JP2017119422A - Structure member - Google Patents
Structure member Download PDFInfo
- Publication number
- JP2017119422A JP2017119422A JP2016191624A JP2016191624A JP2017119422A JP 2017119422 A JP2017119422 A JP 2017119422A JP 2016191624 A JP2016191624 A JP 2016191624A JP 2016191624 A JP2016191624 A JP 2016191624A JP 2017119422 A JP2017119422 A JP 2017119422A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- fiber reinforced
- aluminum alloy
- adhesive
- reinforced resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Body Structure For Vehicles (AREA)
- Laminated Bodies (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、アルミニウム合金を用いた展伸部材と繊維強化樹脂材との複合化を図った構造部材に関する。 The present invention relates to a structural member in which a stretched member using an aluminum alloy and a fiber reinforced resin material are combined.
車両の分野において、バンパーリインフォース,ドアビーム等の構造部材には軽量化,耐衝撃吸収性,高剛性等が要求される。
アルミニウム合金を用いた構造材は高強度の軽量部材ではあるが、近年さらなる軽量化,耐衝撃吸収性が要求される。
例えば、特許文献1には角パイプの4つの側面にそれぞれ溝を設けてCFRP平板を嵌合接着したCFRP補強パイプを開示する。
しかし、同公報に開示する複合部材は、捩り剛性の向上を目的としたものであり、曲げ剛性向上を目的としたものでないため、4つの側面全てにCFRPを嵌合接着することは製造工数が大きく、高価となる。
特許文献2には、衝撃荷重が作用する側が塑性変形容易な衝撃吸収材(アルミニウム合金)、その反対側が高強度軽量材(繊維強化プラスチック)からなるビーム状の部材を開示する。
しかし、同公報に開示する複合部材は、衝撃吸収材が塑性変形するように、引っ張り側に繊維強化プラスチックを用いたものであり、同公報に炭素繊維よりもガラス繊維で強化されたプラスチックの方がよいと明記されているとおり、ビーム部材の全長の撓みを大きくするのが目的である。
よって、ポール衝突等の局部的な衝撃には耐えられなく、ガラス繊維強化プラスチックが破断する恐れが高い。
特許文献3には、金属材と繊維強化プラスチック材とを粘着剤で粘着接合する複合部材を開示する。
しかし、同公報に開示する発明は、リサイクル時に2つの材料を分離しやすくするのが目的であり、高剛性の向上には不充分である。
In the field of vehicles, structural members such as bumper reinforcements and door beams are required to be lightweight, shock-absorbing, and highly rigid.
A structural material using an aluminum alloy is a high-strength lightweight member, but in recent years, further weight reduction and impact resistance are required.
For example,
However, since the composite member disclosed in the publication is intended to improve torsional rigidity and not to improve bending rigidity, fitting and bonding CFRP to all four side surfaces requires a lot of manufacturing steps. Large and expensive.
However, the composite member disclosed in the publication uses fiber reinforced plastic on the pull side so that the shock absorber is plastically deformed. In the publication, the plastic reinforced with glass fiber rather than carbon fiber is used. The purpose is to increase the deflection of the entire length of the beam member.
Therefore, it cannot withstand a local impact such as a pole collision, and the glass fiber reinforced plastic is likely to break.
However, the invention disclosed in the publication is intended to facilitate separation of two materials during recycling, and is insufficient for improving high rigidity.
本発明は、軽量で高剛性であるアルミニウム合金展伸部材と炭素繊維強化部材とを複合化した構造部材の提供を目的とする。 An object of the present invention is to provide a structural member in which an aluminum alloy extending member and a carbon fiber reinforced member that are lightweight and highly rigid are combined.
本発明に係る構造部材は、所定の長さを有するバー状の構造部材であって、アルミニウム合金を用いた展伸部材と、展伸部材に表面側から圧縮曲げ荷重を受けた際に引張応力が発生する裏面側に接着剤にて接着接合した炭素繊維強化樹脂部材とを有し、前記炭素繊維強化樹脂部材は展伸部材の長手方向に配向した炭素繊維を体積率で50〜70%含有するシート状の複合材であることを特徴とする。
ここで所定の長さを有するバー状の構造部材と表現したのは、車両や各種産業機械等の構造部材として使用できるだけの所定の長さを有するものをいう。
車両用の構造部材としては、バンパーリインフォース,ドアビーム等が例として挙げられる。
このような構造部材にポール衝突等の曲げ圧縮荷重が表面側に加わると、それが裏面側の炭素繊維強化樹脂部材に引張応力荷重として伝達される。
そこで本発明は、体積率で50〜70%含有する炭素繊維を構造部材の長手方向に配向させた炭素繊維強化樹脂(CFRP)を用いた。
The structural member according to the present invention is a bar-shaped structural member having a predetermined length, and includes a stretch member using an aluminum alloy and a tensile stress when the stretch member is subjected to a compressive bending load from the surface side. And a carbon fiber reinforced resin member bonded and bonded with an adhesive on the back surface side where the carbon fiber reinforced resin member contains 50 to 70% by volume of carbon fibers oriented in the longitudinal direction of the stretched member. It is characterized by being a sheet-like composite material.
Here, the expression "bar-shaped structural member having a predetermined length" means a member having a predetermined length that can be used as a structural member for a vehicle, various industrial machines, or the like.
Examples of the structural member for the vehicle include bumper reinforcement, door beams, and the like.
When a bending compression load such as a pole collision is applied to such a structural member on the front surface side, it is transmitted as a tensile stress load to the carbon fiber reinforced resin member on the back surface side.
Therefore, the present invention uses a carbon fiber reinforced resin (CFRP) in which carbon fibers containing 50 to 70% by volume are oriented in the longitudinal direction of the structural member.
本発明に係るアルミニウム合金からなる展伸部材は、0.2%耐力値で420MPa以上のものが好ましい。
高耐力の展伸部材を用いることで、軽量化を図ることができる。
ここで展伸部材は、押出材,引抜材等であってよく、アルミニウム合金の化学組成はJIS7000系であって、下記の範囲のものを用いることができる。
以下、全て質量%で、Zn:6.0〜7.2%,Mg:1.0〜1.9%,Cu:0.1〜0.4%,Zr:0.15〜0.25%,Ti:0.05%以下であって、残部がAlと不純物である。
ここで好ましくは、Zn:6.4〜7.0%,Mg:1.05〜1.60%,Cu:0.2〜0.3%である。
なお、不純物としては、Si:0.1%以下,Fe:0.25%以下が好ましい。
また、Crは0.001〜0.05%、Mnは0.3%以下の範囲にて含まれていてもよい。
展伸部材の断面形状としては、コ字形状等異形状のソリッド断面形状や口字形状,日字形状,目字形状等の中空断面形状であってもよい。
The stretch member made of an aluminum alloy according to the present invention preferably has a 0.2% proof stress value of 420 MPa or more.
Weight reduction can be achieved by using a high-strength extension member.
Here, the extending member may be an extruded material, a drawn material, or the like, and the chemical composition of the aluminum alloy is JIS 7000 series, and those in the following ranges can be used.
Hereinafter, all are mass%, Zn: 6.0-7.2%, Mg: 1.0-1.9%, Cu: 0.1-0.4%, Zr: 0.15-0.25% , Ti: 0.05% or less, with the balance being Al and impurities.
Here, Zn: 6.4 to 7.0%, Mg: 1.05 to 1.60%, Cu: 0.2 to 0.3% are preferable.
The impurities are preferably Si: 0.1% or less and Fe: 0.25% or less.
Further, Cr may be contained in a range of 0.001 to 0.05% and Mn in a range of 0.3% or less.
The cross-sectional shape of the expanding member may be a solid solid cross-sectional shape such as a U-shape or a hollow cross-sectional shape such as a mouth shape, a Japanese character shape, or a square shape.
本発明において、炭素繊維強化樹脂部材は、接着面に炭素繊維が露出するように加工してあってもよく、このように接着面に炭素繊維を例えばショットブラスト等にて露出させることで接着剤による密着性が向上する。
また、上記露出面の面粗さは、Rz=5〜50μmの範囲、好ましくはRz=20〜30μmの範囲である。
In the present invention, the carbon fiber reinforced resin member may be processed so that the carbon fiber is exposed on the bonding surface, and thus the carbon fiber is exposed on the bonding surface by, for example, shot blasting or the like. Adhesion due to is improved.
The surface roughness of the exposed surface is in the range of Rz = 5 to 50 μm, preferably in the range of Rz = 20 to 30 μm.
本発明において、接着剤は接着剪断力15MPa以上であるのが好ましい。
また、接着剤の伸びは、75%以上で250%以下が好ましい。
これにより、アルミニウム合金からなる展伸部材の曲げ変形に追随しつつ、補強効果が発現する。
In the present invention, the adhesive preferably has an adhesive shearing force of 15 MPa or more.
The elongation of the adhesive is preferably 75% or more and 250% or less.
Thereby, the reinforcement effect is expressed while following the bending deformation of the extending member made of the aluminum alloy.
本発明に係る構造部材にあっては、アルミニウム合金の展伸部材に押し込み方向の曲げ荷重が負荷されると反対側のCFRP部材に引張応力として伝達されるので、全体として変形量を抑えつつ耐荷重が向上し、軽量化を図るのに有効である。 In the structural member according to the present invention, when a bending load in the pushing direction is applied to the aluminum alloy extension member, it is transmitted as tensile stress to the CFRP member on the opposite side. It is effective in improving the load and reducing the weight.
以下、各種条件にて構造部材を製作し評価したので、説明する。
図1の表に示した化学組成のアルミニウム合金の溶湯を調整し、直径8インチの円柱ビレットを鋳造した。
鋳造したビレットを図2の表中、HOMO保持温度にて均質化処理した。
なお、均質化処理温度は500〜540℃の範囲が好ましい。
断面目字形状の押出形材を押出成形した。
押出条件を図2の表に示す。
なお、ビレットの温度は490〜530℃の範囲、押出時のダイス温度は440〜500℃の範囲が好ましい。
押出直後にファン冷却を行うことで冷却速度を80℃/min以上、好ましくは100℃/min以上にするのがよい。
その後に50〜140℃+140〜200℃の二段人工時効処理をした。
押出形材の物性値を図2の表に示す。
本発明において、耐力420MPa以上、伸び10%以上を目標とした。
表中、<靭性>はJIS Z 2242「金属材料のシャルピー衝撃試験方法」に従って試験を行った。
目標は12J/cm2以上とした。
<SCC>は、JIS H 8711「アルミニウム合金の応力腐食割れ試験方法」に従って行い、3点曲げ治具にて40%応力値を負荷した状態で試験をした。
再結晶を起える亀裂が発生するまでの時間を評価した。
なお、目標は72hr以上とした。
<再結晶率>は押出形材の断面積に対する再結晶層の面積比率を求めた。
目標は20%以下とした。
評価に用いたCFRP部材の物性値を図3に示す。
なお、表中CF繊維方向0°とは、長手方向に配向していることを意味する。
アルミニウム合金の押出形材とCFRP部材との接着条件を図4の表に示す。
なお、比較例13は、CFRP部材を貼り合せてない構造部材である。
評価に用いたサンプルの断面を図7に示す。
接着層の厚みは50μm〜1mmの範囲で剛性に顕著な差は現れなかった。
Hereinafter, since the structural member was manufactured and evaluated on various conditions, it demonstrates.
A molten aluminum alloy having the chemical composition shown in the table of FIG. 1 was prepared, and a cylindrical billet having a diameter of 8 inches was cast.
The cast billet was homogenized at the HOMO holding temperature in the table of FIG.
The homogenization temperature is preferably in the range of 500 to 540 ° C.
An extruded profile having a cross-sectional shape was extruded.
The extrusion conditions are shown in the table of FIG.
The billet temperature is preferably in the range of 490 to 530 ° C, and the die temperature during extrusion is preferably in the range of 440 to 500 ° C.
The cooling rate is 80 ° C./min or more, preferably 100 ° C./min or more by performing fan cooling immediately after extrusion.
Thereafter, a two-stage artificial aging treatment of 50 to 140 ° C. + 140 to 200 ° C. was performed.
The physical properties of the extruded profile are shown in the table of FIG.
In the present invention, the target was a yield strength of 420 MPa or more and an elongation of 10% or more.
In the table, <toughness> was tested according to JIS Z 2242 “Charpy impact test method for metal materials”.
The target was 12 J / cm 2 or more.
<SCC> was performed according to JIS H 8711 “Stress corrosion cracking test method of aluminum alloy” and tested in a state where a 40% stress value was loaded with a three-point bending jig.
The time until a crack causing recrystallization occurred was evaluated.
The target was 72 hours or more.
<Recrystallization rate> was determined by determining the area ratio of the recrystallized layer to the cross-sectional area of the extruded profile.
The target was 20% or less.
The physical property values of the CFRP member used for the evaluation are shown in FIG.
In the table, 0 ° in the CF fiber direction means orientation in the longitudinal direction.
The table of FIG. 4 shows the bonding conditions between the extruded shape of the aluminum alloy and the CFRP member.
In addition, the comparative example 13 is a structural member which has not bonded the CFRP member.
A cross section of a sample used for evaluation is shown in FIG.
The thickness of the adhesive layer was in the range of 50 μm to 1 mm, and no significant difference in rigidity appeared.
図6に構造部材の評価方法を示す。
構造部材10の全長は1200mmで、ポール2による押し込み荷重Fを荷重する側(表面)に展伸部材(押出形材)11,その反対側の裏面に接着接合したCFRP部材12が位置するように、スパン880mmの支点1,1間に載置した。
ポール直径は203.2mmであり、下方に向けて一定速度で押し込み、曲げ剛性(kN/mm)と全塑性モーメントによる強度(kNm)を測定した。
その結果を図5の表に示す。
本発明においては、剛性4.1kN/mm以上,強度60kNm以上を目標としたが、実施例1〜6はそれらをクリアーした。
なお、実施例7〜9は上記目標値をクリアーできなかったが、それに近い値を示し、実用的には問題ないレベルであった。
FIG. 6 shows a structural member evaluation method.
The total length of the
The pole diameter was 203.2 mm, and it was pushed downward at a constant speed, and the bending rigidity (kN / mm) and the strength (kNm) due to the total plastic moment were measured.
The results are shown in the table of FIG.
In the present invention, the target was a rigidity of 4.1 kN / mm or more and a strength of 60 kNm or more, but Examples 1 to 6 cleared them.
In Examples 7 to 9, the target value could not be cleared, but it was close to the target value.
評価結果の内容について、具体的に説明する。
図9(a)に示すようにCFRP材12の貼付方法として、展伸部材(アルミ押出材)11の中空断面のリブを有する裏面側に沿って部分的に貼付したもの(図4の接着範囲にて補強率60%)と、裏面側全面(補強率100%)とを比較する。
実施例3と4は、図9(b),図10に示す補強長さ中央部を中心に、L1=500mmと同じで展伸部材の耐力が同等であることから、CFRP材を部分的に貼付しても目標をクリアーできることが明らかになった。
The contents of the evaluation result will be specifically described.
As shown in FIG. 9A, the
Since Examples 3 and 4 are the same as L 1 = 500 mm around the center of the reinforcing length shown in FIG. 9B and FIG. It became clear that the target could be cleared even if it was affixed to.
次に図9(b),図10に示すように、CFRP材12を展伸部材11の中央部にその中心から、L0=1000mmのもの(実施例2)と、L1=500mmのもの(実施例3)とを比較すると、L1=500mmとL0=1000の半分でも強度及び剛性が目標をクリアーすることが分かる。
Next, as shown in FIGS. 9B and 10, the
接着剤の伸びは、展伸材の曲げ変形に追随させるのに必要であり、実施例1〜9の結果及び比較例18,19の結果から75%以上有するのが好ましく、より好ましくは実施例1〜5に示すように75〜120%の範囲がよい。 The elongation of the adhesive is necessary to follow the bending deformation of the wrought material, and it is preferably 75% or more from the results of Examples 1 to 9 and Comparative Examples 18 and 19, and more preferably the examples. As shown in 1-5, the range of 75-120% is good.
比較例13はCFRP材のないものであり、比較例10,12は展伸部材の耐力が420MPa未満であり、構造部材の強度,剛性が目標をクリアーできなかった。
比較例11,12は接着剤の伸びが悪く、比較例15は接着剤の接着剪断強度が低い例である。
In Comparative Example 13, no CFRP material was used. In Comparative Examples 10 and 12, the proof strength of the stretched member was less than 420 MPa, and the strength and rigidity of the structural member could not meet the targets.
Comparative Examples 11 and 12 are examples in which the elongation of the adhesive is poor, and Comparative Example 15 is an example in which the adhesive shear strength of the adhesive is low.
本発明に係る構造材の断面形状例を図8及び図11に示す。
図8は、裏面側に中央部を中心に幅方向の全体にわたってCFRP材を接着した例であり、図12はリブ付近の裏面側に部分的にCFRP材を接着した例である。
この場合に、図9(c)に示すようにCFRP材12は、展伸部材11の断面肉厚が厚い11aよりも相対的に薄い11b側に接着するのが好ましい。
Examples of the cross-sectional shape of the structural material according to the present invention are shown in FIGS.
FIG. 8 shows an example in which the CFRP material is bonded to the entire back surface in the width direction centering on the center portion, and FIG. 12 is an example in which the CFRP material is partially bonded to the back surface near the rib.
In this case, as shown in FIG. 9C, the
1 支点
2 ポール
10 構造部材
11 展伸部材
12 CFRP部材
1
Claims (4)
アルミニウム合金を用いた展伸部材と、展伸部材に表面側から圧縮曲げ荷重を受けた際に引張応力が発生する裏面側に接着剤にて接着接合した炭素繊維強化樹脂部材とを有し、
前記炭素繊維強化樹脂部材は展伸部材の長手方向に配向した炭素繊維を体積率で50〜70%含有するシート状の複合材であることを特徴とする構造部材。 A bar-shaped structural member having a predetermined length,
A stretched member using an aluminum alloy, and a carbon fiber reinforced resin member bonded and bonded with an adhesive to the back side where tensile stress is generated when a compressive bending load is applied to the stretched member from the front side,
The carbon fiber reinforced resin member is a sheet-like composite material containing 50 to 70% by volume of carbon fibers oriented in the longitudinal direction of the stretch member.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015255510 | 2015-12-26 | ||
JP2015255510 | 2015-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017119422A true JP2017119422A (en) | 2017-07-06 |
JP7093610B2 JP7093610B2 (en) | 2022-06-30 |
Family
ID=59272054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016191624A Active JP7093610B2 (en) | 2015-12-26 | 2016-09-29 | Structural members |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7093610B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023119040A1 (en) | 2022-07-21 | 2024-02-01 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | DEVICE AND METHOD FOR PRODUCING A METAL-RESIN COMPOSITE STRUCTURE |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010168A1 (en) * | 1997-08-21 | 1999-03-04 | Toray Industries, Inc. | Light metal/cfrp structural member |
-
2016
- 2016-09-29 JP JP2016191624A patent/JP7093610B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010168A1 (en) * | 1997-08-21 | 1999-03-04 | Toray Industries, Inc. | Light metal/cfrp structural member |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023119040A1 (en) | 2022-07-21 | 2024-02-01 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | DEVICE AND METHOD FOR PRODUCING A METAL-RESIN COMPOSITE STRUCTURE |
Also Published As
Publication number | Publication date |
---|---|
JP7093610B2 (en) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lambiase et al. | Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets | |
Muflikhun et al. | The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures | |
JP5366748B2 (en) | Aluminum alloy extruded material with excellent bending crushability and corrosion resistance | |
JP5160930B2 (en) | Aluminum alloy extruded material excellent in bending crushability and corrosion resistance and method for producing the same | |
US10562087B2 (en) | Door beam | |
JP5344855B2 (en) | Aluminum alloy extruded material with excellent crushing properties | |
JP2909211B2 (en) | Reinforced alloy laminate | |
JP5968285B2 (en) | Bumper reinforcement and manufacturing method thereof | |
US10065266B2 (en) | Structural elements obtained by linear friction welding | |
KR20170072332A (en) | Aluminum alloy products and a method of preparation | |
Eksi et al. | Buckling behavior of fiber reinforced plastic–metal hybrid-composite beam | |
WO2013115227A1 (en) | High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same | |
JP5237128B2 (en) | Aluminum alloy bumper system manufacturing method and aluminum alloy bumper system | |
Thornton | The crush of fiber-reinforced plastics | |
Ibrahim et al. | Mechanical testing of adhesive, self-piercing rivet, and hybrid jointed aluminum under tension loading | |
JP2017119422A (en) | Structure member | |
Ha et al. | Mechanical properties of steel-aluminum multi-materials using a structural adhesive | |
JP2020066768A (en) | Manufacturing method of member made of 7000 series aluminum alloy | |
JP2010196089A (en) | Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process | |
Ekşi et al. | Three point bending behavior of woven glass, aramid and carbon fiber reinforced hybrid composite tube | |
US20080292853A1 (en) | Composite Laminated Material and Article Made Thereof | |
Chopde et al. | Analysis of carbon/epoxy composite drive shaft for automotive application | |
Hasegawa et al. | Stretch press bending of AZ31 magnesium alloy extruded square tube | |
WO2005040440A1 (en) | Aluminum alloy extruded article excellent in shock absorbing property | |
Papenberg et al. | Closed Die Forging of Mg-Al-Zn-Ca-Y Alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200803 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210515 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210515 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210526 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210602 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20210709 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20210803 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220411 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220509 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220613 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7093610 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |