JP2009164470A - Magnetic powder and dust core - Google Patents

Magnetic powder and dust core Download PDF

Info

Publication number
JP2009164470A
JP2009164470A JP2008002277A JP2008002277A JP2009164470A JP 2009164470 A JP2009164470 A JP 2009164470A JP 2008002277 A JP2008002277 A JP 2008002277A JP 2008002277 A JP2008002277 A JP 2008002277A JP 2009164470 A JP2009164470 A JP 2009164470A
Authority
JP
Japan
Prior art keywords
powder
insulating layer
magnetic
magnetic core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008002277A
Other languages
Japanese (ja)
Inventor
Daisuke Okamoto
大祐 岡本
Eisuke Hoshina
栄介 保科
Daisuke Ichikizaki
大輔 一期崎
Takeshi Hattori
毅 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008002277A priority Critical patent/JP2009164470A/en
Publication of JP2009164470A publication Critical patent/JP2009164470A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide powder for dust cores for securing the insulating properties of piezomagnetic powder and suppressing a reduction in the magnetic flux density of molded dust cores. <P>SOLUTION: Magnetic powder contains powders for dust cores 10A and 10B with an insulating layer formed on the surface 11a of magnetic powder 11. As the powder for dust cores, there are at least contained: a first powder for dust cores 10A having at least a first insulating layer 12a and a second insulating layer 12b successively formed as an insulating layer from the surface 11a of the magnetic powder 11 in the layer thickness direction of the insulating layer 12A, with the hardness of the second insulating layer 12b higher than the hardness of the first insulating layer 12a; and a second powder for dust cores 10B, with a soft insulating layer 12b having the hardness lower than the hardness of the second insulating layer 12a of the first powder for dust cores 10A formed as an insulating layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁性粉末の表面に少なくとも絶縁層が被覆された圧粉磁心用粉末からなる磁性粉、及び該磁性粉により成型された圧粉磁心に関する。   The present invention relates to a magnetic powder made of a powder for a powder magnetic core in which at least an insulating layer is coated on the surface of the magnetic powder, and a powder magnetic core molded from the magnetic powder.

従来から、電動機等に用いる磁心は、磁性粉末を含む磁性粉を圧粉成型することにより製造されている。このような圧粉磁心に用いられる磁性粉を構成する圧粉磁心用粉末は、加圧成型後の各磁性粉末間の電気的な絶縁性を確保するために、磁性粉末の表面に絶縁層が被覆されている。   Conventionally, a magnetic core used for an electric motor or the like has been manufactured by compacting magnetic powder containing magnetic powder. The powder for the powder magnetic core constituting the magnetic powder used for such a powder magnetic core has an insulating layer on the surface of the magnetic powder in order to ensure electrical insulation between the magnetic powders after pressure molding. It is covered.

例えば、前記圧粉磁心用粉末として、磁性粉末の表面にシリコーン樹脂等の絶縁性に優れた高分子樹脂を塗布し、絶縁層として樹脂層を被覆した圧粉磁心用粉末や、磁性粉末の表面に化学気相蒸着法(CVD)によりシリカ(SiO)等の酸化物を蒸着させ、前記絶縁層として酸化物層を被覆した圧粉磁心用粉末を挙げることができる。この他にも、圧粉磁心用粉末として、磁性粉末の表面から厚さ方向に向って、酸化物絶縁層、シリコーン樹脂層が絶縁層として順次形成された圧粉磁心用粉末からなる磁性粉が提案されている(例えば、特許文献1参照)。 For example, as the powder for a powder magnetic core, a powder for a powder magnetic core in which a polymer resin having excellent insulating properties such as a silicone resin is applied to the surface of the magnetic powder and the resin layer is coated as an insulating layer, or the surface of the magnetic powder Examples thereof include powders for powder magnetic cores in which an oxide such as silica (SiO 2 ) is deposited by chemical vapor deposition (CVD) and the oxide layer is coated as the insulating layer. In addition to this, as a powder for a powder magnetic core, a magnetic powder made of a powder for a powder magnetic core in which an oxide insulating layer and a silicone resin layer are sequentially formed as an insulating layer from the surface of the magnetic powder in the thickness direction. It has been proposed (see, for example, Patent Document 1).

特開平2006−233295号公報Japanese Patent Laid-Open No. 2006-233295

ところで、前記圧粉磁心用粉末を含む磁性粉から圧粉磁心を製造する場合には、前記磁性粉を金型内に充填し、時には1000MPa以上の高圧条件で成型する。そして、成型後の成型体は、炉内に投入されて、数100℃の非酸化雰囲気炉内で焼鈍され、ひずみ除去熱処理が行われる。   By the way, when manufacturing a dust core from the magnetic powder containing the powder for powder magnetic cores, the magnetic powder is filled in a mold and sometimes molded under a high pressure condition of 1000 MPa or more. And the molded object after shaping | molding is thrown in in a furnace, and it anneals in a non-oxidizing atmosphere furnace of several 100 degreeC, and distortion removal heat processing is performed.

しかし、圧粉磁心用粉末の絶縁層としてシリコーン樹脂の樹脂層を形成した場合には、成型時の圧力または熱処理時の樹脂の軟化に伴い、樹脂層の樹脂が磁性粉末の表面から流動することがあった。この結果、絶縁層として樹脂層を設けたにも拘らず、磁性粉末同士が直接接触してしまい、充分な絶縁特性を確保することができない場合があった。また、前記熱処理の条件によっては、シリコーン樹脂などの高分子樹脂は、変質したり、化学変化を起したりすることもあり、所望の絶縁特性が得られない場合もあった。   However, when a resin layer of silicone resin is formed as an insulating layer of the powder for the powder magnetic core, the resin in the resin layer flows from the surface of the magnetic powder with the pressure during molding or the softening of the resin during heat treatment. was there. As a result, although the resin layer is provided as the insulating layer, the magnetic powders are in direct contact with each other, and sufficient insulating properties may not be ensured. In addition, depending on the conditions of the heat treatment, a polymer resin such as a silicone resin may change in quality or cause a chemical change, and a desired insulating property may not be obtained.

一方、前記絶縁層としてシリカ等の酸化物層を被覆した場合には、酸化物は脆性材料であるため、該酸化物により構成された酸化物層は、成型時の磁性粉末の塑性変形と共に変形することができず(酸化物層が磁性粉末の塑性変形に追従できず)、破壊されてしまうことが多い。この場合も同様に、磁性粉末同士が直接接触することになり、これにより成型された圧粉磁心は十分な絶縁特性を得ることができなかった。   On the other hand, when an oxide layer such as silica is coated as the insulating layer, since the oxide is a brittle material, the oxide layer composed of the oxide is deformed together with the plastic deformation of the magnetic powder at the time of molding. Often (the oxide layer cannot follow the plastic deformation of the magnetic powder) and is often destroyed. In this case as well, the magnetic powders are in direct contact with each other, and the powder magnetic core formed thereby cannot obtain sufficient insulating properties.

さらに、特許文献1の粉末を用いた場合であっても、同様に、加圧成型の初期成型時に粉末の外側層を構成するシリコーン樹脂が押し流される。そして、シリコーン樹脂の流動に伴って、シリコーン樹脂層の一部が無くなった粉末の酸化物絶縁層同士が接触し、前記したと同様に、酸化物絶縁層が破壊され、磁性粉末同士が直接接触する場合がある。   Furthermore, even when the powder of Patent Document 1 is used, similarly, the silicone resin constituting the outer layer of the powder is washed away at the initial molding of the pressure molding. As the silicone resin flows, the powdered oxide insulating layers in which a part of the silicone resin layer disappears are in contact with each other, and as described above, the oxide insulating layers are destroyed and the magnetic powders are in direct contact with each other. There is a case.

このことを鑑みて、例えばシリコーン樹脂層の層厚さを大きくしたり、シリコーン樹脂の替わりに流動し難い絶縁性を選択したりすることも考えられる。しかし、特許文献1に記載の圧粉磁心用粉末は、絶縁層の二層構造からなるため、必然的に、絶縁層の層厚さは厚くなる。このため、この圧粉磁心用粉末を含む磁性粉を用いて圧粉磁心を成型した場合、圧粉磁心中に占める磁性粉末を構成する材料(たとえば、磁性粉末が鉄粉からなる場合には鉄系材料)の占積率が低くなってしまう。この結果、成型された圧粉磁心は、該材料の密度の低下に伴い、磁心として使用した場合には、所望の磁束密度を得ることができない場合があった。   In view of this, for example, it is conceivable to increase the thickness of the silicone resin layer or to select an insulating property that does not easily flow instead of the silicone resin. However, since the powder for powder magnetic cores described in Patent Document 1 has a two-layer structure of insulating layers, the thickness of the insulating layers inevitably increases. For this reason, when a powder magnetic core is molded using magnetic powder containing the powder for powder magnetic core, the material constituting the magnetic powder in the powder magnetic core (for example, iron when the magnetic powder is made of iron powder) The space factor of (system materials) will be low. As a result, when the molded dust core is used as a magnetic core due to a decrease in the density of the material, a desired magnetic flux density may not be obtained.

本発明は、上記する問題に鑑みてなされたものであり、その目的とするところは、圧粉磁心への成型時及び成型後の熱処理時であっても、磁性粉末同士の絶縁性を確保することができると共に、成型された圧粉磁心の磁束密度の低下を抑制することができる磁性粉及び圧粉磁心を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to ensure insulation between magnetic powders even during molding into a powder magnetic core and during heat treatment after molding. Another object of the present invention is to provide a magnetic powder and a powder magnetic core that can suppress a decrease in magnetic flux density of the molded powder magnetic core.

