JP7091634B2 - Hydraulic control valve - Google Patents

Hydraulic control valve Download PDF

Info

Publication number
JP7091634B2
JP7091634B2 JP2017219911A JP2017219911A JP7091634B2 JP 7091634 B2 JP7091634 B2 JP 7091634B2 JP 2017219911 A JP2017219911 A JP 2017219911A JP 2017219911 A JP2017219911 A JP 2017219911A JP 7091634 B2 JP7091634 B2 JP 7091634B2
Authority
JP
Japan
Prior art keywords
valve body
internal space
port
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017219911A
Other languages
Japanese (ja)
Other versions
JP2019090484A (en
Inventor
健宏 江浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017219911A priority Critical patent/JP7091634B2/en
Priority to PCT/JP2018/041302 priority patent/WO2019098103A1/en
Priority to CN201880073794.0A priority patent/CN111344494B/en
Publication of JP2019090484A publication Critical patent/JP2019090484A/en
Priority to PH12020550618A priority patent/PH12020550618A1/en
Application granted granted Critical
Publication of JP7091634B2 publication Critical patent/JP7091634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/06Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Safety Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Multiple-Way Valves (AREA)

Description

本開示は、設定圧を変更可能な油圧制御弁に関する。 The present disclosure relates to a hydraulic control valve whose set pressure can be changed.

油圧制御弁としては、リリーフバルブが知られている。リリーフバルブは、油圧回路の圧力が設定圧以上になると、当該リリーフバルブの内部に設けられているオイルの排出ポート(逃がし路)が開くことによって、油圧回路の圧力上昇を抑制するものである。この種のリリーフバルブには、設定圧つまりリリーフ圧力を変更可能なものがある。 A relief valve is known as a hydraulic control valve. The relief valve suppresses an increase in the pressure of the hydraulic circuit by opening an oil discharge port (relief path) provided inside the relief valve when the pressure of the hydraulic circuit exceeds a set pressure. Some relief valves of this type can change the set pressure, that is, the relief pressure.

例えば特許文献1は、バルブボディの内部空間に、弁体と、この弁体をオイルの排出可能位置側からオイルの排出不能位置側に付勢するスプリングとを設けたリリーフバルブを開示する。このリリーフバルブでは、そのバルブボディに、第1導入ポートと第2導入ポートとが形成されている。第1導入ポートのみ又は第1及び第2導入ポートの両方を介して内部空間に導入されたオイルの圧力は弁体に形成された1つ又は2つの受圧面で受け止められ、その結果、弁体が排出不能位置から排出可能位置に移動したとき、第1導入ポートから内部空間に導入されたオイルは排出ポートを介して(リリーフバルブよりも上流側の)吸入流路に排出される。補助バルブの切替操作により、第2導入ポートを介しての内部空間へのオイルの導入及びオイル導入遮断を切り替えることにより、特許文献1のリリーフバルブは、高設定圧状態と低設定圧状態との間でリリーフ圧力を切り換え可能に構成されている。 For example, Patent Document 1 discloses a relief valve provided with a valve body and a spring for urging the valve body from a position where oil can be discharged to a position where oil cannot be discharged in an internal space of a valve body. In this relief valve, a first introduction port and a second introduction port are formed in the valve body. The pressure of the oil introduced into the internal space only through the first introduction port or through both the first and second introduction ports is received by one or two pressure receiving surfaces formed on the valve body, and as a result, the valve body. When the oil is moved from the non-dischargeable position to the dischargeable position, the oil introduced into the internal space from the first introduction port is discharged to the suction flow path (upstream from the relief valve) through the discharge port. The relief valve of Patent Document 1 is in a high set pressure state and a low set pressure state by switching the introduction of oil into the internal space and the cutoff of oil introduction through the second introduction port by the switching operation of the auxiliary valve. It is configured so that the relief pressure can be switched between.

特開2011-208651号公報Japanese Unexamined Patent Publication No. 2011-208651

ところで、特許文献1の上記リリーフバルブでは、弁体は、その軸方向において、スプリングに当接する第1端面と、第2導入ポートから内部空間に導入されたオイルを受け止めるための第2受圧面が形成された第2端面と、それら端面の間に設けられて第1導入ポートに面する縮径部とを備える。したがって、そのリリーフバルブのバルブボディは、第2導入ポートを弁体の軸方向延長箇所に有している。このように、特許文献1のリリーフバルブは、第2導入ポートを形成するために、弁体の軸方向に長い構成を採用する。 By the way, in the above relief valve of Patent Document 1, the valve body has a first end surface that abuts on a spring and a second pressure receiving surface for receiving oil introduced into the internal space from the second introduction port in the axial direction thereof. It includes a formed second end face and a reduced diameter portion provided between the end faces and facing the first introduction port. Therefore, the valve body of the relief valve has a second introduction port at an axial extension of the valve body. As described above, the relief valve of Patent Document 1 adopts a configuration long in the axial direction of the valve body in order to form the second introduction port.

一方で、リリーフバルブの搭載性改善等の観点から、リリーフバルブの小型化に対する要望はある。しかし、上記構成のリリーフバルブでは、第2導入ポート及び第2受圧面の配置等の関係から、その小型化の達成は容易でない。 On the other hand, from the viewpoint of improving the mountability of the relief valve, there is a demand for miniaturization of the relief valve. However, it is not easy to reduce the size of the relief valve having the above configuration because of the arrangement of the second introduction port and the second pressure receiving surface.

本開示の技術は、設定圧を変更可能な、新奇な構成の油圧制御弁を提供することを目的とする。 The technique of the present disclosure is intended to provide a hydraulic control valve having a novel configuration in which a set pressure can be changed.

上記目的を達成するために、本開示の技術は、内部空間を区画形成するとともに、該内部空間に作動油を導入可能な第1導入ポート及び第2導入ポートと、前記内部空間に流入した作動油を排出可能な排出ポートとを区画形成する、バルブボディと、前記内部空間に該内部空間の軸方向に可動に配置される弁体であって、前記排出ポートからの作動油の排出を可能にする第1位置と、前記排出ポートからの作動油の排出を不能にする第2位置との間で可動である、弁体と、前記弁体を前記第1位置側から前記第2位置側に付勢するように構成された付勢部材と、前記第2導入ポートへの作動油の導入量を可変とするように構成された導入量可変装置とを備え、前記弁体は、前記第1導入ポートから前記内部空間に導入された作動油から前記第1位置側への力を受けることができるように構成された第1受圧面と、前記第2導入ポートから前記内部空間に導入された作動油から前記第2位置側への力を受けることができるように構成された第2受圧面とを備える、油圧制御弁を提供する。 In order to achieve the above object, the technique of the present disclosure has a first introduction port and a second introduction port capable of partitioning an internal space and introducing hydraulic oil into the internal space, and an operation flowing into the internal space. A valve body that separately forms a discharge port capable of discharging oil, and a valve body movably arranged in the internal space in the axial direction of the internal space, capable of discharging hydraulic oil from the discharge port. A valve body and a valve body that is movable between a first position of the valve body and a second position that makes it impossible to discharge hydraulic oil from the discharge port, and the valve body from the first position side to the second position side. The valve body includes an urging member configured to urge the second introduction port and an introduction amount variable device configured to change the amount of hydraulic oil introduced into the second introduction port. A first pressure receiving surface configured to receive a force from the hydraulic oil introduced into the internal space from the introduction port to the first position side, and introduced into the internal space from the second introduction port. Provided is a hydraulic control valve including a second pressure receiving surface configured to receive a force from the hydraulic oil to the second position side.

好ましくは、前記第1受圧面は、前記第2受圧面と反対方向を向くように、形成されている。 Preferably, the first pressure receiving surface is formed so as to face the direction opposite to the second pressure receiving surface.

前記弁体は、前記内部空間において、前記第2位置側に位置付けられる第1端部と、前記第1位置側に位置付けられる第2端部とを有し、前記第1端部側に前記第1受圧面を有し、前記第2端部側に前記第2受圧面を有し、前記第2端部側に、前記付勢部材が当接する当接面を有するとよい。 The valve body has a first end portion positioned on the second position side and a second end portion positioned on the first position side in the internal space, and the first end portion side thereof. It is preferable to have one pressure receiving surface, the second pressure receiving surface on the second end side, and a contact surface on the second end side to which the urging member abuts.

前記バルブボディが作動油が流入可能な流入ポートを更に備える場合、前記排出ポートは、前記流入ポートを介して前記内部空間に流入した作動油を排出可能に構成されているとよい。 When the valve body further includes an inflow port through which the hydraulic oil can flow in, the discharge port may be configured to be able to discharge the hydraulic oil that has flowed into the internal space through the inflow port.

前記弁体が、略円柱形状を有し、第1直径を有する第1径部と、前記第1直径よりも短い直径を有する第2径部とを有する場合、前記内部空間において前記弁体が前記第2位置にあるとき、前記流入ポートは前記第1径部で閉じられ、前記内部空間において前記弁体が前記第1位置にあるとき、前記流入ポートは前記第2径部周囲を介して前記排出ポートにつながるとよい。 When the valve body has a substantially cylindrical shape and has a first diameter portion having a first diameter and a second diameter portion having a diameter shorter than the first diameter, the valve body is in the internal space. When in the second position, the inflow port is closed at the first diameter portion, and when the valve body is in the first position in the internal space, the inflow port passes through the circumference of the second diameter portion. It should be connected to the discharge port.

本開示の上記技術によれば、新奇な構成の油圧制御弁が提供され、この油圧制御弁ではその新奇な構成により設定圧を変更することができる。 According to the above technique of the present disclosure, a hydraulic control valve having a novel configuration is provided, and in this hydraulic control valve, the set pressure can be changed according to the novel configuration.

第1実施形態に係る油圧制御弁としてのリリーフバルブが設けられた油圧系の概略構成図であり、リリーフバルブが高設定圧状態にあるときの図である。It is a schematic block diagram of the hydraulic system provided with the relief valve as the hydraulic control valve which concerns on 1st Embodiment, and is the figure when the relief valve is in a high set pressure state. 図1の油圧系の概略構成図であり、リリーフバルブが高設定圧状態にあるときの図である。It is a schematic block diagram of the hydraulic system of FIG. 1, and is the figure when the relief valve is in a high set pressure state. 図1の油圧系の概略構成図であり、リリーフバルブが低設定圧状態にあるときの図である。It is a schematic block diagram of the hydraulic system of FIG. 1, and is the figure when the relief valve is in a low set pressure state. 図1の油圧系の概略構成図であり、リリーフバルブが低設定圧状態にあるときの図である。It is a schematic block diagram of the hydraulic system of FIG. 1, and is the figure when the relief valve is in a low set pressure state. 第2実施形態に係る油圧制御弁としてのリリーフバルブが設けられた油圧系の概略構成図であり、リリーフバルブが高設定圧状態にあるときの図である。It is a schematic block diagram of the hydraulic system provided with the relief valve as the hydraulic control valve which concerns on 2nd Embodiment, and is the figure when the relief valve is in a high set pressure state. 図5の油圧系の概略構成図であり、リリーフバルブが高設定圧状態にあるときの図である。It is a schematic block diagram of the hydraulic system of FIG. 5, and is the figure when the relief valve is in a high set pressure state. 図5の油圧系の概略構成図であり、リリーフバルブが低設定圧状態にあるときの図である。It is a schematic block diagram of the hydraulic system of FIG. 5, and is the figure when the relief valve is in a low set pressure state. 図5の油圧系の概略構成図であり、リリーフバルブが低設定圧状態にあるときの図である。It is a schematic block diagram of the hydraulic system of FIG. 5, and is the figure when the relief valve is in a low set pressure state.

以下、本実施形態を添付図に基づいて説明する。同一の部品(又は構成)には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, this embodiment will be described with reference to the attached drawings. The same parts (or configurations) are designated by the same reference numerals, and their names and functions are also the same. Therefore, detailed explanations about them will not be repeated.

まず、第1実施形態に係る油圧制御弁としての、リリーフバルブ10を図1から図4に基づいて説明する。なお、本開示は、リリーフバルブに適用されることに限定されず、種々の油圧制御弁に適用することができる。 First, the relief valve 10 as the hydraulic control valve according to the first embodiment will be described with reference to FIGS. 1 to 4. The present disclosure is not limited to the application to the relief valve, and can be applied to various hydraulic control valves.

図1から図4に、第1実施形態に係るリリーフバルブ10を備えた油圧系を示す。リリーフバルブ10は、リリーフ圧力変更機能(設定圧変更機能)付きのバルブである。このリリーフバルブ10は、作動油(以下、オイル)を自動変速機(AT)のクラッチ装置CAに供給する供給流路12の圧力を調節制御するために車両の油圧系に装備されている。しかし、これは、当該リリーフバルブ10の用途を限定するものではなく、当該リリーフバルブ10はエンジン各部へのオイルの供給流路の圧力調節用に用いられてもよい。このように、本開示に係る油圧制御弁は、種々の用途に用いられることができる。 1 to 4 show a hydraulic system provided with a relief valve 10 according to the first embodiment. The relief valve 10 is a valve with a relief pressure changing function (set pressure changing function). The relief valve 10 is installed in the hydraulic system of the vehicle in order to adjust and control the pressure of the supply flow path 12 that supplies hydraulic oil (hereinafter referred to as oil) to the clutch device CA of the automatic transmission (AT). However, this does not limit the use of the relief valve 10, and the relief valve 10 may be used for adjusting the pressure of the oil supply flow path to each part of the engine. As described above, the hydraulic control valve according to the present disclosure can be used for various purposes.

図1から図4に示すように、エンジン作動状態では、オイルポンプ14がオイルパン16に貯留されたオイルOILを吸入流路18を通して(オイルフィルタ19を介して)吸入して、供給流路12を通してクラッチ装置CAに向けて吐出する。リリーフバルブ10は、オイルポンプ14の下流側の供給流路12の経路中に配置されている。なお、オイルポンプ14は、エンジンの駆動軸からの動力で作動するように構成されているが、例えば電動式であってもよい。 As shown in FIGS. 1 to 4, in the engine operating state, the oil pump 14 sucks the oil OIL stored in the oil pan 16 through the suction flow path 18 (via the oil filter 19), and the supply flow path 12 Discharge toward the clutch device CA through. The relief valve 10 is arranged in the path of the supply flow path 12 on the downstream side of the oil pump 14. The oil pump 14 is configured to be operated by power from the drive shaft of the engine, but may be of an electric type, for example.

リリーフバルブ10は、バルブボディ20と、弁体22と、コイルスプリング24と、導入量可変装置26とを備える。 The relief valve 10 includes a valve body 20, a valve body 22, a coil spring 24, and an introduction amount variable device 26.

バルブボディ20は、ボディ本体28とキャップ部材30とを備える。ボディ本体28にキャップ部材30が取り付けられて固定されることで、それらは一体となり、それらの間に、内部空間32が区画形成される。バルブボディ20の内部空間32は、略円柱状であり、その軸線32aを有する。その内部空間32において、弁体22は、その軸線32aに沿う方向(軸方向)に可動に配置される。弁体22は、内部空間32にあるときに軸線32aに略一致する軸線を有する。 The valve body 20 includes a body body 28 and a cap member 30. By attaching and fixing the cap member 30 to the body body 28, they are integrated and an internal space 32 is partitioned between them. The internal space 32 of the valve body 20 is substantially columnar and has an axis line 32a thereof. In the internal space 32, the valve body 22 is movably arranged in a direction (axial direction) along the axis line 32a. The valve body 22 has an axis that substantially coincides with the axis 32a when it is in the internal space 32.

