JP7105075B2 - Exhaust gas treatment device - Google Patents

Exhaust gas treatment device Download PDF

Info

Publication number
JP7105075B2
JP7105075B2 JP2018050467A JP2018050467A JP7105075B2 JP 7105075 B2 JP7105075 B2 JP 7105075B2 JP 2018050467 A JP2018050467 A JP 2018050467A JP 2018050467 A JP2018050467 A JP 2018050467A JP 7105075 B2 JP7105075 B2 JP 7105075B2
Authority
JP
Japan
Prior art keywords
exhaust gas
peripheral surface
inner peripheral
cleaning liquid
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018050467A
Other languages
Japanese (ja)
Other versions
JP2019162568A (en
Inventor
孝樹 伊藤
次郎 米田
圭憲 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018050467A priority Critical patent/JP7105075B2/en
Priority to KR1020190023906A priority patent/KR102252547B1/en
Priority to CN201910159452.7A priority patent/CN110280112B/en
Publication of JP2019162568A publication Critical patent/JP2019162568A/en
Application granted granted Critical
Publication of JP7105075B2 publication Critical patent/JP7105075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • B01D47/063Spray cleaning with two or more jets impinging against each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus

Description

本開示は、排ガス処理装置に関する。 The present disclosure relates to an exhaust gas treatment device.

内燃機関などから排出される排ガス中のSOなどの有害成分を海水などの洗浄液で吸収して除去するための除去装置として、サイクロンスクラバを用いた排ガス処理装置が知られている(例えば、特許文献1)。
この種の排ガス処理装置は、吸収塔の内部に海水などの洗浄液を噴霧し、吸収塔の底部から上部に排ガスを通過させて洗浄液と反応させ、排ガス中の有害成分を除去する。従って、有害成分の除去率を向上させるひとつの手段として、排ガスと洗浄液との接触性を高める方法が考えられる。特許文献1では、吸収塔の内部で排ガスを螺旋状に旋回させると共に、排ガス流路における洗浄液噴霧用ノズル管の配置によって、排ガスが高さ方向へ直進するのを妨げ、これによって、排ガスが洗浄液と接触する時間を長くすることで、洗浄効率を向上させることが記載されている。
Exhaust gas treatment equipment using a cyclone scrubber is known as a removal device for absorbing and removing harmful components such as SOX in exhaust gas discharged from internal combustion engines with a cleaning liquid such as seawater (for example, patent Reference 1).
This type of exhaust gas treatment apparatus sprays a cleaning liquid such as seawater into an absorption tower, passes the exhaust gas from the bottom to the top of the absorption tower, reacts with the cleaning liquid, and removes harmful components in the exhaust gas. Therefore, as one means of improving the removal rate of harmful components, a method of increasing the contact between the exhaust gas and the cleaning liquid is conceivable. In Patent Document 1, the exhaust gas is spirally swirled inside the absorption tower, and the arrangement of nozzle pipes for spraying the cleaning liquid in the exhaust gas flow path prevents the exhaust gas from advancing straight in the height direction. It is described that cleaning efficiency is improved by increasing the contact time.

特開2016-155075号公報JP 2016-155075 A

排ガスに含まれる有害成分の洗浄効率を向上させることで、排ガスの処理時間を短縮でき、かつ吸収塔などを含む排ガス処理装置のコンパクト化が可能になる。そのため、さらなる洗浄効率の向上が望まれている。 By improving the cleaning efficiency of harmful components contained in the exhaust gas, it is possible to reduce the processing time of the exhaust gas and to make the exhaust gas processing apparatus including the absorption tower more compact. Therefore, further improvement in cleaning efficiency is desired.

一実施形態は、洗浄液による排ガス中の有害成分の吸収効率を向上させることで、処理時間を短縮でき、かつ吸収塔などを含む排ガス処理装置のコンパクト化を可能にすることを目的とする。 An object of one embodiment is to improve the absorption efficiency of harmful components in the exhaust gas by the cleaning liquid, thereby shortening the treatment time and making it possible to make the exhaust gas treatment apparatus including an absorption tower compact.

(1)一実施形態に係る排ガス処理装置は、
排ガスと洗浄液とを接触させ前記排ガス中の有害成分を吸収除去する排ガス処理装置であって、
内部空間が形成された吸収塔本体と、
前記内部空間に前記洗浄液を噴霧するスプレイ部と、
前記内部空間で旋回するように排ガスを導入する排ガス導入部と、
を備え、
前記吸収塔本体の前記内部空間に面した内周面に凹凸が形成される。
(1) An exhaust gas treatment device according to one embodiment includes:
An exhaust gas treatment device that absorbs and removes harmful components in the exhaust gas by contacting the exhaust gas with a cleaning liquid,
an absorption tower body having an internal space;
a spray unit that sprays the cleaning liquid into the internal space;
an exhaust gas introduction section that introduces exhaust gas so as to swirl in the internal space;
with
Concavities and convexities are formed on the inner peripheral surface of the absorption tower body facing the internal space.

上記(1)の構成によれば、上記排ガス導入部から吸収塔本体の内部空間に導入される排ガスは該内部空間で旋回するため、該内部空間に面した内周面に偏って流れる。吸収塔本体の内周面に凹凸が形成されることで、内周面を伝う洗浄液と排ガスとが接触する接触面積(以下、単に「接触面積」とも言う。)が増加する。これによって、洗浄液と排ガスとの接触性が高まるため、排ガス中の有害成分を除去する除去効率(以下「洗浄効率」とも言う。)を向上できる。また、洗浄効率が高まることで、排ガスの処理時間を短縮でき、かつ吸収塔などを含む排ガス処理装置のコンパクト化が可能になる。
また、駆動力を要する装置を追設したり、吸収塔本体の内部空間に何らかの構造物を設けることなく、簡易な手段で接触面積を増加できる。
According to the configuration (1) above, the exhaust gas introduced from the exhaust gas introduction portion into the internal space of the absorber main body swirls in the internal space, so that the exhaust gas flows biased toward the inner peripheral surface facing the internal space. By forming unevenness on the inner peripheral surface of the absorber body, the contact area (hereinafter also simply referred to as "contact area") where the cleaning liquid and the exhaust gas coming in contact with each other on the inner peripheral surface is increased. As a result, contact between the cleaning liquid and the exhaust gas is enhanced, so that removal efficiency (hereinafter also referred to as "cleaning efficiency") for removing harmful components in the exhaust gas can be improved. In addition, by increasing the cleaning efficiency, it is possible to shorten the processing time of the exhaust gas and to make the exhaust gas processing apparatus including the absorption tower compact.
In addition, the contact area can be increased by simple means without additionally installing a device requiring a driving force or providing any structure in the internal space of the absorption tower body.

(2)一実施形態では、前記(1)の構成において、
前記排ガス導入部は、前記吸収塔本体の下部に設けられると共に、前記吸収塔本体の最上部に排ガス排出部が設けられ、前記排ガス導入部から導入された前記排ガスは前記内部空間で旋回しながら上昇するように構成され、
前記凹凸は、前記スプレイ部から噴霧される前記洗浄液の液膜が形成される前記内周面に形成される。
上記(2)の構成によれば、上記凹凸がスプレイ部から噴霧される洗浄液の液膜が形成される吸収塔の内周面に形成されるため、該内周面を伝う洗浄液と排ガスとが接触する接触面積を増加できる。これによって、洗浄液と排ガスとの接触性が高まり、排ガスの洗浄効率を向上できる。
(2) In one embodiment, in the configuration of (1),
The exhaust gas introduction part is provided in the lower part of the absorption tower body, and an exhaust gas discharge part is provided in the uppermost part of the absorption tower body, and the exhaust gas introduced from the exhaust gas introduction part swirls in the internal space. configured to rise,
The unevenness is formed on the inner peripheral surface on which the liquid film of the cleaning liquid sprayed from the spray section is formed.
According to the above configuration (2), since the unevenness is formed on the inner peripheral surface of the absorption tower where the liquid film of the cleaning liquid sprayed from the spray part is formed, the cleaning liquid and the exhaust gas flowing along the inner peripheral surface are separated. The contact area to contact can be increased. As a result, the contact between the cleaning liquid and the exhaust gas is enhanced, and the cleaning efficiency of the exhaust gas can be improved.

(3)一実施形態では、前記(1)又は(2)の構成において、
前記スプレイ部、前記凹凸が形成された前記内周面及び前記排ガス導入部より上方の前記内部空間に設けられるミストエリミネータを備える。
上記(3)の構成によれば、吸収塔本体内で上昇する排ガスの最下流側に設けられたミストエリミネータによって排ガスから有害成分を吸収した洗浄液のミスト(液分)を除去できるため、浄化された排ガスのみを外部に放出できる。
(3) In one embodiment, in the configuration of (1) or (2),
A mist eliminator is provided in the inner space above the spray portion, the inner peripheral surface on which the unevenness is formed, and the exhaust gas introduction portion.
According to the above configuration (3), the mist (liquid content) of the cleaning liquid that has absorbed the harmful components from the exhaust gas can be removed by the mist eliminator provided on the most downstream side of the exhaust gas rising in the absorption tower body, so that the exhaust gas is purified. Only exhaust gas can be discharged to the outside.

(4)一実施形態では、前記(1)~(3)の何れかの構成において、
前記凹凸は、前記吸収塔本体の周方向に沿って形成され、前記吸収塔本体の軸方向から視認したとき前記内周面の周方向全域に亘り延在する1個以上の溝を含んで構成される。
上記(4)の構成によれば、上記凹凸が吸収塔本体の周方向に沿って内周面の全周に亘り延在する1個以上の溝を含んで構成されるため、内周面を伝う洗浄液と排ガスとが接触する接触面積を増加でき、これによって、排ガスの洗浄効率を向上できる。
(4) In one embodiment, in any one of the configurations (1) to (3),
The unevenness is formed along the circumferential direction of the absorber tower body and includes one or more grooves extending over the entire circumferential direction of the inner circumferential surface when viewed from the axial direction of the absorber tower body. be done.
According to the above configuration (4), the unevenness includes one or more grooves extending along the entire circumference of the inner peripheral surface along the circumferential direction of the absorber body. It is possible to increase the contact area where the cleaning liquid and the exhaust gas contact, thereby improving the cleaning efficiency of the exhaust gas.

