JP2024011568A - Exhaust gas processing device - Google Patents

Exhaust gas processing device Download PDF

Info

Publication number
JP2024011568A
JP2024011568A JP2022113660A JP2022113660A JP2024011568A JP 2024011568 A JP2024011568 A JP 2024011568A JP 2022113660 A JP2022113660 A JP 2022113660A JP 2022113660 A JP2022113660 A JP 2022113660A JP 2024011568 A JP2024011568 A JP 2024011568A
Authority
JP
Japan
Prior art keywords
exhaust gas
spray
liquid
peak
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022113660A
Other languages
Japanese (ja)
Inventor
匡 中川
Tadashi Nakagawa
広幸 當山
Hiroyuki Toyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2022113660A priority Critical patent/JP2024011568A/en
Priority to KR1020230081281A priority patent/KR20240010400A/en
Priority to CN202310791595.6A priority patent/CN117398834A/en
Publication of JP2024011568A publication Critical patent/JP2024011568A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • B01D47/063Spray cleaning with two or more jets impinging against each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines

Abstract

PROBLEM TO BE SOLVED: To improve the processing performance.
SOLUTION: An exhaust gas processing device 100 comprises: a cylindrical reaction cylinder 21 in which introduced exhaust gas A advances while revolving; and a jetting unit 30 which jets liquid for processing the exhaust gas A in the reaction cylinder 21. The jetting unit 30 comprises: a trunk pipe 31 which extends onto a central axis C of the reaction cylinder 21 and to which the liquid is supplied; a plurality of branch pipes 32 which extend in the radial direction of the reaction cylinder 21 from the trunk pipe 31; and a spray part 33 which is provided in each of the plurality of branch pipes 32 and sprays the liquid toward the direction of revolving of the exhaust gas A. A position of a peak Qs of the spray amount distribution of the liquid in the radial direction of the spray part 33 corresponds to a position of a peak Vs of the flow rate distribution in the radial direction of the exhaust gas A.
SELECTED DRAWING: Figure 5
COPYRIGHT: (C)2024,JPO&INPIT

Description

本開示は、排ガス処理装置に関する。 The present disclosure relates to an exhaust gas treatment device.

従来、硫黄酸化物等の有害物質を含む排ガスに吸収液を気液接触させ、吸収液に有害物質を吸収させることで排ガスから有害物質を除去する排ガス処理装置が知られている。また、この種の排ガス処理装置において、サイクロン式の装置が知られている。サイクロン式の排ガス処理装置は、排ガスの導入部及び排出部を有する反応塔を備え、排ガスが反応塔の内部を導入部から排出部に向かって旋回しながら螺旋状に進む装置である(例えば、特許文献1及び特許文献2参照)。 BACKGROUND ART Conventionally, exhaust gas treatment devices are known that remove harmful substances from the exhaust gas by bringing an absorption liquid into gas-liquid contact with exhaust gas containing harmful substances such as sulfur oxides, and allowing the absorption liquid to absorb the harmful substances. Furthermore, among this type of exhaust gas treatment apparatus, a cyclone type apparatus is known. A cyclone-type exhaust gas treatment device is a device that includes a reaction tower having an exhaust gas introduction part and an exhaust part, and in which the exhaust gas travels spirally inside the reaction tower from the introduction part to the discharge part (for example, (See Patent Document 1 and Patent Document 2).

特許第5999226号公報Patent No. 5999226 特許第6747552号公報Patent No. 6747552

サイクロン式の排ガス処理装置において、反応塔の内部を螺旋状に進む排ガスに吸収液を噴霧することで、排ガス中の有害物質が吸収液の液滴に吸収される。しかしながら、従来のサイクロン式の排ガス処理装置は、排ガスの流速分布に対し吸収液の噴霧量に不足が生じ、排ガスの処理性能の点において改善の余地がある。
以上の事情を考慮して、本開示は、処理性能を向上させることを目的とする。
In a cyclone-type exhaust gas treatment device, harmful substances in the exhaust gas are absorbed into droplets of the absorption liquid by spraying an absorption liquid onto the exhaust gas spiraling inside a reaction tower. However, in the conventional cyclone type exhaust gas treatment device, the amount of absorption liquid sprayed is insufficient in relation to the flow velocity distribution of the exhaust gas, and there is room for improvement in terms of exhaust gas treatment performance.
In consideration of the above circumstances, the present disclosure aims to improve processing performance.

以上課題を解決するために、本開示の1つの態様に係る排ガス処理装置は、導入された排ガスが旋回しながら進行する筒状の反応筒と、前記反応筒の内部において前記排ガスを処理する液体を噴射する噴射部と、を具備し、前記噴射部は、前記反応筒の中心軸上に延び、前記液体が供給される幹管と、前記幹管から前記反応筒の径方向に延びる複数の枝管と、前記複数の枝管のそれぞれに設けられ、前記排ガスの旋回の方向に向けて前記液体を噴霧する噴霧部と、を備え、前記噴霧部の前記径方向における前記液体の噴霧量分布のピークの位置は、前記排ガスの前記径方向における流速分布のピークの位置に対応する。 In order to solve the above problems, an exhaust gas treatment device according to one aspect of the present disclosure includes a cylindrical reaction tube in which introduced exhaust gas moves while rotating, and a liquid that treats the exhaust gas inside the reaction tube. a main pipe extending on the central axis of the reaction cylinder and to which the liquid is supplied; and a plurality of main pipes extending in the radial direction of the reaction cylinder from the main pipe. a branch pipe; and a spraying section that is provided in each of the plurality of branch pipes and sprays the liquid in the direction of swirling of the exhaust gas, and the spray amount distribution of the liquid in the radial direction of the spraying section. The position of the peak corresponds to the position of the peak of the flow velocity distribution of the exhaust gas in the radial direction.

第1実施形態の排ガス処理装置を適用した船舶の構成図である。FIG. 1 is a configuration diagram of a ship to which the exhaust gas treatment device of the first embodiment is applied. 排ガス処理装置の内部の構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the internal configuration of the exhaust gas treatment device. 図2のIII-III線における矢視図である。3 is a view taken along the line III-III in FIG. 2. FIG. 反応筒の中を流れる排ガスの流速分布の説明図である。FIG. 2 is an explanatory diagram of the flow velocity distribution of exhaust gas flowing inside the reaction column. 径方向における排ガスの流速分布、吸収液の噴霧量分布、及び、有害物質の残濃度分布の関係を示す図である。FIG. 2 is a diagram showing the relationship among the flow velocity distribution of exhaust gas, the spray amount distribution of absorption liquid, and the residual concentration distribution of harmful substances in the radial direction. 第2実施形態の噴霧部の構成を模式的に示す図である。It is a figure which shows typically the structure of the spray part of 2nd Embodiment. ノズルの配置の説明図である。FIG. 3 is an explanatory diagram of the arrangement of nozzles.

本開示を実施するための形態について図面を参照して説明する。なお、各図面においては、各要素の寸法及び縮尺が実際の製品とは相違する場合がある。また、以下に説明する形態は、本開示を実施する場合に想定される例示的な一形態である。したがって、本開示の範囲は、以下に例示する形態に限定されない。 Embodiments for implementing the present disclosure will be described with reference to the drawings. Note that in each drawing, the dimensions and scale of each element may differ from those of the actual product. Moreover, the form described below is one exemplary form assumed when implementing the present disclosure. Therefore, the scope of the present disclosure is not limited to the forms illustrated below.