バルブボディ20には、更に、第1導入ポート34と、第2導入ポート36と、流入ポート38と、排出ポート40とが区画形成されている。加えて、バルブボディ20には、弁体22に作用する背圧を抜くための圧抜き孔42が区画形成されている。圧抜き孔42は、内部空間32の軸線32aに沿って設けられているが、内部空間32において弁体22が適切に可動であるように種々の位置に設けられ得る。これらのポート34、36、38、40及び圧抜き孔42は、いずれも、個別に、内部空間32に連通するように形成されている。ただし、ポート34、36、38、40から内部空間32へのオイルの好適な流れを確保するように、図1から図4に示すように、内部空間の軸方向において、ポート34、36、38、40の各々に対向する位置における内部空間の周囲には、オイルが流れることが可能な略環状の空間が形成されている。なお、第1導入ポート34と、第2導入ポート36と、流入ポート38と、排出ポート40とはボディ本体28に形成されていて、圧抜き孔42はキャップ部材30に形成されているが、これらは各部材の構成を限定するものではない。 The valve body 20 is further divided into a first introduction port 34, a second introduction port 36, an inflow port 38, and an discharge port 40. In addition, the valve body 20 is partitioned by a pressure relief hole 42 for releasing the back pressure acting on the valve body 22. The pressure relief hole 42 is provided along the axis 32a of the internal space 32, but may be provided at various positions so that the valve body 22 can be appropriately moved in the internal space 32. Each of these ports 34, 36, 38, 40 and the pressure relief hole 42 is individually formed so as to communicate with the internal space 32. However, the ports 34, 36, 38 in the axial direction of the internal space, as shown in FIGS. 1 to 4, so as to ensure a suitable flow of oil from the ports 34, 36, 38, 40 to the internal space 32. A substantially annular space through which oil can flow is formed around the internal space at a position facing each of the 40 and 40. The first introduction port 34, the second introduction port 36, the inflow port 38, and the discharge port 40 are formed in the body main body 28, and the pressure relief hole 42 is formed in the cap member 30. These do not limit the configuration of each member.

内部空間32にオイルを導入可能に構成される導入ポートとして、第1導入ポート34と第2導入ポート36との2つのポートがボディ本体28に各別に設けられている。第1導入ポート34は供給流路12に常時連通される。第2導入ポート36は、制御バルブ44を介して供給流路12に連通可能にされている。制御バルブ44と、後述する電子制御ユニット(以下、ECU)の一部とを含んで、(第2導入ポート36へのオイルの導入量を可変とするように構成された)導入量可変装置26は構成されている。なお、第1導入ポート34と第2導入ポート36へのオイルの各流路にはオリフィス34´、36´が設けられている。これらのオリフィス34´、36´は、それら導入ポートに流れるオイルの圧力脈動を抑制するように設けられていて、他の構成においては省くことも可能である。 Two ports, a first introduction port 34 and a second introduction port 36, are separately provided on the body body 28 as introduction ports configured to allow oil to be introduced into the internal space 32. The first introduction port 34 is always in communication with the supply flow path 12. The second introduction port 36 is made to communicate with the supply flow path 12 via the control valve 44. An introduction amount variable device 26 (configured to make the amount of oil introduced into the second introduction port 36 variable) including a control valve 44 and a part of an electronic control unit (hereinafter referred to as an ECU) described later. Is configured. It should be noted that orifices 34'and 36'are provided in each flow path of oil to the first introduction port 34 and the second introduction port 36. These orifices 34'and 36' are provided so as to suppress the pressure pulsation of the oil flowing through the introduction ports, and can be omitted in other configurations.

流入ポート38は、オイルポンプ14から圧送されたオイルが流入可能に構成され、第1導入ポート34と同様に、供給流路12に常時連通される。排出ポート40は、内部空間32に流入したオイルを排出可能に構成されている。排出ポート40と圧抜き孔42は、それぞれ、吸入流路18に連通されているが、例えばオイルパン16に直接的に連通されてもよい。 The inflow port 38 is configured so that the oil pumped from the oil pump 14 can flow in, and is always communicated with the supply flow path 12 like the first introduction port 34. The discharge port 40 is configured to be able to discharge the oil that has flowed into the internal space 32. The discharge port 40 and the pressure relief hole 42 are each communicated with the suction flow path 18, but may be directly communicated with, for example, the oil pan 16.

内部空間32の軸方向において、第1導入ポート34と第2導入ポート36とは、流入ポート38と排出ポート40とを挟むように、バルブボディ20に形成されている。以下では、内部空間32の軸方向において、第1導入ポート34が位置する側の内部空間32のうちの端部領域を第1端部領域とし、第2導入ポート36が位置する側の内部空間32のうちの端部領域を第2端部領域と称する。 In the axial direction of the internal space 32, the first introduction port 34 and the second introduction port 36 are formed in the valve body 20 so as to sandwich the inflow port 38 and the discharge port 40. In the following, in the axial direction of the internal space 32, the end region of the internal space 32 on the side where the first introduction port 34 is located is defined as the first end region, and the internal space on the side where the second introduction port 36 is located is defined as the first end region. The end region of 32 is referred to as a second end region.

このようなバルブボディ20内の内部空間32には、上で述べたように、弁体22が内部空間32の軸方向に可動に配置される。内部空間32が略円柱状であることに対応して、弁体22も略円柱状である。弁体22は内部空間32に可動に配置されるが、バルブボディ20内に実質的に嵌め込まれている。好ましくは、バルブボディ20と弁体22とは、それぞれ、それらの間が気密性良くなるように寸法決めされている。 As described above, the valve body 22 is movably arranged in the internal space 32 in such a valve body 20 in the axial direction of the internal space 32. Corresponding to the substantially cylindrical internal space 32, the valve body 22 is also substantially cylindrical. Although the valve body 22 is movably arranged in the internal space 32, it is substantially fitted in the valve body 20. Preferably, the valve body 20 and the valve body 22 are each sized so as to have good airtightness between them.

内部空間32において、第2端部領域には、コイルスプリング24が配置さている。このコイルスプリング24は、内部空間32の軸方向に沿って弁体22を第2端部領域側から第1端部領域側に付勢する付勢部材として備えられている。コイルスプリング24の付勢力により、弁体22は、流入ポート38を閉じる向きに付勢される。つまり、コイルスプリング24により、弁体22は、排出ポート40からのオイルの排出を不能にする排出不能位置側に付勢される。これに対して、以下で説明するように第1導入ポート34から導入されたオイルの圧力がコイルスプリング24の付勢力などに勝るとき、弁体22は、排出不能位置側又は第1端部領域側から、軸方向に沿って第2端部領域側に動かされる。これにより、弁体22は、排出不能位置側又は第1端部領域側から、流入ポート38を開く位置に動くことができ、よって流入ポート38を介して内部空間にオイルが流入可能になり、それによりそのオイルを排出ポート40から排出可能になる。以下では、排出ポート40からのオイルの排出を可能にする弁体22の位置を、排出可能位置と称する。このように、バルブボディ20の内部空間32において、弁体22は、排出可能位置と、排出不能位置との間で可動である。特にリリーフバルブ10では、弁体22は、排出可能位置において流入ポート38を開通させてそこから内部空間へのオイルの流入を可能にし、排出不能位置において流入ポート38を閉じてそこから内部空間へのオイルの流入を遮断する。つまり、弁体22の排出可能位置は、流入ポートと排出ポートとが連通状態になる位置であり、弁体22の排出不能位置は、流入ポートと排出ポートとが非連通状態(遮断状態)になる位置である。なお、排出可能位置は本開示の技術における第1位置に相当し、排出不能位置は本開示の技術における第2位置に相当する。 In the internal space 32, the coil spring 24 is arranged in the second end region. The coil spring 24 is provided as an urging member that urges the valve body 22 from the second end region side to the first end region side along the axial direction of the internal space 32. The urging force of the coil spring 24 urges the valve body 22 in a direction that closes the inflow port 38. That is, the coil spring 24 urges the valve body 22 to the non-drainable position side that makes it impossible to drain the oil from the discharge port 40. On the other hand, as described below, when the pressure of the oil introduced from the first introduction port 34 exceeds the urging force of the coil spring 24, the valve body 22 is located on the non-dischargeable position side or the first end region. From the side, it is moved toward the second end region side along the axial direction. As a result, the valve body 22 can move from the non-dischargeable position side or the first end region side to the position where the inflow port 38 is opened, so that oil can flow into the internal space through the inflow port 38. As a result, the oil can be discharged from the discharge port 40. Hereinafter, the position of the valve body 22 that enables the discharge of oil from the discharge port 40 is referred to as a dischargeable position. As described above, in the internal space 32 of the valve body 20, the valve body 22 is movable between the dischargeable position and the discharge non-dischargeable position. In particular, in the relief valve 10, the valve body 22 opens the inflow port 38 at the dischargeable position to allow oil to flow into the internal space from there, closes the inflow port 38 at the non-dischargeable position, and enters the internal space from there. Block the inflow of oil. That is, the discharge possible position of the valve body 22 is the position where the inflow port and the discharge port are in a communicating state, and the discharge impossible position of the valve body 22 is the position where the inflow port and the discharge port are in a non-communication state (blocked state). It is a position that becomes. The dischargeable position corresponds to the first position in the technique of the present disclosure, and the non-dischargeable position corresponds to the second position in the technique of the present disclosure.

