddatensätze
EP2807630B1 (en) 2011-12-22 2015-06-03 Koninklijke Philips N.V. Processing and displaying a breast image
EP2631873B1 (en) 2012-02-27 2015-12-16 Agfa Healthcare Image alignment of breast images
KR101586276B1 (ko) * 2013-08-02 2016-01-18 서울대학교산학협력단 사전 통계 정보를 이용한 유방 밀도 자동 측정 및 표시 방법과 이를 이용한 유방 밀도 자동 측정 시스템 및 컴퓨터 프로그램 저장 매체
US9256939B1 (en) 2014-07-17 2016-02-09 Agfa Healthcare System and method for aligning mammography images
JP7100019B2 (ja) * 2016-08-19 2022-07-12 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ 選択的エストロゲン受容体モジュレーター(serm)は、光受容体の変性に対する保護を付与する

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090094A (ja) 2007-08-30 2009-04-30 Fujifilm Corp 画像整合のための方法および装置
JP2012135444A (ja) 2010-12-27 2012-07-19 Fujifilm Corp 撮影制御装置および撮影制御方法
JP2017527775A (ja) 2014-06-04 2017-09-21 アトッサ ジェネティックス インク. 分子マンモグラフィ

Also Published As

Publication number Publication date
AU2019212585B2 (en) 2022-04-07
US20200360312A1 (en) 2020-11-19
JP2021511186A (ja) 2021-05-06
AU2019212585A1 (en) 2020-08-06
CN111937079A (zh) 2020-11-13
EP3743922A1 (en) 2020-12-02
WO2019145896A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US11937962B2 (en) Systems and methods for automated and interactive analysis of bone scan images for detection of metastases
Pan et al. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening
US8929624B2 (en) Systems and methods for comparing different medical images to analyze a structure-of-interest
Davies et al. Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning
EP3021753B1 (en) Systems and methods for determining hepatic function from liver scans
JP2021509721A (ja) 高速ニューラルネットワークベースの画像セグメント化および放射性医薬品摂取判定のためのシステムおよび方法
JP7108715B2 (ja) 乳房障害の治療をモニターするための組成物および方法
US20220323043A1 (en) Methods and systems for cancer risk assessment using tissue sound speed and stiffness
CN111247592A (zh) 用于随时间量化组织的系统和方法
Balagurunathan et al. Semi‐automated pulmonary nodule interval segmentation using the NLST data
Yang et al. Development and assessment of deep learning system for the location and classification of rib fractures via computed tomography
Gómez-Sáez et al. Lung cancer risk and cancer-specific mortality in subjects undergoing routine imaging test when stratified with and without identified lung nodule on imaging study
Galperin-Aizenberg et al. Preliminary assessment of an optical flow method (OFM) for nonrigid registration and temporal subtraction (TS) of serial CT examinations to facilitate evaluation of interval change in metastatic lung nodules
JPWO2019145896A5 (ja)
Pinto et al. Patient satisfaction with ultrasound, whole-body CT and whole-body diffusion-weighted MRI for pre-operative ovarian cancer staging: a multicenter prospective cross-sectional survey
Forde et al. Influence of inter-observer delineation variability on radiomic features of the parotid gland
Ghobadi et al. Radiological medical device innovation: approvals via the premarket approval pathway from 2000 to 2015
Calandriello et al. Quantitative CT analysis in ILD and the use of artificial intelligence on imaging of ILD
Jacks et al. Computed tomography measurements in assessment of idiopathic vocal fold paralysis
Zhang et al. A Deep Learning Body Compositions Assessment Application with L3 CT Images: Multiple Validations
US20240095912A1 (en) Deep learning-based attenuation correction of cardiac imaging data
US20220398763A1 (en) Systems and methods of volumetrically assessing structures of skeletal cavities
Sharma et al. Point-of-care thermal imaging tool assisting in the development of imaging biomarker as pre-diagnostics of graves’ disease
Tao An Investigation of Global and Local Radiomic Features for Customized Self-Assessment Mammographic Test Sets for Radiologists in China in Comparison with Those in Australia
Du et al. Deep-learning radiomics based on ultrasound can objectively evaluate thyroid nodules and assist in improving the diagnostic level of ultrasound physicians

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220131

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20220225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220715

R150 Certificate of patent or registration of utility model

Ref document number: 7108715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150