前記課題を解決すべく、本発明に係る磁性粉は、磁性粉末の表面に絶縁層が形成された圧粉磁心用粉末を含む磁性粉であって、前記絶縁層として、前記磁性粉末の表面から前記絶縁層の層厚さ方向に、少なくとも第一絶縁層と第二絶縁層とが順次形成されており、前記第二絶縁層の硬度が前記第一絶縁層の硬度よりも高い第一の圧粉磁心用粉末と、前記絶縁層として、前記第一の圧粉磁心用粉末の前記第二絶縁層の硬度よりも低い軟質絶縁層が形成された第二の圧粉磁心用粉末と、を前記圧粉磁心用粉末として少なくとも含むことを特徴とするものである。   In order to solve the above problems, the magnetic powder according to the present invention is a magnetic powder including a powder for a powder magnetic core in which an insulating layer is formed on the surface of the magnetic powder, and the insulating layer is formed from the surface of the magnetic powder. At least a first insulating layer and a second insulating layer are sequentially formed in the layer thickness direction of the insulating layer, and the first pressure is higher than the hardness of the first insulating layer. The powder for powder magnetic core, and the second powder for powder magnetic core in which a soft insulating layer lower than the hardness of the second insulating layer of the powder for first powder magnetic core is formed as the insulating layer, It is at least included as a powder for powder magnetic cores.

本発明に係る磁性粉によれば、加圧成型時に、第一及び第二の圧粉磁心用粉末が相互に接触する場合に、その接触部分は、第一の圧粉磁心用粉末の硬質絶縁層である第二絶縁層を挟むように、第一の圧粉磁心用粉末の軟質絶縁層となる第一の絶縁層と、第二の圧粉磁心用粉末の軟質絶縁層と、が形成されることになる。この結果、以下の利点を得ることができる。   According to the magnetic powder of the present invention, when the first and second powder magnetic core powders are in contact with each other at the time of pressure molding, the contact portion is a hard insulation of the first powder magnetic core powder. A first insulating layer to be a soft insulating layer of the first powder magnetic core powder and a soft insulating layer of the second powder magnetic core powder are formed so as to sandwich the second insulating layer which is a layer. Will be. As a result, the following advantages can be obtained.

まず、第一に、加圧成型時に、硬質である第二絶縁層に大きな応力が作用した場合であっても、第二絶縁層と磁性粉末との間にある軟質絶縁層(第一の圧粉磁心用粉末の第一の絶縁層及び第二の圧粉磁心用粉末の軟質絶縁層)が前記応力に対する緩衝材として機能し、硬質の第二絶縁層の変形・破壊を抑制し、磁性粉末間の絶縁性を確保することができる。   First, even when a large stress is applied to the hard second insulating layer at the time of pressure molding, the soft insulating layer (first pressure) between the second insulating layer and the magnetic powder is used. The first insulating layer of the powder for the magnetic core and the soft insulating layer of the second powder for the powder magnetic core) function as a buffer against the stress and suppress the deformation / destruction of the hard second insulating layer. Insulation between them can be secured.

第二に、軟質絶縁層(第一の圧粉磁心用粉末の第一の絶縁層及び第二の圧粉磁心用粉末の軟質絶縁層)が、圧粉成形時に磁性粉末の表面から押し流されたとしても、硬質の第二絶縁層が、磁性粉末の間に配置されることになり、磁性粉末の絶縁性を確保することができる。   Secondly, the soft insulating layers (the first insulating layer of the first powder magnetic core powder and the soft insulating layer of the second powder magnetic core powder) were washed away from the surface of the magnetic powder during the compacting. Even so, the hard second insulating layer is disposed between the magnetic powders, and the insulating properties of the magnetic powder can be ensured.

第三に、前記応力よりもさらに高い応力が作用して、硬質の第二絶縁層が破壊された場合であっても、破壊された第二絶縁層の破片が磁性粉末間に分散される。該分散された破片の間の空間を満たすように軟質絶縁層(第一の圧粉磁心用粉末の第一の絶縁層及び第二の圧粉磁心用粉末の軟質絶縁層)の成分が流動し、それ以上の流動は抑制されるので、磁性粉末同士の直接接触を回避し、磁性粉末間の絶縁性を確保することができる。   Third, even when a stress higher than the above-described stress is applied and the hard second insulating layer is broken, the broken pieces of the second insulating layer are dispersed between the magnetic powders. The components of the soft insulating layer (the first insulating layer of the first dust core powder and the soft insulating layer of the second dust core powder) flow so as to fill the space between the dispersed pieces. Further, since further flow is suppressed, direct contact between the magnetic powders can be avoided and insulation between the magnetic powders can be ensured.

さらに、成型後の焼鈍時において、第一の圧粉磁心用粉末の第一の絶縁層又は第二の圧粉磁心用粉末の軟質絶縁層のいずれかが変質した場合であっても、第一絶縁層の成分が変質なく絶縁性を確保することができれば、磁性粉末間の絶縁性を確保することができる。   Further, even when either the first insulating layer of the first powder magnetic core powder or the soft insulating layer of the second powder magnetic core powder is altered during annealing after molding, If insulation of the insulating layer can be ensured without alteration, insulation between the magnetic powders can be ensured.

このように、本発明に係る磁性粉は、第一の圧粉磁心用粉末と、第二の圧粉磁心用粉末の双方を含むことにより、第二の圧粉磁心用粉末のみを含む磁性粉に比べて、圧粉磁心に、より高い絶縁性を確保させることができる。   As described above, the magnetic powder according to the present invention includes both the first powder magnetic core powder and the second powder magnetic core powder, thereby including only the second powder magnetic core powder. Compared to the above, it is possible to ensure higher insulation in the dust core.

さらに、第一の圧粉磁心用粉末のみを用いた場合には、絶縁層が少なくとも二層構造となっているため、成型された圧粉磁心の磁性粉末の占積率は低下し、磁心として使用した際に、磁束密度の低下が懸念されるが、本発明の如く、磁性粉に第二の圧粉磁心用粉末を含めることにより、磁性粉末の占積率の低下は抑えられ、磁束密度の低下を抑制することができる。   Furthermore, when only the powder for the first powder magnetic core is used, since the insulating layer has at least a two-layer structure, the space factor of the magnetic powder of the molded powder magnetic core decreases, and the magnetic core When used, there is concern about a decrease in magnetic flux density. However, as in the present invention, by including the second powder magnetic core powder in the magnetic powder, a decrease in the space factor of the magnetic powder is suppressed, and the magnetic flux density is reduced. Can be suppressed.

なお、本発明にいう磁性粉とは、圧粉磁心用粉末を含む粉末の集合体のことをいう。また、本発明にいう絶縁層とは、成形後の磁性粉末(粒子)間の電気的絶縁性を確保するための層である。また本発明にいう、第二絶縁層の硬度が第一絶縁層の硬度よりも高いとは、第二絶縁層を構成する材料が、第一絶縁層を構成する材料に比べて、相対的に硬質であることを意味し、このような関係とすることにより、第一絶縁層は、第二絶縁層に比べて、外力により変形しやすいことになる。   In addition, the magnetic powder as used in the field of this invention means the aggregate | assembly of the powder containing the powder for powder magnetic cores. Moreover, the insulating layer as used in the field of this invention is a layer for ensuring the electrical insulation between the magnetic powder (particle | grains) after shaping | molding. In addition, the hardness of the second insulating layer referred to in the present invention is higher than the hardness of the first insulating layer. The material constituting the second insulating layer is relatively less than the material constituting the first insulating layer. By meaning that it is hard and having such a relationship, the first insulating layer is more easily deformed by an external force than the second insulating layer.

また、本発明でいう磁性粉末とは、透磁性を有する粉末のことをいい、軟磁性金属粉末が好ましく、例えば、鉄、コバルト、または、ニッケルなどを挙げることができる。より好ましい材料として鉄系の材料であり、例えば、鉄(純鉄)、鉄−シリコン系合金、鉄−窒素系合金、鉄−ニッケル系合金、鉄−炭素系合金、鉄−ホウ素系合金、鉄−コバルト系合金、鉄−リン系合金、鉄−ニッケル−コバルト系合金、または、鉄−アルミニウム−シリコン系合金などが挙げられる。また、磁性粉末は、水アトマイズ粉末、ガスアトマイズ粉末、または粉砕粉末等を挙げあることができ、加圧成型時における絶縁層の破壊の抑制を考慮した場合、粉末の表面に凹凸の少ない粉末を選定することがより好ましい。   Moreover, the magnetic powder as used in the field of this invention means the powder which has magnetic permeability, and a soft magnetic metal powder is preferable, for example, iron, cobalt, nickel etc. can be mentioned. More preferable materials are iron-based materials such as iron (pure iron), iron-silicon alloys, iron-nitrogen alloys, iron-nickel alloys, iron-carbon alloys, iron-boron alloys, iron. -Cobalt-type alloy, iron-phosphorus-type alloy, iron-nickel-cobalt-type alloy, or iron-aluminum-silicon-type alloy etc. are mentioned. In addition, the magnetic powder can include water atomized powder, gas atomized powder, pulverized powder, etc. When considering the suppression of the breakdown of the insulating layer during pressure molding, a powder with less irregularities on the surface of the powder is selected. More preferably.

そして、本発明に係る圧粉磁心用粉末に含まれる、前記第一の圧粉磁心用粉末と、前記第二の圧粉磁心用粉末との重量比は、3:7〜9:1の範囲にあることがより好ましい。前記範囲の重量比とすることにより、成型された圧粉磁心は、他の範囲のもので成型された圧粉磁心に比べて、より高い比抵抗の確保と磁束密度の低下のさらなる抑制とを両立させることができる。   The weight ratio of the first powder magnetic core powder to the second powder magnetic core powder contained in the powder magnetic core powder according to the present invention is in the range of 3: 7 to 9: 1. More preferably. By setting the weight ratio in the above range, the molded dust core has a higher specific resistance and further suppresses a decrease in magnetic flux density than a dust core molded in another range. Both can be achieved.

