JP7095720B2 - Agricultural product freshness maintenance device - Google Patents

Agricultural product freshness maintenance device Download PDF

Info

Publication number
JP7095720B2
JP7095720B2 JP2020153994A JP2020153994A JP7095720B2 JP 7095720 B2 JP7095720 B2 JP 7095720B2 JP 2020153994 A JP2020153994 A JP 2020153994A JP 2020153994 A JP2020153994 A JP 2020153994A JP 7095720 B2 JP7095720 B2 JP 7095720B2
Authority
JP
Japan
Prior art keywords
drain
water
saturated steam
air
agricultural product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020153994A
Other languages
Japanese (ja)
Other versions
JP2022047940A (en
Inventor
博 百合野
智謙 河野
和晶 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF KITAKYUSHU
Original Assignee
THE UNIVERSITY OF KITAKYUSHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF KITAKYUSHU filed Critical THE UNIVERSITY OF KITAKYUSHU
Priority to JP2020153994A priority Critical patent/JP7095720B2/en
Publication of JP2022047940A publication Critical patent/JP2022047940A/en
Application granted granted Critical
Publication of JP7095720B2 publication Critical patent/JP7095720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Storage Of Harvested Produce (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、農産物の鮮度保持装置に関する。 The present invention relates to a device for maintaining the freshness of agricultural products.

従来、収穫直後の花卉類、果物類や野菜類(以下、単に農産物とも言う。)の鮮度を可及的保持することは、市場での農産物の商品価値を低下させないために重要である。 Conventionally, it is important to maintain the freshness of flowers, fruits and vegetables (hereinafter, also simply referred to as agricultural products) immediately after harvesting as much as possible in order not to reduce the commercial value of agricultural products in the market.

一般的に、農産物は、収穫直後から呼吸の養分消費による呼吸劣化、カビや雑菌などの微生物の増殖による腐敗劣化、蒸散に伴う含水率の低下による乾燥劣化などの各種劣化要因により劣化が始まる。 In general, agricultural products begin to deteriorate immediately after harvesting due to various deterioration factors such as respiratory deterioration due to respiratory nutrient consumption, putrefaction deterioration due to the growth of microorganisms such as molds and germs, and dry deterioration due to a decrease in water content due to transpiration.

このような農産物の劣化要因のうち、呼吸劣化に対しては例えば保冷庫や冷蔵庫などの冷却装置により農産物を低温状態にして呼吸を抑制したり、また、腐敗劣化及び乾燥劣化に対しては例えば気化式の加湿器により保管室内を気体状の水分(飽和水蒸気)で満たしてカビや雑菌の温床となる液体状の水分をなくしたり農産物の蒸散を抑制したりして、農産物の鮮度を保持せんとする技術が種々存在する(例えば、特許文献1参照。)。 Among such deterioration factors of agricultural products, for example, for respiratory deterioration, the agricultural products are kept at a low temperature by a cooling device such as a cool box or a refrigerator to suppress breathing, and for spoilage deterioration and dry deterioration, for example. A vaporization type humidifier fills the storage room with gaseous water (saturated steam) to eliminate liquid water that becomes a hotbed for mold and germs, and suppresses evaporation of agricultural products to maintain the freshness of agricultural products. (For example, see Patent Document 1).

特開2008-275301号公報Japanese Unexamined Patent Publication No. 2008-275301

ところで、保管室に保管される農産物の野菜類には例えばコマツナ、ホウレンソウなどの葉菜類、ダイコン、ニンジンなどの根菜類、キュウリ、ナスなどの果菜類などがある。なかでも果菜類は、乾燥劣化を防止するために適宜液体状の水分を付与することが好ましいことで知られている。 By the way, vegetables of agricultural products stored in the storage room include, for example, leafy vegetables such as Japanese mustard spinach and spinach, root vegetables such as radish and carrot, and fruit vegetables such as cucumber and eggplant. Among them, it is known that it is preferable to appropriately add liquid water to fruit vegetables in order to prevent drying deterioration.

すなわち、保管室には異なる保湿条件の農産物が一緒に保管されるため、上記従来の鮮度保持装置は、農産物のうち葉菜類や根菜類に対しては気体状の水分を付与しての乾燥劣化には対応できるものの、果菜類に対しては液体状の水分を付与することができずに乾燥劣化を助長させる虞があった。 That is, since agricultural products with different moisturizing conditions are stored together in the storage room, the above-mentioned conventional freshness-maintaining device imparts gaseous water to leafy vegetables and root vegetables among agricultural products to cause drying deterioration. However, it was not possible to impart liquid water to fruit vegetables, and there was a risk of promoting drying deterioration.

こうした問題に対して、ミスト式の加湿器を保管室に設置し、保管室内に液体状の水分を常時噴霧することも考えられるが、保管室内壁や農産物の表面に付着した液体状の水分が長期残留してカビや雑菌などの温床となり、却って農産物の腐敗劣化を助長する虞があった。 To deal with these problems, it is conceivable to install a mist-type humidifier in the storage room and constantly spray liquid water into the storage room, but the liquid water adhering to the walls of the storage room and the surface of agricultural products will be present. It remained as a hotbed for mold and germs for a long period of time, and there was a risk of promoting putrefaction and deterioration of agricultural products.

本発明は、斯かる事情に鑑みてなされたものであって、保管室に保管される農産物の種類に応じて蒸気発生室から気体状の水分と液体状の水分を適宜選択して付与することができ、農産物の個々の種類に適した保湿条件を実現して農産物の劣化要因を可及的抑制すると共に比較的長期間の保管状態であっても農産物の鮮度を可及的保持できる農産物の鮮度保持装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and the gaseous water and the liquid water are appropriately selected and imparted from the steam generation chamber according to the type of agricultural products stored in the storage chamber. Agricultural products that can achieve moisturizing conditions suitable for individual types of agricultural products, suppress deterioration factors of agricultural products as much as possible, and maintain the freshness of agricultural products as much as possible even in a relatively long-term storage state. It is an object of the present invention to provide a freshness preserving device.

本発明に係る農産物の鮮度保持装置は、約0℃~15℃に冷却維持した農産物保管室と飽和水蒸気発生室とを連通して飽和水蒸気発生室で生成した飽和水蒸気を農産物保管室に流入して農産物保管室に収納した果実や野菜等の農産物の各種劣化要因を除去可能に構成し、飽和水蒸気発生室は、水蒸気生成用ケースと、空気を取込むための空気吸入機構と、空気吸入機構に連通して設けた多孔質フィルタブロックと、多孔質フィルタブロックに散水する散水機構とより構成し、しかも、多孔質フィルタブロックは、多孔質シートを波形に形成して一定の間隔を保持して多数積層して構成すると共に、積層した多孔質シートの波形の方向を同位相に整順して配設した同方向フィルタパターンに構成する場合と、波形振幅の略1/2だけ位相をずらして波形の方向を谷部と山部とが互いに対峙するように逆位相に整順して配設した異方向フィルタパターンに構成する場合と、に変更可能に構成したことに特徴を有する。 The freshness-maintaining device for agricultural products according to the present invention communicates the agricultural product storage chamber kept cooled at about 0 ° C. to 15 ° C. and the saturated steam generation chamber, and flows the saturated steam generated in the saturated steam generation chamber into the agricultural product storage chamber. It is configured to be able to remove various deterioration factors of agricultural products such as fruits and vegetables stored in the agricultural product storage room, and the saturated steam generation chamber has a steam generation case, an air suction mechanism for taking in air, and an air suction mechanism. It is composed of a porous filter block provided in communication with the above and a sprinkling mechanism for sprinkling water on the porous filter block, and the porous filter block forms a porous sheet in a corrugated manner and maintains a constant interval. In addition to being configured by stacking a large number of sheets, there is a case where the waveforms of the laminated porous sheets are arranged in the same phase and arranged in the same direction filter pattern, and the phase is shifted by about 1/2 of the waveform amplitude. It is characterized in that the direction of the waveform can be changed between the case of configuring the different direction filter pattern in which the valley and the peak are arranged in anti-phase in order so as to face each other and the case of configuring it.

また、本発明に係る農産物の鮮度保持装置は以下の点でも特徴を有する。
(2)飽和水蒸気発生室に吸収した多孔質フィルタブロックに散水するための散水機構は、農産物保管室の内外側のいずれかに別途配置したドレン循環装置に連通連設すると共に、ドレン循環装置は、ドレンケース内に配設したドレンパイプと、ドレンパイプに高温度外気を送風するための外気送風機構と、ドレンパイプ内へ農産物保管室の冷却に用いる冷却装置からの冷却ドレンを流通させるためのドレン流通路と、ドレンケースの底部に配設すると共にドレンパイプの下方位置に配設し、ドレンパイプの外周で外気から生成した滴下ドレンを集水するためのドレン回収トレイと、ドレン回収トレイから飽和水蒸気発生室内の多孔質フィルタブロックの散水機構へ集水ドレンを送水するためのドレン送水パイプと、より構成したこと。
(3)飽和水蒸気発生室内の多孔質フィルタブロックへ散水する散水機構への集水ドレンを送水するに際しての集水ドレンの温度は、農産物保管室内の温度よりも約10~45℃の高温度に維持することにより飽和水蒸気圧を高めて飽和水蒸気発生室内を急速な加湿状態を可能としたこと。
(4)飽和水蒸気発生室で生成した飽和水蒸気を飽和水蒸気流通路から農産物保管室に流入するに際して、農産物保管室への飽和水蒸気の流入形態を上下の3層流とすると共に、中間層流は高湿度の上下層流に比し低湿度とすることにより、農産物保管室内での結露を可及的に抑えて農産物保管室の床面や壁面における結露現象を回避するように構成したこと。
In addition, the freshness-maintaining device for agricultural products according to the present invention is also characterized in the following points.
(2) The sprinkling mechanism for sprinkling water on the porous filter block absorbed in the saturated water vapor generation chamber is connected to the drain circulation device separately arranged on either the inside or the outside of the agricultural product storage chamber, and the drain circulation device is used. , The drain pipe arranged in the drain case, the outside air blowing mechanism for blowing high temperature outside air to the drain pipe, and the cooling drain from the cooling device used for cooling the agricultural product storage room to flow into the drain pipe. From the drain flow passage, the drain collection tray for collecting the dripping drain generated from the outside air on the outer circumference of the drain pipe, and the drain collection tray, which is arranged at the bottom of the drain case and below the drain pipe. It consists of a drain water pipe for sending the collected drain to the watering mechanism of the porous filter block in the saturated water vapor generation chamber.
(3) The temperature of the water collecting drain when sending the water collecting drain to the watering mechanism that sprinkles water to the porous filter block in the saturated steam generation room is about 10 to 45 ° C higher than the temperature in the agricultural product storage room. By maintaining the saturated water vapor pressure, the saturated water vapor generation chamber can be rapidly humidified.
(4) When the saturated steam generated in the saturated steam generation chamber flows into the agricultural product storage chamber from the saturated steam flow passage, the inflow form of the saturated steam into the agricultural product storage chamber is set to the upper and lower three-layer flow, and the intermediate layer flow is By making the humidity lower than that of the upper and lower layers of high humidity, it is configured to suppress the dew condensation in the agricultural product storage room as much as possible and avoid the dew condensation phenomenon on the floor and wall surface of the agricultural product storage room.

本発明によれば、約0℃~15℃に冷却維持した農産物保管室と飽和水蒸気発生室とを連通して飽和水蒸気発生室で生成した飽和水蒸気を農産物保管室に流入して農産物保管室に収納した果実や野菜等の農産物の各種劣化要因を除去可能に構成した農産物の鮮度保持装置において、飽和水蒸気発生室は、水蒸気生成用ケースと、空気を取込むための空気吸入機構と、空気吸入機構に連通して設けた多孔質フィルタブロックと、多孔質フィルタブロックに散水する散水機構とより構成し、しかも、多孔質フィルタブロックは、多孔質シートを波形に形成して一定の間隔を保持して多数積層して構成すると共に、積層した多孔質シートの波形の方向を同位相に整順して配設した同方向フィルタパターンに構成する場合と、波形振幅の略1/2だけ位相をずらして波形の方向を谷部と山部とが互いに対峙するように逆位相に整順して配設した異方向フィルタパターンに構成する場合と、に変更可能に構成したため、農産物保管室(以下、単に保管室とも言う。)に保管される農産物の種類に応じて飽和水蒸気発生室(以下、単に蒸気発生室ともいう。)から気体状の水分と液体状の水分を適宜選択して付与することができ、農産物の個々の種類に適した保湿条件を実現して農産物の劣化要因を可及的抑制すると共に比較的長期間の保管状態であっても農産物の鮮度保持を実現することができる効果がある。 According to the present invention, the saturated steam generated in the saturated steam generation chamber is communicated between the agricultural product storage chamber kept cooled to about 0 ° C to 15 ° C and the saturated steam generation chamber, and flows into the agricultural product storage chamber into the agricultural product storage chamber. In the freshness maintenance device of agricultural products configured to be able to remove various deterioration factors of agricultural products such as stored fruits and vegetables, the saturated steam generation chamber has a steam generation case, an air suction mechanism for taking in air, and air suction. It is composed of a porous filter block provided in communication with the mechanism and a sprinkling mechanism for sprinkling water on the porous filter block, and the porous filter block forms a porous sheet in a corrugated shape and maintains a constant interval. In addition to being configured by stacking a large number of sheets, the phase is shifted by approximately 1/2 of the waveform amplitude when the laminated porous sheet is configured in the same-direction filter pattern in which the directions of the waveforms are arranged in the same phase. The direction of the water vapor is configured to be a different direction filter pattern arranged in anti-phase so that the valley and the mountain face each other, and the agricultural product storage room (hereinafter referred to as “agricultural product storage room”). Gaseous water and liquid water are appropriately selected and applied from the saturated steam generation chamber (hereinafter, also simply referred to as steam generation chamber) according to the type of agricultural products stored in the storage chamber). The effect of achieving moisturizing conditions suitable for each type of agricultural product, suppressing deterioration factors of agricultural products as much as possible, and maintaining the freshness of agricultural products even in a relatively long-term storage state. There is.

すなわち、蒸気発生室内の多孔質シートを波形に形成して一定の間隔を保持して多数積層して構成した多孔質フィルタブロックにおいて、多孔質シートの多数の波形の方向を同位相に整順して配設した同方向フィルタパターンでは、多孔質シート同士の間に流入した流入空気がベンチュリー効果を生起して多孔質フィルタブロックに含浸された液体状の水を強制的に引き出しつつ段階的に気化することにより、気体状の水分、すなわち飽和水蒸気を含有した空気(以下、単に水蒸気含有空気と称する。)を効率的に生成する。 That is, in a porous filter block in which a large number of porous sheets in a steam generation chamber are formed into a corrugated shape and laminated at a constant interval, the directions of many waveforms of the porous sheets are ordered in the same phase. In the same-direction filter pattern arranged in the same direction, the inflow air flowing between the porous sheets causes a ventilary effect, and the liquid water impregnated in the porous filter block is forcibly drawn out and vaporized step by step. By doing so, gaseous water, that is, air containing saturated water vapor (hereinafter, simply referred to as water vapor-containing air) is efficiently generated.

その結果、農産物保管室内の空気を水蒸気含有空気に置換して相対湿度(RH)を90%以上100%以下とした飽和蒸気雰囲気にすることができ、しかも、水蒸気含有空気の対流により保管室内の結露等の液体状の水分を蒸発させることができ、農作物等の蒸散を可及的に抑制するとともに農産物に付着した液体状の水分を残留させることなく農産物の腐敗劣化及び乾燥劣化を防止することができる。 As a result, the air in the agricultural product storage room can be replaced with water vapor-containing air to create a saturated steam atmosphere with a relative humidity (RH) of 90% or more and 100% or less, and the convection of the water vapor-containing air creates a saturated steam atmosphere in the storage room. It is possible to evaporate liquid water such as dew condensation, suppress evaporation of agricultural products as much as possible, and prevent spoilage deterioration and dry deterioration of agricultural products without leaving liquid water adhering to agricultural products. Can be done.

一方で、多孔質シートの位相を波形振幅の略1/2だけずらして波形の方向を谷部と山部とが互いに対峙するように逆位相に整順して配設した異方向フィルタパターンでは、上流側から流入した流入空気が多孔質シート同士の山部と谷部と対峙部分で風圧を最大圧とし、多孔質フィルタブロックに含浸された液体状の水を直接的に下流側へと押出して液体状の水分、すなわちミストを効率的に生成することができる。その結果、農産物保管室内の農作物等、例えば果菜類に直接的に液体状の水分を付与して乾燥劣化を防止できる。 On the other hand, in the different direction filter pattern in which the phase of the porous sheet is shifted by approximately 1/2 of the waveform amplitude and the direction of the waveform is arranged in opposite phase so that the valleys and peaks face each other. , The inflow air flowing in from the upstream side maximizes the wind pressure at the peaks and valleys of the porous sheets, and pushes the liquid water impregnated in the porous filter block directly to the downstream side. It is possible to efficiently generate liquid water, that is, mist. As a result, it is possible to directly impart liquid moisture to agricultural products and the like in the agricultural product storage room, for example, fruits and vegetables, to prevent drying deterioration.

