JP7101054B2 - Anti-vibration structure for unmanned aerial vehicles - Google Patents

Anti-vibration structure for unmanned aerial vehicles Download PDF

Info

Publication number
JP7101054B2
JP7101054B2 JP2018111587A JP2018111587A JP7101054B2 JP 7101054 B2 JP7101054 B2 JP 7101054B2 JP 2018111587 A JP2018111587 A JP 2018111587A JP 2018111587 A JP2018111587 A JP 2018111587A JP 7101054 B2 JP7101054 B2 JP 7101054B2
Authority
JP
Japan
Prior art keywords
rubber foot
unmanned aerial
aerial vehicle
leg portion
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018111587A
Other languages
Japanese (ja)
Other versions
JP2019214256A (en
Inventor
直也 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2018111587A priority Critical patent/JP7101054B2/en
Publication of JP2019214256A publication Critical patent/JP2019214256A/en
Application granted granted Critical
Publication of JP7101054B2 publication Critical patent/JP7101054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Vibration Dampers (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、無人航空機の防振構造に関する。 The present invention relates to an anti-vibration structure for an unmanned aerial vehicle.

近年、農薬散布や空中撮影といった分野で所謂ドローンなどと称される小型の無人航空機の活用が広がっており、今後も、建築、土木または輸送など、利用分野の拡大が予想される。 In recent years, the use of small unmanned aerial vehicles, so-called drones, has expanded in fields such as pesticide spraying and aerial photography, and it is expected that the fields of use will continue to expand, such as construction, civil engineering, and transportation.

特開2017-193208公報JP-A-2017-193208A

無人航空機は、飛行ユニットおよびセンサー・カメラ等の作動機器の組み合わせからなる精密機器である。しかしながら精密機器は衝撃加重に対し脆弱である。したがって無人航空機の着陸時、衝撃吸収が十分に行われないことにより、転倒や破損が問題になっている。これを避けるため、人によるハンドキャッチ着陸が推奨されるが、人によらない無人での着陸信頼性の確保が望まれる。 An unmanned aerial vehicle is a precision device consisting of a combination of flight units and operating devices such as sensors and cameras. However, precision equipment is vulnerable to impact loading. Therefore, when an unmanned aerial vehicle lands, it does not absorb enough shock, causing problems such as overturning and damage. To avoid this, hand-catch landing by humans is recommended, but it is desirable to ensure unmanned landing reliability without humans.

人航空機の着陸時に無人航空機に入力する衝撃を低減することができ、もって無人航空機が転倒したり破損したりするのを抑制することができる無人航空機の防振構造を提供することを課題とする。 The challenge is to provide an unmanned aerial vehicle anti-vibration structure that can reduce the impact input to the unmanned aerial vehicle during landing of the unmanned aerial vehicle and thus prevent the unmanned aerial vehicle from tipping over or being damaged. do.

無人航空機の防振構造は、無人航空機の機体本体に固定された筒状の固定脚部と、前記固定脚部の下端部に上下方向スライド可能に抜け止めされて連結されたロッド状の可動脚部と、前記可動脚部の下端部に設けられて前記無人航空機の着陸時に接地する円盤状のゴム足接触部と、前記固定脚部の外周面を覆うように前記固定脚部に取り付けられた環状の取付部と、前記取付部から下方に向けて設けられて弾性変形することにより緩衝作用を発揮する薄肉筒状の可撓部とを有するゴム足と、を備え、前記可動脚部が自重によりスライドストロークの下限に位置する前記無人航空機の飛行時には、前記ゴム足接触部と前記ゴム足との間に間隙を形成して前記ゴム足の下端部を大気解放し、前記ゴム足接触部が接地して前記可動脚部が上方へスライド移動する前記無人航空機の着陸時には、前記前記ゴム足接触部が前記ゴム足と接触して前記可撓部を弾性変形させるとともに、前記ゴム足の下端開口部を閉塞して前記ゴム足の内部空間に空気を封入した空気ばねを設け、前記可撓部の弾性変形による緩衝作用と前記空気ばねの圧縮による緩衝作用とを発揮させる。 The anti-vibration structure of the unmanned aircraft consists of a tubular fixed leg fixed to the main body of the unmanned aircraft and a rod-shaped movable leg connected to the lower end of the fixed leg so as to be slidable in the vertical direction. A disk-shaped rubber foot contact portion provided at the lower end portion of the movable leg portion and grounded at the time of landing of the unmanned aircraft, and attached to the fixed leg portion so as to cover the outer peripheral surface of the fixed leg portion . It is provided with an annular mounting portion and a rubber foot having a thin-walled tubular flexible portion that is provided downward from the mounting portion and exerts a cushioning action by elastically deforming, and the movable leg portion has its own weight. When the unmanned aircraft located at the lower limit of the slide stroke is in flight, a gap is formed between the rubber foot contact portion and the rubber foot to release the lower end portion of the rubber foot to the atmosphere, and the rubber foot contact portion is released. When the unmanned aircraft lands on the ground and the movable leg slides upward, the rubber foot contact portion comes into contact with the rubber foot to elastically deform the flexible portion, and the lower end opening of the rubber foot is opened. An air spring is provided in which the portion is closed and air is sealed in the internal space of the rubber foot, and the cushioning action due to the elastic deformation of the flexible portion and the buffering action due to the compression of the air spring are exerted.

人航空機の脚部にゴム足が設けられるとともにゴム足の内部に空気ばねが設けられているため、これらゴム足および空気ばねが発揮する緩衝作用により、無人航空機の着陸時に無人航空機に入力する衝撃を低減することが可能とされる Since the rubber feet are provided on the legs of the unmanned aerial vehicle and the air springs are provided inside the rubber feet, the cushioning action exerted by these rubber feet and the air springs allows input to the unmanned aerial vehicle when the unmanned aerial vehicle lands. It is possible to reduce the impact .

施の形態に係る防振構造を備える無人航空機の説明図Explanatory drawing of an unmanned aerial vehicle provided with a vibration-proof structure according to an embodiment 同防振構造の断面斜視図Cross-sectional perspective view of the anti-vibration structure 同防振構造の断面図Cross-sectional view of the anti-vibration structure (A)および(B)とも同防振構造の作動状態を示す断面図(A) and (B) are cross-sectional views showing the operating state of the same vibration-proof structure. の実施の形態に係る防振構造の断面斜視図Cross-sectional perspective view of the anti-vibration structure according to another embodiment の実施の形態に係る防振構造の断面斜視図Cross-sectional perspective view of the anti-vibration structure according to another embodiment 同防振構造に備えられるゴム足の単体断面図Single cross-sectional view of the rubber feet provided in the anti-vibration structure

図1に示すように、実施の形態に係る無人航空機1は、機体本体11および機体本体11に連結された脚部21を備える小型の無人航空機である。機体本体11は、受信機、フライトコントローラー、プロペラ、モーター、バッテリーなど無人航空機を飛行させ制御するための機器を搭載しており、図では機体本体11のフレーム部12と所要数のプロペラ13とを示している。一方、脚部21は無人航空機1の離着陸時に機体本体11を保護すべく機体本体11を安定的に支持するものであって、同一構造の脚部21が無人航空機1の平面上3箇所ないし4箇所以上に亙って例えば各プロペラ13の直下位置などに設けられている。機体本体11には、センサーやカメラなど各種の作動機器(図示せず)が搭載される。無人航空機1は無人マルチコプターもしくは無人回転翼機とも称され、また、所謂ドローンなどとも称される。 As shown in FIG. 1, the unmanned aerial vehicle 1 according to the embodiment is a small unmanned aerial vehicle including a body 11 and legs 21 connected to the body 11. The airframe 11 is equipped with equipment for flying and controlling an unmanned aerial vehicle such as a receiver, a flight controller, a propeller, a motor, and a battery. In the figure, the frame portion 12 of the airframe 11 and the required number of propellers 13 are shown. Shows. On the other hand, the legs 21 stably support the aircraft body 11 in order to protect the aircraft body 11 during takeoff and landing of the unmanned aerial vehicle 1, and the legs 21 having the same structure are provided at three or four locations on the plane of the unmanned aerial vehicle 1. It is provided at a position directly below each propeller 13, for example, over the location. Various operating devices (not shown) such as sensors and cameras are mounted on the machine body 11. The unmanned aerial vehicle 1 is also referred to as an unmanned multicopter or an unmanned rotary wing aircraft, and is also referred to as a so-called drone.

図2および図3に示すように、脚部21は、機体本体11の下面に固定される固定脚部31と、固定脚部31の下端部外周に保持されたゴム足41と、固定脚部31の下端部に上下方向スライド可能に連結された可動脚部51とを備えている。 As shown in FIGS. 2 and 3, the leg portion 21 includes a fixed leg portion 31 fixed to the lower surface of the machine body 11, a rubber foot 41 held on the outer periphery of the lower end portion of the fixed leg portion 31, and a fixed leg portion. A movable leg portion 51 connected to the lower end portion of the 31 so as to be slidable in the vertical direction is provided.

固定脚部31は、筒状ないしシリンダ状を呈し、機体本体11のフレーム部12の下面に下方へ向けて固定されている。 The fixed leg portion 31 has a cylindrical shape or a cylinder shape, and is fixed downward to the lower surface of the frame portion 12 of the machine body 11.

ゴム足41は、所定のゴム状弾性体によって筒状に成形され、当該ゴム足41を固定脚部31に取り付けるための環状の取付部42を備え、この取付部42の下側に下方へ向けて、作動時(衝撃吸収時)に弾性変形することにより緩衝作用を発揮する薄肉筒状の可撓部43が一体に設けられている。 The rubber foot 41 is formed into a tubular shape by a predetermined rubber-like elastic body, includes an annular mounting portion 42 for mounting the rubber foot 41 to the fixed leg portion 31, and is directed downward below the mounting portion 42. Further, a thin-walled tubular flexible portion 43 that exerts a cushioning action by elastically deforming during operation (during shock absorption) is integrally provided.

このうち、取付部42は、その内周面に設けた突起状の係合部44が固定脚部31の外周面に設けた溝状の係合部32に係合することにより固定脚部31に取り付けられているが、その取付け手段としては、係合無しの圧入や接着もしくは締結バンドによる固定などであっても良い。 Of these, the mounting portion 42 has a fixed leg portion 31 in which a protrusion-shaped engaging portion 44 provided on the inner peripheral surface thereof engages with a groove-shaped engaging portion 32 provided on the outer peripheral surface of the fixed leg portion 31. However, the mounting means may be press-fitting without engagement, adhesion, or fixing with a fastening band.

可撓部43は、その下方から押圧荷重が加えられたとき外周方向へ膨らむように弾性変形しやすいよう、その下端先端部45が先窄まりの形状とされている。 The lower end tip portion 45 of the flexible portion 43 has a shape of a constricted tip so that the flexible portion 43 can be easily elastically deformed so as to swell in the outer peripheral direction when a pressing load is applied from below.

可動脚部51は、固定脚部31の内周側にスライド可能に差し込まれるロッド状の部品とされ、その上端部に設けた円盤状ないしピストン状の係合部52が固定脚部31の内周面に設けた段差状の係合部33に係合することにより固定脚部31に対し抜け止めされている。 The movable leg portion 51 is a rod-shaped part that is slidably inserted into the inner peripheral side of the fixed leg portion 31, and a disk-shaped or piston-shaped engaging portion 52 provided at the upper end thereof is inside the fixed leg portion 31. By engaging with the stepped engaging portion 33 provided on the peripheral surface, the fixed leg portion 31 is prevented from coming off.

また、可動脚部51の下端部には、ゴム足41の下方に配置され、ゴム足41に対し接離可能に接触する円盤状のゴム足接触部53が設けられている。 Further, at the lower end of the movable leg portion 51, a disk-shaped rubber foot contact portion 53 that is arranged below the rubber foot 41 and is in contact with the rubber foot 41 so as to be in contact with the rubber foot 41 is provided.

このゴム足接触部53は、定常時、図示するようにゴム足41の下端先端部45との間に上下方向の間隙cを形成することによりゴム足41の下端開口部46を大気開放している。また、ゴム足接触部53はその作動時、図4(A)に示すようにゴム足41の下端先端部45と接触し、ゴム足41の下端開口部46を閉塞してゴム足41の内部空間47に空気(図示せず)を封入する。したがってここに、封入される空気による空気ばね61が設けられ、ゴム足41は空気袋として作用する。 The rubber foot contact portion 53 opens the lower end opening 46 of the rubber foot 41 to the atmosphere by forming a vertical gap c between the rubber foot contact portion 53 and the lower end tip portion 45 of the rubber foot 41 as shown in the figure. There is. Further, when the rubber foot contact portion 53 is activated, as shown in FIG. 4A, the rubber foot contact portion 53 contacts the lower end tip portion 45 of the rubber foot 41, closes the lower end opening 46 of the rubber foot 41, and is inside the rubber foot 41. Air (not shown) is sealed in the space 47. Therefore, an air spring 61 made of enclosed air is provided here, and the rubber feet 41 act as an air bag.

上記構成の無人航空機1における防振構造においては、その定常時(無人航空機1の飛行時)、図2および図3に示したように脚部21は接地しておらず、可動脚部51はその自重によりスライドストロークの下限に位置している。したがってゴム足接触部53とゴム足41の下端先端部45との間に間隙cが形成され、ゴム足41の下端開口部46が大気開放されている。 In the anti-vibration structure of the unmanned aerial vehicle 1 having the above configuration, the leg portion 21 is not in contact with the ground and the movable leg portion 51 is not in contact with the ground as shown in FIGS. 2 and 3 during the steady state (during the flight of the unmanned aerial vehicle 1). It is located at the lower limit of the slide stroke due to its own weight. Therefore, a gap c is formed between the rubber foot contact portion 53 and the lower end tip portion 45 of the rubber foot 41, and the lower end opening 46 of the rubber foot 41 is open to the atmosphere.

そして、この状態から、無人航空機1が着陸しようとして脚部21が接地し脚部21に衝撃加重が入力すると図4(A)に示すように、可動脚部51が衝撃加重を受けて上方へスライドし、ゴム足接触部53がゴム足41の下端先端部45と接触し、ゴム足41の下端開口部46を閉塞し、ゴム足41の内部空間47に空気を封入する。 Then, from this state, when the leg portion 21 touches the ground and an impact load is input to the leg portion 21 when the unmanned aircraft 1 tries to land, the movable leg portion 51 receives the impact load and moves upward as shown in FIG. 4 (A). The rubber foot contact portion 53 slides into contact with the lower end tip portion 45 of the rubber foot 41, closes the lower end opening 46 of the rubber foot 41, and encloses air in the internal space 47 of the rubber foot 41.

また、この状態から更に衝撃加重が入力すると図4(B)に示すように、可動脚部51が更に上方へスライドし、ゴム足接触部53がゴム足41の下端先端部45を押圧してゴム足41の可撓部43を弾性変形させ、同時に、ゴム足41の内部空間47に封入した空気を圧縮して、空気ばね61によるばね作用を発揮させる。 Further, when an impact load is further input from this state, the movable leg portion 51 slides further upward as shown in FIG. 4B, and the rubber foot contact portion 53 presses the lower end tip portion 45 of the rubber foot 41. The flexible portion 43 of the rubber foot 41 is elastically deformed, and at the same time, the air enclosed in the internal space 47 of the rubber foot 41 is compressed to exert the spring action by the air spring 61.

したがって、ゴム足41が衝撃加重の入力時に弾性変形することにより緩衝作用が発揮されるとともに、空気ばね61が衝撃加重の入力時に圧縮されることにより緩衝作用が発揮されるため、着陸時の衝撃加重を有効に低減することが可能とされる。 Therefore, the rubber foot 41 is elastically deformed when the impact load is input to exert a cushioning action, and the air spring 61 is compressed when the impact load is input to exert a buffering action, so that the impact at the time of landing is exerted. It is possible to effectively reduce the load.

尚、図4(B)の状態から無人航空機1が離陸すると、可動脚部51が自重によりゆっくりと図3の状態へ復帰する。したがって再度の着地に備えることができる。また、復帰動によりゴム足41の下端開口部46が再度大気開放されるため、ゴム足41の内部空間47へ侵入するダスト類があったとしてもこれを飛行中に下端開口部46から排出することができる。 When the unmanned aerial vehicle 1 takes off from the state shown in FIG. 4B, the movable leg portion 51 slowly returns to the state shown in FIG. 3 due to its own weight. Therefore, it is possible to prepare for another landing. Further, since the lower end opening 46 of the rubber foot 41 is opened to the atmosphere again by the return motion, even if there is dust that invades the internal space 47 of the rubber foot 41, it is discharged from the lower end opening 46 during flight. be able to.

上記実施の形態に係る防振構造は、その構成を以下のように付加・変更することが考えられる。 It is conceivable that the structure of the anti-vibration structure according to the above embodiment may be added or changed as follows.

(1)図5に示すように、固定脚部31の下端部と可動脚部51のゴム足接触部53との間に、可動脚部51をスライドストロークの下限位置へ復帰動させる復帰ばね71を介装する。これによれば、可動脚部51をスライドストロークの下限位置へ確実に復帰動させることができる。 (1) As shown in FIG. 5, a return spring 71 that returns the movable leg portion 51 to the lower limit position of the slide stroke between the lower end portion of the fixed leg portion 31 and the rubber foot contact portion 53 of the movable leg portion 51. To intervene. According to this, the movable leg portion 51 can be reliably returned to the lower limit position of the slide stroke.

(2)図5に示すように、ゴム足41の可撓部43に、内部空間47に封入した一部の空気を大気側へ放出する空気逃がし穴48を設ける。これによれば、穴48の大小や形成数などによって、空気ばね61のばね特性を調節することができる。 (2) As shown in FIG. 5, the flexible portion 43 of the rubber foot 41 is provided with an air escape hole 48 for discharging a part of the air enclosed in the internal space 47 to the atmosphere side. According to this, the spring characteristics of the air spring 61 can be adjusted according to the size of the holes 48, the number of formations, and the like.

(3)図5に示すように、固定脚部31の上端部に、この固定脚部31を機体本体11へ着脱可能に連結するための雌ねじ等よりなる連結部34を設ける。これによれば、脚部21が交換可能とされるため、脚部21を別仕様の防振構造を備える脚部と容易に交換することができる。 (3) As shown in FIG. 5, a connecting portion 34 made of a female screw or the like for detachably connecting the fixed leg portion 31 to the machine body 11 is provided at the upper end portion of the fixed leg portion 31. According to this, since the leg portion 21 can be replaced, the leg portion 21 can be easily replaced with a leg portion having a vibration-proof structure of another specification.

(4)上記実施の形態に係る防振構造において、筒状ないしシリンダ状を呈する固定脚部31の内部空間を密閉構造とすれば、ここに第2の空気ばねが設定されることになる。したがってこの場合、図5に示すように固定脚部31の周面にも、その内部空間36に封入した一部の空気を大気側へ放出する空気逃がし穴35を設けることが考えられる。また、固定脚部31の内部に空気ばねを設定しない場合は、空気逃がし穴35の開口面積を大きく設定することにより内部空間36を大気開放する。 (4) In the vibration-proof structure according to the above embodiment, if the internal space of the fixed leg portion 31 having a cylindrical shape or a cylinder shape is a closed structure, a second air spring is set here. Therefore, in this case, as shown in FIG. 5, it is conceivable to provide an air escape hole 35 for discharging a part of the air enclosed in the internal space 36 to the atmosphere side on the peripheral surface of the fixed leg portion 31. When the air spring is not set inside the fixed leg portion 31, the internal space 36 is opened to the atmosphere by setting a large opening area of the air escape hole 35.

(5)図6および図7に示すように、固定脚部31の外周面に気密的に接触するゴム足41の取付部42の内周面に、空気の通過時に圧力損失を発生させる溝状のオリフィス流路を設け、このオリフィス流路49を介してゴム足41の内部空間47とゴム足41の取付部42に設けた空気逃がし穴48とを連通させる。これによれば、オリフィス流路49において発生する圧力損失によって緩衝効果を高めることができ、また、オリフィス流路49の流路長さや流路断面積を変更することにより、発生する圧力損失の大きさを調節することができる。 (5) As shown in FIGS. 6 and 7, a groove shape that causes a pressure loss when air passes through the inner peripheral surface of the mounting portion 42 of the rubber foot 41 that is in airtight contact with the outer peripheral surface of the fixed leg portion 31. The orifice flow path of the above is provided, and the internal space 47 of the rubber foot 41 and the air escape hole 48 provided in the mounting portion 42 of the rubber foot 41 are communicated with each other through the orifice flow path 49. According to this, the cushioning effect can be enhanced by the pressure loss generated in the orifice flow path 49, and the large pressure loss generated by changing the flow path length and the flow path cross-sectional area of the orifice flow path 49. You can adjust the pressure.

オリフィス流路49の流路長さを長く設定するには図7に示すように、オリフィス流路49を螺旋状の溝として形成するのが好適である。また、螺旋状の溝を多条ねじの形状としたり、或いは正方向ねじおよび逆方向ねじを互いに交差させる形状としたりすることも考えられる。 In order to set the length of the orifice flow path 49 to be long, it is preferable to form the orifice flow path 49 as a spiral groove as shown in FIG. 7. It is also conceivable that the spiral groove has the shape of a multi-threaded screw, or the forward screw and the reverse screw have a shape that intersects each other.

(6)固定脚部31と可動脚部51の間に軸受(図示せず)を介装する。これによれば、固定脚部31に対する可動脚部51のスライドストロークを円滑化することができる。 (6) A bearing (not shown) is interposed between the fixed leg portion 31 and the movable leg portion 51. According to this, the slide stroke of the movable leg portion 51 with respect to the fixed leg portion 31 can be facilitated.

(7)固定脚部31および可動脚部51の材質としては、金属系であっても良いが、特にこれを樹脂系の材質とする。これによれば、固定脚部31および可動脚部51、延いては脚部21全体の重量を軽減することができる。 (7) The material of the fixed leg portion 31 and the movable leg portion 51 may be a metal-based material, but in particular, this is a resin-based material. According to this, the weight of the fixed leg portion 31, the movable leg portion 51, and the entire leg portion 21 can be reduced.

1 無人航空機
11 機体本体
12 フレーム部
13 プロペラ
21 脚部
31 固定脚部
32,33,44,52 係合部
34 連結部
35,48 空気逃がし穴
36,47 内部空間
41 ゴム足
42 取付部
43 可撓部
45 下端先端部
46 下端開口部
49 オリフィス流路
51 可動脚部
53 ゴム足接触部
61 空気ばね
71 復帰ばね
c 間隙
1 Unmanned aerial vehicle 11 Main body 12 Frame part 13 Propeller 21 Leg part 31 Fixed leg part 32, 33, 44, 52 Engagement part 34 Connecting part 35, 48 Air escape hole 36, 47 Internal space 41 Rubber foot 42 Mounting part 43 Possible Flexible part 45 Lower end tip 46 Lower end opening 49 orifice flow path 51 Movable leg 53 Rubber foot contact part 61 Air spring 71 Return spring c Gap

Claims (5)

無人航空機の機体本体に固定された筒状の固定脚部と、
前記固定脚部の下端部に上下方向スライド可能に抜け止めされて連結されたロッド状の可動脚部と、
前記可動脚部の下端部に設けられて前記無人航空機の着陸時に接地する円盤状のゴム足接触部と、
前記固定脚部の外周面を覆うように前記固定脚部に取り付けられた環状の取付部と、前記取付部から下方に向けて設けられて弾性変形することにより緩衝作用を発揮する薄肉筒状の可撓部とを有するゴム足と、
を備え、
前記可動脚部が自重によりスライドストロークの下限に位置する前記無人航空機の飛行時には、前記ゴム足接触部と前記ゴム足との間に間隙を形成して前記ゴム足の下端部を大気解放し、
前記ゴム足接触部が接地して前記可動脚部が上方へスライド移動する前記無人航空機の着陸時には、前記ゴム足接触部が前記ゴム足と接触して前記可撓部を弾性変形させるとともに、前記ゴム足の下端開口部を閉塞して前記ゴム足の内部空間に空気を封入した空気ばねを設け、前記可撓部の弾性変形による緩衝作用と前記空気ばねの圧縮による緩衝作用とを発揮させる、
無人航空機の防振構造。
Cylindrical fixed legs fixed to the body of the unmanned aerial vehicle,
A rod-shaped movable leg that is slidably slidable in the vertical direction and connected to the lower end of the fixed leg.
A disk-shaped rubber foot contact portion provided at the lower end of the movable leg portion and grounded at the time of landing of the unmanned aerial vehicle, and a disk-shaped rubber foot contact portion.
An annular mounting portion attached to the fixed leg portion so as to cover the outer peripheral surface of the fixed leg portion, and a thin-walled cylindrical shape provided downward from the mounting portion and elastically deformed to exert a buffering action. A rubber foot with a flexible part and
Equipped with
During flight of the unmanned aerial vehicle in which the movable leg portion is located at the lower limit of the slide stroke due to its own weight, a gap is formed between the rubber foot contact portion and the rubber foot to release the lower end portion of the rubber foot to the atmosphere.
At the time of landing of the unmanned aircraft in which the rubber foot contact portion touches the ground and the movable leg portion slides upward, the rubber foot contact portion comes into contact with the rubber foot to elastically deform the flexible portion, and the flexible portion is elastically deformed. An air spring is provided in which air is sealed in the internal space of the rubber foot by closing the lower end opening of the rubber foot , and exerts a cushioning action due to elastic deformation of the flexible portion and a cushioning action due to compression of the air spring. ,
Anti-vibration structure for unmanned aerial vehicles.
請求項1記載の防振構造において、
前記固定脚部の外周面には溝状の係合部が設けられ、
前記取付部は、その内周面に設けた突起状の係合部が前記溝状の係合部に嵌り合うことによって前記固定脚部に取り付けられている、
ことを特徴とする無人航空機の防振構造。
In the anti-vibration structure according to claim 1,
A groove-shaped engaging portion is provided on the outer peripheral surface of the fixed leg portion.
The mounting portion is attached to the fixed leg portion by fitting a protrusion-shaped engaging portion provided on the inner peripheral surface thereof to the groove-shaped engaging portion.
The anti-vibration structure of an unmanned aerial vehicle is characterized by that.
請求項1または2記載の防振構造において、
前記ゴム足は、前記内部空間に封入した一部の空気を大気側へ放出する空気逃がし穴を備えることを特徴とする無人航空機の防振構造。
In the anti-vibration structure according to claim 1 or 2.
The rubber foot is a vibration-proof structure for an unmanned aerial vehicle, characterized in that the rubber foot is provided with an air escape hole that discharges a part of the air enclosed in the internal space to the atmosphere side.
請求項3記載の防振構造において、
前記ゴム足は、前記内部空間と前記空気逃がし穴との間に、圧力損失を発生せるオリフィス流路を備えることを特徴とする無人航空機の防振構造。
In the anti-vibration structure according to claim 3,
The rubber foot is a vibration-proof structure for an unmanned aerial vehicle, characterized in that an orifice flow path that generates a pressure loss is provided between the internal space and the air relief hole.
請求項4記載の防振構造において、
前記オリフィス流路は、前記ゴム足の内周面に螺旋状の溝として設けられていることを特徴とする無人航空機の防振構造。
In the anti-vibration structure according to claim 4,
The orifice flow path is a vibration-proof structure for an unmanned aerial vehicle, characterized in that the orifice flow path is provided as a spiral groove on the inner peripheral surface of the rubber foot.
JP2018111587A 2018-06-12 2018-06-12 Anti-vibration structure for unmanned aerial vehicles Active JP7101054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018111587A JP7101054B2 (en) 2018-06-12 2018-06-12 Anti-vibration structure for unmanned aerial vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018111587A JP7101054B2 (en) 2018-06-12 2018-06-12 Anti-vibration structure for unmanned aerial vehicles

Publications (2)

Publication Number Publication Date
JP2019214256A JP2019214256A (en) 2019-12-19
JP7101054B2 true JP7101054B2 (en) 2022-07-14

Family

ID=68918343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018111587A Active JP7101054B2 (en) 2018-06-12 2018-06-12 Anti-vibration structure for unmanned aerial vehicles

Country Status (1)

Country Link
JP (1) JP7101054B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168744A1 (en) * 2020-02-27 2021-09-02 南京唐壹信息科技有限公司 Unmanned aerial vehicle for transporting materials
KR102519265B1 (en) * 2020-08-14 2023-04-07 주식회사 아르고스다인 Drone Charging connection device
CN112407254A (en) * 2020-10-27 2021-02-26 江西玉祥智能装备制造有限公司 Unmanned aerial vehicle with buffering undercarriage
CN112278251A (en) * 2020-10-27 2021-01-29 江西玉祥智能装备制造有限公司 Unmanned aerial vehicle with damping undercarriage
CN112373678B (en) * 2020-11-23 2022-04-29 中国人民解放军军事科学院国防科技创新研究院 Many rotor unmanned aerial vehicle aid landing gear
KR102438013B1 (en) * 2020-12-31 2022-08-30 주식회사 엑스드론 Landing assembly for drone main body protection
CN113120226B (en) * 2021-05-31 2023-04-18 四川省天域航通科技有限公司 Shock-absorbing mechanism that unmanned aerial vehicle used
CN114934979B (en) * 2022-05-16 2023-09-29 重庆交通职业学院 A damping device for unmanned aerial vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157567A1 (en) 2008-06-26 2009-12-30 株式会社フコク Bump stopper and manufacturing method therefor
US20150245516A1 (en) 2013-08-15 2015-08-27 Traxxas Lp Rotorcraft with integrated light pipe support members
JP2017193208A (en) 2016-04-18 2017-10-26 株式会社自律制御システム研究所 Small-sized unmanned aircraft
CN206679252U (en) 2017-02-22 2017-11-28 宁夏灏铭科技有限公司 A kind of multi-rotor unmanned aerial vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142536U (en) * 1983-03-15 1984-09-22 トヨタ自動車株式会社 Bound stopper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157567A1 (en) 2008-06-26 2009-12-30 株式会社フコク Bump stopper and manufacturing method therefor
US20150245516A1 (en) 2013-08-15 2015-08-27 Traxxas Lp Rotorcraft with integrated light pipe support members
JP2017193208A (en) 2016-04-18 2017-10-26 株式会社自律制御システム研究所 Small-sized unmanned aircraft
CN206679252U (en) 2017-02-22 2017-11-28 宁夏灏铭科技有限公司 A kind of multi-rotor unmanned aerial vehicle

Also Published As

Publication number Publication date
JP2019214256A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP7101054B2 (en) Anti-vibration structure for unmanned aerial vehicles
CN107922051B (en) Safety device reaches unmanned aerial vehicle including its accident of preventing falling
CN114466792A (en) Shock absorbing strut
US20110133378A1 (en) Helicopter landing gear damper
US3531065A (en) Aircraft arresting device
CN104787309A (en) Landing gear of rotor unmanned aerial vehicle (UAV)
CA3027806C (en) Aircraft assembly
CN105509741A (en) Flight control assembly and unmanned aerial vehicle
JP2019521038A (en) Apparatus and method for injecting a parachute
JP2019217833A (en) Ejection device of parachute or paraglider and air vehicle including the same
KR102268216B1 (en) Drone Landing Gear
US10648565B2 (en) Aircraft seal assembly
KR102108148B1 (en) Drone shock absorber for object transfer
WO2018032264A1 (en) Unmanned aerial vehicle machine body anti-collision structure
US9169892B2 (en) Mechanical connection device
US1937511A (en) Shock absorber for vehicles
CN212448063U (en) Landing buffer frame for unmanned aerial vehicle
CN210555562U (en) Unmanned aerial vehicle shock attenuation undercarriage
CN113212744A (en) Vertical take-off and landing fixed wing unmanned aerial vehicle with protection device
US2381532A (en) Shock absorber
KR102500536B1 (en) Drone buffer structure for safe landing
RU2429165C1 (en) Device for cargo soft parachute landing on landing ground
US11794882B1 (en) Shock absorption system for an unmanned aerial vehicle
JPH09193896A (en) Air bag device
CN211139657U (en) Anti-rebound unmanned aerial vehicle undercarriage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7101054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150