また、本発明に係る磁性粉は、前記第一絶縁層の硬度及び軟質絶縁層の硬度のいずれもが、前記第一及び第二の圧粉磁心用粉末の磁性粉末の硬度よりも低いことがより好ましい。本発明によれば、第一絶縁層の硬度を前記第一及び第二の圧粉磁心粉末の磁性粉末の硬度よりも低くしたことにより、成型時の磁性粉末の変形に追従するように前記第一絶縁層及び軟質絶縁層が変形可能となり、第二絶縁層は破壊され難い。この結果、磁性粉末間の絶縁性を確保することができる。なお、本発明にいう第一絶縁層の硬度及び軟質絶縁層の硬度が、前記磁性粉末の硬度よりも低いとは、前記第一絶縁層及び軟質絶縁層を構成する材料が、前記磁性粉末を構成する材料に比べて、相対的に軟質であることを意味する。   In the magnetic powder according to the present invention, both the hardness of the first insulating layer and the hardness of the soft insulating layer are lower than the hardness of the magnetic powder of the first and second powder magnetic core powders. More preferred. According to the present invention, the hardness of the first insulating layer is lower than the hardness of the magnetic powder of the first and second powder magnetic core powders, so that the first insulating layer follows the deformation of the magnetic powder during molding. One insulating layer and the soft insulating layer can be deformed, and the second insulating layer is not easily destroyed. As a result, insulation between the magnetic powders can be ensured. Note that the hardness of the first insulating layer and the soft insulating layer referred to in the present invention is lower than the hardness of the magnetic powder means that the material constituting the first insulating layer and the soft insulating layer is the magnetic powder. It means that it is relatively soft compared to the constituent material.

また、本発明に係る磁性粉は、前記第二絶縁層の硬度が、前記第一及び第二の圧粉磁心粉末の磁性粉末の硬度よりも高いことがより好ましい。本発明によれば、第一の圧粉磁心の第二絶縁層を磁性粉末よりも硬質にしたことにより、加圧成型時に第二絶縁層が破壊されたとしても、その破片が磁性粉末の表面に刺さり、該破片の投錨効果によって、第一の圧粉磁心用粉末の第一の絶縁層及び第二の圧粉磁心用粉末の軟質絶縁層の流動を抑制することができる。この結果、磁性粉末間の絶縁性を確保することができる。   Moreover, as for the magnetic powder which concerns on this invention, it is more preferable that the hardness of said 2nd insulating layer is higher than the hardness of the magnetic powder of said 1st and 2nd powder magnetic core powder. According to the present invention, since the second insulating layer of the first powder magnetic core is made harder than the magnetic powder, even if the second insulating layer is destroyed at the time of pressure molding, the fragments are on the surface of the magnetic powder. The flow of the first insulating layer of the first powder magnetic core powder and the soft insulating layer of the second powder magnetic core powder can be suppressed by the effect of throwing the debris. As a result, insulation between the magnetic powders can be ensured.

また、本発明に係る磁性粉は、前記第一絶縁層及び前記軟質絶縁層が高分子樹脂からなり、前記第二絶縁層が金属酸化物などの酸化物からなることがより好ましい。本発明によれば、第二絶縁層を酸化物にすることにより、加圧成型後の焼鈍時に、高分子樹脂が変質した場合であっても、酸化物は変質しないので、磁性粉末間の絶縁性を安定的に確保することができる。   In the magnetic powder according to the present invention, it is more preferable that the first insulating layer and the soft insulating layer are made of a polymer resin, and the second insulating layer is made of an oxide such as a metal oxide. According to the present invention, by forming the second insulating layer as an oxide, the oxide does not change even when the polymer resin is altered during annealing after pressure molding. Can be ensured stably.

たとえば、前記高分子樹脂として、ポリイミド樹脂、ポリアミド樹脂、アラミド樹脂、または、シリコーン樹脂などの高分子樹脂を挙げることができ、酸化物として、シリカ、アルミナ、または、ジルコニアなどのセラミックス系材料を挙げることができ、耐熱性のある酸化物であることが好ましい。また、第一の圧粉磁心用粉末と第二の圧粉磁心用粉末とを構成する材料は、異なる材料であってもよいが、圧粉磁心により安定した特性等を要求する場合には、同じ材料から構成されることがより好ましい。   For example, examples of the polymer resin include a polymer resin such as a polyimide resin, a polyamide resin, an aramid resin, and a silicone resin, and examples of the oxide include a ceramic material such as silica, alumina, or zirconia. It is preferable that the oxide be heat resistant. In addition, the materials constituting the first powder magnetic core powder and the second powder magnetic core powder may be different materials, but when a stable characteristic or the like is required by the powder magnetic core, More preferably, the same material is used.

さらに、前記第一絶縁層及び軟質絶縁層の層厚さは、10nm〜10μmが好ましく、より好ましくは、10nm〜2μmである。本発明によれば、前記層厚さの範囲の第一絶縁層及び軟質絶縁層を設けることにより、より好適に磁性粉末間の絶縁性を確保することができる。すなわち、第一絶縁層の層厚さが10nmよりも薄い場合には、第一絶縁層及び軟質絶縁層が加圧成型時に緩衝材として機能し難く、磁性粉末間の絶縁性を充分に確保することが難しい。さらに、2μmよりも厚い場合には、第一絶縁層及び軟質絶縁層の機能をそれ以上期待することができず、また、10μmよりも厚い場合には、成型後の圧粉磁心の焼鈍時に、第一絶縁層の収縮量が大きくなり、圧粉磁心の寸法精度を確保することが難しくなる。   Furthermore, the layer thickness of the first insulating layer and the soft insulating layer is preferably 10 nm to 10 μm, more preferably 10 nm to 2 μm. According to the present invention, by providing the first insulating layer and the soft insulating layer in the range of the layer thickness, it is possible to more suitably ensure the insulation between the magnetic powders. That is, when the thickness of the first insulating layer is thinner than 10 nm, the first insulating layer and the soft insulating layer are unlikely to function as a buffer material during pressure molding, and sufficient insulation between the magnetic powders is ensured. It is difficult. Furthermore, when it is thicker than 2 μm, the functions of the first insulating layer and the soft insulating layer cannot be expected any more, and when it is thicker than 10 μm, when the dust core after molding is annealed, The shrinkage amount of the first insulating layer increases, and it becomes difficult to ensure the dimensional accuracy of the dust core.

また、より好ましい態様としては、本発明に係る磁性粉は、前記第一絶縁層及び軟質絶縁層がシリコーン樹脂からなり、前記第二絶縁層はシリカからなる。本発明によれば、前記第一絶縁層の材質をシリコーン樹脂とし、前記第二絶縁層の材質をシリカ(SiO)としたことにより、シリカとシリコーン樹脂は、同じSi元素を主成分として含むので、馴染み性がよく、高温時におけるシリコーン樹脂の凝集防止効果を高めることができる。また、材料コストも比較的安価であり、圧粉磁心の大量生産に際してその製造コストを可及的に廉価にできる。 As a more preferred embodiment, in the magnetic powder according to the present invention, the first insulating layer and the soft insulating layer are made of silicone resin, and the second insulating layer is made of silica. According to the present invention, the first insulating layer is made of silicone resin, and the second insulating layer is made of silica (SiO 2 ), so that the silica and the silicone resin contain the same Si element as a main component. Therefore, familiarity is good and the anti-aggregation effect of the silicone resin at high temperatures can be enhanced. In addition, the material cost is relatively low, and the manufacturing cost can be reduced as much as possible when mass-producing the dust core.

また、前記磁性粉末の平均粒径は、5μm〜500μmが好ましく、さらに好ましくは、20μm〜450μmである。前記範囲の磁性粉末を用いることにより、絶縁性に優れた圧粉磁心を得ることができる。すなわち、平均粒径が20μmよりも小さい場合には、該粉末の表面に均一な厚みの第一絶縁層と第二絶縁層を被覆することが難しくなる場合があり、平均粒径が5μmよりも小さい場合には前記理由に加え、磁性粉末そのものを製造することが難しく、製造コストが高くなることがある。一方、450μmよりも大きい場合には、絶縁層を構成する絶縁材料の割合が低下してしまい、所望の磁気特性及び絶縁性(比抵抗)を得ることができ難く、500μm以上である場合には、前記理由に加え粉末を圧粉成型し難くなる。   The average particle size of the magnetic powder is preferably 5 μm to 500 μm, more preferably 20 μm to 450 μm. By using the magnetic powder in the above range, a dust core having excellent insulating properties can be obtained. That is, when the average particle size is smaller than 20 μm, it may be difficult to coat the first insulating layer and the second insulating layer with a uniform thickness on the surface of the powder, and the average particle size is smaller than 5 μm. If it is small, in addition to the above reasons, it is difficult to produce the magnetic powder itself, which may increase the production cost. On the other hand, when it is larger than 450 μm, the ratio of the insulating material constituting the insulating layer is reduced, and it is difficult to obtain desired magnetic characteristics and insulation (specific resistance). In addition to the above reasons, it becomes difficult to compact the powder.

前述した第一の及び第二の圧粉磁心用粉末の磁性粉末に絶縁層を被覆する方法としては、液相法(ゾル−ゲル法)、化学気相蒸着法(CVD)、物理気相蒸着法(PVD)、CCVD(燃焼化学気相蒸着法)、陽極酸化処理、などを挙げることができ、均一かつ均質に絶縁層を被覆することができる方法であれば、特のその方法は限定されるものではない。   As a method for coating the insulating layer on the magnetic powder of the first and second powder magnetic core powders described above, a liquid phase method (sol-gel method), a chemical vapor deposition method (CVD), a physical vapor deposition method. The method (PVD), CCVD (combustion chemical vapor deposition), anodizing treatment, etc. can be mentioned, and the particular method is limited as long as the method can coat the insulating layer uniformly and uniformly. It is not something.

また、第一絶縁層及び軟質絶縁層として、磁性粉末の表面にシリコーン樹脂を被覆する場合には、磁性粉末の表面にシリコーン樹脂を塗布し、さらに第二絶縁層として、シリカを被覆する場合には、シリコーン樹脂の塗布後の粉末を、LPGガスとシラン化合物を含むシラン系ガスとを燃焼させた雰囲気中に投入し、粉末の表面にシリカを蒸着させる方法(燃焼化学気相蒸着法(CCVD法))により被覆することがより好ましい。   In addition, when the surface of the magnetic powder is coated with a silicone resin as the first insulating layer and the soft insulating layer, the surface of the magnetic powder is coated with a silicone resin, and when the second insulating layer is coated with silica. Is a method in which the powder after application of the silicone resin is put into an atmosphere in which LPG gas and a silane-based gas containing a silane compound are burned, and silica is deposited on the surface of the powder (combustion chemical vapor deposition (CCVD)). It is more preferable to coat by the method)).

また、別の態様としては、本発明に係る磁性粉は、磁性粉末の表面に絶縁層が形成された圧粉磁心用粉末を含む磁性粉であって、前記絶縁層として、前記磁性粉末の表面から前記絶縁層の層厚さ方向に、少なくとも第一絶縁層と第二絶縁層とが順次形成されており、前記第二絶縁層の硬度は前記第一絶縁層の硬度よりも低い第一の圧粉磁心用粉末と、前記絶縁層として、前記第一の圧粉磁心用粉末の前記第二絶縁層の硬度よりも高い硬質絶縁層が形成された第二の圧粉磁心用粉末と、を前記圧粉磁心用粉末として少なくとも含むことを特徴とするものある。   Moreover, as another aspect, the magnetic powder according to the present invention is a magnetic powder containing a powder for a powder magnetic core in which an insulating layer is formed on the surface of the magnetic powder, and the surface of the magnetic powder is used as the insulating layer. At least a first insulating layer and a second insulating layer are sequentially formed in the thickness direction of the insulating layer, and the hardness of the second insulating layer is lower than the hardness of the first insulating layer. A powder for powder magnetic core, and a second powder for powder magnetic core in which a hard insulating layer higher than the hardness of the second insulating layer of the powder for first powder magnetic core is formed as the insulating layer. The powder for powder magnetic core is at least included.

本発明に係る磁性粉によれば、加圧成型時に、第一及び第二の圧粉磁心用粉末が相互に接触する場合に、その接触部分は、第一の圧粉磁心用粉末の軟質絶縁層である第二絶縁層を挟むように、第一の圧粉磁心用粉末の硬質絶縁層である第一の絶縁層と、第二の圧粉磁心用粉末の硬質絶縁層と、が配置されることになる。   According to the magnetic powder of the present invention, when the first and second powder magnetic core powders are in contact with each other at the time of pressure molding, the contact portion is soft insulation of the first powder magnetic core powder. A first insulating layer, which is a hard insulating layer of the first powder magnetic core powder, and a hard insulating layer of the second powder magnetic core powder are arranged so as to sandwich the second insulating layer which is a layer. Will be.

そして、加圧成型時に、軟質絶縁層である第二の絶縁層が緩衝材として機能し、硬質の第一絶縁層及び硬質絶縁層の変形・破壊を抑制し、磁性粉末間の絶縁性を確保することができる。また、成型後の焼鈍時において、第一の圧粉磁心用粉末の第二の絶縁層が変質した場合であっても、第一絶縁層又は硬質絶縁層のいずれか一方の成分が変質なく絶縁性を確保することができれば、磁性粉末間の絶縁性を確保することができる。さらに、第一の圧粉磁心用粉末のみを用いた場合には、絶縁層が少なくとも二層構造となっているため、成型された圧粉磁心の磁性粉末の占積率は低下し、磁心として使用した際に、磁束密度の低下が懸念されるが、本発明の如く、磁性粉に第二の圧粉磁心用粉末を含めることにより、磁性粉末の占積率の低下は抑えられ、磁束密度の低下を抑制することができる。   And at the time of pressure molding, the second insulating layer, which is a soft insulating layer, functions as a buffer material, suppressing deformation and destruction of the hard first insulating layer and the hard insulating layer, and ensuring the insulation between the magnetic powders can do. In addition, even when the second insulating layer of the first powder for powder magnetic core is altered during annealing after molding, either the first insulating layer or the hard insulating layer is insulated without alteration. If the property can be secured, the insulation between the magnetic powders can be secured. Furthermore, when only the powder for the first powder magnetic core is used, since the insulating layer has at least a two-layer structure, the space factor of the magnetic powder of the molded powder magnetic core decreases, and the magnetic core When used, there is concern about a decrease in magnetic flux density. However, as in the present invention, by including the second powder magnetic core powder in the magnetic powder, a decrease in the space factor of the magnetic powder is suppressed, and the magnetic flux density is reduced. Can be suppressed.

また、本発明に係る磁性粉は、前記第一絶縁層の硬度及び前記硬質絶縁層の硬度は、前記第一及び第二の圧粉磁心用粉末の磁性粉末の硬度よりも高いことがより好ましく、前記第二絶縁層の硬度は、前記第一及び第二の圧粉磁心用粉末の磁性粉末の硬度よりも低いことがより好ましい。さらに、前記第一絶縁層及び前記硬質絶縁層は酸化物からなり、前記第二絶縁層は高分子樹脂からなり、より好ましくは、前記第一絶縁層及び軟質絶縁層はシリカからなり、前記第二絶縁層はシリコーンからなることがより好ましい。   In the magnetic powder according to the present invention, it is more preferable that the hardness of the first insulating layer and the hardness of the hard insulating layer are higher than the hardness of the magnetic powder of the first and second dust core powders. The hardness of the second insulating layer is more preferably lower than the hardness of the magnetic powder of the first and second powders for dust core. Further, the first insulating layer and the hard insulating layer are made of an oxide, the second insulating layer is made of a polymer resin, more preferably, the first insulating layer and the soft insulating layer are made of silica, More preferably, the two insulating layers are made of silicone.

また、上述した圧粉磁心用粉末を含む磁性粉を成型型内に充填し、温間金型潤滑成型法により加圧成型し、乾燥及びクーリングを行い、最後に焼鈍によりひずみ除去熱処理を行うことで、高い磁束密度を有し、絶縁性が確保された圧粉磁心を得ることができる。また、前記温間金型潤滑成型法で圧粉磁心に加圧成型することにより、従来の室温成型に比べてより高い圧力で圧粉磁心に成型することができる。   In addition, the magnetic powder containing the powder for the powder magnetic core described above is filled in a molding die, press-molded by a warm mold lubrication molding method, dried and cooled, and finally subjected to strain removal heat treatment by annealing. Thus, a dust core having a high magnetic flux density and ensuring insulation can be obtained. Further, by pressure molding the powder magnetic core by the warm mold lubrication molding method, the powder magnetic core can be molded at a higher pressure than conventional room temperature molding.

絶縁性及び磁気特性に優れた前記圧粉磁心は、ハイブリッド車や電気自動車の駆動用電動機を構成するステータやロータ、電力変換機を構成するリアクトル用のコア(リアクトルコア)に好適である。   The dust core excellent in insulation and magnetic properties is suitable for a stator or rotor constituting a driving motor for a hybrid vehicle or an electric vehicle, and a reactor core (reactor core) constituting a power converter.

上記説明から理解できるように、本発明によれば、加圧成型時に圧粉成型用粉末の表面に形成される絶縁層が破壊されることを防止することができ、焼鈍時における絶縁層の凝集を効果的に防止することができるため、高い絶縁性を有する圧粉磁心を得ることができる。さらに、成型された圧粉磁心の磁束密度の低下を抑制することができる。   As can be understood from the above description, according to the present invention, the insulating layer formed on the surface of the powder for compacting can be prevented from being destroyed during pressure molding, and the insulating layer is aggregated during annealing. Therefore, a dust core having high insulation can be obtained. Furthermore, a decrease in the magnetic flux density of the molded dust core can be suppressed.

以下に、図面を参照して、本発明に係る磁性粉の第一実施形態に基づいて説明する。   Below, with reference to drawings, it explains based on a first embodiment of magnetic powder concerning the present invention.

図1は、第一実施形態に係る磁性粉を示した模式図を示しており、(a)は、磁性粉に含まれる第一の圧粉磁心用粉末10Aの模式図であり、(b)は、前記磁性粉に含まれる第二の圧粉磁心用粉末10Bの模式図である。   FIG. 1: has shown the schematic diagram which showed the magnetic powder which concerns on 1st embodiment, (a) is a schematic diagram of the powder 10A for the 1st powder magnetic core contained in magnetic powder, (b) These are the schematic diagrams of 2nd powder 10B for powder magnetic cores contained in the said magnetic powder.

また、図2は、図1に示す第一及び第二の圧粉磁心用粉末10A,10Bを含む磁性粉1により圧粉磁心を圧粉成型したときの絶縁層の挙動を説明するための図であり、(a)は、圧粉成型前の磁性粉1を示した模式図であり、(b)は成型型内に投入時に圧粉成型前の磁性粉の状態を説明するための模式図であり、(c)、(d)は、成型後の磁性粉1の状態(圧粉磁心100)を説明するための模式図である。   2 is a diagram for explaining the behavior of the insulating layer when the dust core is dust-molded with the magnetic powder 1 including the first and second dust core powders 10A and 10B shown in FIG. (A) is the schematic diagram which showed the magnetic powder 1 before compacting, (b) is the schematic diagram for demonstrating the state of the magnetic powder before compacting at the time of throwing into a shaping | molding die. (C), (d) is a schematic diagram for demonstrating the state (powder magnetic core 100) of the magnetic powder 1 after a shaping | molding.

本実施形態に係る磁性粉は、図1(a)及び(b)に示す第一及び第二の圧粉磁心用粉末10A,10Bを少なくとも含むものである。具体的には、図1(a)に示すように、本実施形態に係る磁性粉に含まれる第一の圧粉磁心用粉末10Aは、磁性粉末11の表面に少なくとも絶縁層12Aが被覆された粉末である。より具体的には、絶縁層12Aとして、前記磁性粉末11の表面11aから絶縁層12Aの層厚さ方向に、少なくとも第一絶縁層12aと第二絶縁層12bとが順次形成されている。また、第二絶縁層12bは第二絶縁層12aよりも硬度が高い層となっている。   The magnetic powder according to the present embodiment includes at least the first and second powders 10A and 10B for the dust core shown in FIGS. 1 (a) and 1 (b). Specifically, as shown in FIG. 1A, the first powder magnetic core powder 10 </ b> A included in the magnetic powder according to the present embodiment has at least an insulating layer 12 </ b> A coated on the surface of the magnetic powder 11. It is a powder. More specifically, as the insulating layer 12A, at least a first insulating layer 12a and a second insulating layer 12b are sequentially formed from the surface 11a of the magnetic powder 11 in the layer thickness direction of the insulating layer 12A. The second insulating layer 12b is a layer having a higher hardness than the second insulating layer 12a.

さらに、図1(b)に示すように、本実施形態に係る磁性粉に含まれる第二の圧粉磁心用粉末10Bは、磁性粉末11の表面に少なくとも軟質絶縁層12cが被覆された粉末である。この軟質絶縁層12cは、第一の圧粉磁心用粉末12Aの第二絶縁層12bの硬度よりも低い絶縁層である。   Further, as shown in FIG. 1B, the second powder 10B for powder magnetic core contained in the magnetic powder according to the present embodiment is a powder in which at least the soft insulating layer 12c is coated on the surface of the magnetic powder 11. is there. The soft insulating layer 12c is an insulating layer having a hardness lower than that of the second insulating layer 12b of the first powder 12A for dust core.

第一及び第二圧粉磁心用粉末10A,10Bの磁性粉末11は、ガスアトマイズにより製造された純鉄からなる粉末であり、平均粒径が20〜450μmの範囲の軟磁性金属粉末であることがより好ましい。また、第一絶縁層12a及び軟質絶縁層12cは、電気的な絶縁特性を有する材料からなるのであれば特に限定されないが、磁性粉末11の表面にシリコーン樹脂を塗布することにより、形成されたシリコーン樹脂からなる絶縁層であることがより好ましい。さらに、第二絶縁層12bは、LPGガスとシランガスを用いて、燃焼気相化学蒸着法により、第一絶縁層12aの表面に、被覆されたシリカからなる絶縁層であることがより好ましい。   The magnetic powder 11 of the first and second powder magnetic core powders 10A and 10B is a powder made of pure iron manufactured by gas atomization, and is a soft magnetic metal powder having an average particle diameter of 20 to 450 μm. More preferred. Further, the first insulating layer 12a and the soft insulating layer 12c are not particularly limited as long as they are made of a material having electrical insulating properties, but the silicone formed by applying a silicone resin to the surface of the magnetic powder 11 is used. More preferably, the insulating layer is made of resin. Furthermore, the second insulating layer 12b is more preferably an insulating layer made of silica coated on the surface of the first insulating layer 12a by LPG gas and silane gas by a combustion vapor chemical vapor deposition method.

前記材料により第一及び第二の圧粉磁心用粉末10A,10Bを製造することにより、第二絶縁層12bの硬度が第一絶縁層12aの硬度及び軟質絶縁層12cの硬度よりも高い関係を満たし、第一絶縁層12aの硬度が、磁性粉末11の硬度よりも低い関係を満たし、かつ、第二絶縁層12bの硬度が、磁性粉末11の硬度よりも高い関係を満たすことになる。このような関係を同時に満たすことにより、この第一及び第二の圧粉磁心用粉末10A,10Bを含む磁性粉を用いて圧粉成型した圧粉磁心は、従来のものに比べて磁気特性をより向上させることができる。   By producing the first and second powders 10A and 10B for the powder magnetic core with the material, the second insulating layer 12b has a higher hardness than the first insulating layer 12a and the soft insulating layer 12c. And the hardness of the first insulating layer 12 a satisfies the relationship lower than the hardness of the magnetic powder 11, and the hardness of the second insulating layer 12 b satisfies the relationship higher than the hardness of the magnetic powder 11. By satisfying such a relationship at the same time, the dust core formed by using the magnetic powder containing the first and second dust core powders 10A and 10B has a magnetic characteristic as compared with the conventional one. It can be improved further.

また、さらに、本実施形態に係る磁性粉は、第一の圧粉磁心用粉末10Aと、第二の圧粉磁心用粉末10Bとの重量比が、3:7〜9:1の範囲を満たすように、第一及び第二の圧粉磁心10A,10Bが混合されていることがより好ましい。これは、発明者らの後述する実験等により明らかになったものであり、この範囲で成型された圧粉磁心は、他の範囲のもので成型された圧粉磁心に比べて、より高い比抵抗の確保と、磁束密度の低下のさらなる抑制と、を両立させることができる。   Furthermore, in the magnetic powder according to this embodiment, the weight ratio of the first powder magnetic core powder 10A and the second powder magnetic core powder 10B satisfies the range of 3: 7 to 9: 1. Thus, it is more preferable that the first and second dust cores 10A and 10B are mixed. This has been clarified by experiments and the like described later by the inventors, and the dust core molded in this range has a higher ratio than the dust core molded in another range. It is possible to achieve both ensuring of resistance and further suppression of decrease in magnetic flux density.

以下に圧粉磁心用粉末10を用いた圧粉磁心の製造方法について簡単に説明する。具体的には、まず、図2(a)に示すように、磁性粉末11の表面から、第一絶縁層(シリコーン樹脂層)12a、第二絶縁層(シリカ層)12bが順次形成された第一の圧粉磁心用粉末10Aと、軟質絶縁層(シリコーン樹脂層)12cが形成された第二の圧粉磁心用粉末10Bと、を準備する。   Below, the manufacturing method of the dust core using the powder 10 for dust cores is demonstrated easily. Specifically, first, as shown in FIG. 2A, a first insulating layer (silicone resin layer) 12a and a second insulating layer (silica layer) 12b are sequentially formed from the surface of the magnetic powder 11. One powder 10A for a powder magnetic core and a second powder 10B for a powder magnetic core on which a soft insulating layer (silicone resin layer) 12c is formed are prepared.

そして、第一及び第二の圧粉磁心用粉末10A,10Bを混合し磁性粉1を得る。このとき、上記したように、第一の圧粉磁心用粉末10Aと、第二の圧粉磁心用粉末10Bとの重量比が、3:7〜9:1の範囲を満たすように、第一及び第二の圧粉磁心用粉末10A,10Bを均一に混合する。   Then, the first and second powder magnetic core powders 10A and 10B are mixed to obtain the magnetic powder 1. At this time, as described above, the first powder magnetic core powder 10A and the second powder magnetic core powder 10B have a weight ratio satisfying the range of 3: 7 to 9: 1. And the second dust core powders 10A and 10B are uniformly mixed.

次に、混合された第一及び第二の圧粉磁心用粉末10A,10Bを含む磁性粉1を成型内(図示せず)に配置する。このとき、図2(b)に示すように、第一及び第二の圧粉磁心用粉末10A,10B同士は接触しているが、結合していない。その後、成型内の第一及び第二の圧粉磁心用粉末10A,10Bを含む磁性粉1を加圧して、圧粉磁心を成型し、成型後、非酸化雰囲気炉内で焼鈍し、ひずみ除去熱処理を行う。   Next, the magnetic powder 1 including the mixed first and second powders 10A and 10B for the dust core is placed in the molding (not shown). At this time, as shown in FIG. 2B, the first and second powder powders 10A and 10B are in contact with each other, but are not joined. Thereafter, the magnetic powder 1 including the first and second powders 10A and 10B for the dust core in the molding is pressurized to mold the dust core, and after molding, annealed in a non-oxidizing atmosphere furnace to remove strain. Heat treatment is performed.

このとき、図2(c)に示すように、第一絶縁層12a及び軟質絶縁層12cに比べ硬質である第二絶縁層12bに、成型による応力が作用した場合であっても、第二絶縁層12bと磁性粉末11との間にある軟質の第一絶縁層12a及び軟質絶縁層12cが、前記応力に対する緩衝材として機能し、硬質の第二絶縁層12bの変形・破壊を抑制する。   At this time, as shown in FIG. 2C, even if stress due to molding acts on the second insulating layer 12b which is harder than the first insulating layer 12a and the soft insulating layer 12c, The soft first insulating layer 12a and the soft insulating layer 12c between the layer 12b and the magnetic powder 11 function as a buffer against the stress, and suppress deformation and destruction of the hard second insulating layer 12b.

また、図2(d)に示すように、相対的に軟質である第一絶縁層12a及び軟質絶縁層12cが磁性粉末11の表面から押し流され、第一絶縁層12aの成分が粉末間の所定の箇所に凝集した場合であっても、硬質の第二絶縁層12bが、磁性粉末11の間に配置される。   Moreover, as shown in FIG. 2D, the relatively soft first insulating layer 12a and soft insulating layer 12c are swept away from the surface of the magnetic powder 11, and the components of the first insulating layer 12a are predetermined between the powders. The hard second insulating layer 12b is disposed between the magnetic powders 11 even when the agglomerated at the locations.

また、さらに高い応力が作用して、磁性粉末11の塑性変形に追従できず硬質の第二絶縁層12bが破壊された場合であっても、破壊された第二絶縁層12bの破片13が磁性粉間に分散され、該分散された破片13が磁性粉末11の表面に刺さり、投錨として作用する。これにより、破片間の空間を満たすように、軟質の第一絶縁層12a及び軟質絶縁層12cの一部が流動し、それ以上の流動は抑制される。この結果、磁性粉末11同士の直接接触を回避し、磁性粉末間の絶縁性を確保することができる。   Further, even when a higher stress acts to follow the plastic deformation of the magnetic powder 11 and the hard second insulating layer 12b is broken, the broken pieces 13 of the broken second insulating layer 12b are magnetic. Dispersed between the powders, the dispersed pieces 13 pierce the surface of the magnetic powder 11 and act as anchors. Thereby, a part of soft 1st insulating layer 12a and the soft insulating layer 12c flows so that the space between fragments may be filled, and the flow beyond it is suppressed. As a result, direct contact between the magnetic powders 11 can be avoided, and insulation between the magnetic powders can be ensured.

さらに、磁性粉が第一の圧粉磁心用粉末10Aと第二の圧粉磁心用粉末10Bとを含むことにより、成型される圧粉磁心の磁性材料及び絶縁材料の割合を適宜調整することができる。この結果、所望の比抵抗と磁束密度を有する圧粉磁心を容易に製造することができる。   Further, the magnetic powder includes the first powder magnetic core powder 10A and the second powder magnetic core powder 10B, so that the ratio of the magnetic material and the insulating material of the powder magnetic core to be molded can be appropriately adjusted. it can. As a result, a dust core having a desired specific resistance and magnetic flux density can be easily manufactured.

図3は、第二実施形態に係る磁性粉を示した模式図を示しており、(a)は、磁性粉に含まれる第一の圧粉磁心用粉末の模式図であり、(b)は、前記磁性粉に含まれる第二の圧粉磁心用粉末の模式図である。   FIG. 3: has shown the schematic diagram which showed the magnetic powder which concerns on 2nd embodiment, (a) is a schematic diagram of the powder for 1st powder magnetic cores contained in magnetic powder, (b) is FIG. 5 is a schematic view of a second powder magnetic core powder contained in the magnetic powder.

図3に示すように、本実施形態に係る磁性粉は、第一実施形態(図2(a)及び(b)に示す)とは異なる第一及び第二の圧粉磁心用粉末10C,10Dを少なくとも含むものである。具体的には、図3(a)に示すように、本実施形態に係る磁性粉に含まれる第一の圧粉磁心用粉末10Cは、磁性粉末11の表面に少なくとも絶縁層12Bが被覆された粉末である。より具体的には、絶縁層12Bとして、前記磁性粉末11の表面11aから絶縁層12Bの層厚さ方向に、少なくとも第一絶縁層12dと第二絶縁層12eとが順次形成されている。また、第二絶縁層12eの硬度は第一絶縁層12dの硬度よりも低い。   As shown in FIG. 3, the magnetic powder according to the present embodiment is different from the first embodiment (shown in FIGS. 2A and 2B) in the first and second dust core powders 10C and 10D. Is included at least. Specifically, as shown in FIG. 3A, the first powder magnetic core powder 10 </ b> C included in the magnetic powder according to the present embodiment has at least an insulating layer 12 </ b> B coated on the surface of the magnetic powder 11. It is a powder. More specifically, as the insulating layer 12B, at least a first insulating layer 12d and a second insulating layer 12e are sequentially formed from the surface 11a of the magnetic powder 11 in the layer thickness direction of the insulating layer 12B. Further, the hardness of the second insulating layer 12e is lower than the hardness of the first insulating layer 12d.

さらに、図3(b)に示すように、本実施形態に係る磁性粉に含まれる第二の圧粉磁心用粉末10Dは、磁性粉末11の表面に少なくとも硬質絶縁層12fが被覆された粉末である。この硬質絶縁層12fは、第一の圧粉磁心用粉末10Cの第二絶縁層12eの硬度よりも高い絶縁層である。   Further, as shown in FIG. 3 (b), the second dust core powder 10D contained in the magnetic powder according to the present embodiment is a powder in which the surface of the magnetic powder 11 is coated with at least a hard insulating layer 12f. is there. The hard insulating layer 12f is an insulating layer that is higher in hardness than the second insulating layer 12e of the first dust core powder 10C.

第一及び第二圧粉磁心用粉末10C,10Dの磁性粉末11は、第一実施形態に係る粉末と同等の製造方法により製造された粉末であることが好ましく、平均粒径も、第一実施形態に係るものと同等の軟磁性金属粉末であることがより好ましい。また、第一絶縁層12d及び硬質絶縁層12cは、電気的な絶縁特性を有する材料からなるのであれば特に限定されないが、LPGガスとシランガスを用いて、燃焼気相化学蒸着法により、磁性粉末11の表面に、被覆されたシリカからなる絶縁層であることがより好ましい。また、第二絶縁層12eは、磁性粉末11の表面にシリコーン樹脂を塗布することにより、形成されたシリコーン樹脂からなる絶縁層であることがより好ましい。   The magnetic powder 11 of the first and second powder magnetic cores 10C and 10D is preferably a powder produced by the same production method as the powder according to the first embodiment, and the average particle size is also the first implementation. More preferably, it is a soft magnetic metal powder equivalent to that according to the form. Further, the first insulating layer 12d and the hard insulating layer 12c are not particularly limited as long as they are made of a material having an electrical insulating property. However, the magnetic powder is formed by a combustion vapor chemical vapor deposition method using LPG gas and silane gas. 11 is more preferably an insulating layer made of silica coated on the surface. The second insulating layer 12e is more preferably an insulating layer made of a silicone resin formed by applying a silicone resin to the surface of the magnetic powder 11.

前記材料により第一及び第二の圧粉磁心用粉末10C,10Dを製造することにより、第一絶縁層12dの硬度及び硬質絶縁層12fの硬度が第二絶縁層12eの硬度よりも高い関係を満たし、第一絶縁層12dの硬度が磁性粉末11の硬度よりも高い関係を満たし、かつ、第二絶縁層12eの硬度が磁性粉末11の硬度よりも低い関係を満たすことになる。このような関係を同時に満たすことにより、第一及び第二の圧粉磁心用粉末10A,10Bを含む磁性粉を用いて圧粉成型した圧粉磁心は、従来のものに比べて磁気特性をより向上させることができる。   By producing the first and second powders 10C and 10D for the powder magnetic core with the material, the hardness of the first insulating layer 12d and the hardness of the hard insulating layer 12f are higher than the hardness of the second insulating layer 12e. And the relationship where the hardness of the first insulating layer 12 d is higher than the hardness of the magnetic powder 11 and the hardness of the second insulating layer 12 e is lower than the hardness of the magnetic powder 11. By satisfying such a relationship at the same time, the dust core formed by using the magnetic powder containing the first and second dust core powders 10A and 10B has more magnetic properties than the conventional one. Can be improved.

すなわち、このように構成することにより、加圧成型時に、第一及び第二の圧粉磁心用粉末10C,10Dが相互に接触する場合に、その接触部分は、第一の圧粉磁心用粉末10Cの軟質絶縁層である第二絶縁層12eを挟むように、第一の圧粉磁心用粉末10Cの硬質絶縁層である第一の絶縁層12dと、第二の圧粉磁心用粉末10Dの硬質絶縁層12fと、が配置されることになる。   That is, by comprising in this way, when the 1st and 2nd powder magnetic core powder 10C and 10D mutually contact at the time of pressure molding, the contact part is the powder for the 1st powder magnetic core. The first insulating layer 12d, which is a hard insulating layer of the first dust core powder 10C, and the second dust core powder 10D so as to sandwich the second insulating layer 12e, which is a 10C soft insulating layer, The hard insulating layer 12f is disposed.

この場合、軟質絶縁層である第二の絶縁層12eが緩衝材として機能し、硬質の第一絶縁層12d及び硬質絶縁層12fの変形・破壊を抑制できる。また、成型後の焼鈍時において、第一の圧粉磁心用粉末10Cの第二の絶縁層12eが変質した場合であっても、シリカからなる第一絶縁層12d又は硬質絶縁層12fのいずれか一方の成分が変質なく絶縁性を確保することができる。このようにして、磁性粉末11,11間の絶縁性を確保することができる。さらに、第一の圧粉磁心用粉末10Cのみを用いた場合には、絶縁層12Bが少なくとも二層構造となっているため、成型された圧粉磁心の磁性粉末の占積率は低下し、磁心として使用した際に、磁束密度の低下が懸念されるが、本実施形態の如く、磁性粉に第二の圧粉磁心用粉末10Dを含めることにより、磁性粉末11,11の占積率の低下は抑えられ、磁束密度の低下を抑制することができる。   In this case, the second insulating layer 12e, which is a soft insulating layer, functions as a cushioning material, and deformation and destruction of the hard first insulating layer 12d and the hard insulating layer 12f can be suppressed. Further, even when the second insulating layer 12e of the first powder for powder magnetic core 10C is altered during annealing after molding, either the first insulating layer 12d or the hard insulating layer 12f made of silica is used. One component can ensure insulation without deterioration. In this way, insulation between the magnetic powders 11 and 11 can be ensured. Furthermore, when only the first powder for powder magnetic core 10C is used, since the insulating layer 12B has at least a two-layer structure, the space factor of the magnetic powder of the molded powder magnetic core decreases, When used as a magnetic core, there is a concern about a decrease in magnetic flux density. However, as in this embodiment, the inclusion of the second powder for magnetic powder core 10D in the magnetic powder increases the space factor of the magnetic powders 11 and 11. The decrease is suppressed, and the decrease in magnetic flux density can be suppressed.

本実施例として、前記第一実施形態に係る磁性粉を製造した。磁性粉末として平均粒径200μmの純鉄粉を準備した。次に、第一の圧粉磁心用粉末を製造した。具体的には、純鉄粉の表面にシリコーン樹脂を塗布し、層厚さ1μmのシリコーン樹脂からなる第一絶縁層を被覆した。さらに、LPGガスとシラン化合物を原料とした燃焼化学気相蒸着法により、磁性粉末上の第一絶縁層の表面に、層厚さ200nmのシリカからなる第二絶縁層を被覆した。また、第二の圧粉磁心用粉末として、純鉄粉の表面にシリコーン樹脂を塗布し、層厚さ1μmのシリコーン樹脂からなる軟質絶縁層を被覆した。そして、第一の圧粉磁心用粉末を磁性粉に対して50重量%、第二の圧粉磁心用粉末を磁性粉に対して50重量%(第一の圧粉磁心用粉末と第二の圧粉磁心用粉末とが重量比が1:1)となるようにこれらの粉末を混合して、磁性粉を製作した。   As this example, the magnetic powder according to the first embodiment was manufactured. Pure iron powder having an average particle size of 200 μm was prepared as a magnetic powder. Next, the 1st powder for powder magnetic cores was manufactured. Specifically, a silicone resin was applied to the surface of pure iron powder, and a first insulating layer made of a silicone resin having a layer thickness of 1 μm was covered. Furthermore, the surface of the first insulating layer on the magnetic powder was coated with a second insulating layer made of silica having a layer thickness of 200 nm by a combustion chemical vapor deposition method using LPG gas and a silane compound as raw materials. Further, as the second powder for powder magnetic core, a silicone resin was applied to the surface of pure iron powder, and a soft insulating layer made of a silicone resin having a layer thickness of 1 μm was coated. The first powder magnetic core powder is 50% by weight with respect to the magnetic powder, and the second powder magnetic core powder is 50% by weight with respect to the magnetic powder (the first powder magnetic core powder and the second powder These powders were mixed so that the weight ratio with the powder for powder magnetic core was 1: 1) to produce magnetic powder.

このようにして製造された磁性粉を所定量準備し、該磁性粉を金型内に充填して温間金型潤滑成型法により成型体を得た。さらに、該成型体を600℃の温度条件で、45分間焼鈍処理を行い、圧粉磁心に相当する試験体を製作した。該試験体に対して、密度及び5kA/mの条件で磁束密度を測定した。この結果を図4に示す。なお、図4に示す密度及び磁束密度は、後述する比較例1の密度及び磁束密度で正規化したものである。   A predetermined amount of the magnetic powder produced in this way was prepared, the magnetic powder was filled into a mold, and a molded body was obtained by a warm mold lubrication molding method. Further, the molded body was annealed at a temperature of 600 ° C. for 45 minutes to produce a test body corresponding to a dust core. The magnetic flux density was measured on the test specimen under the conditions of density and 5 kA / m. The result is shown in FIG. The density and magnetic flux density shown in FIG. 4 are normalized by the density and magnetic flux density of Comparative Example 1 described later.

[比較例1]
実施例1と同じようにして、磁性粉を製作した。実施例1と相違する点は、磁性粉として、第一の圧粉磁心用粉末のみ(第二の圧粉磁心用粉末を含まない)からなる磁性粉を製作した点である。そして、この磁性粉を用いて、実施例1と同じようにして、圧粉成型、焼鈍を順次行い試験体を製作し、該試験体の密度及び磁束密度を測定した。この結果を図4に示す。
[Comparative Example 1]
In the same manner as in Example 1, magnetic powder was produced. The difference from Example 1 is that magnetic powder made of only the first powder magnetic core powder (not including the second powder magnetic core powder) was produced as the magnetic powder. Then, using this magnetic powder, in the same manner as in Example 1, compacting and annealing were sequentially performed to produce a test body, and the density and magnetic flux density of the test body were measured. The result is shown in FIG.

[結果1]
図3に示すように、実施例1の密度は、比較例1のものに比べて3%高く、実施例1の磁束密度は、比較例1のものに比べて35%高くなった。
[Result 1]
As shown in FIG. 3, the density of Example 1 was 3% higher than that of Comparative Example 1, and the magnetic flux density of Example 1 was 35% higher than that of Comparative Example 1.

[考察1]
実施例1の密度が、比較例1のものに比べて高かったのは、絶縁層が一層からなる第二の圧粉磁心用粉末を磁性粉に含めたため、磁性粉末の成分である鉄の占積率が高くなったことによると考えられる。そして、鉄の占積率が高くなったことに起因して、実施例1の試験片(圧粉磁心)の磁束密度も、比較例1のものに比べて、向上したものであると考えられる。
[Discussion 1]
The density of Example 1 was higher than that of Comparative Example 1 because the magnetic powder contained the second powder magnetic core powder having a single insulating layer, and therefore the density of iron as a component of the magnetic powder was increased. This is thought to be due to the higher volume factor. And it is thought that the magnetic flux density of the test piece (powder magnetic core) of Example 1 is also improved compared to that of Comparative Example 1 due to the fact that the space factor of iron is increased. .

実施例1と同じようにして、磁性粉を製造し、試験体を製作した。実施例1と相違する点は、図5に示すように、第一の圧粉磁心用粉末と、第二の圧粉磁心用粉末との重量比を、3:7〜9:1の範囲(具体的には、第一の圧粉磁心用粉末と第二の圧粉磁心用粉末の割合を、磁性粉に対して90重量%:10重量%、50重量%:50重量%(実施例1に相当)、30重量%:70重量%)にして混合した磁性粉を使用したことである。そして、実施例1と同じようにして、磁束密度を測定すると共に、試験体の比抵抗も合わせて測定した。この結果を図5に示す。なお、図5に示す磁束密度及び比抵抗は、後述する比較例2の磁束密度及び比抵抗値で正規化したものである。   In the same manner as in Example 1, magnetic powder was manufactured and a test specimen was manufactured. The difference from Example 1 is that, as shown in FIG. 5, the weight ratio of the first powder magnetic core powder to the second powder magnetic core powder is in the range of 3: 7 to 9: 1 ( Specifically, the ratios of the first powder magnetic core powder and the second powder magnetic core powder were 90% by weight: 10% by weight, 50% by weight: 50% by weight with respect to the magnetic powder (Example 1). And 30% by weight: 70% by weight) and mixed magnetic powder. Then, in the same manner as in Example 1, the magnetic flux density was measured, and the specific resistance of the test specimen was also measured. The result is shown in FIG. Note that the magnetic flux density and specific resistance shown in FIG. 5 are normalized by the magnetic flux density and specific resistance value of Comparative Example 2 described later.

[比較例2]
実施例2と同じようにして、磁性粉を製作した。実施例2と相違する点は、磁性粉として、第一の圧粉磁心用粉末のみ(第二の圧粉磁心用粉末を含まない)からなる磁性粉を製作した点(比較例1に相当)である。そして、この磁性粉を用いて、実施例2と同じようにして、圧粉成型、焼鈍を順次行い試験体を製作し、実施例2と同じようにして、磁束密度及び比抵抗を測定した。この結果を図5に示す。
[Comparative Example 2]
Magnetic powder was manufactured in the same manner as in Example 2. The difference from Example 2 is that magnetic powder made of only the first powder magnetic core powder (not including the second powder magnetic core powder) was manufactured as magnetic powder (corresponding to Comparative Example 1). It is. Then, using this magnetic powder, in the same manner as in Example 2, compacting and annealing were sequentially performed to produce a test body, and in the same manner as in Example 2, the magnetic flux density and specific resistance were measured. The result is shown in FIG.

[比較例3]
実施例2と同じようにして、磁性粉を製作した。実施例2と相違する点は、磁性粉として、第二の圧粉磁心用粉末のみ(第一の圧粉磁心用粉末を含まない)からなる磁性粉を製作した点である。そして、この磁性粉を用いて、実施例2と同じようにして、圧粉成型、焼鈍を順次行い試験体を製作し、実施例2と同じようにして、磁束密度及び比抵抗を測定した。この結果を図5に示す。
[Comparative Example 3]
Magnetic powder was manufactured in the same manner as in Example 2. The difference from Example 2 is that magnetic powder made of only the second powder magnetic core powder (not including the first powder magnetic core powder) was produced as the magnetic powder. Then, using this magnetic powder, in the same manner as in Example 2, compacting and annealing were sequentially performed to produce a test body, and in the same manner as in Example 2, the magnetic flux density and specific resistance were measured. The result is shown in FIG.

[結果2]
実施例2の磁束密度(◇)は、比較例2のもの(●)に比べて高く、実施例2の比抵抗(◇)は、比較例3のものに比べて(◆)高かった。
[Result 2]
The magnetic flux density (◇) of Example 2 was higher than that of Comparative Example 2 (●), and the specific resistance (◇) of Example 2 was (◆) higher than that of Comparative Example 3.

[考察2]
結果2から、実施例2の磁束密度(◇)が、比較例2のもの(●)に比べて高かったのは、絶縁層が一層からなる第二の圧粉磁心用粉末を磁性粉に含めたため、磁性粉末の成分である鉄の占積率が高くなったことによると考えられる。
[Discussion 2]
From the result 2, the magnetic flux density (◇) of Example 2 was higher than that of Comparative Example 2 (●). The magnetic powder contained the second powder magnetic core powder consisting of a single insulating layer. Therefore, it is considered that the space factor of iron which is a component of the magnetic powder is increased.

また、実施例2の比抵抗(◇)が、比較例3のもの(◆)に比べて高かった理由は、比較例3の磁性粉には第一の圧粉磁心用粉末を含まないため、磁性粉末の塑性変形にシリカの絶縁層が追従できず破壊されたことによると考えられる。   In addition, the specific resistance (◇) of Example 2 was higher than that of Comparative Example 3 (◆) because the magnetic powder of Comparative Example 3 does not contain the first powder magnetic core powder. This is probably because the silica insulating layer could not follow the plastic deformation of the magnetic powder and was destroyed.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   As mentioned above, although embodiment of this invention has been explained in full detail using drawing, a concrete structure is not limited to this embodiment, Even if there is a design change in the range which does not deviate from the gist of the present invention. These are included in the present invention.

たとえば、本実施形態では、磁性粉末の表面に第一絶縁層、第二絶縁層を順次被覆したが、成型時及び焼鈍時に上述した第一絶縁層と第二絶縁層の機能が確保されるのであれば、磁性粉末の表面と第一絶縁層との間、第一絶縁層と第二絶縁層との間に、新たな層を設けてもよく、第一絶縁層と磁心粉末との濡れ性を向上させるための絶縁層をさらに設けてもよい。   For example, in this embodiment, the first insulating layer and the second insulating layer are sequentially coated on the surface of the magnetic powder, but the functions of the first insulating layer and the second insulating layer described above are ensured during molding and annealing. If necessary, a new layer may be provided between the surface of the magnetic powder and the first insulating layer, and between the first insulating layer and the second insulating layer, and the wettability between the first insulating layer and the magnetic core powder. An insulating layer for improving the above may be further provided.

第一実施形態に係る磁性粉を示した模式図を示しており、(a)は、磁性粉に含まれる第一の圧粉磁心用粉末の模式図であり、(b)は、前記磁性粉に含まれる第二の圧粉磁心用粉末の模式図。The schematic diagram which showed the magnetic powder which concerns on 1st embodiment is shown, (a) is a schematic diagram of the powder for 1st powder magnetic cores contained in magnetic powder, (b) is the said magnetic powder The schematic diagram of the powder for 2nd powder magnetic cores contained in. 図1に示す第一及び第二の圧粉磁心用粉末を含む磁性粉により圧粉磁心を圧粉成型したときの絶縁層の挙動を説明するための図であり、(a)は、圧粉成型前の磁性粉を示した模式図であり、(b)は成型型内に投入時に圧粉成型前の磁性粉の状態を説明するための模式図であり、(c)、(d)は、成型後の磁性粉の状態を説明するための模式図。It is a figure for demonstrating the behavior of an insulating layer when a powder magnetic core is dust-molded with the magnetic powder containing the powder for 1st and 2nd powder magnetic cores shown in FIG. 1, (a) is dust. It is the schematic diagram which showed the magnetic powder before shaping | molding, (b) is a schematic diagram for demonstrating the state of the magnetic powder before compaction shaping | molding at the time of throwing into a shaping | molding die, (c), (d) is The schematic diagram for demonstrating the state of the magnetic powder after shaping | molding. 第二実施形態に係る磁性粉を示した模式図を示しており、(a)は、磁性粉に含まれる第一の圧粉磁心用粉末の模式図であり、(b)は、前記磁性粉に含まれる第二の圧粉磁心用粉末の模式図。The schematic diagram which showed the magnetic powder which concerns on 2nd embodiment is shown, (a) is a schematic diagram of the powder for 1st powder magnetic cores contained in magnetic powder, (b) is the said magnetic powder. The schematic diagram of the powder for 2nd powder magnetic cores contained in. 実施例1、比較例1の試験体の密度及び比抵抗を示した図。The figure which showed the density and specific resistance of the test body of Example 1 and Comparative Example 1. FIG. 実施例2、比較例2、比較例3の試験体の磁束密度及び比抵抗を示した図。The figure which showed the magnetic flux density and specific resistance of the test body of Example 2, the comparative example 2, and the comparative example 3. FIG.

符号の説明Explanation of symbols

1:磁性粉、10A,10C:第一の圧粉磁心用粉末、10B,10D:第二の磁性粉末、11:磁性粉末、12A,12B:絶縁層、12a,12c:第一絶縁層、12b,12d:第二絶縁層,12c:軟質絶縁層、12f:硬質絶縁層、100:圧粉磁心   1: magnetic powder, 10A, 10C: first powder for powder magnetic core, 10B, 10D: second magnetic powder, 11: magnetic powder, 12A, 12B: insulating layer, 12a, 12c: first insulating layer, 12b , 12d: second insulating layer, 12c: soft insulating layer, 12f: hard insulating layer, 100: dust core

Claims (8)

磁性粉末の表面に絶縁層が形成された圧粉磁心用粉末を含む磁性粉であって、
前記絶縁層として、前記磁性粉末の表面から前記絶縁層の層厚さ方向に、少なくとも第一絶縁層と第二絶縁層とが順次形成されており、前記第二絶縁層の硬度が前記第一絶縁層の硬度よりも高い第一の圧粉磁心用粉末と、
前記絶縁層として、前記第一の圧粉磁心用粉末の前記第二絶縁層の硬度よりも低い軟質絶縁層が形成された第二の圧粉磁心用粉末と、
を前記圧粉磁心用粉末として少なくとも含むことを特徴とする磁性粉。
A magnetic powder comprising a powder for a powder magnetic core having an insulating layer formed on the surface of the magnetic powder,
As the insulating layer, at least a first insulating layer and a second insulating layer are sequentially formed in the thickness direction of the insulating layer from the surface of the magnetic powder, and the hardness of the second insulating layer is the first insulating layer. A first powder for powder magnetic core higher than the hardness of the insulating layer;
As the insulating layer, a second powder magnetic core powder in which a soft insulating layer lower than the hardness of the second insulating layer of the first powder magnetic core powder is formed,
At least as the powder for powder magnetic core.
前記第一の圧粉磁心用粉末と前記第二の圧粉磁心用粉末との重量比は、3:7〜9:1の範囲にあることを特徴とする請求項1に記載の磁性粉。   2. The magnetic powder according to claim 1, wherein a weight ratio of the first powder magnetic core powder to the second powder magnetic core powder is in the range of 3: 7 to 9: 1. 前記第一絶縁層の硬度及び前記軟質絶縁層の硬度は、前記第一及び第二の圧粉磁心用粉末の磁性粉末の硬度よりも低いことを特徴とする請求項1又は2に記載の磁性粉。   The magnetism according to claim 1 or 2, wherein the hardness of the first insulating layer and the hardness of the soft insulating layer are lower than the hardness of the magnetic powder of the first and second powder magnetic core powders. powder. 前記第二絶縁層の硬度は、前記第一及び第二の圧粉磁心用粉末の磁性粉末の硬度よりも高いことを特徴とする請求項1〜3のいずれかに記載の磁性粉。   The magnetic powder according to any one of claims 1 to 3, wherein the hardness of the second insulating layer is higher than the hardness of the magnetic powder of the first and second powder magnetic core powders. 前記第一絶縁層及び前記軟質絶縁層は高分子樹脂からなり、前記第二絶縁層は酸化物からなることを特徴とする請求項1〜4のいずれかに記載の磁性粉。   The magnetic powder according to claim 1, wherein the first insulating layer and the soft insulating layer are made of a polymer resin, and the second insulating layer is made of an oxide. 前記第一絶縁層及び軟質絶縁層はシリコーン樹脂からなり、前記第二絶縁層はシリカからなることを特徴とする請求項1〜5のいずれかに記載の磁性粉。   The magnetic powder according to claim 1, wherein the first insulating layer and the soft insulating layer are made of a silicone resin, and the second insulating layer is made of silica. 前記請求項1〜6のいずれかに記載の磁性粉により、成型された圧粉磁心。   The powder magnetic core shape | molded with the magnetic powder in any one of the said Claims 1-6. 磁性粉末の表面に絶縁層が形成された圧粉磁心用粉末を含む磁性粉であって、
前記絶縁層として、前記磁性粉末の表面から前記絶縁層の層厚さ方向に、少なくとも第一絶縁層と第二絶縁層とが順次形成されており、前記第二絶縁層の硬度が前記第一絶縁層の硬度よりも低い第一の圧粉磁心用粉末と、
前記絶縁層として、前記第一の圧粉磁心用粉末の前記第二絶縁層の硬度よりも高い硬質絶縁層が形成された第二の圧粉磁心用粉末と、
を前記圧粉磁心用粉末として少なくとも含むことを特徴とする磁性粉。
A magnetic powder comprising a powder for a powder magnetic core having an insulating layer formed on the surface of the magnetic powder,
As the insulating layer, at least a first insulating layer and a second insulating layer are sequentially formed in the thickness direction of the insulating layer from the surface of the magnetic powder, and the hardness of the second insulating layer is the first insulating layer. A first dust core powder lower than the hardness of the insulating layer;
As the insulating layer, a second powder magnetic core powder in which a hard insulating layer higher than the hardness of the second insulating layer of the first powder magnetic core powder is formed,
At least as the powder for powder magnetic core.
JP2008002277A 2008-01-09 2008-01-09 Magnetic powder and dust core Withdrawn JP2009164470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002277A JP2009164470A (en) 2008-01-09 2008-01-09 Magnetic powder and dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002277A JP2009164470A (en) 2008-01-09 2008-01-09 Magnetic powder and dust core

Publications (1)

Publication Number Publication Date
JP2009164470A true JP2009164470A (en) 2009-07-23

Family

ID=40966711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002277A Withdrawn JP2009164470A (en) 2008-01-09 2008-01-09 Magnetic powder and dust core

Country Status (1)

Country Link
JP (1) JP2009164470A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213148A (en) * 2013-11-29 2015-11-26 株式会社神戸製鋼所 Mixed powder for powder magnetic core, and powder magnetic core
KR20180027982A (en) * 2016-09-07 2018-03-15 삼성전기주식회사 Magnetic powder and inductor comprising the same
JP2018152559A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Powder-compact magnetic core
CN108711482A (en) * 2018-04-13 2018-10-26 浙江工业大学 A kind of preparation method of composite organic-inorganic material insulating wrapped ferrocart core
WO2020179534A1 (en) * 2019-03-07 2020-09-10 株式会社村田製作所 Magnetic core, method for manufacturing same, and coil component
JPWO2020179535A1 (en) * 2019-03-07 2021-11-25 株式会社村田製作所 Magnetic powder and its manufacturing method, magnetic core core and its manufacturing method, and coil parts

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213148A (en) * 2013-11-29 2015-11-26 株式会社神戸製鋼所 Mixed powder for powder magnetic core, and powder magnetic core
KR20180027982A (en) * 2016-09-07 2018-03-15 삼성전기주식회사 Magnetic powder and inductor comprising the same
KR101872601B1 (en) * 2016-09-07 2018-06-28 삼성전기주식회사 Magnetic powder and inductor comprising the same
JP2018152559A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Powder-compact magnetic core
JP7069849B2 (en) 2017-03-09 2022-05-18 Tdk株式会社 Powder magnetic core
CN108711482A (en) * 2018-04-13 2018-10-26 浙江工业大学 A kind of preparation method of composite organic-inorganic material insulating wrapped ferrocart core
WO2020179534A1 (en) * 2019-03-07 2020-09-10 株式会社村田製作所 Magnetic core, method for manufacturing same, and coil component
JPWO2020179534A1 (en) * 2019-03-07 2021-10-21 株式会社村田製作所 Magnetic core core and its manufacturing method, and coil parts
JPWO2020179535A1 (en) * 2019-03-07 2021-11-25 株式会社村田製作所 Magnetic powder and its manufacturing method, magnetic core core and its manufacturing method, and coil parts
JP7100833B2 (en) 2019-03-07 2022-07-14 株式会社村田製作所 Magnetic core core and its manufacturing method, and coil parts
JP7104905B2 (en) 2019-03-07 2022-07-22 株式会社村田製作所 MAGNETIC CORE, MANUFACTURING METHOD THEREOF, AND COIL COMPONENTS

Similar Documents

Publication Publication Date Title
JP4706411B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP4613622B2 (en) Soft magnetic material and dust core
JP4609339B2 (en) Powder for powder magnetic core and method for producing powder magnetic core
US20100045120A1 (en) Magnetic powder, dust core, motor, and reactor
US20100079015A1 (en) Dust core, method for producing the same, electric motor, and reactor
JP2009164470A (en) Magnetic powder and dust core
JP5189652B2 (en) Powder for powder magnetic core, powder magnetic core, and production method thereof
JP2010199328A (en) Method of manufacturing dust core
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
JP5304908B2 (en) Manufacturing method of dust core
JP2007324210A (en) Soft magnetic material and dust core
JP4825902B2 (en) Manufacturing method of dust core
KR20170075957A (en) Method of fabricating soft magnetic composite
JP2005079511A (en) Soft magnetic material and its manufacturing method
JP2009290024A (en) Method for manufacturing pressed powder magnetic core
JP2009290128A (en) Method for manufacturing powder magnetic core
WO2005024858A1 (en) Soft magnetic material and method for producing same
JP2009016539A (en) Powder for dust core, manufacturing method of powder for dust core, and dust core
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP2008294230A (en) Dust core, electromotor and reactor
JP6203531B2 (en) Rare earth magnet and manufacturing method thereof
JP2018142642A (en) Powder magnetic core
US20070036669A1 (en) Soft magnetic material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322