JP7100833B2 - Magnetic core core and its manufacturing method, and coil parts - Google Patents

Magnetic core core and its manufacturing method, and coil parts Download PDF

Info

Publication number
JP7100833B2
JP7100833B2 JP2021503980A JP2021503980A JP7100833B2 JP 7100833 B2 JP7100833 B2 JP 7100833B2 JP 2021503980 A JP2021503980 A JP 2021503980A JP 2021503980 A JP2021503980 A JP 2021503980A JP 7100833 B2 JP7100833 B2 JP 7100833B2
Authority
JP
Japan
Prior art keywords
magnetic
core
binder
powder
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021503980A
Other languages
Japanese (ja)
Other versions
JPWO2020179535A1 (en
Inventor
剛太 篠原
哲也 金川
和広 中村
肇 川口
勇伍 竹岡
修平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2020179535A1 publication Critical patent/JPWO2020179535A1/en
Application granted granted Critical
Publication of JP7100833B2 publication Critical patent/JP7100833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、磁心コアとその製造方法、及びにコイル部品に関し、より詳しくは合金系の磁性体粉末を使用した磁心コアとその製造方法、及びこの磁心コアを使用したリアクトルやインダクタ等のコイル部品に関する。 The present invention relates to a magnetic core core and a method for manufacturing the same, and more specifically, a magnetic core core using an alloy-based magnetic material powder and a method for manufacturing the magnetic core core, and a reactor and an inductor using the magnetic core core. Regarding coil parts.

磁性体粉末、特に軟磁性特性に優れた非晶質合金類の磁性体粉末は、比透磁率や飽和磁束密度等の磁気特性が良好で高周波領域での使用に適していることから、近年、盛んに研究・開発されている。 Magnetic material powders, especially amorphous alloy magnetic material powders with excellent soft magnetic properties, have good magnetic properties such as relative permeability and saturation magnetic flux density and are suitable for use in the high frequency range. It is actively researched and developed.

例えば、特許文献1には、急速凝固方法(RSP)で製造されたFe系非晶質金属薄帯(金属リボン)を予備熱処理する段階;前記非晶質金属薄帯を粉砕して非晶質金属粉末を得る段階;前記非晶質金属粉末を分級した後、-100~+140mesh通過分:35~45%、-140~+200mesh通過分:55~65%からなる粒度分布を有する粉末を混合する段階;前記混合された非晶質金属粉末にバインダーを混合した後、コアを成形する段階;及び前記成形されたコアを焼鈍処理した後、前記コアを絶縁樹脂でコーティングする段階を含む非晶質軟磁性コアの製造方法が提案されている。 For example, Patent Document 1 describes a step of preheating an Fe-based amorphous metal strip (metal ribbon) produced by a rapid coagulation method (RSP); the amorphous metal strip is crushed and amorphous. Step to obtain metal powder; After classifying the amorphous metal powder, a powder having a particle size distribution consisting of -100 to +140 mesh passage: 35 to 45% and -140 to +200 mesh passage: 55 to 65% is mixed. Steps; Amorphous including a step of mixing a binder with the mixed amorphous metal powder and then molding a core; and a step of annealing the molded core and then coating the core with an insulating resin. A method for manufacturing a soft magnetic core has been proposed.

特許文献1では、急速凝固法で製造された金属薄帯を粉砕することにより、高い組成均一性及び低い酸化度を有する非晶質金属粉末を得るようにし、この非晶質金属粉末を加圧成形し、大電流通電下でも良好な直流重畳特性を有する磁心コアを得ようとしている。 In Patent Document 1, an amorphous metal powder having high composition uniformity and a low degree of oxidation is obtained by crushing a metal strip produced by a rapid coagulation method, and the amorphous metal powder is pressurized. We are trying to obtain a magnetic core core that has good DC superimposition characteristics even under high current energization by molding.

特許第4274897号公報(請求項1、段落[0017]、[0018]等)Japanese Patent No. 4274897 (Claim 1, paragraphs [0017], [0018], etc.)

しかしながら、特許文献1では、金属薄帯を粉砕して非晶質の磁性体粉末を得ているものの、粉砕された磁性体粉末は、形状がいびつで尖鋭なエッジ部を有する。したがって、前記エッジ部同士が互いに接触した状態で加圧成形すると、斯かるエッジ部に磁束が集中し、このため直流重畳特性の劣化を招くおそれがある。 However, in Patent Document 1, although the metal strip is pulverized to obtain an amorphous magnetic material powder, the pulverized magnetic material powder has a distorted shape and has a sharp edge portion. Therefore, if pressure molding is performed in a state where the edge portions are in contact with each other, the magnetic flux is concentrated on the edge portions, which may lead to deterioration of the DC superimposition characteristic.

また、金属薄帯に対し長時間に亙って外力を負荷し、機械加工することから、磁性体粉末には歪みが生じ易く、このため磁性体粉末の保磁力Hcが上昇し、ヒステリシス損が大きくなって磁気損失の増加を招くおそれがある。 In addition, since the magnetic material powder is easily distorted because it is machined by applying an external force to the metal strip for a long time, the coercive force Hc of the magnetic material powder increases and hysteresis loss occurs. It may become large and cause an increase in magnetic loss.

また、この種の磁性体粉末を使用した磁心コアでは、通常、磁性体粉末を絶縁性材料で被覆することにより絶縁性を確保しているが、磁性体粉末が尖鋭なエッジ部を有していることから、磁性体粉末を絶縁性材料で均一に被覆するのが困難となる。このため磁性体粉末間の絶縁性が不足して電流が漏れ易くなり、渦電流損の増加を招くことから、磁気損失が大きくなるおそれがある。 Further, in a magnetic core core using this kind of magnetic material powder, the insulating property is usually secured by coating the magnetic material powder with an insulating material, but the magnetic material powder has a sharp edge portion. Therefore, it is difficult to uniformly coat the magnetic powder with the insulating material. For this reason, the insulating property between the magnetic powders is insufficient and the current easily leaks, which causes an increase in the eddy current loss, which may increase the magnetic loss.

本発明はこのような事情に鑑みなされたものであって、磁気損失を低くすることができ、かつ良好な直流重畳特性を有する磁性体粉末を使用した磁心コアとその製造方法、及びこの磁心コアを使用したリアクトル等のコイル部品を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a magnetic core core using a magnetic material powder capable of reducing magnetic loss and having good DC superimposition characteristics, a method for manufacturing the same, and the magnetic core. It is an object of the present invention to provide coil parts such as reactors using a core.

金属薄帯を粉砕して得られる磁性体粉末は、いびつで尖鋭なエッジ部を有するが、磁性体粉末が球状に近くなると、上述したいびつで尖鋭なエッジ部の形成が抑制されることから、磁束は特定部位に集中することなく球面上を略均一に拡散して流れ、これにより直流重畳特性の向上が可能になると考えられる。 The magnetic material powder obtained by crushing the metal strip has a distorted and sharp edge portion, but when the magnetic material powder becomes close to a spherical surface, the formation of the above-mentioned distorted and sharp edge portion is suppressed. It is considered that the magnetic flux diffuses and flows on the spherical surface substantially uniformly without being concentrated on a specific part, which makes it possible to improve the DC superimposition characteristic.

一方、金属薄帯に長時間外力を負荷し、磁性体粉末を過度に球状化すると、該磁性体粉末には大きな歪みが生じ、このため磁性体粉末の保磁力Hcが上昇してヒステリシス損が増加し、磁気損失の増加を招くおそれがある。 On the other hand, when an external force is applied to the metal strip for a long time to make the magnetic powder excessively spheroidized, the magnetic powder is greatly distorted, so that the coercive force Hc of the magnetic powder increases and hysteresis loss occurs. It may increase and lead to an increase in magnetic loss.

そこで、本発明者らは、磁性体粉末の歪み形成を抑制しつつ磁束が略均一に拡散して流れるように、扁平球状粉を作製して鋭意研究を行ったところ、径方向の平均長さaと厚み方向の平均厚さbとの比率を示すアスペクト比a/bを1.8~6.8とし、角部が半径0.8μm~25μmの曲面状となるように形成することにより、低磁気損失で直流重畳特性が良好な磁心コアに好適な磁性体粉末を得ることができるという知見を得た。そして、数量基準で50%以上の磁性体粉末にクラックが形成されることにより、金属薄帯の粉砕時等に磁性体粉末に歪みが生じても、加圧成形時に歪みが解放される。また、クラックを有することにより磁性体粉末は高密度で充填されることとなり、より一層の直流重畳特性の向上及び低磁気損失が可能となることが分かった。 Therefore, the present inventors made a flat spherical powder so that the magnetic flux diffused and flowed substantially uniformly while suppressing the strain formation of the magnetic powder, and conducted diligent research. As a result, the average length in the radial direction was obtained. The aspect ratio a / b, which indicates the ratio of a to the average thickness b in the thickness direction, is set to 1.8 to 6.8, and the corners are formed to have a curved shape with a radius of 0.8 μm to 25 μm. It was found that a magnetic powder suitable for a magnetic core core with low magnetic loss and good DC superimposition characteristics can be obtained. By forming cracks in 50% or more of the magnetic powder on a quantity basis, even if the magnetic powder is distorted when the metal strip is crushed, the strain is released during pressure molding. It was also found that the presence of cracks allows the magnetic powder to be filled at a high density, which makes it possible to further improve the DC superimposition characteristics and reduce the magnetic loss.

本発明はこのような知見に基づきなされたものであって、本発明に係る磁心コアは、少なくともFe成分を含有した金属薄帯の粉砕物からなる磁性体粉末と結合剤とを含有した複合材料で形成された磁心コアであって、前記磁性体粉末は、扁平球状に形成されると共に、径方向の平均長さaと厚み方向の平均厚さbとの比率を示すアスペクト比a/bが1.8~6.8であり、角部が半径0.8μm~25μmの曲面状であり、かつ、前記磁性体粉末は、数量基準で50%以上にクラックが形成されていることを特徴としている。 The present invention has been made based on such findings, and the magnetic core core according to the present invention is a composite material containing a magnetic powder made of a pulverized metal strip containing at least an Fe component and a binder. The magnetic core is formed in a flat spherical shape, and has an aspect ratio a / b indicating the ratio of the average length a in the radial direction and the average thickness b in the thickness direction. It is 1.8 to 6.8, has a curved corner with a radius of 0.8 μm to 25 μm , and the magnetic powder is characterized in that cracks are formed in 50% or more on a quantity basis. There is.

このように磁性体粉末をアスペクト比a/b及び角部の形状を規定することにより、歪みが生じるのを抑制することができ、磁束は特定部位に集中することなく球面上を略均一に拡散して流れることから、低磁気損失と直流重畳特性の向上を両立させることが可能となる。 By defining the aspect ratio a / b and the shape of the corners of the magnetic powder in this way, it is possible to suppress the occurrence of distortion, and the magnetic flux diffuses substantially uniformly on the spherical surface without concentrating on a specific part. Therefore, it is possible to achieve both low magnetic loss and improvement of DC superimposition characteristics.

また、本発明の磁性体粉末は、Feを主成分とすると共に、非晶質相とナノ結晶相とが混在しているのが好ましい。 Further, it is preferable that the magnetic powder of the present invention contains Fe as a main component and a mixture of an amorphous phase and a nanocrystal phase.

これにより軟磁性特性が良好で低磁気損失かつ良好な機械的強度を有し、かつ比透磁率や磁束飽和密度等の磁気特性や直流重畳特性が良好な磁心コアを得ることができる。 As a result, it is possible to obtain a magnetic core core having good soft magnetic characteristics, low magnetic loss, good mechanical strength, and good magnetic characteristics such as relative permeability and magnetic flux saturation density and DC superimposition characteristics.

また、本発明の磁性体粉末は、平均粒径が、円相当径に換算して30~80μmであるのが好ましい。 Further, the magnetic powder of the present invention preferably has an average particle size of 30 to 80 μm in terms of a diameter equivalent to a circle.

ここで、上記した平均粒径は、累積50%粒子径D50(メジアン径)をいう。Here, the above-mentioned average particle diameter means a cumulative 50% particle diameter D 50 (median diameter).

また、本発明に係る磁心コアの製造方法は、磁性体粉末と結合剤とを含有した複合材料で形成された磁心コアの製造方法であって、磁性体粉末作製工程と複合材料作製工程とを有し、前記磁性体粉末作製工程は、少なくともFe成分を含有した金属薄帯を作製する工程と、前記金属薄帯を粉砕し粉砕物を作製する工程と、前記粉砕物に球状化処理を施し、径方向の平均長さaと厚み方向の平均厚さbとの比率を示すアスペクト比a/bが1.8~6.8であって角部が半径0.8μm~25μmの曲面状となるように形成されるように扁平球状の磁性体粉末を作製する工程とを含み、前記複合材料作製工程は、シリコーン樹脂を主成分とする第1の結合剤と前記磁性体粉末とを混合し、前記磁性体粉末を前記第1の結合剤で被覆する工程と、前記第1の結合剤で被覆された磁性体粉末と前記第1の結合剤よりも高硬度の少なくとも1種類以上の樹脂からなる第2の結合剤とを混合し、前記第1の結合剤同士を前記第2の結合剤を介して接合し、前記磁性体粉末と前記第1及び第2の結合剤とを含有した複合材料を作製する工程と、前記複合材料を加圧成形し、前記磁性体粉末が数量基準で50%以上にクラックが形成されるように磁心コアを作製する工程とを含むことを特徴としている。 Further, the method for manufacturing a magnetic core core according to the present invention is a method for manufacturing a magnetic core core formed of a composite material containing a magnetic powder and a binder, and comprises a magnetic powder powder manufacturing step and a composite material manufacturing step. The magnetic powder manufacturing step includes a step of manufacturing a metal strip containing at least an Fe component, a step of crushing the metal strip to prepare a crushed product, and a spheroidizing treatment of the crushed product. , The aspect ratio a / b indicating the ratio between the average length a in the radial direction and the average thickness b in the thickness direction is 1.8 to 6.8, and the corners are curved with a radius of 0.8 μm to 25 μm. The composite material manufacturing step includes a step of producing a flat spherical magnetic material powder so as to be formed so as to be formed, and the composite material manufacturing step is a mixture of a first binder containing a silicone resin as a main component and the magnetic material powder. From the step of coating the magnetic powder with the first binder, the magnetic powder coated with the first binder, and at least one resin having a hardness higher than that of the first binder. The first binder is mixed with the second binder, and the first binder is bonded to each other via the second binder, and the composite containing the magnetic powder and the first and second binders. It is characterized by including a step of producing a material and a step of forming a magnetic core core by pressure molding the composite material so that cracks are formed in 50% or more of the magnetic powder on a quantity basis .

これにより概ね所定サイズになるまで金属薄帯を粉砕し、その後の球状化処理で上記アスペクト比a/b及び角部が所定の曲面形状を有する磁性体粉末を作製することができ、低磁気損失で直流重畳特性の良好な磁性体粉末を低コストで効率良く得ることができる。 As a result, the metal strip is crushed until it becomes approximately a predetermined size, and a magnetic powder having the above aspect ratio a / b and a predetermined curved surface shape at the corners can be produced by the subsequent spheroidizing treatment, resulting in low magnetic loss. Therefore, it is possible to efficiently obtain a magnetic powder having good DC superimposition characteristics at low cost.

