JP7097255B2 - Reflector junction Wavelength conversion member - Google Patents
Reflector junction Wavelength conversion member Download PDFInfo
- Publication number
- JP7097255B2 JP7097255B2 JP2018139567A JP2018139567A JP7097255B2 JP 7097255 B2 JP7097255 B2 JP 7097255B2 JP 2018139567 A JP2018139567 A JP 2018139567A JP 2018139567 A JP2018139567 A JP 2018139567A JP 7097255 B2 JP7097255 B2 JP 7097255B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength conversion
- reflective member
- conversion member
- light
- reflective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 63
- 239000002245 particle Substances 0.000 claims description 49
- 239000011148 porous material Substances 0.000 claims description 22
- 229910010272 inorganic material Inorganic materials 0.000 claims description 12
- 239000011147 inorganic material Substances 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- 235000019353 potassium silicate Nutrition 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000004111 Potassium silicate Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000002788 crimping Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 5
- 229910052913 potassium silicate Inorganic materials 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Optical Filters (AREA)
Description
従来より、蛍光灯や白熱電球が発光装置の光源として用いられてきたが、低消費電力、小型で軽量、光量の調節が容易という観点から、近年では、発光ダイオード(LED:light emitting diode)やレーザーダイオード(LD:laser diode)等の半導体発光素子を光源とした発光装置が開発されている。これらの半導体発光素子では、様々な発光色を得ることが可能である。例えば、青色LEDチップ上に、例えば、緑色や赤色の励起光を発するLEDチップを組み合わせ、各LEDに供給する駆動電圧を調整することで白色光を放射させることができる。具体的には、前記LEDチップと、無機蛍光体粉末を含む樹脂、ガラス、セラミックス等とを一体化してなる波長変換部材において、無機蛍光体粉末はLEDチップからの励起光を受けて、該励起光とは異なる波長の光(蛍光)を発し、LEDチップからの励起光のうち一部は波長変換に寄与せずに波長変換部材を透過する。これらの光が混ざり合って白色光が得られる。 Conventionally, fluorescent lamps and incandescent lamps have been used as light sources for light emitting devices, but in recent years, light emitting diodes (LEDs) and light emitting diodes (LEDs) have been used because of their low power consumption, small size and light weight, and easy adjustment of the amount of light. A light emitting device using a semiconductor light emitting element such as a laser diode (LD) as a light source has been developed. With these semiconductor light emitting devices, it is possible to obtain various emission colors. For example, white light can be emitted by combining, for example, an LED chip that emits green or red excitation light on a blue LED chip and adjusting the drive voltage supplied to each LED. Specifically, in a wavelength conversion member in which the LED chip is integrated with a resin, glass, ceramics, etc. containing an inorganic fluorescent substance powder, the inorganic fluorescent substance powder receives excitation light from the LED chip and is excited. It emits light (fluorescence) having a wavelength different from that of light, and part of the excitation light from the LED chip passes through the wavelength conversion member without contributing to wavelength conversion. These lights are mixed to obtain white light.
ところで最近、波長変換部材の主として側面に反射材を設ける提案がなされている。この技術では、反射材が側面からの光を反射することにより、照射面の輝度をより高く、より高効率化することを目的としている(例えば、特許文献1)。 By the way, recently, it has been proposed to provide a reflective material mainly on the side surface of the wavelength conversion member. The purpose of this technique is to improve the brightness and efficiency of the irradiated surface by reflecting the light from the side surface of the reflective material (for example, Patent Document 1).
しかしながら、近年、ハイパワー化による光源として用いるLEDやLDの出力の上昇に伴い、光源の熱や波長変換の際に生じる熱によって反射材の熱膨張や熱劣化が生じるおそれがある。また、これらの熱によって波長変換部材も温度が上昇し発光効率が低下するとともに色ムラが生じるおそれがある。したがって、波長変換部材と共に、反射材においても熱劣化が少なく、かつ、排熱性に優れた材料が求められている。 However, in recent years, with the increase in the output of LEDs and LDs used as a light source due to high power, there is a possibility that the heat of the light source and the heat generated at the time of wavelength conversion cause thermal expansion and thermal deterioration of the reflective material. Further, due to these heats, the temperature of the wavelength conversion member also rises, the luminous efficiency decreases, and color unevenness may occur. Therefore, there is a demand for a material having less thermal deterioration and excellent heat exhausting property not only in the wavelength conversion member but also in the reflective material.