(5)一実施形態では、前記(1)~(3)の何れかの構成において、
前記凹凸は、前記吸収塔本体の軸方向に沿って形成され、前記吸収塔本体の軸方向から視認したとき前記内周面の周方向全域に亘り設けられる1個以上の溝を含んで構成される。
上記(5)の構成によれば、上記凹凸が吸収塔本体の軸方向に沿って形成されかつ内周面の全周に亘り設けられる1個以上の溝を含んで構成されるため、内周面を伝う洗浄液と排ガスとが接触する接触面積を増加でき、これによって、排ガスの洗浄効率を向上できる。
(5) In one embodiment, in any one of the configurations (1) to (3),
The unevenness is formed along the axial direction of the absorber tower body and includes one or more grooves provided over the entire circumferential direction of the inner peripheral surface when viewed from the axial direction of the absorber tower body. be.
According to the configuration (5) above, since the unevenness is formed along the axial direction of the absorber tower body and includes one or more grooves provided along the entire circumference of the inner peripheral surface, the inner peripheral surface It is possible to increase the contact area where the cleaning liquid and the exhaust gas contact with each other along the surface, thereby improving the cleaning efficiency of the exhaust gas.

(6)一実施形態では、前記(1)~(3)の何れかの構成において、
前記凹凸は、前記内周面の周方向全域に亘り設けられ前記内周面に螺旋状に形成される1個以上の螺旋溝を含んで構成される。
上記(6)の構成によれば、上記凹凸は、吸収塔本体の内周面に周方向全域に亘り形成される1個以上の螺旋溝を含んで構成されるため、内周面を伝う洗浄液と排ガスとが接触する接触面積を増加でき、これによって、排ガスの洗浄効率を向上できる。また、螺旋状溝は溝の形成が容易である。
螺旋溝が排ガスの旋回方向と同一方向に形成されたとき、螺旋溝が排ガスの旋回方向と異なる方向へ形成された場合と比べて旋回の減衰を小さくできる。
(6) In one embodiment, in any one of the configurations (1) to (3),
The unevenness includes one or more spiral grooves that are provided over the entire circumferential direction of the inner peripheral surface and that are spirally formed on the inner peripheral surface.
According to the configuration of (6) above, since the unevenness includes one or more spiral grooves formed over the entire circumferential direction on the inner peripheral surface of the absorber body, It is possible to increase the contact area of contact with the exhaust gas, thereby improving the cleaning efficiency of the exhaust gas. Also, the spiral groove is easy to form.
When the spiral groove is formed in the same direction as the swirling direction of the exhaust gas, damping of swirling can be reduced compared to the case where the spiral groove is formed in a direction different from the swirling direction of the exhaust gas.

(7)一実施形態では、前記(1)~(3)の何れかの構成において、
前記凹凸は、前記内周面に分散して形成され、前記吸収塔本体の軸方向から視認したとき前記内周面の周方向全域に亘り設けられる複数の第1凸部を含んで構成される。
上記(7)の構成によれば、上記凹凸は、上記第1凸部を含んで構成されるため、内周面を伝う洗浄液と排ガスとが接触する接触面積を増加でき、これによって、排ガスの洗浄効率を向上できる。
(7) In one embodiment, in any one of the configurations (1) to (3),
The irregularities are formed dispersedly on the inner peripheral surface, and include a plurality of first convex portions provided over the entire circumferential direction of the inner peripheral surface when viewed from the axial direction of the absorber tower body. .
According to the above configuration (7), since the unevenness is configured to include the first convex portion, the contact area of the cleaning liquid and the exhaust gas coming into contact with each other along the inner peripheral surface can be increased, thereby increasing the amount of exhaust gas. Cleaning efficiency can be improved.

(8)一実施形態では、前記(1)~(7)の何れかの構成において、
前記排ガス導入部は、前記吸収塔本体に接続される排ガス導入管で構成され、
前記排ガス導入管は前記吸収塔本体との接続部に設けられる直線形状の直管部を含んで構成され、
該直管部は、前記直管部の内周面に分散して配置された複数の第2凸部を有する。
上記(8)の構成によれば、上記直管部の内周面に複数の第2凸部が分散して設けられるため、直管部を流れる排ガスの偏流を抑制できる。これによって、直管部を流れる排ガスに含まれる有害成分の濃度分布及び流速分布の偏りを抑制しながら排ガスを吸収塔本体に導入できるので、吸収塔本体の内部空間における排ガスと洗浄液との接触性を高め、排ガスの洗浄効率を向上できる。
(8) In one embodiment, in any one of the configurations (1) to (7),
The flue gas introduction part is composed of a flue gas introduction pipe connected to the absorption tower body,
The exhaust gas introduction pipe includes a linear straight pipe portion provided at a connection portion with the absorption tower body,
The straight pipe portion has a plurality of second projections dispersedly arranged on the inner peripheral surface of the straight pipe portion.
According to the configuration (8) above, since the plurality of second convex portions are provided in a dispersed manner on the inner peripheral surface of the straight pipe portion, it is possible to suppress drift of the exhaust gas flowing through the straight pipe portion. As a result, the flue gas can be introduced into the absorber body while suppressing the unevenness of the concentration distribution and flow velocity distribution of the harmful components contained in the flue gas flowing through the straight pipe section, so the contact between the flue gas and the cleaning liquid in the internal space of the absorber body can be increased, and the exhaust gas cleaning efficiency can be improved.

(9)一実施形態では、前記(7)の構成において、
前記スプレイ部は、前記複数の第1凸部の各々に設けられる。
上記(9)の構成によれば、吸収塔本体の内周面に設けられた第1凸部にスプレイ部を設けるため、吸収塔本体の内部空間の中央部にスプレイ部を設ける必要がなくなる。これによって、洗浄液と排ガスとを接触させるスペースを増やすことができるため、排ガスと洗浄液との接触性を高め、排ガスの洗浄効率を向上できる。
また、排ガスが吸収塔本体の内部空間で旋回するとき、排ガスは内周面側へ偏る。従って、第1凸部に設けられたスプレイ部の洗浄液放出口を内周面側へ向け、内周面側へ密に洗浄液が行き渡るようにすれば、排ガスが多い領域に多くの洗浄液を放出できるため、洗浄効率を向上できる。
(9) In one embodiment, in the configuration of (7),
The spray part is provided on each of the plurality of first protrusions.
According to the above configuration (9), since the spray portion is provided on the first convex portion provided on the inner peripheral surface of the absorber main body, it is not necessary to provide the spray portion in the central portion of the internal space of the absorber main body. As a result, the space for contacting the cleaning liquid and the exhaust gas can be increased, so that the contact between the exhaust gas and the cleaning liquid can be increased, and the cleaning efficiency of the exhaust gas can be improved.
Further, when the exhaust gas swirls in the internal space of the absorption tower main body, the exhaust gas is biased toward the inner peripheral surface. Therefore, if the cleaning liquid discharge port of the spray section provided in the first projection is directed toward the inner peripheral surface so that the cleaning liquid is densely distributed to the inner peripheral surface side, a large amount of cleaning liquid can be discharged to the area where the exhaust gas is abundant. Therefore, cleaning efficiency can be improved.

(10)一実施形態では、前記(9)の構成において、
前記スプレイ部は、前記複数の第1凸部の各々から前記排ガスの旋回方向へ向けて前記洗浄液を噴霧するように構成される。
排ガスの旋回力は、吸収塔本体の内部空間で洗浄液と排ガスとが接触することで減衰する。上記(10)の構成によれば、第1凸部から排ガスの旋回方向へ向けて洗浄液を噴霧することで、排ガスの減衰を軽減できる。これによって、排ガスと洗浄液との接触性を高め、排ガスの洗浄効率を向上できる。
(10) In one embodiment, in the configuration of (9),
The spray section is configured to spray the cleaning liquid from each of the plurality of first projections toward the swirling direction of the exhaust gas.
The swirl force of the exhaust gas is attenuated by the contact between the cleaning liquid and the exhaust gas in the internal space of the absorber body. According to the configuration (10) above, the attenuation of the exhaust gas can be reduced by spraying the cleaning liquid from the first convex portion toward the swirling direction of the exhaust gas. As a result, the contact between the exhaust gas and the cleaning liquid can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

(11)一実施形態では、前記(1)~(8)の何れかの構成において、
前記スプレイ部は、
前記内部空間で前記吸収塔本体の中心軸に沿って延在する幹管と、
前記幹管から前記内周面に向けて延在する1個以上の枝管と、
前記枝管から供給される前記洗浄液を噴霧するスプレイノズルと、
を含んで構成される。
上記(11)の構成によれば、上記スプレイノズルは上記枝管から吸収塔本体の内周面に向けて洗浄液を噴霧することで、洗浄液を内部空間に均一に噴霧できると共に、内周面の周方向全域に均一に洗浄液膜を形成できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。
(11) In one embodiment, in the configuration of any one of (1) to (8),
The spray section is
a trunk pipe extending along the central axis of the absorber body in the internal space;
one or more branch pipes extending from the trunk pipe toward the inner peripheral surface;
a spray nozzle for spraying the cleaning liquid supplied from the branch pipe;
Consists of
According to the above configuration (11), the spray nozzle sprays the cleaning liquid from the branch pipe toward the inner peripheral surface of the absorber main body, so that the cleaning liquid can be uniformly sprayed into the inner space and the inner peripheral surface can be sprayed. A cleaning liquid film can be uniformly formed over the entire circumference. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

(12)一実施形態では、前記(1)~(8)の何れかの構成において、
前記スプレイ部は、前記凹凸が形成された前記内周面及び前記排ガス導入部より上方の前記内部空間に設けられ、
前記スプレイ部は、
前記洗浄液が供給され前記吸収塔本体の横断面方向に沿って延在し、複数のノズルが分散して設けられたノズル管を含んで構成される。
上記(12)の構成によれば、上記ノズル管は吸収塔本体の最上部で吸収塔本体の横断面方向に沿って延在するので、上記ノズルから洗浄液を噴霧すると、噴霧された洗浄液は重力で降下し下方の内部空間に均一に散布される。また、内部空間にはスプレイ部を設ける必要がないので、排ガスと洗浄液との接触スペースを増加できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。また、スプレイ部をノズル管を設けるだけの簡易な構成とすることができる。
(12) In one embodiment, in any one of the configurations (1) to (8),
The spray part is provided in the inner space above the inner peripheral surface on which the unevenness is formed and the exhaust gas introduction part,
The spray section is
It is configured to include a nozzle pipe supplied with the washing liquid, extending along the cross-sectional direction of the absorber body, and provided with a plurality of dispersed nozzles.
According to the above configuration (12), the nozzle pipe extends along the cross-sectional direction of the absorber main body at the top of the absorber main body. , and is evenly dispersed in the inner space below. Moreover, since it is not necessary to provide a spray section in the internal space, the contact space between the exhaust gas and the cleaning liquid can be increased. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved. Also, the spray section can be configured simply by providing a nozzle pipe.

(13)一実施形態では、前記(7)、(9)又は(10)の何れかの構成において、
前記第1凸部は、多角錐形状、円錐形状、錐台形状、角柱形状、円柱形状、球面形状、楕円面形状、断面が半月形状を有する立体形状又は断面が波形を有する立体形状を有する。
上記(13)の構成によれば、吸収塔本体の内周面に設けられる第1凸部が上記形状を有するため、内周面を伝う洗浄液と排ガスとが接触する接触面積を増加できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。
(13) In one embodiment, in the configuration of any of (7), (9) or (10),
The first convex portion has a polygonal pyramidal shape, a conical shape, a truncated pyramidal shape, a prismatic shape, a cylindrical shape, a spherical shape, an elliptical shape, a three-dimensional shape having a half-moon cross section, or a three-dimensional shape having a wavy cross section.
According to the configuration (13) above, since the first convex portion provided on the inner peripheral surface of the absorber body has the above shape, it is possible to increase the contact area in which the cleaning liquid and the exhaust gas that run along the inner peripheral surface come into contact with each other. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

(14)一実施形態では、前記(8)の構成において、
前記第2凸部は、多角錐形状、円錐形状、錐台形状、角柱形状、円柱形状、球面形状、楕円面形状、断面が半月形状を有する立体形状又は断面が波形を有する立体形状を有する。
上記(14)の構成によれば、排ガス導入管の直管部の内周面に設けられる第2凸部が上記形状を有するため、直管部を流れる排ガスの偏流を効果的に抑制できる。従って、吸収塔本体の内部空間に均一な排ガス流を導入できるので、吸収塔本体における排ガスと洗浄液との接触性を高め、排ガスの洗浄効率を向上できる。
(14) In one embodiment, in the configuration of (8),
The second projection has a polygonal pyramid shape, a conical shape, a truncated cone shape, a prismatic shape, a cylindrical shape, a spherical shape, an elliptical shape, a three-dimensional shape having a half-moon cross section, or a three-dimensional shape having a wavy cross section.
According to the above configuration (14), the second convex portion provided on the inner peripheral surface of the straight pipe portion of the exhaust gas introduction pipe has the above shape, so that the drift of the exhaust gas flowing through the straight pipe portion can be effectively suppressed. Therefore, since a uniform flue gas flow can be introduced into the internal space of the absorption tower body, the contact between the flue gas and the cleaning liquid in the absorption tower body can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

幾つかの実施形態によれば、洗浄液による排ガスの洗浄効率を向上でき、これによって、
排ガスの処理時間を短縮でき、かつ吸収塔を含む排ガス処理装置をコンパクト化できる。
According to some embodiments, the efficiency of cleaning the exhaust gas with the cleaning liquid can be improved, thereby
The exhaust gas treatment time can be shortened, and the exhaust gas treatment apparatus including the absorption tower can be made compact.

一実施形態に係る排ガス処理装置を概略的に示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows roughly the waste gas treatment apparatus which concerns on one Embodiment. 一実施形態に係る排ガス処理装置を概略的に示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows roughly the waste gas treatment apparatus which concerns on one Embodiment. 図1中のA―A線に沿う横断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1; 一実施形態に係る吸収塔本体の一部を概略的に示す縦断面図である。1 is a longitudinal sectional view schematically showing part of an absorption tower body according to one embodiment; FIG. 一実施形態に係る凹凸を模式的に示す斜視図である。It is a perspective view which shows the unevenness|corrugation which concerns on one Embodiment typically. 一実施形態に係る凹凸を模式的に示す斜視図である。It is a perspective view which shows the unevenness|corrugation which concerns on one Embodiment typically. 一実施形態に係る排ガス処理装置を概略的に示す横断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional view which shows schematically the waste gas treatment apparatus which concerns on one Embodiment. (A)、(B)及び(C)は、幾つかの実施形態に係る凹凸を示す斜視図である。(A), (B), and (C) are perspective views showing asperities according to some embodiments. (A)及び(B)は、幾つかの実施形態に係る凹凸を示す斜視図である。(A) and (B) are perspective views showing asperities according to some embodiments. (A)及び(B)は、幾つかの実施形態に係る凹凸を示す斜視図である。(A) and (B) are perspective views showing asperities according to some embodiments. 一実施形態に係る凹凸を示す斜視図である。It is a perspective view which shows the unevenness|corrugation which concerns on one Embodiment. (A)及び(B)は、幾つかの実施形態に係る凹凸を示す斜視図である。(A) and (B) are perspective views showing asperities according to some embodiments. (A)及び(B)は、幾つかの実施形態に係る凹凸を示す斜視図である。(A) and (B) are perspective views showing asperities according to some embodiments.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Several embodiments of the present invention will now be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiment or shown in the drawings are not meant to limit the scope of the present invention, but merely illustrative examples.
For example, expressions denoting relative or absolute arrangements such as "in a direction", "along a direction", "parallel", "perpendicular", "center", "concentric" or "coaxial" are strictly not only represents such an arrangement, but also represents a state of relative displacement with a tolerance or an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous", which express that things are in the same state, not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained. The shape including the part etc. shall also be represented.
On the other hand, the expressions "comprising", "comprising", "having", "including", or "having" one component are not exclusive expressions excluding the presence of other components.

図1及び図2は、幾つかの実施形態に係る排ガス処理装置10(10A、10B)を示す概略的縦断面図である。
図1及び図2において、吸収塔本体12の内部に内部空間sが形成され、内部空間sに洗浄液Csを噴霧するスプレイ部14(14a、14b)が設けられる。また、例えば内燃機関(不図示)などから排出される排ガスeは、排ガス導入部16によって内部空間sに導入される。その際、排ガスeは排ガス導入部16によって内部空間sで旋回するように導入される。内部空間sに導入された排ガスeは内部空間sに噴霧される洗浄液Csと接触することで、排ガスeに含まれるSOなどの有害成分が洗浄液Csに吸収され除去される。内部空間sに面した吸収塔本体12の内周面12aには、凹凸18が形成される。凹凸18の具体的な構成は、図3~図6に例示される。
1 and 2 are schematic longitudinal sectional views showing exhaust gas treatment apparatuses 10 (10A, 10B) according to some embodiments.
1 and 2, an internal space s is formed inside an absorption tower body 12, and a spray section 14 (14a, 14b) for spraying a cleaning liquid Cs into the internal space s is provided. Exhaust gas e emitted from an internal combustion engine (not shown), for example, is introduced into the internal space s by the exhaust gas introduction portion 16 . At that time, the exhaust gas e is introduced by the exhaust gas introduction part 16 so as to swirl in the internal space s. The exhaust gas e introduced into the internal space s comes into contact with the cleaning liquid Cs sprayed into the internal space s, whereby harmful components such as SOX contained in the exhaust gas e are absorbed and removed by the cleaning liquid Cs. Concavities and convexities 18 are formed on the inner peripheral surface 12a of the absorption tower body 12 facing the internal space s. A specific configuration of the unevenness 18 is illustrated in FIGS. 3 to 6. FIG.

図3は図1中のA―A線に沿う横断面図である。図3に示すように、一実施形態に係る排ガス導入部16は、吸収塔本体12の横断面に沿うように配置され、かつ吸収塔本体の外周面の接線方向に沿って配置された排ガス導入管で構成される。この排ガス導入管から導入される排ガスeは、内部空間sで旋回流fsを形成する。スプレイ部14から噴霧された洗浄液Csは内部空間sに拡散すると共に、内周面12aに付着して液膜を形成する。
洗浄液Csが例えばアルカリ性である海水であるとき、排ガスeに含まれるSOは海水に含まれるアルカリと反応して中和され無害化される。洗浄液として、海水のほか、湖水、川水、又はアルカリ化した処理水等を用いることができる。
3 is a cross-sectional view taken along line A--A in FIG. 1. FIG. As shown in FIG. 3, the exhaust gas introduction part 16 according to one embodiment is arranged along the cross section of the absorber body 12 and along the tangential direction of the outer peripheral surface of the absorber body. Composed of tubes. The exhaust gas e introduced from this exhaust gas introduction pipe forms a swirling flow fs in the internal space s. The cleaning liquid Cs sprayed from the spray section 14 diffuses into the internal space s and adheres to the inner peripheral surface 12a to form a liquid film.
When the cleaning liquid Cs is, for example, alkaline seawater, the SOx contained in the exhaust gas e reacts with the alkali contained in the seawater to be neutralized and rendered harmless. As the washing liquid, in addition to seawater, lake water, river water, alkalinized treated water, or the like can be used.

この実施形態によれば、吸収塔本体12の内周面12aに凹凸18が形成されるため、内周面12aを伝う洗浄液Csと排ガスeとが接触する接触面積が増加する。一方、排ガスeによって形成される旋回流fsは旋回流fsがもつ遠心力によって内周面12aに偏って流れる。これによって、洗浄液Csと排ガスeとの接触性が高まり、排ガスの洗浄効率を向上できる。また、洗浄効率が高まることで、排ガスの処理時間を短縮でき、かつ吸収塔本体12を含む排ガス処理装置10をコンパクト化できる。
また、駆動力を要する装置を追設したり、内部空間sに何らかの構造物を設けることなく、内周面12aに凹凸18を形成するだけの簡易な手段で洗浄液と排ガスとの接触面積を増加できる。
According to this embodiment, the unevenness 18 is formed on the inner peripheral surface 12a of the absorber main body 12, so that the contact area between the cleaning liquid Cs and the exhaust gas e that run along the inner peripheral surface 12a is increased. On the other hand, the swirl flow fs formed by the exhaust gas e flows biased toward the inner peripheral surface 12a due to the centrifugal force of the swirl flow fs. As a result, the contact between the cleaning liquid Cs and the exhaust gas e is enhanced, and the cleaning efficiency of the exhaust gas can be improved. In addition, since the cleaning efficiency is increased, the exhaust gas treatment time can be shortened, and the exhaust gas treatment apparatus 10 including the absorption tower main body 12 can be made compact.
In addition, the contact area between the cleaning liquid and the exhaust gas is increased by a simple means of forming the unevenness 18 on the inner peripheral surface 12a without additionally installing a device requiring a driving force or providing any structure in the internal space s. can.

一実施形態では、図1及び図2に示すように、排ガス導入部16は、吸収塔本体12の下部に設けられ、排ガス排出部20が吸収塔本体12の最上部に設けられる。排ガス導入部16から導入された排ガスeは内部空間sで旋回しながら上昇し、排ガス排出部20から外部に排出される。凹凸18は、スプレイ部14から噴霧される洗浄液Csの液膜が形成される内周面12aに形成される。
この実施形態によれば、凹凸18がスプレイ部14から噴霧される洗浄液Csの液膜が形成される内周面12aに形成されるため、内周面12aを伝う洗浄液Csと排ガスeとが接触する接触面積が増加する。これによって、洗浄液と排ガスとの接触性が高まり、排ガス中の有害成分の除去率を向上できる。
In one embodiment, as shown in FIGS. 1 and 2 , the flue gas introduction section 16 is provided at the bottom of the absorber body 12 and the flue gas discharge section 20 is provided at the top of the absorber body 12 . The exhaust gas e introduced from the exhaust gas introduction part 16 rises while swirling in the internal space s, and is discharged from the exhaust gas discharge part 20 to the outside. The unevenness 18 is formed on the inner peripheral surface 12a on which the liquid film of the cleaning liquid Cs sprayed from the spray portion 14 is formed.
According to this embodiment, since the unevenness 18 is formed on the inner peripheral surface 12a on which the liquid film of the cleaning liquid Cs sprayed from the spray portion 14 is formed, the cleaning liquid Cs running along the inner peripheral surface 12a comes into contact with the exhaust gas e. contact area increases. As a result, contact between the cleaning liquid and the exhaust gas is enhanced, and the removal rate of harmful components in the exhaust gas can be improved.

一実施形態では、図1及び図2に示すように、スプレイ部14、凹凸18が形成された内周面12a及び排ガス導入部16より上方の内部空間sにミストエリミネータ22が設けられる。
この実施形態によれば、吸収塔本体12内で上昇する排ガスeの最下流側、即ち吸収塔本体12の最上部に設けられたミストエリミネータ22によって、排ガスeからSOxなどの有害成分を吸収した洗浄液のミスト(液分)を除去できるために、浄化された排ガスのみを外部に放出できる。
In one embodiment, as shown in FIGS. 1 and 2 , a mist eliminator 22 is provided in the inner space s above the spray portion 14 , the inner peripheral surface 12 a on which the unevenness 18 is formed, and the exhaust gas introduction portion 16 .
According to this embodiment, harmful components such as SOx are absorbed from the flue gas e by the mist eliminator 22 provided on the most downstream side of the flue gas e rising in the absorber main body 12, that is, at the top of the absorber main body 12. Since the mist (liquid content) of the cleaning liquid can be removed, only purified exhaust gas can be released to the outside.

一実施形態では、図1及び図2に示すように、吸収塔本体12は、洗浄液Csを噴霧して排ガスeを無害化する吸収部21と、吸収部21の上方に設けられ、無害化された排ガスeが排出される排ガス排出部20とを含んで構成される。また、底面に設けられた排液路23から排液が排出される。
一実施形態では、吸収塔本体12の横断面は円形もしくは楕円形であってもよく、あるいは方形であってもよい。
In one embodiment, as shown in FIGS. 1 and 2, the absorber main body 12 includes an absorber 21 that sprays the cleaning liquid Cs to render the exhaust gas e harmless, and is provided above the absorber 21 to detoxify the exhaust gas e. and an exhaust gas discharge section 20 from which exhaust gas e is discharged. In addition, the liquid is discharged from the liquid drainage path 23 provided on the bottom surface.
In one embodiment, the cross-section of absorber tower body 12 may be circular or elliptical, or may be square.

図3に示すように、一実施形態に係る凹凸18(18a)は、吸収塔本体12の軸方向(図1中の矢印a方向)に沿って形成される1個以上の溝24を含んで構成される。溝24は、吸収塔本体12の軸方向から視認したとき、内周面12aの周方向全域に亘って設けられる。
この実施形態によれば、凹凸18(18a)が1個以上の溝24を含んで構成されるため、内周面12aを伝う洗浄液Csと排ガスeとが接触する接触面積を増加でき、これによって、排ガスの洗浄効率を向上できる。
なお、ここで「凹凸18(18a)が軸方向に沿って形成される」とは、凹凸18(18a)が軸方向に対して0~30度の傾斜角で形成されることを意味する。
As shown in FIG. 3, the unevenness 18 (18a) according to one embodiment includes one or more grooves 24 formed along the axial direction of the absorber body 12 (direction of arrow a in FIG. 1). Configured. When viewed from the axial direction of the absorber tower body 12, the grooves 24 are provided over the entire circumferential area of the inner peripheral surface 12a.
According to this embodiment, since the unevenness 18 (18a) is configured to include one or more grooves 24, it is possible to increase the contact area where the cleaning liquid Cs running along the inner peripheral surface 12a contacts the exhaust gas e. , the exhaust gas cleaning efficiency can be improved.
Here, "the irregularities 18 (18a) are formed along the axial direction" means that the irregularities 18 (18a) are formed at an inclination angle of 0 to 30 degrees with respect to the axial direction.

図4は、一実施形態に係る吸収塔本体12の一部を示す模式的縦断面図である。
図4に示すように、一実施形態に係る凹凸18(18b)は、吸収塔本体12の周方向に沿って形成され、吸収塔本体12の軸方向から視認したとき、内周面12aの周方向全域に亘り延在する1個以上の溝26を含んで構成される。
この実施形態によれば、凹凸18(18b)が吸収塔本体12の周方向に沿って内周面12aの全周に亘り延在する1個以上の溝26を含んで構成されるため、内周面12aを伝う洗浄液Csと排ガスeとが接触する接触面積を増加でき、これによって、排ガスの洗浄効率を向上できる。
なお、ここで「凹凸18(18b)が周方向に沿って形成される」とは、凹凸18(18b)が吸収塔本体12の軸方向に対して直角な横断面に対して0~30度の傾斜角で形成されることを意味する。
FIG. 4 is a schematic longitudinal sectional view showing part of the absorption tower main body 12 according to one embodiment.
As shown in FIG. 4, the unevenness 18 (18b) according to one embodiment is formed along the circumferential direction of the absorber main body 12, and when viewed from the axial direction of the absorber tower main body 12, the irregularities 18 (18b) are formed along the circumference of the inner peripheral surface 12a. It comprises one or more grooves 26 extending in all directions.
According to this embodiment, the unevenness 18 (18b) includes one or more grooves 26 extending along the entire circumference of the inner peripheral surface 12a along the circumferential direction of the absorber body 12. The contact area between the cleaning liquid Cs running along the peripheral surface 12a and the exhaust gas e can be increased, thereby improving the cleaning efficiency of the exhaust gas.
Here, "the unevenness 18 (18b) is formed along the circumferential direction" means that the unevenness 18 (18b) is 0 to 30 degrees with respect to the cross section perpendicular to the axial direction of the absorber main body 12. is formed with an inclination angle of

図5は、吸収塔本体12を模式的に示す斜視図である。図5に示すように、一実施形態に係る凹凸18(18c)は、内周面12aの周方向全域に亘り設けられ、内周面12aに螺旋状に形成される1個以上の螺旋溝28を含んで構成される。
この実施形態によれば、内周面12aの周方向全域に凹凸18(18c)が設けられるので、内周面12aを伝う洗浄液Csと排ガスeとが接触する接触面積を増加でき、これによって、排ガスの洗浄効率を向上できる。また、螺旋状溝は溝の形成が容易であると共に、螺旋溝28が排ガスeの旋回流fsと同一方向に形成されたとき、螺旋溝28が排ガスeの旋回方向と異なる方向へ形成された場合と比べて旋回の減衰を小さくできる。
FIG. 5 is a perspective view schematically showing the absorption tower main body 12. As shown in FIG. As shown in FIG. 5, the unevenness 18 (18c) according to one embodiment is provided over the entire circumferential direction of the inner peripheral surface 12a, and includes one or more spiral grooves 28 spirally formed on the inner peripheral surface 12a. Consists of
According to this embodiment, since the unevenness 18 (18c) is provided in the entire circumferential direction of the inner peripheral surface 12a, it is possible to increase the contact area where the cleaning liquid Cs running along the inner peripheral surface 12a and the exhaust gas e come into contact with each other. Exhaust gas cleaning efficiency can be improved. Further, the spiral grooves are easy to form, and when the spiral grooves 28 are formed in the same direction as the swirling flow fs of the exhaust gas e, the spiral grooves 28 are formed in a direction different from the swirling direction of the exhaust gas e. Attenuation of turning can be reduced compared to the case.

溝24,26又は螺旋溝28は、1個のみ又は2個以上並列に形成することができる。また、吸収塔本体12の内壁面のうち少なくとも内周面12aに形成されるが、内周面12aに加えて、例えば、図2に示すように、吸収塔本体12の底面に形成されてもよい。また、これらの溝は、吸収塔本体12の軸方向から視認したとき、内周面12aの周方向全域に亘り形成される。また、溝24,26又は螺旋溝28は、内周面12aに形成される洗浄液Csの液膜以上の深さ、例えば、5mm以上の深さを有することが望ましい。 Grooves 24, 26 or helical grooves 28 can be formed singly or two or more in parallel. Further, it is formed on at least the inner peripheral surface 12a of the inner wall surface of the absorption tower body 12, but in addition to the inner peripheral surface 12a, for example, as shown in FIG. good. Further, these grooves are formed over the entire circumferential direction of the inner peripheral surface 12 a when viewed from the axial direction of the absorber tower body 12 . Moreover, it is desirable that the grooves 24, 26 or the spiral groove 28 have a depth equal to or greater than the liquid film of the cleaning liquid Cs formed on the inner peripheral surface 12a, for example, a depth equal to or greater than 5 mm.

図6は、吸収塔本体12を模式的に示す斜視図である。図6に示すように、一実施形態に係る凹凸18(18d)は、内周面12aに分散して形成された複数の凸部30(第1凸部)を含んで構成される。凸部30は、吸収塔本体12の軸方向から視認したとき、内周面12aの周方向全域に亘り設けられる。
この実施形態によれば、複数の凸部30を含む凹凸18(18d)が形成されることで、内周面12aを伝う洗浄液Csと排ガスeとが接触する接触面積を増加でき、これによって、排ガスの洗浄効率を向上できる。
複数の凸部30は、重なり合うことなく、分散して配置される必要があり、これによって、接触面積の増加を可能にする凹凸18(18d)を形成できる。
一実施形態では、内部空間sを通る排ガスeの圧損増加が排ガス処理装置10の運転を阻害しない範囲で、凸部30の内周面12aからの高さ及び凸部30間の間隔等を設定する必要がある。
FIG. 6 is a perspective view schematically showing the absorption tower main body 12. As shown in FIG. As shown in FIG. 6, the unevenness 18 (18d) according to one embodiment includes a plurality of protrusions 30 (first protrusions) dispersedly formed on the inner peripheral surface 12a. When viewed from the axial direction of the absorber tower body 12, the convex portion 30 is provided over the entire circumferential area of the inner peripheral surface 12a.
According to this embodiment, by forming the unevenness 18 (18d) including the plurality of protrusions 30, it is possible to increase the contact area where the cleaning liquid Cs running along the inner peripheral surface 12a contacts the exhaust gas e. Exhaust gas cleaning efficiency can be improved.
The plurality of protrusions 30 should be distributed and arranged without overlapping, thereby forming the unevenness 18 (18d) that enables an increase in contact area.
In one embodiment, the height of the projections 30 from the inner peripheral surface 12a and the interval between the projections 30 are set within a range in which an increase in the pressure loss of the exhaust gas e passing through the internal space s does not hinder the operation of the exhaust gas treatment device 10. There is a need to.

図6に示すように、一実施形態では、複数の凸部30を吸収塔本体12の中心軸Oに対して点対称となる位置に形成する。これによって、内部空間sの横断面上で洗浄液と排ガスとの接触面積を均一に増加できる。
なお、凸部30は、内周面12aの製造時に内周面12aと同時に一体的に形成されてもよく、あるいは内周面12aとは別に製造され、内周面12aの製造後に内周面12aに取り付けるようにしてもよい。
As shown in FIG. 6 , in one embodiment, a plurality of projections 30 are formed at points symmetrical with respect to the central axis O of the absorber body 12 . Thereby, the contact area between the cleaning liquid and the exhaust gas can be uniformly increased on the cross section of the internal space s.
The protrusions 30 may be formed integrally with the inner peripheral surface 12a at the same time when the inner peripheral surface 12a is manufactured, or may be fabricated separately from the inner peripheral surface 12a, and may be formed on the inner peripheral surface after the inner peripheral surface 12a is manufactured. 12a.

一実施形態では、吸収塔本体12の内面(正確には、図1及び図2において、ミストエリミネータ22の下方領域における吸収塔本体12の内周面及び底面を含む内面全域)に、凹凸18を全く設けなかった場合を閉塞率0%とし、内面全域に凹凸18を設けた場合を閉塞率100%とする。この場合、閉塞率を50%以下とすることが望ましい。閉塞率が50%を超えると、吸収塔本体12の内部で排ガスeの圧力損失が大きくなり、排ガスeの旋回力が減衰してしまう。 In one embodiment, the inner surface of the absorption tower body 12 (more precisely, the entire inner surface including the inner peripheral surface and the bottom surface of the absorption tower body 12 in the lower region of the mist eliminator 22 in FIGS. 1 and 2) is provided with unevenness 18. The blockage rate is defined as 0% when the unevenness 18 is not provided at all, and is defined as 100% when the unevenness 18 is provided on the entire inner surface. In this case, it is desirable to set the clogging rate to 50% or less. If the blockage rate exceeds 50%, the pressure loss of the exhaust gas e inside the absorption tower body 12 increases, and the swirling force of the exhaust gas e is attenuated.

一実施形態では、図2に示すように、排ガス導入部16は吸収塔本体12に接続される排ガス導入管で構成され、該排ガス導入管の吸収塔本体12との接続部は直線形状の直管部32で構成される。直管部32は、図2に示すように、吸収塔本体12の外周面の接線方向に沿って配置され、直管部32から導入される排ガスeは、内部空間sで旋回流fsを形成する。さらに、直管部32の内周面に複数の凸部34(第2凸部)が分散して配置される。 In one embodiment, as shown in FIG. 2, the flue gas introduction section 16 is composed of an flue gas introduction pipe connected to the absorption tower main body 12, and the connecting portion of the flue gas introduction pipe to the absorption tower main body 12 is straight. It is composed of a pipe portion 32 . As shown in FIG. 2, the straight pipe portion 32 is arranged along the tangential direction of the outer peripheral surface of the absorber body 12, and the exhaust gas e introduced from the straight pipe portion 32 forms a swirling flow fs in the internal space s. do. Further, a plurality of protrusions 34 (second protrusions) are dispersedly arranged on the inner peripheral surface of the straight tube portion 32 .

直管部32の上流側にベンド部などがある場合、直管部32に流入した排ガスは偏流を生じやすい。この実施形態によれば、直管部32の内周面に複数の凸部34が分散して設けられるため、直管部32を流れる排ガスeの偏流を抑制できる。これによって、直管部32を流れる排ガスeに含まれるSOなどの有害成分の濃度分布及び流速分布の偏りを抑制し、排ガスeを均一な流れとして内部空間sに導入できる。従って、内部空間sにおける排ガスと洗浄液との接触スペースを増加でき、これによって、排ガスと洗浄液との接触性を高め、排ガス中の有害成分の除去率を向上できる。 If there is a bend portion or the like on the upstream side of the straight pipe portion 32, the exhaust gas that has flowed into the straight pipe portion 32 tends to drift. According to this embodiment, since a plurality of protrusions 34 are provided in a distributed manner on the inner peripheral surface of the straight pipe portion 32, drift of the exhaust gas e flowing through the straight pipe portion 32 can be suppressed. As a result, the concentration distribution and flow velocity distribution of harmful components such as SO 2 X contained in the exhaust gas e flowing through the straight pipe portion 32 can be suppressed, and the exhaust gas e can be introduced into the internal space s as a uniform flow. Therefore, the contact space between the exhaust gas and the cleaning liquid in the internal space s can be increased, thereby enhancing the contact between the exhaust gas and the cleaning liquid and improving the removal rate of harmful components in the exhaust gas.

複数の凸部34は、重なり合うことなく、分散して配置され、これによって、直管部32を流れる排ガスeの偏流抑制効果を高めることができる。また、直管部32を通る排ガスeの圧損増加が排ガス処理装置10の運転を阻害しない範囲で、凸部34の内周面12aからの高さ及び凸部34間の間隔等を設定する必要がある。
凸部34は、直管部32の内周面の周方向全域に形成されるのが望ましい。また、直管部32の内周面の製造時に該内周面と同時に一体的に形成されてもよく、あるいは該内周面とは別に製造され、該内周面の製造後に該内周面に取り付けるようにしてもよい。
The plurality of protrusions 34 are arranged in a dispersed manner without overlapping, thereby enhancing the effect of suppressing drift of the exhaust gas e flowing through the straight pipe portion 32 . Further, it is necessary to set the height of the projections 34 from the inner peripheral surface 12a and the interval between the projections 34 within a range in which an increase in the pressure loss of the exhaust gas e passing through the straight pipe portion 32 does not hinder the operation of the exhaust gas treatment device 10. There is
It is desirable that the convex portion 34 be formed on the entire inner circumferential surface of the straight pipe portion 32 in the circumferential direction. Further, the inner peripheral surface may be formed integrally with the inner peripheral surface at the time of manufacturing the inner peripheral surface of the straight tube portion 32, or the inner peripheral surface may be manufactured separately from the inner peripheral surface and the inner peripheral surface may be formed after the inner peripheral surface is manufactured. may be attached to the

一実施形態では、直管部32の内周面に凸部34を全く設けなかった場合を閉塞率0%とし、直管部32の内周面全域に凸部34を設けた場合を閉塞率100%とする。この場合、閉塞率を50%以下とすることが望ましい。閉塞率が50%を超えると、凸部34の作用として、SOxなどの有害成分の濃度分布及び流速分布の偏りは抑制できるが、圧力損失が大きくなるため、排ガスeの流速が低下してしまい、吸収塔本体内部での旋回力が低下する可能性がある。 In one embodiment, the blockage rate is 0% when no projections 34 are provided on the inner peripheral surface of the straight pipe portion 32, and the blockage rate is defined when the projections 34 are provided on the entire inner peripheral surface of the straight pipe portion 32. 100%. In this case, it is desirable to set the clogging rate to 50% or less. If the blockage rate exceeds 50%, the concentration distribution and the flow velocity distribution of harmful components such as SOx can be suppressed as an action of the convex part 34, but the pressure loss increases, so the flow velocity of the exhaust gas e decreases. , the swirling force inside the absorber body may decrease.

一実施形態では、図1に示すように、スプレイ部14(14a)は、内部空間sの中心軸Oに沿って延在する幹管40と、幹管40から内周面12aに向けて延在する1個以上の枝管42と、枝管42から供給される洗浄液Csを噴霧するスプレイノズル44と、を含んで構成される。
この実施形態によれば、スプレイ部14(14a)は内部空間sの中央部に軸方向に設けられるため、内部空間sの中央部からスプレイノズル44によって洗浄液Csを内周面12aの全周に向かって噴霧することで、洗浄液Csを内部空間sに均一に噴霧できると共に、内周面12aの周方向全域に均一に洗浄液膜を形成できる。これによって、洗浄液と排ガスとの接触性が高まり、排ガスの洗浄効率を向上できる。
In one embodiment, as shown in FIG. 1, the spray portion 14 (14a) includes a main pipe 40 extending along the central axis O of the internal space s and a main pipe 40 extending from the main pipe 40 toward the inner peripheral surface 12a. It includes one or more existing branch pipes 42 and a spray nozzle 44 for spraying the cleaning liquid Cs supplied from the branch pipes 42 .
According to this embodiment, since the spray part 14 (14a) is provided in the central part of the internal space s in the axial direction, the cleaning liquid Cs is sprayed from the central part of the internal space s to the entire circumference of the inner peripheral surface 12a by the spray nozzle 44. By spraying toward, the cleaning liquid Cs can be uniformly sprayed into the internal space s, and a cleaning liquid film can be formed uniformly over the entire circumferential direction of the inner peripheral surface 12a. As a result, the contact between the cleaning liquid and the exhaust gas is enhanced, and the cleaning efficiency of the exhaust gas can be improved.

一実施形態では、スプレイノズル44は枝管42に取り付けられる。好ましくは、枝管42の先端に取り付けられることで、内周面12aの近くから内周面12aに向かって洗浄液Csを噴霧できる。これによって、内周面12aに洗浄液Csの液膜を形成しやすくなる。
枝管42は、吸収塔本体12の軸方向と直交する横断面上に配置してもよく、あるいは該横断面から上下に傾斜した方向へ配置してもよい。
スプレイノズル44の洗浄液噴霧方向は、洗浄液Csが内部空間sに均一に拡散するように、あるいは内周面12aに洗浄液Csの液膜が確実に形成されるように、適宜設定される。
In one embodiment, spray nozzle 44 is attached to branch 42 . Preferably, by being attached to the tip of the branch pipe 42, the cleaning liquid Cs can be sprayed from near the inner peripheral surface 12a toward the inner peripheral surface 12a. This makes it easier to form a liquid film of the cleaning liquid Cs on the inner peripheral surface 12a.
The branch pipe 42 may be arranged on a cross section perpendicular to the axial direction of the absorber body 12, or may be arranged in a direction inclined vertically from the cross section.
The cleaning liquid spraying direction of the spray nozzle 44 is appropriately set so that the cleaning liquid Cs is uniformly diffused in the internal space s, or so that a liquid film of the cleaning liquid Cs is reliably formed on the inner peripheral surface 12a.

一実施形態では、図2に示すように、スプレイ部14(14b)は、凹凸18が形成された内周面12a及び排ガス導入部16より上方の内部空間sに設けられる。スプレイ部14(14b)には洗浄液Csが供給される。また、スプレイ部14(14b)は吸収塔本体12の横断面に沿って延在し、かつ複数のノズル48が分散して配置されたノズル管46を含んで構成される。
この実施形態によれば、スプレイ部14(14b)は吸収塔本体12の最上部で吸収塔本体12の横断面に沿って延在するので、ノズル管46から洗浄液を噴霧すると、噴霧された洗浄液Csは重力で降下し、下方の内部空間sに均一に散布される。また、下方の内部空間sにはスプレイ部を設ける必要がないので、排ガスと洗浄液との接触スペースを増加できる。これによって、洗浄液と排ガスとの接触性が高まり、排ガスの洗浄効率を向上できる。また、スプレイ部14(14b)をノズル管46を設けるだけの簡易な構成とすることができる。
In one embodiment, as shown in FIG. 2 , the spray portion 14 ( 14 b ) is provided in an internal space s above the inner peripheral surface 12 a on which the unevenness 18 is formed and the exhaust gas introduction portion 16 . The cleaning liquid Cs is supplied to the spray section 14 (14b). The spray section 14 (14b) extends along the cross section of the absorber body 12 and includes a nozzle pipe 46 in which a plurality of nozzles 48 are dispersedly arranged.
According to this embodiment, the spray part 14 (14b) extends along the cross section of the absorber main body 12 at the uppermost part of the absorber main body 12. Therefore, when the washing liquid is sprayed from the nozzle pipe 46, the sprayed washing liquid Cs descends by gravity and is uniformly dispersed in the lower internal space s. Moreover, since it is not necessary to provide a spray section in the lower internal space s, the contact space between the exhaust gas and the cleaning liquid can be increased. As a result, the contact between the cleaning liquid and the exhaust gas is enhanced, and the cleaning efficiency of the exhaust gas can be improved. In addition, the spray section 14 (14b) can be configured simply by providing the nozzle pipe 46 only.

なお、ここで「スプレイ部14(14b)が吸収塔本体12の横断面に沿って延在する」とは、吸収塔本体12の軸方向と直交する横断面に対して0~30度の傾斜角で延在することを意味する。 Here, "the spray portion 14 (14b) extends along the cross section of the absorber body 12" means that the inclination is 0 to 30 degrees with respect to the cross section perpendicular to the axial direction of the absorber body 12. means extending at the corners.

一実施形態では、吸収塔本体12の外部から内部空間sに導設され、ノズル管46に接続される洗浄液供給管50を備え、洗浄液供給管50からノズル管46に洗浄液Csが供給される。
一実施形態では、ノズル管46は環状のノズル管で構成される。例えば、この環状ノズル管の直径を大きくし、ノズル48を内周面12aに接近した位置に配置することで、内周面12aに洗浄液の液膜を形成しやすくなる。
なお、ノズル管46は、環状以外に、下方の内部空間sに均一に散布可能な任意の形状を選択できる。
In one embodiment, a cleaning liquid supply pipe 50 is introduced from the outside of the absorber main body 12 into the internal space s and connected to the nozzle pipe 46 , and the cleaning solution Cs is supplied from the cleaning liquid supply pipe 50 to the nozzle pipe 46 .
In one embodiment, nozzle tube 46 comprises an annular nozzle tube. For example, by increasing the diameter of the annular nozzle tube and disposing the nozzle 48 at a position close to the inner peripheral surface 12a, it becomes easier to form a liquid film of the cleaning liquid on the inner peripheral surface 12a.
In addition, the nozzle pipe 46 can be selected from any shape other than the annular shape that can uniformly spray the lower internal space s.

一実施形態では、図7に示すように、スプレイ部14(14c)は複数の凸部30の各々に設けられる。同図において、角度θは洗浄液Csの噴霧角度を示す。
この実施形態によれば、内周面12aに設けられた凸部30にスプレイ部14(14c)を設けるため、内部空間sの中央部にスプレイ部を設ける必要がなくなる。従って、内部空間sを流れる排ガスの圧力損失を低減できると共に、その分洗浄液と排ガスとを接触させるスペースを増やすことができるため、排ガスと洗浄液との接触性を高め、排ガスの洗浄効率を向上できる。
なお、スプレイ部14(14c)のノズル口は、吸収塔本体12の軸方向に対して直交する横断面に対して上下に傾斜する方向へ向けて配置してもよいし、また、内周面12aの周方向に角度をもたせて配置してもよい。
In one embodiment, as shown in FIG. 7, the spray portion 14 (14c) is provided on each of the plurality of convex portions 30. As shown in FIG. In the figure, the angle θ indicates the spray angle of the cleaning liquid Cs.
According to this embodiment, since the spray portion 14 (14c) is provided on the convex portion 30 provided on the inner peripheral surface 12a, it is not necessary to provide the spray portion in the central portion of the internal space s. Therefore, the pressure loss of the exhaust gas flowing through the internal space s can be reduced, and the space for contacting the cleaning liquid and the exhaust gas can be increased accordingly, so that the contact between the exhaust gas and the cleaning liquid can be improved, and the cleaning efficiency of the exhaust gas can be improved. .
The nozzle port of the spray part 14 (14c) may be arranged in a direction inclined vertically with respect to a cross section orthogonal to the axial direction of the absorber body 12, or the inner peripheral surface You may arrange|position giving an angle to the circumferential direction of 12a.