また、請求項2に係る発明によれば、飽和水蒸気発生室に吸収した多孔質フィルタブロックに散水するための散水機構は、農産物保管室の内外側のいずれかに別途配置したドレン循環装置に連通連設すると共に、ドレン循環装置は、ドレンケース内に配設したドレンパイプと、ドレンパイプに高温度外気を送風するための外気送風機構と、ドレンパイプ内へ農産物保管室の冷却に用いる冷却装置からの冷却ドレンを流通させるためのドレン流通路と、ドレンケースの底部に配設すると共にドレンパイプの下方位置に配設し、ドレンパイプの外周で外気から生成した滴下ドレンを集水するためのドレン回収トレイと、ドレン回収トレイから飽和水蒸気発生室内の多孔質フィルタブロックの散水機構へ集水ドレンを送水するためのドレン送水パイプと、より構成したため、ドレン循環装置により外気から得た集水ドレンを多孔質フィルタブロックの散水に利用でき、散水機構に供給される水源からの水を節水できる効果がある。 Further, according to the invention of claim 2, the sprinkling mechanism for sprinkling water on the porous filter block absorbed in the saturated water vapor generation chamber communicates with a drain circulation device separately arranged on either the inside or the outside of the agricultural product storage chamber. Along with the continuous installation, the drain circulation device includes a drain pipe arranged in the drain case, an outside air blowing mechanism for blowing high-temperature outside air to the drain pipe, and a cooling device used to cool the agricultural product storage room into the drain pipe. A drain flow passage for circulating the cooling drain from the water, and a drain pipe located at the bottom of the drain case and below the drain pipe to collect the dripping drain generated from the outside air on the outer circumference of the drain pipe. Since it is composed of a drain recovery tray and a drain water pipe for sending the collected drain from the drain recovery tray to the watering mechanism of the porous filter block in the saturated water vapor generation chamber, the water collected drain obtained from the outside air by the drain circulation device. Can be used for watering the porous filter block, and has the effect of saving water from the water source supplied to the watering mechanism.

すなわち、水道設備など一定の水源が確保できないような例えば船上や車上等の水不足環境であっても、保管室の冷却装置から排出されるドレンを冷却媒体としてドレン流通路を介してドレンパイプ内に流通させ、ドレンパイプの外側で接触する外気を急冷して同外気に含まれる気体状の水分をドレン化して液体状の水に相転移させ、同液体状の水を滴下ドレンとして回収して散水機構へ送水して散水に利用でき、農産物への液体状又は気体状の水分付与に利用できる効果がある。 That is, even in a water shortage environment such as on a ship or on a vehicle where a certain water source cannot be secured such as a water supply facility, the drain discharged from the cooling device of the storage room is used as a cooling medium in the drain pipe through the drain flow passage. The outside air that comes into contact with the outside of the drain pipe is rapidly cooled to drain the gaseous water contained in the outside air and make a phase transition to liquid water, and the same liquid water is recovered as a dropping drain. It can be used for watering by sending water to the watering mechanism, and has the effect of being able to be used for imparting liquid or gaseous water to agricultural products.

また、請求項3に係る発明によれば、飽和水蒸気発生室内で散水機構から多孔質フィルタブロックへ散水される水の温度は、農産物保管室内の温度よりも約10~45℃の高温度に維持することにより飽和水蒸気圧を高めて飽和水蒸気発生室内を急速な加湿状態を可能としたため、装置の稼働初期や農産物の出し入れ作業に伴う飽和水蒸気逸失等、保管室内部が低湿度雰囲気の場合に、保管室の内部環境を飽和水蒸気発生室により可及的速やかに飽和蒸気雰囲気へすることができ、農産物の乾燥劣化の防止を堅実とすることができる効果がある。 Further, according to the invention of claim 3, the temperature of the water sprinkled from the sprinkling mechanism to the porous filter block in the saturated steam generation chamber is maintained at a temperature higher than the temperature in the agricultural product storage chamber by about 10 to 45 ° C. By increasing the saturated water vapor pressure, it is possible to rapidly humidify the saturated water vapor generation room. The internal environment of the storage chamber can be changed to a saturated steam atmosphere as soon as possible by the saturated steam generation chamber, and there is an effect that the prevention of drying deterioration of agricultural products can be steadily prevented.

また、請求項4に係る発明によれば、飽和水蒸気発生室で生成した飽和水蒸気を飽和水蒸気流通路から農産物保管室に流入するに際して、農産物保管室への飽和水蒸気の流入形態を上下の3層流とすると共に、中間層流は高湿度の上下層流に比し低湿度とすることにより、農産物保管室内での結露を可及的に抑えて農産物保管室の床面や壁面における結露現象を回避するように構成したため、高湿度とした上下層流により保管室内を飽和蒸気雰囲気に常時維持して農産物の乾燥劣化を防止できると共に、低湿度とした中間層流により液体状の水分を蒸発してカビや雑菌の繁殖の温床となる結露等の液体状の水分を保管室内に常在させることなく農産物の腐敗劣化を防止できる効果がある。 Further, according to the invention of claim 4, when the saturated steam generated in the saturated steam generation chamber flows into the agricultural product storage chamber from the saturated steam flow passage, the inflow form of the saturated steam into the agricultural product storage chamber is divided into three upper and lower layers. In addition to making it a flow, the middle layer flow has a lower humidity than the upper and lower layer flows with high humidity, so that dew condensation in the agricultural product storage room is suppressed as much as possible and the dew condensation phenomenon on the floor and wall surface of the agricultural product storage room is prevented. Since it is configured to avoid it, it is possible to keep the storage room in a saturated vapor atmosphere at all times by the high humidity upper and lower layer flow and prevent the drying deterioration of agricultural products, and the liquid moisture is evaporated by the low humidity intermediate layer flow. It has the effect of preventing the decay and deterioration of agricultural products without allowing liquid moisture such as dew condensation, which is a hotbed for the growth of mold and germs, to stay in the storage room.

本発明に係る鮮度保持装置の全体の概略的構成を示すシステム図である。It is a system diagram which shows the schematic structure of the whole of the freshness maintenance apparatus which concerns on this invention. 本発明に係る鮮度保持装置の構成を示す模式的側面図である。It is a schematic side view which shows the structure of the freshness maintenance apparatus which concerns on this invention. 本発明に係る飽和水蒸気発生室の構成を示す外観斜視図である。It is an external perspective view which shows the structure of the saturated steam generation chamber which concerns on this invention. 本発明に係る飽和水蒸気発生室の内部構成を示す側面図である。It is a side view which shows the internal structure of the saturated steam generation chamber which concerns on this invention. 本発明に係る飽和水蒸気発生室の内部構成を示す正面図である。It is a front view which shows the internal structure of the saturated steam generation chamber which concerns on this invention. 本発明に係る多孔質フィルタブロックの構成を示す斜視図である。It is a perspective view which shows the structure of the porous filter block which concerns on this invention. 本発明に係る多孔質フィルタブロックの同方向フィルタパターンの構成を示す模式的部分拡大平面図である。It is a schematic partially enlarged plan view which shows the structure of the same direction filter pattern of the porous filter block which concerns on this invention. 本発明に係る多孔質フィルタブロックの異方向フィルタパターンの構成を示す模式的部分拡大平面図である。It is a schematic partially enlarged plan view which shows the structure of the different direction filter pattern of the porous filter block which concerns on this invention. 他の実施例に係る多孔質フィルタブロックの同方向フィルタパターンの構成を示す説明図である。It is explanatory drawing which shows the structure of the same direction filter pattern of the porous filter block which concerns on another Example. 他の実施例に係る多孔質フィルタブロックの異方向フィルタパターンの構成を示す説明図である。It is explanatory drawing which shows the structure of the different direction filter pattern of the porous filter block which concerns on another Example. 他の実施例に係るフィルタ位相変更機構の構成を示す拡大縦断面図である。It is an enlarged vertical sectional view which shows the structure of the filter phase change mechanism which concerns on another Example. 本発明に係るドレン循環装置の構成を示す外観斜視図である。It is an external perspective view which shows the structure of the drain circulation apparatus which concerns on this invention. 本発明に係るドレン循環装置の内部構成を示す模式的斜視図である。It is a schematic perspective view which shows the internal structure of the drain circulation apparatus which concerns on this invention. 本発明に係る飽和水蒸気発生室から農産物保管室へ流入される飽和水蒸気の形態を示す模式的側面図である。It is a schematic side view which shows the form of the saturated water vapor flowing into the agricultural product storage room from the saturated water vapor generation chamber which concerns on this invention.

この発明の要旨は、約0℃~15℃に冷却維持した農産物保管室と飽和水蒸気発生室とを連通して飽和水蒸気発生室で生成した飽和水蒸気を農産物保管室に流入して農産物保管室に収納した果実や野菜等の農産物の各種劣化要因を除去可能に構成した農産物の鮮度保持装置において、飽和水蒸気発生室は、水蒸気生成用ケースと、空気を取込むための空気吸入機構と、空気吸入機構に連通して設けた多孔質フィルタブロックと、多孔質フィルタブロックに散水する散水機構とより構成し、しかも、多孔質フィルタブロックは、多孔質シートを波形に形成して一定の間隔を保持して多数積層して構成すると共に、積層した多孔質シートの波形の方向を同位相に整順して配設した同方向フィルタパターンに構成する場合と、波形振幅の略1/2だけ位相をずらして波形の方向を谷部と山部とが互いに対峙するように逆位相に整順して配設した異方向フィルタパターンに構成する場合と、に変更可能に構成したことを特徴とする農産物の鮮度保持装置を提供することにある。 The gist of the present invention is that the saturated steam generated in the saturated water vapor generation chamber is communicated between the agricultural product storage chamber kept cooled to about 0 ° C. to 15 ° C. and the saturated steam generation chamber, and flows into the agricultural product storage chamber into the agricultural product storage chamber. In the freshness maintenance device of agricultural products configured to be able to remove various deterioration factors of agricultural products such as stored fruits and vegetables, the saturated water vapor generation chamber has a water vapor generation case, an air suction mechanism for taking in air, and air suction. It is composed of a porous filter block provided in communication with the mechanism and a sprinkling mechanism for sprinkling water on the porous filter block, and the porous filter block forms a porous sheet in a corrugated manner and maintains a constant interval. In addition to being configured by stacking a large number of sheets, the phase is shifted by approximately 1/2 of the waveform amplitude when the waveforms of the laminated porous sheets are arranged in the same phase in the same direction filter pattern. Agricultural products characterized in that the direction of the waveform is configured to be a different direction filter pattern arranged in anti-phase so that the valleys and peaks face each other, and the waveform can be changed to. The purpose is to provide a freshness preserving device.

また、飽和水蒸気発生室に吸収した多孔質フィルタブロックに散水するための散水機構は、農産物保管室の内外側のいずれかに別途配置したドレン循環装置に連通連設すると共に、ドレン循環装置は、ドレンケース内に配設したドレンパイプと、ドレンパイプに高温度外気を送風するための外気送風機構と、ドレンパイプ内へ農産物保管室の冷却に用いる冷却装置からの冷却ドレンを流通させるためのドレン流通路と、ドレンケースの底部に配設すると共にドレンパイプの下方位置に配設し、ドレンパイプの外周で外気から生成した滴下ドレンを集水するためのドレン回収トレイと、ドレン回収トレイから飽和水蒸気発生室内の多孔質フィルタブロックの散水機構へ集水ドレンを送水するためのドレン送水パイプと、より構成したことにも特徴を有する。 In addition, the sprinkling mechanism for sprinkling water on the porous filter block absorbed in the saturated water vapor generation chamber is connected to the drain circulation device separately arranged on either the inside or the outside of the agricultural product storage chamber, and the drain circulation device is used. A drain pipe arranged in the drain case, an outside air blowing mechanism for blowing high-temperature outside air to the drain pipe, and a drain for circulating the cooling drain from the cooling device used for cooling the agricultural product storage room into the drain pipe. It is disposed at the bottom of the drain case and the drain pipe, and is located below the drain pipe. It is also characterized by being composed of a drain water pipe for sending the collected drain to the watering mechanism of the porous filter block in the water vapor generation chamber.

また、飽和水蒸気発生室内で散水機構から多孔質フィルタブロックへ散水される水の温度は、農産物保管室内の温度よりも約10~45℃の高温度に維持することにより飽和水蒸気圧を高めて飽和水蒸気発生室内を急速な加湿状態を可能とすることにも特徴を有する。 In addition, the temperature of the water sprinkled from the sprinkling mechanism to the porous filter block in the saturated steam generation chamber is maintained at a temperature higher than the temperature in the agricultural product storage chamber at about 10 to 45 ° C to increase the saturated steam pressure and saturate. It is also characterized by enabling a rapid humidification state in the steam generation chamber.

また、飽和水蒸気発生室で生成した飽和水蒸気を飽和水蒸気流通路から農産物保管室に流入するに際して、農産物保管室への飽和水蒸気の流入形態を上下の3層流とすると共に、中間層流は高湿度の上下層流に比し低湿度とすることにより、農産物保管室内での結露を可及的に抑えて農産物保管室の床面や壁面における結露現象を回避するように構成したことにも特徴を有する。 Further, when the saturated steam generated in the saturated steam generation chamber flows into the agricultural product storage chamber from the saturated steam flow passage, the inflow form of the saturated steam into the agricultural product storage chamber is set to the upper and lower three-layer flow, and the intermediate layer flow is high. It is also characterized by the fact that the humidity is low compared to the upper and lower layers of humidity, so that dew condensation in the agricultural product storage room is suppressed as much as possible and the dew condensation phenomenon on the floor and wall surface of the agricultural product storage room is avoided. Has.

ここで、本発明に係る鮮度保持装置に保管される農産物とは、農業的手法により収穫された作物類全般を意図しており、例えば、花卉類、果実類、葉菜類、根菜類、果菜類が挙げられる。これら農産物は、前述のごとく最適な保湿条件が異なる。 Here, the agricultural products stored in the freshness-maintaining device according to the present invention are intended for all crops harvested by agricultural methods, and for example, flowers, fruits, leafy vegetables, root vegetables, and fruit vegetables. Can be mentioned. As mentioned above, these agricultural products have different optimum moisturizing conditions.

すなわち、本発明に係る鮮度保持装置は、複数の異種作物類からなる農産物を同一保管室内に混同して保管しても、収穫後の農産物に生起する腐敗劣化、及び乾燥劣化と言った劣化要因に対応する保湿条件として、気体状の水分生成と液体状の水分生成とを必要に応じて適宜選択できる構成を備え、農産物の鮮度保持を実現せんとするものである。 That is, in the freshness maintaining device according to the present invention, even if agricultural products composed of a plurality of different crops are confused and stored in the same storage room, deterioration factors such as rotting deterioration and drying deterioration that occur in the agricultural products after harvesting occur. As a moisturizing condition corresponding to the above, it is provided with a configuration in which gaseous water generation and liquid water generation can be appropriately selected as needed, and it is intended to maintain the freshness of agricultural products.

保管室は、農産物を収納する内部空間を有した冷蔵・保冷施設であればよく、例えば、冷凍・冷蔵機能を備える輸送コンテナやトラックであってもよい。 The storage room may be a refrigerating / refrigerating facility having an internal space for storing agricultural products, and may be, for example, a transport container or a truck having a refrigerating / refrigerating function.

保管室の内容積は特に限定されることはないが、例えば内容積を大型のもので約1400~1500m3、中型のもので約500~700m3、小型のもので約10~50m3のものを採用することができる。また、保管室は、高さ寸法が約3~7mであれば、対流空気の庫内循環が行われやすくなる。また、大型の保管室の場合には、同保管室内を相対湿度90~100%の飽和雰囲気に迅速にすべく、後述する飽和水蒸気発生室を2つ以上設置する。 The internal volume of the storage room is not particularly limited, but for example, the internal volume is about 1400-1500 m 3 for large ones, about 500-700 m 3 for medium-sized ones, and about 10-50 m 3 for small ones. Can be adopted. Further, if the height of the storage chamber is about 3 to 7 m, convection air can be easily circulated in the refrigerator. In the case of a large storage room, two or more saturated steam generation rooms, which will be described later, will be installed in order to quickly bring the storage room into a saturated atmosphere with a relative humidity of 90 to 100%.

保管室の温度は、収納保管する農産物の種類により異なるが、各種作物類に略共通した適性保存温度帯である約0~15℃に設定する。 The temperature of the storage room varies depending on the type of agricultural products to be stored and stored, but it is set to about 0 to 15 ° C, which is an appropriate storage temperature range that is almost common to various crops.

飽和水蒸気発生室は、生成した水蒸気含有空気が保管室内全域に対流しやすい場所に設置されていればよく、例えば、保管室の床面に載置したり、壁面や天井面に配設することとしてもよい。 The saturated water vapor generation chamber may be installed in a place where the generated water vapor-containing air can easily convection in the entire storage room. For example, the saturated water vapor generation chamber may be placed on the floor surface of the storage chamber or arranged on a wall surface or a ceiling surface. May be.

また、飽和水蒸気発生室の空気流入機構は、多孔質フィルタブロックを通過可能な風速を実現する気流を発生させるものであればよく、例えばその風速は0.5m/s~7.0m/sである。 Further, the air inflow mechanism of the saturated steam generation chamber may be any one that generates an air flow that realizes a wind speed that can pass through the porous filter block, and the wind speed is, for example, 0.5 m / s to 7.0 m / s.