また、本発明の磁性体粉末の製造方法は、前記金属薄帯に熱処理を施し、非晶質相にナノ結晶を析出させる工程を含むのが好ましい。 Further, the method for producing a magnetic powder of the present invention preferably includes a step of heat-treating the metal strip to precipitate nanocrystals in an amorphous phase.

このように金属薄帯を熱処理して非晶質相にナノ結晶を析出させていることから、アトマイズ法で作製されたアトマイズ粉を熱処理してナノ結晶を析出する場合とは異なり、煩雑な温度制御が不要であり、直流重畳特性が良好で磁気損失が低い高品質の磁性体粉末を高効率で得ることができる。 Since the metal strip is heat-treated to precipitate nanocrystals in the amorphous phase in this way, the temperature is complicated unlike the case where the atomized powder produced by the atomizing method is heat-treated to precipitate nanocrystals. High-quality magnetic powder that does not require control, has good DC superimposition characteristics, and has low magnetic loss can be obtained with high efficiency.

さらに、本発明の磁性体粉末の製造方法は、前記球状化処理された前記磁性体粉末に熱処理を施すのが好ましい。 Further, in the method for producing a magnetic powder of the present invention, it is preferable to heat-treat the spheroidized magnetic powder.

これにより球状化処理を含む金属薄帯の粉砕処理時に生じた歪みを効果的に除去することができ、より一層低磁気損失の磁性体粉末を得ることができる。 As a result, the strain generated during the pulverization treatment of the metal strip including the spheroidizing treatment can be effectively removed, and a magnetic material powder having an even lower magnetic loss can be obtained.

また、本発明の磁性体粉末の製造方法は、前記金属薄帯を作製する工程が、少なくともFe成分を含む所定の素原料を秤量し、調合する工程と、前記調合された調合物を加熱して溶融物を作製する工程と、前記溶融物を回転体上に噴出させて急冷凝固させ、金属薄帯を作製する工程とを含むのが好ましい。 Further, in the method for producing a magnetic powder of the present invention, the step of producing the metal strip is the step of weighing and blending a predetermined raw material containing at least an Fe component, and the step of heating the blended preparation. It is preferable to include a step of producing a melt and a step of ejecting the melt onto a rotating body to quench and solidify it to form a metal strip.

このように単ロール急冷法で金属薄帯を作製し、該金属薄帯を粉砕することにより所望の磁性体粉末を高効率で得ることが可能となる。 By producing the metal strip by the single roll quenching method and pulverizing the metal strip in this way, it is possible to obtain a desired magnetic material powder with high efficiency.

また、本発明に係る磁心コアは、上記いずれかに記載の磁性体粉末と結合剤とを含有した複合材料で形成されていることを特徴としている。 Further, the magnetic core core according to the present invention is characterized in that it is formed of a composite material containing the magnetic powder described in any of the above and a binder.

これにより良好な直流重畳特性と共に、低磁気損失かつ機械的強度が良好な磁心コアを得ることができる。 As a result, it is possible to obtain a magnetic core core having good DC superimposition characteristics, low magnetic loss, and good mechanical strength.

具体的には、前記結合剤は、シリコーン樹脂を主成分とする第1の結合剤と、該第1の結合剤に比べ高硬度の少なくとも1種以上の樹脂からなる第2の結合剤を含み、前記磁性体粉末が前記第1の結合剤で被覆される共に、前記第1の結合剤同士が前記第2の結合剤を介して接合されているのが好ましい。 Specifically, the binder contains a first binder containing a silicone resin as a main component and a second binder composed of at least one resin having a higher hardness than the first binder. It is preferable that the magnetic powder is coated with the first binder and the first binders are bonded to each other via the second binder.

これにより磁性体粉末は絶縁性の良好なシリコーンを主成分とする第1の結合剤で被覆されることから、磁性体粉末から電気が漏れるのを抑制でき、渦電流損を低減でき、低磁気損失が可能となる。また、第1の結合剤で被覆された磁性体粉末同士が前記第1の結合剤よりも高硬度の第2の結合剤を介して接合されることから、高硬度の第2の結合剤により機械的強度が改善され、大きな外力が負荷されても破損するのを抑制することができる。 As a result, the magnetic powder is coated with the first binder containing silicone as a main component, which has good insulating properties, so that electricity leakage from the magnetic powder can be suppressed, eddy current loss can be reduced, and low magnetism can be achieved. Loss is possible. Further, since the magnetic powders coated with the first binder are bonded to each other via a second binder having a higher hardness than the first binder, the second binder having a higher hardness is used. The mechanical strength is improved, and it is possible to prevent damage even when a large external force is applied.

また、本発明の磁心コアは、前記第2の結合剤が、フェノール樹脂及びポリイミド樹脂のうちの少なくとも一方を含んでいるのが好ましい。 Further, in the magnetic core core of the present invention, it is preferable that the second binder contains at least one of a phenol resin and a polyimide resin.

また、本発明の磁心コアは、前記シリコーン樹脂が、メチルフェニル系であるのが好ましい。 Further, in the magnetic core core of the present invention, it is preferable that the silicone resin is a methylphenyl type.

すなわち、メチルフェニル系のシリコーン樹脂は、成形時の収縮率が小さいことから、成形時に磁性体粉末に歪みが生じるのを抑制でき、高温での熱処理を要することもなくヒステリシス損の上昇を抑制することができることから、磁心コアの低磁気損失化に寄与することができる。 That is, since the methylphenyl-based silicone resin has a small shrinkage rate during molding, it is possible to suppress distortion of the magnetic powder during molding, and it is possible to suppress an increase in hysteresis loss without requiring heat treatment at a high temperature. Therefore, it is possible to contribute to the reduction of the magnetic loss of the magnetic core core.

また、本発明の磁心コアでは、磁性体粉末は、数量基準で50%以上にクラックが形成されているのが好ましい。 Further, in the magnetic core core of the present invention, it is preferable that the magnetic powder has cracks of 50% or more on a quantity basis.

このように数量基準で50%以上の磁性体粉末にクラックが形成されることにより、金属薄帯の粉砕時等に磁性体粉末に歪みが生じても、加圧成形時に歪みが解放される。また、クラックを有することにより磁性体粉末は高密度で充填されることとなり、より一層の直流重畳特性の向上及び低磁気損失が可能となる。 By forming cracks in the magnetic powder having a quantity of 50% or more in this way, even if the magnetic powder is distorted when the metal strip is crushed, the strain is released during pressure molding. In addition, the presence of cracks allows the magnetic powder to be filled at a high density, which makes it possible to further improve the DC superimposition characteristics and reduce the magnetic loss.

さらに、本発明の磁心コアでは、前記複合材料は、平均粒径が円相当径に換算して1~50μmのFeを主成分とする磁性金属材料からなる微粒子を含有しているのが好ましく、前記微粒子はアトマイズ粉であるのが好ましい。 Further, in the magnetic core core of the present invention, it is preferable that the composite material contains fine particles made of a magnetic metal material containing Fe as a main component having an average particle size of 1 to 50 μm in terms of a circle equivalent diameter. The fine particles are preferably atomized powder.

ここで、平均粒径は、累積50%粒子径D50(メジアン径)をいう。Here, the average particle size means a cumulative 50% particle size D 50 (median diameter).

これにより磁性体粉末同士の隙間に磁性金属材料からなる微粒子が充填されることから、透磁率や直流重畳特性の更なる向上が可能となる。 As a result, fine particles made of a magnetic metal material are filled in the gaps between the magnetic powders, so that the magnetic permeability and the DC superimposition characteristics can be further improved.

さらに、本発明の磁心コアの製造方法は、前記磁性体粉末と磁性金属材料からなる微粒子とを混合する工程を含むのも好ましい。 Further, the method for producing a magnetic core core of the present invention preferably includes a step of mixing the magnetic powder and fine particles made of a magnetic metal material.

これにより前記微粒子は磁性体粉末間の間隙に容易に充填されることから、各種磁気特性がより一層向上した磁心コアを得ることができる。 As a result, the fine particles are easily filled in the gaps between the magnetic powders, so that a magnetic core core having further improved various magnetic properties can be obtained.

また、本発明に係るコイル部品は、上記いずれかに記載の磁心コアとコイル導体とを備えていることを特徴としている。 Further, the coil component according to the present invention is characterized by including the magnetic core core and the coil conductor according to any one of the above.

また、本発明のコイル部品は、前記コイル導体が前記磁心コアに巻回されていることを特徴としている。 Further, the coil component of the present invention is characterized in that the coil conductor is wound around the magnetic core core.

本発明の磁心コアによれば、少なくともFe成分を含有した金属薄帯の粉砕物からなる磁性体粉末と結合剤とを含有した複合材料で形成された磁心コアであって、前記磁性体粉末は、扁平球状に形成されると共に、径方向の平均長さaと厚み方向の平均厚さbとの比率を示すアスペクト比a/bが1.8~6.8であり、角部が半径0.8μm~25μmの曲面状であり、かつ、前記磁性体粉末は、数量基準で50%以上にクラックが形成されているので、磁性体粉末をアスペクト比a/b及び角部の形状を規定することにより、歪みが生じるのを抑制することができ、かつ磁束は特定部位に集中することなく球面上を略均一に拡散して流れることから、低磁気損失と直流重畳特性の向上を両立させることが可能となる。しかも、数量基準で50%以上の磁性体粉末にクラックが形成されているので、金属薄帯の粉砕時等に磁性体粉末に歪みが生じても、加圧成形時に歪みが解放される。また、クラックを有することにより磁性体粉末は高密度で充填されることとなり、機械的強度が良好でより一層の直流重畳特性の向上及び低磁気損失が可能となる。 According to the magnetic core core of the present invention, the magnetic core is a magnetic core formed of a composite material containing a magnetic material powder made of a pulverized metal strip containing at least an Fe component and a binder, and the magnetic material powder is the magnetic core powder. The aspect ratio a / b, which is formed into a flat spherical surface and indicates the ratio between the average length a in the radial direction and the average thickness b in the thickness direction, is 1.8 to 6.8, and the corner portion has a radius of 0. Since the magnetic material powder has a curved surface shape of 8.8 μm to 25 μm and cracks are formed in 50% or more on a quantity basis, the magnetic material powder defines the aspect ratio a / b and the shape of the corners. As a result, it is possible to suppress the occurrence of distortion, and the magnetic flux diffuses and flows on the spherical surface substantially uniformly without concentrating on a specific part, so that both low magnetic loss and improvement of DC superimposition characteristics can be achieved at the same time. Is possible. Moreover, since cracks are formed in 50% or more of the magnetic powder on a quantity basis, even if the magnetic powder is distorted when the metal strip is crushed, the strain is released during pressure molding. Further, since the magnetic powder is filled with a high density due to the presence of cracks, the mechanical strength is good, and further improvement of DC superimposition characteristics and low magnetic loss are possible.

本発明の磁心コアの製造方法によれば、磁性体粉末と結合剤とを含有した複合材料で形成された磁心コアの製造方法であって、磁性体粉末作製工程と複合材料作製工程とを有し、前記磁性体粉末作製工程は、少なくともFe成分を含有した金属薄帯を作製する工程と、前記金属薄帯を粉砕し粉砕物を作製する工程と、前記粉砕物に球状化処理を施し、径方向の平均長さaと厚み方向の平均厚さbとの比率を示すアスペクト比a/bが1.8~6.8であって角部が半径0.8μm~25μmの曲面状となるように形成されるように扁平球状の磁性体粉末を作製するす工程とを含み、前記複合材料作製工程は、シリコーン樹脂を主成分とする第1の結合剤と前記磁性体粉末とを混合し、前記磁性体粉末を前記第1の結合剤で被覆する工程と、前記第1の結合剤で被覆された磁性体粉末と前記第1の結合剤よりも高硬度の少なくとも1種類以上の樹脂からなる第2の結合剤とを混合し、前記第1の結合剤同士を前記第2の結合剤を介して接合し、前記磁性体粉末と前記第1及び第2の結合剤とを含有した複合材料を作製する工程と、前記複合材料を加圧成形し、前記磁性体粉末が数量基準で50%以上にクラックが形成されるように磁心コアを作製する工程とを含むので、低磁気損失で直流重畳が良好な磁心コアを効率良く製造することができる。 According to the method for producing a magnetic core core of the present invention, it is a method for producing a magnetic core core formed of a composite material containing a magnetic material powder and a binder, and has a magnetic material powder production step and a composite material production step. The magnetic powder manufacturing step is a step of producing a metal strip containing at least an Fe component, a step of crushing the metal strip to prepare a crushed product, and a spheroidizing treatment of the crushed product. The aspect ratio a / b, which indicates the ratio between the average length a in the radial direction and the average thickness b in the thickness direction, is 1.8 to 6.8, and the corners are curved with a radius of 0.8 μm to 25 μm. The composite material manufacturing step includes a step of preparing a flat spherical magnetic material powder so as to be formed as described above, and the composite material manufacturing step is a mixture of a first binder containing a silicone resin as a main component and the magnetic material powder. From the step of coating the magnetic powder with the first binder, the magnetic powder coated with the first binder and at least one resin having a hardness higher than that of the first binder. The first binder is mixed with the second binder, the first binder is bonded to each other via the second binder, and the magnetic powder and the first and second binder are contained in the composite. Since it includes a step of producing a material and a step of forming a magnetic core core so that the magnetic powder is cracked to 50% or more on a quantity basis by pressure molding the composite material, the magnetic loss is low. A magnetic core core with good DC superimposition can be efficiently manufactured.

本発明のコイル部品によれば、上記いずれかに記載の磁心コアとコイル導体とを備えているので、良好な直流重畳特性と低磁気損失を有し、高周波領域の使用に適したリアクトル等のコイル部品を得ることができる。 According to the coil component of the present invention, since the magnetic core core and the coil conductor described in any of the above are provided, a reactor or the like having good DC superimposition characteristics and low magnetic loss and suitable for use in a high frequency region can be used. Coil parts can be obtained.

本発明に係る磁性体粉末の粒子形状の一実施の形態を示す図であり、(a)は横断面図、(b)は縦断面図である。It is a figure which shows one Embodiment of the particle shape of the magnetic material powder which concerns on this invention, (a) is a cross-sectional view, (b) is a vertical sectional view. 本発明に係る磁心コアの一実施の形態(第1の実施の形態)を示す斜視図である。It is a perspective view which shows one embodiment (the first embodiment) of the magnetic core core which concerns on this invention. 上記磁心コアの要部詳細を示す縦断面図である。It is a vertical sectional view which shows the detail of the main part of the magnetic core core. 本発明に使用される金属薄帯の製造方法の一実施の形態を示す概略工程図である。It is a schematic process diagram which shows one Embodiment of the manufacturing method of the metal strip used in this invention. 本発明に係るコイル部品としてのリアクトルの一実施の形態を示す斜視図である。It is a perspective view which shows one Embodiment of the reactor as a coil component which concerns on this invention. 本発明に係る磁心コアの第2の実施の形態の要部詳細を示す縦断面図である。It is a vertical sectional view which shows the detail of the main part of the 2nd Embodiment of the magnetic core core which concerns on this invention. 本発明に係る磁心コアの第3の実施の形態の要部詳細を示す縦断面図である。It is a vertical sectional view which shows the detail of the main part of the 3rd Embodiment of the magnetic core core which concerns on this invention. 試料番号3における球状化処理後を電子走査顕微鏡(SEM)で撮像したSEM画像である。6 is an SEM image taken with an electron scanning microscope (SEM) after the spheroidizing treatment in sample number 3. 実施例1のRmaxと比透磁率との関係を示す図である。It is a figure which shows the relationship between Rmax of Example 1 and relative magnetic permeability. 実施例1のRminと比透磁率との関係を示す図である。It is a figure which shows the relationship between Rmin of Example 1 and relative magnetic permeability. 実施例1のRmaxとコア損失との関係を示す図である。It is a figure which shows the relationship between Rmax of Example 1 and core loss. 実施例1のRminとコア損失との関係を示す図である。It is a figure which shows the relationship between Rmin and a core loss of Example 1. FIG. 実施例1のアスペクト比a/bと比透磁率との関係を示す図である。It is a figure which shows the relationship between the aspect ratio a / b of Example 1 and the specific magnetic permeability. 実施例1のアスペクト比a/bとコア損失との関係を示す図である。It is a figure which shows the relationship between the aspect ratio a / b of Example 1 and the core loss. 実施例2のRmaxとコア損失との関係を示す図である。It is a figure which shows the relationship between Rmax of Example 2 and core loss. 実施例2のRminとコア損失との関係を示す図である。It is a figure which shows the relationship between Rmin and a core loss of Example 2. FIG. 実施例2のアスペクト比a/bとコア損失との関係を示す図である。It is a figure which shows the relationship between the aspect ratio a / b of Example 2, and the core loss. 実施例3で作製された試料番号21のSEM画像である。6 is an SEM image of sample number 21 produced in Example 3. 実施例4で作製された試料番号22のSEM画像である。6 is an SEM image of sample number 22 produced in Example 4.

次に、本発明の実施の形態を詳説する。 Next, embodiments of the present invention will be described in detail.

図1は本発明に係る磁心コアに使用される磁性体粉末の粒子形状の一実施の形態を示す図であって、(a)は横断面図、(b)は縦断面図である。 1A and 1B are views showing an embodiment of a particle shape of a magnetic powder used for a magnetic core according to the present invention, in which FIG. 1A is a cross-sectional view and FIG. 1B is a vertical sectional view.

この図1の磁性体粉末では、説明の都合上、横断面形状を円形状とし、縦断面形状を4つの角部1aが丸味を帯びた一定の厚みとしているが、実際は、横断面形状は、略円形状乃至略楕円形状であって外周が微小凹凸を有しており、縦断面形状は、厚みが不均一でバラツキを有している。したがって、図1中、径方向の平均長さa及び厚み方向の平均厚みbは、各々長さ及び厚みの算術平均を示している。 In the magnetic powder of FIG. 1, for convenience of explanation, the cross-sectional shape has a circular shape, and the vertical cross-sectional shape has a constant thickness in which the four corners 1a are rounded. It has a substantially circular shape or a substantially elliptical shape, and the outer circumference has minute irregularities, and the vertical cross-sectional shape has a non-uniform thickness and varies. Therefore, in FIG. 1, the average length a in the radial direction and the average thickness b in the thickness direction indicate the arithmetic mean of the length and the thickness, respectively.

そして、この磁性体粉末1は、立体的には扁平球状に形成され、前記平均長さaと前記平均厚みbの比率を示すアスペクト比a/bが1.8~6.8であり、角部1aが半径R:0.8~25μmの曲面状に形成されている。 The magnetic powder 1 is three-dimensionally formed into a flat spherical surface, and has an aspect ratio a / b indicating the ratio of the average length a and the average thickness b of 1.8 to 6.8, and the angles. The portion 1a is formed in a curved surface having a radius R: 0.8 to 25 μm.

この磁性体粉末1を使用することにより、直流重畳特性が良好で低磁気損失の磁心コアを実現することができる。すなわち、本磁心コアは、後述するように金属薄帯の粉砕物からなる磁性体粉末を使用して作製されるが、金属薄帯を単に粉砕したのみでは、磁性体粉末のエッジ部がいびつで尖鋭な形状となる。このため、磁性体粉末のエッジ部同士が接触した状態で成形処理を行うと、磁束が前記エッジ部に集中し、このため直流重畳特性が劣化するおそれがある。したがって、磁束のエッジ部への集中を避けるためには、磁性体粉末1を球形状に形成するのが好ましく、特に角部1aを曲面状に形成するのが好ましい。 By using this magnetic material powder 1, it is possible to realize a magnetic core core having good DC superimposition characteristics and low magnetic loss. That is, this magnetic core core is manufactured by using a magnetic powder made of a pulverized metal strip as described later, but if the metal strip is simply pulverized, the edge portion of the magnetic powder is distorted. It has a sharp shape. Therefore, if the molding process is performed in a state where the edge portions of the magnetic powder are in contact with each other, the magnetic flux is concentrated on the edge portions, which may deteriorate the DC superimposition characteristic. Therefore, in order to avoid concentration of the magnetic flux on the edge portion, it is preferable to form the magnetic powder 1 in a spherical shape, and in particular, it is preferable to form the corner portion 1a in a curved surface shape.

一方、金属薄帯に外力を負荷し、粉砕処理を含む機械加工を長時間行うと、球状化は進行するものの、磁性体粉末には大きな歪みが生じるおそれがある。斯かる歪みは機械加工後に高温で熱処理を行っても容易には除去することができず、この歪みに起因して磁性体粉末1の保磁力Hcが上昇し、その結果、ヒステリシス損が増加することから、磁気損失が大きくなる。 On the other hand, when an external force is applied to the metal strip and machining including pulverization is performed for a long time, spheroidization progresses, but the magnetic powder may be greatly distorted. Such strain cannot be easily removed even if heat treatment is performed at a high temperature after machining, and the coercive force Hc of the magnetic powder 1 increases due to this strain, and as a result, the hysteresis loss increases. Therefore, the magnetic loss becomes large.

そこで、本実施の形態では、磁性体粉末1のアスペクト比a/b、及び角部1aの半径Rを上述のように規定している。以下、その理由を述べる。 Therefore, in the present embodiment, the aspect ratio a / b of the magnetic powder 1 and the radius R of the corner portion 1a are defined as described above. The reason will be described below.

(a)アスペクト比a/b
上述したように磁性体粉末1が球形状に近くなると、いびつで尖鋭なエッジ部が形成された磁性体粉末とは異なり、磁束は球面上を拡散しながら流れることから磁束集中を抑制することができ、直流重畳特性を改善することができる。そのためにはアスペクト比a/bを6.8以下とする必要がある。すなわち、アスペクト比a/bが6.8を超えると、径方向の平均長さaが相対的に大きくなり、厚み方向の平均厚みbが相対的に小さくなることから、磁性体粉末1は極端な扁平形状となり、角部1aの半径Rも小さくなって角部1aの曲面性が損なわれる。したがって、コイル部品に直流バイアス電流を通電した場合、磁束が角部1aに集中し、インダクタンスが低下して直流重畳特性の劣化を招くおそれがある。さらに、角部1aが尖鋭な形状を有することから、後述するように磁性体粉末1を結合剤で被覆しようとしても、磁性体粉末1を結合剤で均一に被覆するのが困難となり、絶縁不足が生じて磁気損失の増加を招くおそれがある。
(A) Aspect ratio a / b
As described above, when the magnetic powder 1 becomes close to a spherical shape, unlike the magnetic powder having a distorted and sharp edge portion, the magnetic flux flows while diffusing on the spherical surface, so that the magnetic flux concentration can be suppressed. It is possible to improve the DC superimposition characteristics. For that purpose, it is necessary to set the aspect ratio a / b to 6.8 or less. That is, when the aspect ratio a / b exceeds 6.8, the average length a in the radial direction becomes relatively large and the average thickness b in the thickness direction becomes relatively small. Therefore, the magnetic powder 1 is extremely small. The flat shape is formed, the radius R of the corner portion 1a is also reduced, and the curved surface property of the corner portion 1a is impaired. Therefore, when a DC bias current is applied to the coil component, the magnetic flux is concentrated on the corner portion 1a, the inductance is lowered, and the DC superimposition characteristic may be deteriorated. Further, since the corner portion 1a has a sharp shape, even if the magnetic material powder 1 is to be coated with the binder as described later, it becomes difficult to uniformly cover the magnetic material powder 1 with the binder, and the insulation is insufficient. May cause an increase in magnetic loss.

一方、アスペクト比a/bが1.8未満に球状化されると、金属薄帯に長時間外力が負荷されることから、加工処理後の磁性体粉末1には大きな歪みが形成され易く、その結果、保磁力Hcの上昇を招き、ヒステリシス損が増加し、この場合も磁気損失が大きくなる。 On the other hand, when the aspect ratio a / b is spheroidized to less than 1.8, an external force is applied to the metal strip for a long time, so that a large strain is likely to be formed in the magnetic powder 1 after the processing. As a result, the coercive force Hc is increased, the hysteresis loss is increased, and the magnetic loss is also increased in this case.

そこで、本実施の形態では、アスペクト比a/bを1.8~6.8に規定している。 Therefore, in the present embodiment, the aspect ratios a / b are defined as 1.8 to 6.8.

(b)角部1aの半径R
低磁気損失を確保しつつ磁束集中が生じるのを避けるためには角部1aの半径Rも重要な因子となる。すなわち、角部1aの半径Rが0.8μm未満になると、角部1aの曲面性が損なわれることから、磁束が角部1aに集中し易くなってインダクタンスの低下を招き、直流重畳特性が劣化するおそれがある。さらに、角部1aが尖鋭な形状となることから、上述したように、磁性体粉末1を結合剤で被覆した場合に被覆膜の均一性が損なわれ、絶縁性が低下して磁気損失の増大を招くおそれがある。
(B) Radius R of the corner portion 1a
The radius R of the corner portion 1a is also an important factor in order to avoid magnetic flux concentration while ensuring low magnetic loss. That is, when the radius R of the corner portion 1a is less than 0.8 μm, the curved surface property of the corner portion 1a is impaired, so that the magnetic flux tends to concentrate on the corner portion 1a, which causes a decrease in inductance and deteriorates the DC superimposition characteristic. There is a risk of Further, since the corner portion 1a has a sharp shape, as described above, when the magnetic powder 1 is coated with the binder, the uniformity of the coating film is impaired, the insulating property is lowered, and the magnetic loss is reduced. May lead to an increase.

一方、角部1aの半径Rが25μmを超えると、磁性体粉末1の球状化が進むことからインダクタンスは良好で直流重畳特性は改善できるものの、球状化のための加工処理が長時間行われることから、この場合も磁性体粉末1には大きな歪みが生じ易くなり、磁性体粉末1の保磁力Hcが上昇し、ヒステリシス損が増加することから、磁気損失が大きくなる。 On the other hand, when the radius R of the corner portion 1a exceeds 25 μm, the spheroidization of the magnetic powder 1 progresses, so that the inductance is good and the DC superimposition characteristic can be improved, but the processing for spheroidization is performed for a long time. Therefore, in this case as well, a large strain is likely to occur in the magnetic material powder 1, the coercive force Hc of the magnetic material powder 1 increases, and the hysteresis loss increases, so that the magnetic loss increases.

そこで、本実施の形態では、角部1aの半径Rを0.8~25μmに規定している。 Therefore, in the present embodiment, the radius R of the corner portion 1a is defined as 0.8 to 25 μm.

また、上記磁性体粉末1は、後述する球状化処理後の状態で熱処理を施すのが好ましい。すなわち、上記磁性体粉末1は、上述したように金属薄帯に対し外力を負荷し、機械的に加工処理を行うことにより得られる。具体的には、磁性体粉末1は、金属薄帯を粉砕して得られることから、磁性体粉末1には歪みが形成され易い。そして、斯かる歪みは磁気損失の増加を招くことから、金属薄帯を粉砕して得られた磁性体粉末1に熱処理を施すのが好ましい。例えば、短時間で400℃程度に昇温させて短時間保持することにより、磁性体粉末1に形成された歪みを効率良く除去することができ、これにより保磁力Hcが低下し、ヒステリシス損を小さくできることから、より一層の磁気損失の低下が可能となる。 Further, it is preferable that the magnetic powder 1 is heat-treated in a state after the spheroidizing treatment described later. That is, the magnetic powder 1 is obtained by applying an external force to the metal strip and mechanically processing it as described above. Specifically, since the magnetic powder 1 is obtained by crushing a metal strip, strain is likely to be formed in the magnetic powder 1. Since such strain causes an increase in magnetic loss, it is preferable to heat-treat the magnetic material powder 1 obtained by pulverizing the metal strip. For example, by raising the temperature to about 400 ° C. in a short time and holding it for a short time, the strain formed in the magnetic powder 1 can be efficiently removed, thereby lowering the coercive force Hc and causing a hysteresis loss. Since it can be made smaller, it is possible to further reduce the magnetic loss.

尚、磁性体粉末1としては、Fe-Si系合金、Fe-Si-Cr系合金、Fe-Si-Al系合金、Fe-Ni系合金、Fe-Co系合金、Fe-Si-B-Nb-Cu系合金等の各種結晶質の合金粉末材料を使用することができるが、Feを主成分とし、軟磁性特性に優れた非晶質相とナノ結晶相とが混在したナノ結晶合金粉末を使用するのがより好ましい。 The magnetic powder 1 includes Fe—Si alloy, Fe—Si—Cr alloy, Fe—Si—Al alloy, Fe—Ni alloy, Fe—Co alloy, and Fe—Si—B—Nb. -Various crystalline alloy powder materials such as Cu-based alloys can be used, but nano-crystalline alloy powder containing Fe as the main component and a mixture of amorphous phase and nano-crystalline phase with excellent soft magnetic properties can be used. It is more preferable to use.

ここで、上記主成分とは、Fe成分を磁性体粉末1中で60wt%以上、好ましくは80wt%以上含有していることをいう。 Here, the main component means that the Fe component is contained in 60 wt% or more, preferably 80 wt% or more in the magnetic powder 1.

このような磁性体粉末1としては、Fe、B、P、Cuを含有し、必要に応じてSi、Cを含むのが好ましく、例えば、Fe:71~86at%、B:5~15at%、P:1~10at%、Cu:0.1~1.3at%、Si:0~5at%、及びC:0~5at%(ただし、Fe、B、P、Cu、Si、及びCの各at%の総計は100)となるように配合された磁性体粉末を使用することができる。 The magnetic powder 1 preferably contains Fe, B, P, and Cu, and preferably contains Si and C, for example, Fe: 71 to 86 at%, B: 5 to 15 at%, and so on. P: 1 to 10 at%, Cu: 0.1 to 1.3 at%, Si: 0 to 5 at%, and C: 0 to 5 at% (however, Fe, B, P, Cu, Si, and C at each at. A magnetic powder blended so that the total of% is 100) can be used.

これにより非晶質相単相のみならず、非晶質相とナノ結晶質相とが混在していても、所望の磁気特性や直流重畳特性を確保でき、かつ低磁気損失で機械的強度の良好な磁心コアを得ることができる。 As a result, the desired magnetic characteristics and DC superimposition characteristics can be secured even when the amorphous phase and the nanocrystalline phase are mixed as well as the amorphous phase single phase, and the mechanical strength is low with low magnetic loss. A good magnetic core can be obtained.

