JP7101460B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP7101460B2
JP7101460B2 JP2017094177A JP2017094177A JP7101460B2 JP 7101460 B2 JP7101460 B2 JP 7101460B2 JP 2017094177 A JP2017094177 A JP 2017094177A JP 2017094177 A JP2017094177 A JP 2017094177A JP 7101460 B2 JP7101460 B2 JP 7101460B2
Authority
JP
Japan
Prior art keywords
compression ratio
internal combustion
combustion engine
cylinder
cylinder pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017094177A
Other languages
English (en)
Other versions
JP2018189058A (ja
Inventor
俊宏 青野
匡行 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2017094177A priority Critical patent/JP7101460B2/ja
Priority to PCT/JP2018/003105 priority patent/WO2018207412A1/ja
Priority to US16/607,269 priority patent/US11073092B2/en
Publication of JP2018189058A publication Critical patent/JP2018189058A/ja
Application granted granted Critical
Publication of JP7101460B2 publication Critical patent/JP7101460B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • F02D35/024Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/047Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of variable crankshaft position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/05Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means
    • F02P5/10Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means dependent on fluid pressure in engine, e.g. combustion-air pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

本発明は、内燃機関の圧縮比を推定する制御装置に係り、特に、圧縮比を可変とする可変圧縮比機構を備えた内燃機関(可変圧縮比内燃機関)の圧縮比を推定する制御装置に関する。
この種の従来技術として、例えば特許文献1には、内燃機関のピストンとクランクシャフトとが複数のリンク部材を介して連結されているとともに、これらのリンク部材の自由度を制限するコントロールリンクを有し、このコントロールリンクの基端がコントロールシャフトの偏心軸に揺動可能に連結され、このコントロールシャフトの回転位置に応じて圧縮比が変化する可変圧縮比内燃機関において、内燃機関の燃料カット中に、上記コントロールシャフトの所定圧縮比状態での保持に必要なトルクのサイクル中のピーク値を求め、このピークトルクから実圧縮比を推定する技術が開示されている。
特開2010-174757号公報
ところで、上記特許文献1に所載のように、トルクのサイクル中のピーク値(ピークトルク)から圧縮比を推定する方法では、トルクのピーク値は燃焼により発生する熱量の影響を受けるので、内燃機関の燃料カットの場合に限定する必要がある。また、トルクのピーク値は吸気量や吸気温度の影響を受けるので、吸気量や吸気温度を正確に計測するか、あるいは、一定の条件に制約する必要があるという問題がある。
本発明は、前記事情に鑑みてなされたもので、その目的とするところは、内燃機関の燃料カット時のみならず、また、吸気量や吸気温度の影響を受けずに、内燃機関の圧縮比を推定することのできる内燃機関の制御装置を提供することにある。