空気流入機構による気流の風速が、0.5m/sより遅いと、飽和水蒸気発生室内に流入する空気が多孔質フィルタブロックを通過することができず、8.0m/sより速いと多孔質フィルタブロックが風圧で損傷する虞がある。 If the wind speed of the airflow by the air inflow mechanism is slower than 0.5 m / s, the air flowing into the saturated water vapor generation chamber cannot pass through the porous filter block, and if it is faster than 8.0 m / s, the porous filter block will open. There is a risk of damage due to wind pressure.

従って、空気流入機構は、気流の風速を0.5m/s~8.0m/s、より好ましくは2.0m/s~6.5m/sを生起するものを採用することで、後述する同方向フィルタパターン及び異方向フィルタパターンの多孔質フィルタブロックを流入空気が通過することができ、気体状の水分を含む水蒸気含有空気を生成したり、液体状の水分を含むミスト含有空気を生成することができる。 Therefore, by adopting an air inflow mechanism that causes a wind speed of 0.5 m / s to 8.0 m / s, more preferably 2.0 m / s to 6.5 m / s, the same-direction filter pattern described later and the air inflow mechanism can be used. Inflow air can pass through the porous filter block of the different direction filter pattern, and water vapor-containing air containing gaseous moisture can be generated, or mist-containing air containing liquid moisture can be generated.

また、飽和水蒸気発生室から生成される飽和水蒸気、すなわち水蒸気含有空気の生成量は、約5~40分で保管室内を相対湿度90~100%にできる量であればよい。 Further, the amount of saturated water vapor generated from the saturated water vapor generation chamber, that is, the amount of water vapor-containing air generated, may be such that the relative humidity in the storage chamber can be 90 to 100% in about 5 to 40 minutes.

すなわち、水蒸気含有空気の生成量は、ファンによる風量q(Nm3/min)と保管室の内容積Vとの関係で決定される。本実施例において、ファンによる風量qと保管室の内容積V(m3)との関係は、凡そ0.004≦V/q≦0.5となればよい。 That is, the amount of water vapor-containing air generated is determined by the relationship between the air volume q (Nm 3 / min) by the fan and the internal volume V of the storage chamber. In this embodiment, the relationship between the air volume q by the fan and the internal volume V (m 3 ) of the storage chamber may be approximately 0.004 ≦ V / q ≦ 0.5.

また、多孔質フィルタブロックは、その表面積を可及的拡大させる構造としている。すなわち多孔質フィルタブロックの表面積は、1.0~3.0m2、より好ましくは1.5~2.8m2とすることで、吸水保持する水分量と同水分と流通空気との接触の機会を増して、流通空気の流速や保管室の水蒸気含有空気置換回数に応じた水蒸気含有空気を生成できる。 In addition, the porous filter block has a structure that expands the surface area as much as possible. That is, by setting the surface area of the porous filter block to 1.0 to 3.0 m 2 , more preferably 1.5 to 2.8 m 2 , the amount of water absorbed and retained and the chance of contact between the same water and the flowing air are increased, and the circulating air is increased. It is possible to generate water vapor-containing air according to the flow velocity and the number of times water vapor-containing air is replaced in the storage chamber.

多孔質フィルタブロックの素材、すなわち多孔質シートの素材は、水分を保持できるものであれば疎水性繊維又は/及び親水性繊維等であってもよく、例えば、綿、麻、パルプ、絹、塩化ビニール、ナイロン、レーヨン、ポリエステル、ポリプロピレン、アクリル、ビニロン、ゼオライト、シリカゲル、活性炭等のいずれか又はこれらの複合繊維を採用することができる。 The material of the porous filter block, that is, the material of the porous sheet may be hydrophobic fiber and / or hydrophilic fiber as long as it can retain water, and may be, for example, cotton, linen, pulp, silk, chloride. Any one of vinyl, nylon, rayon, polyester, polypropylene, acrylic, vinylon, zeolite, silica gel, activated charcoal and the like, or a composite fiber thereof can be adopted.

以下、本実施例に係る農産物の鮮度保持装置(以下、単に鮮度保持装置と称す。)について、図面を参照しながら詳説する。図1は鮮度保持装置の全体の概略的構成を示すシステム図、図2は鮮度保持装置の構成を示す模式的側面図、図3(a)及び図3(b)はそれぞれ飽和水蒸気発生室の構成を示す正面側及び背面側の外観斜視図、図4及び図5はそれぞれ飽和水蒸気発生室の内部構成を示す側面図及び正面図である。 Hereinafter, the freshness-maintaining device for agricultural products (hereinafter, simply referred to as a freshness-maintaining device) according to this embodiment will be described in detail with reference to the drawings. FIG. 1 is a system diagram showing an overall schematic configuration of a freshness-maintaining device, FIG. 2 is a schematic side view showing the configuration of a freshness-maintaining device, and FIGS. 3 (a) and 3 (b) are saturated steam generation chambers, respectively. Front side and back side external perspective views showing the configuration, FIGS. 4 and 5 are side views and front views showing the internal configuration of the saturated water vapor generation chamber, respectively.

なお、以下において、「乾燥空気」とは保管室内において冷却された空気であって飽和水蒸気発生室内を未だ通過していない状態の空気を意図する。また、飽和水蒸気発生室内に取り込まれた「乾燥空気」に気体状の水分(水蒸気)が付与された状態の空気を「湿り空気」と称し、この湿り空気のうち「飽和空気」を含む相対湿度を90%以上100%以下とした空気を「水蒸気含有空気」と称する。また、飽和水蒸気発生室内に取り込まれた「乾燥空気」に液体状の水分(ミスト)が付与された状態の空気を「ミスト含有空気」と称する。なお、飽和水蒸気発生室2内に取り込まれる空気は、「乾燥空気」だけでなく「湿り空気」や「水蒸気含有空気」、「ミスト含有空気」を含む。 In the following, "dry air" is intended to be air that has been cooled in the storage chamber and has not yet passed through the saturated steam generation chamber. In addition, the air in which gaseous moisture (water vapor) is added to the "dry air" taken into the saturated water vapor generation chamber is called "moist air", and the relative humidity including the "saturated air" in this moist air. Air having a value of 90% or more and 100% or less is referred to as "water vapor-containing air". Further, the air in which liquid moisture (mist) is added to the "dry air" taken into the saturated water vapor generation chamber is referred to as "mist-containing air". The air taken into the saturated water vapor generation chamber 2 includes not only "dry air" but also "moist air", "water vapor-containing air", and "mist-containing air".

[1.鮮度保持装置の概略的構成]
鮮度保持装置Aは、図1及び図2に示すように概略的には約0℃~15℃に冷却維持した農産物保管室1と飽和水蒸気発生室2とを連通し、飽和水蒸気発生室2で生成した飽和水蒸気(水蒸気含有空気G3)やミスト(ミスト含有空気G4)を農産物保管室1に流入して農産物保管室1に収納した果実や野菜等の農産物Nの各種劣化要因を除去可能に構成している。
[1. Schematic configuration of freshness maintenance device]
As shown in FIGS. 1 and 2, the freshness maintaining device A communicates the agricultural product storage chamber 1 and the saturated steam generating chamber 2 which have been cooled and maintained at about 0 ° C to 15 ° C, and is used in the saturated steam generating chamber 2. It is configured to be able to remove various deterioration factors of agricultural products N such as fruits and vegetables stored in the agricultural product storage room 1 by flowing the generated saturated water vapor (water vapor-containing air G3) and mist (mist-containing air G4) into the agricultural product storage room 1. is doing.

保管室1は、農産物Nを載置収納可能な所定空間を有した方形状の保管室本体10と、同保管室本体10内に設置され、農産物Nの適正保存温度帯(約0~15℃)に冷却するための冷却装置11と、で構成している。冷却装置11は、保管室本体10の搬入搬出用扉12と対向する奥側壁部の天井面に垂設している。 The storage room 1 is installed in a rectangular storage room main body 10 having a predetermined space in which the agricultural product N can be placed and stored, and in the storage room main body 10, and has an appropriate storage temperature range (about 0 to 15 ° C.) for the agricultural product N. ), And a cooling device 11 for cooling. The cooling device 11 is vertically installed on the ceiling surface of the back side wall portion facing the carry-in / carry-out door 12 of the storage chamber main body 10.

保管室本体10の一側には農産物Nの搬入搬出用扉12が開閉自在に設けられており、搬入搬出用扉12近傍の保管室1内後部には飽和水蒸気発生室2が設置されている。 A door 12 for loading and unloading agricultural products N is provided on one side of the storage chamber main body 10 so as to be openable and closable, and a saturated water vapor generation chamber 2 is installed in the rear part of the storage chamber 1 near the door 12 for loading and unloading. ..

飽和水蒸気発生室2は、後述する多孔質フィルタブロック5の各種フィルタパターン5A、5Bに応じて、農産物Nの適性保存温度帯(約0~15℃)における飽和蒸気圧下の乾燥空気G1に対して、気体状の水分を付与することで水蒸気含有空気G3を生成したり、液体状の水分飛沫、すなわちミストを付与することでミスト含有空気G4を生成するように構成している。 The saturated steam generation chamber 2 is used for the dry air G1 under the saturated steam pressure in the suitable storage temperature range (about 0 to 15 ° C.) of the agricultural product N according to various filter patterns 5A and 5B of the porous filter block 5 described later. , It is configured to generate water vapor-containing air G3 by applying gaseous water, or to generate mist-containing air G4 by applying liquid water droplets, that is, mist.

かかる飽和水蒸気発生室2は、水蒸気生成用ケース3と、空気を取込むための空気吸入機構4と、空気吸入機構4に連通して設けた多孔質フィルタブロック5と、多孔質フィルタブロック5に散水する散水機構6と、を備える。 The saturated steam generation chamber 2 is provided in a steam generation case 3, an air suction mechanism 4 for taking in air, a porous filter block 5 provided in communication with the air suction mechanism 4, and a porous filter block 5. A water sprinkling mechanism 6 for sprinkling water is provided.

水蒸気生成用ケース3には、図3(a)~図5に示すように所定空間を有する縦長箱型状であって、その内部に水蒸気含有空気G3やミスト含有空気G4を生成するための各種機能部材を配設している。なお、水蒸気生成用ケース3の底部の4つの角部には、飽和水蒸気発生室2を移動可能とするキャスター30が4つ取り付けられている。 As shown in FIGS. 3A to 5, the water vapor generation case 3 has a vertically long box shape having a predetermined space, and various types for generating water vapor-containing air G3 and mist-containing air G4 inside thereof. A functional member is arranged. In addition, four casters 30 that make the saturated steam generation chamber 2 movable are attached to the four corners of the bottom of the steam generation case 3.

水蒸気生成用ケース3の寸法は、飽和水蒸気発生室2の所望とする大きさに合わせて適宜選択でき、例えば高さ約60~130cm、幅約40~80cm、奥行約30~50cmとすると利便性や気化効率の観点で好ましい。なお、本実施例の水蒸気生成用ケース3の寸法は、高さ約120cm、幅約80cm、奥行約40cmである。 The dimensions of the steam generation case 3 can be appropriately selected according to the desired size of the saturated steam generation chamber 2. For example, it is convenient to set the height to about 60 to 130 cm, the width to about 40 to 80 cm, and the depth to about 30 to 50 cm. It is preferable from the viewpoint of steaming efficiency. The dimensions of the steam generation case 3 of this embodiment are a height of about 120 cm, a width of about 80 cm, and a depth of about 40 cm.

空気吸入機構4は、水蒸気生成用ケース3外の空気を水蒸気生成用ケース3内に吸入するためにケース一側面に形成した空気吸入孔41と、ケース内空気を保管室1へ排出するためにケース他側面に形成した空気排出孔42と、空気排出孔42側に設けた送風ファン43とで構成している。 The air suction mechanism 4 has an air suction hole 41 formed on one side of the case for sucking the air outside the steam generation case 3 into the steam generation case 3, and for discharging the air inside the case to the storage chamber 1. It is composed of an air discharge hole 42 formed on the other side surface of the case and a blower fan 43 provided on the air discharge hole 42 side.

空気吸入孔41は、図3(b)に示すようにケース一側面としたケース背面31の上半部に矩形窓状に貫通して形成している。 As shown in FIG. 3B, the air suction hole 41 is formed so as to penetrate the upper half of the case back surface 31 as one side surface of the case in a rectangular window shape.

具体的には、ケースの背面開口に着脱可能としたケース背面蓋31aをケース背面31とし、空気吸入孔41は、同ケース背面蓋31aの上半部でケース背面31の面積に対して開口面積を約1/4~1/3とするように開口して形成している。 Specifically, the case back lid 31a that can be attached to and detached from the back opening of the case is used as the case back 31, and the air suction hole 41 is the opening area of the upper half of the case back lid 31a with respect to the area of the case back 31. Is formed by opening so as to be about 1/4 to 1/3.

また、空気排出孔42は、図3(a)に示すように空気吸入孔41に対応するように、ケース他側面であるケース正面32の上半部に矩形窓状に貫通して形成している。 Further, the air discharge hole 42 is formed so as to penetrate the upper half of the case front 32, which is the other side surface of the case, in a rectangular window shape so as to correspond to the air suction hole 41 as shown in FIG. 3 (a). There is.

具体的には、空気排出孔42は、空気吸入孔41の開口面積より狭い開口面積とし、ケース正面32の上半部でケース正面32の面積に対して開口面積を約1/5~1/4とするように開口して形成している。なお、空気排出孔42には上下方向に所定間隔を隔てて複数の帯板状の送風ガイド42aが架設されており、送風方向を調節を可能としている。 Specifically, the air discharge hole 42 has an opening area narrower than the opening area of the air suction hole 41, and the opening area of the upper half of the case front 32 is about 1/5 to 1 / of the area of the case front 32. It is formed by opening so as to be 4. A plurality of strip-shaped blower guides 42a are erected in the air discharge hole 42 at predetermined intervals in the vertical direction, so that the blower direction can be adjusted.

また、送風ファン43は、水蒸気生成用ケース3内側で空気排出孔42の手前側位置に設けられている。 Further, the blower fan 43 is provided at a position on the front side of the air discharge hole 42 inside the steam generation case 3.

送風ファン43は、図4に示すように駆動部44aを内蔵して回転駆動する円柱状のハブ44と、同ハブ44の外周廻りに所定間隔を隔てて設けられてハブ44と一体回転するプロペラ45と、で構成している。なお、駆動部44aは、図3(a)に示すようにケース正面32の空気排出孔42の近傍位置に設けたスイッチ46と接続して停止・駆動操作可能としている。 As shown in FIG. 4, the blower fan 43 has a columnar hub 44 having a built-in drive unit 44a and rotationally driven, and a propeller provided around the outer periphery of the hub 44 at predetermined intervals and rotating integrally with the hub 44. It is composed of 45 and. As shown in FIG. 3A, the drive unit 44a is connected to a switch 46 provided near the air discharge hole 42 on the front surface 32 of the case so that the drive unit 44a can be stopped and driven.

多孔質フィルタブロック5は、詳細については後述するが、水蒸気生成用ケース3内部において、空気吸入孔41と空気排出孔42との間で空気吸入孔41を略閉塞する位置且つ送風ファン43の後方位置にブロック面を空気吸入孔41と空気排出孔42に対し面対向して配設している。 Although the details of the porous filter block 5 will be described later, the position inside the steam generation case 3 at a position where the air suction hole 41 is substantially closed between the air suction hole 41 and the air discharge hole 42 and behind the blower fan 43. The block surface is arranged at the position so as to face the air suction hole 41 and the air discharge hole 42.

かかる多孔質フィルタブロック5の上下方位置には、多孔質フィルタブロック5に含浸させる水を供給するための散水機構6が配設されている。 At the upper and lower positions of the porous filter block 5, a sprinkling mechanism 6 for supplying water to be impregnated in the porous filter block 5 is arranged.

散水機構6は、図4及び図5に示すように多孔質フィルタブロック5の下方位置でケース底部33に配設した貯水槽60と、多孔質フィルタブロック5の上方位置に配設した散水パイプ61と、送水ポンプ62を介して貯水槽60から散水パイプ61へ水を引上げ循環するための循環パイプ63と、で構成している。 As shown in FIGS. 4 and 5, the watering mechanism 6 includes a water storage tank 60 arranged at the bottom 33 of the case at a position below the porous filter block 5, and a watering pipe 61 arranged at an upper position of the porous filter block 5. And a circulation pipe 63 for pulling up and circulating water from the water storage tank 60 to the sprinkler pipe 61 via the water pump 62.

貯水槽60は、上部開口の有底箱型状であって、多孔質フィルタブロック5に供給する水を所定容量貯溜すると共に多孔質フィルタブロック5を流下してきた余剰水を受けて貯溜する。なお、貯水槽60の貯溜容量は、約2~4Lである。 The water storage tank 60 has a bottomed box shape with an upper opening, and stores water supplied to the porous filter block 5 in a predetermined volume, and also receives and stores excess water flowing down the porous filter block 5. The storage capacity of the water tank 60 is about 2 to 4 L.

貯水槽60の底部には水蒸気生成用ケース3外部へ貯水槽60内の水を排水する排水用孔60aを貫設している。排水用孔60aの上側縁部には貯水槽60の周壁高さより低い高さの水位調節筒60bを立設すると共に排水用孔60aの下側縁部には水位調節筒60bと連通して貯水槽60の余分な水を排水する排水パイプ60cを連設しており、貯水槽60の貯溜水のオーバーフローを防止して一定水位に保持することを可能としている。 At the bottom of the water storage tank 60, a drainage hole 60a for draining the water in the water storage tank 60 is provided to the outside of the steam generation case 3. A water level adjusting cylinder 60b having a height lower than the peripheral wall height of the water storage tank 60 is erected on the upper edge of the drainage hole 60a, and water is stored in communication with the water level adjusting cylinder 60b on the lower edge of the drainage hole 60a. A drainage pipe 60c for draining excess water in the tank 60 is continuously provided, and it is possible to prevent the stored water in the water storage tank 60 from overflowing and keep the water level constant.

貯水槽60の上方位置には、基端で給水源に接続して貯水槽60に水を供給するための給水パイプ60dが配設されている。給水パイプ60dの中途部には、給水・止水を行うための止水弁が貯水槽60内のフロート60eの浮沈動作に連動して開閉操作可能に設けられている。 A water supply pipe 60d for supplying water to the water tank 60 by connecting to a water supply source at the base end is arranged above the water tank 60. A water stop valve for supplying and stopping water is provided in the middle of the water supply pipe 60d so as to be openable and closable in conjunction with the floating and sinking operation of the float 60e in the water storage tank 60.

散水パイプ61は、一端を閉塞して基端で循環パイプ63と接続し、多孔質フィルタブロック5の上端面に対して平行に伸延した細長管であって、外周下部で長手方向に沿って複数の散水孔を貫設している。 The sprinkler pipe 61 is an elongated pipe having one end closed and connected to the circulation pipe 63 at the base end and extended parallel to the upper end surface of the porous filter block 5, and is a plurality of elongated pipes along the longitudinal direction at the lower part of the outer periphery. The sprinkler hole is pierced.

循環パイプ63は、基端で貯水槽60内底部に載置した送水ポンプ62に接続して立設している。なお、送水ポンプ62は、図3(a)に示すようにケース正面32の空気排出孔42の近傍位置に設けたスイッチ64と接続している。 The circulation pipe 63 is erected by being connected to a water pump 62 placed on the inner bottom of the water tank 60 at the base end. As shown in FIG. 3A, the water pump 62 is connected to a switch 64 provided near the air discharge hole 42 on the front surface 32 of the case.

ケース背面31(ケース背面蓋31a)の内側面には、図3及び図4に示すようにケース背面31に設けた空気吸入孔41を密封するようにして多孔質フィルタブロック5を嵌着設置するためのフィルタ設置部34を設けている。 As shown in FIGS. 3 and 4, a porous filter block 5 is fitted and installed on the inner surface of the case back surface 31 (case back cover 31a) so as to seal the air suction hole 41 provided in the case back surface 31. A filter installation unit 34 for this purpose is provided.

フィルタ設置部34は、多孔質フィルタブロック5の外形に沿う正面視上方開口コ字状に折曲した帯板枠体であり、ケース背面31から内方に向けて突出して形成している。フィルタ設置部34の底部には、散水機構6から給水され多孔質フィルタブロック5に含浸されなかった余剰水を貯水槽60へ排出する排水孔を複数貫通して形成している。 The filter installation portion 34 is a strip frame body that is bent in a U-shape with an upper opening in front view along the outer shape of the porous filter block 5, and is formed so as to project inward from the back surface 31 of the case. The bottom of the filter installation portion 34 is formed by penetrating a plurality of drain holes for discharging excess water supplied from the sprinkling mechanism 6 and not impregnated into the porous filter block 5 to the water storage tank 60.

[2.多孔質フィルタブロックの構成]
次に、多孔質フィルタブロック5の構成について詳説する。図6(a)及び図6(b)は多孔質フィルタブロックの同方向フィルタパターン及び異方向フィルタパターンにおける構成を示す斜視図、図7及び図8は多孔質フィルタブロックの同方向フィルタパターン及び異方向フィルタパターンの構成を示す模式的部分拡大平面図である。
[2. Porous filter block configuration]
Next, the configuration of the porous filter block 5 will be described in detail. 6 (a) and 6 (b) are perspective views showing the configurations of the porous filter block in the same direction filter pattern and the different direction filter pattern, and FIGS. 7 and 8 show the same direction filter pattern and the different direction of the porous filter block. It is a schematic partially enlarged plan view which shows the structure of a direction filter pattern.

多孔質フィルタブロック5は、多孔質シート50、50’を波形に形成して一定の間隔を保持して多数積層し、多数の多孔質シート50、50’の波形上端面を散水機構6からの散水受け面とすると共に、多孔質シート50、50’のうち最上流側に配置される多孔質シート50の波形後面を空気吸入孔41から流入する空気の空気受け面に構成している。 In the porous filter block 5, a large number of porous sheets 50, 50'are formed in a corrugated manner and laminated at regular intervals, and a large number of porous sheets 50, 50' are laminated on the corrugated upper end surface from the watering mechanism 6. In addition to serving as a watering receiving surface, the corrugated rear surface of the porous sheet 50 arranged on the most upstream side of the porous sheets 50 and 50'is configured as an air receiving surface for air flowing in from the air suction hole 41.

多孔質フィルタブロック5を構成する多孔質シート50は、同一の形状及び大きさであって、左右長手方向に山折りと谷折りを交互に繰返し折曲し、複数の山部51と複数の谷部52を有した一定振幅の波形状(プリーツ状)に形成している。 The porous sheet 50 constituting the porous filter block 5 has the same shape and size, and is repeatedly folded in the left-right longitudinal direction by alternately repeating mountain folds and valley folds, and has a plurality of mountain portions 51 and a plurality of valleys. It is formed in a wave shape (pleated shape) having a constant amplitude and having a portion 52.

多孔質シート50は、疎水性繊維と親水性繊維とを混紡して編成したものであり、複雑に織合わさった互いの繊維間に多数の微細孔を有している。 The porous sheet 50 is formed by blending and knitting hydrophobic fibers and hydrophilic fibers, and has a large number of micropores between the fibers that are intricately woven together.

本実施例の多孔質シート50は、寸法として幅約4~7m・高さ約35~40cm・厚み約0.5~2.0mmとし、素材として塩化ビニールと難溶パルプとの配合比を約1:1とし、空隙率を約15~55vol%とし、微細孔の孔径を約10~900μmとしたものを採用している。 The porous sheet 50 of this embodiment has dimensions of about 4 to 7 m in width, about 35 to 40 cm in height, and about 0.5 to 2.0 mm in thickness, and has a mixing ratio of vinyl chloride and poorly soluble pulp as a material of about 1: 1. The porosity is about 15 to 55 vol%, and the pore diameter of the micropores is about 10 to 900 μm.

多孔質シート50の表面には、多孔質シート50と同じ一定振幅の波形状に形成した波形ワイヤ53が多孔質シート50の左右長手方向に沿って連設されており、多孔質シート50の波形形状を保形している。なお、波形ワイヤ53の素材は、保形性に優れたものであればよく、例えば樹脂製や金属製である。 On the surface of the porous sheet 50, corrugated wires 53 formed in a wave shape having the same constant amplitude as the porous sheet 50 are continuously provided along the left-right longitudinal direction of the porous sheet 50, and the corrugated surface of the porous sheet 50. The shape is maintained. The material of the corrugated wire 53 may be any material as long as it has excellent shape retention, and is, for example, made of resin or metal.

多孔質フィルタブロック5は、空気流通方向の上流側の多孔質シート50の波形における複数の谷部52同士によりなす仮想後側平面55と、下流側の多孔質シート50’の波形における複数の山部51’同士によりなす仮想前側平面54’と、を面当接させるように、多数の多孔質シート50、50’を前後方向に配設して構成している。 The porous filter block 5 has a virtual rear plane 55 formed by a plurality of valleys 52 in the waveform of the porous sheet 50 on the upstream side in the air flow direction, and a plurality of peaks in the waveform of the porous sheet 50'on the downstream side. A large number of porous sheets 50, 50'are arranged in the front-rear direction so as to be in surface contact with the virtual front plane 54'formed by the portions 51'.

また、多孔質フィルタブロック5の形態は、図6(a)に示すように積層した多数の多孔質シート50、50’の波形の方向を同位相に整順して配設した同方向フィルタパターン5Aと、図6(b)に示すように波形振幅の略1/2だけ位相をずらして波形の方向を谷部52と山部51’とが互いに対峙するように逆位相に整順して配設した異方向フィルタパターン5Bとがある。 Further, the form of the porous filter block 5 is a co-directional filter pattern in which the corrugated directions of a large number of laminated porous sheets 50, 50'are arranged in the same phase in order as shown in FIG. 6 (a). As shown in FIG. 6 (b), the phase of 5A is shifted by approximately 1/2 of the waveform amplitude, and the direction of the waveform is ordered in opposite phases so that the valley portion 52 and the mountain portion 51'face each other. There is an arranged different direction filter pattern 5B.

同方向フィルタパターン5Aの多孔質フィルタブロック5は、図7に示すように平面視で一方の多孔質シート50の位相を他方の多孔質シート50’の位相と同位相として互いの対向面同士の間に平面視略蛇形状の送風空間S1を形成する。 As shown in FIG. 7, the porous filter block 5 of the same-direction filter pattern 5A has the phase of one porous sheet 50 in phase with the phase of the other porous sheet 50'in a plan view, and the facing surfaces of each other are opposed to each other. A blower space S1 having a substantially serpentine shape in a plan view is formed between them.

具体的には、同方向フィルタパターン5Aの多孔質フィルタブロック5は、図7に示すように上流側の多孔質シート50の複数の山部51と下流側の多孔質シート50’の複数の山部51’を対向させると共に上流側の多孔質シート50の複数の谷部52と下流側の多孔質シート50’の複数の谷部52’とを対向させて、上流側の多孔質シート50と下流側の多孔質シート50’との間に平面視略蛇形状の送風空間S1を連続的に形成する。なお、送風空間S1の幅員(2つの多孔質シート50、50’の対向面同士の間隔幅)は、約5~15mmである。 Specifically, as shown in FIG. 7, the porous filter block 5 of the same-direction filter pattern 5A has a plurality of peaks 51 of the porous sheet 50 on the upstream side and a plurality of peaks of the porous sheet 50'on the downstream side. The portions 51'are opposed to each other, and the plurality of valley portions 52 of the porous sheet 50 on the upstream side and the plurality of valley portions 52'of the porous sheet 50'on the downstream side are opposed to each other with the porous sheet 50 on the upstream side. A blower space S1 having a substantially serpentine shape in a plan view is continuously formed between the porous sheet 50'on the downstream side and the porous sheet 50'. The width of the ventilation space S1 (the width between the facing surfaces of the two porous sheets 50 and 50') is about 5 to 15 mm.

また、異方向フィルタパターン5Bの多孔質フィルタブロック5は、図8に示すように平面視で一方の多孔質シート50の位相を他方の多孔質シート50’の位相に対して左右方向に略1/2振幅分ずらして互いに逆位相として互いの対向面同士の間に平面視略ひし形状の閉塞空間S2を複数区画して形成する。 Further, in the porous filter block 5 of the different direction filter pattern 5B, as shown in FIG. 8, the phase of one porous sheet 50 is substantially 1 in the left-right direction with respect to the phase of the other porous sheet 50'in a plan view. It is formed by partitioning a plurality of closed spaces S2 having a substantially diamond shape in a plan view between the facing surfaces of each other so as to be out of phase with each other by shifting by 2 amplitudes.

具体的には、異方向フィルタパターン5Bの多孔質フィルタブロック5は、上流側の多孔質シート50の複数の谷部52と下流側の多孔質シート50’の複数の山部51’と対峙当接させると共に上流側の多孔質シート50の複数の山部51と下流側の多孔質シート50’の複数の谷部52’とを対向させて、上流側の多孔質シート50と下流側の多孔質シート50’との間で、平面視略ひし形状の閉塞空間S2を左右方向に沿って複数区画して形成する。 Specifically, the porous filter block 5 of the different direction filter pattern 5B confronts a plurality of valley portions 52 of the porous sheet 50 on the upstream side and a plurality of peak portions 51'of the porous sheet 50'on the downstream side. The plurality of peaks 51 of the porous sheet 50 on the upstream side and the plurality of valleys 52'of the porous sheet 50'on the downstream side are opposed to each other so that the porous sheet 50 on the upstream side and the porous sheet 50 on the downstream side are in contact with each other. A plurality of closed spaces S2 having a substantially diamond-shaped plan view are formed between the quality sheet 50'and the quality sheet 50'.

また、多孔質フィルタブロック5は、同方向フィルタパターン5Aに構成する場合と、異方向フィルタパターン5Bに構成する場合とを変更調整自在に構成している。 Further, the porous filter block 5 is configured to be freely changeable and adjustable between the case of being configured in the same-direction filter pattern 5A and the case of being configured in the different-direction filter pattern 5B.

すなわち、多孔質フィルタブロック5は、同方向フィルタパターン5Aと異方向フィルタパターン5Bとの各形態変化を可能とすべく、それぞれ分離可能な2つ以上の多孔質シート50、50’の仮想後側平面55と仮想前側平面54’との面当接状態を保持しつついずれか一方の多孔質シート50’を平行移動し、多孔質シート50、50’同士を相対的に同位相・逆位相に姿勢変位するフィルタ位相変更機構56を備えている。 That is, the porous filter block 5 is a virtual rear side of two or more porous sheets 50, 50'that can be separated from each other so as to enable each morphological change between the isodirectional filter pattern 5A and the different direction filter pattern 5B. While maintaining the surface contact state between the plane 55 and the virtual front plane 54', one of the porous sheets 50'is translated and the porous sheets 50 and 50'are relatively in phase and opposite to each other. It is provided with a filter phase changing mechanism 56 that displaces the attitude.

フィルタ位相変更機構56は、図6(a)~図7に示すように多孔質フィルタブロック5を構成する多数の多孔質シート50、50’において、一方の多孔質シート50を支持して同シートを不動状態に定置固定するシート固定部57と、他方の多孔質シート50’を支持して一方の多孔質シート50の位相を基準に他方の多孔質シート50'の位相を同位相・逆位相に変位移動するシート移動部58と、で構成している。 As shown in FIGS. 6A to 7, the filter phase changing mechanism 56 supports one of the porous sheets 50 in a large number of porous sheets 50, 50 ′ constituting the porous filter block 5. The phase of the other porous sheet 50'is the same phase and the opposite phase with respect to the phase of the sheet fixing portion 57 that stationaryly fixes the other porous sheet 50'and the other porous sheet 50'. It is composed of a seat moving portion 58 that is displaced and moved to.

なお、シート移動部58は、波形振幅の略1/2分スライド作動するものであればよく、例えばラック・ピニオン機構やスライドレール機構、回転軸機構等で構成することができる。また、シート移動部58は、制御部によって波形振幅の略1/2分、間欠的にスライド作動するように制御している。 The seat moving portion 58 may be any as long as it slides for approximately 1/2 minute of the waveform amplitude, and may be composed of, for example, a rack and pinion mechanism, a slide rail mechanism, a rotary shaft mechanism, or the like. Further, the seat moving unit 58 is controlled by the control unit so as to intermittently slide for about 1/2 of the waveform amplitude.

特に本実施例のフィルタ位相変更機構56は、図6(a)~図7に示すように前述のフィルタ設置部34を各多孔質シート50、50’ごとに前後方向に分離し、フィルタ設置部34の後半部をシート固定部57とし、フィルタ設置部34の前半部をシート移動部58に構成している。 In particular, in the filter phase changing mechanism 56 of the present embodiment, as shown in FIGS. 6A to 7, the above-mentioned filter installation portion 34 is separated into each of the porous sheets 50 and 50'in the front-rear direction, and the filter installation portion is divided. The latter half of the 34 is a seat fixing portion 57, and the front half of the filter installing portion 34 is a seat moving portion 58.

具体的には、フィルタ位相変更機構56は、図4、図6(a)及び図6(b)に示すように正面視上方開口のコ字状帯板枠体としたフィルタ設置部34において、ケース背面31から内方突出してケースに一体の後半部を上流側の多孔質シート50を嵌着して定置固定するシート固定部57に構成すること共に、前半部を下流側の多孔質シート50’を嵌着して上流側の多孔質シート50の位相に対して下流側の多孔質シート50’の位相を左右方向に波形振幅の略1/2スライドするシート移動部58に構成している。 Specifically, the filter phase changing mechanism 56 is provided in the filter installation portion 34 having a U-shaped strip frame body having an upper opening in front view as shown in FIGS. 4, 6 (a) and 6 (b). The latter half of the case, which protrudes inward from the back surface 31 of the case and is integrated with the case, is configured as a sheet fixing portion 57 in which the porous sheet 50 on the upstream side is fitted and fixed, and the front half is the porous sheet 50 on the downstream side. The sheet moving portion 58 is configured to slide the phase of the porous sheet 50 on the downstream side by approximately 1/2 of the waveform amplitude in the left-right direction with respect to the phase of the porous sheet 50 on the upstream side by fitting'. ..

また、シート移動部58は、いわゆるラック・ピニオン機構を採用しており、水蒸気生成用ケース3の内底面に敷設したラックと、同レールに沿って左右スライドする正面視上方開口のコ字状のシート載置枠と、シート載置枠の下底面に垂設されラックと噛合して回転駆動する駆動ピニオンと、で構成している。 Further, the seat moving portion 58 adopts a so-called rack and pinion mechanism, and has a rack laid on the inner bottom surface of the steam generation case 3 and a U-shaped opening that slides left and right along the rail. It consists of a seat mounting frame and a drive pinion that is vertically mounted on the lower bottom surface of the seat mounting frame and meshes with a rack to drive rotation.