本発明は、シンプルな手法で製造可能でかつ、熱伝導率および反射率の高い反射部材接合波長変換部材を提供することを目的とする。 An object of the present invention is to provide a reflective member junction wavelength conversion member which can be manufactured by a simple method and has high thermal conductivity and reflectance.
本発明の反射部材接合波長変換部材は、波長変換部材の少なくとも一面に反射部材が接合され、前記反射部材の厚さ1mmにおける反射率が波長380~780nmの光に対して80%以上であり、かつ、前記反射部材の熱伝導率が10W/mK以上であり、前記反射部材の気孔のうち、気孔径が20μm以下の気孔が反射部材の気孔体積の40%以上を占め、かつ、気孔径1μm以下の気孔が反射部材の気孔体積の20%以上であることを特徴とする。
本発明の反射部材接合波長変換部材は、波長変換部材の少なくとも一面に反射部材が接合され、前記反射部材の厚さ1mmにおける反射率が波長380~780nmの光に対して80%以上であり、かつ、前記反射部材の熱伝導率が10W/mK以上であり、前記反射部材が95wt%以上の無機材料を含み、前記無機材料がAl2O3、TiO2およびZrO 2 の中から選ばれる一種以上の白色粒子を50wt%以上含み、前記白色粒子が、平均粒子径1μm以上の白色粒子を30wt%以上と、平均粒子径0.5μm以下の白色粒子を20wt%以上とを含むことを特徴とする。
In the reflective member bonding wavelength conversion member of the present invention, the reflective member is bonded to at least one surface of the wavelength conversion member, and the reflectance at a thickness of 1 mm of the reflective member is 80% or more with respect to light having a wavelength of 380 to 780 nm. Moreover, the thermal conductivity of the reflective member is 10 W / mK or more, and among the pores of the reflective member, the pores having a pore diameter of 20 μm or less occupy 40% or more of the pore volume of the reflective member, and the pore diameter is 1 μm. The following pores are characterized by being 20% or more of the pore volume of the reflective member.
In the reflective member bonding wavelength conversion member of the present invention, the reflective member is bonded to at least one surface of the wavelength conversion member, and the reflectance at a thickness of 1 mm of the reflective member is 80% or more with respect to light having a wavelength of 380 to 780 nm. Further, the reflective member has a thermal conductivity of 10 W / mK or more, the reflective member contains 95 wt% or more of an inorganic material, and the inorganic material is a kind selected from Al 2 O 3 , TiO 2 and ZrO 2 . The white particles contain 50 wt% or more of the above white particles, and the white particles include 30 wt% or more of white particles having an average particle diameter of 1 μm or more and 20 wt% or more of white particles having an average particle diameter of 0.5 μm or less. do.
本発明によれば、反射部材接合波長変換部材の照射面の輝度をより高く、効率をより高くすることができる。また、高出力で励起光を照射した場合でも、温度上昇による効率の低下や、色ムラを抑制することができる。 According to the present invention, the brightness of the irradiation surface of the reflective member junction wavelength conversion member can be made higher and the efficiency can be made higher. Further, even when the excitation light is irradiated with a high output, it is possible to suppress a decrease in efficiency due to a temperature rise and color unevenness.
本発明の反射部材接合波長変換部材は、波長変換部材の少なくとも一面に反射部材が接合され、前記反射部材の反射率が波長380~780nmの光に対して80%以上であり、前記反射部材の熱伝導率が10W/mK以上である。 In the reflective member bonding wavelength conversion member of the present invention, the reflective member is bonded to at least one surface of the wavelength conversion member, and the reflectance of the reflective member is 80% or more with respect to light having a wavelength of 380 to 780 nm. The thermal reflectance is 10 W / mK or more.
前記反射部材接合波長変換部材は、波長変換部材の少なくとも一面に反射部材が接合した、実質的に平面の光入出射面を有する部材であり、典型的には、所定の厚みを有する略直方体形状の部材である。一面とは、波長変換部材の正面(または裏面)、側面(左側面または右側面)、平面(または底面)のいずれでもよい。前記反射部材接合波長変換部材は、波長変換部材の少なくとも一面に反射部材が接合していればよく、例えば、波長変換部材の左右の両側面に2つの反射部材が接合していてもよいし、波長変換部材のすべての面が反射部材で覆われていてもよい。 The reflection member joining wavelength conversion member is a member having a substantially flat light entrance / exit surface in which a reflection member is bonded to at least one surface of the wavelength conversion member, and typically has a substantially rectangular cuboid shape having a predetermined thickness. It is a member of. The one surface may be any of a front surface (or back surface), a side surface (left side surface or right side surface), and a flat surface (or bottom surface) of the wavelength conversion member. The reflection member bonding wavelength conversion member may have a reflection member bonded to at least one surface of the wavelength conversion member, and for example, two reflection members may be bonded to the left and right side surfaces of the wavelength conversion member. All surfaces of the wavelength conversion member may be covered with the reflective member.