1.第1実施形態
図1は、第1実施形態の排ガス処理装置100を適用した船舶200の構成図である。図1に示される通り、船舶200は、動力装置11と給液ポンプ13と排ガス処理装置100とを具備する。なお、以下の説明において、「上方」は鉛直方向の上方を意味し、「下方」は鉛直方向の下方を意味する。
1. First Embodiment FIG. 1 is a configuration diagram of a ship 200 to which an exhaust gas treatment device 100 of a first embodiment is applied. As shown in FIG. 1, the ship 200 includes a power plant 11, a liquid supply pump 13, and an exhaust gas treatment device 100. Note that in the following description, "upper" means upward in the vertical direction, and "downward" means downward in the vertical direction.

動力装置11は、例えばガソリンエンジン及びディーゼルエンジン等の内燃機関又はボイラとタービンとを含む外燃機関である。動力装置11は、例えば重油又は石炭等の化石燃料を燃焼させることで船舶200の推進力を発生する。動力装置11は、窒素酸化物又は硫黄酸化物等の有害物質を含む排ガスAを排出する。有害物質は粉塵を含んでもよい。
排ガス処理装置100は、動力装置11から排気管12を介して供給される排ガス中の有害物質を低減するスクラバである。排ガス処理装置100による処理後の排ガスAは、外部空間(例えば大気中)に放出される。船舶200において、動力装置11と排ガス処理装置100とが、動力装置11の排ガスAを浄化処理する排ガス処理システムを構成している。
The power plant 11 is, for example, an internal combustion engine such as a gasoline engine or a diesel engine, or an external combustion engine including a boiler and a turbine. The power plant 11 generates propulsive force for the ship 200 by burning fossil fuel such as heavy oil or coal, for example. The power plant 11 discharges exhaust gas A containing harmful substances such as nitrogen oxides or sulfur oxides. Hazardous substances may include dust.
The exhaust gas treatment device 100 is a scrubber that reduces harmful substances in the exhaust gas supplied from the power plant 11 through the exhaust pipe 12. The exhaust gas A after being treated by the exhaust gas treatment device 100 is released into external space (for example, into the atmosphere). In the ship 200, the power plant 11 and the exhaust gas treatment device 100 constitute an exhaust gas treatment system that purifies the exhaust gas A of the power device 11.

給液ポンプ13は、排ガスAに含まれる有害物質を吸収する液体(以下「吸収液」という)を排ガス処理装置100に供給する。具体的には、給液ポンプ13は、船舶200の周囲の海水を吸収液として排ガス処理装置100に供給する。例えば海水中のアルカリ成分(HCO )により排ガスAに含まれる有害物質が吸収される。給液ポンプ13から送出された吸収液が給液管14を介して排ガス処理装置100に供給される。 The liquid supply pump 13 supplies a liquid that absorbs harmful substances contained in the exhaust gas A (hereinafter referred to as "absorption liquid") to the exhaust gas treatment device 100. Specifically, the liquid supply pump 13 supplies seawater around the ship 200 to the exhaust gas treatment device 100 as an absorption liquid. For example, harmful substances contained in exhaust gas A are absorbed by alkaline components (HCO 3 ) in seawater. The absorption liquid sent out from the liquid supply pump 13 is supplied to the exhaust gas treatment device 100 via the liquid supply pipe 14 .

図2は、排ガス処理装置100の内部の構成を模式的に示す図である。なお、図2において、後述する噴霧部33及びノズル34の図示が省略されている。
排ガス処理装置100は、図2に示される通り、吸収塔20と、噴射部30と、捕集部40と、廃液貯留部50とを具備する。
吸収塔20は筒状の構造体であり、中心軸Cを鉛直方向に向けて設置される。吸収塔20は、下方に設けられた反応筒21と、反応筒21の上端21Aに繋がる連結部22と、連結部22の上端22Aに繋がる排気筒23とを具備する。反応筒21、連結部22及び排気筒23は、吸収塔20の中心軸Cに同軸に設けられる。なお、以下の説明において、中心軸Cを中心とした任意の直径の仮想円における円周の方向を「周方向」と表記し、仮想円における半径の方向を「径方向」と表記する。
FIG. 2 is a diagram schematically showing the internal configuration of the exhaust gas treatment device 100. In addition, in FIG. 2, illustration of a spray section 33 and a nozzle 34, which will be described later, is omitted.
As shown in FIG. 2, the exhaust gas treatment device 100 includes an absorption tower 20, an injection section 30, a collection section 40, and a waste liquid storage section 50.
The absorption tower 20 is a cylindrical structure and is installed with the central axis C oriented in the vertical direction. The absorption tower 20 includes a reaction tube 21 provided below, a connecting portion 22 connected to an upper end 21A of the reaction tube 21, and an exhaust tube 23 connected to an upper end 22A of the connecting portion 22. The reaction tube 21, the connecting portion 22, and the exhaust tube 23 are provided coaxially with the central axis C of the absorption tower 20. In the following description, the circumferential direction of a virtual circle having an arbitrary diameter centered on the central axis C will be referred to as a "circumferential direction," and the radial direction of the virtual circle will be referred to as a "radial direction."

反応筒21は円筒状の部分であり、排気管12が接続される排ガス導入部210を具備する。排ガス導入部210は反応筒21の下端21Bに近い位置に設けられる。連結部22は円錐台状の部分である。連結部22の上端22Aの内径は下端22Bの内径を下回る。排気筒23は反応筒21よりも小径の円筒状の部分である。排気筒23の上端23Aに排ガスAを排出する排出口230が開口する。なお、反応筒21と連結部22と排気筒23とは、相互に一体的に構成されてもよいし、相互に別体で構成されて連結されてもよい。 The reaction tube 21 is a cylindrical portion and includes an exhaust gas introduction part 210 to which the exhaust pipe 12 is connected. The exhaust gas introduction section 210 is provided at a position close to the lower end 21B of the reaction tube 21. The connecting portion 22 is a truncated conical portion. The inner diameter of the upper end 22A of the connecting portion 22 is smaller than the inner diameter of the lower end 22B. The exhaust pipe 23 is a cylindrical portion having a smaller diameter than the reaction pipe 21. An exhaust port 230 for discharging exhaust gas A is opened at the upper end 23A of the exhaust pipe 23. Note that the reaction tube 21, the connecting portion 22, and the exhaust tube 23 may be configured integrally with each other, or may be configured as separate bodies and connected to each other.

