JP7107724B2 - Storage containers and stacks - Google Patents

Storage containers and stacks Download PDF

Info

Publication number
JP7107724B2
JP7107724B2 JP2018075386A JP2018075386A JP7107724B2 JP 7107724 B2 JP7107724 B2 JP 7107724B2 JP 2018075386 A JP2018075386 A JP 2018075386A JP 2018075386 A JP2018075386 A JP 2018075386A JP 7107724 B2 JP7107724 B2 JP 7107724B2
Authority
JP
Japan
Prior art keywords
storage container
tubular member
tubular
cask
fitting hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018075386A
Other languages
Japanese (ja)
Other versions
JP2019184421A (en
Inventor
浩祐 岩本
武臣 出田
温士 石川
邦裕 都知木
友亮 木作
孝三 伊藤
功 棚橋
壮一郎 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Construction Materials Co Ltd
Original Assignee
IHI Corp
IHI Construction Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Construction Materials Co Ltd filed Critical IHI Corp
Priority to JP2018075386A priority Critical patent/JP7107724B2/en
Publication of JP2019184421A publication Critical patent/JP2019184421A/en
Application granted granted Critical
Publication of JP7107724B2 publication Critical patent/JP7107724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stackable Containers (AREA)

Description

本開示は、キャスクを収納する収納容器、及び、収納容器を集積した集積体に関する。 TECHNICAL FIELD The present disclosure relates to storage containers that store casks, and stacks in which storage containers are stacked.

従来、使用済み核燃料集合体を収納するキャスクがある。特許文献1は、このようなキャスクを収納可能とする収納容器を開示している。この収納容器は、筒状体の内側にある収納空間に、略円柱形状のキャスクを立設させて収納する。ここで、キャスクが使用済み核燃料集合体である場合、筒状体が大型化する。そのため、筒状体を、一体としてではなく、複数の部材を鉛直方向に積層した積層体として構成するという対策が取られている。 Conventionally, there are casks for storing spent nuclear fuel assemblies. Patent Document 1 discloses a storage container capable of storing such a cask. In this storage container, a substantially columnar cask is placed upright in a storage space inside a cylindrical body. Here, when the cask is a spent nuclear fuel assembly, the tubular body becomes large. Therefore, measures have been taken to configure the cylindrical body as a laminate in which a plurality of members are laminated in the vertical direction, rather than as a single body.

特開2016-211856号公報JP 2016-211856 A

しかし、筒状体が互いに積層された複数の部材で構成される場合、収納容器に高レベルの地震力などの突発的な外力が加わると、上下の部材同士を接続する部分に大きな荷重がかかる。したがって、このような接続部分に大きな荷重がかかったときに筒状体が損傷しないよう、収納容器の耐久性の向上が望まれている。 However, in the case where the tubular body is composed of a plurality of members stacked on top of each other, if a sudden external force such as a high level seismic force is applied to the storage container, a large load is applied to the portion connecting the upper and lower members. . Therefore, it is desired to improve the durability of the storage container so that the cylindrical body is not damaged when a large load is applied to such a connecting portion.

そこで、本開示は、外力を吸収可能な接続構造を備える収納容器及び集積体を提供することを目的とする。 Accordingly, an object of the present disclosure is to provide a storage container and an assembly having a connection structure capable of absorbing external force.

本開示の一態様に係る収納容器は、キャスクを収納する収納容器であって、キャスクを内部に配置する筒状体を構成する第1筒状部材と、筒状体を構成し、第1筒状部材の下部に設置される第2筒状部材と、第1筒状部材と第2筒状部材とを接続する接続部材と、を備え、第2筒状部材は、第1筒状部材に対向する面に、第1嵌合穴を有し、第1筒状部材は、第2筒状部材に対向する面に、第2嵌合穴を有し、接続部材の形状は、一端が第1嵌合穴に嵌合し、他端が第2嵌合穴に嵌合する円柱状であり、接続部材を形成する材料は、低降伏点鋼である。 A storage container according to an aspect of the present disclosure is a storage container that stores a cask, and includes: a first tubular member that forms a tubular body in which the cask is arranged; A second tubular member installed below the tubular member, and a connection member that connects the first tubular member and the second tubular member, wherein the second tubular member is connected to the first tubular member The first tubular member has a second fitting hole in a surface facing the second tubular member, and the shape of the connecting member is such that one end is a first fitting hole. The connecting member has a columnar shape that fits in one fitting hole and the other end fits in the second fitting hole, and the material forming the connection member is low-yield-strength steel.

また、上記の収納容器において、第1筒状部材には、蓋体が取り付けられており、第2筒状部材は、キャスクを載置する載置領域から離隔しているものとしてもよい。上記の収納容器は、筒状体の下部に配置され、筒状体を支持する基台を備え、基台の底面は、地盤側に押圧され結合されているものとしてもよいまた、接続部材は、3つ以上あり、3つ以上の接続部材は、筒状体の水平面上の外形を規定する鉛直軸を基準として、互いに等間隔の角度位置に配置されるものとしてもよい。 Further, in the storage container described above, the lid may be attached to the first tubular member, and the second tubular member may be separated from the placement area where the cask is placed. The storage container described above may include a base that is arranged below the cylindrical body and supports the cylindrical body, and that the bottom surface of the base is pressed against and connected to the ground . Further, there may be three or more connecting members, and the three or more connecting members may be arranged at angular positions equidistant from each other with reference to the vertical axis that defines the outer shape of the cylindrical body on the horizontal plane. .

また、本開示の一態様に係る集積体は、第1キャスクを収納する第1収納容器と、第2キャスクを収納する第2収納容器と、第3キャスクを収納する第3収納容器と、を含み、第1収納容器、第2収納容器及び第3収納容器は、それぞれ、上記の収納容器であり、第1収納容器が備える筒状体、第2収納容器が備える筒状体、及び、第3収納容器が備える筒状体は、それぞれ、6角柱状であり、他の2つの筒状体に対面し、ハニカム状に配置される。 Further, an integrated body according to an aspect of the present disclosure includes a first storage container that stores a first cask, a second storage container that stores a second cask, and a third storage container that stores a third cask. The first storage container, the second storage container, and the third storage container are the above-described storage containers, respectively, and include the tubular body provided in the first storage container, the tubular body provided in the second storage container, and the tubular body provided in the second storage container. Each of the cylindrical bodies provided in the three storage containers has a hexagonal prism shape, and is arranged in a honeycomb shape facing the other two cylindrical bodies.

本開示によれば、外力を吸収可能な接続構造を備える収納容器及び集積体を提供することができる。 ADVANTAGE OF THE INVENTION According to this disclosure, it is possible to provide a storage container and an assembly having a connection structure capable of absorbing external force.

一実施形態に係る収納容器の構成を示す斜視図である。It is a perspective view which shows the structure of the storage container which concerns on one Embodiment. 図1のII-II断面に相当する、収納容器の断面図である。FIG. 2 is a cross-sectional view of the storage container corresponding to the II-II cross section of FIG. 1; 一実施形態における筒状体の構成を示す分解図である。FIG. 4 is an exploded view showing the configuration of a cylindrical body in one embodiment; 図2のIV-IV断面に相当する、収納容器の平面図である。FIG. 3 is a plan view of the storage container corresponding to the IV-IV cross section of FIG. 2; 図2のV-V断面に相当する基台の第2積層部の断面図である。FIG. 3 is a cross-sectional view of the second laminated portion of the base corresponding to the VV cross section of FIG. 2; 図1のVI-VI断面に相当する、収納容器の断面図である。FIG. 2 is a sectional view of the storage container corresponding to the VI-VI section of FIG. 1; 一実施形態に係る集積体の構成を示す斜視図である。It is a perspective view which shows the structure of the integrated body which concerns on one Embodiment.

以下、本開示の実施形態について、図面を参照して詳細に説明する。ここで、実施形態に示す寸法、材料、その他、具体的な数値等は、例示にすぎず、特に断る場合を除き、本開示を限定するものではない。また、実質的に同一の機能及び構成を有する要素については、同一の符号を付することにより重複説明を省略し、本開示に直接関係のない要素については、図示を省略する。更に、以下の各図では、鉛直方向にZ軸を取り、Z軸に垂直な平面内において、X軸と、X軸に垂直な方向にY軸とを取る。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Here, the dimensions, materials, and other specific numerical values shown in the embodiment are merely examples, and do not limit the present disclosure unless otherwise specified. Elements having substantially the same function and configuration are denoted by the same reference numerals to omit redundant description, and elements that are not directly related to the present disclosure are omitted from the drawings. Furthermore, in each of the following figures, the Z-axis is taken in the vertical direction, and in a plane perpendicular to the Z-axis, the X-axis and the Y-axis are taken in the direction perpendicular to the X-axis.

図1は、一実施形態に係る収納容器10の構成を示す斜視図である。図2は、収納容器10の鉛直方向の断面図である。収納容器10は、キャスクCを収納する。 FIG. 1 is a perspective view showing the configuration of a storage container 10 according to one embodiment. FIG. 2 is a vertical sectional view of the storage container 10. As shown in FIG. The storage container 10 stores the cask C.

キャスクCは、例えば、使用済み核燃料集合体を収納する金属製の乾式キャスクである。ここで、使用済み核燃料集合体とは、原子炉での反応を終えた複数の使用済み核燃料棒を連結した集合体をいう。なお、各図では、使用済み核燃料集合体を収納しているキャスクCの外形を、概略的に全長LC及び外径DCの円柱で示している。 The cask C is, for example, a metal dry cask that stores spent nuclear fuel assemblies. Here, a spent nuclear fuel assembly refers to an assembly in which a plurality of spent nuclear fuel rods that have finished reacting in a nuclear reactor are connected. In each figure, the outer shape of the cask C containing the spent nuclear fuel assemblies is schematically indicated by a column having a total length LC and an outer diameter DC.

