JP7093610B2 - Structural members - Google Patents

Structural members Download PDF

Info

Publication number
JP7093610B2
JP7093610B2 JP2016191624A JP2016191624A JP7093610B2 JP 7093610 B2 JP7093610 B2 JP 7093610B2 JP 2016191624 A JP2016191624 A JP 2016191624A JP 2016191624 A JP2016191624 A JP 2016191624A JP 7093610 B2 JP7093610 B2 JP 7093610B2
Authority
JP
Japan
Prior art keywords
adhesive
cfrp
fiber reinforced
wrought
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016191624A
Other languages
Japanese (ja)
Other versions
JP2017119422A (en
Inventor
寛規 戸田
朋夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Keikinzoku Co Ltd
Original Assignee
Aisin Keikinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Keikinzoku Co Ltd filed Critical Aisin Keikinzoku Co Ltd
Publication of JP2017119422A publication Critical patent/JP2017119422A/en
Application granted granted Critical
Publication of JP7093610B2 publication Critical patent/JP7093610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、アルミニウム合金を用いた展伸部材と繊維強化樹脂材との複合化を図った構造部材に関する。 The present invention relates to a structural member in which a wrought member using an aluminum alloy and a fiber reinforced resin material are composited.

車両の分野において、バンパーリインフォース,ドアビーム等の構造部材には軽量化,耐衝撃吸収性,高剛性等が要求される。
アルミニウム合金を用いた構造材は高強度の軽量部材ではあるが、近年さらなる軽量化,耐衝撃吸収性が要求される。
例えば、特許文献1には角パイプの4つの側面にそれぞれ溝を設けてCFRP平板を嵌合接着したCFRP補強パイプを開示する。
しかし、同公報に開示する複合部材は、捩り剛性の向上を目的としたものであり、曲げ剛性向上を目的としたものでないため、4つの側面全てにCFRPを嵌合接着することは製造工数が大きく、高価となる。
特許文献2には、衝撃荷重が作用する側が塑性変形容易な衝撃吸収材(アルミニウム合金)、その反対側が高強度軽量材(繊維強化プラスチック)からなるビーム状の部材を開示する。
しかし、同公報に開示する複合部材は、衝撃吸収材が塑性変形するように、引っ張り側に繊維強化プラスチックを用いたものであり、同公報に炭素繊維よりもガラス繊維で強化されたプラスチックの方がよいと明記されているとおり、ビーム部材の全長の撓みを大きくするのが目的である。
よって、ポール衝突等の局部的な衝撃には耐えられなく、ガラス繊維強化プラスチックが破断する恐れが高い。
特許文献3には、金属材と繊維強化プラスチック材とを粘着剤で粘着接合する複合部材を開示する。
しかし、同公報に開示する発明は、リサイクル時に2つの材料を分離しやすくするのが目的であり、高剛性の向上には不充分である。
In the field of vehicles, structural members such as bumper reinforces and door beams are required to be lightweight, shock-absorbing, and highly rigid.
Structural materials made of aluminum alloy are high-strength lightweight members, but in recent years, further weight reduction and impact absorption are required.
For example, Patent Document 1 discloses a CFRP reinforced pipe in which grooves are provided on each of the four side surfaces of a square pipe and a CFRP flat plate is fitted and bonded.
However, since the composite member disclosed in the same publication is intended for improving the torsional rigidity and not for improving the bending rigidity, fitting and adhering CFRP to all four side surfaces requires a manufacturing man-hour. Large and expensive.
Patent Document 2 discloses a beam-shaped member made of a shock absorbing material (aluminum alloy) that is easily plastically deformed on the side on which an impact load is applied and a high-strength lightweight material (fiber reinforced plastic) on the opposite side.
However, the composite member disclosed in the same gazette uses fiber reinforced plastic on the pulling side so that the shock absorber is plastically deformed, and the plastic reinforced with glass fiber rather than carbon fiber is used in the same gazette. The purpose is to increase the deflection of the entire length of the beam member, as clearly stated.
Therefore, it cannot withstand a local impact such as a pole collision, and there is a high possibility that the glass fiber reinforced plastic will break.
Patent Document 3 discloses a composite member in which a metal material and a fiber reinforced plastic material are adhesively bonded with an adhesive.
However, the invention disclosed in the same publication aims at facilitating the separation of the two materials at the time of recycling, and is insufficient for improving the high rigidity.

特開平11-210937号公報Japanese Unexamined Patent Publication No. 11-210937 特開平6-101732号公報Japanese Unexamined Patent Publication No. 6-101732 特開2002-240658号公報Japanese Patent Application Laid-Open No. 2002-240658

本発明は、軽量で高剛性であるアルミニウム合金展伸部材と炭素繊維強化部材とを複合化した構造部材の提供を目的とする。 An object of the present invention is to provide a structural member in which a lightweight and highly rigid aluminum alloy wrought member and a carbon fiber reinforced member are combined.

本発明に係る構造部材は、所定の長さを有するバー状の構造部材であって、アルミニウム合金を用いた展伸部材と、展伸部材に表面側から圧縮曲げ荷重を受けた際に引張応力が発生する裏面側に接着剤にて接着接合した炭素繊維強化樹脂部材とを有し、前記炭素繊維強化樹脂部材は展伸部材の長手方向に配向した炭素繊維を体積率で50~70%含有するシート状の複合材であることを特徴とする。
ここで所定の長さを有するバー状の構造部材と表現したのは、車両や各種産業機械等の構造部材として使用できるだけの所定の長さを有するものをいう。
車両用の構造部材としては、バンパーリインフォース,ドアビーム等が例として挙げられる。
このような構造部材にポール衝突等の曲げ圧縮荷重が表面側に加わると、それが裏面側の炭素繊維強化樹脂部材に引張応力荷重として伝達される。
そこで本発明は、体積率で50~70%含有する炭素繊維を構造部材の長手方向に配向させた炭素繊維強化樹脂(CFRP)を用いた。
The structural member according to the present invention is a bar-shaped structural member having a predetermined length, and is a stretched member using an aluminum alloy and a tensile stress when the stretched member receives a compressive bending load from the surface side. The carbon fiber reinforced resin member is bonded to the back surface side with an adhesive, and the carbon fiber reinforced resin member contains 50 to 70% of carbon fibers oriented in the longitudinal direction of the wrought member in terms of volume ratio. It is characterized in that it is a sheet-like composite material.
Here, the term "bar-shaped structural member" having a predetermined length means a member having a predetermined length that can be used as a structural member of a vehicle, various industrial machines, or the like.
Examples of structural members for vehicles include bumper reinforces and door beams.
When a bending compressive load such as a pole collision is applied to such a structural member, it is transmitted as a tensile stress load to the carbon fiber reinforced resin member on the back surface side.
Therefore, the present invention uses a carbon fiber reinforced resin (CFRP) in which carbon fibers containing 50 to 70% by volume are oriented in the longitudinal direction of the structural member.

本発明に係るアルミニウム合金からなる展伸部材は、0.2%耐力値で420MPa以上のものが好ましい。
高耐力の展伸部材を用いることで、軽量化を図ることができる。
ここで展伸部材は、押出材,引抜材等であってよく、アルミニウム合金の化学組成はJIS7000系であって、下記の範囲のものを用いることができる。
以下、全て質量%で、Zn:6.0~7.2%,Mg:1.0~1.9%,Cu:0.1~0.4%,Zr:0.15~0.25%,Ti:0.05%以下であって、残部がAlと不純物である。
ここで好ましくは、Zn:6.4~7.0%,Mg:1.05~1.60%,Cu:0.2~0.3%である。
なお、不純物としては、Si:0.1%以下,Fe:0.25%以下が好ましい。
また、Crは0.001~0.05%、Mnは0.3%以下の範囲にて含まれていてもよい。
展伸部材の断面形状としては、コ字形状等異形状のソリッド断面形状や口字形状,日字形状,目字形状等の中空断面形状であってもよい。
The wrought member made of an aluminum alloy according to the present invention preferably has a 0.2% proof stress value of 420 MPa or more.
By using a stretch member with high yield strength, weight reduction can be achieved.
Here, the wrought member may be an extruded material, an drawn material, or the like, and the chemical composition of the aluminum alloy is JIS7000 series, and those in the following range can be used.
Hereinafter, all in mass%, Zn: 6.0 to 7.2%, Mg: 1.0 to 1.9%, Cu: 0.1 to 0.4%, Zr: 0.15 to 0.25%. , Ti: 0.05% or less, and the balance is Al and impurities.
Here, Zn: 6.4 to 7.0%, Mg: 1.05 to 1.60%, and Cu: 0.2 to 0.3% are preferable.
The impurities are preferably Si: 0.1% or less and Fe: 0.25% or less.
Further, Cr may be contained in the range of 0.001 to 0.05% and Mn may be contained in the range of 0.3% or less.
The cross-sectional shape of the extension member may be a solid cross-sectional shape such as a U-shape, a hollow cross-sectional shape such as a mouth-shaped shape, a Japanese-shaped shape, or an eye-shaped shape.

本発明において、炭素繊維強化樹脂部材は、接着面に炭素繊維が露出するように加工してあってもよく、このように接着面に炭素繊維を例えばショットブラスト等にて露出させることで接着剤による密着性が向上する。
また、上記露出面の面粗さは、Rz=5~50μmの範囲、好ましくはRz=20~30μmの範囲である。
In the present invention, the carbon fiber reinforced resin member may be processed so that the carbon fibers are exposed on the adhesive surface, and the carbon fibers are exposed on the adhesive surface by, for example, shot blasting to provide an adhesive. Improves adhesion.
The surface roughness of the exposed surface is in the range of Rz = 5 to 50 μm, preferably in the range of Rz = 20 to 30 μm.

本発明において、接着剤は接着剪断力15MPa以上であるのが好ましい。
また、接着剤の伸びは、75%以上で250%以下が好ましい。
これにより、アルミニウム合金からなる展伸部材の曲げ変形に追随しつつ、補強効果が発現する。
In the present invention, the adhesive preferably has an adhesive shear force of 15 MPa or more.
The elongation of the adhesive is preferably 75% or more and 250% or less.
As a result, the reinforcing effect is exhibited while following the bending deformation of the wrought member made of an aluminum alloy.

本発明に係る構造部材にあっては、アルミニウム合金の展伸部材に押し込み方向の曲げ荷重が負荷されると反対側のCFRP部材に引張応力として伝達されるので、全体として変形量を抑えつつ耐荷重が向上し、軽量化を図るのに有効である。 In the structural member according to the present invention, when a bending load in the pushing direction is applied to the stretched member of the aluminum alloy, it is transmitted as tensile stress to the CFRP member on the opposite side, so that the structural member can withstand the deformation while suppressing the amount of deformation as a whole. It is effective for improving the load and reducing the weight.

評価に用いたアルミニウム合金の化学組成を示す。The chemical composition of the aluminum alloy used for the evaluation is shown. 評価に用いた展伸部材(押出形材)の製造条件及び物性値を示す。The manufacturing conditions and physical property values of the extruded member (extruded profile) used for the evaluation are shown. 評価に用いた炭素繊維強化樹脂(CFRP)の物性値を示す。The physical property values of the carbon fiber reinforced resin (CFRP) used for the evaluation are shown. 評価に用いた接着剤及びその接着条件を示す。The adhesive used for the evaluation and its adhesive conditions are shown. 構造部材の性能(強度,剛性)の評価結果を示す。The evaluation result of the performance (strength, rigidity) of the structural member is shown. 構造部材の評価方法を示す。The evaluation method of the structural member is shown. 評価に用いたサンプルを示す。The sample used for the evaluation is shown. (a)~(c)は本発明に係る構造部材の断面形状例を示す。(A) to (c) show an example of the cross-sectional shape of the structural member which concerns on this invention. (a)~(c)はCFRP材の接着位置の例を示す。(A) to (c) show an example of the bonding position of the CFRP material. CFRP材の貼付範囲を示す。The range of application of CFRP material is shown. CFRP材を部分的に貼付した構造部材の例を(a),(b)に示す。Examples of structural members to which CFRP material is partially attached are shown in (a) and (b).

以下、各種条件にて構造部材を製作し評価したので、説明する。
図1の表に示した化学組成のアルミニウム合金の溶湯を調整し、直径8インチの円柱ビレットを鋳造した。
鋳造したビレットを図2の表中、HOMO保持温度にて均質化処理した。
なお、均質化処理温度は500~540℃の範囲が好ましい。
断面目字形状の押出形材を押出成形した。
押出条件を図2の表に示す。
なお、ビレットの温度は490~530℃の範囲、押出時のダイス温度は440~500℃の範囲が好ましい。
押出直後にファン冷却を行うことで冷却速度を80℃/min以上、好ましくは100℃/min以上にするのがよい。
その後に50~140℃+140~200℃の二段人工時効処理をした。
押出形材の物性値を図2の表に示す。
本発明において、耐力420MPa以上、伸び10%以上を目標とした。
表中、<靭性>はJIS Z 2242「金属材料のシャルピー衝撃試験方法」に従って試験を行った。
目標は12J/cm以上とした。
<SCC>は、JIS H 8711「アルミニウム合金の応力腐食割れ試験方法」に従って行い、3点曲げ治具にて40%応力値を負荷した状態で試験をした。
再結晶を起える亀裂が発生するまでの時間を評価した。
なお、目標は72hr以上とした。
<再結晶率>は押出形材の断面積に対する再結晶層の面積比率を求めた。
目標は20%以下とした。
評価に用いたCFRP部材の物性値を図3に示す。
なお、表中CF繊維方向0°とは、長手方向に配向していることを意味する。
アルミニウム合金の押出形材とCFRP部材との接着条件を図4の表に示す。
なお、比較例13は、CFRP部材を貼り合せてない構造部材である。
評価に用いたサンプルの断面を図7に示す。
接着層の厚みは50μm~1mmの範囲で剛性に顕著な差は現れなかった。
Hereinafter, the structural members have been manufactured and evaluated under various conditions, and will be described below.
The molten aluminum alloy having the chemical composition shown in the table of FIG. 1 was adjusted to cast a cylindrical billet having a diameter of 8 inches.
The cast billets were homogenized at the HOMO holding temperature in the table of FIG.
The homogenization treatment temperature is preferably in the range of 500 to 540 ° C.
An extruded profile with a cross-sectional shape was extruded.
The extrusion conditions are shown in the table of FIG.
The billet temperature is preferably in the range of 490 to 530 ° C, and the die temperature during extrusion is preferably in the range of 440 to 500 ° C.
It is preferable to set the cooling rate to 80 ° C./min or more, preferably 100 ° C./min or more by cooling the fan immediately after extrusion.
After that, a two-stage artificial aging treatment at 50 to 140 ° C. + 140 to 200 ° C. was performed.
The physical characteristics of the extruded profile are shown in the table of FIG.
In the present invention, the target is a proof stress of 420 MPa or more and an elongation of 10% or more.
In the table, <toughness> was tested according to JIS Z 2242 "Charpy impact test method for metallic materials".
The target was 12 J / cm 2 or more.
<SCC> was carried out according to JIS H 8711 "Stress corrosion cracking test method for aluminum alloy", and the test was carried out with a stress value of 40% applied by a three-point bending jig.
The time until cracks that could cause recrystallization were evaluated.
The target was 72 hours or more.
For <recrystallization rate>, the area ratio of the recrystallized layer to the cross-sectional area of the extruded profile was determined.
The target is 20% or less.
The physical property values of the CFRP member used for the evaluation are shown in FIG.
In the table, 0 ° in the CF fiber direction means that the fibers are oriented in the longitudinal direction.
The bonding conditions between the extruded aluminum alloy profile and the CFRP member are shown in the table of FIG.
In addition, Comparative Example 13 is a structural member to which the CFRP member is not bonded.
The cross section of the sample used for the evaluation is shown in FIG.
The thickness of the adhesive layer was in the range of 50 μm to 1 mm, and no significant difference in rigidity appeared.

図6に構造部材の評価方法を示す。
構造部材10の全長は1200mmで、ポール2による押し込み荷重Fを荷重する側(表面)に展伸部材(押出形材)11,その反対側の裏面に接着接合したCFRP部材12が位置するように、スパン880mmの支点1,1間に載置した。
ポール直径は203.2mmであり、下方に向けて一定速度で押し込み、曲げ剛性(kN/mm)と全塑性モーメントによる強度(kNm)を測定した。
その結果を図5の表に示す。
本発明においては、剛性4.1kN/mm以上,強度60kNm以上を目標としたが、実施例1~6はそれらをクリアーした。
なお、実施例7~9は上記目標値をクリアーできなかったが、それに近い値を示し、実用的には問題ないレベルであった。
FIG. 6 shows an evaluation method for structural members.
The total length of the structural member 10 is 1200 mm, so that the extruded member (extruded profile) 11 is located on the side (front surface) where the pushing load F by the pole 2 is applied, and the CFRP member 12 is adhesively bonded to the back surface on the opposite side. , Placed between fulcrums 1 and 1 with a span of 880 mm.
The pole diameter was 203.2 mm, and the pole was pushed downward at a constant speed, and the flexural rigidity (kN / mm) and the strength due to the total plastic moment (kNm) were measured.
The results are shown in the table of FIG.
In the present invention, the target is a rigidity of 4.1 kN / mm or more and a strength of 60 kNm or more, but Examples 1 to 6 have cleared them.
In Examples 7 to 9, the above target values could not be cleared, but the values were close to those, and there was no problem in practical use.

評価結果の内容について、具体的に説明する。
図9(a)に示すようにCFRP材12の貼付方法として、展伸部材(アルミ押出材)11の中空断面のリブを有する裏面側に沿って部分的に貼付したもの(図4の接着範囲にて補強率60%)と、裏面側全面(補強率100%)とを比較する。
実施例3と4は、図9(b),図10に示す補強長さ中央部を中心に、L=500mmと同じで展伸部材の耐力が同等であることから、CFRP材を部分的に貼付しても目標をクリアーできることが明らかになった。
The contents of the evaluation results will be explained concretely.
As shown in FIG. 9A, as a method of attaching the CFRP material 12, a stretched member (aluminum extruded material) 11 is partially attached along the back surface side having a rib in a hollow cross section (adhesive range of FIG. 4). (Reinforcement rate 60%) and the entire back surface side (reinforcement rate 100%) are compared.
In Examples 3 and 4, the CFRP material is partially used because the proof stress of the wrought member is the same as L 1 = 500 mm centering on the central portion of the reinforcing length shown in FIGS. 9 (b) and 10. It became clear that the target can be cleared even if it is attached to.

次に図9(b),図10に示すように、CFRP材12を展伸部材11の中央部にその中心から、L=1000mmのもの(実施例2)と、L=500mmのもの(実施例3)とを比較すると、L=500mmとL=1000の半分でも強度及び剛性が目標をクリアーすることが分かる。 Next, as shown in FIGS. 9 (b) and 10, the CFRP material 12 is placed in the center of the stretching member 11 with L 0 = 1000 mm (Example 2) and L 1 = 500 mm from the center thereof. Comparing with (Example 3), it can be seen that the strength and rigidity clear the target even at half of L 1 = 500 mm and L 0 = 1000.

接着剤の伸びは、展伸材の曲げ変形に追随させるのに必要であり、実施例1~9の結果及び比較例18,19の結果から75%以上有するのが好ましく、より好ましくは実施例1~5に示すように75~120%の範囲がよい。 The elongation of the adhesive is necessary to follow the bending deformation of the wrought material, and it is preferable that it has 75% or more from the results of Examples 1 to 9 and the results of Comparative Examples 18 and 19, and more preferably. As shown in 1 to 5, the range of 75 to 120% is good.

比較例13はCFRP材のないものであり、比較例10,12は展伸部材の耐力が420MPa未満であり、構造部材の強度,剛性が目標をクリアーできなかった。
比較例11,12は接着剤の伸びが悪く、比較例15は接着剤の接着剪断強度が低い例である。
Comparative Example 13 had no CFRP material, and Comparative Examples 10 and 12 had a proof stress of less than 420 MPa of the wrought member, and the strength and rigidity of the structural member could not meet the targets.
Comparative Examples 11 and 12 have poor adhesive elongation, and Comparative Example 15 has a low adhesive shear strength.

本発明に係る構造材の断面形状例を図8及び図11に示す。
図8は、裏面側に中央部を中心に幅方向の全体にわたってCFRP材を接着した例であり、図12はリブ付近の裏面側に部分的にCFRP材を接着した例である。
この場合に、図9(c)に示すようにCFRP材12は、展伸部材11の断面肉厚が厚い11aよりも相対的に薄い11b側に接着するのが好ましい。
8 and 11 show examples of cross-sectional shapes of the structural material according to the present invention.
FIG. 8 is an example in which the CFRP material is adhered to the back surface side over the entire width direction centering on the central portion, and FIG. 12 is an example in which the CFRP material is partially adhered to the back surface side near the rib.
In this case, as shown in FIG. 9C, it is preferable that the CFRP material 12 is adhered to the 11b side, which is relatively thinner than the 11a having a thick cross-sectional wall thickness of the extension member 11.

1 支点
2 ポール
10 構造部材
11 展伸部材
12 CFRP部材
1 fulcrum 2 pole 10 structural member 11 extension member 12 CFRP member

Claims (1)

1200mm以上の長さを有するバー状の構造部材であって、
全て質量%で、Zn:6.0~7.2%,Mg:1.0~1.9%,Cu:0.1~0.4%,Zr:0.15~0.25%,Ti:0.05%以下であって、残部がAlと不純物からなるアルミニウム合金を用いた展伸部材と、当該展伸部材に表面側から圧縮曲げ荷重を受けた際に引張応力が発生する裏面側に直接接着剤にて接着接合した炭素繊維強化樹脂部材とを有し、
前記炭素繊維強化樹脂部材は展伸部材の長手方向に配向した炭素繊維を体積率で50~70%含有するシート状の複合材であり、かつ、接着面に炭素繊維が露出するように加工してあることを特徴とする構造部材。
A bar-shaped structural member having a length of 1200 mm or more.
All in mass%, Zn: 6.0 to 7.2%, Mg: 1.0 to 1.9%, Cu: 0.1 to 0.4%, Zr: 0.15 to 0.25%, Ti. : 0.05% or less and the wrought member using an aluminum alloy whose balance is Al and impurities, and the back side where tensile stress is generated when the wrought member receives a compressive bending load from the front side. It has a carbon fiber reinforced resin member that is directly bonded to the aluminum fiber with an adhesive.
The carbon fiber reinforced resin member is a sheet-shaped composite material containing 50 to 70% by volume of carbon fibers oriented in the longitudinal direction of the stretched member, and is processed so that the carbon fibers are exposed on the adhesive surface. A structural member characterized by being .
JP2016191624A 2015-12-26 2016-09-29 Structural members Active JP7093610B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255510 2015-12-26
JP2015255510 2015-12-26

Publications (2)

Publication Number Publication Date
JP2017119422A JP2017119422A (en) 2017-07-06
JP7093610B2 true JP7093610B2 (en) 2022-06-30

Family

ID=59272054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191624A Active JP7093610B2 (en) 2015-12-26 2016-09-29 Structural members

Country Status (1)

Country Link
JP (1) JP7093610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024014088A (en) 2022-07-21 2024-02-01 株式会社神戸製鋼所 Manufacturing apparatus and manufacturing method of metal-resin composite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010168A1 (en) 1997-08-21 1999-03-04 Toray Industries, Inc. Light metal/cfrp structural member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010168A1 (en) 1997-08-21 1999-03-04 Toray Industries, Inc. Light metal/cfrp structural member

Also Published As

Publication number Publication date
JP2017119422A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP5366748B2 (en) Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
JP5160930B2 (en) Aluminum alloy extruded material excellent in bending crushability and corrosion resistance and method for producing the same
US6528183B2 (en) Clad aluminum alloy sheet for aircraft structural parts
JP4977281B2 (en) High-strength aluminum alloy extruded material excellent in shock absorption and stress corrosion cracking resistance and method for producing the same
JP4932473B2 (en) Method of manufacturing an integrated monolithic aluminum structure and aluminum products machined from the structure
KR102159857B1 (en) Aluminum alloy products and a method of preparation
JP2909211B2 (en) Reinforced alloy laminate
JP5968285B2 (en) Bumper reinforcement and manufacturing method thereof
JP2006523145A5 (en)
EP2811043B1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JP2008274441A (en) Aluminum alloy extruded material excellent in crushing characteristics
JP5237128B2 (en) Aluminum alloy bumper system manufacturing method and aluminum alloy bumper system
JP5473718B2 (en) Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
JP7093610B2 (en) Structural members
JP2011074470A (en) Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
EP1415799A1 (en) Method of improving crack resistance in fiber-metal-laminate structures
JP2010196089A (en) Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process
JP2001140029A (en) Energy absorbing member
US20080292853A1 (en) Composite Laminated Material and Article Made Thereof
JPH09241785A (en) High toughness aluminum alloy
JP4183396B2 (en) Aluminum alloy extruded material with excellent crushing properties
WO2005040440A1 (en) Aluminum alloy extruded article excellent in shock absorbing property
Shikama et al. Highly SCC resistant 7000-series aluminum alloy extrusion
JP3229448B2 (en) Shock absorbing member with excellent bending workability and shock absorption
JPH07268533A (en) Aluminum alloy for automobile impact absorbing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210515

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210526

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210602

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210709

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210803

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220411

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220509

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220613

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7093610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150