図3は、図2のIII-III線における矢視図である。なお、図3は模式図であり、各要素の寸法及び縮尺が実際の製品と相違する場合がある。
排ガス導入部210は、図3に示される通り、反応筒21の周面に形成された貫通孔212と、貫通孔212から外部に延びる導入管216と、を含み、この導入管216に上記排気管12が連結される。導入管216は、長手方向Eaが中心軸Cから外れるように(すなわち、交差しないように)、反応筒21に接合されている。したがって、導入管216から反応筒21に流入する排ガスAは、反応筒21の内壁面21Sに沿って当該反応筒21の周方向に進行し、中心軸Cの周りを旋回する旋回流となる。この結果、図2に示される通り、排ガスAは、反応筒21の下方の排ガス導入部210から中心軸Cの周りを旋回しながら上方の排出口230に向かって螺旋状に進行する。排ガスAが反応筒21の内部を旋回しながら螺旋状に進むスクラバは、一般に、サイクロン式のスクラバとも称される。
FIG. 3 is a view taken along the line III-III in FIG. 2. Note that FIG. 3 is a schematic diagram, and the dimensions and scale of each element may differ from the actual product.
As shown in FIG. 3, the exhaust gas introduction section 210 includes a through hole 212 formed on the circumferential surface of the reaction tube 21 and an introduction pipe 216 extending outside from the through hole 212. A tube 12 is connected. The introduction tube 216 is joined to the reaction tube 21 so that the longitudinal direction Ea deviates from the central axis C (that is, does not intersect with it). Therefore, the exhaust gas A flowing into the reaction tube 21 from the introduction pipe 216 advances in the circumferential direction of the reaction tube 21 along the inner wall surface 21S of the reaction tube 21, and becomes a swirling flow that swirls around the central axis C. As a result, as shown in FIG. 2, the exhaust gas A spirals from the exhaust gas introduction part 210 at the lower part of the reaction tube 21 toward the upper discharge port 230 while turning around the central axis C. The scrubber in which the exhaust gas A travels in a spiral manner while swirling inside the reaction tube 21 is generally also referred to as a cyclone type scrubber.

噴射部30は反応筒21の内部において吸収液を噴射する。具体的には、噴射部30は、図2に示される通り、幹管31と、複数の枝管32と、それぞれの枝管32に設けられた噴霧部33(図3)とを具備する。
幹管31は、吸収塔20の中心軸Cに同軸に設置された円管状の構造体であり、反応筒21の一端である下端21Bから他端である上端21Aに向かって延びている。また、複数の枝管32は、幹管31よりも小径の管状部材であり、図3に示される通り、幹管31の周面から当該周面に対して垂直に径方向に延在する。本実施形態において、それぞれの枝管32の先端32Aは、反応筒21の内壁面21Sに溶接などの手法によって接合される。なお、枝管32の先端32Aは内壁面21Sに接合されずに、当該内壁面21Sとの間に隙間を形成する自由端であってもよい。
噴霧部33は、図3に示される通り、複数の枝管32のそれぞれに設けられ、吸収液を霧状に噴射(すなわち、噴霧)する。噴霧部33は、吸収液を噴霧する複数のノズル34を備える。
The injection unit 30 injects the absorption liquid into the reaction tube 21 . Specifically, as shown in FIG. 2, the injection section 30 includes a main pipe 31, a plurality of branch pipes 32, and a spray section 33 (FIG. 3) provided in each branch pipe 32.
The main pipe 31 is a cylindrical structure installed coaxially with the central axis C of the absorption tower 20, and extends from the lower end 21B, which is one end of the reaction tube 21, toward the upper end 21A, which is the other end. Further, the plurality of branch pipes 32 are tubular members having a smaller diameter than the main pipe 31, and extend in the radial direction from the circumferential surface of the main pipe 31 perpendicularly to the circumferential surface, as shown in FIG. In this embodiment, the tip 32A of each branch pipe 32 is joined to the inner wall surface 21S of the reaction tube 21 by a method such as welding. Note that the tip 32A of the branch pipe 32 may be a free end that is not joined to the inner wall surface 21S and forms a gap with the inner wall surface 21S.
As shown in FIG. 3, the spray section 33 is provided in each of the plurality of branch pipes 32, and sprays (ie, sprays) the absorption liquid in the form of mist. The spraying section 33 includes a plurality of nozzles 34 that spray the absorption liquid.

排ガス処理装置100において、給液ポンプ13(図1)から送出された吸収液は、給液管14(図1)を介して幹管31に供給され、当該幹管31から複数の枝管32のそれぞれに供給され、噴霧部33の各ノズル34から噴霧される。吸収液の噴霧によって排ガスAと吸収液とが気液接触し、排ガスAに含まれる有害物質が吸収液の液滴に吸収される。また、各枝管32において噴霧部33は排ガスAの旋回流の流れの方向に向けて吸収液を噴霧する。この結果、吸収液の噴霧が排ガスAの旋回流を阻害することが防止される。 In the exhaust gas treatment device 100, the absorption liquid sent from the liquid supply pump 13 (FIG. 1) is supplied to the main pipe 31 via the liquid supply pipe 14 (FIG. 1), and from the main pipe 31 to the plurality of branch pipes 32. and is sprayed from each nozzle 34 of the spray section 33. The exhaust gas A and the absorption liquid come into gas-liquid contact with each other due to the spraying of the absorption liquid, and the harmful substances contained in the exhaust gas A are absorbed into the droplets of the absorption liquid. Further, in each branch pipe 32, the spray section 33 sprays the absorption liquid in the direction of the swirling flow of the exhaust gas A. As a result, the spray of the absorption liquid is prevented from interfering with the swirling flow of the exhaust gas A.

噴霧部33から噴霧された吸収液の大半は、排ガスAが螺旋状に反応筒21を進行するに伴い、反応筒21の内壁面21Sに付着して液膜を形成することで回収される。一方、一部の吸収液は排ガスAとともに排気筒23に到達する。捕集部40は、図2に示される通り、この排気筒23の中に配置され、当該排気筒23に到達した吸収液を捕集する捕集装置を備える。捕集装置には、例えばデミスタ又はスワラなどが用いられる。捕集部40が吸収液を捕集するため、排出口230から吸収液が外部に放出されることが防止される。また、外部に放出された吸収液が地上(本説明では船舶200の甲板)に降り注ぐといった事態を防止できる。 Most of the absorption liquid sprayed from the spraying section 33 is recovered by adhering to the inner wall surface 21S of the reaction tube 21 and forming a liquid film as the exhaust gas A moves spirally through the reaction tube 21. On the other hand, a part of the absorption liquid reaches the exhaust pipe 23 together with the exhaust gas A. As shown in FIG. 2, the collection unit 40 includes a collection device that is disposed inside the exhaust pipe 23 and collects the absorption liquid that has reached the exhaust pipe 23. For example, a demister or a swirler is used as the collection device. Since the collection unit 40 collects the absorption liquid, the absorption liquid is prevented from being discharged to the outside from the discharge port 230. Further, it is possible to prevent a situation in which the absorbent liquid released to the outside falls onto the ground (in this description, the deck of the ship 200).

廃液貯留部50は反応筒21の内壁面21S及び捕集部40によって回収された吸収液を貯留する。具体的には、廃液貯留部50は、図2に示される通り、回収後の吸収液を貯留する貯留タンク500を備える。貯留タンク500は鉛直方向において反応筒21よりも低い位置に配置され、反応筒21の底部から延びるドレインパイプ502が接続されている。反応筒21及び捕集部40によって回収された吸収液は、ドレインパイプ502を通じて貯留タンク500に導かれ、当該貯留タンク500に貯留される。貯留タンク500は例えばガスシールチャンバである。貯留タンク500には排水管503が接続されており、貯留タンク500に貯留した吸収液が排水管503を通じて外部(例えば航海中の海)に排水される。 The waste liquid storage section 50 stores the absorption liquid collected by the inner wall surface 21S of the reaction tube 21 and the collection section 40. Specifically, as shown in FIG. 2, the waste liquid storage section 50 includes a storage tank 500 that stores the collected absorption liquid. The storage tank 500 is arranged at a position lower than the reaction tube 21 in the vertical direction, and is connected to a drain pipe 502 extending from the bottom of the reaction tube 21. The absorption liquid collected by the reaction tube 21 and the collecting section 40 is led to the storage tank 500 through the drain pipe 502 and stored in the storage tank 500. Storage tank 500 is, for example, a gas-sealed chamber. A drain pipe 503 is connected to the storage tank 500, and the absorbent liquid stored in the storage tank 500 is drained to the outside (for example, to the sea during a voyage) through the drain pipe 503.

噴射部30の構成について更に詳述する。
以下では、図2に示される通り、反応筒21の下端21Bから上端21Aまでの鉛直方向の長さを高さHと定義する。また、本実施形態の反応筒21の中心軸は吸収塔20の中心軸Cと一致しており、反応筒21の中心軸にも吸収塔20の中心軸Cと同一の符号を付す。本実施形態の反応筒21において、高さHの方向と中心軸Cとは平行である。
The configuration of the injection section 30 will be explained in more detail.
Below, as shown in FIG. 2, the length in the vertical direction from the lower end 21B to the upper end 21A of the reaction tube 21 is defined as the height H. Further, the central axis of the reaction column 21 of this embodiment coincides with the central axis C of the absorption tower 20, and the same reference numeral as the central axis C of the absorption column 20 is also given to the central axis of the reaction column 21. In the reaction tube 21 of this embodiment, the direction of the height H and the central axis C are parallel.

反応筒21の高さHの方向において、幹管31には、所定の間隔αごとに複数本の枝管32が設けられている。同じ高さHに設けられた複数の枝管32は、図3に示される通り、反応筒21の中心軸Cの周りに等間隔(等角度)に設けられる。以下、同じ高さHに設けられている複数の枝管32を纏めて「枝管群32U」(図2)と称する。枝管群32Uのそれぞれは、図2に示される通り、反応筒21の高さHの方向の下方から上方にかけて、反応筒21の中心軸Cを中心に所定角度(ただし、0度<所定角度<360度)ずつ周方向に回転させた状態で設けられている。すなわち、高さHの方向から視た平面視において、枝管群32Uはいずれも、上下に隣接する他の枝管群32Uとの間で、枝管32同士が重ならないように配されている。この枝管群32Uの配置により、反応筒21の内部における排ガスAの螺旋状の流れが噴射部30の各枝管32によって不均一に乱されることが抑えられる。なお、枝管群32Uが含む枝管32の数は一本でもよい。また、高さHの方向において、所定の間隔αは一定でもよく、異なってもよい。例えば、上端21Aに近い箇所に比べ、排ガス導入部210の近い箇所における所定の間隔αが小さくなることで、排ガス導入部210の近い箇所において枝管32が密に配置されてもよい。 In the direction of the height H of the reaction tube 21, the main pipe 31 is provided with a plurality of branch pipes 32 at predetermined intervals α. As shown in FIG. 3, the plurality of branch pipes 32 provided at the same height H are provided at equal intervals (equal angles) around the central axis C of the reaction tube 21. Hereinafter, the plurality of branch pipes 32 provided at the same height H will be collectively referred to as a "branch pipe group 32U" (FIG. 2). As shown in FIG. 2, each of the branch pipe groups 32U extends from below to above in the direction of the height H of the reaction tube 21 at a predetermined angle (however, 0 degrees < the predetermined angle <360 degrees) in the circumferential direction. That is, in a plan view from the direction of height H, each branch pipe group 32U is arranged so that the branch pipes 32 do not overlap with other vertically adjacent branch pipe groups 32U. . This arrangement of the branch pipe group 32U prevents the spiral flow of the exhaust gas A inside the reaction tube 21 from being disturbed non-uniformly by the branch pipes 32 of the injection section 30. Note that the number of branch pipes 32 included in the branch pipe group 32U may be one. Further, in the direction of the height H, the predetermined interval α may be constant or may be different. For example, the branch pipes 32 may be arranged densely at the location near the exhaust gas introduction section 210 by making the predetermined interval α smaller at the location near the exhaust gas introduction section 210 compared to the location near the upper end 21A.

図4は、反応筒21の中を流れる排ガスAの流速分布の説明図である。
以下、反応筒21の所定の高さ位置において、中心軸Cに垂直な面を観察平面Pと定義する。本実施形態では、高さHの方向は鉛直方向に平行であるため、観察平面Pは鉛直方向に直交する水平面となる。また、反応筒21の径方向において、中心軸Cに位置する幹管31の周面とその近傍を第1端部Ra、反応筒21の内壁面21Sとその近傍を第2端部Rb、第1端部Ra及び第2端部Rbの間を中間部Rcと定義する。
FIG. 4 is an explanatory diagram of the flow velocity distribution of the exhaust gas A flowing inside the reaction tube 21.
Hereinafter, a plane perpendicular to the central axis C at a predetermined height position of the reaction tube 21 will be defined as an observation plane P. In this embodiment, since the direction of the height H is parallel to the vertical direction, the observation plane P is a horizontal plane perpendicular to the vertical direction. In addition, in the radial direction of the reaction tube 21, the peripheral surface of the main pipe 31 located at the central axis C and its vicinity are the first end Ra, the inner wall surface 21S of the reaction tube 21 and its vicinity are the second end Rb, and the vicinity thereof is the second end Rb. The area between the first end Ra and the second end Rb is defined as an intermediate portion Rc.

反応筒21の径方向における排ガスAの旋回流の流速分布を観察すると、図4に示される通り、観察平面Pにおいて流速分布は一様(すなわち流速Vが一定)になっていない。具体的には、流速分布は、上記中間部Rcに最大のピークVsが位置する曲線形状を成している。すなわち、排気ガスの流速Vは、第1端部Ra及び第2端部Rbよりも中間部Rcにおいて大きくなっている。この排ガスAの流速分布の傾向は、反応筒21の任意の高さHのいずれの観察平面Pにおいても同様である。 When observing the flow velocity distribution of the swirling flow of the exhaust gas A in the radial direction of the reaction tube 21, as shown in FIG. 4, the flow velocity distribution is not uniform in the observation plane P (that is, the flow velocity V is constant). Specifically, the flow velocity distribution has a curved shape with the maximum peak Vs located at the intermediate portion Rc. That is, the flow velocity V of the exhaust gas is higher at the intermediate portion Rc than at the first end Ra and the second end Rb. The tendency of the flow velocity distribution of the exhaust gas A is the same in any observation plane P at any height H of the reaction tube 21.

したがって、噴霧部33が、仮に、径方向において一定の噴霧量で吸収液を噴霧した場合、有害物質の吸収に必要な吸収液の量に過不足が生じる。詳細には、反応筒21の第1端部Ra及び第2端部Rbにおいて吸収液が過剰となり中間部Rcにおいて吸収液が不足する。そこで、径方向における吸収液の過不足を抑えるために、それぞれの枝管32の噴霧部33において、径方向における吸収液の噴霧量分布が、当該径方向における排ガスAの流速分布に対応した分布となっている。具体的には、径方向における噴霧量分布のピークQs(図5)の位置が、排ガスAの径方向における流速分布のピークVsの位置に対応している。 Therefore, if the spraying section 33 sprays the absorption liquid at a constant spray amount in the radial direction, there will be excess or deficiency in the amount of absorption liquid necessary for absorbing the harmful substance. Specifically, the absorption liquid is excessive at the first end Ra and the second end Rb of the reaction tube 21, and the absorption liquid is insufficient at the intermediate portion Rc. Therefore, in order to suppress excess or deficiency of the absorption liquid in the radial direction, in the spray portion 33 of each branch pipe 32, the spray amount distribution of the absorption liquid in the radial direction corresponds to the flow velocity distribution of the exhaust gas A in the radial direction. It becomes. Specifically, the position of the peak Qs (FIG. 5) of the spray amount distribution in the radial direction corresponds to the position of the peak Vs of the flow velocity distribution of the exhaust gas A in the radial direction.

