JP7104479B2 - 平面放射装置を含む基本アンテナ - Google Patents

平面放射装置を含む基本アンテナ Download PDF

Info

Publication number
JP7104479B2
JP7104479B2 JP2019561372A JP2019561372A JP7104479B2 JP 7104479 B2 JP7104479 B2 JP 7104479B2 JP 2019561372 A JP2019561372 A JP 2019561372A JP 2019561372 A JP2019561372 A JP 2019561372A JP 7104479 B2 JP7104479 B2 JP 7104479B2
Authority
JP
Japan
Prior art keywords
points
excitation
amplification
point
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019561372A
Other languages
English (en)
Other versions
JP2020505893A (ja
Inventor
ガレック,パトリック
ギオット,アンソニー
モルバン,グウェナエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of JP2020505893A publication Critical patent/JP2020505893A/ja
Application granted granted Critical
Publication of JP7104479B2 publication Critical patent/JP7104479B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Description

本発明は、アレイアンテナ、特に能動アンテナの分野に関する。本発明は特にレーダー、電子戦システム(レーダー探知器およびレーダージャマー)、および通信システムまたは他の多機能システムに関する。
いわゆるアレイアンテナは、平面型、すなわちプリント回路型であってパッチアンテナと呼ばれることが多い複数のアンテナを含んでいる。平面アンテナの技術により、後面に金属接地面が設けられた誘電体層の上に金属パターンをエッチングすることにより放射素子を形成することにより細長い指向性アンテナの製造が可能になる。この技術は、ビバルディ型アンテナよりも製造が簡単であり、従って安価な超小型指向性電子走査アンテナが得られる。
能動アンテナは従来、各々が送受信モジュール(または「Transmit/Receive回路」を略したT/R回路)に結合されたほぼ平坦な放射素子を含む一組の基本アンテナを含んでいる。各送受信回路は励起点に接続されている。各送受信回路は、電子戦用途において、集中化された信号生成電子機器から受信した励起信号を増幅して励起点を励起する出力増幅系列、および励起点レベルの放射素子が受信した低レベルの受信信号を受信モードにおいて増幅して集中回路へ送る低雑音増幅系列を含み、当該集中回路が当該信号を集中化された取得回路へ送る。
この種のアレイアンテナにはいくつか短所がある。実際、低雑音増幅系列に、出力増幅系列の最適な出力インピーダンスからの異なる最適な入力インピーダンスが生起する。通常、励起点のインピーダンスは50オームに調整されているが、これは計装設備が当該インピーダンス用に設けられているためである。しかし、これはHPA出力増幅器(「High Power Amplifier」に対応)またはLNA低雑音増幅器(「Low Noise Amplifier」に対応)に最適なインピーダンスではない。この短所を軽減すべく、出力増幅系列の出力端および低雑音増幅系列の入力端にインピーダンス変換器を配置するのが通例である。当該変換器は送信効率の低下をもたらし、顕著なエネルギー損失を引き起こす結果、熱消散が生起する。当該変換器はまた、受信時の雑音指数NFを低下させ、受信信号の信号対雑音比が低下する。
出力が異なる信号を同一のアレイアンテナから送信することが必要な場合がある。例えば、(狭帯域型、すなわち中心周波数の10~20%の)狭周波数拡張帯域における高出力のいわゆるレーダー信号、および(拡張帯域が3オクターブまでの広帯域型の)広周波数拡張帯域における低出力の遠隔通信またはレーダー妨害信号を送信する場合がある。これらの信号は、同時にまたは連続的に送信することができる。例えばMMIC(「Monolithic Microwave Integrated Circuit(モノリシックマイクロ波集積回路)」の略)技術における平面放射装置が知られており、MMIC内に設けられた変換器を含み、これら二種類の信号の周波数および出力を、拡張帯域幅および必要な出力の関数として増幅可能にすると共に、同一の励起点でアンテナに注入する前に加算可能にする。
しかし上述の解決策には短所が見られる。MMICにおいて、放射素子の上流で集積された信号加算器を有するこの種の変換器は巨大であって顕著なエネルギー損失を引き起こす。集積回路の発熱を抑えるのに冷却が不可欠であるため、特定の設備を必要とし、顕著なエネルギー消費を伴う。
本発明の目的は、上述の短所のうち少なくとも一つを軽減するアンテナが得られるようにする平面放射装置を提案することである。
このため、本発明の一主題は、ほぼ平坦な放射素子と、少なくとも1個の第1の種類の増幅系列および少なくとも1個の第2の種類の増幅系列とを含む送信および/または受信回路を含む平面放射装置を含む基本アンテナであって、第1の種類の各増幅系列が放射素子の少なくとも1個の励起点の第1の集合の少なくとも1個の励起点に結合され、第2の種類の各増幅系列が放射素子の励起点の第2の集合の少なくとも1個の点に結合されていて、第1および第2の集合の励起点が別個であり、第1の種類の増幅系列が第2の種類の増幅系列とは異なるため、それらは異なる増幅特性を示す。
有利な特徴として、第1の集合および第2の集合の励起点は別個のインピーダンスを生起させる。
本発明の第1の実施形態によれば、アンテナは送受信回路を含み、前記送受信回路は、
-放射素子の励起を目的とする信号を伝送可能であって、各々が前記放射素子の少なくとも1個の励起点の第1の集合の少なくとも1個の点に結合されている少なくとも1個の送信増幅系列と、
-放射素子から発せられた信号を増幅可能であって、各々が前記放射素子の少なくとも1個の励起点の第2の集合の少なくとも1個の点に結合されている少なくとも1個の受信増幅系列とを含んでいる。
有利な特徴として、励起点は、各増幅系列に自身の最適なインピーダンスが実質的に生起するように配置され、各増幅系列に結合されており、各増幅系列に生起するインピーダンスは、増幅系列に結合された放射装置により、および放射装置を増幅系列に接続する各フィード線により形成されている系列のインピーダンスである。
有利な特徴として、第1の集合の1個の点または2個の点に結合された少なくとも1個の送信増幅系列が、第1の結合された集合の前記点または2個の点の間で、前記送信増幅系列に生起した放射装置のインピーダンスの実質的に共役複素数である出力インピーダンスを生起させ、および/または第1の集合の1個の点または2個の点に結合された少なくとも1個の受信増幅系列が、第2の結合された集合の前記点または2個の点の間での受信に際して前記増幅系列に生起した放射装置のインピーダンスの実質的に共役複素数である出力インピーダンスを生起させる。
本発明の第2の実施形態によれば、基本アンテナは送信回路を含み、当該送信回路は、
-放射素子の励起を目的とする信号を伝送可能であって、各々が前記放射素子の少なくとも1個の励起点の第1の集合の少なくとも1個の点に結合されている少なくとも1個のいわゆる高出力送信増幅系列と、
-放射素子の励起を目的とする信号を伝送可能であって、各々が前記放射素子の少なくとも1個の励起点の第2の集合の少なくとも1個の点に結合されている、第1の出力増幅系列よりも低出力の、少なくとも1個の第2のいわゆる低出力送信増幅系列とを含んでいる。
有利な特徴として、励起点は、各高出力増幅系列に自身の最適なインピーダンスが実質的に生起するように配置され、各高出力送信増幅系列に結合されており、各高出力増幅系列に生起するインピーダンスは、増幅系列に結合された放射装置により、および放射装置を高出力送信増幅系列に接続する各フィード線により形成されている系列のインピーダンスである。
有利な特徴として、第1の集合の1個の点または2個の点に結合された少なくとも1個の高出力送信増幅系列は、第1の集合の前記点または2個の点の間で前記送信増幅系列に生起した放射装置のインピーダンスの実質的に共役複素数である出力インピーダンスを生起させる。
上述の二つの実施形態は、以下の特徴の1個以上を単独で、または技術的に可能な全ての組み合わせとして含んでいてよい。すなわち、
-第1の集合の各励起点のインピーダンスは第2の集合の各励起点のインピーダンスよりも小さく、
-放射素子は、放射素子の中心点を通る第1の直線、および第1の直線と直交して中心点を通る第2の直線により画定され、励起点は第1および/または第2の直線上だけに分布し、
-放射装置は、第1の直線および第2の直線に沿って長手方向に延在する2個のスロットを含み、2個のスロットが全ての励起点の結合を保証し、
-第1の集合および第2の集合から選ばれた少なくとも1個の集合が励起点の少なくとも1個のペアを含み、当該励起点のペアが、放射装置と送信回路との間で差動信号を流す目的で送信および/または受信回路に結合された2個の励起点を含み、
-第1の集合および第2の集合から選ばれた少なくとも1個の集合が励起点の第1の四つ組を含み、放射素子が、放射素子の中心を通る第1の直線および第1の直線と直交して中心を通る第2の直線により画定され、励起点の各々の第1の四つ組の励起点が、前記第1の直線に関してほぼ対称に配置された励起点から構成される励起点の第1のペアを含み、前記第2の直線に関してほぼ対称に配置された励起点から構成される励起点の第2のペアを含み、
-点の第1の四つ組の励起点が第1の直線および第2の直線からある距離に位置し、
-各集合が、第1の直線および第2の直線の上に位置する励起点の第1の四つ組を含み、
-各集合が点の第1の四つ組からなり、点の各々の第1の四つ組の励起点が、放射素子により画定される平面に位置し、中心点を通り、第1および第2の直線がなす角度の二等分線である第3の直線の一方の側だけに位置し、
-当該集合が、第1の直線および第2の直線からある距離に位置する励起点の第2の四つ組であって、
-前記第1の直線に関してほぼ対称に配置された励起点から構成される第3のペアであって、点の第3のペアの点が、前記集合の励起点の第1のペアに関して第2の直線の他方の側に配置されている第3のペアと、
-前記第2の直線に関してほぼ対称に配置された励起点から構成される第4のペアであって、点の第4のペアの点が、前記集合の励起点の第2のペアに関して第1の直線の他方の側に配置されている第4のペアとを含む第2の四つ組を含み、
-第1の集合および第2の集合から選ばれた各集合は点の第1および第2の四つ組を含み、
-アンテナは、励起点の第1のペアから印加された、または発せられた第1の信号と、励起点の第2のペアに印加された、または当該第2のペアから発せられた第2の信号との間で第1の相転移を生起可能にすると共に、第3のペアに印加された、または当該第3のペアから発せられた、または前記集合の励起点の第3のペアから発せられた第3の信号と、前記集合の励起点の第4のペアに印加された、または当該第4のペアから発せられた第4の信号との間で第1の相転移とは異なり得る前記集合の第2の相転移を生起可能にする相転移手段を含み、
-少なくとも1個の集合の点の第1の四つ組および第2の四つ組が、別個の周波数の、または別々に加算された信号により励起されている。
有利な特徴として、特に両方の実施形態に一般に適用できるように、第1の種類の各増幅系列は第2の種類の増幅系列に関連付けられていて、当該増幅系列は、同一方向に線形に偏波した各基本波を送信または受信すべく配置された励起点に結合されている。換言すれば、当該方向は互いに関連つけられた増幅系列に共通である。
本発明はまた、先行請求項のいずれか1項に記載の複数の基本アンテナを含み、放射素子が放射素子のアレイを形成しているアンテナに関係する。
有利な特徴として、当該アンテナは、各基本アンテナの少なくとも1個の集合の点の第1の四つ組に印加された、または当該第1の四つ組から発せられた信号間で第1の大域的相転移を生起可能にすると共に、各基本アンテナの前記点の集合の第2の四つ組に印加された、または当該第2の四つ組から発せられた信号間で第2の大域的相転移を生起可能にする指向性相転移手段を含み、第1および第2の大域的相転移は異なり得る。
本発明の他の特徴および利点は、添付図面を参照しながら、非限定的な例を通じて記述する以下の詳細な説明を精査することにより明らかになろう。
本発明の第1の実施形態による基本アンテナの第1の例を模式的に示す。 基本アンテナの側面図を示す。 本発明の第1の実施形態による基本アンテナの3個の変型例を模式的に示す。 本発明の第1の実施形態による基本アンテナの3個の変型例を模式的に示す。 本発明の第1の実施形態による基本アンテナの3個の変型例を模式的に示す。 図5のシステムにより取得可能な各種の偏波をカタログ化した表を示す。 本発明の第2の実施形態による基本アンテナを模式的に示す、図4本発明の基本アンテナの他の2個の変型例を示す。 本発明の第2の実施形態による基本アンテナを模式的に示す、図4本発明の基本アンテナの他の2個の変型例を示す。 図8のアンテナにより取得可能な各種の偏波をカタログ化した表を示す。 本発明の第2の実施形態による基本アンテナを模式的に示している、図4の本発明の基本アンテナの他の2個の変型例を示す。 本発明の第2の実施形態による基本アンテナを模式的に示している、図4の本発明の基本アンテナの他の2個の変型例を示す。 本発明の例示的な平面放射装置を示す。 本発明の第2の実施形態による7個の例示的な基本アンテナを示す。 本発明の第2の実施形態による7個の例示的な基本アンテナを示す。 本発明の第2の実施形態による7個の例示的な基本アンテナを示す。 本発明の第2の実施形態による7個の例示的な基本アンテナを示す。 本発明の第2の実施形態による7個の例示的な基本アンテナを示す。 本発明の第2の実施形態による7個の例示的な基本アンテナを示す。 本発明の第2の実施形態による7個の例示的な基本アンテナを示す。 本発明の第2の実施形態による7個の例示的な基本アンテナを示す。 図13のアンテナの第1の励起点の反射係数を模式的に示す。
各図面を通じて、同一要素には同一の参照符号を付与している。
図1に、平面放射装置10および処理回路または送受信モジュール20aを含む本発明の基本アンテナ1Aの一例を示す。
平面放射装置10は、ほぼ紙面内に延在するほぼ平坦な放射素子11を含んでいる。平面放射装置は、パッチアンテナという名称で知られる平面アンテナである。
本発明はまた、本発明による複数の基本アンテナを含むアンテナに関する。当該アンテナはアレイ型であってよい。基本アンテナの放射素子11または平面放射装置10は放射素子のアレイを形成している。有利な特徴として、放射素子は、自身の各放射素子11が同一平面内にあり、放射素子の平面の固定フレームに関して同じ方向に向けて配置されている。一変型例として、放射素子は別の形状に配置されている。
当該アンテナは有利な特徴として能動アンテナである。
平面放射装置10は、図2に示すようなスタックを形成している。平面放射装置10は、接地面12を形成している層の上方に配置されたほぼ平坦な放射素子11を含み、放射素子11と接地面12の間に間隙が形成されている。当該間隙は例えば、例えば誘電材料を含む電気絶縁層13を含んでいる。好適には、放射素子11は導電性材料で作られたプレートである。一変型例として、放射素子11は複数の積層された金属プレートを含み、従来は正方形の形状をなしている。一変型例として、放射素子は別の形状、例えば円盤形状または例えば長方形あるいは菱形等、別の平行四辺形の形状をなしている。放射素子11の外形に依らず、中心Cを画定することができる。
基本アンテナは導体、すなわち放射素子11内に配置された励起点1または2で放射素子11に結合されたトラックからなるフィード線51、52を含んでいる。この結合により放射素子11の励起が可能になる。
トラックは例えば周波数に関して調整されている。
結合は例えばスロット同士の電磁結合により実行される。平面放射装置10は次いで、図2に示すようにフィード線の端を乗せたフィード平面16を含んでいる。平面16は、有利な特徴として、絶縁材料17、例えば誘電体、の層により接地面12から分離されている。平面放射装置10はまた、接地面を形成している層内に形成された少なくとも1個のスロットfを含んでいる。フィード線51、52の両端は、対応する下側のスロットfに重なるように配置されていて、層の上方にある放射素子11が接地面12を形成している。励起点1、2は従って、スロットfと、および対応するフィード線51、52の両端と同一線上にある。フィード線は、対応する系列の末端に接続されている。図1において、スロットfの射影を破線で表している。図1の実施形態において、2個の励起点に対して1個のスロットfが設けられている。一変型例として、励起点毎に、または複数の励起点、例えば差動的に励起させたい励起点のペアまたは複数のペアに対して1個のスロットが設けられている。分かり易いように全ての図面でスロットを表示している訳ではない。スロットは必ずしも矩形であるとは限らず、他の形状も考えられる。
一変型例として、結合は、放射素子の励起点にフィード線の終端を電気的に接続することにより実行される。例えば、フィード線の終端において、励起電流が、励起させたい点と同一線上の放射素子の後部にある栓にフィード線の終端を接続可能にする例えば金属化されたビア孔を介して絶縁材料を貫通して放射素子に向かって流れる。結合は、当該電流を放射素子の終端に接続されたマイクロストリッププリント線を通して直接流すことにより、平面放射素子すなわち「パッチ」の実際の平面上で実行することができる。励起点は従ってフィード線の終端にある。励起はまた、パッチと接地面を形成する層との間のレベルでプリントされたマイクロストリップ線への近接結合により実行することができる。
結合は、各種の励起点について同様に、または異なる仕方で実行することができる。
上述の内容は本発明の全ての実施形態にあてはまる。
本発明によれば、放射素子11は、図1の励起点1から構成される少なくとも1個の励起点の第1の集合、および図1の点2から構成される少なくとも1個の励起点の第2の集合を含んでいる。当該2個の集合の励起点は別個である。換言すれば、2個の集合は共通の点を一切含んでいない。
2個の集合の点は、二つの別種類の信号増幅系列に結合されているため異なる増幅特性を示す。この結合は同時に生起する。換言すれば、これらの増幅系列は異なる信号処理を実行すべく構成されている。これらは従って放射装置に異なる最適なインピーダンスを生起させるか、または放射装置とのインピーダンス整合の観点から異なる要件を示す。例えば、点の複数の集合のうち1個に対する放射装置に後で印加される励起信号を伝送すべく信号を増幅すべく構成された少なくとも1個の送信増幅系列、または他の点の集合から発せられた受信信号から発せられた受信信号を受信および増幅すべく構成された少なくとも1個の受信増幅系列を設けることができる。一変型例として、別個の出力、従ってインピーダンス整合の観点から異なる要件を示す2個の受信増幅系列を設けることができる。
本発明により、二組の点の励起点のインピーダンスを独立に調整することが可能になる。異なる励起点を別個の機能、例えば送受信または高出力信号の送信および低出力信号の送信に関連付けることにより、各種の増幅系列に生起するインピーダンスを独立に適合させることができる。図1の特定の実施形態において、送受信回路20aは、マイクロ波信号を生成する非表示の回路から発せられた信号を増幅して点1を励起させるべく信号を伝送可能にすべく点1に結合された送信増幅系列110a、および点2から発せられた信号を処理すべく点2に結合された受信増幅系列120aを含んでいる。2個の増幅系列は異なる増幅特性を示す。換言すれば、これらの系列は別個の特性を示す増幅器を有している。送信増幅系列110aは、例えば電子戦分野において、信号を送信すべく構成された送信増幅器、例えばHPA出力増幅器114a(「High Power Amplifier」の略)を含む出力増幅系列であり、受信増幅系列は、ここでは放射装置10であるセンサから発せられた信号を処理すべく構成された測定増幅器116a、例えばLNA低雑音増幅器(「Low Noise Amplifier」の略)を含んでいる。各々の送信または受信増幅系列と、励起点1または2との間の結合はフィード線51または52により行われる。これは、全ての図面を通じて成り立つが、分かり易いように全ての図面で励起点に関連付けられたフィード線を表示している訳ではない。
各増幅系列は、(送信増幅系列の場合は出力端、受信増幅系列の場合は入力端で)良好に決定された最適なインピーダンスが生起している場合に最適性能を発揮すべく設計されている。この最適値とは異なるインピーダンスが生起した場合、性能が低下する。
増幅系列の最適な入力または出力インピーダンスは増幅系列の入力増幅器のほぼ最適な入力インピーダンスまたは出力増幅器の最適な出力インピーダンスである。
有利な特徴として、励起点1、2は、各増幅系列110aまたは120aに自身の最適なインピーダンスが実質的に生起するように配置され、各増幅系列110aまたは120aに結合されている。インピーダンス整合があると言われる。
有利な特徴として、増幅系列110aまたは120aに生起するインピーダンスは、励起点1または2で増幅系列110aまたは120aに結合された放射装置10により、および対応する励起点で放射装置10を増幅系列110aまたは120aに接続する各フィード線51または52により形成されている系列のインピーダンスである。この系列は、受信増幅系列に結合された場合はソースであり、送信増幅系列に結合された場合は負荷である。
従って、提案する解決策により、送信モードで消費電力を最適化し、受信モードで雑音指数を向上させることが可能になる。従って、性能の観点から高価になる恐れがあるインピーダンス整合のレベルで妥協する必要をなくすか、またはインピーダンス変換器の設置を避けることができる。
このような解決策の利点は、送信および受信の二つの機能の各々についてインピーダンス整合が最適化されることである。送信信号が受信信号よりも顕著に強く、送信増幅系列の増幅器、特に出力増幅系列110aの最適な出力インピーダンスが従来20オームのオーダーであるように低く、受信増幅系列、特に低騒音増幅系列120aの増幅器が典型的には100オームのオーダーのより高い最適な出力インピーダンスを生起させ、そのためより良好な雑音指数を示す点に注意されたい。
従って、当該点は有利な特徴として、受信増幅系列120aに生起するインピーダンスよりも小さい抵抗部分を示すインピーダンスが送信増幅系列110aに生起するように配置され、増幅系列に結合されている。
インピーダンス整合は励起点の位置を調整することにより有利に実現される。
図1の特定の実施形態において、各励起点と中心Cとの距離は自身のインピーダンスを調整するように調整される。中心Cから各励起1、2を隔てる距離は、自身のインピーダンスと同じ意味で変化する。点2よりも中心Cに近い点1は、点2のインピーダンスよりも低いインピーダンスを生起させる。
より一般的に、第1の実施形態の全ての変型例において、第1および第2の集合の励起点は別個のインピーダンスを生起させる。これらのインピーダンスは接地点に関して測定される。図示する実施形態において、第1の集合の励起点は、点の第2の集合のインピーダンスよりも低い抵抗部分のインピーダンスを生起させる。これらのインピーダンスは接地点に関して測定される。
これらの2個の集合が別個のインピーダンスを生起させる場合、当該集合に含まれる励起点は有利な特徴として同一のインピーダンスを生起させる。
有利な一実施形態において、フィード線のインピーダンスは無視できるため、増幅系列110aまたは120aに生起するインピーダンスは実質的に、当該増幅系列に結合された励起点における、または当該増幅系列に結合された励起点間の放射装置10のインピーダンスである。
有利な特徴として、最適なインピーダンス整合を実現するために、励起点すなわち図1の点1に結合された送信増幅系列110aの出力インピーダンスは実質的に、前記点1で前記送信増幅系列110aに生起する放射装置10のインピーダンスの共役複素数であり、点2に結合された受信増幅系列120aの入力インピーダンスは実質的に、図1の点2で受信増幅系列120aに生起する放射装置10のインピーダンスの共役複素数である。増幅系列の入力または出力インピーダンスは実質的に増幅系列の入力増幅器の入力インピーダンスまたは出力増幅器の出力インピーダンスである。
提案する解決策はまた、送信中に送信された波から受信増幅系列120aを分離する。実際、受信増幅系列120は、点1により送信された信号から、点2のインピーダンスのモジュラスに対する点1のインピーダンスのモジュラスの比に等しい部分だけを受信する。点1が送信増幅系列110aの最適な出力インピーダンスに対応する20オームのインピーダンスを生起させ、点2が受信増幅系列120aの最適な入力インピーダンスに対応する100オームのインピーダンスを生起させる場合、二つの系列110a、120aは7dBだけ分離されている。従って、送信および受信モードを切り替えるスイッチを設ける、または送信中に受信増幅系列120aの飽和または破壊をも回避すべく循環器を設ける必要が無い。固体性、信頼性および検出精度(スイッチが受信時の雑音指数に影響し、全出力に耐える必要があり、送信モードから受信モードに遷移する周波数で切り替え可能でなければならない点に注意されたい)の観点から利点が得られる。また、循環器を含む解決策に関して重量およびコストの観点から利点が得られる。循環器をX帯域格子に組み込むのは嵩高さ故に極めて困難である。当該解決策はまた、送受信の同時実行を可能にする。図1において、送信増幅系列110aは単一の増幅器114a、例えば出力増幅器を含んでいる。一変型例として、複数の増幅器を含んでいてよい。受信増幅系列110aは増幅器、例えば低雑音増幅器116aを含んでいる。一変型例として、当該増幅器を複数含んでいる。受信増幅系列120aはまた、外乱から受信増幅系列110aを保護するリミッタ117a、例えばPINダイオード等の保護手段を含んでいる。これらの特徴は本発明の全ての実施形態にあてはまる。一般に、本発明の第1の実施形態によれば、アンテナの送受信回路は、励起点の第1の集合に結合された放射素子の励起を目的とする信号を伝送可能な送信回路、および放射素子から発せられた受信信号を処理可能であって点の第2の集合に結合されている受信回路を含んでいる。有利な特徴として、送信回路は点の第1の集合に結合され、受信回路は点の第2の集合に結合されている。送信回路および受信回路は共通の点に結合されていない。換言すれば、各送信増幅系列は点の第1の集合の1または2個の点に結合され、各受信増幅系列は第2の集合の1または2個の点に結合されている。送受信系列は第1および第2の集合の共通の点には結合されていない。
図1の例において、各集合は励起点1または2を含んでいる。図3に示すようなアンテナ一変型例1aにおいて、放射装置10aの複数の集合の少なくとも1個は、差動的に励起可能に構成された励起点のペアを含んでいる。励起点の分割により、当該点のペアが送信増幅系列に接続されている場合は図1の実施形態に関して送信時の出力を3dB増大し、当該点のペアが受信増幅系列に接続されている場合は図1の実施形態に関して受信時の線形性を3dB増大させることが可能になる。受信出力が同一の場合、各受信器は出力の半分だけを受信する。従って受信器は強い場に対してより良好に保護される。
一変型例として、アンテナは少なくとも1個のペアの励起点を含んでいる。本明細書では以降、励起点のペアは、処理回路が当該点のペアを差動、すなわち平衡信号により励起すべく、または当該点のペアから発せられた差動すなわち平衡信号を処理すべく構成されるように配置され、処理回路に結合された2個の励起点を意味する。同点のペアは従って、各時点で逆向き信号により励起される。励起点のペアの各励起点は同一の増幅系列に結合されていて、当該増幅系列に結合されている唯一の励起点である。
図3において、励起点の第1の集合は励起点の第1のペア(5+、5-)から構成され、励起点の第2の集合は励起点の第1のペア(6+、6-)から構成される。図3において、当該点は、放射素子11aの中心Cを通る、放射装置10aの放射素子11aの同一直線D1上に位置している。これらは、同一インピーダンスが生起するように中心Cに関してほぼ対称に配置されている。
処理回路20または送受信モジュールは送信増幅系列110および受信増幅系列120を含んでいる。点(5+、5-)は、送信増幅系列が差動信号により点(5+、5-)を励起するように配置され、送信増幅系列110に結合されている。送信増幅系列110は送信増幅器114、例えば出力増幅器を含んでいる。送信増幅系列110は、各フィード線51aおよび51bを介して点(5+、5-)に結合されている。図3の非限定的な例において、系列110は、入力端で受信した、180°相転移された2個の逆向きに注入された信号を増幅すべく構成されている。一変型例として非対称信号を受信して差動信号を伝送することができる。
受信増幅系列120は例えば、測定増幅器114、例えば低雑音増幅器を含む低雑音増幅系列120である。これは差動信号を取得可能である点で図1のものとは異なる。当該系列120は、これらの点から発せられた差動信号を取得すべく点(6+、6-)に結合されている。系列120により差動信号を増幅して伝送することが可能になる。一変型例として、図1のように非対称信号を伝送することができる。系列120は、各フィード線52a、52bを介して点6+または6-の各々に結合されている。受信増幅系列120はまた、外乱から受信増幅系列120を保護すべくリミッタ117等の保護手段を含んでいる。
有利な特徴として、励起点(5+、5-、+、6-)は、各増幅系列110または120に自身の最適なインピーダンスが生起するように配置され、各増幅系列110または120に結合されている。有利な特徴として、増幅系列110または120に生起するインピーダンスは、励起点5+と5-の間、または6+と6-の間で増幅系列110または120に結合された放射装置10により、且つ放射装置10、すなわち点(5+、5-)または(6+、6)を対応する増幅系列110または120に結合する線51aおよび51bまたは52aあるいは52bにより形成されている系列のインピーダンスである。
従って、2個の集合の点は上述のように別個のインピーダンスを生起させる。
有利な特徴として、但し必然的にではなく、各増幅系列110または120に生起するインピーダンスは実質的に、対応する増幅系列110または120に結合された2個の励起点(5+、5-)または(6+、6-)の間で測定された放射装置10aのインピーダンスである。
有利な特徴として、先の図と同様に、点5+と5-の間で送信増幅系列に生起する放射装置10のインピーダンス、すなわち当該点間での放射装置10aの差動インピーダンスは実質的に、受信増幅系列110の出力インピーダンスの共役複素数であり、点6+と6-の間の受信増幅系列に生起する放射装置10aのインピーダンスは入力インピーダンス受信増幅系列120にほぼ等しい。これらのインピーダンスは実数である。
図4に、図3の一変型例であるアンテナ1bを示す。当該変型例は、複数の集合のうち1個、ここでは第1の集合が、図3と同様に差動的に励起される励起点のペア(5+、5-)から構成され、他の点の集合、ここでは第2の集合が図1のように非対称に励起される点2である励起点から構成されることが図3とは異なる。
図1、3および4において、第1および第2の集合の励起点は、放射素子の中心Cを通る放射素子の同一直線D1上に配置されている。これにより、直線D1に沿って延在する図1に示す単一スロットfにより全ての点を励起させることが可能になり、従ってある程度実施が容易になる。図示する実施形態において、直線D1は放射素子11の一方の辺と平行である。一変型例として、全ての励起点は、放射素子11の中心および放射素子11の2個の頂点を通る直線上に配置されている。一変型例として、2個の集合のうち少なくとも一組の点は、放射素子11の直交する2辺に沿って、またその近傍に配置されている。一変型例として、2個の集合の点は、後述するように図11、12に示す中心Cを通る2本の直交する直線上に配置されている。全ての点の結合は、各々の直線に沿って延在する2個のスロットだけにより実現することができる。
図5に示す一変型例において、各集合は励起点の二つ四つ組(1a+、1a-、2a+、2a-)および(3a+、3a-、4a+、4a-)または(1b+、1b-、2b+2b-)および(3b+、3b-、4b+、4b-)を含んでいる。各四つ組は、各々の直交する直線に沿って配置された二対の励起点を含み、各ペアの励起点は差動的に励起可能であるように配置されている。
図5の精密な例において、平面放射装置10cの放射素子11cの平面は、二つの直交する方向により画定される。これら二方向は、第1の直線D1および第2の直線D2である。これらの直交する方向は中心Cを通る。図5~10の非限定的な実施形態において、これらの直線は、矩形である放射素子の各辺と平行である。当該矩形は、当該図面の非限定的な例では正方形である。
励起点の第1の集合は、全部が直線D1、D2からある程度の距離に配置された、すなわち全部が当該直線D1、D2から離れている励起点の第1の四つ組を含み、前記第1の四つ組は、
-第1の直線D1に関して互いにほぼ対称に配置されている励起点1a+および励起点1a-から構成される励起点の第1のペア(1a+、1a-)と、
-第2の直線D2に関して互いにほぼ対称に配置されている励起点2a+および励起点2a-から構成される励起点の第2のペア(2a+、2a-)とを含んでいる。
励起点の第1の集合は、全部が直線D1、D2からある程度の距離に配置された励起点の第2の四つ組を含み、当該第2の四つ組は、
-第1の直線D1に関してほぼ対称に配置されている励起点3a+および励起点3a-から構成される励起点の第3のペア(3a+、3a-)であって、励起点の第1のペア(1a+、1a-)に関して第2の直線D2の他方の側に配置されている励起点の第3のペア(3a+、3a-)と、
-第2の直線D2に関してほぼ対称に配置されている励起点4a+および励起点4a-を含む励起点の第4のペア(4a+、4a-)であって、励起点の第2のペア(2a+、2a-)に関して第1の直線D1の他方の側に配置されている励起点の第4のペア(4a+、4a-)とを含んでいる。
各ペアの点は、軸D1またはD2との直交対称性により互いにほぼ対称である。
点の2個の四つ組の各々の励起点は別個である。換言すれば、点の2個の四つ組には共通の励起点が一切含まれない。様々なペアには共通の励起点が一切含まれていない。
第2の集合は、上で列挙した第1の集合の点の第1の四つ組の点1a+、1a、2a+、2a-と同じ特徴を示すが、第1の四つ組のインピーダンスとはインピーダンスが異なる第1のペア(1b+、1b-)および第2のペア(2b+、2b-)を含む第1の四つ組を含んでいる。第2の集合もまた、上で列挙した第2の四つ組(3a+、3a、4a+、4a-)と同じ特徴を示すが、インピーダンスが異なる第3のペア(3b+、3b-)および第4のペア(4b+、4b-)を含む第2の四つ組を含んでいる。
有利な特徴として、励起点のペアの各点は、差動的に励起可能であるように接地点に関して測定された同一インピーダンスを生起させるように配置されている。有利な特徴として、同一集合内の全ての点は同一インピーダンスを生起させる。このため、放射素子11が正方形であって直線D1、D2が当該正方形の各辺と平行である図5の実施形態において、同一の点の集合の各点は中心Cからほぼ同一の距離に配置されていて、当該同一の距離が当該集合の各ペアの点を分離する。各集合の第1および第3のペアは従って直線D2に関して互いに対称であり、各集合の第2および第4のペアは直線D1に関して互いに対称である。
第1の集合の点は点の第2の集合よりも低いインピーダンスを生起させる。このため、図5の例において、各ペアの点は、同一の距離により分離され、第1の集合の点は第2の集合の点よりも中心に近い。
アンテナ1cの送受信モジュール20cは、図3の系列10と同一の4個の送信増幅系列21~24を含む送信回路Aを含んでいる。各送信増幅系列21、22、23または24は、励起点の第1の集合の励起点のペア(1a+、1a-)、(2a+、2a-)、(3a+、3a-)または(4a+、4a-)に結合されていて、差動励起信号を励起点の当該ペアに印加することができる。送受信モジュール20cは、図3の低雑音増幅系列120と同一の4個の受信増幅系列31~34を含む受信回路Bを含んでいる。各受信増幅系列31~34は、励起点の第2の集合の励起点のペア(1b+、1b-)、(2b+、2b-)、(3b+、3b-)または(4b+、4b-)のうち一つのペアに結合されていて、当該ペアから発せられた差動受信信号を取得および処理することができる。
系列21に結合された点のペア(1a+、1a-)は系列23に結合された点のペア(3a+、3a-)と全く同様に、D2の方向に線形に偏波した基本波の送信を目的としているのに対し、各々系列22、24に結合された点のペア(2a+、2a-)および(4a+、4a-)は直線D1の方向に線形に偏波した各基本波の送信を目的としている。
系列31に結合された点のペア(1b+、1b-)は系列33に結合された点のペア3b+、3b-と全く同様に、D2の方向に線形に偏波した基本波の検出を目的としているのに対し、各々系列32、34に結合された点のペア(2b+、2b-)および(4b+4b-)は直線D1の方向に線形に偏波した基本波の検出を目的としている。
有利な特徴として、励起点は、各増幅系列21~24および31~34に自身の最適なインピーダンスが実質的に生起するように配置され、各増幅系列21~24および31~34に結合されている。有利な特徴として、増幅系列21、22、23、24、31、32、33、34に生起するインピーダンスは、2個の励起点(1a+、1a-)または(2a+、2a-)・・・(4b+、4b-)の間で増幅系列に結合された放射装置10により、および放射装置10cを対応する増幅系列に接続するフィード線により形成されている系列のインピーダンスである。
有利な特徴として、但し必然的にではなく、各増幅系列、例えば21に生起するインピーダンスは実質的に、増幅系列21に結合された2個の励起点(1a+、1a-)と、対応する増幅系列21との間で測定された放射装置10cのインピーダンスである。
有利な特徴として、第1の集合の各々の点のペア(1a+、1a-)、(2a+、2a-)、(3a+、3a-)または(4a+、4a-)の間で各送信増幅系列21、22、23、または24に生起する放射装置10のインピーダンスは、各々の点のペア(1b+、1b-)、(2b+、2b-)、(3b+、3b-)または(4b+、4b-)の間で各受信増幅系列31、32、33および34に生起する放射装置10のインピーダンスよりも小さい抵抗部分を示す。
有利な特徴として、但し必然的にではなく、第1の集合の各々の点のペア(1a+、1a-)、(2a+、2a-)、(3a+、3a-)または(4a+、4a-)の間で各送信増幅系列21、22、23、または24に生起する放射装置10のインピーダンスは実質的に、対応する送信増幅系列21、22、23の出力インピーダンスの共役複素数であり、各々の点のペア(1b+、1b-)、(2b+、2b-)、(3b+、3b-)または(4b+、4b-)の間で各受信増幅系列31、32、33および34に生起する放射装置10のインピーダンスは実質的に、入力インピーダンス対応する受信増幅系列31、32、33または34の共役複素数である。
分かり易いように図5では各増幅系列と平面放射線装置との間の完全な関連付けを表示していない。一方、各送信増幅系列31~34の入力および各受信増幅系列21~24の出力が結合された励起点は表示している。
送信に際して、送受信モジュール20cの入力端でマイクロ波信号を生成する電子機器により印加された励起信号SEが、各出力増幅系列21~24の入力端で印加された4個の差動励起信号に分割される。4個の差動励起信号は、各位相および任意選択的に振幅の範囲内で同一である。
送信回路Aは、共通の励起信号SEを、各送信位相シフタ25、26の入力端に各々注入される図1のように非対称または対称(すなわち差動または平衡)な2個の励起信号に分割可能にするスプリッタ122を含んでいる。各位相シフタ25、26は、(図5のような)差動信号または非対称信号を伝送する。第1の送信位相シフタ25から出た信号は分割されて系列21、23の入力端に注入される。第2の送信位相シフタ26から出た信号は分割されて系列22、24の入力端に注入される。
各送信増幅系列21~24は有利な特徴として、ペア(1a+、1a-)およびペア(3a+、3a-)により生成された基本波が同様に偏波され、ペア(2a+、2a-)およびペア(4a+、4a-)により励起された基本波が同様に偏波されるように各励起点に結合されている。従って、ペア(1a+、1a-)および(3a+、3a-)に印加された励起信号の電場は同様に生起する。従って、二つの点のペア(1a+、1a-)および(3a+、3e)により、非対称に励起された2個の点に基づいて同一信号を伝送することが可能になる。各増幅系列21、23が伝送すべき出力は2で除算され、従って増幅系列11が伝送すべき電流は2の二乗根により除算される。抵抗損失が低くなり、出力増幅器の製造が容易になる(出力が低下する)。同様に、ペア(2a+、2a-)および(4a+4a-)に印加された励起信号の電場も同様である。
送信回路Aは、少なくとも1個の位相シフタを含む送信時相転移手段25、26を含み、第1のペア(1a+、1a-)に印加された信号と第2のペア(2a+、2a-)に印加された信号との間に第1の相転移、いわゆる第1の送信時相転移を生起可能にすると共に、ペア(3a+、3a-)に印加された信号とペア(4a+、4a-)に印加された信号との間で同一の第1の送信時相転移を生起可能にする。系列21、23の入力端に注入される基本励起信号は同相である。系列21、24の入力端に注入される基本励起信号は同相である。
有利な特徴として、第1の送信時相転移は調整可能である。アレイアンテナは有利な特徴として、第1の所定の送信時相転移を生起させるべく第1の送信時相転移を調整可能にする調整装置35を含んでいる。
励起点の各ペアは基本波を生成する。第1の送信時相転移により、ペア(1a+、1a-)および(3a+、3a-)により送信される基本波は、ペア(2a+、2a-)および(4a+、4a-)により送信される基本波に対して相転移されている。空中で基本波を再結合することにより全波が得られ、第1の送信時相転移を変化させることによりその偏波を変化させることができる。各結合点に結合された導体に注入された送信信号間の相対位相の例を図6の表に得られた偏波と共に与える。垂直偏波は、図5に示す軸zに沿う偏波である。位相が180°ずれた位相対立で励起された2個の点は対向する瞬間励起電圧を有している。例えば、図6の表の第1行は、点1a+、2a+、3a+、4a+に結合された導体が同一電圧まで上昇され、点1a-、2a-、3a-、4a-に結合された導体が先の電圧とは逆の同一電圧まで上昇されるケースを示す。電圧差は従って直線D3に関して対称である。従って偏波は垂直に向けられた当該直線に沿って向けられている。同相の差動励起信号によりペア(2a+、2a-)および(4a+、4a-)を励起することなくペア(1a+、1a-)およびペア(3a+、3a-)だけを励起することにより、+45°の線形偏波が得られる。これは例えば、ゼロ出力を伝送すべく増幅器114の取得を調整することにより実現される。このため、増幅器は、可変利得および図示しない利得調整手段を有している。第5行の例では点間の相転移は時間が経過しても同一のままである。時間経過に伴う相の変化は右円偏波を形成する。
受信に際して、各励起点のペア(1b+、1b-)(2b+、2b-)、(3b+、3b-)、(4b+、4b-)により受信された受信信号は各々、各送信増幅系列31、32、33、34の入力端に印加される。各受信増幅系列は差動信号を伝送する。一変型例として、受信増幅系列は、非対称信号を伝送すべくコンバイナを含んでいる。
系列31、33から出た基本受信信号は第1の受信位相シフタ29の入力端に注入され、系列32、34から出た基本受信信号は第2の受信位相シフタ30の入力端に注入される。これらの位相シフタ29、30により、系列31、33により伝送された受信信号と、系列32、34により伝送された受信信号との間で第1の受信時相転移を生起させることが可能になる。受信位相シフタ29、30から出た受信信号は、結果的に生起する受信信号SSが遠隔設置された取得電子機器へ送信される前にモジュール20の加算器220により加算される。
従って、受信回路Bは、ペア(1b+、1b-)と(2b+、2b-)から発せられた受信信号間、およびペア(3b+、3b-)と(4b+、4b-)から発せられた受信信号間で第1の受信時相転移を生起可能にする受信時相転移手段29、30を含んでいる。図1の非限定的な実施形態において、これらの手段は系列31~34の出力端に位置している。
有利な特徴として、第1の受信時相転移は調整可能である。当該装置は有利な特徴として、図5の非限定的な実施形態における装置35である受信時相転移を調整可能にする調整装置を含んでいる。
送信時相転移手段25、26により生起する相対位相は、受信時相転移手段29、30により生起するものと同一であり得る。これにより、送信された基本波と同じ位相を示す基本波の受信、従って基本アンテナにより送信された全波と同一の偏波を生起させる全受信波の測定が可能になる。一変型例として、これらの位相は異なり得る。
有利な特徴として、上述の位相は独立に調整可能であってよい。これにより異なる偏波を示す信号の送受信が可能になる。
一変型例として、位相シフタの個数は異なっている、および/または出力増幅系列の入力端または低騒音増幅系列の出力端の如何によらず、位相シフタが他の箇所に配置されている。
有利な特徴として、アンテナは、当該アンテナの各基本アンテナの点に印加された励起信号間、および/または当該アンテナの各基本アンテナの点から発せられた受信信号間で調整可能な大域的相転移を生起可能にするいわゆる指向性相転移手段を含んでいる。
図5の非限定的な実施形態において、上述の手段は、調節手段35宛の制御信号を生成する制御装置36を含んでいる。制御装置36は、各送信位相シフタまたは各受信位相シフタの入力端で受信された信号の送受信に際して第1の相転移の生起を制御する特定の相転移信号、および各送信位相シフタまたは各受信位相シフタの入力端で受信された信号における大域的相転移の生起を制御する大域的信号を含む制御信号SCを生成する。制御装置36は、これらの制御信号を調整装置35に送信して、調整装置35が位相シフタを制御して位相シフタが受信した信号に上述の相転移を生起させるようにする。大域的相転移は、アレイの基本アンテナが送信した全波の再結合により、当該アンテナが送信した波および当該アンテナが受信した波の指向方向の選択を可能にする。アレイアンテナの電子走査は、当該アレイを構成する基本アンテナに生起した相転移に依存し、走査は位相法則により決定される。
本発明のアンテナには多くの利点をもたらす。
各送信増幅系列21、24は送信に際して差動信号を印加することができ、各送信増幅系列31~34は送信に際しい差動信号を取得することができる。差動信号に既に作用している各系列は、差動信号から非対称信号に遷移するためにバルン(「平衡非平衡変換器」の略)等の構成要素を設ける必要をなくすことができる。しかし、このような中間構成要素は出力面での効率を低下させる。従って装置の出力面での効率が向上する。
高出力で動作すべく、本発明は、4個のペアをなす直交偏波入口に結合された送信増幅系列21~24、および4個のペアをなす直交偏波入口に結合された4個の受信増幅系列31~34を使用し、各系列は、当該系列の製造に用いる技術により受容可能な最大出力に比肩し得る名目出力で動作する。
放射手段により送受信された電磁波の出力は従って、励起点の当該ペアに結合された系列の名目動作出力よりも大きくなり得る。差動的に励起した放射素子の励起点の各ペアが基本波を生成する。アンテナは、送受信に際して二重差動的に動作する。点の各ペアにより送信された基本波の出力は、送信増幅系列21~24の名目送信出力の2倍である。
上記は特に、名目出力が送信増幅系列21~24の製造に用いる技術により許容される最大出力に近い場合に有利である。各励起回路のレベルでの出力は最大出力よりも低いままであるが、基本アンテナはより高い出力での波の送信を可能にする。
平面放射装置の技術を選択することで励起点に印加される電圧が固定される。電圧が高いほど、同一の出力およびインピーダンスを得るのに要する電力は低く、抵抗損失も低い。インピーダンスが同一の場合、出力を2で除算すれば電流が2の二乗根で除算されることになる。提案する解決策は、パッチまたは放射素子11cに直接掛かる出力を加算するため、抵抗損失が大幅に低下する。
上述のように、エネルギー加算が励起点のレベルで直接実行される。従って、4倍の出力を送信するために出力が4倍の増幅器を有する送信増幅系列を設ける必要が無い。また、放射手段の外部で、例えばリング加算器またはウィルキンソン加算器により、出力が限られた増幅器から発せられた信号を加算する必要も無い。本発明により、使用する導体の個数および導体内での抵抗損失、従ってこれらの損失を補償すべく生成される出力を抑えることが可能になる。また、損失を抑えるためにMMIC内でエネルギー加算を行う必要も無い。加算がMMIC内で行われた場合、既に重要な当該場所において損失を解消する必要がある。従ってアンテナの発熱および抵抗損失が減少する。
更に、各ペアの励起点を差動的に励起することにより、点の各ペアが線形偏波された基本波を送信する。第1の点のペア(1a+、1a-)および点の第3のペア(3a-、3a+)の励起信号と、第1および点の第3のペア(1a+、1a-)および(3a-、3a+)に直交する第2の点のペア(2a+、2a-)および点の第4のペア(4a+、4a-)の励起信号との間に相転移を生起させることにより、放射素子11c自身が空間内で4個の基本波を再接合することにより偏波を生成することができる。
上記により、放射素子を励起させたい方向を選択すべく送受信モジュール20cと放射素子の間に挿入された偏波選択スイッチを使用する必要が無くなる。また、当該モジュール20cを励起点に直接接続して出力効率を高めること、すなわち損失を抑えることも可能になる。従って基本アンテナの発熱が抑えられる。
更に、放射素子により送信された4個の基本波を空間内で再結合することで、各基本波の出力よりも出力が4倍の全波が得られる。
受信に際して、入射全波は、各低騒音増幅系列31~34へ送信される4個の基本波に分解されて、加算により再構成される。1個の基本波の出力は入射全波の四分の一である。これにより、意図的または意図しない妨害を実行している装置からのアンテナの照射等の外乱に対してアンテナをより堅牢にすることができる。低雑音増幅器116が劣化するリスクが抑えられる。例えば、基本信号が最適偏波ではなく45°(送信が斜めではなく水平または垂直に偏波される場合)で受信されるという事実により、強い場からの外乱が減少する。図5のアンテナにより、例えば送受信で同一の第1の相転移を適用していない状態で、交差偏波、送信用の水平偏波および受信用の垂直偏波の下での測定が可能になる。
全ての利点は、放射平面上の励起点の巧妙な配置により得られる。
本発明の第1の実施形態による基本アンテナ1dの別の変型例を図7に示す。
平面放射装置10cは図5のものと同一である。当該アンテナは、図5と同一の送信増幅系列21~24を含む送信回路Ad、および同一の受信増幅系列31~34を含む受信回路Bdを含んでいる。これらの系列は、図5と同様の仕方で励起点の各ペアに結合されている。
一方、送受信モジュール20dは図5のものとは相転移手段が異なっている。送受信モジュール20dは、励起点のペア(1a+、1a-)および(2a+、2a-)に印加された励起信号間に第1の送信時相転移を生起可能にし、点のペア(3a+、3a-)および(4a+、4a-)に印加された励起信号間に第2の送信時相転移を生起可能にする少なくとも1個の位相シフタを含む送信時相転移手段を含み、これら2個の送信時相転移は異なり得る。これは、点の2個の四つ組により異なる偏波を生起させる波を送信可能にするものである。
図7に示す非限定的な例において、上述の送信時相転移手段は、任意選択的にある振幅内で同一信号を受信すると共に、各々が受信した信号に相転移を生起させてペア(1a+、1a-)およびペア(2a+、2a-)に印加された励起信号間で第1の送信時相転移を生起させる第1の送信位相シフタ125aおよび第2の送信位相シフタ125bを含んでいる。相転移手段は、任意選択的にある振幅内で同一信号を受信すると共に、各々が信号に相転移を生起させてペア(3a+、3a-)およびペア(4a+、4a-)に印加された励起信号間で第2の相転移を生起させる第3の送信位相シフタ126aおよび第4の送信位相シフタ126bを含んでいる。第1および第2の送信時相転移は異なり得る。位相シフタ125a、125bから発せられた励起信号は各々系列21、22の入力端に注入される。位相シフタ126a、126bから発せられた励起信号は各々系列23、24の入力端に注入される。従って点の2個の四つ組により異なる偏波を示す2本のビームを同時に送信することができる。
受信回路Bdは、励起点のペア(1b+、1b-)および(2b+、2b-)に印加された励起信号に第1の受信時相転移を生起可能にし、点のペア(3b+、3b-)および(4b+、4b-)に印加された励起信号間に第2の受信時相転移を生起可能する受信時相転移手段129a、129b、130a 130bを含み、これらの2個の相転移は異なり得る。各受信増幅系列31~34から出る受信信号は、各々が受信する信号に相転移を生起可能にする各受信位相シフタ129a、129b、130a、130b内に注入される。各受信信号は、位相シフタのうち1個に注入される。
有利な特徴として、点のペア(1a+、1a-)および(2a+、2a-)および/または(1b+、1b-)、(2b+、2b-)の励起および/または受信信号間、またはペア(3a+、3a-)、(4a+、4a-)、(3b+、3b-)、(4b+、4b-)の間で生起される相転移は同一である。一変型例として、これらの相転移は異なり得る。これにより、偏波が異なり得る2個の波の送信および/または受信が可能になる。
有利な特徴として、相転移は調整可能である。
有利な特徴として、点のペア(1a+、1a-)および(2a+、2a-)に印加された、および/またはペア(1b+、1b-)および(2b+、2b-)から発せられた送信および/または受信信号の間、並びにペア(3a+、3a-)および(4a+、4a-)に印加された、および/またはペア(3b+、3b-)および(4b+、4b-)から発せられた信号間で生起した相転移は有利な特徴として独立に調整することができる。従って、第1の集合の点の第1の四つ組(1a+、1a、2a+、2a-)、および第2の四つ組(3a+、3a、4a+、4a-)により送信された、または第2の集合の点の第1の四つ組(1b+、1b、2b+、2b-)および第2の四つ組(3b+、3b、4b+、4b-)により測定された基本波の偏波を調整することができる。
アレイアンテナは、有利な特徴として、送受信に際して相転移を調整可能にする調整装置35を含んでいる。
有利な特徴として、アンテナは、各基本アンテナの第1の集合の点の第1の四つ組(1a+、1a、2a+、2a-)に印加された励起信号間に第1の送信時大域的相転移、およびアレイの各基本アンテナの第1の集合の点の第2の四つ組(3a+、3a、4a+、4a-)に印加された励起信号間に第2の送信時大域的相転移(第1と第2の大域的送信時相転移は異なり得る)、および/または各基本アンテナの第2の集合の点の第1の四つ組(1b+、1b、2b+、2b-)から発せられた受信信号間の第1の受信時大域的相転移と、アレイの各基本アンテナの第2の集合第2の四つ組(3b+、3b、4b+、4b-)から発せられた受信信号間の第2の受信時大域的相転移(第1と第2の受信時大域的相転移は異なり得る)を生起可能にするいわゆる指向性相転移手段を含んでいる。従って、2本のビームを2個の異なる方向に同時に送信し、2個の異なる方向からの2本のビームを受信することができる。
有利な特徴として、二組の点の送信時大域的相転移は調整可能である。
有利な特徴として、送信および/または受信時大域的相転移は独立に調整可能である。指向方向は独立に調整可能である。
図7の非限定的な例において、指向性相転移手段は、各種の位相シフタの入力端で受信された信号における上述の(大域的および非大域的)相転移の生起を制御する各種の信号を含む制御信号SCを生成して、位相シフタが受信した信号にこれらの相転移を生起させるべく位相シフタを制御するようにこれらの信号を調整装置35に送信する制御装置36を含んでいる。
図7の装置はまた、一方向のビームを測定し、同時に別の方向にビームを送信する、または2方向で二つの測定を同時に行うことを可能にする。一方向の信号を送信および受信し、別の方向に送信および受信通信を送信することができる。従ってクロス送受信を実行することができる。サイドローブおよび拡散ローブをカバーする受信時または送信時の放射パターンを形成することによりレーダーを意図的または意図しない妨害信号から保護可能にするサイドローブ拒否(SLO)機能が可能になる。異なる周波数で送信可能であるため、レーダー探知器の作業が複雑になる(ESM:「Electronic Support Measures(電子支援対策)」)。
図7の実施形態において、2個の四つ組(1a+、1a-、2a+、2a-)および(3a+3a、4a+ 4a-)に結合された系列は、2個の異なるフィードソースSO1、SO2からフィードされる。これにより、周波数が異なる励起信号E1、E2を当該ソースが伝送する場合、周波数が異なる2個の波の一方を第1の四つ組(1a+、1a-、2a+、2a-)により、他方を第2の四つ組(3a+、3a-、4a+、4a-)により送信することが可能になる。図7のアンテナは従って、独立に調整可能な二つの指向方向に向けられた周波数が異なる2本のビームを同時に送信することができる。2本のビームを同時に二方向に向けることが可能なため、二重ビーム等価物、すなわち高速走査ビームおよび低速走査ビームを有することが可能になる。例えば、毎分10回転の低速ビームを監視モードで使用し、毎秒1回転の高速ビームを追跡モードに使用することができる。この走査モードは、単一ビームアンテナのようにインターレースされていないが、同時であってよい。異なる周波数で送信可能なことでレーダー探知器の作業が複雑になる(ESM:Electronic Support Measures)。これにより、一方向でデータ接続、別の方向でレーダー機能が可能になる。本実施形態はまた、形状が異なる2本のビームを送信可能にする。励起されたアレイの基本アンテナの数に応じて狭いビームまたは広いビームを送信することができる。
送受信モジュール20dは、第1のソースSO1から発せられた励起信号E1を、送信位相シフタ125a、125bの入力端に注入される2個の同一信号に分割可能にする第1のスプリッタ211aを含んでいる。回路120は、第2のソースSO2から発せられた励起信号E2を、送信位相シフタ126a、126bの入力端に注入される2個の同一信号に分割可能にする第2のスプリッタ211bを含んでいる。
図7の非限定的な例において、励起点の第1のペア(1b+、1b-)から発せられた受信信号を入力として受信する第1の受信位相シフタ129a、および励起点の第2のペア(2b+、2b-)から発せられた受信信号を入力として受信する第2の受信位相シフタ129bから発せられた2個の信号が第1の加算器230aにより加算されて第1の出力信号SS1が生成される。第3のペア(3b+、3b-)から発せられた受信信号を入力として受信する第3の受信位相シフタ130a、および励起点の第4のペア(4b+、4b-)から発せられた受信信号を入力として受信する第4の受信位相シフタ130bから発せられた2個の信号が第2の加算器230bにより加算されて第2の出力信号SS2が生成される。各々の加算器から発せられた信号は、遠隔設置された取得電子機器へ別々に送信される。これにより、周波数が異なる受信信号を区別することが可能になる。第2の集合の点の2個の四つ組(1b+、1b、2b+、2b-)および(3b+、3b、4b+、4b-)から発せられた信号が別々に加算されることで、サイドローブおよび拡散したローブをカバーする受信時のアンテナを形成することによりレーダーを意図的または意図しない妨害信号から保護可能にするサイドローブ拒絶(SLO)機能が可能になる。
一変型例として、2個の励起信号E1、E2は同一周波数を有している。従って、図5の実施形態のようにより高出力の全波を得ること、または同一周波数の2個の信号を異なる二方向に送信するおよび/または異なる偏波を生起させることができる。
本発明の第1の実施形態の別の変型例である基本アンテナ1dを図8に示す。
図8の基本アンテナ1dが図5のものと異なるのは、放射装置10eの放射素子11eが、第1の四つ組(1a+、1a-、2a+、2a-)だけを含む点の第1の集合を含み、且つ第1の四つ組(1b+、1b-、2b+、2b-)だけを含む点の第2の集合を含んでいることである。関連付けられた送受信装置20eが図5のものと異なるのは、これらの励起点に結合された送受信装置の当該部分だけを含んでいることである。図8では、図10、11と同様に、分かり易いように調整装置35および制御装置36を表示していない。互いに直交にある励起点のペアに印加された2個の励起信号により放射素子を励起する事実により、基本アンテナの送受信パターンを対称化することが可能になる。当該基本アンテナは、偏波が調整可能な波の送信、および偏波の調整可能な方向における波の受信を可能にする。各結合点に結合された導体に注入された信号の位相の例を、得られた偏波と共に図9の表に与える。例として第1行を考える。点1a+、2a+は同一励起(同位相)を有し、点1a-、2a-は他の点とは反対向きに同一励起を有している。従って偏波は垂直、すなわち図8に示すz軸に沿っている。
上述の基本アンテナはまた、指向方向が調整可能であるが図5の半分の出力で全波を送信可能にするアレイアンテナを製造可能にする。
有利な特徴として、図8の基本アンテナの励起点1a+、1a-、2a+、2a-、1b+、1b-、2b+、2b-は、放射素子により画定される平面内にあり、中心点Cを通り、直線D1とD2により形成される角度の二等分線である第3の直線D3の同じ側に位置している。放射素子が正方形であって直線D1、D2が当該正方形の各辺と平行な場合、第3の直線は当該正方形の2個の頂点を結んでいる。これにより、例えば他の種類の励起を実現するために放射素子の半分を解放することが可能になる。
有利な特徴として、図5、7の点の各々の第1の四つ組(1a-、1a+、2a+、2a-)および(1b-、1b+、2b+、2b-)もまた直線D3の同じ側に位置している。
本発明の第1の実施形態の別の変型例である基本アンテナ1fを図10に示している。図10の基本アンテナが図8のものと異なるのは2個の集合の点の四つ組の配置である。より厳密には、図10の基本アンテナが図8のものと異なるのは、第1の集合の励起点1a-、1a+および2a+、2a-が第2の集合の励起点1b、1b+および2b+、2b-に関して第3の直線D3の他方の側に位置していることである。従って、励起点1a+、1a-は点1b+、1b-に関して直線D2の他方の側に位置し、点2a+、2a-は点2b+、2bに関して直線D1の他方の側に位置している。2個の集合の励起点が互いにより離れているため、本実施形態は図8のものよりも容易に実現できる。
第1の実施形態の別の変型例である基本アンテナ1gを図11に示している。当該基本アンテナが図8のものと異なるのは、平面放射装置10gの放射素子11g上での2個の集合の点の四つ組の配置である。点1a+、1a-および1b+、1b-の配置が図8のものと異なるのは、これらの点が第2の直線D2上に配置されていることであり、点2a+、2a-および2b+、2b-の配置が図8のものと異なるのはこれらが第1の直線D1上に配置されていることである。直線D1、D2は、図8のように正方形であり得る矩形の平面要素の各辺と平行である。
放射素子11gを有している放射装置10gを図12に示している。当該装置に基づいて形成された基本アンテナは有利な特徴として、図11と同一の送受信モジュールを有しいている。当該基本アンテナが図11のものと異なるのは、点の2個の四つ組が延在する直線D1、D2の配置である。当該変型例において、直交する直線D1、D2は正方形の反対側の頂点を結んでいる。
図11、12の変型例が有利なのは、これらが、2本の直線D1、D2に沿って長手方向に延在する2個のスロット(f1、f2)または(f3、f4)だけにより8個の励起点の結合を実現可能にするからである。これらのアンテナは、利得および偏波の観点から図8のアンテナと同じ利点を有している。
一変型例において、点の第2の集合は図5、7の点1a+、1a-、2a+、2a-、3a+、3a-、4a+、4eと同一である。送受信回路は有利な特徴として、これらの点に結合された図5の回路20cまたは図7の回路20dの一部を含んでいる。点の第1の集合は実際に図8の点1b+、1b、2b+、2rと同一である。送受信回路は有利な特徴として、これらの点に結合された図10の回路20eの一部を含んでいる。本実施形態により、測定された出力が低い場合、顕著な出力で送信して、励起点の、従って検出に用いる導体の個数を抑えることが可能になる。
従って、第1の実施形態において、点の第1の集合の各点が送信増幅系列110aに結合されていて、第2の集合の各点が受信増幅系列120aに結合されている。第1の集合の点は受信増幅系列に結合されておらず、第2の集合の点は送信増幅系列に結合されていない。
有利な特徴として、励起点は、各増幅系列に自身の最適なインピーダンスが生起するように配置され、各増幅系列に結合されている。増幅系列に生起するインピーダンスは有利な特徴として、結合された励起点または結合された点で増幅系列に結合された放射装置により、および放射装置を増幅系列に接続する各フィード線により形成されている系列のインピーダンスである。
有利な一実施形態において、フィード線のインピーダンスは無視できるため、増幅系列に生起するインピーダンスは実質的に、当該増幅系列に結合された励起点における、または当該増幅系列に結合された励起点間の放射装置により生じた負荷である。
有利な特徴として、但し必然的にではなく、効率を最適化するために、1または2個の励起点に結合された各送信増幅系列の出力インピーダンスは実質的に、前記点で、または前記点間で前記送信増幅系列110aに生起する放射装置10のインピーダンスの共役複素数であり、1または2個の励起点に結合された各受信増幅系列120aの入力インピーダンスは実質的に、当該点または前記点間で受信増幅系列120aに生起する放射装置のインピーダンスの共役複素数である。
本発明によるアンテナの第2の実施形態の第1の例1000を図13に示している。当該アンテナは図1のものと同一の平面放射装置10を含んでいる。当該第2の実施形態において、処理モジュールは、放射素子を励起すべく信号を伝送可能ないわゆる高出力送信回路を含む送信回路200aを含んでいる。当該回路は、放射素子を励起する図13の高出力送信増幅系列110aおよび低出力回路送信を含んでいる。送信回路200aは、受信回路よりも低出力のいわゆる低出力送信回路である別の送信回路を含んでいる。当該送信回路は、いわゆる低出力送信増幅系列220aを含んでいる。高出力送信増幅系列110aは第1の点1に結合されていて、低出力送信増幅系列220aは第2の点2に結合されている。
一般に第2の実施形態の全ての変型例に適用できるように、処理回路は、放射素子の励起を目的とする高出力信号を伝送可能な高出力送信回路、および放射素子の励起を目的とする低出力信号を伝送可能な低出力送信回路を含み、高出力送信回路は当該送信回路の少なくとも1個の励起点の第1の集合に結合されていて、低出力送信回路は少なくとも1個の励起点の第2の集合に結合されている。これらの回路は、第1および第2の集合の同一点には結合されていない。高出力送信回路は、少なくとも1個のいわゆる高出力増幅系列を含み、低出力送信回路は高出力増幅系列よりも低出力の少なくとも1個のいわゆる低出力増幅系列を含んでいる。高出力送信増幅系列とは、低出力送信増幅系列よりも高い最大出力の信号を伝送可能な送信増幅系列を意味する。各高出力送信増幅系列は、点の第1の集合の1個または2個の点に結合されていて、各低出力送信増幅系列は第2の集合の1個または2個の点に結合されている。高出力および低出力送信系列は第1および第2の集合に共通な点には結合されていない。二種類の送信増幅系列の最大送信出力間の出力比率は典型的に最大10dBまでであってよい。
上述のような解決策の利点は、これらの信号が放射素子で(別個の励起点で)直接加算されることを保証しながら、二種類の信号(高および低出力)に対して独立インピーダンス整合を可能にすることでエネルギー損失を抑えることである。
励起点を(図13のように)非対称に励起できるように当該励起点に結合された、または差動的に励起できるように(以下の図のように)励起点のペアに結合された各高出力送信増幅系列110aに実質的に自身の最適なインピーダンスが生じるようにしてもよい。高出力増幅系列に生起した当該インピーダンスは、当該励起点または複数の励起点で高出力増幅系列に結合された放射装置により、および放射装置を対応する励起点で増幅系列に接続する各フィード線により形成された系列のインピーダンスである。当該インピーダンス整合により、低出力信号のインピーダンスが不利になることなく、高出力送信増幅系列の出力端とその励起点の間でのインピーダンス変換用の特定の要素の使用を回避できるようになる。
有利な一実施形態において、フィード線のインピーダンスは無視できるため、高出力増幅系列に生起するインピーダンスは実質的に、当該増幅系列に結合された励起点における、または当該増幅系列に結合された励起点間の放射装置のインピーダンスである。
有利な特徴として、最適なインピーダンス整合を実現するために、各高出力送信増幅系列110aの出力インピーダンスは実質的に、放射装置10により前記点で、または前記点間で高出力送信増幅系列に生起したインピーダンスの共役複素数であり、これにより特に熱に伴う要因で高出力に基本的な高い送信効率が得られる。
送受信増幅系列の最適な出力インピーダンスは典型的に20オームのインピーダンスを生起させる。強力な信号であるレーダー信号のインピーダンス整合が得られ、(例えばデータ通信または妨害信号を伝送する)低出力の出力増幅系列と、それが結合された励起点との間でインピーダンス不整合は受容可能であり、この場合エネルギー効率はさほど重要でない。
一変型例として高出力および低出力送信増幅系列は、別個の最適出力インピーダンスを生起させる。従って、高出力送信増幅系列および低出力送信増幅系列について上で述べたインピーダンス整合を実現することができる。
これらの系列の各々は少なくとも1個の送信増幅器、例えば出力増幅器を含んでいる。高出力送信増幅系列は少なくとも1個の高出力増幅器114a(図1のように信号を伝送する)または114(差動信号を伝送する)を含み、低出力送信増幅系列は少なくとも1個の低出力送信増幅器218a(la1のように非対称信号の受信を意図された)または218(以下の図面のように差動信号を受信可能)を含んでいる。
図21において、フィード点1だけが励起された場合の当該点の反射係数または定常波比を破線で示し、第1のポートのインピーダンスのモジュラスが20オーム、第2の点2のインピーダンスのモジュラスが50オーム、および第2の送信増幅系列の出力インピーダンスのモジュラスが500オームである場合に点1、2が自身の各送信増幅系列により同時に励起した場合の当該同一点の反射係数を実線で示している。後者の極めて高いインピーダンスにおいても、第1の点の反射係数は第2のポートの励起により殆ど乱されないことに注意されたい。2個の励起点により送信された信号は互いを殆ど乱さないため、二種類の信号の同時送信が可能である。
有利な特徴として、各高出力送信増幅系列の通過帯域は狭いのに対し、低出力送信増幅系列の通過帯域は広い。実際、高出力レーダー信号は、低出力妨害またはデータ通信信号よりも狭い周波数拡散を示す筈である。
第2の実施形態によるアンテナは、第1の実施形態の図面のように配置された平面放射装置の複数の変型例を有し、付随する処理回路を有していてよい。毎回、送信回路は、各々が第1および点の第2の集合に結合された2個の送信回路を含んでいる。
図14~20の各々の送信回路は、第1の集合の点に結合された高出力送信回路および第2の集合の点に結合された低出力送信回路を構成する(図6および9を除き)図1~12の各々の送信回路を含んでいる。低出力送信回路は、出力以外は高出力送信回路と同一である。例えば図13において、送信回路200aは、図1の送信増幅系列110a、ここでは点1に結合された高出力送信増幅系列を含んでいる。送信回路200aはまた、点2に結合された低出力送信増幅系列220aも含んでいる。
図14のアンテナ1000aの送信回路200が図3の回路と異なるのは、第2の集合の点のペア(6+、6-)を対称に励起すべくこれらの点に結合された低出力増幅器218を含む低出力送信増幅系列220を含んでいることである。
図15に、図13、14の要素を組み合わせていて、且つ送信回路200bを含むアンテナ1000bの別の変型例を示す。
図16のアンテナ1000cの送信回路200cが図5の回路と異なるのは、第1の集合の点(1a+、1a-)、(2a+、2a-)、(3a+、3a-)、(4a+、4a-)に結合されて高出力送信回路を形成してソースSOU1によりフィードされる図15の送信回路A、および別のソースSOU2によりフィードされる低出力送信回路Cを含んでいることである。低出力送信回路Cは、送信増幅系列の出力以外は回路Aと同一である。低出力送信回路の4個の送信増幅系列231、232、233、234は、第2の集合の各々の点のペア(1b+、1b-)、(2b+、2b-)、(3b+、3b-)および(4b+、4b-)に結合されている。回路Cは、少なくとも1個の位相シフタを含む送信時相転移手段225、226を含んでいるため、第1のペア(1b+、1b-)に印加された信号と、第2のペア(2b+、2b-)に印加された信号との間に第1の送信時相転移を生起可能にすると共に、ペア(3b+、3b-)に印加された信号と、ペア(4b+、4b-)に印加された信号との間に当該同一の第1の送信時相転移を生起可能にする。位相シフタ225により伝送された信号は系列231、233への入力として印加され、位相シフタ226により伝送された信号は系列232、234への入力として印加される。位相シフタ225、226は、スプリッタ222により2個の位相シフタ間で分割された信号を伝送する同一ソースSOU2から発せられた信号を入力として受信する。図16の点の各集合により、励起点が1個の解決策の8倍の出力を送信することが可能になると共に、高出力信号と低出力信号の間で特別の仕方でインピーダンスを整合させることが可能になる。本構成により、二種類すなわち高出力および低出力の送信の偏波を独立に制御して、異なる二方向にこれらの異なる出力の信号を送信することが可能になる。本解決策により、受信帯域に近い、但し当該帯域外の他の送信により送信サイドローブをカバーすることが可能になる。従ってサイドローブ内で邪魔されることを回避することが可能になる。これはリピータジャマーに対抗する武器である。
有利な特徴として、点の第2の集合の点の励起信号間で生起する第1の送信時相転移は調整可能である。この相転移は、点の第1の集合の励起信号間で生起する第1の送信時相転移とは独立に調整可能であってよい。この相転移は有利な特徴として調整装置35により調整可能である。
有利な特徴として、指向性相転移手段により、アンテナの各基本アンテナの励起点の第2の集合の点に印加された励起信号間に調整可能な大域的相転移を生起させることが可能になる。例えば、制御装置36は、各位相シフタの入力端で受信された信号での大域的相転移の生起を制御する大域的信号を含む制御信号SCを生成する。
図17のアンテナ1000dが図16のものと異なるのは送信回路200dである。送信回路200dは図7のもの同一の高出力送信回路Adを含んでいる。送信回路200dは、出力以外は回路Adと同一であって点の第2の集合の点に接続されている低出力送信回路Bdを含んでいる。当該回路Bdは、系列21、22、23および24よりも低出力であって各々が第2の集合の点のペア(1b+、1b-)、(2b+、2b-)、(3b+、3b-)および(4b+、4b-)に結合された4個の送信増幅系列231、232、233、234を含んでいる。相転移手段により、励起点のペア(1b+、1b-)および(2b+、2b-)に印加された励起信号間で第1の送信時相転移、および点のペア(3b+、3b-)および(4b+、4b-)に印加された励起信号間で第2の送信時相転移が生起可能になり、これらの2個の送信時相転移は異なり得る。
これらの相転移手段は、4個の位相シフタ127a、127b、128a、128bを含んでいる。2個の位相シフタ127a、127bは各々同一のソースSO3から発せられた信号を受信し、当該信号に各相転移を印加して、系列231、232の入力端へ信号を伝送する。2個の位相シフタ128a、128bは各々同一のソースSO4から発せられた信号を受信し、当該信号に相転移を印加して、系列233、234の入力端へ信号を伝送する。ソースSO3、SO4から発せられた信号は、位相シフタ127a、127b、128a、128bの入力端に注入される前に各スプリッタ222a、222bを通過する。
ペア(1b+、1b-)および(2b+、2b-)に印加された励起信号間、およびペア(3b+、3b-)および(4b+、4b-)に印加された励起信号間で生起した相転移は同一であってよい。一変型例として、これらの信号は異なり得る。これにより、点の第2の集合により偏波が異なり得る2個の波を送受信することが可能になる。
有利な特徴として、相転移は調整可能である。
点のペア(1b+、1b-)および(2b+、2b-)に印加された送信信号間、およびペア(3b+、3b-)および(4b+、4b-)に印加された信号間で生起した相転移は有利な特徴として独立に調整することができる。第2の集合の第1の点の四つ組(1b+、1b、2b+、2b-)、および第2の点の四つ組(3b+、3b、4b+、4b-)により送信された基本波の偏波は従って独立に調整することができる。
有利な特徴として、いわゆる指向性相転移手段により、各基本アンテナの第2の集合の第1の点の四つ組(1b+、1b、2b+、2b-)の励起信号に印加された励起信号間で第1の大域的相転移を、および当該アレイの各基本アンテナの第2の集合の第2の点の四つ組(3b+、3b、4b+、4b-)の励起信号間で第2の調整可能な大域的相転移を生起させることが可能になり、第2の集合の励起信号に印加された第1および第2の大域的相転移は異なり得る。従って、点の2個の集合により4本のビームを同時に異なる4方向に送信することが可能である。例えば、2個のレーダー信号を異なる2方向に、および/または異なる偏波で、2個の妨害信号を異なる2方向に、および/または異なる偏波でできる。例えば、ある帯域で通信を実行し、ローブおよび拡散したローブを保護して、2本のレーダーペンシルを異なる方向に向けることができる。また、異なる偏波での送信を行う、または送信時に機敏に偏波させることができる。
有利な特徴として、送信および/または受信時大域的相転移は調整可能である。
有利な特徴として、点の2個の集合に印加された大域的相転移は独立に調整可能である。指向方向は独立に調整可能である。
図17の非限定的な例において、指向性相転移手段は、位相シフタが受信した信号に相転移を生起させるべく位相シフタ制御するように、各種の位相シフタの入力端で受信された信号に印加する上述の(大域的および非大域的)相転移の生起を制御する各種の信号を含む制御信号SCを生成して、これらの信号を調整装置35に送信する制御装置36を含んでいる。
図18の実施形態が図16のものと異なるのは、放射装置10eの放射素子11eが、第1の点の四つ組(1a+、1a-、2a+、2a-)だけを含む点の第1の集合、および第1の点の四つ組(1b+、1b-、2b+、2r)だけを含む点の第2の集合を含んでいることである。付随する送信回路200eが図16のものと異なるのは、これらの励起点に結合された処理回路の一部だけを含んでいることである。図19、20が図18の実施形態と異なるのは、図8または図10の配置と同一の励起点の配置である。図11のような励起点の配置も考えられる。
図13以降において、分かり易いように受信回路だけを表示している。アンテナはまた受信回路も含んでいてよい。各点または点のペアは、当該点または点のペアから発せられた信号を処理可能にすべく送信増幅系列に加えて受信増幅系列にも結合されていてよい。受信時相転移手段を設けて、送信時相転移手段により励起信号に生起した相転移と同じ点から発せられた信号間での相転移を保証することができる。これにより、受信信号の偏波を調整することが可能になる。受信時の指向方向を変更可能にすべく受信時に大域的相転移を生起させる手段を設けてもよい。
一変型例において、点の第2の集合は、図5および7の集合(1a+、1a-、2a+、2a-、3a+、3a-、4a+、4e)と同一である。送信回路は有利な特徴として、これらの点に結合された図16の回路200cまたは図17の回路200dの一部を含んでいる。点の第1の集合は実際に図20の集合(1b+、1b、2b+、2r)と同一である。送信回路は有利な特徴として、これらの点に結合された図20の回路200eの一部を含んでいる。
従って、第2の実施形態において、点の第1の集合の各点は高出力送信増幅系列に結合されていて、第2の集合の各点はより低出力の送信増幅系列に結合されている。点の第1の集合は低出力送信増幅系列に結合されておらず、第2の集合の点は高出力送信増幅系列に結合されていない。
処理回路は有利な特徴としてMMIC技術で製造されている。好適には、SiGe(シリコンゲルマニウム)技術が用いられる。一変型例として、GaAs(砒化ガリウム)またはGaN(窒化ガリウム)技術が用いられる。有利な特徴として、同一の基本アンテナの送受信増幅系列は同一の基板上に形成されている。従って嵩高が減少して、平面放射装置10の後部での増幅系列の集積が容易になる。
有利な特徴として、図示するものに限定されない実施形態において、第1の種類の各増幅系列は第2の種類の増幅系列に関連付けられている。これらの増幅系列は各励起点に結合されている。励起点は、2個の互いに関連付けられた増幅系列が、これらの各励起点を介して、同一方向に線形に偏波した各基本波を送信または受信する目的で分布している。換言すれば、当該方向は2個の増幅系列に共通である。換言すれば、互いに関連付けられた増幅系列の各々は、一方向に線形に偏波した基本波を送信または検出すべく少なくとも1個の励起点の集合に結合されている。当該方向は、2個の互いに結合された増幅系列で同一である。
上述の構成により、基本アンテナが、位相シフタを有していない二種類の増幅系列により、同一方向に線形に偏波した全波を送信して同時に検出すること、または同一方向に線形に偏波した全波を同時に送信することができる。しかも、当該動作モードは最も一般的である。従って、例えば図面の実施形態から位相シフタを除外することができる。換言すれば、増幅系列に位相シフタが無くてもよく、従って基本アンテナのコストおよび数量を抑制して、集積度を高めることできるようになる。
各増幅系列は、非対称励起のために1個の励起点に、または差動励起のために数個の励起点に結合されている。
図1~4および13~15において、上述の励起点は、全てが直線D1またはD2の一方に乗るように配置されている。増幅系列が2個の励起点に結合されている場合、これらの点は中心Cに関して対称に配置されている。これらの点により検出または送信された偏波は、当該位置が配置された直線に沿って線形に偏波されている。
図11~12および20において、励起点は全てが直線D1、D2に乗るように配置されている。増幅系列が2個の励起点に結合されている場合、これらの点は中心Cに関して対称に配置されている。同一のペアの2個の点は同一直線上に配置されていて、従って、当該直線に沿って線形に偏波した基本波の送信または検出を目的としている。

Claims (20)

  1. ほぼ平坦な放射素子と、少なくとも1個の第1の種類の増幅系列および少なくとも1個の第2の種類の増幅系列を含む送信および/または受信回路とを含む平面放射装置を含む基本アンテナであって、前記第1の種類の各増幅系列が前記放射素子の少なくとも1個の励起点の第1の集合の少なくとも1個の励起点に結合され、前記第2の種類の各増幅系列が前記放射素子の励起点の第2の集合の少なくとも1個の点に結合されていて、前記第1および第2の集合の前記励起点が別個であり、前記第1の種類の増幅系列が前記第2の種類の増幅系列とは異なるため、それらは異なる増幅特性を示し、
    基本アンテナは、送受信回路を含み、前記回路が、
    -前記放射素子の励起を目的とする信号を伝送可能な少なくとも1個の送信増幅系列であって、各送信増幅系列が前記放射素子の少なくとも1個の励起点の前記第1の集合の少なくとも1個の点に結合されている少なくとも1個の送信増幅系列と、
    -前記放射素子から発せられた信号を増幅可能な少なくとも1個の受信増幅系列であって、各受信増幅系列が前記放射素子の少なくとも1個の励起点の前記第2の集合の少なくとも1個の点に結合されている少なくとも1個の受信増幅系列とを含んでおり、
    前記励起点が、前記各増幅系列に自身の最適なインピーダンスが実質的に生起するように配置され、前記各増幅系列に結合されており、各増幅系列に生起する前記インピーダンスが、前記増幅系列に結合された前記放射装置により、および前記放射装置を前記増幅系列に接続する各フィード線により形成されている系列のインピーダンスである、基本アンテナ。
  2. -前記第1の集合の1個の点または2個の点に結合された少なくとも1個の送信増幅系列が、前記第1の集合の前記点または前記2個の点の間で、前記送信増幅系列に生起した前記放射装置のインピーダンスの実質的に共役複素数である出力インピーダンスを生起させ、
    および/または
    前記第1の集合の1個の点または2個の点に結合された少なくとも1個の受信増幅系列が、前記第2の集合の前記点または前記2個の点の間での受信に際して前記増幅系列に生起した前記放射装置のインピーダンスの実質的に共役複素数である出力インピーダンスを生起させる、請求項に記載の基本アンテナ。
  3. ほぼ平坦な放射素子と、少なくとも1個の第1の種類の増幅系列および少なくとも1個の第2の種類の増幅系列を含む送信および/または受信回路とを含む平面放射装置を含む基本アンテナであって、前記第1の種類の各増幅系列が前記放射素子の少なくとも1個の励起点の第1の集合の少なくとも1個の励起点に結合され、前記第2の種類の各増幅系列が前記放射素子の励起点の第2の集合の少なくとも1個の点に結合されていて、前記第1および第2の集合の前記励起点が別個であり、前記第1の種類の増幅系列が前記第2の種類の増幅系列とは異なるため、それらは異なる増幅特性を示し、
    基本アンテナは、送信回路を含み、前記送信回路が、
    -前記放射素子の励起を目的とする信号を伝送可能な少なくとも1個のいわゆる高出力送信増幅系列であって、各高出力送信増幅系列が前記放射素子の少なくとも1個の励起点の前記第1の集合の少なくとも1個の点に結合されている少なくとも1個のいわゆる高出力送信増幅系列と、
    -前記放射素子の励起を目的とする信号を伝送可能な少なくとも1個の第2のいわゆる低出力送信増幅系列であって、各低出力送信増幅系列が前記放射素子の少なくとも1個の励起点の前記第2の集合の少なくとも1個の点に結合されている、前記高出力送信増幅系列よりも低出力の、少なくとも1個の第2のいわゆる低出力送信増幅系列とを含んでおり、
    前記励起点が、各高出力増幅系列に自身の最適なインピーダンスが実質的に生起するように配置され、各高出力送信増幅系列に結合されており、各高出力増幅系列に生起する前記インピーダンスが、前記増幅系列に結合された前記放射装置により、および前記放射装置を前記高出力送信増幅系列に接続する各フィード線により形成されている系列のインピーダンスである、基本アンテナ。
  4. 前記第1の集合の1個の点または2個の点に結合された少なくとも1個の高出力送信増幅系列が、前記第1の集合の前記点または2個の点間で前記送信増幅系列に生起した前記放射装置のインピーダンスの実質的に共役複素数である出力インピーダンスを生起させる、請求項に記載の基本アンテナ。
  5. 前記第1の集合および前記第2の集合の前記励起点が別個のインピーダンスを生起させる、請求項に記載の基本アンテナ。
  6. 前記第1の集合の各励起点のインピーダンスが前記第2の集合の各励起点のインピーダンスよりも小さい、請求項1~のいずれか1項に記載の基本アンテナ。
  7. 前記第1の種類の各増幅系列が前記第2の種類の増幅系列に関連付けられていて、前記増幅系列が、同一方向に線形に偏波した各基本波を送信または受信すべく配置された励起点に結合されている、請求項1~のいずれか1項に記載の基本アンテナ。
  8. 前記放射素子が、前記放射素子の中心点(C)を通る第1の直線(D1)、および前記第1の直線(D1)と直交して前記中心点(C)を通る第2の直線(D2)により画定され、前記励起点が前記第1および/または前記第2の直線上だけに分布している、請求項1~のいずれか1項に記載の基本アンテナ。
  9. 前記励起点が前記第1および/または前記第2の直線上だけに分布していて、前記放射装置が、前記第1の直線(D1)および前記第2の直線(D2)に沿って長手方向に延在する2個のスロットを含み、前記2個のスロットが全ての励起点の結合を保証する、請求項に記載の基本アンテナ。
  10. 前記第1の集合(1a+、1a-、2a+、2a-)および前記第2の集合(1b+、1b、2b+、2b-)から選ばれた少なくとも1個の集合が励起点の少なくとも1個のペアを含み、前記励起点のペアが、前記放射装置と前記送信回路との間で差動信号を流す目的で前記送信および/または受信回路に結合された2個の励起点を含んでいる、請求項1~のいずれか1項に記載の基本アンテナ。
  11. 前記第1の集合および前記第2の集合から選ばれた少なくとも1個の集合が励起点の第1の四つ組を含み、前記放射素子が、前記放射素子の中心(C)を通る第1の直線(D1)および前記第1の直線(D1)と直交して前記中心(C)を通る第2の直線(D2)により画定され、励起点の各々の第1の四つ組の励起点が、前記第1の直線(D1)に関してほぼ対称に配置された励起点(1a+、1a-、1b+、1b-)から構成される励起点の第1のペアを含み、前記第2の直線(D2)に関してほぼ対称に配置された励起点から構成される励起点の第2のペアを含んでいる、請求項10に記載の基本アンテナ。
  12. 前記点の第1の四つ組の励起点が前記第1の直線(D1)からおよび前記第2の直線(D2)からある距離に位置している、請求項11に記載の基本アンテナ。
  13. 各集合が、前記第1の直線(D1)および前記第2の直線(D2)上に位置する励起点の第1の四つ組を含んでいる、請求項11に記載の基本アンテナ。
  14. 各集合が点の第1の四つ組からなり、点の各々の第1の四つ組の前記励起点が、前記放射素子により画定される平面に位置し、前記中心点(C)を通り、前記第1および前記第2の直線がなす角度の二等分線である第3の直線(D3)の一方の側だけに位置している、請求項11に記載の基本アンテナ。
  15. 前記集合が、前記第1の直線(D1)からおよび前記第2の直線(D2)からある距離に位置する励起点の第2の四つ組であって、
    前記第1の直線(D1)に関してほぼ対称に配置された励起点から構成される第3のペア(3a+、3e)であって、前記点の第3のペア(3a+、3a-)の点が、前記集合の前記励起点の第1のペア(1a+、1e)に関して前記第2の直線(D2)の他方の側に配置されている第3のペア(3a+、3e)と、
    前記第2の直線(D2)に関してほぼ対称に配置された励起点から構成される第4のペア(4a+、4a-)であって、前記点の第4のペア(4a+、4a)の点が、前記集合の前記励起点の第2のペア(1a+、1a-)に関して前記第1の直線(D1)の他方の側に配置されている第4のペア(4a+、4a-)とを含む第2の四つ組を含んでいる、請求項1113のいずれか1項に記載の基本アンテナ。
  16. 前記第1の集合および前記第2の集合から選ばれた各集合が点の第1および第2の四つ組を含んでいる、請求項15に記載の基本アンテナ。
  17. 前記励起点の第1のペアから印加された、または発せられた第1の信号と、前記励起点の第2のペアに印加された、または前記第2のペアから発せられた第2の信号との間で第1の相転移を生起可能にすると共に、前記第3のペアに印加された、または前記第3のペアから発せられた、または前記集合の前記励起点の第3のペアから発せられた第3の信号と、前記集合の前記励起点の第4のペアに印加された、または前記第4のペアから発せられた第4の信号との間で前記第1の相転移とは異なり得る前記集合の第2の相転移を生起可能にする相転移手段を含んでいる、請求項15または16に記載の基本アンテナ。
  18. 少なくとも1個の集合の前記点の第1の四つ組および前記点の第2の四つ組が、別個の周波数の、または別々に加算された信号により励起されている、請求項1517のいずれか1項に記載の基本アンテナ。
  19. 前記放射素子が放射素子のアレイを形成している、請求項1~18のいずれか1項に記載の基本アンテナを複数含んでいるアンテナ。
  20. 請求項15に従い、前記各基本アンテナの点の少なくとも1個の集合の前記点の第1の四つ組に印加された、または前記第1の四つ組から発せられた信号間で第1の大域的相転移を生起可能にすると共に、前記各基本アンテナの前記点の集合の前記点の第2の四つ組に印加された、または前記第2の四つ組から発せられた信号間で第2の大域的相転移を生起可能にする指向性相転移手段を含み、前記第1および前記第2の大域的相転移が異なり得る、請求項19に記載のアンテナ。
JP2019561372A 2017-02-01 2018-02-01 平面放射装置を含む基本アンテナ Active JP7104479B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1700103A FR3062524B1 (fr) 2017-02-01 2017-02-01 Antenne elementaire a dispositif rayonnant planaire
FR1700103 2017-02-01
PCT/EP2018/052584 WO2018141882A1 (fr) 2017-02-01 2018-02-01 Antenne elementaire a dispositif rayonnant planaire

Publications (2)

Publication Number Publication Date
JP2020505893A JP2020505893A (ja) 2020-02-20
JP7104479B2 true JP7104479B2 (ja) 2022-07-21

Family

ID=59859113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019561372A Active JP7104479B2 (ja) 2017-02-01 2018-02-01 平面放射装置を含む基本アンテナ

Country Status (8)

Country Link
US (1) US10992061B2 (ja)
EP (1) EP3577721A1 (ja)
JP (1) JP7104479B2 (ja)
CN (1) CN110506365B (ja)
AU (1) AU2018216020B2 (ja)
FR (1) FR3062524B1 (ja)
IL (1) IL268066B2 (ja)
WO (1) WO2018141882A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102621852B1 (ko) 2018-12-26 2024-01-08 삼성전자주식회사 복수의 전기적 경로를 이용하여 급전을 받는 도전성 패치를 포함하는 안테나 구조체 및 상기 안테나 구조체를 포함하는 전자 장치
EP3836301B1 (en) * 2019-12-09 2024-01-24 NXP USA, Inc. Multi-polarized antenna array
US11899127B2 (en) * 2020-09-30 2024-02-13 Aurora Operations, Inc. Virtual antenna array with distributed aperture
FR3137798A1 (fr) * 2022-07-07 2024-01-12 Thales Antenne élémentaire améliorée du type plan rayonnant alimenté par fentes et antenne réseau active
CN115799825A (zh) * 2023-01-28 2023-03-14 深圳芯盛思技术有限公司 一种差分馈线功率合成收发一体天线及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053544A (ja) 1999-08-11 2001-02-23 Mitsubishi Electric Corp アンテナ一体型増幅器モジュール
JP2003046340A (ja) 2001-07-31 2003-02-14 Hitachi Ltd 高周波電力増幅器
JP2009055575A (ja) 2007-08-29 2009-03-12 Kyocera Corp スロットアンテナ
US20120188917A1 (en) 2005-06-22 2012-07-26 Knox Michael E Antenna feed network for full duplex communication
JP2014090402A (ja) 2013-05-20 2014-05-15 Panasonic Corp 無線通信回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280297A (en) * 1992-04-06 1994-01-18 General Electric Co. Active reflectarray antenna for communication satellite frequency re-use
EP0867804A2 (en) * 1997-03-28 1998-09-30 Lucent Technologies Inc. Triangular addressing
US5936588A (en) * 1998-06-05 1999-08-10 Rao; Sudhakar K. Reconfigurable multiple beam satellite phased array antenna
KR100264352B1 (ko) * 1998-06-08 2000-08-16 조성국 마이크로파 신호 단간 매칭회로와 이를 이용한 마이크로파 패치안테나장치
FI124618B (fi) * 2005-03-29 2014-11-14 Perlos Oyj Antennijärjestelmä ja menetelmä antennin yhteydessä sekä antenni
US8111640B2 (en) * 2005-06-22 2012-02-07 Knox Michael E Antenna feed network for full duplex communication
EP1952484A1 (en) * 2005-11-24 2008-08-06 Thomson Licensing Antenna arrays with dual circular polarization
FR2894080B1 (fr) * 2005-11-28 2009-10-30 Alcatel Sa Antenne reseau a maillage irregulier et eventuelle redondance froide
EP2034623A1 (en) * 2007-09-05 2009-03-11 Nokia Siemens Networks Oy Adaptive adjustment of an antenna arrangement for exploiting polarization and/or beamforming separation
EP2093832B1 (en) * 2008-02-20 2015-09-30 Raytheon Company Power combining and energy radiating system and method
US8519345B2 (en) * 2008-10-16 2013-08-27 King Abdullah University of Science and Technology (KAUST) Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system
US9083293B2 (en) * 2011-05-19 2015-07-14 Mediatek Inc. Signal transceiver
CN103022663A (zh) * 2012-12-05 2013-04-03 广州中海达卫星导航技术股份有限公司 一种小型双频有源导航天线装置
CN203690505U (zh) * 2013-11-12 2014-07-02 深圳市维力谷无线技术有限公司 一种gps与glonass组合双频有源天线
US10305176B2 (en) * 2014-05-20 2019-05-28 University Of North Dakota Conformal antennas for unmanned and piloted vehicles and method of antenna operation
RU2631224C1 (ru) * 2016-07-29 2017-09-19 Общество с ограниченной ответственностью "Радио Гигабит" Многоканальный радиочастотный модуль с частотным разнесением приема и передачи

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053544A (ja) 1999-08-11 2001-02-23 Mitsubishi Electric Corp アンテナ一体型増幅器モジュール
JP2003046340A (ja) 2001-07-31 2003-02-14 Hitachi Ltd 高周波電力増幅器
US20120188917A1 (en) 2005-06-22 2012-07-26 Knox Michael E Antenna feed network for full duplex communication
JP2009055575A (ja) 2007-08-29 2009-03-12 Kyocera Corp スロットアンテナ
JP2014090402A (ja) 2013-05-20 2014-05-15 Panasonic Corp 無線通信回路

Also Published As

Publication number Publication date
IL268066B (en) 2022-12-01
AU2018216020B2 (en) 2022-06-02
FR3062524B1 (fr) 2021-04-09
US10992061B2 (en) 2021-04-27
AU2018216020A1 (en) 2019-08-22
IL268066A (en) 2019-09-26
CN110506365A (zh) 2019-11-26
CN110506365B (zh) 2022-01-11
WO2018141882A1 (fr) 2018-08-09
EP3577721A1 (fr) 2019-12-11
IL268066B2 (en) 2023-04-01
FR3062524A1 (fr) 2018-08-03
US20190372239A1 (en) 2019-12-05
JP2020505893A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
JP7104479B2 (ja) 平面放射装置を含む基本アンテナ
US11063372B2 (en) Elementary antenna comprising a planar radiating device
US8264405B2 (en) Methods and apparatus for radiator for multiple circular polarization
Wincza et al. Microstrip antenna arrays fed by a series-parallel slot-coupled feeding network
US6233434B1 (en) System for transmitting/receiving a signal having a carrier frequency band for a radio base station
JP4034265B2 (ja) 2個の放射要素を備えるリアクティブ結合アンテナ
US10454175B2 (en) Transceiver device and associated antenna
US9899736B2 (en) Low cost active antenna system
US4023172A (en) Monopulse system for cancellation of side lobe effects
US11108165B2 (en) Radio frequency front end for full duplex wireless communications
Tadayon et al. A Wideband Non-Reciprocal Phased Array Antenna with Side Lobe Level Suppression
Slomian et al. Three-beam microstrip antenna arrays fed by 3× 3 Butler matrix
Bentini et al. Compact AESA for airborne self-protection and close-support jammers
RU2282288C2 (ru) Фазированная антенная решетка с двумя независимыми лучами и управляемой поляризацией в суммарном луче (варианты)
Bhuma et al. Right hand circular polarization of a quadrifilar helical antenna for satellite and mobile communication systems
Foo Self-cancellation full-duplex steerable phased array
JPH07297630A (ja) 平面アンテナ
Haupt et al. Defining Phased Array Bandwidth
Dudek et al. Octave-Band Three-Beam Scalable Antenna Array Fed by Broadband 4× 4 Butler Matrix
Zheng et al. A 94-GHz 16T1R Hybrid Integrated Phased Array With $\pm $50${\mathrm {^{\circ}}} $ Scanning Range for High-Date-Rate Communication
Gresham ‘An AESA revolution utilizing the disruptive technology of highly-integrated silicon ICs
Tekkouk et al. High data rate wireless transmission in the non-far zone with 2D orthogonal beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7104479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150