本実施形態に係る収納容器10は、全体として、鉛直軸AXを中心軸とした略6角柱状の外形を有する。収納容器10は、内部に形成されている収納空間S1にキャスクCを縦置きに収納する。なお、各図では、収納容器10の外形を、全長L1、並びに、水平面上の6角形の寸法である二面幅W1及び対角距離W2の略6角柱で示している。 The storage container 10 according to this embodiment has a generally hexagonal prism shape with the vertical axis AX as the central axis as a whole. The storage container 10 stores the cask C vertically in a storage space S1 formed therein. In each figure, the outer shape of the storage container 10 is shown as a substantially hexagonal prism with a total length L1, a width across flats W1 that is the dimensions of a hexagon on the horizontal plane, and a diagonal distance W2.

キャスクCを収納した収納容器10は、例えば、屋外の地盤上に設置される。収納容器10を略6角柱状としているため、地盤への設置時に、複数の収納容器10を外側面同士で近接あるいは締結させて、いわゆるハニカム構造で集積配置させることができる。 The storage container 10 containing the cask C is installed on the ground outdoors, for example. Since the storage container 10 has a substantially hexagonal prism shape, a plurality of storage containers 10 can be arranged close to each other at their outer surfaces or fastened together in a so-called honeycomb structure when installed on the ground.

収納容器10は、筒状体12と、蓋体14と、基台16とを備える。ここで、キャスクC内の使用済み核燃料集合体からは、微量の中性子線等の放射線が漏出することも懸念される。ただし、微量の放射線の漏出に短期的に暴露されることが問題になることはない。しかし、キャスクCの周辺では、長期的に暴露されることもあり得ることから、キャスクCを収納する容器の材質をコンクリートとする場合がある。そこで、本実施形態では、筒状体12、蓋体14及び基台16を構成する主材料は、コンクリートである。収納容器10は、全体としてコンクリート製となることから、コンクリートオーバパック(COP)とも表現される。 The storage container 10 includes a tubular body 12 , a lid body 14 and a base 16 . Here, from the spent nuclear fuel assemblies in the cask C, there is concern that a very small amount of radiation such as neutron beams may leak. However, short-term exposure to small leaks of radiation is not a problem. However, since the area around the cask C may be exposed for a long period of time, the material of the container housing the cask C may be concrete. Therefore, in this embodiment, the main material forming the cylindrical body 12, the lid body 14 and the base 16 is concrete. Since the storage container 10 is made of concrete as a whole, it is also expressed as a concrete overpack (COP).

筒状体12は、内側の空間を収納空間S1とする6角柱状である。筒状体12は、6角柱の6つの側面からなる外側面12aと、円筒状の内側面12bとを有する。なお、各図では、収納空間S1の形状を、全長L2及び内径D2の円筒で示している。筒状体12の全長L2は、収納空間S1の全長に相当する。キャスクCが筒状体12に対して同軸状に収納空間S1内に配置されているとすると、キャスクCの外壁面と、筒状体12の内側面12bとの間に、間隔Gの隙間空間が生じる。 The cylindrical body 12 has a hexagonal prism shape with an inner space as a storage space S1. The tubular body 12 has an outer surface 12a consisting of six sides of a hexagonal prism and a cylindrical inner surface 12b. In each figure, the shape of the storage space S1 is indicated by a cylinder having a total length L2 and an inner diameter D2. The total length L2 of the cylindrical body 12 corresponds to the total length of the storage space S1. Assuming that the cask C is arranged in the storage space S1 coaxially with respect to the cylindrical body 12, a gap G is formed between the outer wall surface of the cask C and the inner side surface 12b of the cylindrical body 12. occurs.

また、筒状体12は、外側面12aを構成する6つの側面上のそれぞれに、水平方向の中央部で鉛直方向に沿って伸びる溝部12cを有する。溝部12cは、複数の収納容器10を上記のようにハニカム構造で集積配置した際に、隣り合う収納容器10同士で互いに向かい合うことで、空気の流路となり得る。つまり、収納容器10をハニカム構造に集積配置した場合、溝部12cは、対面する別の収納容器10の側面に設けられた溝部12cと対向する。 Further, the cylindrical body 12 has a groove portion 12c extending vertically in the center portion in the horizontal direction on each of the six side surfaces forming the outer side surface 12a. When a plurality of storage containers 10 are stacked and arranged in a honeycomb structure as described above, the grooves 12c can serve as air flow paths by causing the adjacent storage containers 10 to face each other. That is, when the storage containers 10 are stacked and arranged in a honeycomb structure, the groove portion 12c faces the groove portion 12c provided on the side surface of another storage container 10 facing another.

図3は、筒状体12の分解図である。筒状体12は、大型のキャスクCを内部に収納する。また、収納容器10の材質は、コンクリートである。そのため、筒状体12が一個体で形成されていると、重量が大きくなるため、例えば、収納容器10を組み立てる際に、現場にあるクレーンの能力によっては、筒状体12を持ち上げることができないこともあり得る。そこで、筒状体12は、例えば、図3に示すように、更に複数の部材の組み合わせで構成されている。 FIG. 3 is an exploded view of the cylindrical body 12. As shown in FIG. The cylindrical body 12 accommodates a large cask C inside. Moreover, the material of the storage container 10 is concrete. Therefore, if the cylindrical body 12 is formed as a single piece, the weight increases. For example, when assembling the storage container 10, the cylindrical body 12 cannot be lifted depending on the capacity of a crane on site. It is possible. Therefore, as shown in FIG. 3, the cylindrical body 12 is composed of a combination of a plurality of members.

筒状体12は、互いに鉛直方向に積層される複数の筒状部材で構成されている。本実施形態では、筒状体12は、第1筒状部材121、第2筒状部材122、第3筒状部材123及び第4筒状部材124の4つの筒状部材で構成されている。更に、第1筒状部材121等の各層は、鉛直方向に沿って分割された複数の部材を組み合わせたものであってもよい。本実施形態では、第1筒状部材121は、第1部材121aと第2部材121bとに2等分されている。同様に、第2筒状部材122は、第3部材122aと第4部材122bとに2等分されている。第3筒状部材123は、第5部材123aと第6部材123bとに2等分されている。第4筒状部材124は、第7部材124aと第8部材124bとに2等分されている。つまり、筒状体12は、第1部材121aから第8部材124bまでの計8つの部材で構成されている。第1部材121aと第2部材121b等の各部材同士は、ボルト等により接続される。 The tubular body 12 is composed of a plurality of tubular members that are vertically stacked one on top of the other. In this embodiment, the tubular body 12 is composed of four tubular members, a first tubular member 121 , a second tubular member 122 , a third tubular member 123 and a fourth tubular member 124 . Furthermore, each layer such as the first tubular member 121 may be a combination of a plurality of vertically divided members. In this embodiment, the first cylindrical member 121 is divided into two equal parts, a first member 121a and a second member 121b. Similarly, the second tubular member 122 is bisected into a third member 122a and a fourth member 122b. The third tubular member 123 is divided into two equal parts, a fifth member 123a and a sixth member 123b. The fourth tubular member 124 is divided into two equal parts, a seventh member 124a and an eighth member 124b. That is, the cylindrical body 12 is composed of a total of eight members from the first member 121a to the eighth member 124b. The members such as the first member 121a and the second member 121b are connected to each other by bolts or the like.

この場合、それぞれの筒状部材における2つの部材同士のつなぎ位置が、図3に示すように、略6角柱の鉛直軸AXを基準として、筒状部材ごとに60°ずれるように、各部材同士を組み合わせてもよい。これにより、筒状体12は、つなぎ位置に影響されることなく強度を均一化させることができる。また、筒状部材ごとに60°ずれる配置に限らず、上下方向に隣接する部材のつなぎ位置が周方向に重ならない配置としてもよい。なお、各筒状部材同士の接続については、以下で詳説する。 In this case, as shown in FIG. 3, the connection position between the two members in each cylindrical member is shifted by 60° with respect to the vertical axis AX of the substantially hexagonal prism. may be combined. As a result, the cylindrical body 12 can have uniform strength without being affected by the joint position. In addition, the arrangement is not limited to the arrangement in which each cylindrical member is shifted by 60°, and the arrangement may be such that the connection positions of vertically adjacent members do not overlap in the circumferential direction. In addition, the connection between each cylindrical member is explained in detail below.

蓋体14は、筒状体12の鉛直方向上部の開口部を覆う平板である。蓋体14の平面形状は、筒状体12の外側面12aに合わせた6角形である。なお、蓋体14は、筒状体12の構成と同様に、鉛直方向に沿って分割された複数の部材を組み合わせたものであってもよい。 The lid 14 is a flat plate that covers the upper opening in the vertical direction of the cylindrical body 12 . The planar shape of the lid 14 is a hexagon that matches the outer surface 12 a of the cylindrical body 12 . It should be noted that the lid body 14 may be a combination of a plurality of vertically divided members, similar to the configuration of the cylindrical body 12 .

また、蓋体14は、第1開口部として、収納空間S1を流れる空気を収納容器10の外部に排出するための複数の排出口14aを有する。本実施形態の排出口14aは、それぞれ、蓋体14の6つの側面上で、水平方向の中央部で鉛直方向に切り欠かれた切り欠き部である。更なる第1開口部として、筒状体12の上端には、蓋体14の排出口14aと連続する切り欠き部12dを有してもよい。なお、排出口14aは、このような切り欠き部で構成されるものではなく、蓋体14の外周部近傍で鉛直方向に沿って貫通する貫通孔で構成されるものでもよい。又は、蓋体14に排出口14aを設けることに代えて、筒状体12の上端部に形成された切り欠き部等の排出口だけが存在するものとしてもよい。 Further, the lid 14 has a plurality of discharge ports 14 a for discharging the air flowing through the storage space S<b>1 to the outside of the storage container 10 as first openings. The discharge port 14a of the present embodiment is a notch portion vertically notched at the center portion in the horizontal direction on the six side surfaces of the lid body 14, respectively. As a further first opening, the upper end of the tubular body 12 may have a notch 12d continuous with the discharge port 14a of the lid 14 . Note that the discharge port 14a may not be configured by such a notch portion, but may be configured by a through hole penetrating in the vertical direction in the vicinity of the outer peripheral portion of the lid body 14. As shown in FIG. Alternatively, instead of providing the discharge port 14a in the lid 14, only a discharge port such as a notch formed in the upper end portion of the cylindrical body 12 may be present.

また、排出口14aや切り欠き部12dが上記例示した位置に設けられている場合、筒状体12の外側面12aに形成されている複数の溝部12cは、それぞれ、排出口14aや切り欠き部12dと連続するものとしてもよい。これにより、収納容器10の外部と収納空間S1との間で、空気の流通経路が形成されやすくなる。 Further, when the discharge port 14a and the notch 12d are provided at the positions illustrated above, the plurality of grooves 12c formed in the outer surface 12a of the cylindrical body 12 correspond to the discharge port 14a and the notch 12d, respectively. 12d may be continuous. This facilitates formation of an air circulation path between the outside of the storage container 10 and the storage space S1.

基台16は、筒状体12の下方に配置され、筒状体12を支持する部材である。基台16の全体形状は、筒状体12の外形に合わせた略6角柱である。なお、基台16は、筒状体12の構成と同様に、鉛直方向又は水平方向等に沿って分割された複数の部材を組み合わせたものであってもよい。 The base 16 is a member that is arranged below the tubular body 12 and supports the tubular body 12 . The overall shape of the base 16 is a substantially hexagonal prism matching the outer shape of the tubular body 12 . Note that the base 16 may be a combination of a plurality of members divided along the vertical direction, the horizontal direction, or the like, similar to the configuration of the cylindrical body 12 .

また、基台16は、収納空間S1と外部とに連通する第2開口部を有する。第2開口部の形状に基づいて、基台16は、例えば、鉛直方向の長さがL4の第1積層部16aと、鉛直方向の長さがL5の第2積層部16bとの2つの積層部が鉛直方向に積層された部材であると考えることができる。この場合、基台16の全長L3は、長さL4と長さL5とを加えたものとなる。第1積層部16aの上面は、基台16の上面27に相当する。第1積層部16aの下面は、第2積層部16bの上面と一体化されている。第2積層部16bの下面は、基台16の底面すなわち収納容器10の底面に相当する。 The base 16 also has a second opening that communicates with the storage space S1 and the outside. Based on the shape of the second opening, the base 16 is composed of two layers, for example, a first layered portion 16a having a vertical length of L4 and a second layered portion 16b having a vertical length of L5. It can be considered that the part is a vertically stacked member. In this case, the total length L3 of the base 16 is the sum of the length L4 and the length L5. The upper surface of the first laminated portion 16 a corresponds to the upper surface 27 of the base 16 . The lower surface of the first laminated portion 16a is integrated with the upper surface of the second laminated portion 16b. The bottom surface of the second stacked portion 16 b corresponds to the bottom surface of the base 16 , that is, the bottom surface of the storage container 10 .

図4は、基台16上に第3筒状部材123までを組み合わせた状態の収納容器10の平面図である。なお、図4では、キャスクCの載置位置を二点鎖線円で示している。第1積層部16aは、鉛直方向に貫通した、第1貫通孔20aと、6つの第2貫通孔21a~26aとの2種類の貫通孔を有する。第1貫通孔20aは、図4中の破線円で示すように、鉛直軸AXと同軸に形成され、開口径D3を有する。開口径D3は、キャスクCの外径DCよりも小さい。第2貫通孔21a~26aは、それぞれ、鉛直軸AXから同一距離で、かつ、鉛直軸AXを基準として等間隔で形成され、開口径D4を有する。本実施形態では、第2貫通孔21a~26aは、それぞれ、鉛直軸AXから基台16の各外側面に向かう方向に合わせて、60°間隔で形成されている。なお、第2貫通孔21a~26aの個数や位置は、上記例示に限らず、適宜変更しても構わない。 FIG. 4 is a plan view of the storage container 10 in a state where up to the third cylindrical member 123 are assembled on the base 16. FIG. In FIG. 4, the position where the cask C is placed is indicated by a chain double-dashed line circle. The first laminated portion 16a has two types of through-holes, a first through-hole 20a and six second through-holes 21a to 26a, which penetrate in the vertical direction. The first through-hole 20a is formed coaxially with the vertical axis AX and has an opening diameter D3, as indicated by the dashed circle in FIG. The opening diameter D3 is smaller than the outer diameter DC of the cask C. The second through holes 21a to 26a are formed at the same distance from the vertical axis AX and at equal intervals with respect to the vertical axis AX, and have an opening diameter D4. In the present embodiment, the second through holes 21a to 26a are formed at intervals of 60° in the direction from the vertical axis AX toward each outer surface of the base 16, respectively. The number and positions of the second through holes 21a to 26a are not limited to those illustrated above, and may be changed as appropriate.

図5は、第2積層部16bの水平方向の断面図である。第2積層部16bは、鉛直方向に切られた、それぞれ第1連通空間S2を形成する6つの第1開口溝21b~26bと、第2連通空間S3を形成する第2開口溝20bとの2種類の開口溝を有する。第1開口溝21b~26bは、それぞれ、鉛直軸AXから基台16の各外側面に向かう方向に形成され、間隔W3を有する。間隔W3は、例えば、第1積層部16aに形成されている第2貫通孔21a~26aの開口径D4と同一である。つまり、第1開口溝21b~26bは、それぞれ、第2貫通孔21a~26aに連通する。第2開口溝20bは、鉛直軸AXと同軸に形成される。つまり、第2開口溝20bは、第1貫通孔20aに連通する。また、第2開口溝20bは、水平方向で、第1開口溝21b~26bのぞれぞれと連通する。すなわち、第2積層部16bには、中心側に形成された第2連通空間S3と、第2連通空間S3から径方向に外側面まで延伸する第1連通空間S2とが形成されている。 FIG. 5 is a horizontal sectional view of the second laminated portion 16b. The second laminated portion 16b includes six vertically cut first opening grooves 21b to 26b each forming a first communication space S2 and a second opening groove 20b forming a second communication space S3. It has a kind of open groove. The first opening grooves 21b to 26b are respectively formed in the direction from the vertical axis AX toward each outer side surface of the base 16, and have an interval W3. The interval W3 is, for example, the same as the opening diameter D4 of the second through holes 21a to 26a formed in the first laminated portion 16a. That is, the first open grooves 21b-26b communicate with the second through-holes 21a-26a, respectively. The second open groove 20b is formed coaxially with the vertical axis AX. That is, the second opening groove 20b communicates with the first through hole 20a. Also, the second open groove 20b communicates with each of the first open grooves 21b to 26b in the horizontal direction. That is, the second laminated portion 16b is formed with a second communication space S3 formed on the center side and a first communication space S2 radially extending from the second communication space S3 to the outer surface.

このような基台16の形状によれば、図2を参照すると、6つの第1開口溝21b~26bの外部に面する開口から流入した空気は、第1連通空間S2を通過して、そのうち一方の空気は、第2貫通孔21a~26aに導かれて、収納空間S1内に流入する。また、第1連通空間S2を通過したうちの他方の空気は、更に第2連通空間S3を通過して第1貫通孔20aに導かれて、収納空間S1内に流入する。つまり、第2開口部とは、第1貫通孔20a、第2貫通孔21a~26a、第1開口溝21b~26b及び第2開口溝20bを含む一連の開口部をいう。 According to the shape of the base 16, referring to FIG. 2, the air flowing in from the openings facing the outside of the six first opening grooves 21b to 26b passes through the first communication space S2 and On the other hand, the air is led to the second through holes 21a to 26a and flows into the storage space S1. The other air that has passed through the first communication space S2 further passes through the second communication space S3, is guided to the first through hole 20a, and flows into the storage space S1. In other words, the second opening refers to a series of openings including the first through hole 20a, the second through holes 21a to 26a, the first opening grooves 21b to 26b, and the second opening groove 20b.

載置板30は、収納空間S1に面する基台16の上面27に、脚部34を介して設置されている。載置板30の上面30aには、キャスクCが載置される。載置板30は、金属製の円板状部材である。載置板30の外径D5は、キャスクCの外径DCよりも大きく、筒状体12の内径D2よりも小さい。なお、載置板30は、基台16に対して略同軸に設置されるものとする。また、キャスクCは、載置板30に対して略同軸に載置されるものとする。載置板30の厚さTは、キャスクCの荷重に耐え得る寸法を有する。 The mounting plate 30 is installed via legs 34 on the upper surface 27 of the base 16 facing the storage space S1. A cask C is placed on the upper surface 30 a of the placing plate 30 . The mounting plate 30 is a disk-shaped member made of metal. The outer diameter D5 of the mounting plate 30 is larger than the outer diameter DC of the cask C and smaller than the inner diameter D2 of the tubular body 12 . Note that the mounting plate 30 is installed substantially coaxially with the base 16 . It is also assumed that the cask C is mounted substantially coaxially with respect to the mounting plate 30 . The thickness T of the mounting plate 30 has a dimension that can withstand the load of the cask C. As shown in FIG.

脚部34は、例えば、載置板30の下面30bの外周部に、鉛直軸AXを基準として等間隔で配置される部材である。つまり、脚部34は、複数ある。なお、本実施形態では、脚部34は、6つある。本実施形態では、脚部34は、載置板30が基台16の上面27上に設置された際には、それぞれ、基台16に形成されている第2貫通孔21a~26aの位置を避けて、上面27と接触する。また、脚部34が存在することにより、載置板30が基台16の上面27上に設置された際には、載置板30の上面30aは、基台16の上面27から高さHの位置となる。高さHを、載置板30の厚さTよりも大きく設定することにより、載置板30の下面30bと基台16の上面27との間には、隙間が生じる。また、脚部34の長手方向の幅W4は、例えば、キャスクCの荷重に耐え得ることや、第2貫通孔21a~26aの開口を塞がないことなどを条件として決定される。 The leg portions 34 are, for example, members arranged at regular intervals on the outer peripheral portion of the lower surface 30b of the mounting plate 30 with respect to the vertical axis AX. That is, there are multiple legs 34 . Note that there are six legs 34 in this embodiment. In the present embodiment, when the mounting plate 30 is placed on the upper surface 27 of the base 16, the legs 34 adjust the positions of the second through holes 21a to 26a formed in the base 16 respectively. Avoid contact with the upper surface 27 . Further, due to the existence of the legs 34 , when the mounting plate 30 is placed on the upper surface 27 of the base 16 , the upper surface 30 a of the mounting plate 30 is positioned at a height H from the upper surface 27 of the base 16 . position. By setting the height H larger than the thickness T of the mounting plate 30 , a gap is created between the lower surface 30 b of the mounting plate 30 and the upper surface 27 of the base 16 . Further, the width W4 of the leg portion 34 in the longitudinal direction is determined, for example, under conditions such as being able to withstand the load of the cask C and not blocking the openings of the second through holes 21a to 26a.

ここで、図2を参照すると、外部から第1連通空間S2を通過して第2貫通孔21a~26aに導かれた空気は、収納空間S1に流入する。収納空間S1内の空気は、キャスクCの外壁面に沿いながら、収納空間S1内の隙間空間を下方から上方に通過し、最終的に蓋体14に形成されている排出口14a、又は、筒状体12に形成されている切り欠き部12dから外部に排出される。したがって、キャスクCから放出された熱は、収納空間S1内のこのような空気の流れに沿って、収納空間S1の外部に放熱される。 Here, referring to FIG. 2, the air that has passed through the first communication space S2 from the outside and is led to the second through holes 21a to 26a flows into the storage space S1. The air in the storage space S1 passes through the gap space in the storage space S1 from below to above while along the outer wall surface of the cask C, and finally reaches the discharge port 14a formed in the lid 14 or the cylinder. It is discharged to the outside through a notch portion 12d formed in the shaped body 12. As shown in FIG. Therefore, the heat emitted from the cask C is radiated to the outside of the storage space S1 along such air flow in the storage space S1.

一方、外部から第2連通空間S3を通過して第1貫通孔20aに導かれた空気は、載置板30の下面30bと基台16の上面27との間の隙間を通過して、収納空間S1内の隙間空間を下方から上方に通過する空気の流れに合流する。したがって、キャスクCの底面近傍から放出された熱も、収納空間S1内の空気の流れに沿って、収納空間S1の外部に放熱される。 On the other hand, the air that has passed through the second communication space S3 from the outside and is led to the first through hole 20a passes through the gap between the lower surface 30b of the mounting plate 30 and the upper surface 27 of the base 16, and is stored. It merges with the flow of air passing through the clearance space in the space S1 from below to above. Therefore, the heat emitted from the vicinity of the bottom surface of the cask C is also radiated to the outside of the storage space S1 along the air flow in the storage space S1.

次に、収納容器10に含まれる各要素を接続する構成について説明する。図6は、各要素が互いに接続された状態にある収納容器10の鉛直方向の断面図である。 Next, a configuration for connecting each element included in the storage container 10 will be described. FIG. 6 is a vertical cross-sectional view of the container 10 with the elements connected together.

まず、筒状体12を構成する各筒状部材同士の鉛直方向すなわち積層方向の接続について説明する。図3及び図6に示すように、互いに鉛直方向で隣接する筒状部材同士は、複数の接続部材を介して接続される。ここで、最上部に設置される第1筒状部材121と、第1筒状部材121の下部に設置される第2筒状部材122とに着目する。第1筒状部材121は、第2筒状部材122に対向する面に、複数の第2嵌合穴41bを有する。本実施形態では、第2嵌合穴41bは6つ存在する。一方、第2筒状部材122は、第1筒状部材121に対向する面に、複数の第1嵌合穴42aを有する。第2嵌合穴41bと第1嵌合穴42aとは、第1筒状部材121と第2筒状部材122とが互いに積層された状態でそれぞれ同軸上にある。つまり、本実施形態では、第1嵌合穴42aも6つ存在する。第2嵌合穴41b及び第1嵌合穴42aの開口形状は、それぞれ円である。また、第2嵌合穴41bと第1嵌合穴42aとの開口径は、おおよそ同一である。 First, connection between the tubular members forming the tubular body 12 in the vertical direction, that is, in the stacking direction will be described. As shown in FIGS. 3 and 6, cylindrical members adjacent to each other in the vertical direction are connected via a plurality of connecting members. Here, attention is focused on the first tubular member 121 installed at the top and the second tubular member 122 installed below the first tubular member 121 . The first tubular member 121 has a plurality of second fitting holes 41b on the surface facing the second tubular member 122 . In this embodiment, there are six second fitting holes 41b. On the other hand, the second tubular member 122 has a plurality of first fitting holes 42 a on the surface facing the first tubular member 121 . The second fitting hole 41b and the first fitting hole 42a are coaxial with each other in a state in which the first tubular member 121 and the second tubular member 122 are stacked on each other. That is, in this embodiment, there are also six first fitting holes 42a. The opening shapes of the second fitting hole 41b and the first fitting hole 42a are circular. Further, the opening diameters of the second fitting hole 41b and the first fitting hole 42a are approximately the same.

第1接続部材51は、収納容器10内で用いられる接続部材のうち、第1筒状部材121と第2筒状部材122との接続に用いられるものである。第1接続部材51は、金属製の円柱状の部材である。第1接続部材51は、第2嵌合穴41bと第1嵌合穴42aとの組の数に合わせて存在する。第1接続部材51の一端は、第2嵌合穴41bに嵌合する。第1接続部材51の他端は、第1嵌合穴42aに嵌合する。つまり、本実施形態では、第1接続部材51が6つ存在し、第1接続部材51の径は、第2嵌合穴41b及び第1嵌合穴42aに嵌合可能な寸法に規定されている。 The first connecting member 51 is used for connecting the first tubular member 121 and the second tubular member 122 among the connecting members used in the storage container 10 . The first connection member 51 is a columnar member made of metal. The first connecting members 51 are present according to the number of pairs of the second fitting holes 41b and the first fitting holes 42a. One end of the first connecting member 51 fits into the second fitting hole 41b. The other end of the first connecting member 51 fits into the first fitting hole 42a. That is, in the present embodiment, there are six first connecting members 51, and the diameter of the first connecting member 51 is defined to be a size that allows fitting into the second fitting hole 41b and the first fitting hole 42a. there is

このような複数の第1接続部材51を用いることで、第1筒状部材121と第2筒状部材122とは、図6に示すように、鉛直方向において互いに剛に接続される。また、それ以外の第2筒状部材122と第3筒状部材123との接続、及び、第3筒状部材123と第4筒状部材124との接続についても、同様の構成で行われる。例えば、第2筒状部材122と第3筒状部材123との接続に関して、第2筒状部材122は、第3筒状部材123に対向する面に、6つの第2嵌合穴42bを有する。第3筒状部材123は、第2筒状部材122に対向する面に、6つの第1嵌合穴43aを有する。第2嵌合穴42bと第1嵌合穴43aとには、第2接続部材52が嵌合する。一方、第3筒状部材123と第4筒状部材124との接続に関して、第3筒状部材123は、第4筒状部材124に対向する面に、6つの第2嵌合穴43bを有する。第4筒状部材124は、第3筒状部材123に対向する面に、6つの第1嵌合穴44aを有する。第2嵌合穴43bと第1嵌合穴44aとには、第3接続部材53が嵌合する。 By using such a plurality of first connection members 51, the first tubular member 121 and the second tubular member 122 are rigidly connected to each other in the vertical direction, as shown in FIG. In addition, the connection between the second tubular member 122 and the third tubular member 123 and the connection between the third tubular member 123 and the fourth tubular member 124 are also performed in the same configuration. For example, regarding the connection between the second tubular member 122 and the third tubular member 123, the second tubular member 122 has six second fitting holes 42b on the surface facing the third tubular member 123. . The third tubular member 123 has six first fitting holes 43 a on the surface facing the second tubular member 122 . The second connecting member 52 is fitted into the second fitting hole 42b and the first fitting hole 43a. On the other hand, regarding the connection between the third tubular member 123 and the fourth tubular member 124, the third tubular member 123 has six second fitting holes 43b on the surface facing the fourth tubular member 124. . The fourth tubular member 124 has six first fitting holes 44 a on the surface facing the third tubular member 123 . A third connecting member 53 is fitted into the second fitting hole 43b and the first fitting hole 44a.

次に、各筒状部材における第1嵌合穴及び第2嵌合穴の形成位置について説明する。ここでは、一例として、図4を参照して、第3筒状部材123の第2筒状部材122に対向する面に形成されている第1嵌合穴43aの形成位置に着目する。まず、第1嵌合穴43aは、強度上、第3筒状部材123の鉛直軸AXからの放射方向の肉厚が薄い領域よりも厚い領域に形成されることが望ましい。また、収納容器10が水平方向のいずれの方向から外力を受けても同等の耐久性を発揮するために、第1嵌合穴43aは、鉛直軸AXを基準として等間隔の角度で複数配置されることが望ましい。これらを考慮すると、第1嵌合穴43aは、水平面に関して、第3筒状部材123の外形の中心を通るそれぞれの対角線上、又は、その対角線の近傍に形成される。本実施形態では、第3筒状部材123の水平面上の外形が6角形であるので、第1嵌合穴43aは、第3筒状部材123の第2筒状部材122に対向する面に、6角形の中心である鉛直軸AXを通る3つの対角線に合わせて6つ形成される。ここで、本実施形態では、第3筒状部材123は、鉛直方向に沿って第5部材123aと第6部材123bとに2等分されている。そのため、第5部材123aと第6部材123bとのつなぎ位置に第1嵌合穴43aの形成位置が存在することは望ましくない。そこで、すべての第1嵌合穴43aは、鉛直軸AXを基準として、対角線から同一方向に角度θ分ずれた位置に形成されるものとしてもよい。 Next, formation positions of the first fitting hole and the second fitting hole in each tubular member will be described. Here, as an example, with reference to FIG. 4, attention is paid to the formation position of the first fitting hole 43a formed in the surface of the third tubular member 123 facing the second tubular member 122. As shown in FIG. First, the first fitting hole 43a is desirably formed in a region thicker than a thin region of the third cylindrical member 123 in the radial direction from the vertical axis AX in terms of strength. Further, in order to ensure that the storage container 10 exhibits the same durability even if external force is applied from any direction in the horizontal direction, a plurality of first fitting holes 43a are arranged at equal intervals with respect to the vertical axis AX. preferably Considering these, the first fitting holes 43a are formed on respective diagonal lines passing through the center of the outer shape of the third cylindrical member 123 with respect to the horizontal plane, or near the diagonal lines. In the present embodiment, the outer shape of the third cylindrical member 123 on the horizontal plane is hexagonal, so the first fitting hole 43a is formed on the surface of the third cylindrical member 123 facing the second cylindrical member 122. Six are formed along three diagonal lines passing through the vertical axis AX, which is the center of the hexagon. Here, in the present embodiment, the third cylindrical member 123 is divided into two equal parts along the vertical direction into a fifth member 123a and a sixth member 123b. Therefore, it is not desirable that the formation position of the first fitting hole 43a exists at the joint position between the fifth member 123a and the sixth member 123b. Therefore, all the first fitting holes 43a may be formed at positions shifted by an angle θ in the same direction from the diagonal line with respect to the vertical axis AX.

なお、ここでは、第3筒状部材123に関して、第1嵌合穴43aの形成位置について説明したが、第4筒状部材124に対向する面に形成される第2嵌合穴43bの形成位置についても同様である。また、他の筒状部材に形成される第1嵌合穴及び第2嵌合穴の形成位置についても、同様に規定される。さらに、このように規定された、すべての筒状部材に形成されている6つの第1嵌合穴と第2嵌合穴との組は、図6に示すように、それぞれ鉛直方向に沿って同軸上に並ぶものとしてもよい。 In addition, although the formation position of the first fitting hole 43a has been described with respect to the third tubular member 123 here, the formation position of the second fitting hole 43b formed in the surface facing the fourth tubular member 124 is changed. The same is true for In addition, the formation positions of the first fitting hole and the second fitting hole formed in the other cylindrical member are similarly defined. Furthermore, the sets of the six first fitting holes and the second fitting holes formed in all the cylindrical members defined in this way are arranged along the vertical direction, as shown in FIG. They may be arranged coaxially.

また、本実施形態では、各筒状部材がそれぞれ鉛直方向に沿って2つの部材に分割されている場合を例示しているため、第1嵌合穴及び第2嵌合穴を、鉛直軸AXを基準として対角線から同一方向に角度θ分ずれた位置に形成されるものとしている。したがって、各筒状部材がそれぞれ複数の部材に分割されていない場合には、第1嵌合穴及び第2嵌合穴を、筒状部材の水平面上の外形の対角線上に形成してもよい。 Further, in the present embodiment, each cylindrical member is divided into two members along the vertical direction. is formed at a position shifted by an angle θ in the same direction from the diagonal line. Therefore, when each tubular member is not divided into a plurality of members, the first fitting hole and the second fitting hole may be formed on the diagonal line of the outer shape on the horizontal plane of the tubular member. .

次に、筒状体12の最上部にある第1筒状部材121と、蓋体14との接続について説明する。図3及び図6に示すように、第1筒状部材121と蓋体14とは、上記の第1接続部材51~第3接続部材53と同様の6つの第4接続部材50を介して接続されてもよい。この場合、第1筒状部材121は、蓋体14に対向する面に、6つの第1嵌合穴42aを有する。一方、蓋体14は、第1筒状部材121に対向する面に、6つの嵌合穴40bを有する。第4接続部材50の一端は、嵌合穴40bに嵌合する。第4接続部材50の他端は、第1嵌合穴41aに嵌合する。ただし、蓋体14の板厚は、第1筒状部材121の鉛直方向の厚みよりも薄いため、嵌合穴40b及び第1嵌合穴41aの深さは、第1筒状部材121の第2嵌合穴41bの深さよりも浅くてよい。また、嵌合穴40b及び第1嵌合穴41aの水平面上の形成位置についても、第2嵌合穴41bと同様の形成位置としてよい。 Next, the connection between the first tubular member 121 at the top of the tubular body 12 and the lid 14 will be described. As shown in FIGS. 3 and 6, the first tubular member 121 and the lid 14 are connected via six fourth connection members 50 similar to the first connection members 51 to the third connection members 53 described above. may be In this case, the first tubular member 121 has six first fitting holes 42 a on the surface facing the lid 14 . On the other hand, the lid 14 has six fitting holes 40b on the surface facing the first cylindrical member 121. As shown in FIG. One end of the fourth connection member 50 fits into the fitting hole 40b. The other end of the fourth connecting member 50 fits into the first fitting hole 41a. However, since the plate thickness of the lid 14 is thinner than the thickness of the first cylindrical member 121 in the vertical direction, the depth of the fitting hole 40b and the first fitting hole 41a is the same as the depth of the first cylindrical member 121. It may be shallower than the depth of the second fitting hole 41b. Also, the formation positions on the horizontal plane of the fitting hole 40b and the first fitting hole 41a may be the same as the second fitting hole 41b.

次に、筒状体12の最下部にある第4筒状部材124と、基台16との接続について説明する。図3及び図6に示すように、第4筒状部材124と基台16とは、上記の第1接続部材51~第3接続部材53と同様の6つの第5接続部材54を介して接続されてもよい。この場合、第4筒状部材124は、基台16に対向する面に、6つの第2嵌合穴44bを有する。一方、基台16は、第4筒状部材124に対向する面に、6つの嵌合穴45aを有する。第5接続部材54の一端は、第2嵌合穴44bに嵌合する。第5接続部材54の他端は、嵌合穴45aに嵌合する。また、第2嵌合穴44b及び嵌合穴45aの水平面上の形成位置についても、第4筒状部材124の第1嵌合穴44aと同様の形成位置としてよい。 Next, the connection between the fourth tubular member 124 at the bottom of the tubular body 12 and the base 16 will be described. As shown in FIGS. 3 and 6, the fourth cylindrical member 124 and the base 16 are connected via six fifth connecting members 54 similar to the first connecting member 51 to the third connecting member 53 described above. may be In this case, the fourth tubular member 124 has six second fitting holes 44b on the surface facing the base 16 . On the other hand, the base 16 has six fitting holes 45 a on the surface facing the fourth tubular member 124 . One end of the fifth connecting member 54 fits into the second fitting hole 44b. The other end of the fifth connecting member 54 fits into the fitting hole 45a. Also, the formation positions of the second fitting hole 44b and the fitting hole 45a on the horizontal plane may be the same as the formation positions of the first fitting hole 44a of the fourth cylindrical member 124 .

次に、各接続部材の材質について説明する。鉛直方向を長手方向とする筒状体12は、4つの筒状部材すなわち第1筒状部材121~第4筒状部材124を鉛直方向に積層して構成されている。そして、これらの筒状部材を接続する部材として、第1接続部材51~第3接続部材53が用いられている。しかし、収納容器10に高レベルの地震力のような突発的な外力が加わると、筒状部材同士を接続する接続部材に大きな荷重がかかる。この荷重が、筒状部材を構成するコンクリート材の耐久性能を超えた場合、筒状体12に損傷が生じるおそれがある。そこで、本実施形態では、第1接続部材51~第3接続部材53の少なくともいずれかの材質を低降伏点鋼とする。 Next, the material of each connecting member will be described. The cylindrical body 12 whose longitudinal direction is the vertical direction is constructed by stacking four cylindrical members, that is, a first cylindrical member 121 to a fourth cylindrical member 124, in the vertical direction. A first connecting member 51 to a third connecting member 53 are used as members for connecting these cylindrical members. However, when a sudden external force such as a high-level seismic force is applied to the storage container 10, a large load is applied to the connection member that connects the tubular members. If this load exceeds the durability performance of the concrete material forming the tubular member, the tubular body 12 may be damaged. Therefore, in the present embodiment, at least one of the first connecting member 51 to the third connecting member 53 is made of low yield point steel.

低降伏点鋼とは、普通鋼材と比べて降伏点が低く設定されている鋼材をいう。低降伏点鋼材料としては、例えば、日本国建築基準法に基づく国土交通大臣指定のLY225がある。LY225の降伏点は、例えば、応力値が225(N/mm)の近傍であるときに生じ得る。他にも、応力値が100(N/mm)の近傍であるときに生じ得る、同じく国土交通大臣指定のLY100のような低降伏点鋼材料が知られている。このような低降伏点鋼を用いて形成されている部材は、大きなエネルギー吸収能力を有する。 Low-yield-point steel refers to a steel whose yield point is set lower than that of ordinary steel. As a low-yield-point steel material, for example, there is LY225 designated by the Minister of Land, Infrastructure, Transport and Tourism based on the Building Standards Act of Japan. The yield point of LY225 can occur, for example, when the stress value is near 225 (N/mm 2 ). In addition, low yield point steel materials such as LY100, also designated by the Minister of Land, Infrastructure, Transport and Tourism, which can occur when the stress value is in the vicinity of 100 (N/mm 2 ) are known. A member formed using such a low yield point steel has a large energy absorption capacity.

第1接続部材51~第3接続部材53のうち、いずれの材質を低降伏点鋼とするかについては、以下のようにいくつかの選択肢がある。収納容器10が高レベルの地震力を受けた場合、収納容器10には、地盤に近い基台16を揺れの基準として、収納容器10の上方が大きく揺さぶられる、いわゆるロッキングが生じる。そこで、筒状体12において揺れが大きくなると想定される、上方の接続部材の材質を低降伏点鋼とする。例えば、4つの筒状部材のうち最上部に設置される第1筒状部材121と、第1筒状部材121の下部に設置される第2筒状部材122とを接続する第1接続部材51の材質を低降伏点鋼としてもよい。この場合、他の筒状部材同士を接続する第2接続部材52及び第3接続部材53の材質は、それぞれ普通鋼材とする。このような構成によれば、収納容器10が高レベルの地震力を受けた場合、それぞれ剛に接続された第2筒状部材122よりも下部に位置する部分に対して、第1筒状部材121が位相をずらして振動する。そして、第1接続部材51は、筒状体12のコンクリート部分が破損する前に塑性変形し、この塑性化により、揺れエネルギーを吸収する。その結果、第1接続部材51は、低降伏点鋼で形成された接続部材を用いない場合よりも大きな減衰力を発生させることで、第1筒状部材のロッキングを抑制する。 There are several options as follows as to which material of the first connecting member 51 to the third connecting member 53 should be the low-yield-strength steel. When the storage container 10 receives a high-level seismic force, so-called rocking occurs in the storage container 10, in which the upper portion of the storage container 10 is greatly shaken with the base 16 near the ground as a reference for shaking. Therefore, low-yield-point steel is used as the material for the upper connecting member, which is assumed to cause greater shaking in the tubular body 12 . For example, a first connection member 51 that connects the first tubular member 121 installed at the top of the four tubular members and the second tubular member 122 installed below the first tubular member 121. The material of may be low yield point steel. In this case, the materials of the second connecting member 52 and the third connecting member 53 that connect other tubular members are each made of ordinary steel. According to such a configuration, when the storage container 10 receives a high-level seismic force, the first tubular member 122 is removed from the portion located below the rigidly connected second tubular member 122 . 121 vibrate with a phase shift. Then, the first connecting member 51 is plastically deformed before the concrete portion of the cylindrical body 12 is damaged, and this plasticization absorbs the shaking energy. As a result, the first connecting member 51 generates a greater damping force than when the connecting member made of low yield point steel is not used, thereby suppressing the locking of the first cylindrical member.

また、第1の変形例として、第1接続部材51の材質を低降伏点鋼とするのに代えて、その下位に位置する、第2筒状部材122と、第2筒状部材122の下部に設置される第3筒状部材123とを接続する第2接続部材52の材質を低降伏点鋼としてもよい。この場合、第1接続部材51及び第3接続部材53の材質が、普通鋼材となる。このような構成によれば、収納容器10が高レベルの地震力を受けた場合、第2接続部材52が、地震力に起因する揺れエネルギーを吸収し、大きな減衰力を発生させることになる。 Further, as a first modification, instead of using low-yield-point steel as the material of the first connection member 51, the second tubular member 122 and the lower portion of the second tubular member 122 located below the first connection member 51 The material of the second connection member 52 that connects the third cylindrical member 123 installed in the second connection member 52 may be low yield point steel. In this case, the material of the first connecting member 51 and the third connecting member 53 is ordinary steel. According to such a configuration, when the storage container 10 receives a high-level seismic force, the second connection member 52 absorbs shaking energy caused by the seismic force and generates a large damping force.

また、第2の変形例として、第1接続部材51の材質を低降伏点鋼とするのに代えて、その最も下位に位置する、第3筒状部材123と、第3筒状部材123の下部に設置される第4筒状部材124とを接続する第3接続部材53の材質を低降伏点鋼としてもよい。この場合、第1接続部材51及び第2接続部材52の材質が、普通鋼材となる。このような構成によれば、収納容器10が高レベルの地震力を受けた場合、第3接続部材53が、地震力に起因する揺れエネルギーを吸収し、大きな減衰力を発生させることになる。 As a second modification, instead of using low-yield-point steel as the material for the first connection member 51, the third cylindrical member 123 positioned at the lowest position and the third cylindrical member 123 The material of the third connection member 53 that connects with the fourth cylindrical member 124 installed at the bottom may be low yield point steel. In this case, the material of the first connecting member 51 and the second connecting member 52 is ordinary steel. According to such a configuration, when the storage container 10 receives a high-level seismic force, the third connection member 53 absorbs shaking energy caused by the seismic force and generates a large damping force.

更に、第3の変形例として、第1接続部材51~第3接続部材53のうちの複数又はすべての材質を低降伏点鋼とすることもあり得る。ただし、この場合、それらの接続部材を用いて接続されている第1筒状部材121~第3筒状部材123が、第4筒状部材124よりも下部に位置する部分に対して、それぞれ異なる位相で振動し、所望の減衰力が得られない場合もあり得る。そこで、例えば、第1筒状部材121と第2筒状部材122とを接続する第1接続部材51を、大きな減衰力を得るための接続部材と位置付け、その他の接続部材で接続される各面間を、ボルト等により固定してもよい。このような構成によれば、第2筒状部材122よりも下部に位置する部分がそれぞれ剛に接続されているとみなされるため、第1接続部材51は、第1の変形例と同様に作用する。 Furthermore, as a third modified example, a plurality of or all of the first connecting member 51 to the third connecting member 53 may be made of low yield point steel. However, in this case, the first tubular member 121 to the third tubular member 123 connected using those connecting members are different from each other with respect to the portion located below the fourth tubular member 124. In some cases, the desired damping force cannot be obtained due to phase oscillation. Therefore, for example, the first connection member 51 that connects the first tubular member 121 and the second tubular member 122 is positioned as a connection member for obtaining a large damping force, and each surface connected by other connection members The gap may be fixed by bolts or the like. According to such a configuration, the portions located below the second cylindrical member 122 are considered to be rigidly connected, respectively, so the first connecting member 51 operates in the same manner as in the first modification. do.

一方、第1筒状部材121と蓋体14との接続に用いられる第4接続部材50、及び、第4筒状部材124と基台16との接続に用いられる第5接続部材54の材質は、それぞれ、普通鋼材であっても、低降伏点鋼であってもよい。ただし、第4接続部材50又は第5接続部材54が低降伏点鋼で形成される場合には、上記と同様に、その接続部材で接続される面間を、ボルト等により固定してもよい。 On the other hand, the material of the fourth connecting member 50 used for connecting the first cylindrical member 121 and the lid 14 and the fifth connecting member 54 used for connecting the fourth cylindrical member 124 and the base 16 is , respectively, may be ordinary steel or low yield point steel. However, when the fourth connecting member 50 or the fifth connecting member 54 is formed of low-yield-strength steel, the surfaces connected by the connecting member may be fixed by bolts or the like, as described above. .

また、低降伏点鋼により形成されている接続部材を用いた各筒状部材同士の接続を行うのに合わせて、基台16の底面は、地盤側に押圧され、ボルト等により結合されているものとしてもよい。 In addition, the bottom surface of the base 16 is pressed toward the ground and joined by bolts or the like in accordance with the connection between the cylindrical members using the connecting member made of low-yield point steel. It can be a thing.

次に、本実施形態による作用及び効果について説明する。 Next, the action and effects of this embodiment will be described.

本実施形態に係る収納容器10は、キャスクCを内部に配置する筒状体12を構成する第1筒状部材と、筒状体12を構成し、第1筒状部材の下部に設置される第2筒状部材とを備える。また、収納容器10は、第1筒状部材と第2筒状部材とを接続する接続部材を備える。接続部材を形成する材料は、低降伏点鋼である。 The storage container 10 according to the present embodiment includes a first tubular member that forms a tubular body 12 in which the cask C is arranged, and the tubular body 12 that forms the tubular body 12 and is installed below the first tubular member. and a second tubular member. The storage container 10 also includes a connection member that connects the first tubular member and the second tubular member. The material forming the connecting member is low yield point steel.

ここで、筒状体12を構成する筒状部材は、第1筒状部材と第2筒状部材との2つに限られるものではなく、第1筒状部材と第2筒状部材とは、複数の筒状部材から選択された2つを意味する。また、第1筒状部材及び第2筒状部材は、上記例示した、筒状体12が4つの筒状部材で構成されている場合の第1筒状部材121及び第2筒状部材122に限定されない。例えば、上記の例を参照すれば、4つの筒状部材のうちの第2筒状部材122が、ここでの第1筒状部材に相当し、一方、第3筒状部材123が、ここでの第2筒状部材に相当すると考えることもできる。 Here, the tubular members constituting the tubular body 12 are not limited to the first tubular member and the second tubular member, and the first tubular member and the second tubular member are , means two selected from a plurality of tubular members. Also, the first tubular member and the second tubular member are the same as the first tubular member 121 and the second tubular member 122 when the tubular body 12 is composed of four tubular members as illustrated above. Not limited. For example, referring to the example above, the second tubular member 122 of the four tubular members corresponds to the first tubular member herein, while the third tubular member 123 corresponds to the first tubular member herein. can also be considered to correspond to the second tubular member of .