図5は、径方向における排ガスAの流速分布、噴霧量分布、及び、有害物質の残濃度分布の関係を示す図である。図5において、態様U1は噴霧量分布が排ガスAの流速分布に対応している場合を示す。具体的には、態様U1の噴霧量分布において、噴霧量のピークQsは、排ガスAの流速分布のピークVsの位置に対応して径方向の中間部Rcに位置している。態様U2は、態様U1に対する比較例であり、噴霧量分布が径方向の第1端部Ra、第2端部Rb及び中間部Rcの全てにおいて一定ある場合を示している。
態様U1と態様U2との有害物質の残濃度の分布を比較すると、径方向の中間部Rcにおいて、態様U2の残濃度に対し態様U1が低下している。すなわち、態様U1のように、径方向における噴霧量分布のピークQsの位置は、排ガスAの流速分布のピークVsに対応した位置(すなわち、中間部Rc)に配置される。この配置により、流速分布のピークVsにおける有害物質の吸収量が増大し、流速分布のピークVsの位置において吸収液の不足が抑えられる。
FIG. 5 is a diagram showing the relationship between the flow velocity distribution of exhaust gas A, the spray amount distribution, and the residual concentration distribution of harmful substances in the radial direction. In FIG. 5, a mode U1 shows a case where the spray amount distribution corresponds to the flow velocity distribution of the exhaust gas A. In FIG. Specifically, in the spray amount distribution of aspect U1, the spray amount peak Qs is located at the radial intermediate portion Rc corresponding to the position of the peak Vs of the flow velocity distribution of the exhaust gas A. Aspect U2 is a comparative example with respect to aspect U1, and shows a case where the spray amount distribution is constant at all of the first end Ra, the second end Rb, and the intermediate portion Rc in the radial direction.
Comparing the distributions of the residual concentration of harmful substances in the aspect U1 and the aspect U2, in the radial intermediate portion Rc, the residual concentration in the aspect U1 is lower than that in the aspect U2. That is, as in aspect U1, the position of the peak Qs of the spray amount distribution in the radial direction is located at the position corresponding to the peak Vs of the flow velocity distribution of the exhaust gas A (namely, the intermediate portion Rc). This arrangement increases the amount of harmful substances absorbed at the peak Vs of the flow velocity distribution, and prevents a shortage of the absorption liquid at the position of the peak Vs of the flow velocity distribution.

また、態様U2における第1噴霧量Q1は、第1端部Raから第2端部Rbまでの範囲を流れる排ガスAの総流量に基づいて設定される。具体的には、排ガスAの総流量に含まれる有害物質の総含有量に対し所定の処理能力(本実施形態では浄化能力)を得るために必要な吸収液の総量を、第1端部Raから第2端部Rbまでの長さで平均した値に相当する噴霧量、又は当該値に応じた噴霧量が第1噴霧量Q1に設定される。
一方、態様U1において、第1端部Raにおける第2噴霧量Q2、及び、第2端部Rbにおける第3噴霧量Q3はいずれも、態様U2の第1噴霧量Q1よりも少なく設定されている。この設定により、第1端部Ra、及び、第2端部Rbにおいて、吸収液の過剰な噴霧が抑えられる。
Moreover, the first spray amount Q1 in the aspect U2 is set based on the total flow rate of the exhaust gas A flowing in the range from the first end Ra to the second end Rb. Specifically, the total amount of absorption liquid required to obtain a predetermined processing capacity (purification capacity in this embodiment) for the total content of harmful substances contained in the total flow rate of exhaust gas A is determined by the first end Ra. The first spray amount Q1 is set to a spray amount corresponding to the average value over the length from the first end Rb to the second end Rb, or a spray amount corresponding to the value.
On the other hand, in aspect U1, the second spray amount Q2 at the first end Ra and the third spray amount Q3 at the second end Rb are both set to be smaller than the first spray amount Q1 in aspect U2. . This setting suppresses excessive spraying of the absorption liquid at the first end Ra and the second end Rb.

また、態様U1において、第1端部Raにおける吸収液の削減量、及び、第2端部Rbにおける吸収液の削減量の合計値を上限に、態様U1の第4噴霧量Q4は態様U2の第1噴霧量Q1よりも多く設定されている。なお、第1端部Raにおける吸収液の削減量は「第1噴霧量Q1-第2噴霧量Q2」に相当し、第2端部Rbにおける吸収液の削減量は「第1噴霧量Q1-第3噴霧量Q3」に相当する。この設定により、第1端部Raから第2端部Rbまでの範囲に亘る態様U1の総噴霧量は、少なくとも態様U2の総噴霧量と同等、又は、それ以下に抑えられる。したがって、態様U1の吸収液の利用効率は態様U2よりも高められる。 Further, in aspect U1, the fourth spray amount Q4 of aspect U1 is set to the total value of the reduction amount of the absorption liquid at the first end Ra and the amount of absorption liquid reduction at the second end Rb as the upper limit. The amount is set to be larger than the first spray amount Q1. Note that the amount of absorption liquid reduction at the first end Ra corresponds to "first spray amount Q1 - second spray amount Q2", and the reduction amount of absorption liquid at the second end Rb corresponds to "first spray amount Q1 - This corresponds to the third spray amount Q3. With this setting, the total spray amount of aspect U1 over the range from the first end Ra to the second end Rb is suppressed to be at least equal to or less than the total spray amount of aspect U2. Therefore, the utilization efficiency of the absorption liquid in aspect U1 is higher than in aspect U2.

次いで、図5の態様U1に示した噴霧量分布を得るための具体的な構成について説明する。
噴射部30は、上記の通り、幹管31から径方向に延びる複数の枝管32を有し、枝管32のそれぞれには噴霧部33が設けられており、噴霧部33は排ガスAの旋回流の流れの方向に吸収液を噴霧する複数のノズル34を備える。図3に示される通り、各枝管32において、ノズル34は、第1端部Raと、第2端部Rbと、中間部Rcのそれぞれに1つずつ設けられている。そして、各ノズル34の吸収液の噴霧量のバランスによって、排ガスAの流速分布に対応した噴霧量分布が実現されている。具体的には、噴霧部33において、各ノズル34のうちの中間部Rcのノズル34が主に噴霧量分布のピークQsの位置に向けて吸収液を噴霧し、第1端部Ra及び第2端部Rbのノズル34は主にピークQsの位置以外に向けて吸収液を噴霧する。そして、この中間部Rcのノズル34の噴霧量が第1端部Ra及び第2端部Rbのそれぞれの噴霧量よりも多くなっている。また、第1端部Ra、第2端部Rb及び中間部Rcのそれぞれの噴霧量は、上記態様U1において説明した第2噴霧量Q2、第3噴霧量Q3及び第4噴霧量Q4と等しくなっている。したがって、それぞれの枝管32において、図5の態様U1に示される通り、排ガスAの流速分布のピークVsに対応して径方向の中間部Rcに噴霧量のピークQsを有した噴霧量分布が得られる。
Next, a specific configuration for obtaining the spray amount distribution shown in aspect U1 of FIG. 5 will be described.
As described above, the injection section 30 has a plurality of branch pipes 32 extending in the radial direction from the main pipe 31, each of the branch pipes 32 is provided with a spray section 33, and the spray section 33 rotates the exhaust gas A. A plurality of nozzles 34 are provided for spraying the absorption liquid in the direction of the flow of the stream. As shown in FIG. 3, in each branch pipe 32, one nozzle 34 is provided at each of the first end Ra, the second end Rb, and the intermediate portion Rc. A spray amount distribution corresponding to the flow velocity distribution of the exhaust gas A is realized by balancing the spray amounts of the absorption liquid from each nozzle 34. Specifically, in the spraying section 33, the nozzle 34 in the middle section Rc of each nozzle 34 mainly sprays the absorption liquid toward the position of the peak Qs of the spray amount distribution, and The nozzle 34 at the end Rb mainly sprays the absorption liquid toward a position other than the peak Qs. The amount of spray from the nozzle 34 at this intermediate portion Rc is larger than the amount of spray from each of the first end Ra and the second end Rb. Further, the respective spray amounts of the first end Ra, the second end Rb, and the intermediate portion Rc are equal to the second spray amount Q2, the third spray amount Q3, and the fourth spray amount Q4 described in the above aspect U1. ing. Therefore, in each branch pipe 32, as shown in the aspect U1 of FIG. can get.

なお、第1端部Ra、第2端部Rb及び中間部Rcのそれぞれの噴霧量が第2噴霧量Q2、第3噴霧量Q3及び第4噴霧量Q4に維持される限りにおいて、第1端部Ra、第2端部Rb及び中間部Rcのそれぞれのノズル34の個数は1つに限らず2つ以上でもよい。また、第1端部Ra、第2端部Rb及び中間部Rcのそれぞれの間でノズル34の個数は異なってもよい。また、第1端部Ra、第2端部Rb及び中間部Rcのそれぞれにおいて、異なる噴霧量のノズル34が組み合わされてもよい。 In addition, as long as the respective spray amounts of the first end Ra, the second end Rb, and the intermediate portion Rc are maintained at the second spray amount Q2, the third spray amount Q3, and the fourth spray amount Q4, the first end The number of nozzles 34 in each of the portion Ra, the second end Rb, and the intermediate portion Rc is not limited to one, but may be two or more. Moreover, the number of nozzles 34 may be different between each of the first end Ra, the second end Rb, and the intermediate part Rc. Further, nozzles 34 having different spray amounts may be combined at each of the first end Ra, the second end Rb, and the intermediate portion Rc.

以上説明した通り、排ガス処理装置100は、導入された排ガスAが旋回しながら進行する筒状の反応筒21と、反応筒21の内部において排ガスAを処理する吸収液を噴射する噴射部30と、を具備する。噴射部30は、反応筒21の中心軸C上に延び、吸収液が供給される幹管31と、幹管31から前記反応筒の径方向に延びる複数の枝管32と、複数の枝管32のそれぞれに設けられ、排ガスAの旋回の方向に向けて吸収液を噴霧する噴霧部33と、を備える。噴霧部33の径方向における吸収液の噴霧量分布のピークQsの位置は、排ガスAの径方向における流速分布のピークVsの位置に対応する。吸収液の噴霧量分布のピークQsの位置が排ガスAの径方向における流速分布のピークVsの位置に対応することで、流速分布のピークVsにおける有害物質の吸収量が増大し、排ガスAの流速分布のピークVsの位置において吸収液の不足が抑えられる。この結果、排ガスAの処理性能を向上させることができる。 As explained above, the exhaust gas treatment device 100 includes a cylindrical reaction tube 21 in which the introduced exhaust gas A moves while rotating, and an injection section 30 that injects an absorption liquid for treating the exhaust gas A inside the reaction tube 21. , is provided. The injection section 30 includes a main pipe 31 that extends on the central axis C of the reaction tube 21 and is supplied with an absorption liquid, a plurality of branch pipes 32 that extend from the main pipe 31 in the radial direction of the reaction tube, and a plurality of branch pipes. 32, and a spraying section 33 that sprays the absorption liquid in the direction of swirling of the exhaust gas A. The position of the peak Qs of the spray amount distribution of the absorption liquid in the radial direction of the spray part 33 corresponds to the position of the peak Vs of the flow velocity distribution of the exhaust gas A in the radial direction. Since the position of the peak Qs of the spray amount distribution of the absorption liquid corresponds to the position of the peak Vs of the flow velocity distribution in the radial direction of the exhaust gas A, the amount of harmful substances absorbed at the peak Vs of the flow velocity distribution increases, and the flow velocity of the exhaust gas A increases. Shortage of the absorption liquid is suppressed at the position of the peak Vs of the distribution. As a result, the processing performance of exhaust gas A can be improved.

また、噴霧部33の径方向における吸収液の噴霧量分布のピークQsは、幹管31の近傍である第1端部Ra及び反応筒21の内壁面21Sの近傍である第2端部Rbの間の中間部Rcに位置する。排ガスAの流速分布のピークVsが中間部Rcに位置する場合に、当該中間部Rcにおける吸収液の不足が適切に抑えられる。 Moreover, the peak Qs of the spray amount distribution of the absorption liquid in the radial direction of the spraying part 33 is at the first end Ra near the main pipe 31 and at the second end Rb near the inner wall surface 21S of the reaction tube 21. It is located at the intermediate portion Rc between the two. When the peak Vs of the flow velocity distribution of the exhaust gas A is located at the intermediate portion Rc, the shortage of the absorption liquid at the intermediate portion Rc can be appropriately suppressed.

また、噴霧部33の径方向における吸収液の噴霧量分布において、第1端部Raにおける第2噴霧量Q2及び第2端部Rbにおける第3噴霧量Q3は、幹管31と反応筒21の内壁面21Sとの間を流れる排ガスAの処理に要する吸収液の総量を幹管31から反応筒21の内壁面21Sまでの長さで平均した量よりも少ない。この結果、第1端部Ra及び第2端部Rbにおいて吸収液の過剰な噴霧が抑えられ、吸収液の利用効率が高められる。 In addition, in the spray amount distribution of the absorption liquid in the radial direction of the spray section 33, the second spray amount Q2 at the first end Ra and the third spray amount Q3 at the second end Rb are The total amount of absorption liquid required to treat the exhaust gas A flowing between the inner wall surface 21S and the inner wall surface 21S is smaller than the average amount over the length from the main pipe 31 to the inner wall surface 21S of the reaction tube 21. As a result, excessive spraying of the absorbent liquid at the first end Ra and the second end Rb is suppressed, and the utilization efficiency of the absorbent liquid is increased.

また、噴霧部33は、吸収液を噴霧する複数のノズル34を備える。複数のノズル34のうち、主に吸収液の噴霧量分布のピークQsの位置に向けて吸収液を噴霧するノズル34の噴霧量は、主に吸収液の噴霧量分布のピークQs以外の位置に向けて吸収液を噴霧する他のノズル34の噴霧量よりも多い。複数のノズル34の噴霧量のバランスによって、排ガスAの流速分布に対応した噴霧量分布を容易に実現できる。 Further, the spray section 33 includes a plurality of nozzles 34 that spray the absorption liquid. Among the plurality of nozzles 34, the spray amount of the nozzle 34 that mainly sprays the absorption liquid toward the position of the peak Qs of the spray amount distribution of the absorption liquid is mainly directed to a position other than the peak Qs of the spray amount distribution of the absorption liquid. This is larger than the amount of spray from other nozzles 34 that spray absorption liquid toward the target. By balancing the spray amounts of the plurality of nozzles 34, a spray amount distribution corresponding to the flow velocity distribution of the exhaust gas A can be easily realized.

2.第2実施形態
図6は、第2実施形態の噴霧部33の構成を模式的に示す図である。
第1実施形態では、図5の態様U1に示した吸収液の噴霧量分布を得るために、噴霧部33は、第1端部Ra、中間部Rc及び第2端部Rbのそれぞれにノズル34を備え、中間部Rcのノズル34の噴霧量が第1端部Ra及び第2端部Rbのそれぞれの噴霧量よりも多くなっている構成を説明した。
本実施形態の噴霧部33は、図6に示される通り、複数のノズル34を備える点において第1実施形態の噴霧部33と共通するものの、枝管32の長手方向において第1端部Ra及び第2端部Rbよりも中間部Rcにノズル34が密に配置されている点で相違する。具体的には、図7に示される通り、第1端部Raに位置するノズル34が距離βだけ中間部Rcに寄せて配置されることで、中間部Rcにノズル34が密に配置されている。この配置により、中間部Rcにおける噴霧量が増大し、中間部Rcに噴霧量のピークQsを有した噴霧量分布が得られる。
2. Second Embodiment FIG. 6 is a diagram schematically showing the configuration of the spray section 33 of the second embodiment.
In the first embodiment, in order to obtain the spray amount distribution of the absorption liquid shown in aspect U1 of FIG. The configuration has been described in which the spray amount of the nozzle 34 of the intermediate portion Rc is larger than the spray amount of each of the first end Ra and the second end Rb.
As shown in FIG. 6, the spraying section 33 of this embodiment is similar to the spraying section 33 of the first embodiment in that it includes a plurality of nozzles 34, but in the longitudinal direction of the branch pipe 32, the first end Ra and The difference is that the nozzles 34 are arranged more densely in the intermediate portion Rc than in the second end portion Rb. Specifically, as shown in FIG. 7, the nozzles 34 located at the first end Ra are arranged closer to the intermediate portion Rc by a distance β, so that the nozzles 34 are densely arranged in the intermediate portion Rc. There is. With this arrangement, the amount of spray at the intermediate portion Rc increases, and a spray amount distribution having a peak Qs of the amount of spray at the intermediate portion Rc is obtained.

本実施形態の噴霧部33によれば、枝管32の長手方向におけるノズル34の配置の調整により、排ガスAの流速分布に対応した噴霧量分布を容易に実現できる。
なお、第2実施形態の噴霧部33において、各ノズル34の噴射量は同じでもよく、異なっていてもよい。各ノズル34の噴射量が異なる場合、排ガスAの流速分布に対応した噴霧量分布となるように、各ノズル34の配置が調整される。
According to the spray unit 33 of this embodiment, by adjusting the arrangement of the nozzles 34 in the longitudinal direction of the branch pipe 32, a spray amount distribution corresponding to the flow velocity distribution of the exhaust gas A can be easily realized.
In addition, in the spray section 33 of the second embodiment, the spray amount of each nozzle 34 may be the same or different. When the spray amount of each nozzle 34 is different, the arrangement of each nozzle 34 is adjusted so that the spray amount distribution corresponds to the flow velocity distribution of the exhaust gas A.

3.変形例
以上に例示した各態様に付加される具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を、相互に矛盾しない範囲で適宜に併合してもよい。
3. Modification Examples Specific modifications added to each of the above-mentioned embodiments are illustrated below. Two or more aspects arbitrarily selected from the examples below may be combined as appropriate to the extent that they do not contradict each other.

(1)第1実施形態及び第2実施形態において、排ガスAの径方向における流速分布のピークVsが中間部Rcに位置する場合を説明した。しかしながら、噴射部30の構造や反応筒21の設置姿勢といった何らかの要因によって、ピークVsが第1端部Ra又は第2端部Rbに位置する場合、噴霧部33の径方向における吸収液の噴霧量分布のピークQsの位置も第1端部Ra又は第2端部Rbに位置することになる。また、反応筒21の高さHの方向において、流速分布のピークVsの位置が高さHによって異なる場合には、噴霧量分布のピークQsの位置も高さHによって異なる。また、排ガスAの径方向における流速分布が複数のピークVsを有する場合には、噴霧量分布も、複数のピークVsのそれぞれの位置に対応した位置にピークQsを有することとなる。 (1) In the first embodiment and the second embodiment, the case where the peak Vs of the flow velocity distribution in the radial direction of the exhaust gas A is located at the intermediate portion Rc has been described. However, if the peak Vs is located at the first end Ra or the second end Rb due to some factor such as the structure of the injection section 30 or the installation posture of the reaction tube 21, the amount of absorption liquid sprayed in the radial direction of the spray section 33 The position of the distribution peak Qs is also located at the first end Ra or the second end Rb. Further, in the direction of the height H of the reaction tube 21, if the position of the peak Vs of the flow velocity distribution differs depending on the height H, the position of the peak Qs of the spray amount distribution also differs depending on the height H. Further, when the flow velocity distribution of the exhaust gas A in the radial direction has a plurality of peaks Vs, the spray amount distribution also has a peak Qs at a position corresponding to each position of the plurality of peaks Vs.

(2)第1実施形態及び第2実施形態において、海水が吸収液に用いられる排ガス処理装置100を例示した。しかしながら、排ガス処理装置100が排ガスAの処理に用いる液体は海水に限定されない。具体的には、当該液体には、海水、アミン溶液、アルカリ系水溶液又は酸性水溶液のいずれかが、排ガスAに含まれる処理対象に応じて用いられてもよい。例えば、処理対象が二酸化炭素である場合、アミン溶液が液体に用いられてもよい。また例えば、処理対象が塩化水素である場合、アルカリ系水溶液又は酸性水溶液が液体に用いられてもよい。 (2) In the first embodiment and the second embodiment, the exhaust gas treatment apparatus 100 in which seawater is used as the absorption liquid is illustrated. However, the liquid used by the exhaust gas treatment device 100 to treat the exhaust gas A is not limited to seawater. Specifically, the liquid may be seawater, an amine solution, an alkaline aqueous solution, or an acidic aqueous solution, depending on the object to be treated contained in the exhaust gas A. For example, if the target to be treated is carbon dioxide, an amine solution may be used as the liquid. For example, when the object to be treated is hydrogen chloride, an alkaline aqueous solution or an acidic aqueous solution may be used as the liquid.

(3)第1実施形態及び第2実施形態において、排ガス処理装置100が船舶200に設置される場合を例示した。しかしながら、設置場所は船舶200に限定されない。設置場所は例えば工場などでもよい。 (3) In the first embodiment and the second embodiment, the case where the exhaust gas treatment device 100 is installed in the ship 200 is illustrated. However, the installation location is not limited to the ship 200. The installation location may be, for example, a factory.

21…反応筒、21S…内壁面、30…噴射部、31…幹管、32…枝管、33…噴霧部、34…ノズル、100…排ガス処理装置、A…排ガス、C…中心軸、Qs…噴霧量分布のピーク、Rc…中間部、Vs…流速分布のピーク。 21... Reaction tube, 21S... Inner wall surface, 30... Injection section, 31... Main pipe, 32... Branch pipe, 33... Spraying section, 34... Nozzle, 100... Exhaust gas treatment device, A... Exhaust gas, C... Central axis, Qs ...Peak of spray amount distribution, Rc...middle portion, Vs...peak of flow velocity distribution.

Claims (6)

導入された排ガスが旋回しながら進行する筒状の反応筒と、
前記反応筒の内部において前記排ガスを処理する液体を噴射する噴射部と、
を具備し、
前記噴射部は、
前記反応筒の中心軸上に延び、前記液体が供給される幹管と、
前記幹管から前記反応筒の径方向に延びる複数の枝管と、
前記複数の枝管のそれぞれに設けられ、前記排ガスの旋回の方向に向けて前記液体を噴霧する噴霧部と、
を備え、
前記噴霧部の前記径方向における前記液体の噴霧量分布のピークの位置は、前記排ガスの前記径方向における流速分布のピークの位置に対応する、
排ガス処理装置。
A cylindrical reaction tube through which the introduced exhaust gas moves while rotating;
an injection unit that injects a liquid for treating the exhaust gas inside the reaction cylinder;
Equipped with
The injection part is
a main pipe extending on the central axis of the reaction cylinder and to which the liquid is supplied;
a plurality of branch pipes extending from the main pipe in a radial direction of the reaction cylinder;
a spraying unit provided in each of the plurality of branch pipes and spraying the liquid in the direction of swirling of the exhaust gas;
Equipped with
The position of the peak of the spray amount distribution of the liquid in the radial direction of the spray part corresponds to the position of the peak of the flow velocity distribution of the exhaust gas in the radial direction,
Exhaust gas treatment equipment.
前記噴霧部の前記径方向における前記噴霧量分布のピークは、
前記幹管と前記反応筒の内壁面との間の中間部に位置する
請求項1に記載の排ガス処理装置。
The peak of the spray amount distribution in the radial direction of the spray section is
The exhaust gas treatment device according to claim 1, wherein the exhaust gas treatment device is located at an intermediate portion between the main pipe and the inner wall surface of the reaction tube.
前記噴霧量分布において、
前記幹管の近傍及び前記反応筒の内壁面の近傍のそれぞれの噴霧量は、
前記幹管と前記反応筒の内壁面との間を流れる前記排ガスの処理に要する前記液体の総量を前記幹管から前記反応筒の内壁面までの長さで平均した量よりも少ない
請求項2に記載の排ガス処理装置。
In the spray amount distribution,
The respective spray amounts near the main pipe and near the inner wall surface of the reaction cylinder are:
The total amount of the liquid required to treat the exhaust gas flowing between the main pipe and the inner wall surface of the reaction cylinder is smaller than the average amount over the length from the main pipe to the inner wall surface of the reaction cylinder. The exhaust gas treatment device described in .
前記噴霧部は、
前記液体を噴霧する複数のノズルを備え、
前記複数のノズルのうち、主に前記噴霧量分布のピークの位置に向けて前記液体を噴霧するノズルの噴霧量が、主に前記噴霧量分布のピーク以外の位置に向けて前記液体を噴霧する他のノズルの噴霧量よりも多い
請求項1に記載の排ガス処理装置。
The spray section includes:
comprising a plurality of nozzles that spray the liquid,
Among the plurality of nozzles, the spray amount of the nozzle that mainly sprays the liquid toward the position of the peak of the spray amount distribution mainly sprays the liquid toward a position other than the peak of the spray amount distribution. The exhaust gas treatment device according to claim 1, wherein the amount of spray is greater than that of the other nozzles.
前記噴霧部は、
前記液体を噴霧する複数のノズルを備え、
前記複数の枝管のそれぞれの長手方向において、前記噴霧量分布のピークの位置に対応する箇所に他の箇所よりも前記ノズルが密に配置されている
請求項1に記載の排ガス処理装置。
The spray section includes:
comprising a plurality of nozzles that spray the liquid,
The exhaust gas treatment device according to claim 1, wherein the nozzles are arranged more densely at a location corresponding to a peak position of the spray amount distribution than at other locations in the longitudinal direction of each of the plurality of branch pipes.
前記液体には、海水、アミン溶液、アルカリ系水溶液又は酸性水溶液のいずれかが前記排ガスに含まれる処理対象に応じて用いられる
請求項1に記載の排ガス処理装置。
The exhaust gas treatment device according to claim 1, wherein the liquid is seawater, an amine solution, an alkaline aqueous solution, or an acidic aqueous solution, depending on the object to be treated contained in the exhaust gas.
JP2022113660A 2022-07-15 2022-07-15 Exhaust gas processing device Pending JP2024011568A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022113660A JP2024011568A (en) 2022-07-15 2022-07-15 Exhaust gas processing device
KR1020230081281A KR20240010400A (en) 2022-07-15 2023-06-23 Exhaust gas treating apparatus
CN202310791595.6A CN117398834A (en) 2022-07-15 2023-06-30 Exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022113660A JP2024011568A (en) 2022-07-15 2022-07-15 Exhaust gas processing device

Publications (1)

Publication Number Publication Date
JP2024011568A true JP2024011568A (en) 2024-01-25

Family

ID=89498888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022113660A Pending JP2024011568A (en) 2022-07-15 2022-07-15 Exhaust gas processing device

Country Status (3)

Country Link
JP (1) JP2024011568A (en)
KR (1) KR20240010400A (en)
CN (1) CN117398834A (en)

Also Published As

Publication number Publication date
CN117398834A (en) 2024-01-16
KR20240010400A (en) 2024-01-23

Similar Documents

Publication Publication Date Title
AU2017281505B2 (en) System and method for reducing the amount of sulfur oxides in exhaust gas
AU2014220617B2 (en) Marine exhaust gas scrubber
US9770690B2 (en) Exhaust gas processing apparatus
US10814275B2 (en) Exhaust gas scrubber system for multiple sources
KR101431077B1 (en) Exhaust gas cleaning system in marine diesel engines
US20190099706A1 (en) Integrated system for seawater scrubbing of marine exhaust gas
KR20180091103A (en) Vessel equipped with a desulfurization device for a ship and a desulfurization device for the ship
CN103381333A (en) Device and method for dust removal and desulphurization through wet method
KR101638803B1 (en) Exhaust gas clean-up apparatus
EA033991B1 (en) Multi-level scrubber with multiple flooded scrubber heads
KR20150024071A (en) Exhaust gas desulfurization apparatus for marine diesel engines
JP2024011568A (en) Exhaust gas processing device
KR102262666B1 (en) Exhaust gas purifying scrubber and exhaust gas purifying method using the same
KR950014023B1 (en) Gas-liquid contacting apparatus
CN219764973U (en) Multi-angle spraying device
KR102563426B1 (en) Scrubber
US20220134272A1 (en) Compact venturi scrubber and method to treat gas streams utilizing the compact venturi scrubber
KR102285302B1 (en) Exhaust Gas Treatment Equipment Including Multi-Diverting Means
CN114504930B (en) Integrated active dynamic membrane VOCs waste gas purification system and process
FI125628B (en) Exhaust washer and ship
NZ747656A (en) System and method for reducing the amount of sulfur oxides in exhaust gas