磁性体粉末1の平均粒径D50は、特に限定されるものではないが、通常は円相当径に換算して30~80μm、より好ましくは30~60μmの磁性体粉末1を使用することができる。The average particle size D 50 of the magnetic powder 1 is not particularly limited, but it is usually possible to use the magnetic powder 1 having a diameter equivalent to a circle of 30 to 80 μm, more preferably 30 to 60 μm. can.

そして、この磁性体粉末1を使用することにより、直流重畳特性が良好で低磁気損失の磁心コアを得ることができ、さらに磁心コアを以下に示す態様とすることにより、機械的強度を改善することが可能となる。 Then, by using this magnetic material powder 1, it is possible to obtain a magnetic core core having good DC superimposition characteristics and low magnetic loss, and further, by making the magnetic core core an embodiment shown below, the mechanical strength is improved. It becomes possible.

図2は、本発明に係る磁心コアの一実施の形態を示す斜視図であって、この磁心コア2は、長孔状の孔部2aを有するリング形状に形成されている。 FIG. 2 is a perspective view showing an embodiment of the magnetic core core according to the present invention, and the magnetic core core 2 is formed in a ring shape having an elongated hole portion 2a.

図3は、磁心コア2の要部詳細を示す縦断面図であって、本磁心コア2は、磁性体粉末1と2種類の結合剤(第1の結合剤3及び第2の結合剤4)とを含有した複合材料5で形成されている。 FIG. 3 is a vertical cross-sectional view showing the details of the main part of the magnetic core core 2, and the main magnetic core 2 is a magnetic powder 1 and two kinds of binders (first binder 3 and second binder 4). ) And is formed of the composite material 5.

第1の結合剤3は、主成分がシリコーン樹脂で形成されると共に、第2の結合剤4は、第1の結合剤3に比べ高硬度の樹脂材料で形成されている。そして、磁性体粉末1は第1の結合剤3で被覆されると共に、第1の結合剤3同士が、第2の結合剤4を介して接合されている。 The main component of the first binder 3 is formed of a silicone resin, and the second binder 4 is formed of a resin material having a higher hardness than that of the first binder 3. The magnetic powder 1 is coated with the first binder 3, and the first binders 3 are bonded to each other via the second binder 4.

ここで、上記主成分とは、第1の結合剤3中、シリコーン樹脂を90wt%以上、好ましくは95wt%以上含んでいることをいう。 Here, the main component means that the first binder 3 contains 90 wt% or more, preferably 95 wt% or more of the silicone resin.

これにより絶縁性が良好で磁気損失が大きくなるのを抑制でき、かつ機械的強度の良好な磁心コア2を得ることができる。すなわち、第1の結合剤3の主成分であるシリコーン樹脂は、絶縁性・接着性に優れており、磁性体粉末1の粒子表面にSi-O結合を有する強固な被膜を形成することができる。したがって、磁性体粉末1を第1の結合剤3で被覆することにより、磁性体粉末1から電流が漏れるのを抑制することができることから、渦電流損を抑制することができ、これにより磁気損失を低下させることが可能となる。そして、磁性体粉末1を被覆する第1の結合剤3同士を該第1の結合剤3よりも高硬度の第2の結合剤4を介して接合させることにより、圧環強度等の機械的強度を改善することができ、大きな外力が負荷されても破損するのを抑制することができる。 As a result, it is possible to obtain a magnetic core core 2 having good insulating properties, suppressing a large magnetic loss, and having good mechanical strength. That is, the silicone resin, which is the main component of the first binder 3, has excellent insulating properties and adhesiveness, and can form a strong film having Si—O bonds on the particle surface of the magnetic powder 1. .. Therefore, by coating the magnetic powder 1 with the first binder 3, it is possible to suppress the leakage of current from the magnetic powder 1, and thus it is possible to suppress the eddy current loss, whereby the magnetic loss can be suppressed. Can be reduced. Then, the first binders 3 covering the magnetic powder 1 are bonded to each other via a second binder 4 having a hardness higher than that of the first binder 3, so that the mechanical strength such as the annular strength is obtained. Can be improved, and damage can be suppressed even when a large external force is applied.

ここで、第2の結合剤4としては、第1の結合剤3よりも高硬度であれば、特に限定されるものではなく、例えば、シリコーン樹脂(ロックウェル硬度:M80~90)よりも高硬度のフェノール樹脂(ロックウェル硬度:M124~128)やポリイミド樹脂(ロックウェル硬度:M110~120)単独で或いはこれらの混合物を使用することができる。 Here, the second binder 4 is not particularly limited as long as it has a higher hardness than the first binder 3, and is higher than, for example, a silicone resin (Rockwell hardness: M80 to 90). Hardness phenolic resin (Rockwell hardness: M124 to 128), polyimide resin (Rockwell hardness: M110 to 120) alone or a mixture thereof can be used.

シリコーン樹脂としては、特に限定されることものではないが、メチルフェニル系のシリコーン樹脂を好んで使用することができる。メチルフェニル系のシリコーン樹脂は、複合材料5を加圧成形する際に収縮率が0.1~0.2%と小さく、該加圧成形時に磁性体粉末1に歪みが生じるのを抑制することができる。これにより磁性体粉末1の保持力が上昇するのを抑制でき、ヒステリシス損の上昇を避けることができることから、磁気損失が大きくなるのを抑制することができる。 The silicone resin is not particularly limited, but a methylphenyl-based silicone resin can be preferably used. The methylphenyl-based silicone resin has a small shrinkage rate of 0.1 to 0.2% when the composite material 5 is pressure-molded, and suppresses distortion of the magnetic powder 1 during the pressure-molding. Can be done. As a result, it is possible to suppress an increase in the holding force of the magnetic powder 1, and it is possible to avoid an increase in the hysteresis loss, so that it is possible to suppress an increase in the magnetic loss.

第1の結合剤3の含有量は、他の特性に影響を与えることなく所望の絶縁性・接着性を確保できるのであれば特に限定されるものではなく、例えば、0.25~1wt%、好ましくは0.5~1wt%に設定される。第1の結合剤3の含有量が0.25wt%未満になると、第1の結合剤3の含有量が過少となって十分な絶縁性・接着性を確保することができなくなるおそれがある。一方、第1の結合剤3の含有量が1wt%を超えると、磁性体粉末1の含有量が相対的に減少して比透磁率の低下を招くおそれがある。 The content of the first binder 3 is not particularly limited as long as it can secure the desired insulating property and adhesiveness without affecting other properties, and is, for example, 0.25 to 1 wt%. It is preferably set to 0.5 to 1 wt%. If the content of the first binder 3 is less than 0.25 wt%, the content of the first binder 3 may be too small to ensure sufficient insulating properties and adhesiveness. On the other hand, if the content of the first binder 3 exceeds 1 wt%, the content of the magnetic powder 1 may be relatively reduced, which may lead to a decrease in the relative magnetic permeability.

また、第2の結合剤4の含有量も、他の特性に影響を与えることなく所望の機械的強度を確保できるのであれば特に限定されるものではなく、例えば、0.25~1wt%、好ましくは0.5~1wt%に設定される。第2の結合剤4の含有量が0.25wt%未満になると、第2の結合剤4の含有量が過少となって十分な機械的強度を確保することができなくなるおそれがある。一方、第2の結合剤3の含有量が1wt%を超えると、この場合も磁性体粉末1の含有量が相対的に減少して比透磁率の低下を招くおそれがある。 Further, the content of the second binder 4 is not particularly limited as long as it can secure a desired mechanical strength without affecting other properties, and is, for example, 0.25 to 1 wt%. It is preferably set to 0.5 to 1 wt%. If the content of the second binder 4 is less than 0.25 wt%, the content of the second binder 4 may be too small to secure sufficient mechanical strength. On the other hand, if the content of the second binder 3 exceeds 1 wt%, the content of the magnetic powder 1 may be relatively reduced in this case as well, leading to a decrease in the relative magnetic permeability.

また、第1及び第2の結合剤3、4の含有量総計も、絶縁性が良好で機械的強度が良好であれば特に限定されるものではないが、通常は、1~1.75wt%に設定される。第1及び第2の結合剤3、4の含有量総計が1wt%未満になると、第1の結合剤3及び第2の結合剤4のいずれかが、過少となって絶縁性及び/又は機械的強度の低下を招くおそれがある。一方、第1及び第2の結合剤3、4の含有量総計が1.75wt%を超えると、磁性体粉末1の含有量が相対的に減少することから、比透磁率や磁束飽和密度等の磁気特性の低下を招くおそれがある。 Further, the total contents of the first and second binders 3 and 4 are not particularly limited as long as they have good insulating properties and good mechanical strength, but are usually 1 to 1.75 wt%. Is set to. When the total content of the first and second binders 3 and 4 is less than 1 wt%, either the first binder 3 or the second binder 4 becomes too small and insulating and / or mechanical. There is a risk of reducing the target strength. On the other hand, when the total content of the first and second binders 3 and 4 exceeds 1.75 wt%, the content of the magnetic powder 1 is relatively reduced, so that the relative permeability, the magnetic flux saturation density, etc. May cause deterioration of the magnetic characteristics of.

また、上記実施の形態では、磁性体粉末1の粒子表面を第1の結合剤3で直接被覆しているが、磁性体粉末1を第1の結合剤3で被覆する前に磁性体粉末1の表面に10~200nm程度の絶縁性皮膜を形成するのも好ましく、これにより磁心コア2の絶縁性をより一層向上させることができる。この場合、絶縁性皮膜を形成する絶縁性材料としてはリン酸やSiを含有したものを好んで使用することができる。 Further, in the above embodiment, the particle surface of the magnetic powder 1 is directly coated with the first binder 3, but before the magnetic powder 1 is coated with the first binder 3, the magnetic powder 1 is coated. It is also preferable to form an insulating film having an insulating film of about 10 to 200 nm on the surface of the magnetic core core 2, whereby the insulating property of the magnetic core core 2 can be further improved. In this case, as the insulating material for forming the insulating film, a material containing phosphoric acid or Si can be preferably used.

次に、上記磁心コアの製造方法を説明する。 Next, a method for manufacturing the magnetic core core will be described.

[金属薄帯の作製]
図4は、金属薄帯作製工程の一実施の形態を模式的に示す図であり、本実施の形態では、単ロール液体急冷法で金属薄帯を作製している。
[Making a metal strip]
FIG. 4 is a diagram schematically showing one embodiment of the metal strip manufacturing step, and in this embodiment, the metal strip is manufactured by a single roll liquid quenching method.

すなわち、この金属薄帯作製工程は、金属溶融物6が収容されるアルミナ等で形成された坩堝7と、該坩堝7の外周に配された誘導加熱コイル8と、矢印A方向に高速回転するCu等で形成されたロール(回転体)9と、矢印B方向に回転して金属薄帯10を巻き取る巻取部11とを備えている。 That is, in this metal strip manufacturing step, the crucible 7 made of alumina or the like in which the metal melt 6 is housed, the induction heating coil 8 arranged on the outer periphery of the crucible 7, and the induction heating coil 8 are rotated at high speed in the direction of arrow A. It includes a roll (rotating body) 9 formed of Cu or the like, and a winding portion 11 that rotates in the direction of arrow B and winds up the metal crucible 10.

そして、金属薄帯10は以下のようにして製造することができる。 The metal strip 10 can be manufactured as follows.

まず、素原料としてFe、B、P、Cu等のFe系金属磁性材料を形成する各元素単体又はこれら元素を含有した化合物を用意し、所定量秤量して調合し、高周波誘導加熱炉等を使用して融点以上に加熱し、その後冷却して母合金を得る。 First, a simple substance of each element forming an Fe-based metal magnetic material such as Fe, B, P, or Cu or a compound containing these elements is prepared as a raw material, weighed in a predetermined amount and mixed, and a high-frequency induction heating furnace or the like is prepared. It is used to heat above its melting point and then cool to obtain the mother alloy.

次に、この母合金を破砕した後坩堝7に投入する。そして、高周波電源を誘導加熱コイル8に印加し、坩堝7を加熱して母合金を溶融させ、金属溶融物6を作製する。 Next, after crushing this mother alloy, it is put into the crucible 7. Then, a high-frequency power source is applied to the induction heating coil 8 to heat the crucible 7 to melt the mother alloy, and the metal melt 6 is produced.

次いで、金属溶融物6を坩堝7のノズル7aから噴出させて矢印A方向に高速回転しているロール9上に落下させる。これにより金属溶融物6はロール9で急冷凝固されて非晶質の金属薄帯10となり、矢印B方向に回転している巻取部11に巻き取られる。 Next, the metal melt 6 is ejected from the nozzle 7a of the crucible 7 and dropped onto the roll 9 rotating at high speed in the direction of arrow A. As a result, the metal melt 6 is rapidly cooled and solidified by the roll 9 to form an amorphous metal strip 10, and is wound by a winding portion 11 rotating in the direction of arrow B.

[磁性体粉末の作製]
金属薄帯10に400℃程度の温度で熱処理を施し、非晶質相にナノ結晶相を析出させ、ナノ結晶化薄帯を得る。そして、このナノ結晶化薄帯を粉砕することにより、高品質の磁性体粉末1を高効率で作製することができる。すなわち、コイル部品では直流重畳特性が良好で低磁気損失が要請される。このようなコイル部品に適した磁性体粉末として、非晶質相にナノ結晶相を析出させたナノ結晶合金粉末が知られている。そして、従来、この種のナノ結晶合金粉末は、アトマイズ法で作製された非晶質のアトマイズ粉を熱処理し、このアトマイズ粉にナノ結晶相を析出させていた。しかしながら、このような方法ではアトマイズ粉の熱処理温度を個別に高精度に制御しなければならず、品質にバラツキが生じ易く、生産性にも劣っていた。
[Making magnetic powder]
The metal strip 10 is heat-treated at a temperature of about 400 ° C. to precipitate a nanocrystal phase in an amorphous phase to obtain a nanocrystallized strip. Then, by pulverizing the nanocrystallized strip, high-quality magnetic powder 1 can be produced with high efficiency. That is, the coil component has good DC superimposition characteristics and low magnetic loss is required. As a magnetic powder suitable for such coil parts, a nanocrystal alloy powder in which a nanocrystal phase is precipitated in an amorphous phase is known. Conventionally, in this type of nanocrystal alloy powder, an amorphous atomized powder produced by an atomizing method is heat-treated to precipitate a nanocrystal phase in the atomized powder. However, in such a method, the heat treatment temperature of the atomized powder must be individually controlled with high accuracy, the quality tends to vary, and the productivity is also inferior.

そこで、本実施の形態では、金属薄帯10を熱処理し、該金属薄帯10の非晶質相にナノ結晶相を析出させることにより、煩雑な温度制御等を要することもなく、高品質の磁性体粉末1を高効率で作製できるようにしている。 Therefore, in the present embodiment, the metal strip 10 is heat-treated to precipitate a nanocrystal phase in the amorphous phase of the metal strip 10, so that complicated temperature control or the like is not required and the quality is high. The magnetic powder 1 can be produced with high efficiency.

以下、ナノ結晶を析出させた金属薄帯10、すなわちナノ結晶化薄帯から磁性体粉末1を作製する方法を詳述する。 Hereinafter, a method for producing the magnetic powder 1 from the metal strip 10 on which the nanocrystals are deposited, that is, the nanocrystallized strips will be described in detail.

まず、このナノ結晶化薄帯をフェザーミル(登録商標)等の粗粉砕機で粗粉砕し、その後、ピンミル等の衝撃式微粉砕機で概ねの所定サイズになるまで微粉砕する。次いでアトライター(登録商標)等のメディア撹拌型乾式粉砕機を使用して球状化処理を施し、角部1aを曲面状に機械加工し、平均粒径D50が円相当径に換算して30~80μm、アスペクト比a/bが1.8~6.8、半径Rが0.8~25μmの曲面状の角部1aを有する磁性体粉末1を作製する。First, the nanocrystallized strip is coarsely pulverized with a coarse pulverizer such as a feather mill (registered trademark), and then finely pulverized with an impact type pulverizer such as a pin mill until the size becomes approximately a predetermined size. Next, spheroidizing is performed using a media stirring type dry crusher such as Atwriter (registered trademark), the corner 1a is machined into a curved surface, and the average particle size D 50 is converted into a circle equivalent diameter 30. A magnetic powder 1 having a curved corner portion 1a having an aspect ratio of about 80 μm, an aspect ratio a / b of 1.8 to 6.8, and a radius R of 0.8 to 25 μm is produced.

尚、ナノ結晶化薄帯には外力が長時間負荷されることから、作製された磁性体粉末1には歪みが生じるおそれがあり、斯かる歪みの除去を目的として、上述したように球状化処理された磁性体粉末1に熱処理を施すのも好ましい。すなわち、例えば、短時間で450℃程度に昇温させて短時間保持することにより、磁性体粉末1に形成された歪みを効率良く除去することができ、保磁力Hcが低下してヒステリシス損を抑制できることから、より一層の磁気損失の低下が可能となる。 Since an external force is applied to the nanocrystallized strip for a long time, the produced magnetic powder 1 may be distorted, and the nanocrystallized strip is spheroidized as described above for the purpose of removing such strain. It is also preferable to heat-treat the treated magnetic powder 1. That is, for example, by raising the temperature to about 450 ° C. in a short time and holding it for a short time, the strain formed in the magnetic powder 1 can be efficiently removed, the coercive force Hc decreases, and hysteresis loss occurs. Since it can be suppressed, the magnetic loss can be further reduced.

[磁心コアの作製]
シリコーン樹脂、好ましくはメチルフェニル系のシリコーン樹脂を主成分とする第1の結合剤3を用意する。次いで複合材料(磁性体粉末1、第1及び第2の結合剤3、4)中の第1の結合剤3の含有量が、好ましくは0.25~1.0wt%、より好ましくは0.5~1.0wt%となるように該第1の結合剤3を上述した磁性体粉末1に添加し、さらにアセトン等の溶剤を所定量添加し混合する。そして、溶剤を蒸発除去し、磁性体粉末1の表面を第1の結合剤3で被覆する。
[Making a magnetic core core]
A first binder 3 containing a silicone resin, preferably a methylphenyl-based silicone resin, as a main component is prepared. Next, the content of the first binder 3 in the composite material (magnetic material powder 1, first and second binders 3, 4) is preferably 0.25 to 1.0 wt%, more preferably 0. The first binder 3 is added to the above-mentioned magnetic material powder 1 so as to have a content of 5 to 1.0 wt%, and a predetermined amount of a solvent such as acetone is further added and mixed. Then, the solvent is evaporated and removed, and the surface of the magnetic powder 1 is coated with the first binder 3.

次に、フェノール樹脂やポリイミド樹脂等の第1の結合剤3よりも高硬度の第2の結合剤4を用意する。次いで、複合材料(磁性体粉末1、第1及び第2の結合剤3、4)中の第2の結合剤4の含有量が、好ましくは0.25~1.0wt%、より好ましくは0.5~1.0wt%となり、第1及び第2の結合剤3、4の含有量総計が、好ましくは1~1,75wt%となるように第1の結合剤3で被覆された磁性体粉末1に第2の結合剤4を添加し、さらにアセトン等の溶剤を所定量添加し混合する。そして、溶剤を蒸発除去し、第1の結合剤3同士を第2の結合剤4を介して接合し、これにより磁性体粉末1と第1及び第2の結合剤3、4とからなる複合材料5を得る。 Next, a second binder 4 having a hardness higher than that of the first binder 3 such as a phenol resin or a polyimide resin is prepared. Next, the content of the second binder 4 in the composite material (magnetic powder 1, first and second binders 3, 4) is preferably 0.25 to 1.0 wt%, more preferably 0. .5 to 1.0 wt%, a magnetic material coated with the first binder 3 so that the total content of the first and second binders 3 and 4 is preferably 1 to 1,75 wt%. The second binder 4 is added to the powder 1, and a predetermined amount of a solvent such as acetone is further added and mixed. Then, the solvent is evaporated and removed, and the first binders 3 are bonded to each other via the second binder 4, whereby the composite composed of the magnetic powder 1 and the first and second binders 3 and 4 is formed. Obtain material 5.

次いで、金型のキャビティに前記複合材料5を流し込み、100MPa程度に加圧してプレス加工を行い、これにより成形体を作製する。 Next, the composite material 5 is poured into the cavity of the mold, pressed to about 100 MPa and pressed, thereby producing a molded product.

その後、金型から成形体を取り出し、成形体を120~150℃の温度で24時間程度、熱処理を施して第1及び第2の結合剤3、4を硬化させ、これにより磁心コア2を作製する。 After that, the molded body is taken out from the mold, and the molded body is heat-treated at a temperature of 120 to 150 ° C. for about 24 hours to cure the first and second binders 3 and 4, thereby producing a magnetic core core 2. do.

尚、上記実施の形態では、磁性体粉末1を第1の結合剤3で被覆する工程で溶剤を蒸発除去しているが、溶剤を除去することなくそのまま第2の結合剤4を添加し、その後溶剤を蒸発除去させて複合材料5を作製してもよい。 In the above embodiment, the solvent is evaporated and removed in the step of coating the magnetic powder 1 with the first binder 3, but the second binder 4 is added as it is without removing the solvent. After that, the solvent may be evaporated and removed to prepare the composite material 5.

また、絶縁性の更なる向上を図る観点から、上述したように磁性体粉末1を第1の結合剤3で被覆する前に磁性体粉末1の表面に絶縁性皮膜を形成するのも好ましく、その場合は、リン酸やSiを含有した絶縁性材料を使用し、ゾルーゲル法やメカノケミカル法等の公知の方法で容易に絶縁性皮膜を形成することができる。 Further, from the viewpoint of further improving the insulating property, it is also preferable to form an insulating film on the surface of the magnetic material powder 1 before coating the magnetic material powder 1 with the first binder 3 as described above. In that case, an insulating material containing phosphoric acid or Si can be used, and an insulating film can be easily formed by a known method such as a solugel method or a mechanochemical method.

図5は、本発明に係るコイル部品の一実施の形態としてのリアクトルを示す斜視図であって、このリアクトルは、コイル導体14が磁心コア2に巻回されている。 FIG. 5 is a perspective view showing a reactor as an embodiment of the coil component according to the present invention, in which the coil conductor 14 is wound around the magnetic core core 2.

すなわち、長孔状の磁心コア2は、互いに平行な2つの長辺部20a、20bを有している。そして、コイル導体14は、一方の長辺部20aに巻回された第1のコイル導体(一次巻線)14aと、他方の長辺部20bに巻回された第2のコイル導体(二次巻線)14bと、第1のコイル導体14aと第2のコイル導体14bとを連接する連接部14cと有し、これらが一体的に形成されている。具体的には、このコイル導体14は、銅等からなる平角形状の一本のワイヤ導線がポリエステル樹脂やポリアミドイミド樹脂等の絶縁性樹脂で被覆され、磁心コア2の一方の長辺部20a及び他方の長辺部20bにコイル状に巻回されている。 That is, the elongated magnetic core core 2 has two long side portions 20a and 20b parallel to each other. The coil conductor 14 is a first coil conductor (primary winding) 14a wound around one long side portion 20a and a second coil conductor (secondary winding) wound around the other long side portion 20b. The winding) 14b has a connecting portion 14c that connects the first coil conductor 14a and the second coil conductor 14b, and these are integrally formed. Specifically, in the coil conductor 14, one flat wire conducting wire made of copper or the like is coated with an insulating resin such as polyester resin or polyamide-imide resin, and one long side portion 20a of the magnetic core core 2 and It is wound in a coil shape around the other long side portion 20b.

このように本リアクトルは、磁心コア2にコイル導体14が巻回されているので、高飽和磁束密度と低磁気損失を有し、機械的強度も良好かつ強磁性でヒステリシス損の小さい良好な軟磁気特性を有する高純度で高品質のリアクトルを高効率で得ることができる。 As described above, since the coil conductor 14 is wound around the magnetic core core 2, this reactor has a high saturation magnetic flux density and a low magnetic loss, has a good mechanical strength, is ferromagnetic, and has a good softness with a small hysteresis loss. A high-purity, high-quality reactor having magnetic properties can be obtained with high efficiency.

図6は本発明に係る磁心コアの第2の実施の形態の要部詳細を示す縦断面図である。 FIG. 6 is a vertical sectional view showing the details of a main part of the second embodiment of the magnetic core core according to the present invention.

本第2の実施の形態は、第1の実施の形態と同様、磁性体粉末21の表面がシリコーンを主成分とする第1の結合剤22で被覆されると共に、第1の結合剤22同士が該第1の結合剤22よりも高硬度のフェノール樹脂等の第2の結合剤23を介して接合されている。磁性体粉末21、第1及び第2の結合剤22、23で複合材料24を形成すると共に、磁性体粉末21は、数量基準で50%以上にクラック25が形成されている。そして、クラック25には、第1の結合剤22が充填されている。 In the second embodiment, as in the first embodiment, the surface of the magnetic powder 21 is coated with the first binder 22 containing silicone as a main component, and the first binders 22 are used with each other. Is bonded via a second binder 23 such as a phenol resin having a hardness higher than that of the first binder 22. The composite material 24 is formed of the magnetic powder 21, the first and second binders 22 and 23, and the magnetic powder 21 has cracks 25 formed in 50% or more on a quantity basis. The crack 25 is filled with the first binder 22.

このように磁性体粉末21にクラック25が形成されることにより、ナノ結晶化薄帯の粉砕時や成形加工時に生じ得る歪みが、前記クラック25によって解放されることとなり、歪みに起因した磁気損失の増加を効果的に抑制することが可能となる。しかも、クラック25の形成により、磁性体粉末21の充填密度が向上し、より一層の直流重畳特性の向上や低磁気損失化が可能となる。 By forming the crack 25 in the magnetic powder 21 in this way, the strain that may occur during crushing or molding of the nanocrystallized strip is released by the crack 25, and the magnetic loss due to the strain is released. It is possible to effectively suppress the increase in. Moreover, the formation of the crack 25 improves the packing density of the magnetic powder 21, further improving the DC superimposition characteristic and reducing the magnetic loss.

本第2の実施の形態に係る磁心コアは以下の方法で作製することができる。 The magnetic core core according to the second embodiment can be manufactured by the following method.

すなわち、上述した第1の実施の形態と同様の方法・手順で、金属薄帯を熱処理し、ナノ結晶化薄帯を作製し、該ナノ結晶化薄帯を粉砕して磁性体粉末21を作製する。 That is, the metal strip is heat-treated to produce a nanocrystallized strip, and the nanocrystallized strip is crushed to prepare a magnetic powder 21 by the same method and procedure as in the first embodiment described above. do.

次いで、この磁性体粉末21を400~450℃程度の温度で熱処理し、磁性体粉末21の硬度を高めて該磁性体粉末21を脆化させる。 Next, the magnetic powder 21 is heat-treated at a temperature of about 400 to 450 ° C. to increase the hardness of the magnetic powder 21 and embrittle the magnetic powder 21.

その後、上述と同様の方法・手順で、磁性体粉末21の表面を第1の結合剤22で被覆し、さらに第1の結合剤22同士を第2の結合剤23を介して接合し、複合材料24を作製する。 After that, the surface of the magnetic powder 21 is coated with the first binder 22 by the same method and procedure as described above, and the first binders 22 are bonded to each other via the second binder 23 to form a composite. Material 24 is made.

次いで、この複合材料24を金型のキャビティに流し込んで加圧成形を行う。この加圧成形によって脆化した磁性体粉末21にはクラック25が形成され、該クラック25には、第1の結合剤22が充填される。そして、これを金型から取出し、これにより数量基準で50%以上の磁性体粉末21にクラック25が形成された本第2の実施の形態の磁心コアが作製される。 Next, the composite material 24 is poured into the cavity of the mold to perform pressure molding. Cracks 25 are formed in the magnetic powder 21 embrittled by this pressure molding, and the cracks 25 are filled with the first binder 22. Then, this is taken out from the mold, whereby the magnetic core core of the second embodiment in which the crack 25 is formed in the magnetic powder 21 having a quantity of 50% or more is produced.

図7は本発明に係る磁心コアの第3の実施の形態の要部詳細を示す縦断面図である。 FIG. 7 is a vertical sectional view showing the details of a main part of the third embodiment of the magnetic core core according to the present invention.

本第3の実施の形態は、磁性体粉末31間の間隙に平均粒径D50が1~50μmの微粒子35が充填されている。この微粒子35は、磁性体粉末31と同様、Feを主成分とする磁性体金属材料で形成されている。そして、第1及び第2の実施の形態と同様、磁性体粉末31の表面がシリコーンを主成分とする第1の結合剤32で被覆されると共に、第1の結合剤32同士が該第1の結合剤32よりも高硬度のフェノール樹脂等の第2の結合剤33を介して接合されている。本第3の実施の形態では、磁性体粉末31、第1及び第2の結合剤32、33に加え微粒子35で複合材料34が形成されている。In the third embodiment, the gaps between the magnetic powders 31 are filled with fine particles 35 having an average particle size D 50 of 1 to 50 μm. Like the magnetic powder 31, the fine particles 35 are made of a magnetic metal material containing Fe as a main component. Then, as in the first and second embodiments, the surface of the magnetic powder 31 is coated with the first binder 32 containing silicone as a main component, and the first binders 32 are attached to each other. It is bonded via a second binder 33 such as a phenol resin having a hardness higher than that of the binder 32. In the third embodiment, the composite material 34 is formed of the fine particles 35 in addition to the magnetic powder 31, the first and second binders 32 and 33.

上記微粒子35の作製方法等は特に限定されるものではないが、好ましくはアトマイズ法で作製されたアトマイズ粉、より好ましくは水アトマイズ法で作製されたアトマイズ粉が使用される。水アトマイズ法は、ジェット流体に水を使用することから、ジェット流体に不活性ガスを使用するガスアトマイズ法とは異なり、高圧噴霧が可能であり、平均粒径D50の小さい粉末粒子の作製が可能であり、金属薄帯10から作製された磁性体粉末31間の間隙に微粒子35を効率よく充填することができる。The method for producing the fine particles 35 is not particularly limited, but preferably atomizing powder produced by an atomizing method, and more preferably atomizing powder produced by a water atomizing method is used. Since the water atomization method uses water for the jet fluid, unlike the gas atomization method that uses an inert gas for the jet fluid, high-pressure spraying is possible and powder particles with an average particle size D 50 can be produced. Therefore, the fine particles 35 can be efficiently filled in the gaps between the magnetic powders 31 made from the metal strip 10.