また、排ガスeが内部空間sで旋回するとき、排ガスeは内周面12a側へ偏る。従って、スプレイ部14(14c)から洗浄液を噴霧するノズル口を内周面側へ向け、内周面側へ密に洗浄液が行き渡るようにすれば、排ガスが多い空間に多くの洗浄液を放出でき、これによって、洗浄効率を向上できる。 Further, when the exhaust gas e swirls in the internal space s, the exhaust gas e is biased toward the inner peripheral surface 12a. Therefore, if the nozzle port for spraying the cleaning liquid from the spray portion 14 (14c) is directed toward the inner peripheral surface side so that the cleaning liquid is densely spread to the inner peripheral surface side, a large amount of cleaning liquid can be discharged into the space with a large amount of exhaust gas. This can improve cleaning efficiency.

一実施形態では、スプレイ部14(14c)は、複数の凸部30の各々から排ガスの旋回方向へ向けて洗浄液を噴霧するように構成される。
吸収塔本体の内部空間で洗浄液と排ガスとが接触することで、排ガスの旋回力が減衰する。この実施形態によれば、第1凸部から排ガスの旋回流fsへ向けて洗浄液を噴霧することで、排ガスの旋回力の減衰を軽減できる。
In one embodiment, the spray part 14 (14c) is configured to spray the cleaning liquid from each of the plurality of convex parts 30 toward the swirling direction of the exhaust gas.
The swirling force of the exhaust gas is attenuated by the contact between the cleaning liquid and the exhaust gas in the internal space of the absorption tower body. According to this embodiment, the attenuation of the swirling force of the exhaust gas can be reduced by spraying the cleaning liquid from the first projection toward the swirling flow fs of the exhaust gas.

一実施形態では、スプレイ部14(14c)は、吸収塔本体12の軸方向から視認して内周面12aの周方向全域に分散配置する。これによって、洗浄液を内部空間sの全域に均等に散布できる。
スプレイ部14(14c)を設ける凸部30は、目的に応じて任意に選択でき、従って、必ずしも吸収塔本体12の横断面上に配置する必要はなく、例えば、内周面12aに螺旋状に配置してもよい。
また、スプレイ部14(14c)の複数のノズル口の向きは、各ノズル口から噴霧される洗浄液が互いに対面しないように調整するとよい。
In one embodiment, the spray portions 14 ( 14 c ) are distributed over the entire circumference of the inner peripheral surface 12 a when viewed from the axial direction of the absorber body 12 . As a result, the cleaning liquid can be evenly distributed throughout the internal space s.
The convex portion 30 on which the spray portion 14 (14c) is provided can be arbitrarily selected according to the purpose. may be placed.
Also, the directions of the plurality of nozzle openings of the spray section 14 (14c) are preferably adjusted so that the cleaning liquid sprayed from each nozzle opening does not face each other.

幾つかの実施形態では、図8~図13に示すように、凸部30及び34は、各種の形状とすることができる。
例えば、図8に示すように、多角錐形状又は錐台形状とすることができる。例えば、図8の(A)には6角錐形状のものが例示され、(B)には3角錐形状のものが例示され、(C)には3角錐台形状のものが例示されている。
上記形状を有するため、内周面12aを伝う洗浄液と排ガスとが接触する接触面積を増加できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。
In some embodiments, as shown in FIGS. 8-13, protrusions 30 and 34 can have various shapes.
For example, as shown in FIG. 8, it may have a polygonal pyramid shape or a truncated pyramid shape. For example, (A) of FIG. 8 illustrates a hexagonal pyramid, (B) illustrates a triangular pyramid, and (C) illustrates a truncated triangular pyramid.
Due to the above-described shape, the contact area of the cleaning liquid and the exhaust gas coming into contact along the inner peripheral surface 12a can be increased. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

例えば、図9に示すように、凸部30及び34を円錐形状又は円錐台形状とすることができる。図10の(A)には円錐形状のものが例示され、(B)には円錐台形状のものが例示されている。
上記形状を有するため、内周面12aを伝う洗浄液と排ガスとが接触する接触面積を増加できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。
For example, as shown in FIG. 9, protrusions 30 and 34 can be conical or frustoconical. FIG. 10A shows a conical one, and FIG. 10B shows a truncated conical one.
Due to the above shape, the contact area of the cleaning liquid running along the inner peripheral surface 12a and the exhaust gas can be increased. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

例えば、図10に示すように、凸部30及び34を角柱形状とすることができる。例えば、図9の(A)には4角柱形状のものが例示され、(B)には3角柱形状のものが例示されている。
上記形状を有するため、内周面12aを伝う洗浄液と排ガスとが接触する接触面積を増加できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。
For example, as shown in FIG. 10, protrusions 30 and 34 can be prismatic. For example, (A) of FIG. 9 exemplifies a square prism shape, and (B) illustrates a triangular prism shape.
Due to the above-described shape, the contact area of the cleaning liquid and the exhaust gas coming into contact along the inner peripheral surface 12a can be increased. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

例えば、図11に示すように、凸部30及び34を円柱形状とすることができる。
上記形状を有するため、内周面12aを伝う洗浄液と排ガスとが接触する接触面積を増加できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。
For example, as shown in FIG. 11, protrusions 30 and 34 can be cylindrical.
Due to the above-described shape, the contact area of the cleaning liquid and the exhaust gas coming into contact along the inner peripheral surface 12a can be increased. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

例えば、図12に示すように、凸部30及び34を球面形状又は楕円面形状とすることができる。図10の(A)には球面形状のものが例示され、(B)には楕円面形状のものが例示されている。
上記形状を有するため、内周面12aを伝う洗浄液と排ガスとが接触する接触面積を増加できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。
For example, as shown in FIG. 12, protrusions 30 and 34 can be spherical or ellipsoidal. FIG. 10A shows a spherical shape, and FIG. 10B shows an ellipsoidal shape.
Due to the above-described shape, the contact area of the cleaning liquid and the exhaust gas coming into contact along the inner peripheral surface 12a can be increased. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

例えば、図13に示すように、凸部30及び34を半月形状を有する立体形状又は断面が波形を有する立体形状とすることができる。図13の(A)には断面52が半月形状を有する立体形状のものが例示され、(B)には断面54が波形を有する立体形状のものが例示されている。
上記形状を有するため、内周面12aを伝う洗浄液と排ガスとが接触する接触面積を増加できる。これによって、洗浄液と排ガスとの接触性を高め、排ガスの洗浄効率を向上できる。
For example, as shown in FIG. 13, the projections 30 and 34 may have a three-dimensional shape having a half-moon shape or a three-dimensional shape having a wavy cross section. FIG. 13A illustrates a three-dimensional cross section 52 having a half-moon shape, and FIG. 13B illustrates a three-dimensional cross section 54 having a wavy shape.
Due to the above-described shape, the contact area of the cleaning liquid and the exhaust gas coming into contact along the inner peripheral surface 12a can be increased. As a result, the contact between the cleaning liquid and the exhaust gas can be enhanced, and the cleaning efficiency of the exhaust gas can be improved.

幾つかの実施形態によれば、洗浄液による排ガス中の有害成分の吸収効率を向上させることで、処理時間を短縮でき、かつ吸収塔などを含む排ガス処理装置のコンパクト化を実現できる。 According to some embodiments, by improving the absorption efficiency of the harmful components in the exhaust gas by the cleaning liquid, the treatment time can be shortened, and the exhaust gas treatment apparatus including the absorption tower can be made compact.

10(10A、10B) 排ガス処理装置
12 吸収塔本体
12a 内周面
14(14a、14b,14c) スプレイ部
16 排ガス導入部
18(18a、18b、18c、18d) 凹凸
20 排ガス排出部
21 吸収部
22 ミストエリミネータ
23 排液路
24,26 溝
28 螺旋溝
30 凸部(第1凸部)
32 直管部
34 凸部(第2凸部)
40 幹管
42 枝管
44 スプレイノズル
46 ノズル管
48 ノズル
50 洗浄液供給管
52、54 断面
Cs 洗浄液
a 軸方向
e 排ガス
fs 旋回流
s 内部空間
Reference Signs List 10 (10A, 10B) exhaust gas treatment device 12 absorption tower main body 12a inner peripheral surface 14 (14a, 14b, 14c) spray section 16 exhaust gas introduction section 18 (18a, 18b, 18c, 18d) unevenness 20 exhaust gas discharge section 21 absorption section 22 Mist eliminator 23 drainage channel 24, 26 groove 28 spiral groove 30 convex portion (first convex portion)
32 straight tube portion 34 convex portion (second convex portion)
40 Main pipe 42 Branch pipe 44 Spray nozzle 46 Nozzle pipe 48 Nozzle 50 Cleaning liquid supply pipe 52, 54 Section Cs Cleaning liquid a Axial direction e Exhaust gas fs Swirling flow s Internal space

Claims (6)

排ガスと洗浄液とを接触させ前記排ガスに含まれる有害成分を吸収除去する排ガス処理装置であって、
内部空間が形成された吸収塔本体と、
前記内部空間に前記洗浄液を噴霧するスプレイ部と、
前記内部空間で旋回するように前記排ガスを導入する排ガス導入部と、
を備え、
前記吸収塔本体の前記内部空間に面した内周面に凹凸が形成され、
前記排ガス導入部は、前記吸収塔本体の下部に設けられると共に、前記吸収塔本体の最上部に排ガス排出部が設けられ、前記排ガス導入部から導入された前記排ガスは前記内部空間で旋回しながら上昇するように構成され、
前記凹凸は、前記スプレイ部から噴霧される前記洗浄液の液膜が形成される前記内周面に形成され、
前記凹凸は、前記吸収塔本体の軸方向に沿って形成され、前記吸収塔本体の軸方向から視認したとき前記内周面の周方向全域に亘り設けられる1個以上の溝を含んで構成されることを特徴とする排ガス処理装置。
An exhaust gas treatment device that absorbs and removes harmful components contained in the exhaust gas by contacting the exhaust gas with a cleaning liquid,
an absorption tower body having an internal space;
a spray unit that sprays the cleaning liquid into the internal space;
an exhaust gas introduction section that introduces the exhaust gas so as to swirl in the internal space;
with
Concavities and convexities are formed on an inner peripheral surface of the absorption tower body facing the internal space,
The exhaust gas introduction part is provided in the lower part of the absorption tower body, and an exhaust gas discharge part is provided in the uppermost part of the absorption tower body, and the exhaust gas introduced from the exhaust gas introduction part swirls in the internal space. configured to rise,
The unevenness is formed on the inner peripheral surface on which the liquid film of the cleaning liquid sprayed from the spray part is formed,
The unevenness is formed along the axial direction of the absorber tower body and includes one or more grooves provided over the entire circumferential direction of the inner peripheral surface when viewed from the axial direction of the absorber tower body. An exhaust gas treatment device characterized by:
前記スプレイ部、前記凹凸が形成された前記内周面及び前記排ガス導入部より上方の前記内部空間に設けられるミストエリミネータを備えることを特徴とする請求項に記載の排ガス処理装置。 2. The exhaust gas treatment apparatus according to claim 1 , further comprising a mist eliminator provided in the inner space above the spray portion, the inner peripheral surface on which the unevenness is formed, and the exhaust gas introduction portion. 前記排ガス導入部は、前記吸収塔本体に接続される排ガス導入管で構成され、前記排ガス導入管は前記吸収塔本体との接続部に設けられる直線形状の直管部を含んで構成され、
該直管部は、前記直管部の内周面に分散して配置された複数の第2凸部を有することを特徴とする請求項1又は2に記載の排ガス処理装置。
The exhaust gas introduction section is configured by an exhaust gas introduction pipe connected to the absorption tower body, and the exhaust gas introduction pipe is configured to include a linear straight pipe portion provided at a connection portion with the absorption tower body,
3. The exhaust gas treatment apparatus according to claim 1 , wherein the straight pipe portion has a plurality of second projections dispersedly arranged on the inner peripheral surface of the straight pipe portion.
前記スプレイ部は、
前記内部空間で前記吸収塔本体の中心軸に沿って延在する幹管と、
前記幹管から前記内周面に向けて延在する1個以上の枝管と、
前記枝管から供給される前記洗浄液を噴霧するスプレイノズルと、
を含んで構成されることを特徴とする請求項1乃至3の何れか一項に記載の排ガス処理装置。
The spray section is
a trunk pipe extending along the central axis of the absorber body in the internal space;
one or more branch pipes extending from the trunk pipe toward the inner peripheral surface;
a spray nozzle for spraying the cleaning liquid supplied from the branch pipe;
The exhaust gas treatment apparatus according to any one of claims 1 to 3 , comprising:
前記スプレイ部は、前記凹凸が形成された前記内周面及び前記排ガス導入部より上方の前記内部空間に設けられ、
前記スプレイ部は、前記洗浄液が供給され前記吸収塔本体の横断面に沿って延在し、複数のノズルが分散して配置されたノズル管を含んで構成されることを特徴とする請求項1乃至3の何れか一項に記載の排ガス処理装置。
The spray part is provided in the inner space above the inner peripheral surface on which the unevenness is formed and the exhaust gas introduction part,
2. The spray part is configured to include a nozzle pipe supplied with the cleaning liquid, extending along the cross section of the absorber body, and having a plurality of nozzles arranged in a dispersed manner. 4. The exhaust gas treatment device according to any one of items 1 to 3 .
前記第2凸部は、多角錐形状、円錐形状、錐台形状、角柱形状、円柱形状、球面形状、楕円面形状、断面が半月形状を有する立体形状又は断面が波形を有する立体形状を有することを特徴とする請求項に記載の排ガス処理装置。 The second protrusion has a polygonal pyramidal shape, a conical shape, a truncated pyramidal shape, a prismatic shape, a cylindrical shape, a spherical shape, an elliptical shape, a three-dimensional shape having a half-moon cross section, or a three-dimensional shape having a wavy cross section. The exhaust gas treatment apparatus according to claim 3 , characterized by:
JP2018050467A 2018-03-19 2018-03-19 Exhaust gas treatment device Active JP7105075B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018050467A JP7105075B2 (en) 2018-03-19 2018-03-19 Exhaust gas treatment device
KR1020190023906A KR102252547B1 (en) 2018-03-19 2019-02-28 Exhaust gas treatment device
CN201910159452.7A CN110280112B (en) 2018-03-19 2019-03-01 Exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050467A JP7105075B2 (en) 2018-03-19 2018-03-19 Exhaust gas treatment device

Publications (2)

Publication Number Publication Date
JP2019162568A JP2019162568A (en) 2019-09-26
JP7105075B2 true JP7105075B2 (en) 2022-07-22

Family

ID=68001079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050467A Active JP7105075B2 (en) 2018-03-19 2018-03-19 Exhaust gas treatment device

Country Status (3)

Country Link
JP (1) JP7105075B2 (en)
KR (1) KR102252547B1 (en)
CN (1) CN110280112B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349350A (en) 2004-06-14 2005-12-22 Okunaga Masaki Exhaust gas treatment apparatus
JP2014117685A (en) 2012-12-19 2014-06-30 Fuji Electric Co Ltd Exhaust gas treatment apparatus
JP2016052629A (en) 2014-09-04 2016-04-14 株式会社Ihi Desulfurization apparatus
CN205392164U (en) 2016-02-29 2016-07-27 国电科学技术研究院 Unsmooth gas -liquid equipartition ring

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134571A (en) * 1973-04-28 1974-12-25
JPH0938433A (en) * 1995-08-02 1997-02-10 Denso Corp Air purifier
JPH09173764A (en) * 1995-12-22 1997-07-08 Babcock Hitachi Kk Wet flue gas desulfurizer and method thereof
JP3093744B2 (en) * 1999-01-22 2000-10-03 日本鋼管株式会社 Flue gas desulfurization equipment
EP2644251A1 (en) * 2012-03-29 2013-10-02 Doosan Lentjes GmbH A flue gas purification device
KR20170054549A (en) * 2013-10-17 2017-05-17 후지 덴키 가부시키가이샤 Gas absorption column, method for producing gas absorption column, and marine vessel
CN105879627A (en) * 2014-10-21 2016-08-24 丁有农 Medium atomization wet-method flue gas desulfurization column
JP5983802B2 (en) * 2015-02-24 2016-09-06 富士電機株式会社 Exhaust gas treatment equipment
CN105536491A (en) * 2015-09-17 2016-05-04 大唐环境产业集团股份有限公司 Desulfuration spray tower
CN106984165A (en) * 2017-06-09 2017-07-28 史汉祥 A kind of gas cleaning reactor and cone structure part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349350A (en) 2004-06-14 2005-12-22 Okunaga Masaki Exhaust gas treatment apparatus
JP2014117685A (en) 2012-12-19 2014-06-30 Fuji Electric Co Ltd Exhaust gas treatment apparatus
JP2016052629A (en) 2014-09-04 2016-04-14 株式会社Ihi Desulfurization apparatus
CN205392164U (en) 2016-02-29 2016-07-27 国电科学技术研究院 Unsmooth gas -liquid equipartition ring

Also Published As

Publication number Publication date
JP2019162568A (en) 2019-09-26
CN110280112B (en) 2021-10-12
KR20190110025A (en) 2019-09-27
CN110280112A (en) 2019-09-27
KR102252547B1 (en) 2021-05-14

Similar Documents

Publication Publication Date Title
KR101570466B1 (en) Exhaust gas processing apparatus
WO2007116714A1 (en) Wet-type exhaust gas desulfurizer
US10358967B2 (en) Exhaust gas reduction unit for internal combustion engine
JP2019076798A (en) Exhaust gas treatment equipment
JP7105075B2 (en) Exhaust gas treatment device
TWI720589B (en) Gas-liquid mixing device and exhaust gas desulfurization device with gas-liquid mixing device
US20130327417A1 (en) Self aligning venturi pipe assembly
TWI707720B (en) Gas-liquid mixing device and exhaust desulfurization device with gas-liquid mixing device
KR20200037326A (en) Gas cleaning scrubber
JP3093744B2 (en) Flue gas desulfurization equipment
CN107648993A (en) A kind of efficient desulfurizing tower
KR102362367B1 (en) Cyclone separator for exhaust gas purification equipment
TWI735030B (en) Exhaust desulfurization device
KR102605020B1 (en) Scrubber
CN215138595U (en) High-efficient flue gas desulfurization device
RU2568701C1 (en) Scrubber with moving nozzle
KR102143184B1 (en) A scrubber for ship
RU2657486C1 (en) Scrubber with movable nozzle
JP6507315B2 (en) Exhaust pipe
RU2357804C2 (en) Set geometry jet generator
RU2656456C1 (en) Gas scrubber
JP2024011568A (en) Exhaust gas processing device
JP2019147121A (en) Shower nozzle
JPH0522027U (en) Exhaust gas treatment tower
RU2001110533A (en) PAROMECHANICAL INJECTOR "TAGPOL"

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7105075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150