また、他の実施例として、多孔質フィルタブロック500は、図9(a)~図10(b)に示すように略円柱状に構成してもよい。図9(a)及び図9(b)は他の実施例に係る多孔質フィルタブロックの同方向フィルタパターンにおける構成を示す斜視図及び側面図、図10(a)及び図10(b)は他の実施例に係る多孔質フィルタブロックの異方向フィルタパターンにおける構成を示す斜視図及び側面図、図11は他の実施例に係るフィルタ位相変更機構の構成を示す拡大縦断面図である。 Further, as another embodiment, the porous filter block 500 may be configured in a substantially columnar shape as shown in FIGS. 9 (a) to 10 (b). 9 (a) and 9 (b) are perspective views and side views showing the configuration of the porous filter block according to another embodiment in the same-direction filter pattern, and FIGS. 10 (a) and 10 (b) are other. FIG. 11 is a perspective view and a side view showing the configuration of the porous filter block according to the embodiment in the different direction filter pattern, and FIG. 11 is an enlarged vertical sectional view showing the configuration of the filter phase changing mechanism according to the other embodiment.

すなわち、多孔質フィルタブロック500は、図9(a)~図10(b)に示すように軸中心に半径方向へ放射状に伸延する山部511と谷部512とを周方向について等間隔で交互に形成して波形とした正面視真円状の多数の多孔質シート510、510’を、それぞれ同軸心上に前後並設して構成している。 That is, as shown in FIGS. 9A to 10B, the porous filter block 500 alternately has mountain portions 511 and valley portions 512 extending radially in the radial direction around the axis at equal intervals in the circumferential direction. A large number of porous sheets 510, 510'that are formed into a corrugated shape and have a perfect circular shape in the front view are arranged side by side on the coaxial center in the front-rear direction.

多孔質シート510は、円形の中心角を等分するように交互に山部511と谷部512とを半径方向に伸延し、周方向について一定振幅を有する波形状に形成している。 In the porous sheet 510, the mountain portions 511 and the valley portions 512 are alternately extended in the radial direction so as to equally divide the central angle of the circle, and are formed into a wavy shape having a constant amplitude in the circumferential direction.

かかる多孔質フィルタブロック500は、図9(a)及び図9(b)に示すように積層した多孔質シート510、510’の波形の方向を同位相に整順して配設した同方向フィルタパターン500Aに構成する場合と、図10(a)及び図10(b)に示すように波形振幅の略1/2だけ位相をずらして波形の方向を谷部512’と山部511とが互いに対峙するように逆位相に整順して配設した異方向フィルタパターン500Bに構成する場合とを変更可能に構成している。 The porous filter block 500 is a co-directional filter in which the corrugated directions of the laminated porous sheets 510 and 510'are arranged in the same phase in order as shown in FIGS. 9 (a) and 9 (b). In the case of configuring the pattern 500A and as shown in FIGS. 10A and 10B, the valley portion 512'and the mountain portion 511 are mutually shifted in the direction of the waveform by shifting the phase by approximately 1/2 of the waveform amplitude. It is possible to change the case where the different direction filter pattern 500B is arranged in order of opposite phase so as to face each other.

多孔質フィルタブロック500は、同方向フィルタパターン500Aでは、図9(a)及び図9(b)に示すように周方向において一方の多孔質シート50の位相を他方の多孔質シート50’の位相と同位相とし互いの対向面同士の間に外周廻り略蛇形状の送風空間S1を形成する。 In the same-direction filter pattern 500A, the porous filter block 500 has the phase of one porous sheet 50 in the circumferential direction as shown in FIGS. 9A and 9B, and the phase of the other porous sheet 50'. A blow space S1 having a substantially serpentine shape around the outer circumference is formed between the facing surfaces of each other in the same phase as the above.

また、異方向フィルタパターン500Bでは、図10(a)及び図10(b)に示すように周方向において一方の多孔質シート50の位相を他方の多孔質シート50’の位相に対して周方向に略1/2振幅分ずらして互いに逆位相とし互いの対向面同士の間に略ひし形状の閉塞空間S2を複数区画形成する。 Further, in the different direction filter pattern 500B, as shown in FIGS. 10A and 10B, the phase of one porous sheet 50 is circumferentially oriented with respect to the phase of the other porous sheet 50'. A plurality of substantially diamond-shaped closed spaces S2 are formed between the facing surfaces of each other so as to be out of phase with each other by shifting by approximately 1/2 amplitude.

また、同方向フィルタパターン500Aと異方向フィルタパターン500Bとを変更調整自在とするフィルタ位相変更機構560は、図11に示すように多数の多孔質シート510、510’の軸中心を貫通するように多孔質シート510、510’を周廻りに軸着するフィルタ位相変更軸561により構成している。 Further, the filter phase changing mechanism 560 that allows the same-direction filter pattern 500A and the different-direction filter pattern 500B to be changed and adjusted so as to penetrate the axial centers of a large number of porous sheets 510 and 510'as shown in FIG. It is composed of a filter phase changing shaft 561 that axially adheres the porous sheets 510 and 510'around the circumference.

フィルタ位相変更軸561は、内部中空状の外軸562と同外軸562内に回転可能に設けられて駆動回転する内軸563とを有し、外軸562の先端部を一方の多孔質シート500を固定支持して不動状態とするシート固定部570とすると共に、外軸562の先端部より先端側で露出させた内軸563の先端部を他方の多孔質シート510’を内軸563と一体回転可能に固定して位相を移動させるシート移動部580とするように構成してる。なお、内軸563は、基端で駆動回転モータに連結している。 The filter phase changing shaft 561 has an inner hollow outer shaft 562 and an inner shaft 563 that is rotatably provided in the outer shaft 562 and is driven and rotated, and the tip of the outer shaft 562 is a porous sheet on one side. The seat fixing portion 570 is fixedly supported and immovable, and the tip portion of the inner shaft 563 exposed on the tip side from the tip portion of the outer shaft 562 is used as the other porous sheet 510'with the inner shaft 563. The seat moving portion 580 is configured to be integrally rotatable and fixed to move the phase. The inner shaft 563 is connected to the drive rotary motor at the base end.

また、空気吸入機構4は、このような多孔質フィルタブロック5に対して、空気排出孔42から、同方向フィルタパターン5Aで水蒸気含有空気G2を風速0.5m/s~7.0m/sで吐出生成し、異方向フィルタパターン5Bでミスト含有空気G3を風速1.5m/s~8.0m/sで吐出生成するように構成している。 Further, the air suction mechanism 4 discharges the water vapor-containing air G2 from the air discharge hole 42 to the porous filter block 5 with the same direction filter pattern 5A at a wind speed of 0.5 m / s to 7.0 m / s. The different direction filter pattern 5B is configured to discharge and generate mist-containing air G3 at a wind speed of 1.5 m / s to 8.0 m / s.

同方向フィルタパターン5Aにおいて、0.5m/sより遅い風速とすると水分の蒸発気化が適切に行われず、7.0m/sより速い風速とすると水分の蒸発量に対しする空気量が多くなりすぎ、水蒸気含有空気G2を適切に生成できない恐れがある。 In the same-direction filter pattern 5A, if the wind speed is slower than 0.5 m / s, the evaporation vaporization of water is not performed properly, and if the wind speed is faster than 7.0 m / s, the amount of air for the evaporation amount of water becomes too large and the water vapor is vaporized. There is a possibility that the contained air G2 cannot be properly generated.

また、異方向フィルタパターン5Bにおいて、1.5m/sより遅い風速ではフィルタに含浸された液体水を飛ばすことができず、8.0m/sより速い風速では装置に異常を来す恐れがあり、ミスト含有空気G3を適切に生成できない恐れがある。 Further, in the different direction filter pattern 5B, the liquid water impregnated in the filter cannot be blown off at a wind speed slower than 1.5 m / s, and there is a risk of causing an abnormality in the device at a wind speed faster than 8.0 m / s. There is a possibility that the contained air G3 cannot be properly generated.

以上のように構成した鮮度保持装置Aにおいて、飽和水蒸気発生室2は、以下のようにして水蒸気含有空気G3やミスト含有空気G4を生成する。 In the freshness maintaining device A configured as described above, the saturated water vapor generation chamber 2 generates water vapor-containing air G3 and mist-containing air G4 as follows.

すなわち、飽和水蒸気発生室2において、フィルタ位相変更機構56により多孔質フィルタブロック5を同方向フィルタパターン5Aとした場合には、図7に示すように上流側の多孔質シート50が空気吸入機構4により空気吸入孔41から取り入れた乾燥空気G1と最初に接触する。 That is, in the saturated water vapor generation chamber 2, when the porous filter block 5 is set to the same direction filter pattern 5A by the filter phase changing mechanism 56, the porous sheet 50 on the upstream side is the air suction mechanism 4 as shown in FIG. First comes into contact with the dry air G1 taken in from the air suction hole 41.

かかる乾燥空気G1は、上流側の多孔質シート50の山部51で分流されて谷部52に向けて流れる左右の気流となる。 The dry air G1 is shunted by the mountain portion 51 of the porous sheet 50 on the upstream side and becomes the left and right airflows flowing toward the valley portion 52.

隣接する2つの両山部51、51からそれぞれ1つ谷部52へ流れ込む2つの気流は、漸次狭窄する谷部52に向かうにつれて風圧及び風速を増加した縮流となると共に同縮流が谷部52で合流して風圧を最大圧とした複雑な旋回流となり、フィルタ壁近傍を負圧とする。 The two air currents flowing from the two adjacent mountain portions 51 and 51 into the valley portion 52, respectively, become a contraction in which the wind pressure and the wind speed increase toward the valley portion 52 that gradually narrows, and the same contraction flow becomes the valley portion. It merges at 52 to form a complicated swirling flow with the wind pressure as the maximum pressure, and the vicinity of the filter wall is a negative pressure.

すなわち、多孔質シート50壁面に沿って縮流や旋回流となった乾燥空気G1が、多孔質シート50に浸潤した液体状の水をベンチュリー効果により多孔質シート50から強制的に引き出して蒸発させる。 That is, the dry air G1 which has become a contracted flow or a swirling flow along the wall surface of the porous sheet 50 forcibly draws the liquid water infiltrated into the porous sheet 50 from the porous sheet 50 by the Venturi effect and evaporates it. ..

次いで、同乾燥空気G1は、流通方向上流側から耐えず供給されて風圧を最大圧とし、谷部52を中心に多孔質シート50内部を通過し、同方向フィルタパターン5Aにおける送風空間S1で相対湿度を増した湿り空気G2となる。なお、湿り空気G2の相対湿度は約70~80%である。 Next, the dry air G1 is unbearably supplied from the upstream side in the flow direction to maximize the wind pressure, passes through the inside of the porous sheet 50 centering on the valley portion 52, and is relative to the ventilation space S1 in the same direction filter pattern 5A. It becomes moist air G2 with increased humidity. The relative humidity of the moist air G2 is about 70 to 80%.

湿り空気G2は、上流側の多孔質シート50の場合と同様に、送風空間S1内で流速を失うことなく、下流側の多孔質シート50’の谷部52へ直進してベンチュリ―効果により効率的な水分蒸発作用を生起する。 As in the case of the porous sheet 50 on the upstream side, the moist air G2 goes straight to the valley portion 52 of the porous sheet 50'on the downstream side without losing the flow velocity in the ventilation space S1 and is more efficient due to the Venturi effect. Causes a typical water evaporation effect.

すなわち、湿り空気G2は、送風空間S1における下流側の多孔質シート50’の谷部52’で風圧を最大圧とした複雑な旋回流を生成し、その旋回流のベンチュリー効果により多孔質シート50’内部に浸潤された液体状の水と十分に接触しながら同液体状の水を強制気化して相対湿度を増加する。 That is, the moist air G2 generates a complicated swirling flow with the wind pressure as the maximum pressure at the valley portion 52'of the porous sheet 50'on the downstream side in the ventilation space S1, and the porous sheet 50 is generated by the Venturi effect of the swirling flow. 'Forcibly vaporize the liquid water while making sufficient contact with the liquid water infiltrated inside to increase the relative humidity.

次いで、湿り空気G2は、流通方向上流側から耐えず供給されて風圧を最大圧とする谷部52’を中心に下流側の多孔質シート50’内部を通過し、飽和水蒸気発生室2内で相対湿度約90~100%とした水蒸気含有空気G3となる。 Next, the moist air G2 passes through the inside of the porous sheet 50'on the downstream side centering on the valley portion 52' where the wind pressure is the maximum pressure, which is unbearably supplied from the upstream side in the flow direction, and in the saturated steam generation chamber 2. The water vapor-containing air G3 has a relative humidity of about 90 to 100%.

このように、多孔質フィルタブロック5の同方向フィルタパターン5Aでは、積層する二重フィルター構造を基本にして、上流側から下流側にかけて乾燥空気G1によりベンチュリ―効果を重畳させ、液体状の水分との接触機会を可及的増大させて水蒸気生成効率を飛躍的に向上させて相対湿度約90~100%とした水蒸気含有空気G3を生成することができる。 As described above, in the same-direction filter pattern 5A of the porous filter block 5, the venturi effect is superimposed by the dry air G1 from the upstream side to the downstream side based on the laminated double filter structure, and the liquid moisture is combined with the liquid moisture. It is possible to generate water vapor-containing air G3 having a relative humidity of about 90 to 100% by increasing the contact opportunity of the water vapor as much as possible and dramatically improving the water vapor generation efficiency.

また、飽和水蒸気発生室2において、フィルタ位相変更機構56により多孔質フィルタブロック5を異方向フィルタパターン5Bとした場合には、図8に示すように上流側の多孔質シート50の谷部52に向かって突き進み、上述のごとく谷部52で風圧を最大圧とした複雑な旋回流を生起する。 Further, in the saturated water vapor generation chamber 2, when the porous filter block 5 is set to the different direction filter pattern 5B by the filter phase changing mechanism 56, the valley portion 52 of the porous sheet 50 on the upstream side is formed as shown in FIG. Proceeding toward it, as described above, a complicated swirling flow with the wind pressure as the maximum pressure is generated at the valley portion 52.

かかる乾燥空気G1が、上流側の多孔質シート50の谷部52とこれに当接対峙する下流側の多孔質シート50’の山部51’を通過する際に、両シートに浸潤した液体状の水を風圧により物理的且つ強制的にシート外へと吹き出す。 When the dry air G1 passes through the valley portion 52 of the porous sheet 50 on the upstream side and the mountain portion 51'of the porous sheet 50'on the downstream side facing the valley portion 52, the liquid state infiltrated into both sheets. Water is physically and forcibly blown out of the seat by wind pressure.

具体的には、多孔質シート50、50’の谷部52と山部51’における無数の微細孔に担持された液体状の水が、乾燥空気G1に置換されて微細孔の粒径を可及的保持したままシート外側の下流へと押し出され、シートを通過する乾燥空気G1とともに液体状の無数の水滴飛沫が生成される。 Specifically, the liquid water carried in the innumerable micropores in the valley portion 52 and the mountain portion 51'of the porous sheets 50 and 50'is replaced with the dry air G1 to allow the particle size of the micropores. It is pushed downstream of the outside of the sheet while being held, and innumerable liquid droplets of water are generated together with the dry air G1 passing through the sheet.

換言すれば、異方向フィルタパターン5Bにおける乾燥空気G1は、対峙した上流側の谷部52と下流側の山部51’を介しての多孔質フィルタブロック5を即座に通過することなるため、風圧によりシートから引き出した液体状の水を気化するだけの接触機会が得られずにそのまま水の飛沫、すなわちミストを含有したミスト含有空気G4となる。なおミスト含有空気G4の相対湿度は湿り空気G2と略同じ約70~80%である。 In other words, the dry air G1 in the different direction filter pattern 5B immediately passes through the porous filter block 5 via the valley portion 52 on the upstream side and the mountain portion 51'on the downstream side facing each other, and thus the wind pressure. This results in water droplets, that is, mist-containing air G4 containing mist, without obtaining a contact opportunity to vaporize the liquid water drawn from the sheet. The relative humidity of the mist-containing air G4 is about 70 to 80%, which is substantially the same as that of the moist air G2.

このように、多孔質フィルタブロック5の異方向フィルタパターン5Bでは、上流側から下流側にかけて流通する乾燥空気G1を風圧により即座に通過させるとともに浸潤された液体状の水を流通方向に飛散させるミストを生成し、相対湿度70~80%のミスト含有空気G4を生成することができる。 As described above, in the different direction filter pattern 5B of the porous filter block 5, the dry air G1 flowing from the upstream side to the downstream side is immediately passed by the wind pressure, and the infiltrated liquid water is scattered in the flow direction. It is possible to generate mist-containing air G4 having a relative humidity of 70 to 80%.

[3.ドレン循環装置の構成]
次に、散水機構6の散水として使用する集水ドレンを生成するためのドレン循環装置7の構成について、図面を参照しながら説明する。図12はドレン循環装置の構成を示す外観斜視図、図13はドレン循環装置の内部構成を示す模式的斜視図である。
[3. Configuration of drain circulation device]
Next, the configuration of the drain circulation device 7 for generating the water collecting drain used for watering the watering mechanism 6 will be described with reference to the drawings. FIG. 12 is an external perspective view showing the configuration of the drain circulation device, and FIG. 13 is a schematic perspective view showing the internal configuration of the drain circulation device.

飽和水蒸気発生室2に吸収した多孔質フィルタブロック5に散水するための散水機構6は、農産物保管室1の内外側のいずれかに別途配置したドレン循環装置7に連通連設している。なお、本実施例のドレン循環装置7は、図2に示すように保管室1の外側壁上部に付設している。 The sprinkling mechanism 6 for sprinkling water on the porous filter block 5 absorbed in the saturated water vapor generation chamber 2 is communicated and connected to the drain circulation device 7 separately arranged on either the inside or the outside of the agricultural product storage chamber 1. As shown in FIG. 2, the drain circulation device 7 of this embodiment is attached to the upper part of the outer wall of the storage chamber 1.

ドレン循環装置7は、冷却装置11の冷却稼働に伴い冷却装置11内部で生じるドレンを更に冷却して冷媒(冷却ドレン)に利用し、同冷媒により外気を冷却して外気中の水蒸気を凝結して得られた液体状の水分を集水ドレンW3として多孔質フィルタブロック5への散水に利用できるように構成したものである。 The drain circulation device 7 further cools the drain generated inside the cooling device 11 with the cooling operation of the cooling device 11 and uses it as a refrigerant (cooling drain), cools the outside air with the same refrigerant, and condenses the water vapor in the outside air. The liquid water thus obtained is configured to be used as a water collecting drain W3 for watering the porous filter block 5.

すなわち、ドレン循環装置7は、図13に示すように、ドレンケース70内に配設したドレンパイプ71と、ドレンパイプ71に外気を送風するための外気送風機構72と、ドレンパイプ71内へ農産物保管室1の冷却に用いる冷却装置11からの冷却ドレンR1(図13中、一点鎖線で示す。)を流通させるためのドレン流通路73と、ドレンケース70の底部に配設すると共にドレンパイプ71の下方位置に配設し、ドレンパイプ71の外周で外気から生成した滴下ドレンW2を集水するためのドレン回収トレイ74と、ドレン回収トレイ74から飽和水蒸気発生室2内の多孔質フィルタブロック5の散水機構6へ集水ドレンW3を送水するためのドレン送水パイプ75と、より構成している。 That is, as shown in FIG. 13, the drain circulation device 7 includes a drain pipe 71 arranged in the drain case 70, an outside air ventilation mechanism 72 for blowing outside air to the drain pipe 71, and agricultural products in the drain pipe 71. A drain flow passage 73 for circulating a cooling drain R1 (indicated by a alternate long and short dash line in FIG. 13) from a cooling device 11 used for cooling the storage chamber 1, and a drain pipe 71 arranged at the bottom of the drain case 70. A drain recovery tray 74 for collecting the dropped drain W2 generated from the outside air on the outer periphery of the drain pipe 71, and a porous filter block 5 in the saturated water vapor generation chamber 2 from the drain recovery tray 74. It is composed of a drain water pipe 75 for feeding the water collecting drain W3 to the water sprinkling mechanism 6 of the above.

ドレンケース70は、内部中空箱形あって、その内部には外気送風機構72が設けられている。 The drain case 70 has an internal hollow box shape, and an outside air blowing mechanism 72 is provided inside the drain case 70.

外気送風機構72は、図12及び図13に示すようにケース一側壁下部に設けられ、外気をケース70内へ取り込むための外気吸入口72aと、ケース一側壁上部に設けられ、取り込んだ外気をケース70外へ排出するための外気排出口72bと、ケース内の所定位置に設けられ、外気をドレンパイプ71に送風すると共に外気をケース内外に吸入排出するための送風機72cと、で構成している。 As shown in FIGS. 12 and 13, the outside air ventilation mechanism 72 is provided at the lower part of one side wall of the case, and is provided at the outside air suction port 72a for taking in the outside air into the case 70 and the outside air taken in at the upper part of the one side wall of the case. It is composed of an outside air discharge port 72b for discharging the outside air to the outside of the case 70, and a blower 72c provided at a predetermined position inside the case for blowing the outside air to the drain pipe 71 and sucking and discharging the outside air inside and outside the case. There is.

また、ドレンケース70内部の両側には、左右2つのドレン流通路73、73’が内側壁に沿って設けられている。 Further, on both sides of the inside of the drain case 70, two left and right drain flow passages 73, 73'are provided along the inner side wall.

左右側ドレン流通路73、73’は、冷却装置11のドレン排出口から排出されたドレンを冷却ドレン生成部76により冷却して生成した冷却ドレンR1をドレンパイプ71内に流通循環させる流路である。なお、ドレン流通路73’の中途部には、図1及び図13に示すように冷却ドレンR1を還流させるための循環ポンプ77を介設している。 The left and right drain flow passages 73 and 73'are a flow path in which the drain R1 generated by cooling the drain discharged from the drain discharge port of the cooling device 11 by the cooling drain generation unit 76 is circulated in the drain pipe 71. be. As shown in FIGS. 1 and 13, a circulation pump 77 for recirculating the cooling drain R1 is provided in the middle of the drain flow passage 73'.

冷却ドレン生成部76により生成された冷却ドレンR1の温度は、外気送風機構72によりケース内に取り込まれる外気の温度よりも低い温度であればよく、例えば保管室1内の室温と略同じ約0~15℃である。 The temperature of the cooling drain R1 generated by the cooling drain generation unit 76 may be a temperature lower than the temperature of the outside air taken into the case by the outside air blowing mechanism 72, and is substantially the same as the room temperature in the storage chamber 1, for example, about 0. It is ~ 15 ° C.

また、冷媒としての冷却ドレンR1には、飽和水蒸気発生室2の散水として直接使用できないような液体、例えばコンテナやトラック、船舶など鮮度保持装置Aが搭載設置される施設から排出される工業用排水や低温海水、或いはオイルや有機溶媒成分含有の汚染水などを使用することができる。 Further, the cooling drain R1 as a refrigerant is a liquid that cannot be directly used as watering in the saturated steam generation chamber 2, for example, industrial wastewater discharged from a facility where a freshness maintaining device A such as a container, a truck, or a ship is installed. , Low temperature seawater, or contaminated water containing oil or organic solvent components can be used.

冷却ドレン生成部76は、図1及び図13に示すように冷却装置11とドレン循環装置7との間に連通配設されるドレン流通路73のうち飽和水蒸気発生室2内部に配置された部分とし、室内の冷却空気によりドレン流通路73内を流通する冷却装置11からのドレンを冷却可能としている。 As shown in FIGS. 1 and 13, the cooling drain generation unit 76 is a portion of the drain flow passage 73 communicated between the cooling device 11 and the drain circulation device 7 and arranged inside the saturated water vapor generation chamber 2. The drain from the cooling device 11 circulating in the drain flow passage 73 can be cooled by the cooling air in the room.

冷却ドレン生成部76は、冷却装置11で生成排出されたドレンが外気温よりも低温にできる構成のものであれば特に限定されることはなく、他の実施例として冷却装置11内にドレン流通路73の一部を内通させた部分で構成したり、また、別途ドレン冷却用の冷却装置を冷却装置11とドレン循環装置7との間に連通配設されるドレン流通路73の中途部に介設して構成してもよい。 The cooling drain generation unit 76 is not particularly limited as long as the drain generated and discharged by the cooling device 11 can be made lower than the outside air temperature, and as another embodiment, the drain is distributed in the cooling device 11. The middle part of the drain flow passage 73, which is composed of a part of the path 73 that is internally passed through, or in which a cooling device for drain cooling is separately arranged between the cooling device 11 and the drain circulation device 7. It may be configured by interposing in.

ドレン流通路73、73’は、図1及び図13に示すように始端でケース70外の冷却装置11のドレン排出口に連通接続すると共に終端でケース70内のドレンパイプ71始端に連通接続してドレンパイプ71に冷却ドレンR1を供給する冷媒供給用ドレン流通路73と、始端でドレンパイプ71終端に連通接続すると共に終端で冷媒供給用ドレン流通路73の中途部に連通接続して熱交換後のドレンR2(図13中、破線で示す。)を冷却ドレン生成部76へ回収する冷媒回収用ドレン流通路73’とで、冷却ドレンR1を循環可能に構成している。 As shown in FIGS. 1 and 13, the drain flow passages 73 and 73'are connected to the drain outlet of the cooling device 11 outside the case 70 at the start and to the start of the drain pipe 71 inside the case 70 at the end. The drain flow passage 73 for supplying the cooling drain R1 that supplies the cooling drain R1 to the drain pipe 71 is connected to the end of the drain pipe 71 at the start end, and is connected to the middle part of the drain flow passage 73 for supplying the refrigerant at the end to exchange heat. The cooling drain R1 is circulated by the refrigerant recovery drain flow passage 73'that recovers the subsequent drain R2 (indicated by a broken line in FIG. 13) to the cooling drain generation unit 76.

ドレンパイプ71は、ケース70内部両側に配設した冷媒供給・回収用の2つのドレン流通路73、73’間で、上下方向に所定間隔を隔てて複数(本実施例では3つ)設けると共に各ドレン流通路73、73’に連通連設している。 A plurality of drain pipes 71 (three in this embodiment) are provided between the two drain flow passages 73 and 73'for supplying and recovering the refrigerant arranged on both sides inside the case 70 at predetermined intervals in the vertical direction. It is connected to each drain flow passage 73, 73'.

すなわち、ドレンパイプ71は、図13に示すように各ドレン流通路73、73’の間で、各ケース70内空間上部に略水平状にして各ドレン流通路73、73’に連通連設している。 That is, as shown in FIG. 13, the drain pipe 71 is provided between the drain flow passages 73 and 73'in the upper part of the inner space of each case 70 so as to be substantially horizontal and communicated with the drain flow passages 73 and 73'. ing.

ドレンパイプ71は、両端部で2つのドレン流通路73、73’に連通し、冷却ドレンを流通するドレンパイプ本体71aと、ドレンパイプ本体71aの長手方向に沿って外嵌固定した円環状の複数のフィン71bと、で構成した、いわゆる蛇腹筒状のフィンチューブである。 The drain pipe 71 has a drain pipe main body 71a that communicates with two drain flow passages 73 and 73'at both ends and circulates a cooling drain, and a plurality of annular rings that are externally fitted and fixed along the longitudinal direction of the drain pipe main body 71a. It is a so-called bellows-shaped fin tube composed of the fins 71b of the above.

なお、ドレンパイプ71は、熱伝導性の高い金属製であって例えば、鉄製、銅製、ステンレス製である。また、フィン71bは、円環の外周縁を尖鋭状に形成している。 The drain pipe 71 is made of a metal having high thermal conductivity, and is made of, for example, iron, copper, or stainless steel. Further, the fin 71b forms the outer peripheral edge of the annulus in a sharp shape.

また、ドレンケース70の底部に配設したドレン回収トレイ74は、図13に示すように上部開口箱型であって内部に貯水空間を形成しており、その一側壁には回収された集水ドレンを散水機構6に送水するためのドレン送水パイプ75が連通連設されている。 Further, the drain collection tray 74 arranged at the bottom of the drain case 70 is an upper opening box type as shown in FIG. 13 and forms a water storage space inside, and the collected water is collected on one side wall thereof. A drain water supply pipe 75 for supplying water to the water sprinkling mechanism 6 is connected and connected.

すなわち、ドレン送水パイプ75は、始端でドレン回収トレイ74に連通接続すると共に終端で散水機構6の貯水槽60に連通接続してドレン回収トレイ74と散水機構6の間に介設している。 That is, the drain water supply pipe 75 is communicated with the drain collection tray 74 at the beginning and also with the water storage tank 60 of the water sprinkling mechanism 6 at the end, and is interposed between the drain collection tray 74 and the water sprinkling mechanism 6.

かかる構成のドレン循環装置7は、以下のようにして集水ドレンW3を生成する。すなわち、ドレン循環装置7内の外気送風機構72により外気をドレンケース70内に順次取り込みつつ、ドレンパイプ71に同外気を送風する。 The drain circulation device 7 having such a configuration generates the water collecting drain W3 as follows. That is, the outside air is sequentially taken into the drain case 70 by the outside air blowing mechanism 72 in the drain circulation device 7, and the same outside air is blown to the drain pipe 71.

かかるドレンパイプ71内には、冷却装置11から排出されたドレンを冷却ドレン生成部76により外気温より低温(0~15℃)となるように冷却生成した冷却ドレンR1が流通している。 In the drain pipe 71, a cooling drain R1 is circulated in which the drain discharged from the cooling device 11 is cooled and generated by the cooling drain generation unit 76 so as to be lower than the outside air temperature (0 to 15 ° C.).

すなわち、ドレンパイプ71は、ドレンパイプ本体71a内に流通する冷却ドレンR1の吸熱反応により外気と可及的接触面積を拡大したフィン71bを冷却して外気と冷却フィン71bとの間で熱交換を行う。 That is, the drain pipe 71 cools the fins 71b having an expanded possible contact area with the outside air by the endothermic reaction of the cooling drain R1 flowing in the drain pipe main body 71a, and exchanges heat between the outside air and the cooling fins 71b. conduct.

この際、冷却フィン71b表面には、外気の水蒸気が急冷されて凝集した結露現象が生じる。すなわち、冷却ドレンパイプ71を介して外気をドレン化する。 At this time, on the surface of the cooling fins 71b, the water vapor of the outside air is rapidly cooled and agglomerated dew condensation phenomenon occurs. That is, the outside air is drained through the cooling drain pipe 71.

そして、冷却ドレンパイプ71(フィン71b)表面に生成された結露が、図1に示すようにフィン71bに流下して集合してフィン71bの下方に落下する滴下ドレンW2となり、かかる滴下ドレンW2をドレン回収トレイ74にて集水して集水ドレンW3とする。 Then, as shown in FIG. 1, the dew condensation formed on the surface of the cooling drain pipe 71 (fin 71b) flows down to the fin 71b, gathers, and becomes a dripping drain W2 that falls below the fin 71b, and the dripping drain W2 is generated. Water is collected in the drain collection tray 74 and used as the water collection drain W3.

最終的に、ドレン回収トレイ74内に一定量の集水貯溜された集水ドレンW3をドレン送水パイプ75を介して散水機構6の貯水槽60に送水することにより、多孔質フィルタブロック5の散水に供することができる。 Finally, a certain amount of water collected and stored in the drain collection tray 74 is supplied to the water storage tank 60 of the watering mechanism 6 via the drain water pipe 75, whereby the porous filter block 5 is sprinkled with water. Can be offered to.

なお、冷却装置11のドレンを冷却ドレンR1として使用する場合には、該冷却ドレンR1を散水機構6からの多孔質フィルタブロック5への散水に使用することもできる。すなわち、冷媒回収用ドレン流通路73’中途部に第2のドレン送水パイプを設け、同第2のドレン送水パイプを介して冷媒回収用ドレン流通路73’と散水機構6を連通連設することもできる。 When the drain of the cooling device 11 is used as the cooling drain R1, the cooling drain R1 can also be used for watering the porous filter block 5 from the watering mechanism 6. That is, a second drain water supply pipe is provided in the middle of the refrigerant recovery drain flow passage 73', and the refrigerant recovery drain flow passage 73'and the sprinkler mechanism 6 are communicated with each other via the second drain water supply pipe. You can also.

このようにドレン循環装置7により外気から得た集水ドレンW3を多孔質フィルタブロック5の散水に利用して散水機構6に供給される水源からの水を節水できる効果がある。 As described above, the water collecting drain W3 obtained from the outside air by the drain circulation device 7 is used for watering the porous filter block 5, and there is an effect that water from the water source supplied to the watering mechanism 6 can be saved.

[4.急速加湿を可能とする構成]
次に、飽和水蒸気圧を高めて飽和水蒸気発生室2内を急速な加湿状態とするための構成について説明する。
[4. Configuration that enables rapid humidification]
Next, a configuration for increasing the saturated steam pressure to bring the inside of the saturated steam generation chamber 2 into a rapidly humidified state will be described.

鮮度保持装置Aは、飽和水蒸気発生室2内で散水機構6から多孔質フィルタブロック5へ散水される水の温度を、農産物保管室1内の温度よりも約10~45℃の高温度に維持することにより飽和水蒸気圧を高めて飽和水蒸気発生室2内を急速な加湿状態を可能に構成している。すなわち、鮮度保持装置Aは、図1及び図5に示すように飽和水蒸気発生室2内を急速な加湿状態にすることを可能とする急速加湿機構8を備えている。 The freshness maintaining device A maintains the temperature of the water sprinkled from the sprinkling mechanism 6 to the porous filter block 5 in the saturated steam generation chamber 2 to a temperature higher than the temperature in the agricultural product storage chamber 1 by about 10 to 45 ° C. By doing so, the saturated steam pressure is increased to enable a rapid humidification state in the saturated steam generation chamber 2. That is, as shown in FIGS. 1 and 5, the freshness maintaining device A includes a rapid humidification mechanism 8 that enables the inside of the saturated steam generation chamber 2 to be rapidly humidified.

急速加湿機構8は、図5に示すように貯水槽60と散水パイプ61とに連通連設して散水パイプ61に温水を供給するための温水供給パイプ80と、貯留水W1を加温して保管室1内の温度よりも約10~45℃高い温度の温水を生成するための温水生成用ヒータ81と、で構成している。 As shown in FIG. 5, the rapid humidification mechanism 8 is connected to the water storage tank 60 and the sprinkler pipe 61 to heat the hot water supply pipe 80 for supplying hot water to the sprinkler pipe 61 and the stored water W1. It is composed of a hot water generating heater 81 for generating hot water having a temperature higher than the temperature in the storage chamber 1 by about 10 to 45 ° C.

温水供給パイプ80は、図1及び図5に示すように始端を散水機構6の循環パイプ63の中途部に連通接続すると共に終端を散水機構6の散水パイプ61基端に連通接続している。 As shown in FIGS. 1 and 5, the hot water supply pipe 80 has a start end communicated with the middle portion of the circulation pipe 63 of the sprinkler mechanism 6 and an end communicated with the base end of the sprinkler pipe 61 of the sprinkler mechanism 6.

すなわち、温水供給パイプ80は、循環パイプ63を中途部で分岐させ、循環パイプ63と並走するように貯水槽60と散水パイプ61との間に介設している。 That is, the hot water supply pipe 80 has the circulation pipe 63 branched in the middle portion and is interposed between the water storage tank 60 and the sprinkler pipe 61 so as to run in parallel with the circulation pipe 63.

かかる循環パイプ63の分岐部分、すなわち温水供給パイプ80の始端には、貯水槽60の送水ポンプ62を介して送水される水の流路を循環パイプ63又は温水供給パイプ80のいずれか一方に送水切り替えするための切替弁82が配設されている。 At the branch portion of the circulation pipe 63, that is, at the start end of the hot water supply pipe 80, a flow path of water sent through the water pump 62 of the water storage tank 60 is sent to either the circulation pipe 63 or the hot water supply pipe 80. A switching valve 82 for switching is provided.

温水生成用ヒータ81は、温水供給パイプ80の中途部に介設され、貯水槽60から送水される貯留水W1を加温して保管室1の室温0~15℃より約10~45℃高い温度、すなわち約10~60℃の温水を生成する。 The hot water generation heater 81 is interposed in the middle of the hot water supply pipe 80, heats the stored water W1 sent from the water storage tank 60, and is about 10 to 45 ° C higher than the room temperature of 0 to 15 ° C in the storage chamber 1. It produces hot water at a temperature of about 10-60 ° C.

温水生成用ヒータ81としては、例えば水温調節可能な電熱式ヒータを採用することができる。なお、温水生成用ヒータ81及び切替弁82は、図3(a)に示すようにケース正面32のスイッチ81aに接続して稼働・停止及び流路切替可能にしている。なお、本実施例の温水生成用ヒータ81は、貯水槽60内部に設置することとしてもよい。 As the hot water generation heater 81, for example, an electric heater whose water temperature can be adjusted can be adopted. As shown in FIG. 3A, the hot water generation heater 81 and the switching valve 82 are connected to the switch 81a on the front surface of the case 32 to enable operation / stop and flow path switching. The hot water generation heater 81 of this embodiment may be installed inside the water storage tank 60.

かかる構成の急速加湿機構8により生成した温水を多孔質フィルタブロック5への散水に使用した場合には、飽和水蒸気発生室2内で飽和水蒸気を急速に生成する。 When the hot water generated by the rapid humidification mechanism 8 having such a configuration is used for watering the porous filter block 5, saturated water vapor is rapidly generated in the saturated water vapor generation chamber 2.

すなわち、切替弁82により散水機構6の貯水槽60からの貯留水W1の流路を循環パイプ63から温水供給パイプ80へ切替えると共に温水供給パイプ80の中途部の温水生成用ヒータ81により送水ポンプ62により順次引き上げられる貯留水W1を加温して約10~60℃の温水を生成する。 That is, the flow path of the stored water W1 from the water storage tank 60 of the sprinkler mechanism 6 is switched from the circulation pipe 63 to the hot water supply pipe 80 by the switching valve 82, and the water supply pump 62 is used by the hot water generation heater 81 in the middle of the hot water supply pipe 80. The stored water W1 that is sequentially pumped up is heated to generate hot water at about 10 to 60 ° C.

かかる温水は、散水パイプ61に送水されて多孔質フィルタブロック5の散水受け面へ散水されて多孔質フィルタブロック5に送風される低温の乾燥空気G1により蒸発作用を受ける。 The hot water is sent to the sprinkler pipe 61, sprinkled on the sprinkling receiving surface of the porous filter block 5, and is vaporized by the low-temperature dry air G1 blown to the porous filter block 5.

すなわち、同方向フィルタパターン5Aの多孔質フィルタブロック5の散水は、飽和水蒸気発生室2内の温度約0~15℃よりも約10~45℃高い約10~60℃の水温に保持されて蒸気圧が高い状態にあるために乾燥空気G1により可及的速やかに蒸発されて水蒸気含有空気G3が生成されることとなる。 That is, the sprinkling of the porous filter block 5 of the same-direction filter pattern 5A is maintained at a water temperature of about 10 to 60 ° C., which is about 10 to 45 ° C. higher than the temperature of about 0 to 15 ° C. in the saturated steam generation chamber 2, and steam. Since the pressure is high, the dry air G1 evaporates as quickly as possible to generate the water vapor-containing air G3.

なお、急速加湿機構8は、常時稼働させるものではなく、農産物保管室1内の加湿開始時や、開閉作業による農産物保管室1の水蒸気逸失時など、保管室1内部が低湿度状態となった場合に急速加湿を要する際に使用することが好ましい。 The rapid humidification mechanism 8 is not always operated, and the inside of the storage chamber 1 is in a low humidity state at the start of humidification in the agricultural product storage chamber 1 or when the water vapor of the agricultural product storage chamber 1 is lost due to opening / closing work. It is preferable to use it when rapid humidification is required in some cases.

また、急速加湿機構8は、他の実施例として、温水生成用ヒータ81を中途部に備えた温水供給パイプ80を飽和水蒸気発生室2の水蒸気生成用ケース3外に設けると共に同温水供給パイプ80を介して散水機構6の貯水槽60とを連通連設して構成することもできる。 Further, as another embodiment, the rapid humidification mechanism 8 is provided with a hot water supply pipe 80 provided with a hot water generation heater 81 in the middle portion outside the steam generation case 3 of the saturated steam generation chamber 2 and the hot water supply pipe 80. It is also possible to connect and connect the water storage tank 60 of the water sprinkling mechanism 6 via the water sprinkling mechanism 6.

このように、装置の稼働初期や農産物の出し入れ作業に伴う飽和水蒸気逸失等、保管室1内部が低湿度雰囲気の場合に、保管室1の内部環境を飽和水蒸気発生室2により可及的速やかに飽和蒸気雰囲気へ回復維持することができ、農産物の乾燥劣化の防止を堅実とすることができる効果がある。 In this way, when the inside of the storage room 1 has a low humidity atmosphere such as the initial operation of the equipment or the loss of saturated steam due to the work of putting in and taking out agricultural products, the internal environment of the storage room 1 is changed as quickly as possible by the saturated steam generation room 2. It can be restored and maintained in a saturated steam atmosphere, and has the effect of making it possible to prevent the drying deterioration of agricultural products.

[5.3つの層流を生成可能とする構成]
次に、保管室1内での結露を可及的に抑えて農産物保管室の床面や壁面における結露現象を回避する構成について説明する。図14は飽和水蒸気発生室から農産物保管室へ流入される飽和水蒸気の形態を示す模式的側面図である。
[5. Configuration that enables the generation of three laminar flows]
Next, a configuration will be described in which dew condensation in the storage room 1 is suppressed as much as possible to avoid the dew condensation phenomenon on the floor surface and the wall surface of the agricultural product storage room. FIG. 14 is a schematic side view showing the form of saturated water vapor flowing from the saturated water vapor generation chamber into the agricultural product storage chamber.

鮮度保持装置Aは、飽和水蒸気発生室2で生成した飽和水蒸気を飽和水蒸気流通路から農産物保管室1に流入するに際して、農産物保管室1への飽和水蒸気の流入形態を上下の3層流とすると共に、中間層流CFは高湿度の上下層流UF、DFに比して低湿度とするように構成している。 When the saturated steam generated in the saturated steam generation chamber 2 flows into the agricultural product storage chamber 1 from the saturated steam flow passage, the freshness maintaining device A sets the inflow form of the saturated steam into the agricultural product storage chamber 1 as an upper and lower three-layer flow. At the same time, the intermediate laminar flow CF is configured to have a lower humidity than the high humidity upper and lower laminar flows UF and DF.

すなわち、鮮度保持装置Aは、前述した飽和水蒸気発生室2内に配設した空気吸入機構4において、ケース他側面に形成した矩形窓状の空気排出孔42の中心に送風ファン43の回転軸を配置することより空気排出孔42の中央部に送風時に相対湿度を増した水蒸気含有空気G3の気流からなる上下層流UF、DFと同上下層流UF、DFよりも相対湿度を低くした気流からなる中間層流CFとを生成するように構成している。 That is, in the freshness maintaining device A, in the air suction mechanism 4 arranged in the saturated steam generation chamber 2 described above, the rotation shaft of the blower fan 43 is placed at the center of the rectangular window-shaped air discharge hole 42 formed on the other side surface of the case. By arranging it, it consists of an upper and lower layer flow UF consisting of an air flow of water vapor-containing air G3 whose relative humidity has increased at the time of blowing in the central portion of the air discharge hole 42, a DF and the same upper and lower layer flow UF, and an air flow having a lower relative humidity than the DF. It is configured to generate an intermediate layer flow CF.

具体的には、空気吸入機構4は、図14に示すように送風ファン43の回転軸C2を有する円柱状のハブ44の径断面積を矩形窓状の空気排出孔42の開口面積に対して約1/5~1/4となるように形成し、同ハブ44の回転軸C2を空気排出孔42の正面視における開口中心C1に配置すると共にハブ44後面を多孔質フィルタブロック5の前面に略面対向するように送風ファン43を配置し、空気排出孔42を送風ファン43で略閉塞するように構成している。 Specifically, as shown in FIG. 14, the air suction mechanism 4 measures the diameter cross-sectional area of the columnar hub 44 having the rotation axis C2 of the blower fan 43 with respect to the opening area of the rectangular window-shaped air discharge hole 42. It is formed so as to be about 1/5 to 1/4, and the rotation axis C2 of the hub 44 is arranged at the opening center C1 in the front view of the air discharge hole 42, and the rear surface of the hub 44 is placed on the front surface of the porous filter block 5. The blower fan 43 is arranged so as to face substantially each other, and the air discharge hole 42 is configured to be substantially closed by the blower fan 43.

かかる構成の飽和水蒸気発生室2において、同方向フィルタパターン5Aの多孔質フィルタブロック5を通過して生成された水蒸気含有空気G3は、空気吸入機構4の旋回により空気排出孔42から3流層を形成した気流で排出される。 In the saturated water vapor generation chamber 2 having such a configuration, the water vapor-containing air G3 generated by passing through the porous filter block 5 of the same-direction filter pattern 5A is swirled by the air suction mechanism 4 to form a three-flow layer from the air discharge hole 42. It is discharged by the formed air flow.

すなわち、空気吸入機構4により空気排出孔42へ送風される際の水蒸気含有空気G3の気流は、空気吸入機構4のハブ44周囲近傍を通過する中央部気流とハブ44周廻りに支持したプロペラ45周囲近傍を通過する外周側気流とに分かれる。 That is, the airflow of the water vapor-containing air G3 when being blown to the air discharge hole 42 by the air suction mechanism 4 is the central airflow passing near the vicinity of the hub 44 of the air suction mechanism 4 and the propeller 45 supported around the hub 44. It is divided into the outer peripheral airflow that passes near the surrounding area.

また、空気吸入機構4のハブ44は、内蔵した駆動部44aの回転駆動により生じた熱によりその外周面が加熱される。なお、ハブ44外周面の発熱温度は約50~70℃である。 Further, the outer peripheral surface of the hub 44 of the air suction mechanism 4 is heated by the heat generated by the rotational drive of the built-in drive unit 44a. The heat generation temperature of the outer peripheral surface of the hub 44 is about 50 to 70 ° C.

すなわち、ハブ44に沿って流れる水蒸気含有空気G3の中央部気流は、高温度状態のハブ44による加熱蒸発作用を受け、相対湿度を約90~100%から約50~80%まで低下させた中間層流CFとなって矩形窓状の空気排出孔42の中央部から排出される。 That is, the central airflow of the water vapor-containing air G3 flowing along the hub 44 is subjected to the heating and evaporating action of the hub 44 in a high temperature state, and the relative humidity is reduced from about 90 to 100% to about 50 to 80%. It becomes a laminar flow CF and is discharged from the central portion of the rectangular window-shaped air discharge hole 42.

一方、ハブ44の径方向外方のプロペラ45周囲近傍を通過する外周側気流は、ハブ44による加熱蒸発作用を受けることなく、相対湿度約90~100%を維持した高湿度の上下層流UF、DFとなって矩形窓状の空気排出孔42の上下部から排出される。 On the other hand, the outer peripheral airflow passing near the propeller 45 on the outer side in the radial direction of the hub 44 is a high-humidity upper and lower layer flow UF that maintains a relative humidity of about 90 to 100% without being affected by the heating and evaporating action of the hub 44. , DF and is discharged from the upper and lower parts of the rectangular window-shaped air discharge hole 42.

このように、高湿度とした上下層流UF、DFにより、保管室1内を飽和蒸気雰囲気に常時維持して農産物の乾燥劣化を防止できる。また、上下層流UF、DFよりも低湿度とした中間層流CFにより、飽和水蒸気発生室2近傍の農産物保管室1の床面や壁面に付着した液体状の水分を蒸発させ、カビや雑菌の繁殖となる結露等の液体状の水分を保管室1内に常在させることなく農産物の腐敗劣化を防止することができる。 As described above, the high humidity upper and lower layer currents UF and DF can keep the inside of the storage chamber 1 in a saturated steam atmosphere at all times and prevent the drying deterioration of agricultural products. In addition, the middle layer flow CF, which has a lower humidity than the upper and lower layer flows UF and DF, evaporates the liquid water adhering to the floor surface and wall surface of the agricultural product storage room 1 near the saturated steam generation room 2, and molds and germs. It is possible to prevent the decay and deterioration of agricultural products without causing liquid water such as dew condensation, which is the breeding of the mold, to be permanently present in the storage room 1.

[6.鮮度保持装置の性能試験]
以下、鮮度保持装置の飽和水蒸気発生室による水蒸気含有空気の生成能試験について説明する。本試験は、相対湿度25%、3~5℃、約33m3容量の略密閉状態とした小型の農産物保管室内に飽和水蒸気発生室を1台設置し、飽和水蒸気発生室稼働後、保管室内部を相対湿度90%~100%の飽和蒸気雰囲気にするまでの相対湿度の経時的変化を湿度測定器により計測して行った。
[6. Performance test of freshness maintenance device]
Hereinafter, the test of the ability to generate water vapor-containing air by the saturated water vapor generation chamber of the freshness maintaining device will be described. In this test, one saturated steam generation chamber was installed in a small agricultural product storage chamber with a relative humidity of 25%, 3 to 5 ° C, and a capacity of about 33 m 3 in a substantially sealed state. The change over time in relative humidity from 90% to 100% relative humidity to a saturated steam atmosphere was measured with a humidity measuring device.

農産物保管室と連通する飽和水蒸気発生室の実験区としては、多孔質フィルタブロックを並設内蔵した検証区A、多孔質フィルタブロックを有していない検証区B、を用いた。 As the experimental group of the saturated water vapor generation room communicating with the agricultural product storage room, the verification group A in which the porous filter block was juxtaposed and built in, and the verification group B in which the porous filter block was not provided were used.

検証区Bでは、送風ファンのみを稼働させ、散水パイプへの送水ポンプは停止状態とした。各検証区は、風速を一定とし、湿度測定器にて保管室内の相対湿度を装置稼働から1分ごとに測定した。その結果を表1に示す。

Figure 0007095720000001
In the verification zone B, only the blower fan was operated, and the water pump to the sprinkler pipe was stopped. In each verification group, the wind speed was kept constant, and the relative humidity in the storage room was measured every minute from the operation of the device with a humidity measuring device. The results are shown in Table 1.
Figure 0007095720000001

表1によれば、検証区Aは、同方向フィルタパターンで、装置稼働直後から保管室内の相対湿度が検証区Bに比べて有意に上昇をはじめた。保管室内の相対湿度は、装置稼働から約13分前後で約90%(表1中、破線で示す。)に達し、約20分前後で100%に至った。20分後は、その後も相対湿度を100%に維持していた。 According to Table 1, in the verification group A, the relative humidity in the storage room began to increase significantly as compared with the verification group B immediately after the operation of the apparatus in the same direction filter pattern. The relative humidity in the storage room reached about 90% (indicated by the broken line in Table 1) about 13 minutes after the equipment was put into operation, and reached 100% about 20 minutes after the equipment was put into operation. After 20 minutes, the relative humidity was maintained at 100%.

水の消費量についてみると、毎時約310~330gが気化されていた。換言すれば、検証区Aは、3~5℃の環境下で加湿能力310~330g/hを有していることが分かった。 Looking at water consumption, about 310-330 g per hour was vaporized. In other words, it was found that the verification group A has a humidifying capacity of 310 to 330 g / h in an environment of 3 to 5 ° C.

これらの結果から算出するに、飽和水蒸気発生室が、3~5℃環境下において、室内の乾燥空気を相対湿度90~100%の飽和蒸気雰囲気とするのに必要な水量は、例えば内容積1400~1500m3の大型の保管室1で約9000g~9400g、内容積500~700m3の中型の保管室1で約4000g~4400gである。 Calculated from these results, the amount of water required for the saturated steam generation chamber to create a saturated steam atmosphere with a relative humidity of 90 to 100% in an environment of 3 to 5 ° C is, for example, an internal volume of 1400. A large storage room 1 of ~ 1500 m 3 weighs about 9000 g ~ 9400 g, and a medium-sized storage room 1 with an internal volume of 500 ~ 700 m 3 weighs about 4000 g ~ 4400 g.

また、異方向フィルタパターンに切り替えた際には、霧状の微細水滴を含んだミスト含有空気が、風速1.5m/s~8.0m/sで飽和水蒸気発生室の空気排出孔から約0.1m~2.0m程度飛散することが確認された。飛散したミスト水滴の大きさは約0.1~1.0mmであった。 In addition, when switching to the different direction filter pattern, the mist-containing air containing mist-like fine water droplets is about 0.1 m from the air discharge hole of the saturated water vapor generation chamber at a wind speed of 1.5 m / s to 8.0 m / s. It was confirmed that it scatters about 2.0 m. The size of the scattered mist water droplets was about 0.1 to 1.0 mm.

一方、検証区Bでは、相対湿度の上昇したものの、他の検証区に比べて有意に低い値であった。すなわち、検証区Bでは、相対湿度の上昇勾配は不安定であり、最高相対湿度は65%前後に留まった。 On the other hand, in the verification group B, although the relative humidity increased, the value was significantly lower than that in the other verification groups. That is, in the verification group B, the upward gradient of the relative humidity was unstable, and the maximum relative humidity remained around 65%.

さらに、保管室の扉開放時に水蒸気含有空気が室外へ逃げて室内湿度が低下した場合における、検証区Aの湿度回復能の検証を行った。冷却装置を停止して室内温度を外気温と略同じ13~17℃となるまで保管室の搬入搬出用扉を開放した。次いで、保管室の搬入搬出用扉を閉めて検証区Aを稼働させ、相対湿度の経時的変化を湿度測定器により測定した。その結果を表2に示す。

Figure 0007095720000002
Furthermore, the humidity recovery ability of the verification group A was verified when the water vapor-containing air escaped to the outside of the room when the door of the storage room was opened and the indoor humidity decreased. The cooling system was stopped and the loading / unloading doors of the storage room were opened until the indoor temperature reached 13 to 17 ° C, which is almost the same as the outside temperature. Next, the loading / unloading door of the storage room was closed, the verification section A was operated, and the change over time in the relative humidity was measured by a humidity measuring device. The results are shown in Table 2.
Figure 0007095720000002

表2によれば、扉開放をして室温13~17℃とし、扉閉塞後、検証区Aを稼働させた保管室内の相対湿度は100%の状態から緩やかに降下をはじめ約15分後に約90%前後となった。しかし、その後の相対湿度は、略一次直線的に上昇に転じ、扉閉塞から約17分後には95%に、約22分後には100%に達した。 According to Table 2, the door was opened to a room temperature of 13 to 17 ° C, and after the door was closed, the relative humidity in the storage room where the verification zone A was operated started to gradually decrease from 100%, and about 15 minutes later. It was around 90%. However, the relative humidity thereafter turned to a linear rise, reaching 95% about 17 minutes after the door was closed and 100% about 22 minutes later.

水の消費量についてみると、毎時約2400~2500gが気化されていた。換言すれば、検証区Aは、13~17℃の環境下で加湿能力2400~2500g/hを有していることが分かった。 Looking at the amount of water consumed, about 2400-2500g was vaporized per hour. In other words, it was found that the verification group A has a humidifying capacity of 2400 to 2500 g / h in an environment of 13 to 17 ° C.

これらの結果から、飽和水蒸気発生室が、3~5℃環境下で、室内の乾燥空気を相対湿度90~100%の飽和雰囲気とするのに必要な水量は、例えば内容積1400~1500m3の大型の農産物保管室で約18300g~18700g、内容積500~700m3の中型の農産物保管室で約8000g~8400gである。 From these results, the amount of water required for the saturated steam generation chamber to create a saturated atmosphere with a relative humidity of 90 to 100% in an environment of 3 to 5 ° C is, for example, an internal volume of 1400 to 1500 m 3 . The large agricultural product storage room weighs about 18300g to 18700g, and the medium-sized agricultural product storage room with an internal volume of 500 to 700m 3 weighs about 8000g to 8400g.

このように、本発明に係る鮮度保持装置によれば、飽和水蒸気発生室により農産物保管室内を短時間で相対湿度90%以上の水蒸気含有空気で満たして飽和蒸気雰囲気にすると共に同雰囲気を維持できることが示された。 As described above, according to the freshness maintaining device according to the present invention, the saturated steam generation chamber can fill the agricultural product storage chamber with steam-containing air having a relative humidity of 90% or more in a short time to create a saturated steam atmosphere and maintain the same atmosphere. It has been shown.

以上説明してきたように、本発明によれば、農産物保管室に保管される農産物の種類に応じて飽和水蒸気発生室から気体状の水分と液体状の水分を適宜選択して付与することができ、農産物の個々の種類に適した保湿条件を実現して農産物の劣化要因を可及的抑制すると共に比較的長期間の保管状態であっても農産物の鮮度保持を実現することができる効果がある。 As described above, according to the present invention, it is possible to appropriately select and apply gaseous water and liquid water from the saturated steam generation chamber according to the type of agricultural product stored in the agricultural product storage chamber. It has the effect of realizing moisturizing conditions suitable for each type of agricultural product, suppressing deterioration factors of agricultural products as much as possible, and maintaining the freshness of agricultural products even in a relatively long-term storage state. ..

A…鮮度保持装置、1…農産物保管室、10…保管室本体、11…冷却装置、12…搬入搬出用扉、2…飽和水蒸気発生室、3…水蒸気生成用ケース、30…キャスター、31…ケース背面、32…ケース正面、33…ケース底部、34…フィルタ設置部、4…空気吸入機構、41…空気吸入孔、42…空気排出孔、43…送風ファン、44…ハブ、45…プロペラ、多孔質フィルタブロック…5、多孔質シート…50、50’、山部…51、51’、谷部…52、52’、波形ワイヤ…53、フィルタ位相変更機構…56、シート固定部…57、シート移動部…58、散水機構…6、貯水槽…60、散水パイプ…61、送水ポンプ…62、循環パイプ…63、ドレン循環装置…7、ドレンケース…70、ドレンパイプ…71、外気送風機構…72、ドレン流通路…73、73’、ドレン回収トレイ…74、ドレン送水パイプ…75、冷却ドレン生成部…76、循環ポンプ…77、急速加湿機構…8、温水供給パイプ…80、温水生成用ヒータ…81、乾燥空気…G1、湿り空気…G2、水蒸気含有空気…G3、ミスト含有空気…G4、冷却ドレン…R1、上下層流…UF、DF、中間層流…CF A ... Freshness keeping device, 1 ... Agricultural product storage room, 10 ... Storage room body, 11 ... Cooling device, 12 ... Carry-in / out door, 2 ... Saturated steam generation room, 3 ... Steam generation case, 30 ... Caster, 31 ... Case back, 32 ... Case front, 33 ... Case bottom, 34 ... Filter installation part, 4 ... Air suction mechanism, 41 ... Air suction hole, 42 ... Air exhaust hole, 43 ... Blower fan, 44 ... Hub, 45 ... Propeller, Porous filter block ... 5, Porous sheet ... 50, 50', Yamabe ... 51, 51', Tanibe ... 52, 52', Corrugated wire ... 53, Filter phase change mechanism ... 56, Sheet fixing part ... 57, Seat moving part ... 58, sprinkler mechanism ... 6, water storage tank ... 60, sprinkler pipe ... 61, water supply pump ... 62, circulation pipe ... 63, drain circulation device ... 7, drain case ... 70, drain pipe ... 71, outside air ventilation mechanism ... 72, drain flow passage ... 73, 73', drain recovery tray ... 74, drain water supply pipe ... 75, cooling drain generator ... 76, circulation pump ... 77, rapid humidification mechanism ... 8, hot water supply pipe ... 80, hot water generation Heater ... 81, Dry air ... G1, Moist air ... G2, Water vapor-containing air ... G3, Mist-containing air ... G4, Cooling drain ... R1, Upper and lower layer flow ... UF, DF, Intermediate layer flow ... CF

Claims (4)

約0℃~15℃に冷却維持した農産物保管室と飽和水蒸気発生室とを連通して飽和水蒸気発生室で生成した飽和水蒸気を農産物保管室に流入して農産物保管室に収納した果実や野菜等の農産物の各種劣化要因を除去可能に構成した農産物の鮮度保持装置において、
飽和水蒸気発生室は、
水蒸気生成用ケースと、
空気を取込むための空気吸入機構と、
空気吸入機構に連通して設けた多孔質フィルタブロックと、
多孔質フィルタブロックに散水する散水機構とより構成し、
しかも、多孔質フィルタブロックは、多孔質シートを波形に形成して一定の間隔を保持して多数積層して構成すると共に、
積層した多孔質シートの波形の方向を同位相に整順して配設した同方向フィルタパターンに構成する場合と、
波形振幅の略1/2だけ位相をずらして波形の方向を谷部と山部とが互いに対峙するように逆位相に整順して配設した異方向フィルタパターンに構成する場合と、
に変更可能に構成したことを特徴とする農産物の鮮度保持装置。
Fruits, vegetables, etc. stored in the agricultural product storage room by flowing the saturated steam generated in the saturated steam generation room by communicating the agricultural product storage room cooled and maintained at about 0 ° C to 15 ° C and the saturated steam generation room. In the freshness maintenance device of agricultural products configured to be able to remove various deterioration factors of agricultural products
The saturated water vapor generation chamber
A case for steam generation and
An air intake mechanism for taking in air and
A porous filter block that communicates with the air suction mechanism,
Consists of a sprinkling mechanism that sprinkles water on the porous filter block,
Moreover, the porous filter block is composed of a large number of porous sheets formed in a corrugated manner and maintained at a constant interval, and is also configured.
When the waveforms of the laminated porous sheets are arranged in the same phase in order, and when the filter pattern is configured in the same direction.
A case where the phase is shifted by about 1/2 of the waveform amplitude and the direction of the waveform is arranged in an orderly opposite phase so that the valley and the mountain face each other, and the case where the different direction filter pattern is configured.
Agricultural product freshness preserving device characterized by being configurable to.
飽和水蒸気発生室に吸収した多孔質フィルタブロックに散水するための散水機構は、農産物保管室の内外側のいずれかに別途配置したドレン循環装置に連通連設すると共に、
ドレン循環装置は、
ドレンケース内に配設したドレンパイプと、
ドレンパイプに高温度外気を送風するための外気送風機構と、
ドレンパイプ内へ農産物保管室の冷却に用いる冷却装置からの冷却ドレンを流通させるためのドレン流通路と、
ドレンケースの底部に配設すると共にドレンパイプの下方位置に配設し、ドレンパイプの外周で外気から生成した滴下ドレンを集水するためのドレン回収トレイと、
ドレン回収トレイから飽和水蒸気発生室内の多孔質フィルタブロックの散水機構へ集水ドレンを送水するためのドレン送水パイプと、
より構成したことを特徴とする請求項1に記載の農産物の鮮度保持装置。
The sprinkling mechanism for sprinkling water on the porous filter block absorbed in the saturated steam generation chamber is connected to the drain circulation device separately arranged on either the inside or the outside of the agricultural product storage chamber, and is also connected.
The drain circulation device is
The drain pipe arranged in the drain case and
An outside air ventilation mechanism for blowing high temperature outside air to the drain pipe,
A drain flow passage for distributing the cooling drain from the cooling device used for cooling the agricultural product storage room into the drain pipe, and
A drain collection tray that is placed at the bottom of the drain case and below the drain pipe to collect the dripping drain generated from the outside air on the outer circumference of the drain pipe.
A drain water pipe for sending the collected drain from the drain recovery tray to the watering mechanism of the porous filter block in the saturated steam generation chamber,
The freshness-maintaining device for agricultural products according to claim 1, which is characterized by the above.
飽和水蒸気発生室内で散水機構から多孔質フィルタブロックへ散水される水の温度は、農産物保管室内の温度よりも約10~45℃の高温度に維持することにより飽和水蒸気圧を高めて飽和水蒸気発生室内を急速な加湿状態を可能とすることを特徴とする請求項1又は請求項2に記載の農産物の鮮度保持装置。 Saturated steam generation The temperature of the water sprinkled from the sprinkling mechanism to the porous filter block in the chamber is maintained at a temperature higher than the temperature in the agricultural product storage chamber at about 10 to 45 ° C to increase the saturated steam pressure and generate saturated steam. The freshness-maintaining device for agricultural products according to claim 1 or 2, wherein the room can be rapidly humidified. 飽和水蒸気発生室で生成した飽和水蒸気を飽和水蒸気流通路から農産物保管室に流入するに際して、農産物保管室への飽和水蒸気の流入形態を上下の3層流とすると共に、中間層流は高湿度の上下層流に比し低湿度とすることにより、農産物保管室内での結露を可及的に抑えて農産物保管室の床面や壁面における結露現象を回避するように構成したことを特徴とする請求項1~3のいずれか1項に記載の農産物の鮮度保持装置。 When the saturated steam generated in the saturated steam generation chamber flows into the agricultural product storage chamber from the saturated steam flow passage, the inflow form of the saturated steam into the agricultural product storage chamber is set to the upper and lower three-layer flow, and the intermediate layer flow has high humidity. A claim characterized by being configured to suppress dew condensation in the agricultural product storage room as much as possible and avoid the dew condensation phenomenon on the floor surface and wall surface of the agricultural product storage room by making the humidity lower than that of the upper and lower layer flow. The freshness-maintaining device for agricultural products according to any one of Items 1 to 3.
JP2020153994A 2020-09-14 2020-09-14 Agricultural product freshness maintenance device Active JP7095720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020153994A JP7095720B2 (en) 2020-09-14 2020-09-14 Agricultural product freshness maintenance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020153994A JP7095720B2 (en) 2020-09-14 2020-09-14 Agricultural product freshness maintenance device

Publications (2)

Publication Number Publication Date
JP2022047940A JP2022047940A (en) 2022-03-25
JP7095720B2 true JP7095720B2 (en) 2022-07-05

Family

ID=80781167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020153994A Active JP7095720B2 (en) 2020-09-14 2020-09-14 Agricultural product freshness maintenance device

Country Status (1)

Country Link
JP (1) JP7095720B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102620827B1 (en) * 2023-07-21 2024-01-02 안영일 Raw material silo structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336870A (en) 2000-05-30 2001-12-07 National Institute For Rural Engineering Cooler/refrigerator for agricultural product
JP2007147101A (en) 2005-11-24 2007-06-14 Matsushita Electric Ind Co Ltd Refrigerator
JP2009264665A (en) 2007-04-26 2009-11-12 Panasonic Corp Refrigerator
JP2016114323A (en) 2014-12-17 2016-06-23 シャープ株式会社 Humidifier and humidifying method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336870A (en) 2000-05-30 2001-12-07 National Institute For Rural Engineering Cooler/refrigerator for agricultural product
JP2007147101A (en) 2005-11-24 2007-06-14 Matsushita Electric Ind Co Ltd Refrigerator
JP2009264665A (en) 2007-04-26 2009-11-12 Panasonic Corp Refrigerator
JP2016114323A (en) 2014-12-17 2016-06-23 シャープ株式会社 Humidifier and humidifying method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Controlling the weight loss of fresh produce during postharvest storage under a nano-size mist environment ,HUNG, D. V. et al.,2011年05月30日,Vol. 106,pp. 325-330

Also Published As

Publication number Publication date
JP2022047940A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
KR20100103499A (en) Method and system for heating and dehumidifying
JP7095720B2 (en) Agricultural product freshness maintenance device
KR100530387B1 (en) Air-conditioner recycling heat of condensation
EP1945020B1 (en) System for conditioning crops
JPH0842960A (en) Vegetable storeroom humidifier for refrigerator
JP2024500426A (en) Atmospheric water generation system and method
WO1995022724A1 (en) Improvements in and relating to atmosphere modifying units
CA2820897C (en) Closed-loop energy neutral air drying system
JP3674616B2 (en) Seedling acclimatization device
KR20120126519A (en) dehumidifying device of house
JP6427612B2 (en) Freshness holding device such as agricultural products
JP2008275301A (en) Humidifier for refrigerator and cold insulator
CN115127283A (en) Wet structure of accuse and refrigeration storage device of refrigeration storage device
JP2006317129A (en) High-humidity cold insulation shed, and cooling humidifier
JPS6042862B2 (en) Atmosphere control method
KR100855392B1 (en) Humidity control system for cold storage
JP7132573B2 (en) Agricultural product storage method for preventing low temperature injury and low temperature injury prevention device using the method
JPH04344088A (en) Drain device for refrigerator-containing showcase
JP3106777U (en) Humidifier and low-temperature humidification showcase using the same
JP3674617B2 (en) Seedling acclimatization device
RU2784130C1 (en) Method and device for absorption drying of food products
WO2016067990A1 (en) Water quantity adjustment device for condenser auxiliary cooling system
KR980007953A (en) Mushroom cultivation air conditioner
KR101153855B1 (en) Forced evaporation type humidifier
JPH04270879A (en) Air cleaner of refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7095720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150