弁体22は、内部空間32において、排出不能位置側つまり第1端部領域側に位置付けられる第1端部22aと、排出可能位置側つまり第2端部領域側に位置付けられる第2端部22bとを有する。図1に示すように排出不能位置にあるとき、弁体22は、最大直径(第1直径)D1を有する第1径部22cで流入ポート38を閉じるように構成されている。また、第1端部22aと第2端部22bとの間には、特に第1径部22cの第1端部22a側には、第1直径D1よりも短い第2直径D2を有する第2径部22dが形成されている。第2径部22dの第2直径D2は弁体22の軸方向に沿って変化する。したがって、弁体22が排出不能位置から排出可能位置に移動することで、上で述べたように、流入ポート38は内部空間32のうちの第2径部22d周囲の空間に連通し、当該空間を介して排出ポート40に連通することができる。 The valve body 22 has a first end portion 22a located on the non-dischargeable position side, that is, the first end region side, and a second end portion 22b located on the dischargeable position side, that is, the second end region side in the internal space 32. And have. As shown in FIG. 1, the valve body 22 is configured to close the inflow port 38 with a first diameter portion 22c having a maximum diameter (first diameter) D1 when in a non-dischargeable position. Further, a second diameter D2 shorter than the first diameter D1 is provided between the first end portion 22a and the second end portion 22b, particularly on the first end portion 22a side of the first diameter portion 22c. The diameter portion 22d is formed. The second diameter D2 of the second diameter portion 22d changes along the axial direction of the valve body 22. Therefore, as the valve body 22 moves from the non-dischargeable position to the dischargeable position, the inflow port 38 communicates with the space around the second diameter portion 22d of the internal space 32, and the space concerned. Can communicate with the discharge port 40 via.

弁体22の第1端部22aは、第1直径D1よりも短い第3直径D3を有する第3径部22fを備えて形成されている。第3径部22fと第2径部22dとの間には、第1直径を有する中間径部22c´が形成されている。弁体22が内部空間32にあるとき、第3径部22fと中間径部22c´との間の軸方向を向く面(以下、第1軸方向面)22afは、第1導入ポート34から内部空間32に導入されたオイルから、排出不能位置側から排出可能位置側への力を受けることができる第1受圧面22eとして機能することができる。第1軸方向面22afは、弁体22が内部空間32にあるとき、軸方向のうち第1軸方向を向くように形成されている。第1軸方向面22afは環状面である。なお、排出不能位置から排出可能位置側へ弁体22が動いたとき、第1端部22aの端面22a´はバルブボディ20の内面(つまり内部空間32を区画形成する面)への当接状態から離間状態になるので、その端面22a´も第1受圧面22eとして機能するようになる。実際には、弁体22の排出不能位置も排出可能位置も、それぞれ、ある程度の範囲(軸方向ストローク)を有する。したがって、弁体22が排出不能位置にある場合であっても、端面22a´は第1受圧面として機能し得る。つまり、排出不能位置にある弁体22において、それの第1端部22aの端面22a´がバルブボディ20の内面から離れているとき、第1受圧面22eは、第1軸方向面22afと、端面22a´とにより構成される。リリーフバルブ10では、この端面22a´は円形であり、第1軸方向面22afと平行でありかつ第1軸方向面22afと同じ方向(第1軸方向)を向くように形成されている。 The first end 22a of the valve body 22 is formed to include a third diameter portion 22f having a third diameter D3 shorter than the first diameter D1. An intermediate diameter portion 22c'having a first diameter is formed between the third diameter portion 22f and the second diameter portion 22d. When the valve body 22 is in the internal space 32, the axially oriented surface (hereinafter, the first axial direction surface) 22af between the third diameter portion 22f and the intermediate diameter portion 22c'is inside from the first introduction port 34. It can function as a first pressure receiving surface 22e capable of receiving a force from the non-dischargeable position side to the dischargeable position side from the oil introduced into the space 32. The first axial plane 22af is formed so as to face the first axial direction in the axial direction when the valve body 22 is in the internal space 32. The first axial plane 22af is an annular plane. When the valve body 22 moves from the non-dischargeable position to the dischargeable position side, the end surface 22a'of the first end portion 22a is in contact with the inner surface of the valve body 20 (that is, the surface forming the internal space 32). Since it is in a separated state from the above, the end surface 22a'also functions as the first pressure receiving surface 22e. Actually, both the non-dischargeable position and the dischargeable position of the valve body 22 have a certain range (axial stroke). Therefore, even when the valve body 22 is in the position where it cannot be discharged, the end surface 22a'can function as the first pressure receiving surface. That is, in the valve body 22 in the non-dischargeable position, when the end surface 22a'of the first end portion 22a of the valve body 22 is separated from the inner surface of the valve body 20, the first pressure receiving surface 22e becomes the first axial surface 22af. It is composed of an end face 22a'. In the relief valve 10, the end surface 22a'is circular and is formed so as to be parallel to the first axial direction surface 22af and to face the same direction (first axial direction) as the first axial direction surface 22af.

また、弁体22の第1径部22cの第2端部22b側は、第1直径D1よりも短い第4直径D4を有する第4径部22gとして形成されている。弁体22が内部空間32にあるとき、第1径部22cと第4径部22gとの間の軸方向を向く面(第2軸方向面)は、第2導入ポート36から内部空間32に導入されたオイルから、排出可能位置側から排出不能位置側への力を受けることができる第2受圧面22hとして機能する。ここでは、第2軸方向面は、弁体22が内部空間32にあるとき、軸方向のうち上記第1軸方向とは逆向きの第2軸方向を向くように形成されている。以下では、第2軸方向面を第2受圧面22hと称する。第2受圧面22hは環状面である。第4径部22gは、特にその端部は、キャップ部材30のうちで内部空間32に配置される円筒状のガイド部30a内に可動に配置され、ガイド部30aにより内部空間32の軸方向にガイドされる。第4径部22gの周囲には、コイルスプリング24が配置される。第2受圧面22hは、コイルスプリング24の一端が当接する当接面としても形成されている。なお、コイルスプリングの他端はキャップ部材30のガイド部30aの端面に当接する。このように、第2受圧面22hは、弁体22において第1端部22aの第1受圧面22eよりも第2端部22b側に形成され、コイルスプリング24による付勢力を受けることができるとともに、オイルの圧力つまり油圧を受けることができるように構成されている。 Further, the second end portion 22b side of the first diameter portion 22c of the valve body 22 is formed as a fourth diameter portion 22g having a fourth diameter D4 shorter than the first diameter D1. When the valve body 22 is in the internal space 32, the surface facing the axial direction (second axial surface) between the first diameter portion 22c and the fourth diameter portion 22g is from the second introduction port 36 to the internal space 32. It functions as a second pressure receiving surface 22h capable of receiving a force from the introduced oil from the dischargeable position side to the non-dischargeable position side. Here, the second axial direction surface is formed so as to face the second axial direction opposite to the first axial direction in the axial direction when the valve body 22 is in the internal space 32. Hereinafter, the surface in the second axial direction is referred to as a second pressure receiving surface 22h. The second pressure receiving surface 22h is an annular surface. The end of the fourth diameter portion 22g is movably arranged in the cylindrical guide portion 30a arranged in the internal space 32 in the cap member 30, and is arranged in the axial direction of the internal space 32 by the guide portion 30a. Be guided. A coil spring 24 is arranged around the fourth diameter portion 22 g. The second pressure receiving surface 22h is also formed as a contact surface with which one end of the coil spring 24 abuts. The other end of the coil spring comes into contact with the end surface of the guide portion 30a of the cap member 30. As described above, the second pressure receiving surface 22h is formed on the valve body 22 on the second end 22b side of the first end 22a with respect to the first pressure receiving surface 22e, and can receive the urging force by the coil spring 24. , It is configured to be able to receive the pressure of oil, that is, the oil pressure.

図1から明らかなように、第1受圧面22eは、第2受圧面22hと反対方向を向くように形成されている。したがって、弁体22が内部空間32にあるとき、第1受圧面22eは、第1導入ポート34から内部空間に導入されたオイルから、排出不能位置側から排出可能位置側への第2軸方向の力を受けることができ、第2受圧面22hは、第2導入ポート36から内部空間に導入されたオイルから、排出可能位置側から排出不能位置側への(第2軸方向とは逆向きである)第1軸方向の力を受けることができる。 As is clear from FIG. 1, the first pressure receiving surface 22e is formed so as to face the direction opposite to the second pressure receiving surface 22h. Therefore, when the valve body 22 is in the internal space 32, the first pressure receiving surface 22e is in the second axial direction from the non-dischargeable position side to the dischargeable position side from the oil introduced into the internal space from the first introduction port 34. The second pressure receiving surface 22h can receive the force of the oil introduced into the internal space from the second introduction port 36, from the dischargeable position side to the non-dischargeable position side (opposite to the second axial direction). It can receive a force in the first axial direction.

そして、上記構成のリリーフバルブ10における上記制御バルブ44の作動は、前述のECU(不図示)により制御される。ECUは、演算装置(例えばCPU)、記憶装置(例えばROM、RAM)、A/D変換機、入出力ポートなどを備えて、所謂コンピュータとしての構成を備える。入力ポートには、(動力源としてエンジンが車両に搭載されているので)エンジン回転速度センサ、エンジン負荷センサなどの各種センサが接続されている。そして、ここでは、エンジン回転速度センサ、エンジン負荷センサなどの出力に基づいて検出される(取得される)値に応じて、所定のプログラムに従って、ECUは、供給流路12の油圧を調節するように制御バルブ44の作動を制御する。本第1実施形態のリリーフバルブ10は、高設定圧状態と低設定圧状態との2段階に設定圧を可変に構成されている。この高設定圧状態と低設定圧状態との間での切替は制御バルブ44の作動の制御により行われる。高設定圧状態と低設定圧状態との間での切替制御は、上記各種センサの出力に基づいて算出される(取得される)エンジンのトルクを所定トルクと比較した結果に基づいて、実行される。所定トルクは、クラッチ装置CAの締結圧を所定圧以上にする必要があるか否かに基づいて定められている。そして、エンジンのトルクがクラッチの締結圧を所定圧以上にする必要があるトルクであったとき、高設定圧状態になるように制御バルブ44は制御され、エンジンのトルクがクラッチの締結圧を所定圧未満にしてよいトルクであったとき、低設定圧状態になるように制御バルブ44は制御される。より詳しくは、ここでは、高設定圧状態にするとき、制御バルブ44は非通電状態にされ、低設定圧状態にするとき、制御バルブ44は通電状態にされる。このように、ECUの一部は、制御バルブ44の作動を制御するように構成されたバルブ制御手段としての機能を担う。なお、ECUは、エンジン運転状態に応じて、所定のプログラムに従って、エンジンのインジェクタなどの各部の作動も制御する。 The operation of the control valve 44 in the relief valve 10 having the above configuration is controlled by the above-mentioned ECU (not shown). The ECU includes an arithmetic unit (for example, a CPU), a storage device (for example, ROM, RAM), an A / D converter, an input / output port, and the like, and has a configuration as a so-called computer. Various sensors such as an engine rotation speed sensor and an engine load sensor are connected to the input port (because the engine is mounted on the vehicle as a power source). Then, here, the ECU adjusts the hydraulic pressure of the supply flow path 12 according to a predetermined program according to the value detected (acquired) based on the output of the engine rotation speed sensor, the engine load sensor, or the like. Controls the operation of the control valve 44. The relief valve 10 of the first embodiment is configured to have a variable set pressure in two stages of a high set pressure state and a low set pressure state. Switching between the high set pressure state and the low set pressure state is performed by controlling the operation of the control valve 44. The switching control between the high set pressure state and the low set pressure state is executed based on the result of comparing the engine torque calculated (acquired) based on the outputs of the above various sensors with the predetermined torque. To. The predetermined torque is determined based on whether or not the engagement pressure of the clutch device CA needs to be equal to or higher than the predetermined pressure. Then, when the engine torque is a torque that requires the clutch engagement pressure to be equal to or higher than a predetermined pressure, the control valve 44 is controlled so as to be in a high set pressure state, and the engine torque determines the clutch engagement pressure. The control valve 44 is controlled so as to be in a low set pressure state when the torque may be less than the pressure. More specifically, here, the control valve 44 is de-energized when the high set pressure state is set, and the control valve 44 is energized when the low set pressure state is set. As described above, a part of the ECU functions as a valve control means configured to control the operation of the control valve 44. The ECU also controls the operation of each part such as the injector of the engine according to a predetermined program according to the engine operating state.

図1及び図2は、リリーフ圧力の設定圧が高い状態つまり高設定圧状態でのリリーフバルブ10を示し、その高設定圧状態での制御バルブ44の作動状態を示す。図3及び図4は、リリーフ圧力の設定圧が低い状態つまり低設定圧状態でのリリーフバルブ10を示し、その低設定圧状態での制御バルブ44の作動状態を示す。制御バルブ44は、第2導入ポート36を供給流路12に連通させる供給ポート44aと、第2導入ポート36をドレン流路44cに連通させるドレンポート44bとを備えたスプール式のソレノイドバルブである。ただし、制御バルブ44は他の構成の電磁弁であってもよい。 1 and 2 show a relief valve 10 in a state where the set pressure of the relief pressure is high, that is, in a high set pressure state, and show an operating state of the control valve 44 in the high set pressure state. 3 and 4 show a relief valve 10 in a state where the set pressure of the relief pressure is low, that is, in a low set pressure state, and show an operating state of the control valve 44 in the low set pressure state. The control valve 44 is a spool type solenoid valve provided with a supply port 44a for communicating the second introduction port 36 with the supply flow path 12 and a drain port 44b for communicating the second introduction port 36 with the drain flow path 44c. .. However, the control valve 44 may be a solenoid valve having another configuration.

図1及び図2の高設定圧状態では、制御バルブ44が開通状態となり、矢印A1で示すように第2導入ポート36にオイルが導入される。したがって、コイルスプリング24の付勢力Fと、第2導入ポート36から導入されたオイルによる油圧(以下、閉鎖圧)(単位面積当りの圧力P1×第2受圧面22hの面積)CPとの合力RFと、第1導入ポート34から導入されたオイルによる油圧(以下、解放圧)(単位面積当りの圧力P1×第1受圧面22eの面積)OPとの釣り合いに応じた位置に、弁体22は、内部空間32において移動され得、位置付けられ得る。図1は、解放圧OPが合力RFに負けていて弁体22が排出不能位置にある状態の、リリーフバルブ10を示す。この状態では、流入ポート38は弁体22の第1径部22cにより閉じられている。図2は、解放圧OPが弁体22が排出不能位置にあるときの合力RFに勝った結果、弁体22が排出可能位置にある状態の、リリーフバルブ10を示す。この状態では、流入ポート38が開き、流入ポート38を介して内部空間にオイルは流入でき、よって、その流入したオイルは排出ポート40を介してポンプ14の上流側に排出される(図2の矢印A2参照)。このように、高設定圧状態では、解放圧OPに対抗する力として、コイルスプリング48の付勢力Fに閉鎖圧CPが加わるので、リリーフ圧力の設定圧が高くなる。 In the high set pressure state of FIGS. 1 and 2, the control valve 44 is opened, and oil is introduced into the second introduction port 36 as shown by the arrow A1. Therefore, the resultant force RF of the urging force F of the coil spring 24 and the hydraulic pressure (hereinafter referred to as the closing pressure) by the oil introduced from the second introduction port 36 (pressure P1 per unit area × area of the second pressure receiving surface 22h) CP. The valve body 22 is located at a position corresponding to the balance between the hydraulic pressure due to the oil introduced from the first introduction port 34 (hereinafter, release pressure) (pressure P1 per unit area x area of the first pressure receiving surface 22e) OP. Can be moved and positioned in the internal space 32. FIG. 1 shows a relief valve 10 in a state where the release pressure OP is defeated by the resultant force RF and the valve body 22 is in a position where the valve body 22 cannot be discharged. In this state, the inflow port 38 is closed by the first diameter portion 22c of the valve body 22. FIG. 2 shows a relief valve 10 in a state where the valve body 22 is in the dischargeable position as a result of the release pressure OP winning the resultant force RF when the valve body 22 is in the dischargeable position. In this state, the inflow port 38 opens and oil can flow into the internal space through the inflow port 38, so that the inflowing oil is discharged to the upstream side of the pump 14 through the discharge port 40 (FIG. 2). See arrow A2). As described above, in the high set pressure state, the closing pressure CP is applied to the urging force F of the coil spring 48 as a force against the release pressure OP, so that the set pressure of the relief pressure becomes high.