このような収納容器10によれば、高レベルの地震力を受けた場合、低降伏点鋼で形成された接続部材が、地震力等の外力を吸収可能な接続構造として、地震力に起因する揺れエネルギーを吸収し、大きな減衰力を発生させる。その結果、収納容器10は、転倒挙動を抑止することができ、また、筒状体12のコンクリート部分の破損を抑止することができる。したがって、収納容器10は、外力に対する耐久性を向上させることができる。 According to such a storage container 10, when a high-level seismic force is applied, the connection member formed of low-yield-strength steel functions as a connection structure capable of absorbing external forces such as seismic force. It absorbs vibration energy and generates a large damping force. As a result, the storage container 10 can be prevented from overturning, and the concrete portion of the cylindrical body 12 can be prevented from being damaged. Therefore, the storage container 10 can improve durability against external force.

また、本実施形態に係る収納容器10では、第1筒状部材には、蓋体14が取り付けられている。第2筒状部材は、キャスクCを載置する載置領域から離隔している。 Further, in the storage container 10 according to this embodiment, the lid 14 is attached to the first cylindrical member. The second cylindrical member is separated from the placement area where the cask C is placed.

ここで、載置領域とは、キャスクCが載置される広義の領域をいう。例えば、上記の例を参照すれば、キャスクCが載置される載置領域は、直接的な載置板30の上面30aではなく、載置板30自体が載置されている基台16の上面27近傍をいう。つまり、例えば、収納容器10が、基台16に代えて、より簡易的な基台を採用する場合には、キャスクCが載置される載置領域は、地盤近傍となることもあり得る。したがって、第2筒状部材が、このようなキャスクCを載置する載置領域から離隔しているとは、すなわち、第2筒状部材と地盤との間には、第3筒状部材123又は第4筒状部材124のような他の筒状部材が介在することを意味する。 Here, the placement area is a broadly defined area on which the cask C is placed. For example, referring to the above example, the mounting area where the cask C is mounted is not the direct top surface 30a of the mounting plate 30, but the base 16 on which the mounting plate 30 itself is mounted. It refers to the vicinity of the upper surface 27 . That is, for example, if the storage container 10 adopts a simpler base instead of the base 16, the mounting area where the cask C is mounted may be near the ground. Therefore, the fact that the second tubular member is separated from the placement area where the cask C is placed means that the third tubular member 123 is located between the second tubular member and the ground. Or it means that another tubular member such as the fourth tubular member 124 intervenes.

例えば、高レベルの地震力が加えられた場合のロッキングを考慮すると、筒状体12において最も揺れが大きくなると想定されるのは、蓋体14が取り付けられている第1筒状部材121である。そのため、このような収納容器10によれば、第1筒状部材121の接続に用いられる接続部材の材質を低降伏点鋼とすることになり、その結果、筒状体12全体としてのエネルギーの吸収効果が最も得られやすくなる。 For example, considering rocking when a high level of seismic force is applied, the first tubular member 121 to which the lid 14 is attached is assumed to shake the most in the tubular body 12. . Therefore, according to the storage container 10, the material of the connecting member used for connecting the first cylindrical member 121 is steel with a low yield point. The absorption effect is most likely to be obtained.

また、本実施形態に係る収納容器10は、筒状体12の下部に配置され、筒状体12を支持する基台16を備え、基台16の底面は、地盤側に押圧され結合されているものとしてもよい。 Further, the storage container 10 according to the present embodiment includes a base 16 that is arranged below the cylindrical body 12 and supports the cylindrical body 12. The bottom surface of the base 16 is pressed against the ground and joined. It can be assumed that there is

このような収納容器10によれば、収納容器10の最下部にある基台16が地盤側に結合されているので、積層された複数の筒状部材のうち基台16に近い下層の筒状部材が、地盤に対して比較的安定した状態に保たれる。そのため、収納容器10が外力を受けたときには、基台16に近い下層の筒状部材に対する、低降伏点鋼で形成された接続部材で接続された筒状部材の相対変位のバラツキが抑えられる。したがって、低降伏点鋼で形成された接続部材による減衰力の低下を抑えることができる。 According to such a storage container 10, since the base 16 at the bottom of the storage container 10 is connected to the ground side, the lower layer cylindrical members closer to the base 16 among the plurality of laminated cylindrical members The member remains relatively stable with respect to the ground. Therefore, when the storage container 10 receives an external force, variations in the relative displacement of the cylindrical member connected by the connecting member formed of low yield point steel to the cylindrical member in the lower layer near the base 16 are suppressed. Therefore, it is possible to suppress a decrease in the damping force due to the connecting member made of low yield point steel.

また、本実施形態に係る収納容器10では、第2筒状部材は、第1筒状部材に対向する面に、第1嵌合穴を有し、第1筒状部材は、第2筒状部材に対向する面に、第2嵌合穴を有するものとしてもよい。また、接続部材の形状は、一端が第1嵌合穴に嵌合し、他端が第2嵌合穴に嵌合する円柱状であるものとしてもよい。 Further, in the storage container 10 according to the present embodiment, the second tubular member has the first fitting hole on the surface facing the first tubular member, and the first tubular member The surface facing the member may have a second fitting hole. Moreover, the shape of the connecting member may be a cylindrical shape with one end fitted in the first fitting hole and the other end fitted in the second fitting hole.

例えば、ここでの第1筒状部材が、上記の例でいう第1筒状部材121であり、ここでの第2筒状部材が、上記の例でいう第2筒状部材122であるとする。この場合、第2筒状部材122の第1嵌合穴は、第1嵌合穴42aに相当する。第2嵌合穴は、第1筒状部材121の第2嵌合穴41bに相当する。また、接続部材は、第1接続部材51に相当する。 For example, the first tubular member here is the first tubular member 121 in the above example, and the second tubular member here is the second tubular member 122 in the above example. do. In this case, the first fitting hole of the second cylindrical member 122 corresponds to the first fitting hole 42a. The second fitting hole corresponds to the second fitting hole 41 b of the first tubular member 121 . A connection member corresponds to the first connection member 51 .

このような収納容器10によれば、円柱状の接続部材が鉛直方向に沿って嵌合されているので、筒状部材同士の横ずれを抑止することができ、特に、水平方向の大きな外力が加えられたときには、効率よくエネルギーの吸収効果を得ることができる。また、収納容器10によれば、例えば、別途、筒状体12の外側面12aに耐久性を向上させるための補強部材などを設置する必要がないので、収納容器10の大型化を避け、又は、コストの上昇を抑える点で有利となる。 According to such a storage container 10, since the cylindrical connecting members are fitted along the vertical direction, it is possible to prevent the cylindrical members from slipping sideways. When the energy is absorbed, the energy absorption effect can be obtained efficiently. Further, according to the storage container 10, for example, it is not necessary to separately install a reinforcing member or the like for improving the durability on the outer surface 12a of the cylindrical body 12, so that the size of the storage container 10 can be avoided or , which is advantageous in terms of suppressing increases in costs.

また、本実施形態に係る収納容器10では、接続部材は、3つ以上あり、3つ以上の接続部材は、筒状体12の水平面上の外形を規定する鉛直軸を基準として、互いに等間隔の角度位置に配置されるものとしてもよい。 Further, in the storage container 10 according to the present embodiment, there are three or more connection members, and the three or more connection members are equidistantly spaced from each other with respect to the vertical axis that defines the outer shape of the tubular body 12 on the horizontal plane. may be arranged at an angular position of

このような収納容器10によれば、水平方向のいずれの方向から外力を受けても、それぞれの接続部材が外力を分散させて受けるので、収納容器10の耐久性をより向上させることができる。 According to such a storage container 10, even if an external force is received from any direction in the horizontal direction, each connection member receives the external force in a distributed manner, so that the durability of the storage container 10 can be further improved.

(集積体)
次に、一実施形態に係る集積体について説明する。図7は、本実施形態に係る集積体100の構成を示す斜視図である。
(aggregate)
Next, an integrated body according to one embodiment will be described. FIG. 7 is a perspective view showing the structure of the integrated body 100 according to this embodiment.

集積体100は、上記実施形態に係る複数の収納容器10を地盤上に集積して配置した収納容器群である。例えば、集積体100は、互いに隣り合う、第1キャスクを収納する第1収納容器10aと、第2キャスクを収納する第2収納容器10bと、第3キャスクを収納する第3収納容器10cとを含むものとする。第1収納容器10a、第2収納容器10b及び第3収納容器10cは、全体形状が略6角柱状である。そのため、集積体100では、第1収納容器10aが備える筒状体12、第2収納容器10bが備える筒状体12、及び、第3収納容器10cが備える筒状体12は、それぞれ、他の2つの筒状体12に対面し、ハニカム状に配置される。 The stack 100 is a storage container group in which a plurality of storage containers 10 according to the above embodiment are stacked and arranged on the ground. For example, the stack 100 includes a first storage container 10a for storing a first cask, a second storage container 10b for storing a second cask, and a third storage container 10c for storing a third cask, which are adjacent to each other. shall include The first storage container 10a, the second storage container 10b, and the third storage container 10c have a substantially hexagonal prism shape as a whole. Therefore, in the stack 100, the tubular body 12 provided in the first storage container 10a, the tubular body 12 provided in the second storage container 10b, and the tubular body 12 provided in the third storage container 10c are different from each other. They face two cylindrical bodies 12 and are arranged in a honeycomb shape.

上記のとおり、収納容器10において、蓋体14は複数の排出口14aを有し、筒状体12は外側面12aに溝部12cを有する。そのため、複数の収納容器10が、図7に示すように互いに近接して集積配置された場合でも、隣り合う収納容器10同士の溝部12cが互いに対向し、空気の流路FPが形成される。 As described above, in the storage container 10, the lid 14 has a plurality of outlets 14a, and the cylindrical body 12 has grooves 12c on the outer surface 12a. Therefore, even when a plurality of storage containers 10 are stacked and arranged close to each other as shown in FIG. 7, the grooves 12c of the adjacent storage containers 10 face each other to form an air flow path FP.

このような集積体100によれば、複数の収納容器10を外側面同士で近接させて、ハニカム構造で集積配置させることができるので、より少ない占有スペースで多くの収納容器10を配置することができる。 According to such an integrated body 100, a plurality of storage containers 10 can be arranged close to each other on the outer surfaces and stacked in a honeycomb structure, so that a large number of storage containers 10 can be arranged in a smaller space. can.

また、集積体100によれば、外力を吸収可能な接続構造を備える収納容器10を集積するので、集積体100全体として複数の収納容器10を集積させても、外力に対する耐久性を向上させるのに有利となり得る。 Further, according to the stack 100, since the storage containers 10 having a connection structure capable of absorbing external force are stacked, even if a plurality of storage containers 10 are stacked as the entire stack 100, the durability against the external force can be improved. can be advantageous to

以上、本開示の実施形態について説明したが、本開示は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to these embodiments, and various modifications and changes are possible within the scope of the gist thereof.

10 収納容器
12 筒状体
16 基台
121 第1筒状部材
122 第2筒状部材
123 第3筒状部材
124 第4筒状部材
41a,42a,43a,44a 第1嵌合穴
41b,42b,43b,44b 第2嵌合穴
51 第1接続部材
52 第2接続部材
53 第3接続部材
100 集積体
C キャスク
10 storage container 12 tubular body 16 base 121 first tubular member 122 second tubular member 123 third tubular member 124 fourth tubular member 41a, 42a, 43a, 44a first fitting holes 41b, 42b, 43b, 44b Second fitting hole 51 First connecting member 52 Second connecting member 53 Third connecting member 100 Stack C Cask

Claims (5)

キャスクを収納する収納容器であって、
前記キャスクを内部に配置する筒状体を構成する第1筒状部材と、
前記筒状体を構成し、前記第1筒状部材の下部に設置される第2筒状部材と、
前記第1筒状部材と前記第2筒状部材とを接続する接続部材と、を備え、
前記第2筒状部材は、前記第1筒状部材に対向する面に、第1嵌合穴を有し、
前記第1筒状部材は、前記第2筒状部材に対向する面に、第2嵌合穴を有し、
前記接続部材の形状は、一端が前記第1嵌合穴に嵌合し、他端が前記第2嵌合穴に嵌合する円柱状であり、
前記接続部材を形成する材料は、低降伏点鋼である、
収納容器。
A storage container for storing a cask,
a first tubular member constituting a tubular body in which the cask is arranged;
a second tubular member that constitutes the tubular body and is installed under the first tubular member;
a connection member that connects the first tubular member and the second tubular member,
The second tubular member has a first fitting hole on a surface facing the first tubular member,
The first tubular member has a second fitting hole on a surface facing the second tubular member,
The connecting member has a cylindrical shape with one end fitted in the first fitting hole and the other end fitted in the second fitting hole,
The material forming the connecting member is low yield point steel,
storage container.
前記第1筒状部材には、蓋体が取り付けられており、
前記第2筒状部材は、前記キャスクを載置する載置領域から離隔している、
請求項1に記載の収納容器。
A lid is attached to the first tubular member,
The second tubular member is separated from a mounting area on which the cask is mounted,
The storage container according to claim 1.
前記筒状体の下部に配置され、前記筒状体を支持する基台を備え、
前記基台の底面は、地盤側に押圧され結合されている、
請求項2に記載の収納容器。
A base that is arranged at the bottom of the tubular body and supports the tubular body,
The bottom surface of the base is pressed and joined to the ground side,
The storage container according to claim 2.
前記接続部材は、3つ以上あり、
前記3つ以上の接続部材は、前記筒状体の水平面上の外形を規定する鉛直軸を基準として、互いに等間隔の角度位置に配置される、
請求項1~のいずれか1項に記載の収納容器。
there are three or more connecting members,
The three or more connecting members are arranged at angular positions equidistant from each other with respect to a vertical axis that defines the outer shape of the tubular body on a horizontal plane.
The storage container according to any one of claims 1-3 .
第1キャスクを収納する第1収納容器と、
第2キャスクを収納する第2収納容器と、
第3キャスクを収納する第3収納容器と、を含み、
前記第1収納容器、前記第2収納容器及び前記第3収納容器は、それぞれ、請求項1~のいずれか1項に記載の収納容器であり、
前記第1収納容器が備える前記筒状体、前記第2収納容器が備える前記筒状体、及び、前記第3収納容器が備える前記筒状体は、それぞれ、6角柱状であり、他の2つの前記筒状体に対面し、ハニカム状に配置される、集積体。
a first storage container that stores the first cask;
a second storage container that stores the second cask;
a third storage container that stores the third cask,
Each of the first storage container, the second storage container, and the third storage container is a storage container according to any one of claims 1 to 4 ,
The tubular body provided in the first storage container, the tubular body provided in the second storage container, and the tubular body provided in the third storage container each have a hexagonal prism shape. An integrated body arranged in a honeycomb shape facing the two cylindrical bodies.
JP2018075386A 2018-04-10 2018-04-10 Storage containers and stacks Active JP7107724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018075386A JP7107724B2 (en) 2018-04-10 2018-04-10 Storage containers and stacks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018075386A JP7107724B2 (en) 2018-04-10 2018-04-10 Storage containers and stacks

Publications (2)

Publication Number Publication Date
JP2019184421A JP2019184421A (en) 2019-10-24
JP7107724B2 true JP7107724B2 (en) 2022-07-27

Family

ID=68340778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018075386A Active JP7107724B2 (en) 2018-04-10 2018-04-10 Storage containers and stacks

Country Status (1)

Country Link
JP (1) JP7107724B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275394A (en) 1999-03-26 2000-10-06 Ishikawajima Harima Heavy Ind Co Ltd Structure of cask
JP2001166083A (en) 1999-12-09 2001-06-22 Ishikawajima Harima Heavy Ind Co Ltd Concrete cask
JP2004138544A (en) 2002-10-18 2004-05-13 Mitsubishi Heavy Ind Ltd Radioactive substance storage container
JP2011220736A (en) 2010-04-06 2011-11-04 Takenaka Komuten Co Ltd Radiation shielding wall, method for constructing the same, and method for dismantling the same
JP2012077545A (en) 2010-10-04 2012-04-19 Norimine Okura Connector
JP2016211856A (en) 2015-04-28 2016-12-15 関電プラント株式会社 Spent nuclear fuel assembly container, assembly of spent nuclear fuel assembly containers, and method of assembling spent nuclear fuel assembly container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852643A (en) * 1997-06-09 1998-12-22 Copson; Alex G. Flak jacket protective cover for spent nuclear fuel storage casks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275394A (en) 1999-03-26 2000-10-06 Ishikawajima Harima Heavy Ind Co Ltd Structure of cask
JP2001166083A (en) 1999-12-09 2001-06-22 Ishikawajima Harima Heavy Ind Co Ltd Concrete cask
JP2004138544A (en) 2002-10-18 2004-05-13 Mitsubishi Heavy Ind Ltd Radioactive substance storage container
JP2011220736A (en) 2010-04-06 2011-11-04 Takenaka Komuten Co Ltd Radiation shielding wall, method for constructing the same, and method for dismantling the same
JP2012077545A (en) 2010-10-04 2012-04-19 Norimine Okura Connector
JP2016211856A (en) 2015-04-28 2016-12-15 関電プラント株式会社 Spent nuclear fuel assembly container, assembly of spent nuclear fuel assembly containers, and method of assembling spent nuclear fuel assembly container

Also Published As

Publication number Publication date
JP2019184421A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US20180025796A1 (en) Apparatus for supporting radioactive fuel assemblies and methods of manufacturing the same
KR100790661B1 (en) Buffer body for cask
JPH04357498A (en) Storage cask for radioactive structure and manufacture thereof
US9679668B2 (en) Spent fuel storage rack
JP7107724B2 (en) Storage containers and stacks
JP6546849B2 (en) Buffer for transport container and cask
JP4111037B2 (en) Cask cushion
WO2011099200A1 (en) Foundation for a building in a nuclear facility and nuclear facility
ES2362514B1 (en) ELEMENT OF UNION BETWEEN MODULES FOR CONSTRUCTIONS.
JP2019501378A (en) Rack apparatus for storing and / or transporting a plurality of nuclear fuel assemblies, including a plurality of stages with differentiated functions
JP6483587B2 (en) Basket and radioactive material transport storage container
JP2019158399A (en) Spent fuel storage container
JP7025271B2 (en) Storage container and aggregate
JP7161960B2 (en) Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method
JP2019184423A (en) Storage container and integrated body
KR20160108257A (en) Breakwater unit module and breakwater structure comprising the same, and construction method thereof
JP3071576B2 (en) Basket for both transport and storage of radioactive materials
JP2013181798A (en) Cask
JPH09159796A (en) Basket for spent fuel container and method for manufacturing it
JP2008170451A (en) Impact absorbing material in radioactive substance storage container, radioactive substance storage container and impact-absorbing method
CN111916243A (en) Transport container
JP7194646B2 (en) buffer for cask
JP5517462B2 (en) Recycled fuel assembly storage basket, storage container, and manufacturing method
JP4043161B2 (en) Spent fuel storage rack
JP7038591B2 (en) Storage container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220714

R150 Certificate of patent or registration of utility model

Ref document number: 7107724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150