波長変換部材は、入射光の少なくとも一部を吸収した吸収した光とは異なる波長の光を出射する機能を有する部材である。
波長変換部材は、少なくとも、蛍光体粒子と透光性物質とを含む。
前記蛍光体粒子には、酸化物系(例えば、YAG)、シリケート系((Ba,Sr)2SiO4)、硫化物系(例えば、(Ca,Sr)S、SrGa2S4、およびZnS)等の材料が制限なく用いられる。
前記透光性物質には、公知の材料が制限なく用いられる。
The wavelength conversion member is a member having a function of absorbing at least a part of incident light and emitting light having a wavelength different from the absorbed light.
The wavelength conversion member includes at least phosphor particles and a translucent substance.
The phosphor particles include oxide-based particles (eg, YAG), silicate-based particles ((Ba, Sr) 2 SiO 4 ), and sulfide-based particles (eg, (Ca, Sr) S, SrGa 2 S 4 , and ZnS). Materials such as are used without limitation.
Known materials can be used without limitation as the translucent substance.
反射部材は、接合した波長変換部材側から入射する光を反射する機能を有する。該反射部材中は、無機材料を主成分とし、Al2O3、TiO2およびZrO 2 等の白色光を反射する光散乱体を含むことが好ましい。
なお、前記反射部材は、無機材料以外に、接合強度を高める目的でコロイダルシリカ、水ガラス等の無機バインダ、または低融点ガラス粉末等を含んでいてもよい。また、必要に応じて、前記反射部材の形成領域とは異なる領域に遮光層等を備えていてもよい。
The reflective member has a function of reflecting light incident from the joined wavelength conversion member side. It is preferable that the reflective member contains a light scatterer containing an inorganic material as a main component and reflecting white light such as Al 2 O 3 , TiO 2 and ZrO 2 .
In addition to the inorganic material, the reflective member may contain colloidal silica, an inorganic binder such as water glass, a low melting point glass powder, or the like for the purpose of increasing the bonding strength. Further, if necessary, a light-shielding layer or the like may be provided in a region different from the region where the reflective member is formed.
前記反射部材は、該反射部材中の無機材料の含有量が95wt%以上であることが好ましい。無機材料を95wt%以上含有することにより、反射部材が充分な光反射性および熱伝導を得ることができる。
前記無機材料は、平均粒子径1μm以上の白色粒子を30wt%以上、平均粒子径0.5μm以下の白色粒子を20wt%以上含むことが好ましい。より好ましい形態は、平均粒子径1μm以上の粒子を40~70wt%、平均粒子径0.5μm以下の粒子を30~60wt%含む場合である。なお、平均粒子径1μm以上の粒子、および平均粒子径0.5μm以下の粒子を含む無機材料の合計を100wt%とする。
本発明では、比較的粒子径の大きい粒子を含むことで、反射部材の熱伝導を向上させると共に、粒子径の小さい粒子を含むことで、気孔径を制御し反射率を向上させている。また、粒度に幅を持たせることで、反射部材中のこれらの粒子の充填密度を上げ、緻密化が可能となる。
The reflective member preferably has an inorganic material content of 95 wt% or more in the reflective member. By containing 95 wt% or more of the inorganic material, the reflective member can obtain sufficient light reflectivity and heat conduction.
The inorganic material preferably contains 30 wt% or more of white particles having an average particle diameter of 1 μm or more and 20 wt% or more of white particles having an average particle diameter of 0.5 μm or less. A more preferable form is a case where 40 to 70 wt% of particles having an average particle diameter of 1 μm or more and 30 to 60 wt% of particles having an average particle diameter of 0.5 μm or less are contained. The total of the inorganic materials including the particles having an average particle diameter of 1 μm or more and the particles having an average particle diameter of 0.5 μm or less is 100 wt%.
In the present invention, the heat conduction of the reflective member is improved by including the particles having a relatively large particle diameter, and the pore diameter is controlled to improve the reflectance by including the particles having a small particle diameter. Further, by increasing the particle size, the packing density of these particles in the reflective member can be increased and densification becomes possible.
前記無機材料に含まれる光散乱体には、通常、Al2O3、TiO2、ZrO 2 、YAG、Y2O3およびAlN等の白色粒子が用いられる。これらのうち、屈折率および熱伝導率の観点から、Al2O3、TiO2およびZrO 2 の中から選ばれる一種以上が好ましく、Al2O3およびTiO2がより好ましく、無機材料に対してAl2O3を50wt%以上含むことがさらに好ましい。このような白色粒子は、平均粒子径1μm以上の粒子を30wt%以上と、平均粒子径0.5μm以下の粒子を20wt%以上とからなることが特に好ましい。 As the light scattering body contained in the inorganic material, white particles such as Al 2 O 3 , TIO 2 , ZrO 2 , YAG, Y 2 O 3 and Al N are usually used. Of these, from the viewpoint of refractive index and thermal conductivity, one or more selected from Al 2 O 3 , TiO 2 and ZrO 2 is preferable, and Al 2 O 3 and TiO 2 are more preferable, with respect to inorganic materials. It is more preferable to contain Al 2 O 3 in an amount of 50 wt% or more. It is particularly preferable that such white particles are composed of 30 wt% or more of particles having an average particle diameter of 1 μm or more and 20 wt% or more of particles having an average particle diameter of 0.5 μm or less.
前記反射部材の気孔率は、2%以上20%以下が好ましく、2%以上10%以下がより好ましい。
さらに、前記反射部材中の気孔のうち、気孔径が20μm以下の気孔が反射部材の気孔の体積の40%以上を占めることが好ましく、50%以上70%以下を占めることがより好ましい。
The porosity of the reflective member is preferably 2% or more and 20% or less, and more preferably 2% or more and 10% or less.
Further, among the pores in the reflective member, the pores having a pore diameter of 20 μm or less preferably occupy 40% or more, and more preferably 50% or more and 70% or less of the volume of the pores of the reflective member.
気孔率が2%を下回る場合には熱膨張の差によって、波長変換部材と反射部材との接合がはがれるリスクが大きくなる。一方、気孔率が20%を超える場合には熱伝導率が低下する。同時に、気孔径1μm以下の気孔は、反射部材の気孔の体積の20%以上を占めることが好ましく、25%以上占めることがより好ましい。気孔率の20%を下回る場合には波長380~780nmの光に対しての反射率が低下することがある。 When the porosity is less than 2%, the risk of peeling off the bond between the wavelength conversion member and the reflective member increases due to the difference in thermal expansion. On the other hand, when the porosity exceeds 20%, the thermal conductivity decreases. At the same time, the pores having a pore diameter of 1 μm or less preferably occupy 20% or more, more preferably 25% or more of the volume of the pores of the reflective member. If it is less than 20% of the porosity, the reflectance for light having a wavelength of 380 to 780 nm may decrease.
反射部材の反射率は、波長380~780nmの光に対して80%以上、好ましくは85%以上である。 The reflectance of the reflective member is 80% or more, preferably 85% or more, with respect to light having a wavelength of 380 to 780 nm.
反射部材は、後述する波長変換部材との接合を緻密に行うという観点から、その熱伝導率は10W/mK以上、好ましくは15W/mK以上である。 The thermal conductivity of the reflective member is 10 W / mK or more, preferably 15 W / mK or more, from the viewpoint of finely bonding with the wavelength conversion member described later.
このような反射部材は、前記波長変換部材の光が入出射する面以外の少なくとも一面に設けることが好ましい。 It is preferable that such a reflecting member is provided on at least one surface other than the surface on which the light of the wavelength conversion member enters and exits.
本発明の反射部材接合波長変換部材の製造方法は、波長変換部材を焼結する焼結工程と、該焼結した波長変換部材を任意のサイズに切断加工する切断加工工程と、該切断加工した波長変換部材の少なくとも一面に粉末状、スラリー状、またはシート状の反射部材前駆体を配置して、CIP(冷間等方圧加圧法)またはWIP(温間等方圧加圧法)を用いて加圧しつつ圧着する加圧圧着工程とを有する。つまり、前記反射部材接合波長変換部材は、まず波長変換部材を焼結させた後、切断し、切断した波長変換部材に反射部材を接合することにより製造される。 The method for manufacturing a reflective member-bonded wavelength conversion member of the present invention includes a sintering step of sintering a wavelength conversion member, a cutting process of cutting the sintered wavelength conversion member to an arbitrary size, and the cutting process. A powdery, slurry-like, or sheet-like reflective member precursor is placed on at least one surface of the wavelength conversion member, and CIP (cold isotropic pressure pressurization method) or WIP (warm isotropic pressure pressurization method) is used. It has a pressure crimping process of crimping while pressurizing. That is, the reflection member joining wavelength conversion member is manufactured by first sintering the wavelength conversion member, cutting it, and joining the reflection member to the cut wavelength conversion member.