上記課題を解決するために、本発明に係る内燃機関の制御装置は、ピストンに連結されたクランク軸の回転に同期して吸気弁及び排気弁が開閉する気筒を有する内燃機関を制御する内燃機関の制御装置において、前記内燃機関には、前記内燃機関の圧縮比を可変とする可変圧縮比機構が備えられており、前記制御装置は、前記吸気弁が閉じてから前記気筒内の混合気への着火が開始されるまでのタイミングかつクランク角に対する筒内体積の変化を筒内体積で正規化した筒内体積変化率が極値をとるタイミングにおけるクランク角に対する筒内圧の変化を筒内圧で正規化した筒内圧変化率に基づき、予め求められた前記筒内圧変化率と前記内燃機関の圧縮比の関係から前記圧縮比を算出し、算出された圧縮比が予め設定された目標圧縮比と異なる場合に、前記算出された圧縮比と前記目標圧縮比の差に基づき、前記算出された圧縮比と前記目標圧縮比の差が小さくなるように前記可変圧縮比機構を可変制御するための圧縮比制御の指令値を演算することを特徴としている。
本発明によれば、内燃機関の燃料カット時のみならず、また、吸気量や吸気温度の影響を受けずに、内燃機関の圧縮比を推定することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明による制御装置が適用される内燃機関の一例を示す図。 クランク角と筒内体積の関係の一例を示す図。 圧縮比に応じた、クランク角と筒内体積の関係の一例を示す図。 クランク角と筒内圧の関係の一例を示す図。 筒内体積をクランク角で微分した筒内体積微分値の一例を示す図。 筒内体積微分値を筒内体積で正規化した筒内体積変化率の一例を示す図。 筒内体積変化率と圧縮比の関係の一例を示す図。 筒内圧をクランク角で微分した筒内圧微分値を筒内圧で正規化した筒内圧変化率と圧縮比の関係の一例を示す図。 上段から、筒内圧、筒内圧微分値、筒内圧変化率の一例を示す図。 本発明による制御装置の一実施形態の内部構成を示すブロック図。 指令値と実圧縮比の関係の一例を示す図。 目標圧縮比と実圧縮比の一例を示す図。 図10に示す制御装置の他例の内部構成を示すブロック図。
以下、本発明に係る内燃機関の制御装置の実施形態について図面を参照して説明する。
本発明による制御装置が適用される内燃機関(可変圧縮比内燃機関)(以下、エンジンや可変圧縮比エンジンということもある)を図1に示す。
図示実施形態の内燃機関100では、クランク軸103の回転と同期してシリンダ(気筒)101に設けられた吸気弁109、排気弁110が開閉することで、シリンダ101内(筒内もしくは燃焼室内)に空気(吸気)が取り込まれる。取り込んだ空気の中に、インジェクタ106から燃料が噴射され、シリンダ101内に燃料と空気の混合気が生成される。この混合気に点火プラグ108から点火(着火)すると、爆発エネルギーによりピストン102が押し下げられ、このピストン102への押し下げ力がコネクティングロッド111及びリンク機構105を通してクランク軸103に伝えられて、クランク軸103が回転する。クランク軸103の回転は、例えば、不図示のミッションを経てタイヤの回転になり、内燃機関100が搭載された自動車等の推進力となる。
このような内燃機関100において、クランク軸103のクランク角θ(クランク角センサ104により計測されるクランク角θ)と、シリンダ101とピストン102とで囲まれた燃焼室112内の体積(筒内体積)Vとの関係は、図2に示すようになる。すなわち、ピストン102の位置が最も高くなる上死点TDC(Top Dead Center)において体積Vは最小値Vminをとり、ピストン102の位置が最も低くなる下死点BDC(Bottom Dead Center)において体積Vは最大値Vmaxをとる。この最小値Vminと最大値Vmaxの比Vmax/Vminを圧縮比εとよぶ。一般に、圧縮比εが大きいほど、エンジン100は効率が良くなるが、高負荷域で圧縮比εを大きくすると、ノックが発生し、エンジン100の破損につながる。可変圧縮比エンジン100はこのような背景から開発されたもので、低負荷域では圧縮比εを大きくし、高負荷域では圧縮比εを小さくすることで、当該内燃機関100の効率を向上させている。前述のような圧縮比εを可変とする機構(可変圧縮比機構)は、その構成自体はよく知られたものであるが、本実施形態の内燃機関100では、圧縮比コントローラ106により前記リンク機構105を制御することで、コネクティングロッド111とリンク機構105の結合点113とクランク軸103との距離が変化し、前述のクランク角θと体積Vの関係が変化し、これにより、圧縮比εが機械的に可変制御される。当該可変圧縮比エンジン100での、クランク角θと体積Vの関係は、例えば図3に示すようになり、異なる圧縮比ε1、ε2、ε3のそれぞれに対して、クランク角θと体積Vの関係が与えられる。なお、圧縮比εは必ずしも離散ではなく、連続的に変化することもある。
ところで、このような内燃機関100では、リンク機構105の製造ばらつき等の理由により、当該内燃機関100の運転状態を制御する制御装置200(後述する図10、13参照)が指令した圧縮比と、実際に制御された結果の圧縮比とが異なることがあるため、この実際の圧縮比(実圧縮比)εを推定する必要がある。
ここで、内燃機関100の高効率化のためには、当該内燃機関100の燃焼状態を計測して、フィードバックすることが望ましく、最近では、筒内圧センサ107をシリンダ101に取り付けてシリンダ101内の圧力(筒内圧)Pを計測することが検討されている。燃料カット時の筒内圧Pは図4の破線のようになり、燃焼しているときの筒内圧Pは図4の実線のようになる。シリンダ101内の吸気量nと吸気温度Tがわかっていて、筒内圧Pが計測できれば、体積Vは、気体の状態方程式から以下の(式1)で求められる。ただし、Rは空気と燃料の混合気の気体定数である。
Figure 0007101460000001
そして、筒内圧Pを計測したタイミングでのクランク角θと体積Vから、図3に示す圧縮比ごとのクランク角θと体積Vの関係を参照して、圧縮比εを特定できる。
ところで、前述の圧縮比εの特定方法は、吸気量nと吸気温度Tがわかっていることが前提であるが、実際のエンジン100で、気筒内の温度を計測するのは困難である。また、吸気量を計測するエアフローセンサが付設されているが、エアフローセンサを通過した空気がどのようにエンジン100の各気筒に入っていくのかを推定することも困難である。そこで、本実施形態では、吸気量nや吸気温度Tがわからなくても、圧縮比εを推定する方法を提案する。
シリンダ101に備えられた吸気弁109を閉じてから混合気が着火して燃焼が始まるまでは、シリンダ101内は熱の出入りがない断熱過程と考えることができる。このとき、体積(筒内体積)Vと圧力(筒内圧)Pとの間には、熱力学の分野で広く知られた以下の(式2)で示す関係が成り立つ。
Figure 0007101460000002
(式2)を、クランク軸103のクランク角θで微分すると、以下の(式3)となる。
Figure 0007101460000003
(式3)の両辺をP・Vγで割ると、以下の(式4)となる。
Figure 0007101460000004
図3に示すように、可変圧縮比エンジン100の体積Vとクランク角θの関係は、圧縮比εによってV軸方向に平行移動すると近似できるので、図5に示すdV/dθ(筒内体積(燃焼室内体積)Vをクランク角θで微分した筒内体積微分値)は圧縮比εに依存しない。
一方で、圧縮比ごとのdV/dθ/V(図5に示す筒内体積微分値を筒内体積で正規化した筒内体積変化率)は図6に示すようになり、dV/dθ/Vは、上死点TDCの30°ほど前のθpeakで極値をとり、このときに圧縮比εによる違いが最も大きくなることがわかる。前述のθpeakにおけるdV/dθ/Vと圧縮比εの関係は例えば図7に示すようになる。
ここで、式4より、dP/dθ/P(筒内圧Pをクランク角θで微分した筒内圧微分値を筒内圧Pで正規化した筒内圧変化率)とdV/dθ/Vは比例するので、圧縮比εとdP/dθ/Pとの間には図8の実線に示す関係がある。したがって、図9に示すように、θpeak付近で筒内圧Pを計測し(図9の上段の図)、筒内圧Pをクランク角θで微分して筒内圧微分値dP/dθを算出し(図9の中段の図)、この筒内圧微分値dP/dθを筒内圧Pで正規化して筒内圧変化率dP/dθ/Pを求める(図9の下段の図)。そして、事前に取得しておいた図8に示すような筒内圧変化率dP/dθ/Pと圧縮比εの関係に基づき、実際の圧縮比(実圧縮比)εを推定する。
なお、式4に着目すると、この式4は筒内圧Pと体積Vと比熱比γだけの式である。比熱比γは、気体の成分が決まれば一意に決まる。燃料の成分比が変化しても、この比熱比γはほぼ1.3程度の値なので、式4は運転条件によらず成り立つと考えられる。
また、図9の下段の図(筒内圧変化率dP/dθ/Pを示す図)を注意深く観察すると、dP/dθ/Pは、θpeakのタイミングだけではなく、その前後でも、圧縮比εに依存して変化することがわかる。θpeakの前後Δにおいて、dP/dθ/Pと圧縮比εの関係をプロットすると、例えば図8の破線や一点破線に示すようになる。この関係を用いても、dP/dθ/Pから圧縮比(実圧縮比)εを推定できることがわかる。
ここで、θpeakの前後どこまでの範囲のdP/dθ/Pが圧縮比εと相関をもつかが問題となるが、式4が成り立つ範囲、すなわち、式2~4の導出の前提とした燃焼室112内が断熱変化している範囲、より詳細には、吸気弁109の閉弁タイミングIVC(Intake Valve Close)から、燃焼室112内の空気と燃料の混合気が着火して熱発生が始まるまでの範囲である(図6及び図9参照)。
なお、上記説明では、筒内圧変化率dP/dθ/Pと筒内体積変化率dV/dθ/Vとが比例するという関係から、筒内圧変化率dP/dθ/Pを求めて実圧縮比εを推定するものとしているが、筒内圧Pと筒内体積Vとの関係が予め取得されていれば、筒内圧Pをクランク角θで微分した筒内圧微分値(つまり、クランク角θに対する筒内圧Pの変化)dP/dθから実圧縮比εを推定(算出)できることは詳述するまでも無い。
上述のように、本実施形態の制御装置200は、吸気弁109が閉じてからシリンダ(気筒)101内の混合気への着火が開始されるまでのタイミングにおけるクランク角θに対する筒内圧Pの変化dP/dθに基づき圧縮比εを算出する。より具体的には、制御装置200は、クランク角θに対する筒内圧Pの変化dP/dθを筒内圧Pで正規化した筒内圧変化率dP/dθ/Pに基づき圧縮比を算出する。これにより、内燃機関100の実際の圧縮比εを推定することができる。
図10は、上述した圧縮比推定を実現する、本発明による制御装置の一実施形態の内部構成を示したものである。
図10に示す制御装置200は、基本的に、入出力ポート、RAM、ROM、CPU等を含むマイクロコンピュータで構成されており、主に、クランク角算出部201と、筒内圧算出部202と、断熱変化タイミング判定部203と、筒内圧微分部204と、筒内圧変化率算出部205と、圧縮比算出部206とを備える。
クランク角算出部201では、クランク軸103に設けられたクランク角センサ104の信号を取得してクランク軸103のクランク角θを算出する。
筒内圧算出部202では、シリンダ101に設けられた筒内圧センサ107の信号を取得してシリンダ101内の圧力(筒内圧)Pを算出する。
断熱変化タイミング判定部203では、前記クランク角算出部201で算出したクランク角θが、燃焼室112内(筒内)が断熱変化するタイミングか否か(すなわち、吸気弁109が閉じてからシリンダ101内の混合気への着火が開始されるまでのタイミングか否か)を判定する。
筒内圧微分部204では、前記クランク角算出部201で算出したクランク角θに対して前記筒内圧算出部202で算出した筒内圧P(異なる圧縮比に対応した3つの例を図9の上段の図に示す)を微分して筒内圧微分値dP/dθ(図9の上段の図に示される3つの筒内圧Pを微分した結果を図9の中段の図に示す)を算出する。
筒内圧変化率算出部205では、前記断熱変化タイミング判定部203で燃焼室112内が断熱変化していると判定したタイミングで、前記筒内圧微分部204で算出した筒内圧微分値dP/dθを筒内圧Pで正規化して筒内圧変化率dP/dθ/P(図9の中段の図に示される3つの筒内圧微分値dP/dθを正規化した結果を図9の下段の図に示す)を算出する。なお、図9では、筒内圧Pから算出した筒内圧変化率dP/dθ/Pを示しているが、この全ての範囲の筒内圧変化率dP/dθ/Pを計算する必要はなく、θpeakもしくはその付近での筒内圧変化率dP/dθ/Pを計算できればよい。
圧縮比算出部206では、前記筒内圧変化率算出部205で算出した筒内圧変化率dP/dθ/Pと、図8に示すような予め求められた筒内圧変化率dP/dθ/Pと圧縮比εとの関係から、圧縮比(実圧縮比)εを算出する。
これにより、内燃機関100の燃料カット時に限定せず、また、吸気量や吸気温度の影響を受けずに、内燃機関100の実際の圧縮比εを推定することができる。
また、本実施形態の制御装置200には、前記圧縮比算出部206で算出(推定)した圧縮比εに基づいてフィードバック制御を行うための構成として、前記圧縮比算出部206で算出した圧縮比εに基づいて、可変圧縮比機構を可変制御するための圧縮比制御の指令値を演算する圧縮比制御指令値演算部207や、前記圧縮比算出部206で算出した圧縮比εに基づいて、前記点火プラグ108によるシリンダ101内の混合気の点火タイミングを制御するための点火タイミング制御の指令値を演算する点火タイミング制御指令値演算部208等が更に備えられている。
前述のように、可変圧縮比エンジン100では、リンク機構105の製造ばらつき等の理由により、制御装置200が指令した圧縮比(目標圧縮比)と、実際に制御された結果の圧縮比(実圧縮比)が異なることがある。例えば、予め制御装置200に与えられた指令値と実圧縮比の関係が図11の実線で示す関係であるとする。ところが、リンク機構105の製造誤差により点線で示す特性に変化していたとすると、目標圧縮比εtargetを実現するために可変圧縮比機構(を構成するリンク機構105を制御する圧縮比コントローラ106)に指令値εcを入力しても、実際の圧縮比はεrになってしまう。
そこで、圧縮比制御指令値演算部207では、前記圧縮比算出部206で算出した圧縮比εrと目標圧縮比εtargetとの差Δε=εtarget-εrを算出し、図11の実線や点線で示す予め求められた制御特性の傾きKでΔεを除した値Δε/Kに基づき指令値εcを補正することで、目標圧縮比εtargetを実現する。すなわち、本実施形態の制御装置200は、圧縮比算出部206で算出された圧縮比εrが予め設定された目標圧縮比εtargetと異なる場合に、算出された圧縮比εrと目標圧縮比εtargetの差Δεに基づき可変圧縮比機構を可変制御するための圧縮比制御の指令値εcを補正する。より具体的には、本実施形態の制御装置200は、圧縮比算出部206で算出された圧縮比εrと目標圧縮比εtargetとの差Δεを予め求められた制御特性の傾きKで除した値Δε/Kに基づき、可変圧縮比機構を可変制御するための圧縮比制御の指令値εcを補正する。この構成により、目標圧縮比εtargetを実現することができる。
また、目標圧縮比εtargetは一定ではなく、回転数・負荷等の内燃機関100の運転状態によっても変化する。例えば、図12の実線で示すように目標圧縮比εtargetが与えられていて、前記圧縮比算出部206で実際の圧縮比εが推定されたら、圧縮比制御指令値演算部207では、その圧縮比εが目標圧縮比εtarget(内燃機関100の運転状態によって定まる目標値)をトレース(追従)するように圧縮比制御の指令値を制御することで、目標圧縮比εtargetを実現することもできる。
また、前記圧縮比算出部206で算出した圧縮比の推定値は、目標圧縮比εtargetを実現する以外の応用もある。
例えば、リンク機構105の製造ばらつき以外に、圧縮比εの変化要因としては、すす等の堆積物の付着も考えられる。前記のような可変圧縮比機構があれば、これを制御して、堆積物の付着分の圧縮比変化を補正すればよいが、可変圧縮比機構がない場合もあり得る。このような場合には、変化した圧縮比を制御する代わりに、点火タイミング、空燃比、あるいはターボチャージャがついたエンジンなら過給圧等を制御することで、エンジン100を安定に且つ効率的に制御することができる。
例えば、すす等の堆積物によって圧縮比εが上昇してしまったとすると、その圧縮比εの上昇は、前述の構成にて検出できる。
通常のエンジンでは、効率を良くするために、シリンダ101内の混合気の点火タイミングをノック限界まで進角させている。進角させた状態で、堆積物により圧縮比εが上昇して予め設定された目標圧縮比εtargetより大きくなってしまったらノックが発生してしまう。そこで、前記点火タイミング制御指令値演算部208では、圧縮比εの上昇を検知したときに、これに応じて点火タイミングを遅角するように前記点火プラグ108への点火タイミング制御の指令値を制御することで、ノックを回避することができる。
このように、本実施形態の制御装置200は、吸気弁109が閉じてからシリンダ(気筒)101内の混合気への着火が開始されるまでのタイミングにおけるクランク角θに対する筒内圧Pの変化dP/dθに基づき圧縮比εを算出する。より具体的には、制御装置200は、クランク角θに対する筒内圧Pの変化dP/dθを筒内圧Pで正規化した筒内圧変化率dP/dθ/Pに基づき圧縮比εを算出する。これにより、内燃機関100の燃料カット時のみならず、また、吸気量や吸気温度の影響を受けずに、内燃機関100の実際の圧縮比εを推定することができる。
図13は、図10に示す制御装置200の他例の内部構成を示したものである。
図13に示す制御装置210は、図10に示す制御装置200の断熱変化タイミング判定部203を、クランク角算出部201で算出したクランク角θから、予め入力した筒内体積変化率dV/dθ/V(クランク角θに対する筒内体積Vの変化dV/dθを筒内体積Vで正規化した値)が極値をとるタイミングθpeak(図6及び図9参照)を判定する極値タイミング判定部211に置き換えたものである。なお、制御装置210における極値タイミング判定部211以外の構成は、上記図10に示す制御装置200の各構成とほぼ同じである。
詳しくは、制御装置210のクランク角算出部201では、クランク軸103に設けられたクランク角センサ104の信号を取得してクランク軸103のクランク角θを算出する。
筒内圧算出部202では、シリンダ101に設けられた筒内圧センサ107の信号を取得してシリンダ101内の圧力(筒内圧)Pを算出する。
極値タイミング判定部211では、前記クランク角算出部201で算出したクランク角θが、予め入力した筒内体積変化率dV/dθ/Vが極値をとるタイミングθpeakと一致するか否かを判定する。
筒内圧微分部204では、前記クランク角算出部201で算出したクランク角θに対して前記筒内圧算出部202で算出した筒内圧P(異なる圧縮比に対応した3つの例を図9の上段の図に示す)を微分して筒内圧微分値dP/dθ(図9の上段の図に示される3つの筒内圧Pを微分した結果を図9の中段の図に示す)を算出する。
筒内圧変化率算出部205では、前記極値タイミング判定部211で判定した筒内体積変化率dV/dθ/Vが極値となるタイミングで、前記筒内圧微分部204で算出した筒内圧微分値dP/dθを筒内圧Pで正規化して筒内圧変化率dP/dθ/P(図9の中段の図に示される3つの筒内圧微分値dP/dθを正規化した結果を図9の下段の図に示す)を算出する。なお、図9では、筒内圧Pから算出した筒内圧変化率dP/dθ/Pを示しているが、この全ての範囲の筒内圧変化率dP/dθ/Pを計算する必要はなく、θpeakでの筒内圧変化率dP/dθ/Pを計算できればよい。
圧縮比算出部206では、前記筒内圧変化率算出部205で算出した筒内圧変化率dP/dθ/Pと、図8に示すような予め求められた筒内圧変化率dP/dθ/Pと圧縮比εとの関係から、圧縮比(実圧縮比)εを算出する。
これにより、図10に示す例と同様、内燃機関100の燃料カット時に限定せず、また、吸気量や吸気温度の影響を受けずに、内燃機関100の実際の圧縮比εを推定することができる。
このように、本実施形態の制御装置210は、筒内体積変化率dV/dθ/Vが極値をとるタイミングにおけるクランク角θに対する筒内圧Pの変化dP/dθに基づき圧縮比εを算出する。より具体的には、制御装置210は、クランク角θに対する筒内圧Pの変化dP/dθを筒内圧Pで正規化した筒内圧変化率dP/dθ/Pに基づき圧縮比εを算出する。これにより、内燃機関100の燃料カット時のみならず、また、吸気量や吸気温度の影響を受けずに、内燃機関100の実際の圧縮比εを推定できるとともに、圧縮比εの推定精度を高めることができる。
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
100…内燃機関
101…シリンダ
101…ピストン
103…クランク軸
104…クランク角センサ
105…リンク機構
106…インジェクタ
107…筒内圧センサ
108…点火プラグ
109…吸気弁
110…排気弁
111…コネクティングロッド
112…燃焼室
113…結合点
200、210…制御装置
201…クランク角算出部
202…筒内圧算出部
203…断熱変化タイミング判定部
204…筒内圧微分部
205…筒内圧変化率算出部
206…圧縮比算出部
207…圧縮比制御指令値演算部
208…点火タイミング制御指令値演算部
211…極値タイミング判定部

Claims (9)

  1. ピストンに連結されたクランク軸の回転に同期して吸気弁及び排気弁が開閉する気筒を有する内燃機関を制御する内燃機関の制御装置において、
    前記内燃機関には、前記内燃機関の圧縮比を可変とする可変圧縮比機構が備えられており、
    前記制御装置は、 前記吸気弁が閉じてから前記気筒内の混合気への着火が開始されるまでのタイミングかつクランク角に対する筒内体積の変化を筒内体積で正規化した筒内体積変化率が極値をとるタイミングにおけるクランク角に対する筒内圧の変化を筒内圧で正規化した筒内圧変化率に基づき、予め求められた前記筒内圧変化率と前記内燃機関の圧縮比の関係から前記圧縮比を算出し、算出された圧縮比が予め設定された目標圧縮比と異なる場合に、前記算出された圧縮比と前記目標圧縮比の差に基づき、前記算出された圧縮比と前記目標圧縮比の差が小さくなるように前記可変圧縮比機構を可変制御するための圧縮比制御の指令値を演算することを特徴とする内燃機関の制御装置。
  2. 請求項に記載の内燃機関の制御装置において、
    前記制御装置は、前記算出された圧縮比と前記目標圧縮比の差を予め求められた制御特性の傾きで除した値に基づき前記圧縮比制御の指令値を演算することを特徴とする内燃機関の制御装置。
  3. ピストンに連結されたクランク軸の回転に同期して吸気弁及び排気弁が開閉する気筒を有する内燃機関を制御する内燃機関の制御装置において、
    前記内燃機関には、前記内燃機関の圧縮比を可変とする可変圧縮比機構が備えられており、
    前記制御装置は、 前記吸気弁が閉じてから前記気筒内の混合気への着火が開始されるまでのタイミングかつクランク角に対する筒内体積の変化を筒内体積で正規化した筒内体積変化率が極値をとるタイミングにおけるクランク角に対する筒内圧の変化を筒内圧で正規化した筒内圧変化率に基づき、予め求められた前記筒内圧変化率と前記内燃機関の圧縮比の関係から前記圧縮比を算出し、算出された圧縮比が前記内燃機関の運転状態によって定まる目標値に追従するように前記可変圧縮比機構を可変制御するための圧縮比制御の指令値を演算することを特徴とする内燃機関の制御装置。
  4. 請求項1に記載の内燃機関の制御装置において、
    前記内燃機関には、前記気筒内の混合気に着火する点火プラグが備えられており、
    前記制御装置は、 算出された圧縮比が予め設定された目標圧縮比より大きい場合に、前記気筒内の混合気の点火タイミングを遅くするように点火タイミング制御の指令値を演算することを特徴とする内燃機関の制御装置。
  5. 請求項3に記載の内燃機関の制御装置において、
    前記内燃機関には、前記気筒内の混合気に着火する点火プラグが備えられており、
    前記制御装置は、算出された圧縮比が予め設定された目標圧縮比より大きい場合に、前記気筒内の混合気の点火タイミングを遅くするように点火タイミング制御の指令値を演算することを特徴とする内燃機関の制御装置。
  6. ピストンに連結されたクランク軸の回転に同期して吸気弁及び排気弁が開閉する気筒を有する内燃機関を制御する内燃機関の制御装置において、
    前記内燃機関には、前記内燃機関の圧縮比を可変とする可変圧縮比機構が備えられており、
    前記制御装置は、
    前記クランク軸のクランク角を算出するクランク角算出部と、
    前記気筒の筒内圧を算出する筒内圧算出部と、
    前記クランク角算出部で算出したクランク角から、前記吸気弁が閉じてから前記気筒内の混合気への着火が開始されるまでのタイミングを判定する断熱変化タイミング判定部と、
    前記クランク角算出部で算出したクランク角に対して前記筒内圧算出部で算出した筒内圧を微分して筒内圧微分値を算出する筒内圧微分部と、
    前記断熱変化タイミング判定部で判定したタイミングで、前記筒内圧微分値を筒内圧で正規化して筒内圧変化率を算出する筒内圧変化率算出部と、
    前記筒内圧変化率算出部で算出した筒内圧変化率に基づいて、予め求められた前記筒内圧変化率と前記内燃機関の圧縮比の関係から前記圧縮比を算出する圧縮比算出部と、
    前記圧縮比算出部で算出した圧縮比に基づいて、前記圧縮比算出部で算出した圧縮比と予め設定された目標圧縮比の差が小さくなるように前記可変圧縮比機構を可変制御するための圧縮比制御の指令値を演算する圧縮比制御指令値演算部と、 を備えることを特徴とする内燃機関の制御装置。
  7. 請求項に記載の内燃機関の制御装置において、
    前記内燃機関には、前記気筒内の混合気に着火する点火プラグが備えられており、
    前記制御装置は、 前記圧縮比算出部で算出した圧縮比に基づいて、前記圧縮比算出部で算出した圧縮比が予め設定された目標圧縮比より大きい場合に、前記気筒内の混合気の点火タイミングを遅くするように前記気筒内の混合気の点火タイミングを制御するための点火タイミング制御の指令値を演算する点火タイミング制御指令値演算部を更に備えることを特徴とする内燃機関の制御装置。
  8. ピストンに連結されたクランク軸の回転に同期して吸気弁及び排気弁が開閉する気筒を有する内燃機関を制御する内燃機関の制御装置において、
    前記内燃機関には、前記内燃機関の圧縮比を可変とする可変圧縮比機構が備えられており、
    前記制御装置は
    前記クランク軸のクランク角を算出するクランク角算出部と、
    前記気筒の筒内圧を算出する筒内圧算出部と、
    前記クランク角算出部で算出したクランク角から、クランク角に対する筒内体積の変化を筒内体積で正規化した筒内体積変化率が極値をとるタイミングを判定する極値タイミング判定部と、
    前記クランク角算出部で算出したクランク角に対して前記筒内圧算出部で算出した筒内圧を微分して筒内圧微分値を算出する筒内圧微分部と、
    前記極値タイミング判定部で判定したタイミングで、前記筒内圧微分値を筒内圧で正規化して筒内圧変化率を算出する筒内圧変化率算出部と、
    前記筒内圧変化率算出部で算出した筒内圧変化率に基づいて、予め求められた前記筒内圧変化率と前記内燃機関の圧縮比の関係から前記圧縮比を算出する圧縮比算出部と、
    前記圧縮比算出部で算出した圧縮比に基づいて、前記圧縮比算出部で算出した圧縮比と予め設定された目標圧縮比の差が小さくなるように前記可変圧縮比機構を可変制御するための圧縮比制御の指令値を演算する圧縮比制御指令値演算部と、 を備えることを特徴とする内燃機関の制御装置。
  9. 請求項に記載の内燃機関の制御装置において、
    前記内燃機関には、前記気筒内の混合気に着火する点火プラグが備えられており、
    前記制御装置は、 前記圧縮比算出部で算出した圧縮比に基づいて、前記圧縮比算出部で算出した圧縮比が予め設定された目標圧縮比より大きい場合に、前記気筒内の混合気の点火タイミングを遅くするように前記気筒内の混合気の点火タイミングを制御するための点火タイミング制御の指令値を演算する点火タイミング制御指令値演算部を更に備えることを特徴とする内燃機関の制御装置。
JP2017094177A 2017-05-10 2017-05-10 内燃機関の制御装置 Active JP7101460B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017094177A JP7101460B2 (ja) 2017-05-10 2017-05-10 内燃機関の制御装置
PCT/JP2018/003105 WO2018207412A1 (ja) 2017-05-10 2018-01-31 内燃機関の制御装置
US16/607,269 US11073092B2 (en) 2017-05-10 2018-01-31 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017094177A JP7101460B2 (ja) 2017-05-10 2017-05-10 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2018189058A JP2018189058A (ja) 2018-11-29
JP7101460B2 true JP7101460B2 (ja) 2022-07-15

Family

ID=64105143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017094177A Active JP7101460B2 (ja) 2017-05-10 2017-05-10 内燃機関の制御装置

Country Status (3)

Country Link
US (1) US11073092B2 (ja)
JP (1) JP7101460B2 (ja)
WO (1) WO2018207412A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140054A (ja) 2003-11-07 2005-06-02 Toyota Motor Corp 内燃機関の制御装置
WO2014141729A1 (ja) 2013-03-13 2014-09-18 日産自動車株式会社 内燃機関の制御装置および制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2448032A1 (fr) * 1979-02-05 1980-08-29 Semt Procede pour ameliorer le rendement d'un moteur a combustion interne notamment suralimente
MY138166A (en) * 2003-06-20 2009-04-30 Scuderi Group Llc Split-cycle four-stroke engine
CN100476180C (zh) * 2003-10-09 2009-04-08 Avl里斯脱有限公司 内燃机的工作方法
JP2006342677A (ja) * 2005-06-07 2006-12-21 Hitachi Ltd 圧縮着火エンジン
JP4525517B2 (ja) * 2005-08-08 2010-08-18 トヨタ自動車株式会社 内燃機関
JP2007113485A (ja) * 2005-10-20 2007-05-10 Hitachi Ltd 内燃機関の制御方法及び制御装置
US8527183B2 (en) * 2007-09-20 2013-09-03 General Electric Company System and method for controlling the fuel injection event in an internal combustion engine
WO2009149044A2 (en) * 2008-06-03 2009-12-10 Bryant, Mark, Curtis Internal combustion engine and working cycle
JP5152015B2 (ja) 2009-01-30 2013-02-27 日産自動車株式会社 可変圧縮比内燃機関の制御装置
BR112015016969B1 (pt) * 2013-01-17 2022-11-16 Nissan Motor Co., Ltd Aparelho de controle de motor de combustão interna e método de controle de motor de combustão interna para um motor de combustão interna
JP6090481B2 (ja) * 2014-02-17 2017-03-08 日産自動車株式会社 内燃機関の点火装置および点火方法
DE102015207252A1 (de) * 2015-04-21 2016-10-27 Avl List Gmbh Verfahren und Vorrichtung zur modellbasierten Optimierung einer technischen Einrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140054A (ja) 2003-11-07 2005-06-02 Toyota Motor Corp 内燃機関の制御装置
WO2014141729A1 (ja) 2013-03-13 2014-09-18 日産自動車株式会社 内燃機関の制御装置および制御方法

Also Published As

Publication number Publication date
WO2018207412A1 (ja) 2018-11-15
JP2018189058A (ja) 2018-11-29
US20200300184A1 (en) 2020-09-24
US11073092B2 (en) 2021-07-27

Similar Documents

Publication Publication Date Title
US9903287B2 (en) Control apparatus for internal combustion engine
EP2119894B1 (en) Controller of internal combustion engine
US10001071B2 (en) Control system and control method for internal combustion engine
JP3993851B2 (ja) 点火時期を制御する装置
US9797331B2 (en) Control apparatus for internal combustion engine
JP6262957B2 (ja) 内燃機関の運用方法
US9903302B2 (en) Control device for internal combustion engine
JP2017141693A (ja) 内燃機関の制御装置
JP6020690B2 (ja) 内燃機関の制御装置
WO2012147193A1 (ja) 内燃機関の制御装置
WO2014061649A1 (ja) 内燃機関の筒内圧検出装置
US9976534B2 (en) Control device and control method for internal combustion engine
CN102822487B (zh) 内燃机的控制装置
WO2018179801A1 (ja) 内燃機関の制御装置
JP7101460B2 (ja) 内燃機関の制御装置
JP7124516B2 (ja) 内燃機関の燃焼制御装置
JP6845067B2 (ja) 内燃機関制御装置
JP4803099B2 (ja) 可変圧縮比エンジンのトルク推定装置
KR100507203B1 (ko) 가솔린 엔진의 노킹 제어 장치 및 방법
JP7393368B2 (ja) 内燃機関制御装置
WO2022219952A1 (ja) 内燃機関制御装置
JP6957534B2 (ja) 内燃エンジンの点火進角を決定するための方法、および、そのような方法を使用してエンジンを制御するための方法
JP2005023806A (ja) 内燃機関の点火時期制御装置
JP2017141745A (ja) 内燃機関の制御装置
JP2021124071A (ja) 内燃エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R150 Certificate of patent or registration of utility model

Ref document number: 7101460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150