これに対して、図3及び図4の低設定圧状態では、制御バルブ44が閉鎖状態となり、第2導入ポート36にオイルは導入されない。この場合、制御バルブ44に至ったオイルは第2導入ポート36に至らず、一方で、第2導入ポート36に既に達しているオイルはドレンポート44bを介してドレン流路44cからオイルパン16に戻ることになる。したがって、コイルスプリング24の付勢力Fのみが、第1導入ポート34から導入されたオイルによる油圧つまり解放圧に対抗することになる。図3は、解放圧OPが付勢力Fに負けていて弁体22が排出不能位置にある状態の、リリーフバルブ10を示す。図4は、解放圧OPが弁体が排出不能位置にあるときの付勢力Fに勝った結果、弁体22が排出可能位置にある状態の、リリーフバルブ10を示す。このように、低設定圧状態では、解放圧OPに対抗する力として、コイルスプリング24の付勢力Fのみが弁体22に作用するので、リリーフ圧力の設定圧が低くなる。 On the other hand, in the low set pressure states of FIGS. 3 and 4, the control valve 44 is closed and no oil is introduced into the second introduction port 36. In this case, the oil that has reached the control valve 44 does not reach the second introduction port 36, while the oil that has already reached the second introduction port 36 goes from the drain flow path 44c to the oil pan 16 via the drain port 44b. Will be back. Therefore, only the urging force F of the coil spring 24 opposes the hydraulic pressure, that is, the release pressure due to the oil introduced from the first introduction port 34. FIG. 3 shows a relief valve 10 in a state where the release pressure OP is defeated by the urging force F and the valve body 22 is in a position where the valve body 22 cannot be discharged. FIG. 4 shows a relief valve 10 in a state where the valve body 22 is in the dischargeable position as a result of the release pressure OP surpassing the urging force F when the valve body is in the dischargeable position. As described above, in the low set pressure state, only the urging force F of the coil spring 24 acts on the valve body 22 as the force against the release pressure OP, so that the set pressure of the relief pressure becomes low.

以上説明したように、第1実施形態に係るリリーフバルブ10は、上記構成を備え、特に、制御バルブ44の開時に当該制御バルブを介して導入された油圧を受ける第2受圧面22hは、常時油圧を受ける第1受圧面22eと反対方向を向くように、形成されている。そして、コイルスプリング24から弁体22に作用する力の方向と、第2受圧面22hを介して弁体22に作用する力の方向とが概して同じである。そして、第2導入ポート36へのオイルの導入量を可変とするように制御バルブ44が設けられている。したがって、リリーフバルブ10は、設定圧つまりリリーフ圧力を可変にする構成を備え、その構成の点で特許文献1のリリーフバルブとは異なる構成を有し、つまり新奇な構成を有する。 As described above, the relief valve 10 according to the first embodiment has the above configuration, and in particular, the second pressure receiving surface 22h that receives the hydraulic pressure introduced through the control valve when the control valve 44 is opened is always present. It is formed so as to face the direction opposite to the first pressure receiving surface 22e that receives hydraulic pressure. The direction of the force acting on the valve body 22 from the coil spring 24 and the direction of the force acting on the valve body 22 via the second pressure receiving surface 22h are generally the same. A control valve 44 is provided so that the amount of oil introduced into the second introduction port 36 is variable. Therefore, the relief valve 10 has a configuration in which the set pressure, that is, the relief pressure is variable, and has a configuration different from that of the relief valve of Patent Document 1 in that configuration, that is, has a novel configuration.

更に、上記リリーフバルブ10は、第1端部22a側に第1受圧面22eを有し、第2端部22b側に第2受圧面22hを有し、この第2受圧面22hがコイルスプリング24の一端が当接する当接面としての役目を果たす。このように、コイルスプリング24から力を受ける面と、第2導入ポート36を介して導入されたオイルから油圧を受ける第2受圧面22hを同じにしたので、リリーフバルブ10はその小型化の点で優れる。 Further, the relief valve 10 has a first pressure receiving surface 22e on the first end portion 22a side and a second pressure receiving surface 22h on the second end portion 22b side, and the second pressure receiving surface 22h is the coil spring 24. It serves as a contact surface to which one end of the coil abuts. In this way, the surface that receives the force from the coil spring 24 and the second pressure receiving surface 22h that receives the hydraulic pressure from the oil introduced through the second introduction port 36 are made the same, so that the relief valve 10 is miniaturized. Is excellent.

また、上記リリーフバルブ10では、第1導入ポート34とは別に流入ポート38を設けた。それ故、弁体22が排出不能位置にあるとき、流入ポート38を、弁体22のうちの、最大直径である第1直径D1を有する第1径部22cで閉じることができる。したがって、上記リリーフバルブ10では、弁体22が排出不能位置にあるとき、流入ポート38を介して内部空間32にオイルが導入されることを防ぐことができ、そのオイルから弁体22が余剰な力を受けることを防ぐことができる。なお、本開示の態様は、第1導入ポート34が流入ポートとしても機能するように設けられ、弁体が排出可能位置にあるとき、第1導入ポート34から内部空間32に導入されたオイルが排出ポートから排出される構成を排除するものではなく、リリーフバルブ10はこのように変更されることが可能である。これは、以下に説明する第2実施形態のリリーフバルブ110でも同じである。 Further, in the relief valve 10, an inflow port 38 is provided separately from the first introduction port 34. Therefore, when the valve body 22 is in the non-discharged position, the inflow port 38 can be closed by the first diameter portion 22c of the valve body 22 having the first diameter D1 which is the maximum diameter. Therefore, in the relief valve 10, when the valve body 22 is in the non-dischargeable position, it is possible to prevent oil from being introduced into the internal space 32 through the inflow port 38, and the valve body 22 is excessive from the oil. It is possible to prevent receiving force. In the aspect of the present disclosure, the oil introduced into the internal space 32 from the first introduction port 34 is provided so that the first introduction port 34 also functions as an inflow port and the valve body is in the dischargeable position. The relief valve 10 can be modified in this way without excluding the configuration discharged from the discharge port. This also applies to the relief valve 110 of the second embodiment described below.

次に、第2実施形態に係る油圧制御弁としてのリリーフバルブ110を図5から図8に基づいて説明する。以下では、主として、第1実施形態のリリーフバルブ10に対する、第2実施形態に係るリリーフバルブ110の相違点を説明する。特に言及しない限り、第2実施形態のリリーフバルブ110も、第1実施形態のリリーフバルブ10と同様の作用効果を奏する。 Next, the relief valve 110 as the hydraulic control valve according to the second embodiment will be described with reference to FIGS. 5 to 8. Hereinafter, the difference between the relief valve 10 of the first embodiment and the relief valve 110 of the second embodiment will be mainly described. Unless otherwise specified, the relief valve 110 of the second embodiment also has the same effect as the relief valve 10 of the first embodiment.

第2実施形態に係るリリーフバルブ110では、弁体22の排出可能位置側に位置付けられる第2端部22bにおいて、第2受圧面22hが、コイルスプリング24が当接する当接面22jから独立して形成されている。第2端部22bの端面22b´に当接面22jが形成されている。ここでは、第2端部22bの端面22b´は、第2軸方向面つまり第2受圧面22hと平行であり、かつ、第2受圧面22hと同じ方向(第2軸方向)を向くように形成されている。コイルスプリング24は、キャップ部材30のうちで内部空間32に配置される円筒状のガイド部30a内に配置されている。なお、端面22b´はここでは円形である。 In the relief valve 110 according to the second embodiment, in the second end portion 22b positioned on the dischargeable position side of the valve body 22, the second pressure receiving surface 22h is independent of the contact surface 22j with which the coil spring 24 abuts. It is formed. A contact surface 22j is formed on the end surface 22b'of the second end portion 22b. Here, the end surface 22b'of the second end portion 22b is parallel to the second axial direction surface, that is, the second pressure receiving surface 22h, and faces the same direction (second axial direction) as the second pressure receiving surface 22h. It is formed. The coil spring 24 is arranged in the cylindrical guide portion 30a arranged in the internal space 32 in the cap member 30. The end face 22b'is circular here.

リリーフバルブ110では、第2受圧面22hを当接面22jとは別に形成したことで、第1実施形態のリリーフバルブ10に比べて、第4径部22gの軸方向の長さを短くすることができ、弁体22の縮小化を図ることができる。その一方で、コイルスプリング24の配置領域(作動空間)をガイド部30a内に確保する観点から、リリーフバルブ110の全長は、第1実施形態に係るリリーフバルブ10よりも長くなり易い。弁体22の縮小化の度合いと、リリーフバルブ全体での縮小化の度合いとは、コスト、部材の選択設計などを総合的に考慮し、設定されるとよい。これは、上記第1実施形態に係るリリーフバルブ10でも同様である。 In the relief valve 110, the second pressure receiving surface 22h is formed separately from the contact surface 22j, so that the axial length of the fourth diameter portion 22g is shorter than that of the relief valve 10 of the first embodiment. This makes it possible to reduce the size of the valve body 22. On the other hand, from the viewpoint of securing the arrangement region (operating space) of the coil spring 24 in the guide portion 30a, the total length of the relief valve 110 tends to be longer than that of the relief valve 10 according to the first embodiment. The degree of reduction of the valve body 22 and the degree of reduction of the entire relief valve may be set in consideration of cost, selection design of members, and the like. This also applies to the relief valve 10 according to the first embodiment.

第2実施形態に係るリリーフバルブ110において、図5及び図6は、リリーフ圧力の設定圧が高い状態つまり高設定圧状態での作動状態を示し、図7及び図8は、リリーフ圧力の設定圧が低い状態つまり低設定圧状態での作動状態を示す。そして、図5及び図7は弁体22が排出不能位置にある状態を示し、図6及び図8は弁体22が排出可能位置にある状態を示す。図5から図8の各状態でのオイルの流れ、制御バルブ44の制御等は、第1実施形態のリリーフバルブ10に関して図1から図4に基づいて説明した通りであるので、それらの説明は省略する。 In the relief valve 110 according to the second embodiment, FIGS. 5 and 6 show an operating state in a state where the set pressure of the relief pressure is high, that is, a high set pressure state, and FIGS. 7 and 8 show the set pressure of the relief pressure. Indicates a low state, that is, an operating state in a low set pressure state. 5 and 7 show a state in which the valve body 22 is in a non-dischargeable position, and FIGS. 6 and 8 show a state in which the valve body 22 is in a dischargeable position. The oil flow in each state of FIGS. 5 to 8, the control of the control valve 44, and the like are as described with respect to the relief valve 10 of the first embodiment based on FIGS. 1 to 4, so that the description thereof will be described. Omit.

以上、本開示の技術を2つの実施形態に基づいて説明したが、本開示の技術は、それら実施形態に限定されない。例えば、第1受圧面及び第2受圧面は、互いに対して反対方向を向くように形成されることに限定されず、第1受圧面は第1導入ポートから内部空間に導入された作動油から排出不能位置側から排出可能位置側への力を受けることができる種々の構成を有するように変更可能であり、第2受圧面は第2導入ポートから内部空間に導入された作動油から排出可能位置側から排出不能位置側への力を受けることができる種々の構成を有するように変更可能である。具体的には、第1受圧面及び第2受圧面は、それぞれ、上記実施形態では、弁体の軸線又はリリーフバルブの内部空間の軸線に直交する面であったが、それらに斜めに傾いた面とされることも可能である。 Although the techniques of the present disclosure have been described above based on the two embodiments, the techniques of the present disclosure are not limited to those embodiments. For example, the first pressure receiving surface and the second pressure receiving surface are not limited to being formed so as to face opposite to each other, and the first pressure receiving surface is from the hydraulic oil introduced into the internal space from the first introduction port. It can be changed to have various configurations that can receive the force from the non-dischargeable position side to the dischargeable position side, and the second pressure receiving surface can be discharged from the hydraulic oil introduced into the internal space from the second introduction port. It can be changed to have various configurations that can receive a force from the position side to the non-dischargeable position side. Specifically, the first pressure receiving surface and the second pressure receiving surface, respectively, were planes orthogonal to the axis of the valve body or the axis of the internal space of the relief valve in the above embodiment, but were inclined diagonally to them. It can also be a face.

また、第2導入ポートを複数個設け、第2導入ポート毎に第2受圧面を設けて、設定圧を3段階以上に切換設定できるようにリリーフバルブを構成してもよい。その場合、付加的に設けられる第2導入ポートは、流入ポートと同様に、バルブ本体に形成されるとよい。そして、付加的に設けられる第2導入ポートから導入されたオイルから油圧を受ける付加的な受圧面は、最大直径よりも短い直径を有する付加的な径部を弁体に設けることで形成されることができる。 Further, a plurality of second introduction ports may be provided, and a second pressure receiving surface may be provided for each second introduction port to configure a relief valve so that the set pressure can be switched and set in three or more stages. In that case, the second introduction port additionally provided may be formed in the valve body in the same manner as the inflow port. Then, the additional pressure receiving surface that receives hydraulic pressure from the oil introduced from the second introduction port provided additionally is formed by providing the valve body with an additional diameter portion having a diameter shorter than the maximum diameter. be able to.

以上、本開示の技術の代表的な実施形態について説明したが、本開示の技術は種々の変更が可能である。本願の特許請求の範囲によって定義される本開示の精神及び範囲から逸脱しない限り、種々の置換、変更が可能である。 Although the typical embodiment of the technique of the present disclosure has been described above, the technique of the present disclosure can be changed in various ways. Various substitutions and modifications are possible without departing from the spirit and scope of the present disclosure as defined by the claims of the present application.

10、110 リリーフバルブ
12 供給流路
14 オイルポンプ
16 オイルパン
18 吸入流路
20 バルブボディ
22 弁体
24 コイルスプリング
26 導入量可変装置
28 ボディ本体
30 キャップ部材
32 内部空間
34 第1導入ポート
36 第2導入ポート
38 流入ポート
40 排出ポート
42 圧抜き孔
44 制御バルブ
10, 110 Relief valve 12 Supply flow path 14 Oil pump 16 Oil pan 18 Suction flow path 20 Valve body 22 Valve body 24 Coil spring 26 Introductory amount variable device 28 Body body 30 Cap member 32 Internal space 34 First introduction port 36 Second Introductory port 38 Inflow port 40 Discharge port 42 Depressurization hole 44 Control valve

Claims (2)

油圧制御弁であって、
前記油圧制御弁の内部空間を区画形成するとともに、前記内部空間に作動油を導入可能な流入ポート、第1導入ポート及び第2導入ポートと、前記流入ポートを介して前記内部空間に流入した作動油を排出可能な排出ポートとを区画形成し、収容部を有する、バルブボディと、
前記内部空間に前記油圧制御弁の長手方向に可動に配置される弁体であって、前記流入ポートから流入した作動油が前記排出ポートから排出が可能な前記長手方向における第1位置と、前記流入ポートから流入した作動油が前記排出ポートから排出が不能で、前記長手方向において前記第1位置よりも前記収容部から遠い第2位置との間で可動である、弁体と、
前記収容部に収容されており、前記弁体を前記第1位置側から前記第2位置側に付勢するように構成された付勢部材と、
前記第2導入ポートへの作動油の導入量を可変とするように構成された導入量可変装置と
を備え、
前記弁体は、
円柱形状を有し、前記収容部の内径よりも大きな第1直径を有する第1径部と、
記第1直径よりも小さい直径を有する第2径部と、
円柱形状を有し、前記第1径部における前記収容部側に結合しており前記第1径部よりも小さい直径を有し、前記収容部に収容された状態で前記付勢部材により前記第1位置側から前記第2位置側に付勢される突起部と、
前記第1導入ポートから前記内部空間に導入された作動油から前記第1位置側への力を受けることができるように構成された第1受圧面と、
前記第2導入ポートから前記内部空間に導入された作動油から前記第2位置側への力を受けることができるように構成された第2受圧面であって、前記第1径部において前記突起部が設けられていない領域の面である、第2受圧面と、
を有し、
前記内部空間において前記弁体が前記第2位置にあるとき、前記流入ポートは前記第1径部で閉じられ、
前記内部空間において前記弁体が前記第1位置にあるとき、前記流入ポートは前記第2径部周囲を介して前記排出ポートにつながる、
油圧制御弁。
It ’s a hydraulic control valve.
The internal space of the hydraulic control valve is partitioned, and the inflow port, the first introduction port and the second introduction port capable of introducing hydraulic oil into the internal space, and the operation of flowing into the internal space through the inflow port. A valve body and a valve body, which partitions and has an accommodating part with a discharge port capable of discharging oil.
A valve body movably arranged in the internal space in the longitudinal direction of the hydraulic control valve, the first position in the longitudinal direction in which hydraulic oil flowing from the inflow port can be discharged from the discharge port, and the said. A valve body and a valve body, in which hydraulic oil flowing from the inflow port cannot be discharged from the discharge port and is movable in the longitudinal direction between the first position and the second position farther from the accommodating portion.
An urging member housed in the accommodating portion and configured to urge the valve body from the first position side to the second position side.
It is provided with an introduction amount variable device configured to make the introduction amount of hydraulic oil into the second introduction port variable.
The valve body is
A first diameter portion having a cylindrical shape and a first diameter larger than the inner diameter of the accommodating portion,
A second diameter portion having a diameter smaller than the first diameter,
It has a cylindrical shape, is coupled to the accommodating portion side of the first diameter portion, has a diameter smaller than that of the first diameter portion, and is accommodated in the accommodating portion by the urging member. A protrusion urged from the 1st position side to the 2nd position side,
A first pressure receiving surface configured to receive a force from the hydraulic oil introduced into the internal space from the first introduction port toward the first position side.
A second pressure receiving surface configured to receive a force from the hydraulic oil introduced into the internal space from the second introduction port toward the second position side, and the protrusion on the first diameter portion. The second pressure receiving surface, which is the surface of the area where the portion is not provided,
Have,
When the valve body is in the second position in the internal space, the inflow port is closed at the first diameter portion.
When the valve body is in the first position in the internal space, the inflow port is connected to the discharge port via the periphery of the second diameter portion.
Hydraulic control valve.
前記第1受圧面は、前記第2受圧面と反対方向を向くように、形成されている、請求項1に記載の油圧制御弁。
The hydraulic control valve according to claim 1, wherein the first pressure receiving surface is formed so as to face the direction opposite to the second pressure receiving surface.
JP2017219911A 2017-11-15 2017-11-15 Hydraulic control valve Active JP7091634B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017219911A JP7091634B2 (en) 2017-11-15 2017-11-15 Hydraulic control valve
PCT/JP2018/041302 WO2019098103A1 (en) 2017-11-15 2018-11-07 Hydraulic pressure control valve
CN201880073794.0A CN111344494B (en) 2017-11-15 2018-11-07 Oil pressure control valve
PH12020550618A PH12020550618A1 (en) 2017-11-15 2020-05-12 Hydraulic pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219911A JP7091634B2 (en) 2017-11-15 2017-11-15 Hydraulic control valve

Publications (2)

Publication Number Publication Date
JP2019090484A JP2019090484A (en) 2019-06-13
JP7091634B2 true JP7091634B2 (en) 2022-06-28

Family

ID=66539650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219911A Active JP7091634B2 (en) 2017-11-15 2017-11-15 Hydraulic control valve

Country Status (4)

Country Link
JP (1) JP7091634B2 (en)
CN (1) CN111344494B (en)
PH (1) PH12020550618A1 (en)
WO (1) WO2019098103A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191634A (en) 2008-02-12 2009-08-27 Toyota Motor Corp Lubricating device for internal combustion engine
JP2011208651A (en) 2010-03-26 2011-10-20 Aisin Seiki Co Ltd Relief valve with relief pressure changing function

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293118A (en) * 1940-02-12 1942-08-18 Vickerts Inc Power transmission
US2890715A (en) * 1955-08-26 1959-06-16 Warner Swasey Co Multi-pressure relief valve
JPS4631889Y1 (en) * 1968-10-12 1971-11-04
JPS5917074A (en) * 1982-07-16 1984-01-28 Hitachi Constr Mach Co Ltd Logic valve
DE3705170C1 (en) * 1987-02-18 1988-08-18 Heilmeier & Weinlein Hydraulic control device
JPH01120405A (en) * 1987-11-04 1989-05-12 Sumitomo Heavy Ind Ltd Composite valve
JP2562173Y2 (en) * 1991-02-26 1998-02-10 株式会社ユニシアジェックス Oil relief device
JPH0624276U (en) * 1992-08-31 1994-03-29 エヌオーケー株式会社 Relief valve
JP2001193854A (en) * 2000-01-06 2001-07-17 Smc Corp Pilot type two-port valve
WO2002038994A1 (en) * 2000-09-19 2002-05-16 Curtiss Wright Corporation Pressure releif valve actuated by pilot valve
CN101560999B (en) * 2009-05-14 2011-04-13 浙江大学 Large-flow quick throttle proportional valve
JP4942833B2 (en) * 2010-04-07 2012-05-30 アイシン精機株式会社 Relief valve with relief pressure change function
JP5582341B2 (en) * 2010-07-07 2014-09-03 アイシン精機株式会社 Relief valve with relief pressure change function
DE102013013231A1 (en) * 2013-08-08 2015-02-12 Man Diesel & Turbo Se Valve arrangement for a fuel supply system and fuel supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191634A (en) 2008-02-12 2009-08-27 Toyota Motor Corp Lubricating device for internal combustion engine
JP2011208651A (en) 2010-03-26 2011-10-20 Aisin Seiki Co Ltd Relief valve with relief pressure changing function

Also Published As

Publication number Publication date
CN111344494A (en) 2020-06-26
CN111344494B (en) 2022-09-23
WO2019098103A1 (en) 2019-05-23
JP2019090484A (en) 2019-06-13
PH12020550618A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP5316263B2 (en) solenoid valve
US9453440B2 (en) Oil pump for internal combustion engine, and relief pressure control apparatus for oil pump
US20150252908A1 (en) Fluid control valve
JP5007085B2 (en) Tandem pump valve structure
JP2010520421A (en) Hydraulic system
US20080087345A1 (en) Direct operated cartridge valve assembly
JP7091634B2 (en) Hydraulic control valve
CN106438135B (en) Pressure relief valve device
KR20120064037A (en) Slide valve, especially for using in an automatic transmission of a motor vehicle
JP6333117B2 (en) Belt type continuously variable transmission
JP2016223498A (en) Fluid control device
US20130149174A1 (en) Control circuit for a variable vane oil pump
JP5464033B2 (en) Oil supply device for internal combustion engine
KR101449062B1 (en) Oil Control Valve
JP4719450B2 (en) Hydraulic control device and hydraulic circuit
JP5655960B2 (en) Hydraulic control circuit
JP2010175054A (en) Hydraulic control valve
US20190376534A1 (en) Electromagnetic pressure reducing valve and fluid pressure control device including electromagnetic pressure reducing valve
JP6487749B2 (en) Oil pump
JP2020133695A (en) Solenoid valve and work machine
WO2018234432A1 (en) Hydraulic system
JP6208557B2 (en) Air discharge device
JP2008298184A (en) Hydraulic driving device
WO2022185846A1 (en) Relief valve
JP2010090807A (en) Double vane pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201030

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7091634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150