焼結工程では、波長変換部材を真空炉あるいは大気雰囲気炉等に入れて、1200~1800℃で焼結させる。
切断工程では、焼結した波長変換部材を、半導体発光素子を載せた所望の大きさのモジュールの発光面の必要なサイズにレーザーやダイヤモンドカッター等で切断する。
加圧圧着工程では、切断加工した波長変換部材の少なくとも一面に粉末状、スラリー状、またはシート状の反射部材前駆体を配置して、CIPまたはWIP設備内に入れ、水等の流体を圧力媒体に用いて、100MPa以上、具体的には100~300MPaの圧力を等方的に加圧してのCIPまたはWIPを用いて加圧しつつ圧着する。粉末状、スラリー状、またはシート状の反射部材前駆体は、任意の方法、例えば、刷毛塗り、溶射、シート成形等により波長変換部材の表面に配置する。CIPまたはWIPは複数回、具体的には1~200回行ってもよい。この工程により、粉末状、スラリー状またはシート状の反射部材前駆体を強く締め固めることができる。焼成工程の前にあらかじめ反射部材前駆体を緻密化させておくことで収縮を抑えると共に、接合後の密度を上げ、熱伝導率を上げることができる。
In the sintering step, the wavelength conversion member is placed in a vacuum furnace, an atmospheric atmosphere furnace, or the like and sintered at 1200 to 1800 ° C.
In the cutting step, the sintered wavelength conversion member is cut with a laser, a diamond cutter, or the like to a required size of the light emitting surface of a module having a desired size on which a semiconductor light emitting element is mounted.
In the pressure crimping step, a powder-like, slurry-like, or sheet-like reflective member precursor is placed on at least one surface of the cut wavelength conversion member, placed in a CIP or WIP facility, and a fluid such as water is used as a pressure medium. CIP or WIP, which is isotropically pressed with a pressure of 100 MPa or more, specifically 100 to 300 MPa, is used for crimping while pressurizing. The powdery, slurry-like, or sheet-like reflective member precursor is placed on the surface of the wavelength conversion member by any method, for example, brush coating, thermal spraying, sheet molding, or the like. CIP or WIP may be performed a plurality of times, specifically 1 to 200 times. By this step, the powdery, slurry-like or sheet-like reflective member precursor can be strongly compacted. By densifying the reflective member precursor in advance before the firing step, shrinkage can be suppressed, the density after bonding can be increased, and the thermal conductivity can be increased.
前記加圧圧着工程後、本発明の製造方法は、熱処理あるいは酸アルカリによる化学処理を行い、反射部材前駆体を固化させる工程を有する。このときの熱処理は、真空炉または大気雰囲気炉に入れて、150~1200℃程度の条件下に行う。加圧圧着工程後の熱処理は、波長変換部材の焼結よりも低い温度で行う。この理由は波長変換部材の特性を変化させないためである。 After the pressure-bonding step, the production method of the present invention includes a step of performing a heat treatment or a chemical treatment with an acid alkali to solidify the reflective member precursor. The heat treatment at this time is carried out under the conditions of about 150 to 1200 ° C. in a vacuum furnace or an atmospheric atmosphere furnace. The heat treatment after the pressure crimping step is performed at a temperature lower than that of sintering the wavelength conversion member. The reason for this is that the characteristics of the wavelength conversion member are not changed.
本発明の反射部材接合波長変換部材は、上記のように簡便な方法で製造することができ、その照射面の輝度は高く、かつ、高効率である。また、接合している反射部材の熱伝導率が高いことにより、高出力で励起光を照射した場合でも反射部材から熱を放出することで、温度上昇による効率の低下、色ムラを抑制することができる。よって、例えば、高出力で使用されるLD用の用途等に好適に用いられる。 The reflective member junction wavelength conversion member of the present invention can be manufactured by a simple method as described above, and the brightness of the irradiation surface thereof is high and the efficiency is high. In addition, due to the high thermal conductivity of the bonded reflective member, heat is released from the reflective member even when the excitation light is irradiated at high output, thereby suppressing the decrease in efficiency and color unevenness due to temperature rise. Can be done. Therefore, for example, it is suitably used for LD applications used at high output.
以下、本発明を実施例に基づいて具体的に説明するが、本発明は、下記実施例により制限されるものではない。
(実施例1)
1650℃で焼結したYAG/Ce系の波長変換部材を□1mm×t0.5mmに切断し、波長変換部材とした。続いて、平均粒子径が1μmのアルミナ原料粉を45wt%、平均粒子径が0.5μmのアルミナ原料粉を30wt%、30%の珪酸カリウム水溶液を25wt%混合し、スラリーを調製した(アルミナ原料粉、および珪酸カリウム水溶液の合計は100wt%である。)。上述した□1mmの波長変換部材の表裏面をテープで覆い、上述したスラリーをテープで覆った面以外の側面4面に塗布した。これをCIPを用いて200MPaで加圧処理した後、50℃で2時間乾燥後、200℃で2時間の熱処理で硬化させた。その後、波長変換部材の淵から3mmの位置で切断し、□6.5mm×t0.5mmの形状にして表裏のテープをはがし、反射部材接合波長変換部材を作製した。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
(Example 1)
The YAG / Ce-based wavelength conversion member sintered at 1650 ° C. was cut into □ 1 mm × t0.5 mm to obtain a wavelength conversion member. Subsequently, 45 wt% of alumina raw material powder having an average particle size of 1 μm, 30 wt% of alumina raw material powder having an average particle size of 0.5 μm, and 25 wt% of a 30% potassium silicate aqueous solution were mixed to prepare a slurry (alumina raw material). The total of the powder and the potassium silicate aqueous solution is 100 wt%). The front and back surfaces of the above-mentioned □ 1 mm wavelength conversion member were covered with tape, and the above-mentioned slurry was applied to four side surfaces other than the surface covered with the tape. This was pressure-treated at 200 MPa using CIP, dried at 50 ° C. for 2 hours, and then cured by heat treatment at 200 ° C. for 2 hours. Then, it was cut at a position of 3 mm from the edge of the wavelength conversion member, formed into a shape of □ 6.5 mm × t0.5 mm, and the tapes on the front and back sides were peeled off to prepare a reflection member junction wavelength conversion member.
この反射部材接合波長変換部材の裏面側からLEDで波長450nmの励起光を照射し、□1mmの波長変換部材の表面部分から垂直方向への波長380nm~780nmの光の光量を光学特性マッピング装置RD8(ワイ・システムズ社製)を用いて測定したところ、光量子密度は861μmolm-2s-1であった。また、反射部材部分を銅製の厚さ3mmのヒートシンクに接触させ、所定時間の照射の後に熱画像付き放射温度計TP-S(CHINO社製)で波長変換部材表面の温度を測定したところ、52℃であった。 An excitation light having a wavelength of 450 nm is irradiated from the back surface side of the reflective member junction wavelength conversion member by an LED, and the amount of light having a wavelength of 380 nm to 780 nm in the vertical direction from the front surface portion of the wavelength conversion member of □ 1 mm is measured by the optical characteristic mapping device RD8. When measured using (manufactured by Y Systems), the photon density was 861 μmolm -2 s -1 . Further, when the reflective member portion was brought into contact with a copper heat sink having a thickness of 3 mm, and after irradiation for a predetermined time, the temperature of the surface of the wavelength conversion member was measured with a radiation thermometer TP-S (manufactured by CHINO) with a thermal image. It was ° C.
さらに反射部材接合波長変換部材の厚さ1mm、波長500nmにおける反射率は、83%、熱伝導率は14W/mKであった。なお、反射率の測定には、分光度計UH4150(日立ハイテクサイエンス製)を用い、熱伝導率の測定には、レーザーフラッシュ法(アルバック理工社製:TC-7000)で測定した。 Further, the reflectance of the reflective member junction wavelength conversion member at a thickness of 1 mm and a wavelength of 500 nm was 83%, and the thermal conductivity was 14 W / mK. The reflectance was measured by a spectrophotometer UH4150 (manufactured by Hitachi High-Tech Science), and the thermal conductivity was measured by a laser flash method (manufactured by ULVAC Riko Co., Ltd .: TC-7000).
(実施例2)
スラリーの配合を平均粒子径が1μmのアルミナ原料粉を35wt%、平均粒子径が0.5μmのアルミナ原料粉を40wt%、珪酸カリウム水溶液を25wt%にした以外は、実施例1と同様にして反射部材接合波長変換部材を作製した。
この反射部材接合波長変換部材の反射率、熱伝導率、光量、表面温度の結果は、表1に示す。
(Example 2)
The composition of the slurry was the same as in Example 1 except that the alumina raw material powder having an average particle size of 1 μm was 35 wt%, the alumina raw material powder having an average particle size of 0.5 μm was 40 wt%, and the potassium silicate aqueous solution was 25 wt%. Reflective member A junction wavelength conversion member was manufactured.