このように磁心コア中に上述した微粒子35を含有させることにより、微粒子35は磁性体粉末31間の間隙に存在することから、より一層の直流重畳特性及び比透磁率の向上を図ることができる。 By including the above-mentioned fine particles 35 in the magnetic core core in this way, since the fine particles 35 exist in the gaps between the magnetic powders 31, it is possible to further improve the DC superimposition characteristics and the specific magnetic permeability. ..

そして、本第3の実施の形態に係る磁心コアは以下の方法で作製することができる。 Then, the magnetic core core according to the third embodiment can be manufactured by the following method.

すなわち、上述した第1の実施の形態と同様の方法・手順で、金属薄帯10を熱処理し、ナノ結晶化薄帯を作製し、該ナノ結晶化薄帯を粉砕して磁性体粉末31を作製する。 That is, the metal strip 10 is heat-treated to produce a nanocrystallized strip by the same method and procedure as in the first embodiment described above, and the nanocrystallized strip is crushed to obtain a magnetic powder 31. To make.

次に、Feを主成分とする磁性金属材料を用意し、好ましくはアトマイズ法、より好ましくは水アトマイズ法で微粒子35を作製する。 Next, a magnetic metal material containing Fe as a main component is prepared, and fine particles 35 are produced, preferably by an atomizing method, more preferably by a water atomizing method.

次いで、上述と同様の方法・手順で磁性体粉末31と微粒子35とを混合し、次いで第1の結合剤32を溶剤下、添加して磁性体粉末31の表面を第1の結合剤32で被覆し、その後、第2の結合剤33を添加し、これにより第1の結合剤32同士を第2の結合剤33を介して接合する。 Next, the magnetic powder 31 and the fine particles 35 are mixed by the same method and procedure as described above, then the first binder 32 is added under a solvent, and the surface of the magnetic powder 31 is coated with the first binder 32. After coating, a second binder 33 is added, whereby the first binders 32 are bonded to each other via the second binder 33.

その後、これを金型のキャビティに流し込んで加圧成形を行い、加圧成形後に金型から成形体を取出し、これにより本第3の実施の形態の磁心コアを作製することができる。 After that, this is poured into the cavity of the mold to perform pressure molding, and after the pressure molding, the molded body is taken out from the mold, whereby the magnetic core core of the third embodiment can be manufactured.

この場合、磁性体粉末31と微粒子35とを混合する前に、磁性体粉末31に熱処理を施して磁性体粉末31の硬度を高めて脆化させるのも好ましい。これにより、第2の実施の形態と同様、加圧成形により磁性体粉末31中にはクラックが形成されることから、ナノ結晶化薄帯の粉砕時や成形加工時に生じる得る歪みが、前記クラックによって解放されることとなる。 In this case, it is also preferable to heat-treat the magnetic powder 31 to increase the hardness and embrittlement of the magnetic powder 31 before mixing the magnetic powder 31 and the fine particles 35. As a result, as in the second embodiment, cracks are formed in the magnetic powder 31 by pressure molding, so that the strain that may occur during crushing or molding of the nanocrystallized strips is the cracks. Will be released by.

尚、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist.

上記各実施の形態では、第2の結合剤4、23、33は第1の結合剤3、22、32の外表面に全面被覆するように形成されているが、第2の結合剤4、23、33は第1の結合剤3、22、32の全面が被覆されていなくてもよく、第2の結合剤4、23、33を介して第1の結合剤3、22、32同士が接合されていればよい。 In each of the above embodiments, the second binders 4, 23, 33 are formed so as to completely cover the outer surface of the first binders 3, 22, 32, but the second binder 4, 23, 33 does not have to cover the entire surface of the first binders 3, 22, 32, and the first binders 3, 22, 32 are connected to each other via the second binders 4, 23, 33. It suffices if they are joined.

また、上記第2の実施の形態では、第1及び第2の結合剤22、23を添加する前に磁性体粉末21を熱処理し、磁性体粉末21の硬度を高めているが、熱処理条件を工夫することにより金属薄帯10の熱処理時に非晶質相にナノ結晶相を析出させると同時に硬度を高めるようにしてもよい。 Further, in the second embodiment, the magnetic material powder 21 is heat-treated before the first and second binders 22 and 23 are added to increase the hardness of the magnetic material powder 21, but the heat treatment conditions are different. By devising a method, the nanocrystalline phase may be precipitated in the amorphous phase during the heat treatment of the metal strip 10, and at the same time, the hardness may be increased.

また、上記実施の形態では、磁性体粉末を使用したコイル部品としてリアクトルを例示したが、その他のコイル部品、例えばインダクタにも適用できるのはいうまでもない。 Further, in the above embodiment, the reactor is exemplified as a coil component using magnetic powder, but it goes without saying that the reactor can be applied to other coil components, for example, an inductor.

さらに、本磁性体粉末を構成する元素種についても、非晶質形成能を有する元素、例えばGa、Ge、Pdを適宜添加してもよく、また、Mn、Al、N、Ti等の微量の不純物を含んでいても特性に影響を与えるものではない。Further, with respect to the element species constituting the magnetic powder, elements having an amorphous forming ability, such as Ga, Ge, and Pd, may be appropriately added, and trace amounts of Mn, Al, N2 , Ti, and the like may be added. Even if it contains impurities of, it does not affect the characteristics.

また、上記実施の形態では、金属薄帯の製法について、高周波誘導加熱により調合物を加熱・溶解しているが、加熱・溶解方法は高周波誘導加熱に限定されるものではなく、例えばアーク溶解であってもよい。 Further, in the above embodiment, in the method for producing a metal strip, the formulation is heated and melted by high frequency induction heating, but the heating and melting method is not limited to high frequency induction heating, for example, by arc melting. There may be.

次に、本発明の実施例を具体的に説明する。 Next, an embodiment of the present invention will be specifically described.

〔試料の作製〕
素原料としてFe、Si、B、FePを用意し、所定の組成となるように調合し、高周波誘導加熱炉で融点以上に加熱し溶解させ、次いで、この溶解物を銅製の鋳込み型に流し込んで冷却し、これにより母合金を作製した。
[Preparation of sample]
Fe, Si , B, and Fe 3P are prepared as raw materials, prepared to have a predetermined composition, heated to a melting point or higher in a high-frequency induction heating furnace to melt, and then the melt is made into a copper casting mold. It was poured and cooled, thereby producing a mother alloy.

次に、この母合金を5mm程度の大きさに破砕し、単ロール液体急冷装置の坩堝に投入し、高周波誘導加熱を行って母合金を溶解させ、金属溶融物を得た。 Next, this mother alloy was crushed to a size of about 5 mm, put into a crucible of a single roll liquid quenching device, and subjected to high frequency induction heating to melt the mother alloy to obtain a metal melt.

次いで、この金属溶融物を坩堝の先端ノズルから噴出させ、高速回転しているロールに注いで急冷凝固させ、これにより金属薄帯を作製した。 Next, this metal melt was ejected from the tip nozzle of the crucible, poured into a roll rotating at high speed, and rapidly cooled and solidified, thereby producing a metal strip.

次いで、これを400℃の温度に調整された加熱炉に通過させ、熱処理を行って非晶質相にナノ結晶相が析出した幅50mm、厚み20~30μmのナノ結晶化薄帯を作製した。 Next, this was passed through a heating furnace adjusted to a temperature of 400 ° C., and heat treatment was performed to prepare a nanocrystallized strip having a width of 50 mm and a thickness of 20 to 30 μm in which a nanocrystal phase was precipitated in an amorphous phase.

次いで、このナノ結晶化薄帯をフェザーミルで粗粉砕し、さらに概ねの所定サイズになるまでピンミルで微粉砕し、粉砕物を得た。そして、この粉砕物に対し乾式アトライターを使用して角部が曲面状となるように球状化処理を行い、これにより試料番号1~7の粉末試料を得た。 Next, the nanocrystallized strip was coarsely pulverized with a feather mill, and further finely pulverized with a pin mill until the size became approximately a predetermined size to obtain a pulverized product. Then, a dry attritor was used to spheroidize the crushed material so that the corners were curved, thereby obtaining powder samples of sample numbers 1 to 7.

次に、試料番号1~7の粉末試料各50個について、走査型電子顕微鏡(SEM)を使用し、SEM画像を撮像した。 Next, SEM images were taken using a scanning electron microscope (SEM) for each of 50 powder samples of sample numbers 1 to 7.

図8は、試料番号3のSEM画像を示している。この図8に示すようなSEM画像から各試料の径方向の平均長さa及び厚み方向の平均厚みb、角部の半径Rを測定し、アスペクト比a/b、及び半径Rの最大値Rmax及び最小値Rminを求めた。 FIG. 8 shows an SEM image of sample number 3. From the SEM image as shown in FIG. 8, the average length a in the radial direction, the average thickness b in the thickness direction, and the radius R of the corners of each sample are measured, and the aspect ratio a / b and the maximum value Rmax of the radius R are measured. And the minimum value Rmin was obtained.

次に、メチルフェニル系のシリコーン樹脂(第1の結合剤)を用意し、磁心コア中の含有量が0.75wt%となるようにシリコーン樹脂を秤量した。次いで、このシリコーン樹脂を粉末試料に添加し、所定量のアセトンを加えて混合した。その後、アセトンを蒸発除去し、粉末試料の表面にシリコーン樹脂を被覆させた。 Next, a methylphenyl-based silicone resin (first binder) was prepared, and the silicone resin was weighed so that the content in the magnetic core core was 0.75 wt%. Then, this silicone resin was added to the powder sample, a predetermined amount of acetone was added, and the mixture was mixed. Then, acetone was evaporated and removed, and the surface of the powder sample was coated with a silicone resin.

次に、フェノール樹脂(第2の結合剤)を用意し、磁心コア中の含有量が0.75wt%となるように該フェノール樹脂を秤量した。次いで、このフェノール樹脂をシリコーン樹脂で被覆された粉末試料に添加し、所定量のアセトンを加えて混合した。その後、アセトンを蒸発除去し、フェノール樹脂を介してシリコーン樹脂同士を接合し、試料番号1~7の複合材料を作製した。 Next, a phenol resin (second binder) was prepared, and the phenol resin was weighed so that the content in the magnetic core core was 0.75 wt%. Next, this phenol resin was added to a powder sample coated with a silicone resin, and a predetermined amount of acetone was added and mixed. Then, acetone was evaporated and removed, and the silicone resins were bonded to each other via a phenol resin to prepare composite materials of sample numbers 1 to 7.

次いで、金型のキャビティに前記複合材料を流し込み、100MPa程度に加圧してプレス加工を行い、成形体を作製した。その後、金型から成形体を取り出し、成形体を120~150℃の温度で24時間程度、熱処理を施してシリコーン樹脂及びフェノール樹脂を硬化させ、これにより試料番号1~7のトロイダルコア型の試料(磁心コア)を作製した。作製された試料の外形寸法は、外径8mm、内径4mm、厚み2.5mmであった。 Next, the composite material was poured into the cavity of the mold, pressed to about 100 MPa and pressed to produce a molded product. After that, the molded body is taken out from the mold, and the molded body is heat-treated at a temperature of 120 to 150 ° C. for about 24 hours to cure the silicone resin and the phenol resin, whereby the toroidal core mold samples of sample numbers 1 to 7 are sampled. (Magnetic core) was produced. The external dimensions of the prepared sample were an outer diameter of 8 mm, an inner diameter of 4 mm, and a thickness of 2.5 mm.

[試料の評価]
(比透磁率の測定)
インダクタンスと比透磁率とは比例関係にあることから、本実施例では比透磁率を測定して直流重畳特性を評価した。
[Sample evaluation]
(Measurement of relative permeability)
Since the inductance and the relative permeability are in a proportional relationship, in this embodiment, the relative permeability was measured to evaluate the DC superimposition characteristic.

すなわち、試料番号1~7の各試料3個について、インピーダンスアナライザ(キーサイトテクノロジー社製、E4991A)を使用し、測定周波数1MHzで比透磁率を測定し、各試料3個の平均値を求めて直流重畳特性を評価した。 That is, for each of the three samples of sample numbers 1 to 7, an impedance analyzer (E4991A manufactured by KeySight Technology Co., Ltd.) was used to measure the relative magnetic permeability at a measurement frequency of 1 MHz, and the average value of each of the three samples was obtained. The DC superimposition characteristics were evaluated.

(コア損失の測定)
試料番号1~7の各試料3個について、第1のコイル導体となる一次巻線を8ターン、第2のコイル導体となる二次巻線を8ターン巻回し、B-Hアナライザ (岩崎通信機社製、SY-8218)を使用し、測定周波数100kHzで100mTの磁界を印加してコア損失を測定し、各試料3個の平均値を求めた。
(Measurement of core loss)
For each of the three samples of sample numbers 1 to 7, the primary winding that becomes the first coil conductor is wound for 8 turns, and the secondary winding that becomes the second coil conductor is wound for 8 turns, and the BH analyzer (Iwasaki communication) Using SY-8218) manufactured by Kikai Co., Ltd., a magnetic field of 100 mT was applied at a measurement frequency of 100 kHz to measure the core loss, and the average value of each of the three samples was obtained.

(測定結果)
表1は、試料番号1~7の各試料のアスペクト比a/b、角部の半径Rの最大値Rmaxと最小値Rmin、比透磁率及びコア損失を示している。
(Measurement result)
Table 1 shows the aspect ratio a / b of each sample of sample numbers 1 to 7, the maximum value Rmax and the minimum value Rmin of the radius R of the corner portion, the relative permeability and the core loss.

Figure 0007100833000001
Figure 0007100833000001

試料番号1~7から明らかなように、降順になるほど粉砕度や球状化処理が進行している。そして、試料番号1は、粉砕度や球状化処理が不十分であるため、アスペクト比a/bが7.5と大きく、Rmin値が0.3μmと極端に小さくなり、角部は尖鋭なエッジ状となった。その結果、比透磁率が30と小さく、コア損失も1250kW/mと大きかった。これは角部が尖鋭なエッジ状に形成されたことから、斯かる角部同士が接触した状態で加圧成形され、このため試料の角部に磁束が集中し、その結果、比透磁率が小さくなって直流重畳特性の劣化を招いたものと思われる。また、磁性体粉末をシリコーン樹脂で被覆しているものの、均一な被覆膜を得ることはできず、渦電流損が大きくなってコア損失も大きくなったものと思われる。As is clear from sample numbers 1 to 7, the degree of pulverization and the spheroidizing treatment progress in descending order. Since the degree of pulverization and the spheroidizing treatment of sample No. 1 are insufficient, the aspect ratio a / b is as large as 7.5, the Rmin value is extremely small as 0.3 μm, and the corners are sharp edges. It became a state. As a result, the relative permeability was as small as 30, and the core loss was as large as 1250 kW / m 3 . This is because the corners are formed in a sharp edge shape, so that the corners are pressure-molded in contact with each other, so that the magnetic flux is concentrated on the corners of the sample, and as a result, the relative permeability is increased. It is thought that the size became smaller and the DC superimposition characteristics deteriorated. Further, although the magnetic powder was coated with the silicone resin, it was not possible to obtain a uniform coating film, and it is considered that the eddy current loss was large and the core loss was also large.

一方、試料番号7は、粉砕度や球状化処理が過度に進行しているため、アスペクト比a/bが1.2と小さく、またRmax値が27μmと大きくなり、過度に球形に近付いている。そして、磁束は特定部位に集中を招くことなく球面上を拡散して流れることから、比透磁率は46と大きくなったが、コア損失は1700kW/mと大きくなった。これは球形化のために粉砕処理や球状化処理に長時間を要したことから、磁性体粉末に大きな歪みが生じ、このため保磁力Hcが大きくなってヒステリシス損が増加したため、コア損失が大きくなったものと思われる。On the other hand, sample No. 7 has an aspect ratio a / b as small as 1.2 and an Rmax value as large as 27 μm because the degree of pulverization and the spheroidizing process are excessively advanced, and is excessively close to a sphere. .. Since the magnetic flux diffuses and flows on the spherical surface without causing concentration in a specific part, the relative permeability is as large as 46, but the core loss is as large as 1700 kW / m 3 . This is because it took a long time for the pulverization process and the spheroidization process to form a sphere, which caused a large strain in the magnetic powder, which increased the coercive force Hc and increased the hysteresis loss, resulting in a large core loss. It seems that it has become.

これに対し試料番号2~6は、アスペクト比a/bが1.8~6.8であり、角部の半径Rが0.8~25μmであり、いずれも本発明範囲内であるので、過度に球形化することなく、磁束は曲面上を拡散すると共に、歪みが生じるのを抑制できることから、比透磁率は38~49と良好であり、コア損失も890~1120kW/mに抑制できることが分かった。On the other hand, sample numbers 2 to 6 have an aspect ratio a / b of 1.8 to 6.8 and a radius R of a corner portion of 0.8 to 25 μm, both of which are within the scope of the present invention. Since the magnetic flux can be diffused on the curved surface and the distortion can be suppressed without being excessively spherical, the relative permeability is as good as 38 to 49 and the core loss can be suppressed as 890 to 1120 kW / m 3 . I understood.

図9はRmax値と比透磁率との関係を示す図である。図9中、横軸はRmax(μm)、縦軸は比透磁率(-)を示している。 FIG. 9 is a diagram showing the relationship between the Rmax value and the relative magnetic permeability. In FIG. 9, the horizontal axis represents Rmax (μm) and the vertical axis represents the relative permeability (−).

この図9から明らかなように、Rmaxが大きくなるのに伴い比透磁率も増加傾向にあるが、Rmaxが過度に大きくなると試料番号7に示すように低下する傾向になることが分かった。 As is clear from FIG. 9, it was found that the relative permeability tends to increase as Rmax increases, but decreases as shown in sample number 7 when Rmax becomes excessively large.

図10はRmin値と比透磁率との関係を示す図である。図10中、横軸はRmin(μm)、縦軸は比透磁率(-)を示している。 FIG. 10 is a diagram showing the relationship between the Rmin value and the relative magnetic permeability. In FIG. 10, the horizontal axis represents Rmin (μm) and the vertical axis represents relative permeability (−).

この図10から明らかなように、Rmin値が1.5μm(試料番号4)程度まではRminの増加に伴い比透磁率も急激に増加するが、Rmin値が1.5μmを超えると漸減傾向になることが分かった。 As is clear from FIG. 10, the relative magnetic permeability increases sharply as the Rmin increases up to about 1.5 μm (sample number 4), but when the Rmin value exceeds 1.5 μm, it tends to gradually decrease. It turned out to be.

図11はRmax値とコア損失との関係を示す図である。図11中、横軸はRmax(μm)、縦軸はコア損失(kW/m)を示している。FIG. 11 is a diagram showing the relationship between the Rmax value and the core loss. In FIG. 11, the horizontal axis represents Rmax (μm) and the vertical axis represents core loss (kW / m 3 ).

この図11から明らかなように、Rmax値が18μmまではコア損失が低下するが、Rmax値が18μmを超えるとコア損失は上昇に転じることが分かる。 As is clear from FIG. 11, it can be seen that the core loss decreases until the Rmax value is 18 μm, but the core loss starts to increase when the Rmax value exceeds 18 μm.

図12はRmin値とコア損失との関係を示す図である。図12中、横軸はRmin(μm)、縦軸はコア損失(kW/m)を示している。FIG. 12 is a diagram showing the relationship between the Rmin value and the core loss. In FIG. 12, the horizontal axis represents Rmin (μm) and the vertical axis represents core loss (kW / m 3 ).

この図12から明らかなように、Rminが1.5μm程度まではRminの増加にともないコア損失も急激に減少するが、Rminが1.5μmを超えると増加傾向に転じることが分かる。 As is clear from FIG. 12, the core loss decreases sharply with the increase of Rmin up to about 1.5 μm, but it turns to an increasing tendency when Rmin exceeds 1.5 μm.

図13はアスペクト比a/bと比透磁率との関係を示す図である。図13中、横軸はアスペクト比a/b、縦軸は比透磁率(-)を示している。 FIG. 13 is a diagram showing the relationship between the aspect ratio a / b and the relative magnetic permeability. In FIG. 13, the horizontal axis represents the aspect ratio a / b, and the vertical axis represents the relative permeability (−).

この図13から明らかなように、アスペクト比a/bが1.2~2.5までは比透磁率は緩やかに増加するがアスペクト比a/bが2.5を超えると比透磁率は減少に転じることが分かる。 As is clear from FIG. 13, the relative permeability gradually increases when the aspect ratio a / b exceeds 1.2 to 2.5, but decreases when the aspect ratio a / b exceeds 2.5. You can see that it turns to.

図14はアスペクト比a/bとコア損失との関係を示す図である。図14中、横軸はアスペクト比a/b、縦軸はコア損失(kW/m)を示している。FIG. 14 is a diagram showing the relationship between the aspect ratio a / b and the core loss. In FIG. 14, the horizontal axis shows the aspect ratio a / b, and the vertical axis shows the core loss (kW / m 3 ).

この図14から明らかなように、アスペクト比a/bが1.2~2.5まではコア損失は急激に低下するがアスペクト比a/bが2.5を超えるとコア損失は緩やかな増加に転じることが分かった。 As is clear from FIG. 14, the core loss decreases sharply when the aspect ratio a / b exceeds 1.2 to 2.5, but the core loss gradually increases when the aspect ratio a / b exceeds 2.5. It turned out to turn to.

実施例1で作製された試料番号1~7と同一のアスペクト比a/b及びRmax、Rminを有する作製し、球状化処理後に加熱炉に投入して熱処理を行った。具体的には、昇温速度1℃/分、最高温度400~425℃、保時時間60分という温度プロファイルで熱処理を行った。 The samples had the same aspect ratios a / b, Rmax, and Rmin as those of Sample Nos. 1 to 7 prepared in Example 1, and after the spheroidizing treatment, they were put into a heating furnace for heat treatment. Specifically, the heat treatment was performed with a temperature profile of a temperature rising rate of 1 ° C./min, a maximum temperature of 400 to 425 ° C., and a holding time of 60 minutes.

そしてその後は、上記実施例1と同様の方法・手順で、シリコーン樹脂及びフェノール樹脂を使用して複合材料を作製し、該複合材料を加圧成形して磁心コアを作製し、コイル導体を巻回して試料番号11~17の各試料を作製した。 After that, a composite material is produced using a silicone resin and a phenol resin by the same method and procedure as in Example 1, the composite material is pressure-molded to produce a magnetic core core, and a coil conductor is wound. Each sample of sample numbers 11 to 17 was prepared by turning.

次いで、この試料番号11~17の試料各3個について、実施例1と同様の方法・手順でコア損失を測定し、その平均値を求めた。 Next, the core loss was measured for each of the three samples of sample numbers 11 to 17 by the same method and procedure as in Example 1, and the average value was obtained.

また、球状化処理後に熱処理を行わなかった実施例1の各試料のコア損失をA、球状化処理後に熱処理を行った対応する各試料のコア損失をBとし、数式(1)に基づいてコア損失の低減率α(%)を求めた。 Further, the core loss of each sample of Example 1 that was not heat-treated after the spheroidizing treatment was A, and the core loss of each corresponding sample that was heat-treated after the spheroidizing treatment was B, and the core was based on the mathematical formula (1). The loss reduction rate α (%) was calculated.

α={(A―B)/A}×100 …(1)
また、試料番号3及び13について、自動計測保磁力計(東北特殊鋼社製、K-HC1000)を使用し、保磁力を測定した。
α = {(AB) / A} × 100 ... (1)
Further, for sample numbers 3 and 13, the coercive force was measured using an automatic measurement coercive force meter (K-HC1000 manufactured by Tohoku Steel Co., Ltd.).

表2はその測定結果を示している。尚、この表2では、比較のため試料番号1~7のコア損失を再掲している。 Table 2 shows the measurement results. In Table 2, the core losses of sample numbers 1 to 7 are reprinted for comparison.

Figure 0007100833000002
Figure 0007100833000002

この表2から明らかなように、試料番号11~17は熱処理を行っていることから、熱処理を行わなかった試料番号1~7に比べてコア損失が40%以上低下することが分かった。 As is clear from Table 2, since the sample numbers 11 to 17 were heat-treated, it was found that the core loss was reduced by 40% or more as compared with the sample numbers 1 to 7 without the heat treatment.

また、試料番号3、13の対比から明らかなように、保磁力Hcは、球状化処理後に熱処理しなかった試料番号3の磁性体粉末は280A/mであったのに対し、球状化処理後に熱処理した試料番号13は磁性体粉末は100A/mに低下することが分かった。すなわち、球状化処理後に熱処理を行うことにより、磁性体粉末の保磁力Hcは大幅に低下し、これによりヒステリシス損が小さくなってコア損失が熱処理前の890kW/mから510kW/mに大幅に低減できることが分かった。Further, as is clear from the comparison of sample numbers 3 and 13, the coercive force Hc was 280 A / m for the magnetic powder of sample number 3 which was not heat-treated after the spheroidizing treatment, whereas it was after the spheroidizing treatment. It was found that the heat-treated sample No. 13 reduced the amount of the magnetic powder to 100 A / m. That is, by performing the heat treatment after the spheroidizing treatment, the coercive force Hc of the magnetic powder is significantly reduced, whereby the hysteresis loss is reduced and the core loss is significantly increased from 890 kW / m 3 before the heat treatment to 510 kW / m 3 . It was found that it can be reduced to.

図15~17は、本第2の実施例におけるRmax、Rmin、アスペクト比a/bとコア損失との関係を示す図である。図15~17中、横軸はそれぞれRmax(μm)、Rmin(μm)、アスペクト比a/b(-)を示し、縦軸はコア損失(kW/m)を示している。15 to 17 are diagrams showing the relationship between Rmax, Rmin, aspect ratio a / b and core loss in the second embodiment. In FIGS. 15 to 17, the horizontal axis shows Rmax (μm), Rmin (μm), and the aspect ratio a / b (−), respectively, and the vertical axis shows the core loss (kW / m 3 ).

この図15~17と図11、図12及び図14との対比から明らかなように、Rmax値、Rmin値、及びアスペクト比a/bとコア損失とは熱処理の有無に拘わらず同様の傾向があるが、球状化処理を行うことにより、歪みが除去された分、コア損失が大幅に低減することが分かった。 As is clear from the comparison between FIGS. 15 to 17 and FIGS. 11, 12, and 14, the Rmax value, the Rmin value, the aspect ratio a / b, and the core loss have the same tendency regardless of the presence or absence of heat treatment. However, it was found that the core loss was significantly reduced by the amount that the strain was removed by performing the spheroidizing treatment.

実施例1と同様の方法・手順により、ナノ結晶化薄帯を粉砕し、球状化処理を施し、アスペクト比a/bが5.4、Rmaxが16μm、Rminが1.0μmの磁性体粉末を作製し、次いで、シリコーン樹脂及びフェノール樹脂を使用して複合材料を作製した。 By the same method and procedure as in Example 1, the nanocrystallized ribbon is crushed and subjected to spheroidizing treatment to obtain a magnetic powder having an aspect ratio of 5.4, an Rmax of 16 μm, and an Rmin of 1.0 μm. Fabrication was then made and then composite materials were made using silicone and phenolic resins.

次いで、この複合材料を400℃程度の温度で短時間保持させ、熱処理を行った。 Next, this composite material was held at a temperature of about 400 ° C. for a short time and heat-treated.

その後は実施例1と同様の方法・手順で、熱処理された複合材料を加圧成形し、試料番号21のトロイダルコア型試料(磁心コア)を作製した。 After that, the heat-treated composite material was pressure-molded by the same method and procedure as in Example 1 to prepare a toroidal core type sample (magnetic core core) of sample number 21.

そして、この試料番号21の試料について、周囲を樹脂で固め、環状部分を中心方向に研磨し、SEMを使用し、縦228μm、横300μmの視野領域で縦断面を観察した。 Then, about the sample of this sample No. 21, the periphery was hardened with a resin, the annular portion was polished toward the center, and the vertical cross section was observed in a visual field region of 228 μm in length and 300 μm in width using SEM.

図18は、そのSEM画像を示している。 FIG. 18 shows the SEM image.

この図18から明らかなように、磁性体粉末51にはクラック52が形成されていることが確認された。これは加圧成形前に複合材料に熱処理を行ったことから、磁性体粉末51の硬度が高められ脆化したために成形加工時にクラック52が形成されたものと思われる。 As is clear from FIG. 18, it was confirmed that the magnetic powder 51 had cracks 52 formed. It is considered that this is because the composite material was heat-treated before the pressure molding, so that the hardness of the magnetic powder 51 was increased and the magnetic powder 51 became embrittled, so that cracks 52 were formed during the molding process.

実施例1と同様の方法・手順で磁性体粉末を作製した。 A magnetic powder was prepared by the same method and procedure as in Example 1.

次に、水アトマイズ法を適用して微粒子を作製した。 Next, the water atomizing method was applied to prepare fine particles.

すなわち、実施例1と同様の方法・手順でFe、Si、B、FeP等の素原料を出発材料として母合金を作製し、この母合金を5mm程度の大きさに破砕し、水アトマイズ装置の坩堝に投入し、高周波誘導加熱を行って母合金を溶解させ、溶湯を得た。次いで、10~80MPaの高圧水を前記溶湯に噴霧し、粉砕・急冷し、これにより平均粒径D50が円相当径に換算して1~50μmの微粒子を得た。That is, a mother alloy is prepared using raw materials such as Fe, Si , B, and Fe 3P as starting materials by the same method and procedure as in Example 1, and this mother alloy is crushed to a size of about 5 mm and water atomized. It was put into the crucible of the apparatus and subjected to high frequency induction heating to melt the mother alloy to obtain a molten metal. Next, high-pressure water of 10 to 80 MPa was sprayed onto the molten metal, pulverized and rapidly cooled to obtain fine particles having an average particle size D 50 of 1 to 50 μm in terms of a circle-equivalent diameter.

次いで、磁性体粉末と微粒子とを混合した後、実施例1と同様の方法・手順でシリコーン樹脂及びフェノール樹脂を使用し、複合材料(磁性体粉末、微粒子、シリコーン樹脂及びフェノール樹脂)を作製した。 Next, after mixing the magnetic powder and the fine particles, a composite material (magnetic powder, fine particles, silicone resin and phenol resin) was prepared by using the silicone resin and the phenol resin by the same method and procedure as in Example 1. ..

次に、実施例3と同様の方法・手順で、この複合材料に熱処理を行い、その後、この熱処理された複合材料を加圧成形し、試料番号22のトロイダルコア型試料(磁心コア)を作製した。 Next, the composite material is heat-treated by the same method and procedure as in Example 3, and then the heat-treated composite material is pressure-molded to prepare a toroidal core type sample (magnetic core core) of sample number 22. did.

次に、実施例3と同様の方法・手順で、試料番号22の試料の縦断面を観察した。 Next, the vertical cross section of the sample of sample No. 22 was observed by the same method and procedure as in Example 3.

図19は、そのSEM画像を示している。 FIG. 19 shows the SEM image.

この図19から明らかなように、磁性体粉末53間の間隙に微粒子54が充填されていることが確認された。したがって、これにより比透磁率や直流重畳特性等の磁気特性が更に向上するものと思われる。また、実施例3と同様(図18参照)、加圧成形前に熱処理を行っていることから、磁性体粉末53にはクラック55が形成されていることも確認された。 As is clear from FIG. 19, it was confirmed that the fine particles 54 were filled in the gaps between the magnetic powders 53. Therefore, it is expected that this will further improve the magnetic characteristics such as the relative permeability and the DC superimposition characteristic. Further, it was also confirmed that the crack 55 was formed in the magnetic powder 53 because the heat treatment was performed before the pressure molding as in Example 3 (see FIG. 18).

直流重畳特性が良好で低磁気損失の磁性体粉末、磁心コア、及びこの磁心コアを使用したリアクトル等のコイル部品を実現することができる。 It is possible to realize a magnetic material powder having good DC superimposition characteristics and low magnetic loss, a magnetic core core, and a coil component such as a reactor using this magnetic core core.

1 磁性体粉末
1a 角部
2 磁心コア
3 第1の結合剤
4 第2の結合剤
5 複合材料
6 金属溶融物(溶融物)
10 金属薄帯
14 コイル導体
21 磁性体粉末
22 第1の結合剤
23 第2の結合剤
24 複合材料
25 クラック
31 磁性体粉末
32 第1の結合剤
33 第2の結合剤
34 複合材料
35 微粒子
1 Magnetic powder 1a Square part 2 Magnetic core core 3 First binder 4 Second binder 5 Composite material 6 Metal melt (melt)
10 Metal strip 14 Coil conductor 21 Magnetic material powder 22 First binder 23 Second binder 24 Composite material 25 Crack 31 Magnetic material powder 32 First binder 33 Second binder 34 Composite material 35 Fine particles

Claims (15)

少なくともFe成分を含有した金属薄帯の粉砕物からなる磁性体粉末と結合剤とを含有した複合材料で形成された磁心コアであって、
前記磁性体粉末は、扁平球状に形成されると共に、径方向の平均長さaと厚み方向の平均厚さbとの比率を示すアスペクト比a/bが1.8~6.8であり、角部が半径0.8μm~25μmの曲面状であり
かつ、前記磁性体粉末は、数量基準で50%以上にクラックが形成されていることを特徴とする磁心コア。
A magnetic core core formed of a composite material containing a magnetic powder made of a pulverized metal strip containing at least an Fe component and a binder.
The magnetic powder is formed into a flat spherical shape, and has an aspect ratio a / b of 1.8 to 6.8, which indicates the ratio between the average length a in the radial direction and the average thickness b in the thickness direction. The corners are curved with a radius of 0.8 μm to 25 μm.
Moreover, the magnetic core powder is characterized in that cracks are formed in 50% or more on a quantity basis .
前記磁性体粉末は、Feを主成分とすると共に、非晶質相とナノ結晶相とが混在していることを特徴とする請求項記載の磁心コアThe magnetic core according to claim 1 , wherein the magnetic powder contains Fe as a main component and a mixture of an amorphous phase and a nanocrystal phase. 前記磁性体粉末は、平均粒径が、円相当径に換算して30~80μmであることを特徴とする請求項又は請求項記載の磁心コアThe magnetic core according to claim 1 or 2 , wherein the magnetic powder has an average particle size of 30 to 80 μm in terms of a diameter equivalent to a circle. 前記結合剤は、シリコーン樹脂を主成分とする第1の結合剤と、該第1の結合剤に比べ高硬度の少なくとも1種以上の樹脂からなる第2の結合剤とを含み、
前記磁性体粉末が前記第1の結合剤で被覆される共に、前記第1の結合剤同士が前記第2の結合剤を介して接合されていることを特徴とする請求項乃至請求項のいずれかに載の磁心コア。
The binder contains a first binder containing a silicone resin as a main component and a second binder composed of at least one resin having a hardness higher than that of the first binder.
Claims 1 to 3 are characterized in that the magnetic powder is coated with the first binder and the first binders are bonded to each other via the second binder. Magnetic core core on any of.
前記第2の結合剤は、フェノール樹脂及びポリイミド樹脂のうちの少なくとも一方を含んでいることを特徴とする請求項記載の磁心コア。 The magnetic core core according to claim 4 , wherein the second binder contains at least one of a phenol resin and a polyimide resin. 前記シリコーン樹脂は、メチルフェニル系であることを特徴とする請求項又は請求項記載の磁心コア。 The magnetic core core according to claim 4 or 5 , wherein the silicone resin is a methylphenyl type. 前記複合材料は、平均粒径が円相当径に換算して1~50μmのFeを主成分とする磁性金属材料からなる微粒子が前記磁性体粉末間に介在していることを特徴とする請求項乃至請求項のいずれかに記載の磁心コア。 The above-mentioned composite material is characterized in that fine particles made of a magnetic metal material containing Fe as a main component having an average particle diameter of 1 to 50 μm in terms of a diameter equivalent to a circle are interposed between the magnetic powders. The magnetic core core according to any one of 1 to 6 . 前記微粒子はアトマイズ粉であることを特徴とする請求項記載の磁心コア。 The magnetic core core according to claim 7 , wherein the fine particles are atomized powder. 磁性体粉末と結合剤とを含有した複合材料で形成された磁心コアの製造方法であって、A method for manufacturing a magnetic core core made of a composite material containing a magnetic powder and a binder.
磁性体粉末作製工程と複合材料作製工程とを有し、 It has a magnetic powder manufacturing process and a composite material manufacturing process.
前記磁性体粉末作製工程は、少なくともFe成分を含有した金属薄帯を作製する工程と、前記金属薄帯を粉砕し粉砕物を作製する工程と、前記粉砕物に球状化処理を施し、径方向の平均長さaと厚み方向の平均厚さbとの比率を示すアスペクト比a/bが1.8~6.8であって角部が半径0.8μm~25μmの曲面状となるように形成されるように扁平球状の磁性体粉末を作製するす工程とを含み、The magnetic powder manufacturing step includes a step of manufacturing a metal strip containing at least an Fe component, a step of crushing the metal strip to prepare a crushed product, and a step of spheroidizing the crushed product in the radial direction. The aspect ratio a / b indicating the ratio between the average length a and the average thickness b in the thickness direction is 1.8 to 6.8, and the corners are curved so as to have a radius of 0.8 μm to 25 μm. Including the step of producing a flat spherical magnetic powder so as to be formed.
前記複合材料作製工程は、シリコーン樹脂を主成分とする第1の結合剤と前記磁性体粉末とを混合し、前記磁性体粉末を前記第1の結合剤で被覆する工程と、 前記第1の結合剤で被覆された磁性得体粉末と前記第1の結合剤よりも高硬度の少なくとも1種類以上の樹脂からなる第2の結合剤とを混合し、前記第1の結合剤同士を前記第2の結合剤を介して接合し、前記磁性体粉末と前記第1及び第2の結合剤とを含有した複合材料を作製する工程と、前記複合材料を加圧成形し、前記磁性体粉末が数量基準で50%以上にクラックが形成されるように磁心コアを作製する工程とを含むことを特徴とする磁心コアの製造方法。 The composite material manufacturing step includes a step of mixing the first binder containing a silicone resin as a main component and the magnetic material powder, and coating the magnetic material powder with the first binder, and the first step. A magnetic product powder coated with a binder and a second binder made of at least one kind of resin having a hardness higher than that of the first binder are mixed, and the first binders are combined with each other. A step of forming a composite material containing the magnetic powder and the first and second binders by joining via a binder of the above, and pressure molding of the composite material, the quantity of the magnetic powder is A method for manufacturing a magnetic core core, which comprises a step of manufacturing a magnetic core core so that cracks are formed in an amount of 50% or more as a reference.
前記磁性体粉末作製工程は、前記金属薄帯に熱処理を施し、非晶質相にナノ結晶を析出させる工程を含むことを特徴とする請求項記載の磁心コアの製造方法。 The method for producing a magnetic core core according to claim 9 , wherein the magnetic powder manufacturing step includes a step of heat-treating the metal strip to precipitate nanocrystals in an amorphous phase. 前記磁性体粉末作製工程は、前記球状化処理された前記粉砕物に熱処理を施すことを特徴とする請求項又は請求項10記載の磁心コアの製造方法。 The method for producing a magnetic core core according to claim 9 , wherein the magnetic powder manufacturing step is to heat - treat the spheroidized pulverized product. 前記金属薄帯を作製する工程は、少なくともFe成分を含む所定の素原料を秤量し、調合する工程と、前記調合された調合物を加熱して溶融物を作製する工程と、前記溶融物を回転体上に噴出させて急冷凝固させ、金属薄帯を作製する工程とを含むことを特徴とする請求項乃至請求項11のいずれかに記載の磁心コアの製造方法。 The steps for producing the metal strip include a step of weighing and blending a predetermined raw material containing at least an Fe component, a step of heating the blended formulation to prepare a melt, and a step of preparing the melt. The method for manufacturing a magnetic core core according to any one of claims 9 to 11 , further comprising a step of ejecting the metal strip onto a rotating body to quench and solidify the metal strip. 前記磁性体粉末と磁性金属材料からなる微粒子とを混合する工程を含むことを特徴とする請求項乃至請求項12のいずれかかに記載の磁心コアの製造方法。 The method for manufacturing a magnetic core core according to any one of claims 9 to 12 , further comprising a step of mixing the magnetic powder and fine particles made of a magnetic metal material. 請求項乃至請求項のいずれかに記載の磁心コアとコイル導体とを備えていることを特徴とするコイル部品。 A coil component comprising the magnetic core core according to any one of claims 1 to 8 and a coil conductor. 前記コイル導体が前記磁心コアに巻回されていることを特徴とする請求項14記載のコイル部品。 The coil component according to claim 14 , wherein the coil conductor is wound around the magnetic core core.
JP2021503980A 2019-03-07 2020-02-25 Magnetic core core and its manufacturing method, and coil parts Active JP7100833B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019041454 2019-03-07
JP2019041454 2019-03-07
PCT/JP2020/007372 WO2020179535A1 (en) 2019-03-07 2020-02-25 Magnetic powder and method for manufacturing same, magnetic core and method for manufacturing same, and coil component

Publications (2)

Publication Number Publication Date
JPWO2020179535A1 JPWO2020179535A1 (en) 2021-11-25
JP7100833B2 true JP7100833B2 (en) 2022-07-14

Family

ID=72337949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021503980A Active JP7100833B2 (en) 2019-03-07 2020-02-25 Magnetic core core and its manufacturing method, and coil parts

Country Status (2)

Country Link
JP (1) JP7100833B2 (en)
WO (1) WO2020179535A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147217B (en) * 2020-11-30 2024-06-18 佛山中研磁电科技股份有限公司 Gap-filling amorphous nanocrystalline mixed powder and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202956A (en) 2005-01-20 2006-08-03 Sumitomo Electric Ind Ltd Soft magnetic material and powder magnetic core
JP2009164470A (en) 2008-01-09 2009-07-23 Toyota Motor Corp Magnetic powder and dust core
JP2013067863A (en) 2005-09-16 2013-04-18 Hitachi Metals Ltd Soft magnetic alloy powder and magnetic part using the same
JP2015005581A (en) 2013-06-19 2015-01-08 株式会社タムラ製作所 Powder-compact magnetic core, and method for manufacturing the same
JP2016039330A (en) 2014-08-08 2016-03-22 株式会社タムラ製作所 Soft magnetic composite material, magnetic core arranged by use thereof, reactor, and manufacturing method of reactor
JP2017022148A (en) 2015-07-07 2017-01-26 株式会社タムラ製作所 Reactor using soft magnetic composite material, and manufacturing method of reactor
JP2018195691A (en) 2017-05-17 2018-12-06 パナソニックIpマネジメント株式会社 Powder magnetic core and mixed soft magnetic powder
JP2019021906A (en) 2017-07-06 2019-02-07 パナソニックIpマネジメント株式会社 Dust core

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202956A (en) 2005-01-20 2006-08-03 Sumitomo Electric Ind Ltd Soft magnetic material and powder magnetic core
JP2013067863A (en) 2005-09-16 2013-04-18 Hitachi Metals Ltd Soft magnetic alloy powder and magnetic part using the same
JP2009164470A (en) 2008-01-09 2009-07-23 Toyota Motor Corp Magnetic powder and dust core
JP2015005581A (en) 2013-06-19 2015-01-08 株式会社タムラ製作所 Powder-compact magnetic core, and method for manufacturing the same
JP2016039330A (en) 2014-08-08 2016-03-22 株式会社タムラ製作所 Soft magnetic composite material, magnetic core arranged by use thereof, reactor, and manufacturing method of reactor
JP2017022148A (en) 2015-07-07 2017-01-26 株式会社タムラ製作所 Reactor using soft magnetic composite material, and manufacturing method of reactor
JP2018195691A (en) 2017-05-17 2018-12-06 パナソニックIpマネジメント株式会社 Powder magnetic core and mixed soft magnetic powder
JP2019021906A (en) 2017-07-06 2019-02-07 パナソニックIpマネジメント株式会社 Dust core

Also Published As

Publication number Publication date
JPWO2020179535A1 (en) 2021-11-25
WO2020179535A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
JP5537534B2 (en) Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
JP6448799B2 (en) Soft magnetic powder
CN111093860B (en) Fe-based nanocrystalline alloy powder, method for producing same, Fe-based amorphous alloy powder, and magnetic core
JPWO2019065500A1 (en) Manufacturing method of dust core, dust core and inductor
EP3785824B1 (en) Fe-based nanocrystalline alloy powder and method for producing a magnetic core
JP2008294411A (en) Soft magnetism powder, manufacturing method for dust core, dust core, and magnetic component
JP2016003366A (en) Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core
JP2008297606A (en) Method for manufacturing metal powder for dust core and dust core
JP6998552B2 (en) Powder magnetic core
CN109215920B (en) Dust core
JP5283165B2 (en) Manufacturing method of iron-nickel alloy powder, and manufacturing method of dust core for inductor using the alloy powder
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP7100833B2 (en) Magnetic core core and its manufacturing method, and coil parts
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
JP7104905B2 (en) MAGNETIC CORE, MANUFACTURING METHOD THEREOF, AND COIL COMPONENTS
JP7148876B2 (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
KR102290167B1 (en) Fe based soft magnetic alloy, method for manufacturing thereof and magnetic comprising the same
KR101387961B1 (en) Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof
JP2021036074A (en) Fe-BASED ALLOY COMPOSITION, Fe-BASED ALLOY COMPOSITION POWDER, AND MAGNETIC CORE
JP6080115B2 (en) Manufacturing method of dust core
CN112638561B (en) FeSiCrC alloy powder and magnetic core
JP5804346B2 (en) Dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220616

R150 Certificate of patent or registration of utility model

Ref document number: 7100833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150