The results of the reflectance, thermal conductivity, light intensity, and surface temperature of the reflective member junction wavelength conversion member are shown in Table 1.
(比較例1)
スラリーの配合を平均粒子径が0.5μmのアルミナ原料粉を75wt%、珪酸カリウム水溶液を25wt%にした以外は、実施例1と同様にして反射部材接合波長変換部材を作製した。
この反射部材接合波長変換部材の反射率、熱伝導率、光量、表面温度の結果は、表1に示す。
(Comparative Example 1)
A reflective member junction wavelength conversion member was produced in the same manner as in Example 1 except that the composition of the slurry was 75 wt% for the alumina raw material powder having an average particle diameter of 0.5 μm and 25 wt% for the potassium silicate aqueous solution.
The results of the reflectance, thermal conductivity, light intensity, and surface temperature of the reflective member junction wavelength conversion member are shown in Table 1.
(比較例2)
スラリーの配合を平均粒子径が1μmのアルミナ原料粉を65wt%、平均粒子径が0.5μmのアルミナ原料粉を10wt%、珪酸カリウム水溶液を25wt%にした以外は、実施例1と同様にして反射部材接合波長変換部材を作製した。
この反射部材接合波長変換部材の反射率、熱伝導率、光量、表面温度の結果は、表1に示す。
(Comparative Example 2)
The composition of the slurry was the same as in Example 1 except that the alumina raw material powder having an average particle size of 1 μm was 65 wt%, the alumina raw material powder having an average particle size of 0.5 μm was 10 wt%, and the potassium silicate aqueous solution was 25 wt%. Reflective member A junction wavelength conversion member was manufactured.
The results of the reflectance, thermal conductivity, light intensity, and surface temperature of the reflective member junction wavelength conversion member are shown in Table 1.
Claims (2)
前記反射部材の厚さ1mmにおける反射率が波長380~780nmの光に対して80%以上であり、かつ、前記反射部材の熱伝導率が10W/mK以上であり、
前記反射部材の気孔のうち、気孔径が20μm以下の気孔が反射部材の気孔体積の40%以上を占め、かつ、気孔径1μm以下の気孔が反射部材の気孔体積の20%以上である
ことを特徴とする反射部材接合波長変換部材。 A reflective member is joined to at least one surface of the wavelength conversion member,
The reflectance of the reflective member at a thickness of 1 mm is 80% or more with respect to light having a wavelength of 380 to 780 nm, and the thermal conductivity of the reflective member is 10 W / mK or more.
Among the pores of the reflective member, the pores having a pore diameter of 20 μm or less occupy 40% or more of the pore volume of the reflective member, and the pores having a pore diameter of 1 μm or less are 20% or more of the pore volume of the reflective member. Characteristic reflection member junction wavelength conversion member.
前記反射部材の厚さ1mmにおける反射率が波長380~780nmの光に対して80%以上であり、かつ、前記反射部材の熱伝導率が10W/mK以上であり、
前記反射部材が95wt%以上の無機材料を含み、
前記無機材料がAl2O3、TiO2およびZrO 2 の中から選ばれる一種以上の白色粒子を50wt%以上含み、
前記白色粒子が、平均粒子径1μm以上の白色粒子を30wt%以上と、平均粒子径0.5μm以下の白色粒子を20wt%以上とを含むことを特徴とする反射部材接合波長変換部材。 A reflective member is joined to at least one surface of the wavelength conversion member,
The reflectance of the reflective member at a thickness of 1 mm is 80% or more with respect to light having a wavelength of 380 to 780 nm, and the thermal conductivity of the reflective member is 10 W / mK or more.
The reflective member contains 95 wt% or more of an inorganic material.
The inorganic material contains 50 wt% or more of one or more white particles selected from Al 2 O 3 , TiO 2 and ZrO 2 .
The reflection member junction wavelength conversion member, wherein the white particles include 30 wt% or more of white particles having an average particle diameter of 1 μm or more and 20 wt% or more of white particles having an average particle diameter of 0.5 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018139567A JP7097255B2 (en) | 2018-07-25 | 2018-07-25 | Reflector junction Wavelength conversion member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018139567A JP7097255B2 (en) | 2018-07-25 | 2018-07-25 | Reflector junction Wavelength conversion member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020016748A JP2020016748A (en) | 2020-01-30 |
JP7097255B2 true JP7097255B2 (en) | 2022-07-07 |
Family
ID=69580338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018139567A Active JP7097255B2 (en) | 2018-07-25 | 2018-07-25 | Reflector junction Wavelength conversion member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7097255B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006287132A (en) | 2005-04-04 | 2006-10-19 | Kyoritsu Elex Co Ltd | Light emitting diode and package therefor |
JP2010118528A (en) | 2008-11-13 | 2010-05-27 | Sumitomo Metal Electronics Devices Inc | Reflector and package for mounting light-emitting device used for the same |
JP2011180618A (en) | 2005-03-29 | 2011-09-15 | Kyocera Corp | Reflective member, manufacturing method of reflective member, light-emitting device and illuminating device |
JP2013207049A (en) | 2012-03-28 | 2013-10-07 | Nec Corp | Light emitting device using wavelength conversion body |
WO2017195620A1 (en) | 2016-05-13 | 2017-11-16 | パナソニックIpマネジメント株式会社 | Light source device and lighting device |
JP2017216244A (en) | 2013-06-08 | 2017-12-07 | 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation | Wavelength conversion device, manufacturing method thereof and related light-emitting device |
-
2018
- 2018-07-25 JP JP2018139567A patent/JP7097255B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011180618A (en) | 2005-03-29 | 2011-09-15 | Kyocera Corp | Reflective member, manufacturing method of reflective member, light-emitting device and illuminating device |
JP2011191785A (en) | 2005-03-29 | 2011-09-29 | Kyocera Corp | Reflective member, light-emitting device using the same and illuminating device |
JP2006287132A (en) | 2005-04-04 | 2006-10-19 | Kyoritsu Elex Co Ltd | Light emitting diode and package therefor |
JP2010118528A (en) | 2008-11-13 | 2010-05-27 | Sumitomo Metal Electronics Devices Inc | Reflector and package for mounting light-emitting device used for the same |
JP2013207049A (en) | 2012-03-28 | 2013-10-07 | Nec Corp | Light emitting device using wavelength conversion body |
JP2017216244A (en) | 2013-06-08 | 2017-12-07 | 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation | Wavelength conversion device, manufacturing method thereof and related light-emitting device |
WO2017195620A1 (en) | 2016-05-13 | 2017-11-16 | パナソニックIpマネジメント株式会社 | Light source device and lighting device |
Also Published As
Publication number | Publication date |
---|---|
JP2020016748A (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10557614B2 (en) | Projector light source including wavelength conversion member having porous ceramic substrate | |
TWI632323B (en) | A wavelength conversion device and a method for making the same | |
CN108291987B (en) | Wavelength conversion member, wavelength conversion element, and light-emitting device using same | |
TWI696685B (en) | Optical wavelength conversion device and optical composite device | |
WO2017169117A1 (en) | Wavelength conversion member, manufacturing method therefor, and light-emitting device | |
TW201608005A (en) | Wavelength conversion member and light emitting device using same | |
CN110720060B (en) | Wavelength converter, method for producing same, and light-emitting device using wavelength converter | |
WO2012124587A1 (en) | Wavelength conversion member, production method for same, light-emitting device, illumination device, and headlight | |
US10606158B2 (en) | Light emitting device | |
CN108105604B (en) | Luminescent ceramic structure, preparation method thereof, related light-emitting device and projection device | |
JP2012104267A (en) | Light source device and lighting system | |
KR20120022597A (en) | Light-emitting device | |
JP5709463B2 (en) | Light source device and lighting device | |
CN107304984A (en) | Wavelength convert part and Projecting Lamp | |
JP2012089316A (en) | Light source device, and lighting system | |
WO2015112939A1 (en) | Ceramic phosphor target | |
JP2016225581A (en) | Wavelength conversion member and light-emitting device including the same | |
WO2017126441A1 (en) | Wavelength conversion member and light-emitting device | |
US20170137328A1 (en) | Method of making a ceramic wavelength converter assembly | |
JP2012243618A (en) | Light source device and lighting device | |
WO2017040433A1 (en) | Laser-activated remote phosphor target and system | |
JP2016157905A (en) | Optical component | |
JP2012079989A (en) | Light source device and lighting fixture | |
US20140166902A1 (en) | Wavelength Conversion Body And Method For Manufacturing Same | |
CN113583675A (en) | Laser-excited metal substrate fluorescent film, fluorescence conversion module, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220426 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7097255 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |