WO2019098103A1 - Hydraulic pressure control valve - Google Patents

Hydraulic pressure control valve Download PDF

Info

Publication number
WO2019098103A1
WO2019098103A1 PCT/JP2018/041302 JP2018041302W WO2019098103A1 WO 2019098103 A1 WO2019098103 A1 WO 2019098103A1 JP 2018041302 W JP2018041302 W JP 2018041302W WO 2019098103 A1 WO2019098103 A1 WO 2019098103A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
port
oil
internal space
Prior art date
Application number
PCT/JP2018/041302
Other languages
French (fr)
Japanese (ja)
Inventor
健宏 江浪
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017-219911 priority Critical
Priority to JP2017219911A priority patent/JP2019090484A/en
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2019098103A1 publication Critical patent/WO2019098103A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/06Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure

Abstract

This hydraulic pressure control valve is provided with: a valve body demarcating an internal space, first and second introduction ports, and a discharge port; a valve needle disposed to be capable of moving between a discharge-possible position and a discharge-impossible position; a member which urges the valve needle toward the discharge-impossible position side; and a device capable of varying an amount of operating oil introduced into the second introduction port. The valve needle is provided with a pressure receiving surface which accepts, from the operating oil from the first introduction port, a force directed toward the discharge-possible position side, and a pressure receiving surface which accepts, from the operating oil from the second introduction port, a force directed toward the discharge-impossible position side.

Description

油圧制御弁Hydraulic control valve
 本開示は、設定圧を変更可能な油圧制御弁に関する。 The present disclosure relates to a hydraulic control valve capable of changing a set pressure.
 油圧制御弁としては、リリーフバルブが知られている。リリーフバルブは、油圧回路の圧力が設定圧以上になると、当該リリーフバルブの内部に設けられているオイルの排出ポート(逃がし路)が開くことによって、油圧回路の圧力上昇を抑制するものである。この種のリリーフバルブには、設定圧つまりリリーフ圧力を変更可能なものがある。 A relief valve is known as a hydraulic control valve. The relief valve suppresses an increase in pressure in the hydraulic circuit by opening an oil discharge port (a release passage) provided inside the relief valve when the pressure in the hydraulic circuit becomes equal to or higher than a set pressure. Some relief valves of this type can change the set pressure, that is, the relief pressure.
 例えば特許文献1は、バルブボディの内部空間に、弁体と、この弁体をオイルの排出可能位置側からオイルの排出不能位置側に付勢するスプリングとを設けたリリーフバルブを開示する。このリリーフバルブでは、そのバルブボディに、第1導入ポートと第2導入ポートとが形成されている。第1導入ポートのみ又は第1及び第2導入ポートの両方を介して内部空間に導入されたオイルの圧力は弁体に形成された1つ又は2つの受圧面で受け止められ、その結果、弁体が排出不能位置から排出可能位置に移動したとき、第1導入ポートから内部空間に導入されたオイルは排出ポートを介して(リリーフバルブよりも上流側の)吸入流路に排出される。補助バルブの切替操作により、第2導入ポートを介しての内部空間へのオイルの導入及びオイル導入遮断を切り替えることにより、特許文献1のリリーフバルブは、高設定圧状態と低設定圧状態との間でリリーフ圧力を切り換え可能に構成されている。 For example, Patent Document 1 discloses a relief valve in which an internal space of a valve body is provided with a valve body and a spring for urging the valve body from an oil dischargeable position side to an oil discharge impossible side. In this relief valve, a first introduction port and a second introduction port are formed in the valve body. The pressure of the oil introduced into the internal space through only the first introduction port or both the first and second introduction ports is received by one or two pressure receiving surfaces formed on the valve body, as a result, the valve body When the valve is moved from the non-drainable position to the drainable position, the oil introduced into the internal space from the first introduction port is drained to the suction flow path (upstream from the relief valve) via the drain port. By switching the introduction of oil into the internal space through the second introduction port and the oil introduction shut-off by switching operation of the auxiliary valve, the relief valve of Patent Document 1 has a high set pressure state and a low set pressure state. The relief pressure can be switched between them.
日本国特開2011-208651号公報Japan JP 2011-208651
 ところで、特許文献1の上記リリーフバルブでは、弁体は、その軸方向において、スプリングに当接する第1端面と、第2導入ポートから内部空間に導入されたオイルを受け止めるための第2受圧面が形成された第2端面と、それら端面の間に設けられて第1導入ポートに面する縮径部とを備える。したがって、そのリリーフバルブのバルブボディは、第2導入ポートを弁体の軸方向延長箇所に有している。このように、特許文献1のリリーフバルブは、第2導入ポートを形成するために、弁体の軸方向に長い構成を採用する。 By the way, in the relief valve of Patent Document 1, the valve body has a first end face contacting the spring in the axial direction, and a second pressure receiving surface for receiving oil introduced into the internal space from the second introduction port. A second end surface is formed, and a reduced diameter portion provided between the end surfaces and facing the first introduction port. Thus, the valve body of the relief valve has a second inlet port at an axial extension of the valve body. Thus, the relief valve of Patent Document 1 adopts a configuration that is long in the axial direction of the valve body in order to form the second introduction port.
 一方で、リリーフバルブの搭載性改善等の観点から、リリーフバルブの小型化に対する要望はある。しかし、上記構成のリリーフバルブでは、第2導入ポート及び第2受圧面の配置等の関係から、その小型化の達成は容易でない。 On the other hand, there is a demand for downsizing of the relief valve from the viewpoint of improvement of the mounting property of the relief valve. However, in the relief valve of the above-described configuration, it is not easy to achieve miniaturization because of the arrangement of the second introduction port and the second pressure receiving surface.
 本開示の目的は、設定圧を変更可能な油圧制御弁を提供することである。 An object of the present disclosure is to provide a hydraulic control valve capable of changing the set pressure.
 本開示の技術は、内部空間を区画形成するとともに、該内部空間に作動油を導入可能な第1導入ポート及び第2導入ポートと、前記内部空間に流入した作動油を排出可能な排出ポートとを区画形成する、バルブボディと、前記内部空間に該内部空間の軸方向に可動に配置される弁体であって、前記排出ポートからの作動油の排出を可能にする第1位置と、前記排出ポートからの作動油の排出を不能にする第2位置との間で可動である、弁体と、前記弁体を前記第1位置側から前記第2位置側に付勢するように構成された付勢部材と、前記第2導入ポートへの作動油の導入量を可変とするように構成された導入量可変装置とを備え、前記弁体は、前記第1導入ポートから前記内部空間に導入された作動油から前記第1位置側への力を受けることができるように構成された第1受圧面と、前記第2導入ポートから前記内部空間に導入された作動油から前記第2位置側への力を受けることができるように構成された第2受圧面とを備える、油圧制御弁を提供する。 The technology of the present disclosure defines an internal space, and further includes a first introduction port and a second introduction port that can introduce hydraulic oil into the internal space, and an exhaust port that can discharge hydraulic oil that has flowed into the internal space. A valve body, and a valve body movably disposed in the inner space in the axial direction of the inner space, the first position enabling discharge of hydraulic oil from the discharge port; A valve body movable between a second position that disables discharge of hydraulic fluid from the discharge port, and the valve body configured to bias the first position side to the second position side; And a variable introduction device configured to make variable the amount of hydraulic oil introduced into the second introduction port, and the valve body is connected to the internal space from the first introduction port. Force from the introduced hydraulic oil to the first position side A second pressure receiving surface configured to be able to receive a force toward the second position from hydraulic oil introduced into the internal space from the second introduction port. A hydraulic control valve is provided, comprising a surface.
 好ましくは、前記第1受圧面は、前記第2受圧面と反対方向を向くように、形成されている。 Preferably, the first pressure receiving surface is formed to face in the opposite direction to the second pressure receiving surface.
 前記弁体は、前記内部空間において、前記第2位置側に位置付けられる第1端部と、前記第1位置側に位置付けられる第2端部とを有し、前記第1端部側に前記第1受圧面を有し、前記第2端部側に前記第2受圧面を有し、前記第2端部側に、前記付勢部材が当接する当接面を有するとよい。 The valve body has a first end positioned on the second position side and a second end positioned on the first position side in the internal space, and the first end portion is positioned on the first end side. It is preferable to have one pressure receiving surface, have the second pressure receiving surface on the second end side, and have an abutting surface on the second end side with which the biasing member abuts.
 前記バルブボディが作動油が流入可能な流入ポートを更に備える場合、前記排出ポートは、前記流入ポートを介して前記内部空間に流入した作動油を排出可能に構成されているとよい。 When the valve body further includes an inflow port through which hydraulic fluid can flow, the discharge port may be configured to be able to discharge hydraulic fluid that has flowed into the internal space through the inflow port.
 前記弁体が、略円柱形状を有し、第1直径を有する第1径部と、前記第1直径よりも短い直径を有する第2径部とを有する場合、前記内部空間において前記弁体が前記第2位置にあるとき、前記流入ポートは前記第1径部で閉じられ、前記内部空間において前記弁体が前記第1位置にあるとき、前記流入ポートは前記第2径部周囲を介して前記排出ポートにつながるとよい。 When the valve body has a substantially cylindrical shape and has a first diameter portion having a first diameter and a second diameter portion having a diameter shorter than the first diameter, the valve body is in the internal space. When in the second position, the inflow port is closed at the first diameter portion, and when the valve body is in the first position in the internal space, the inflow port is through the second diameter portion. It may be connected to the discharge port.
 本開示の上記技術によれば、設定圧を変更可能な油圧制御弁を提供することができる。 According to the above technique of the present disclosure, it is possible to provide a hydraulic control valve capable of changing the set pressure.
図1は、第1実施形態に係る油圧制御弁としてのリリーフバルブが設けられた油圧系の概略構成図であり、リリーフバルブが高設定圧状態にあるときの図である。FIG. 1 is a schematic configuration diagram of a hydraulic system provided with a relief valve as a hydraulic control valve according to the first embodiment, and is a diagram when the relief valve is in a high setting pressure state. 図2は、図1の油圧系の概略構成図であり、リリーフバルブが高設定圧状態にあるときの図である。FIG. 2 is a schematic block diagram of the hydraulic system of FIG. 1 when the relief valve is in the high setting pressure state. 図3は、図1の油圧系の概略構成図であり、リリーフバルブが低設定圧状態にあるときの図である。FIG. 3 is a schematic configuration diagram of the hydraulic system of FIG. 1 when the relief valve is in a low setting pressure state. 図4は、図1の油圧系の概略構成図であり、リリーフバルブが低設定圧状態にあるときの図である。FIG. 4 is a schematic configuration diagram of the hydraulic system of FIG. 1 when the relief valve is in a low setting pressure state. 図5は、第2実施形態に係る油圧制御弁としてのリリーフバルブが設けられた油圧系の概略構成図であり、リリーフバルブが高設定圧状態にあるときの図である。FIG. 5 is a schematic configuration diagram of a hydraulic system provided with a relief valve as a hydraulic control valve according to the second embodiment, and is a view when the relief valve is in a high setting pressure state. 図6は、図5の油圧系の概略構成図であり、リリーフバルブが高設定圧状態にあるときの図である。FIG. 6 is a schematic block diagram of the hydraulic system of FIG. 5 when the relief valve is in the high setting pressure state. 図7は、図5の油圧系の概略構成図であり、リリーフバルブが低設定圧状態にあるときの図である。FIG. 7 is a schematic configuration diagram of the hydraulic system of FIG. 5 when the relief valve is in the low setting pressure state. 図8は、図5の油圧系の概略構成図であり、リリーフバルブが低設定圧状態にあるときの図である。FIG. 8 is a schematic configuration diagram of the hydraulic system of FIG. 5 when the relief valve is in the low setting pressure state.
 以下、本実施形態を添付図に基づいて説明する。同一の部品(又は構成)には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, the present embodiment will be described based on the attached drawings. The same parts (or configurations) are given the same reference numerals, and their names and functions are also the same. Therefore, detailed description about them will not be repeated.
(第1実施形態)
 第1実施形態に係る油圧制御弁としての、リリーフバルブ10を図1から図4に基づいて説明する。なお、本開示は、リリーフバルブに適用されることに限定されず、種々の油圧制御弁に適用することができる。
First Embodiment
A relief valve 10 as a hydraulic control valve according to a first embodiment will be described based on FIGS. 1 to 4. In addition, this indication is not limited to being applied to a relief valve, It is applicable to various hydraulic control valves.
 図1から図4に、第1実施形態に係るリリーフバルブ10を備えた油圧系を示す。リリーフバルブ10は、リリーフ圧力変更機能(設定圧変更機能)付きのバルブである。このリリーフバルブ10は、作動油(以下、オイル)を自動変速機(AT)のクラッチ装置CAに供給する供給流路12の圧力を調節制御するために車両の油圧系に装備されている。しかし、これは、当該リリーフバルブ10の用途を限定するものではなく、当該リリーフバルブ10はエンジン各部へのオイルの供給流路の圧力調節用に用いられてもよい。このように、本開示に係る油圧制御弁は、種々の用途に用いられることができる。 The hydraulic system provided with the relief valve 10 which concerns on 1st Embodiment at FIGS. 1-4 is shown. The relief valve 10 is a valve with a relief pressure change function (setting pressure change function). The relief valve 10 is equipped in the hydraulic system of the vehicle in order to adjust and control the pressure of the supply flow path 12 for supplying hydraulic oil (hereinafter, oil) to the clutch device CA of the automatic transmission (AT). However, this does not limit the application of the relief valve 10, and the relief valve 10 may be used for adjusting the pressure of the oil supply flow path to each part of the engine. Thus, the hydraulic control valve according to the present disclosure can be used in various applications.
 図1から図4に示すように、エンジン作動状態では、オイルポンプ14がオイルパン16に貯留されたオイルOILを吸入流路18を通して(オイルフィルタ19を介して)吸入して、供給流路12を通してクラッチ装置CAに向けて吐出する。リリーフバルブ10は、オイルポンプ14の下流側の供給流路12の経路中に配置されている。なお、オイルポンプ14は、エンジンの駆動軸からの動力で作動するように構成されているが、例えば電動式であってもよい。 As shown in FIGS. 1 to 4, in the engine operating state, the oil pump 14 sucks the oil OIL stored in the oil pan 16 through the suction flow passage 18 (through the oil filter 19) to supply the supply flow passage 12. Discharge toward the clutch device CA. The relief valve 10 is disposed in the path of the supply flow passage 12 downstream of the oil pump 14. In addition, although the oil pump 14 is comprised so that it may operate | move with the motive power from the drive shaft of an engine, it may be an electric type, for example.
 リリーフバルブ10は、バルブボディ20と、弁体22と、スプリング24と、導入量可変装置26とを備える。 The relief valve 10 includes a valve body 20, a valve body 22, a spring 24, and an introduction amount variable device 26.
 バルブボディ20は、ボディ本体28とキャップ部材30とを備える。ボディ本体28にキャップ部材30が取り付けられて固定されることで、それらは一体となり、それらの間に、内部空間32が区画形成される。バルブボディ20の内部空間32は、略円柱状であり、その軸線32aを有する。その内部空間32において、弁体22は、その軸線32aに沿う方向(軸方向)に可動に配置される。弁体22は、内部空間32にあるときに軸線32aに略一致する軸線を有する。 The valve body 20 includes a body body 28 and a cap member 30. By attaching and fixing the cap member 30 to the body main body 28, they are integrated and an internal space 32 is defined between them. The internal space 32 of the valve body 20 is substantially cylindrical and has an axis 32a. In the internal space 32, the valve body 22 is movably disposed in a direction (axial direction) along the axis 32a. The valve body 22 has an axis substantially coinciding with the axis 32 a when in the internal space 32.
 バルブボディ20には、更に、第1導入ポート34と、第2導入ポート36と、流入ポート38と、排出ポート40とが区画形成されている。加えて、バルブボディ20には、弁体22に作用する背圧を抜くための圧抜き孔42が区画形成されている。圧抜き孔42は、内部空間32の軸線32aに沿って設けられているが、内部空間32において弁体22が適切に可動であるように種々の位置に設けられ得る。これらのポート34、36、38、40及び圧抜き孔42は、いずれも、個別に、内部空間32に連通するように形成されている。ただし、ポート34、36、38、40から内部空間32へのオイルの好適な流れを確保するように、図1から図4に示すように、内部空間の軸方向において、ポート34、36、38、40の各々に対向する位置における内部空間の周囲には、オイルが流れることが可能な略環状の空間が形成されている。なお、第1導入ポート34と、第2導入ポート36と、流入ポート38と、排出ポート40とはボディ本体28に形成されていて、圧抜き孔42はキャップ部材30に形成されているが、これらは各部材の構成を限定するものではない。 In the valve body 20, a first introduction port 34, a second introduction port 36, an inflow port 38, and an exhaust port 40 are further defined. In addition, in the valve body 20, a pressure release hole 42 for releasing the back pressure acting on the valve body 22 is defined. The pressure relief holes 42 are provided along the axis 32 a of the internal space 32, but can be provided at various positions so that the valve body 22 is properly movable in the internal space 32. Each of the ports 34, 36, 38, 40 and the pressure release hole 42 is individually formed to communicate with the internal space 32. However, in order to ensure a suitable flow of oil from the ports 34, 36, 38, 40 into the interior space 32, as shown in FIGS. 1 to 4, in the axial direction of the interior space, the ports 34, 36, 38 A substantially annular space through which oil can flow is formed around the inner space at a position opposite to each of 40. The first introduction port 34, the second introduction port 36, the inflow port 38, and the discharge port 40 are formed in the body main body 28, and the pressure release hole 42 is formed in the cap member 30, These do not limit the configuration of each member.
 内部空間32にオイルを導入可能に構成される導入ポートとして、第1導入ポート34と第2導入ポート36との2つのポートがボディ本体28に各別に設けられている。第1導入ポート34は供給流路12に常時連通される。第2導入ポート36は、バルブ44を介して供給流路12に連通可能にされている。バルブ44と、後述する電子制御ユニット(以下、ECU)の一部とを含んで、(第2導入ポート36へのオイルの導入量を可変とするように構成された)導入量可変装置26は構成されている。なお、第1導入ポート34と第2導入ポート36へのオイルの各流路にはオリフィス34´、36´が設けられている。これらのオリフィス34´、36´は、それら導入ポートに流れるオイルの圧力脈動を抑制するように設けられていて、他の構成においては省くことも可能である。 Two ports, a first introduction port 34 and a second introduction port 36, are separately provided in the main body 28 as introduction ports configured to be capable of introducing oil into the internal space 32. The first introduction port 34 is always in communication with the supply channel 12. The second introduction port 36 can communicate with the supply flow path 12 via the valve 44. The introduction amount variable device 26 (configured to change the introduction amount of oil to the second introduction port 36) includes the valve 44 and a part of an electronic control unit (hereinafter, ECU) described later. It is configured. In addition, in each flow path of oil to the first introduction port 34 and the second introduction port 36, orifices 34 'and 36' are provided. These orifices 34 ', 36' are provided to suppress pressure pulsations of the oil flowing to the introduction ports, and can be omitted in other configurations.
 流入ポート38は、オイルポンプ14から圧送されたオイルが流入可能に構成され、第1導入ポート34と同様に、供給流路12に常時連通される。排出ポートは、内部空間32に流入したオイルを排出可能に構成されている。排出ポート40と圧抜き孔42は、それぞれ、吸入流路18に連通されているが、例えばオイルパン16に直接的に連通されてもよい。 The inflow port 38 is configured to be capable of inflowing the oil pressure-fed from the oil pump 14, and is always in communication with the supply flow path 12 like the first introduction port 34. The discharge port is configured to be able to discharge the oil flowing into the internal space 32. The discharge port 40 and the pressure release hole 42 are respectively in communication with the suction passage 18, but may be in direct communication with the oil pan 16, for example.
 内部空間32の軸方向において、第1導入ポート34と第2導入ポート36とは、流入ポート38と排出ポート40とを挟むように、バルブボディ20に形成されている。以下では、内部空間32の軸方向において、第1導入ポート34が位置する側の内部空間32のうちの端部領域を第1端部領域とし、第2導入ポート36が位置する側の内部空間32のうちの端部領域を第2端部領域と称する。 The first inlet port 34 and the second inlet port 36 are formed in the valve body 20 so as to sandwich the inlet port 38 and the outlet port 40 in the axial direction of the internal space 32. Hereinafter, in the axial direction of the internal space 32, the end area of the internal space 32 on the side where the first introduction port 34 is located is taken as the first end area, and the internal space on the side where the second introduction port 36 is located. The end area of 32 is called the second end area.
 このようなバルブボディ20内の内部空間32には、上で述べたように、弁体22が内部空間32の軸方向に可動に配置される。内部空間32が略円柱状であることに対応して、弁体22も略円柱状である。弁体22は内部空間32に可動に配置されるが、バルブボディ20内に実質的に嵌め込まれている。好ましくは、バルブボディ20と弁体22とは、それぞれ、それらの間が気密性良くなるように寸法決めされている。 In the internal space 32 in such a valve body 20, the valve body 22 is movably disposed in the axial direction of the internal space 32, as described above. Corresponding to the internal space 32 being substantially cylindrical, the valve body 22 is also substantially cylindrical. The valve body 22 is movably disposed in the internal space 32 but substantially fitted into the valve body 20. Preferably, the valve body 20 and the valve body 22 are respectively dimensioned so as to be airtight between them.
 内部空間32において、第2端部領域には、コイルスプリング24が配置さている。このコイルスプリング24は、内部空間32の軸方向に沿って弁体22を第2端部領域側から第1端部領域側に付勢する付勢部材として備えられている。コイルスプリング24の付勢力により、弁体22は、流入ポート38を閉じる向きに付勢される。つまり、コイルスプリング24により、弁体22は、排出ポート40からのオイルの排出を不能にする排出不能位置側に付勢される。これに対して、以下で説明するように第1導入ポート34から導入されたオイルの圧力がコイルスプリング24の付勢力などに勝るとき、弁体22は、排出不能位置側又は第1端部領域側から、軸方向に沿って第2端部領域側に動かされる。これにより、弁体22は、排出不能位置側又は第1端部領域側から、流入ポート38を開く位置に動くことができ、よって流入ポート38を介して内部空間にオイルが流入可能になり、それによりそのオイルを排出ポート40から排出可能になる。以下では、排出ポート40からのオイルの排出を可能にする弁体22の位置を、排出可能位置と称する。このように、バルブボディ20の内部空間32において、弁体22は、排出可能位置と、排出不能位置との間で可動である。特にリリーフバルブ10では、弁体22は、排出可能位置において流入ポート38を開通させてそこから内部空間へのオイルの流入を可能にし、排出不能位置において流入ポート38を閉じてそこから内部空間へのオイルの流入を遮断する。つまり、弁体22の排出可能位置は、流入ポートと排出ポートとが連通状態になる位置であり、弁体22の排出不能位置は、流入ポートと排出ポートとが非連通状態(遮断状態)になる位置である。なお、排出可能位置は本開示の技術における第1位置に相当し、排出不能位置は本開示の技術における第2位置に相当する。 In the internal space 32, a coil spring 24 is arranged in the second end region. The coil spring 24 is provided as a biasing member that biases the valve body 22 from the second end region side to the first end region side along the axial direction of the internal space 32. The biasing force of the coil spring 24 biases the valve body 22 in the closing direction of the inflow port 38. That is, the coil spring 24 urges the valve body 22 to the non-ejectable position side that disables the discharge of the oil from the discharge port 40. On the other hand, when the pressure of the oil introduced from the first introduction port 34 overcomes the biasing force of the coil spring 24 as described below, the valve body 22 is in the non-discharge position side or the first end region From the side, it is moved along the axial direction to the second end region side. Thereby, the valve body 22 can be moved from the non-discharge position side or the first end region side to the position to open the inflow port 38, whereby oil can flow into the internal space through the inflow port 38, As a result, the oil can be discharged from the discharge port 40. Hereinafter, the position of the valve body 22 that enables the oil to be discharged from the discharge port 40 will be referred to as a drainable position. Thus, in the internal space 32 of the valve body 20, the valve body 22 is movable between the dischargeable position and the non-dischargeable position. In the relief valve 10 in particular, the valve body 22 opens the inflow port 38 at the dischargeable position to allow oil to flow from there into the internal space, and closes the inflow port 38 at the nondischarge position and from there to the internal space Block the flow of oil. That is, the dischargeable position of the valve body 22 is a position where the inflow port and the discharge port are in communication with each other, and the discharge impossible position of the valve body 22 is a disconnection state of the inflow port and the discharge port (blocked state). Position. The dischargeable position corresponds to a first position in the technology of the present disclosure, and the non-discharge position corresponds to a second position in the technology of the present disclosure.
 弁体22は、内部空間32において、排出不能位置側つまり第1端部領域側に位置付けられる第1端部22aと、排出可能位置側つまり第2端部領域側に位置付けられる第2端部22bとを有する。図1に示すように排出不能位置にあるとき、弁体22は、最大直径(第1直径)D1を有する第1径部22cで流入ポート38を閉じるように構成されている。また、第1端部22aと第2端部22bとの間には、特に第1径部22cの第1端部22a側には、第1直径D1よりも短い第2直径D2を有する第2径部22dが形成されている。第2径部22dの第2直径D2は弁体22の軸方向に沿って変化する。したがって、弁体22が排出不能位置から排出可能位置に移動することで、上で述べたように、流入ポート38は内部空間32のうちの第2径部22d周囲の空間に連通し、当該空間を介して排出ポート40に連通することができる。 The valve body 22 has a first end 22a positioned in the non-ejectable position side, that is, the first end area side, and a second end 22b positioned in the second area. And. When in the non-ejecting position as shown in FIG. 1, the valve body 22 is configured to close the inflow port 38 at a first diameter portion 22c having a maximum diameter (first diameter) D1. In addition, a second diameter D2 shorter than the first diameter D1 is provided between the first end 22a and the second end 22b, particularly on the first end 22a side of the first diameter portion 22c. The diameter portion 22 d is formed. The second diameter D2 of the second diameter portion 22d changes along the axial direction of the valve body 22. Therefore, the inflow port 38 communicates with the space around the second diameter portion 22d of the internal space 32, as described above, by moving the valve body 22 from the undischargeable position to the dischargeable position, and the space Can communicate with the discharge port 40.
 弁体22の第1端部22aは、第1直径D1よりも短い第3直径D3を有する第3径部22fを備えて形成されている。第3径部22fと第2径部22dとの間には、第1直径を有する中間径部22c´が形成されている。弁体22が内部空間32にあるとき、第3径部22fと中間径部22c´との間の軸方向を向く面(以下、第1軸方向面)22afは、第1導入ポート34から内部空間32に導入されたオイルから、排出不能位置側から排出可能位置側への力を受けることができる第1受圧面22eとして機能することができる。第1軸方向面22afは、弁体22が内部空間32にあるとき、軸方向のうち第1軸方向を向くように形成されている。第1軸方向面22afは環状面である。なお、排出不能位置から排出可能位置側へ弁体22が動いたとき、第1端部22aの端面22a´はバルブボディ20の内面(つまり内部空間32を区画形成する面)への当接状態から離間状態になるので、その端面22a´も第1受圧面22eとして機能するようになる。実際には、弁体22の排出不能位置も排出可能位置も、それぞれ、ある程度の範囲(軸方向ストローク)を有する。したがって、弁体22が排出不能位置にある場合であっても、端面22a´は第1受圧面として機能し得る。つまり、排出不能位置にある弁体22において、それの第1端部22aの端面22a´がバルブボディ20の内面から離れているとき、第1受圧面22eは、第1軸方向面22afと、端面22a´とにより構成される。リリーフバルブ10では、この端面22a´は円形であり、第1軸方向面22afと平行でありかつ第1軸方向面22afと同じ方向(第1軸方向)を向くように形成されている。 The first end 22a of the valve body 22 is formed to have a third diameter 22f having a third diameter D3 smaller than the first diameter D1. An intermediate diameter portion 22c 'having a first diameter is formed between the third diameter portion 22f and the second diameter portion 22d. When the valve body 22 is in the internal space 32, a surface (hereinafter, first axial surface) 22af facing in the axial direction between the third diameter portion 22f and the middle diameter portion 22c 'is an inner portion from the first introduction port 34. The oil introduced into the space 32 can function as a first pressure receiving surface 22 e that can receive a force from the non-dischargeable position side to the dischargeable position side. The first axial surface 22 af is formed to face the first axial direction among the axial directions when the valve body 22 is in the internal space 32. The first axial surface 22af is an annular surface. In addition, when the valve body 22 moves from the discharge impossible position to the dischargeable position side, the end surface 22a 'of the first end 22a abuts on the inner surface of the valve body 20 (that is, the surface that defines the internal space 32). The end face 22a 'also functions as the first pressure receiving face 22e. In fact, the non-ejectable position of the valve body 22 and the non-ejectable position both have a certain range (axial direction stroke). Therefore, even when the valve body 22 is in the non-ejectable position, the end surface 22a 'can function as a first pressure receiving surface. That is, when the end face 22a 'of the first end 22a of the valve body 22 in the non-ejectable position is separated from the inner surface of the valve body 20, the first pressure receiving surface 22e is the first axial surface 22af; It is comprised by end surface 22a '. In the relief valve 10, the end face 22a 'is circular and formed parallel to the first axial surface 22af and facing in the same direction (first axial direction) as the first axial surface 22af.
 また、弁体22の第1径部22cの第2端部22b側は、第1直径D1よりも短い第4直径D4を有する第4径部22gとして形成されている。弁体22が内部空間32にあるとき、第1径部22cと第4径部22gとの間の軸方向を向く面(第2軸方向面)は、第2導入ポート36から内部空間32に導入されたオイルから、排出可能位置側から排出不能位置側への力を受けることができる第2受圧面22hとして機能する。ここでは、第2軸方向面は、弁体22が内部空間32にあるとき、軸方向のうち上記第1軸方向とは逆向きの第2軸方向を向くように形成されている。以下では、第2軸方向面を第2受圧面22hと称する。第2受圧面22hは環状面である。第4径部22gは、特にその端部は、キャップ部材30のうちで内部空間32に配置される円筒状のガイド部30a内に可動に配置され、ガイド部30aにより内部空間32の軸方向にガイドされる。第4径部22gの周囲には、コイルスプリング24が配置される。第2受圧面22hは、コイルスプリング24の一端が当接する当接面としても形成されている。なお、コイルスプリングの他端はキャップ部材30のガイド部30aの端面に当接する。このように、第2受圧面22hは、弁体22において第1端部22aの第1受圧面22eよりも第2端部22b側に形成され、コイルスプリング24による付勢力を受けることができるとともに、オイルの圧力つまり油圧を受けることができるように構成されている。 Further, the second end 22b side of the first diameter portion 22c of the valve body 22 is formed as a fourth diameter portion 22g having a fourth diameter D4 shorter than the first diameter D1. When the valve body 22 is in the internal space 32, the surface (second axial surface) facing the axial direction between the first diameter portion 22 c and the fourth diameter portion 22 g is from the second introduction port 36 to the internal space 32. It functions as a second pressure receiving surface 22h capable of receiving a force from the dischargeable position side to the non-dischargeable position side from the introduced oil. Here, when the valve body 22 is in the internal space 32, the second axial surface is formed so as to face the second axial direction opposite to the first axial direction in the axial direction. Hereinafter, the second axial surface is referred to as a second pressure receiving surface 22h. The second pressure receiving surface 22h is an annular surface. The end of the fourth diameter portion 22g is movably disposed, in particular, in a cylindrical guide portion 30a disposed in the internal space 32 of the cap member 30, and the guide portion 30a extends in the axial direction of the internal space 32. Be guided. A coil spring 24 is disposed around the fourth diameter portion 22g. The second pressure receiving surface 22 h is also formed as an abutting surface with which one end of the coil spring 24 abuts. The other end of the coil spring abuts on the end face of the guide portion 30 a of the cap member 30. Thus, the second pressure receiving surface 22h is formed on the valve body 22 closer to the second end 22b than the first pressure receiving surface 22e of the first end 22a, and can receive an urging force from the coil spring 24. , Oil pressure or oil pressure can be received.
 図1から明らかなように、第1受圧面22eは、第2受圧面22hと反対方向を向くように形成されている。したがって、弁体22が内部空間32にあるとき、第1受圧面22eは、第1導入ポート34から内部空間に導入されたオイルから、排出不能位置側から排出可能位置側への第2軸方向の力を受けることができ、第2受圧面22hは、第2導入ポート36から内部空間に導入されたオイルから、排出可能位置側から排出不能位置側への(第2軸方向とは逆向きである)第1軸方向の力を受けることができる。 As apparent from FIG. 1, the first pressure receiving surface 22e is formed to face in the opposite direction to the second pressure receiving surface 22h. Therefore, when the valve body 22 is in the internal space 32, the first pressure receiving surface 22e has a second axial direction from the non-discharge position side to the discharge possible position side from the oil introduced into the internal space from the first introduction port 34. The second pressure receiving surface 22h can move from the dischargeable side to the non-dischargeable side from the oil introduced into the internal space from the second introduction port 36 (opposite to the second axial direction). Can be subjected to a first axial force.
 そして、上記構成のリリーフバルブ10における上記制御バルブ44の作動は、前述のECU(不図示)により制御される。ECUは、演算装置(例えばCPU)、記憶装置(例えばROM、RAM)、A/D変換機、入出力ポートなどを備えて、所謂コンピュータとしての構成を備える。入力ポートには、(動力源としてエンジンが車両に搭載されているので)エンジン回転速度センサ、エンジン負荷センサなどの各種センサが接続されている。そして、ここでは、エンジン回転速度センサ、エンジン負荷センサなどの出力に基づいて検出される(取得される)値に応じて、所定のプログラムに従って、ECUは、供給流路12の油圧を調節するように制御バルブ44の作動を制御する。本第1実施形態のリリーフバルブ10は、高設定圧状態と低設定圧状態との2段階に設定圧を可変に構成されている。この高設定圧状態と低設定圧状態との間での切替は制御バルブ44の作動の制御により行われる。高設定圧状態と低設定圧状態との間での切替制御は、上記各種センサの出力に基づいて算出される(取得される)エンジンのトルクを所定トルクと比較した結果に基づいて、実行される。所定トルクは、クラッチ装置CAの締結圧を所定圧以上にする必要があるか否かに基づいて定められている。そして、エンジンのトルクがクラッチの締結圧を所定圧以上にする必要があるトルクであったとき、高設定圧状態になるように制御バルブ44は制御され、エンジンのトルクがクラッチの締結圧を所定圧未満にしてよいトルクであったとき、低設定圧状態になるように制御バルブ44は制御される。より詳しくは、ここでは、高設定圧状態にするとき、制御バルブ44は非通電状態にされ、低設定圧状態にするとき、制御バルブ44は通電状態にされる。このように、ECUの一部は、バルブ44の作動を制御するように構成されたバルブ制御手段としての機能を担う。なお、ECUは、エンジン運転状態に応じて、所定のプログラムに従って、エンジンのインジェクタなどの各部の作動も制御する。 The operation of the control valve 44 in the relief valve 10 having the above-described configuration is controlled by the aforementioned ECU (not shown). The ECU includes an arithmetic unit (e.g., CPU), a storage device (e.g., ROM, RAM), an A / D converter, an input / output port, and the like, and has a so-called computer configuration. Various sensors such as an engine rotational speed sensor and an engine load sensor are connected to the input port (since the engine is mounted on a vehicle as a power source). Then, here, the ECU adjusts the hydraulic pressure of the supply flow passage 12 according to a predetermined program according to the value detected (acquired) based on the output of the engine rotational speed sensor, the engine load sensor, etc. Control the operation of the control valve 44. The relief valve 10 according to the first embodiment is configured to variably set the setting pressure in two stages of the high setting pressure state and the low setting pressure state. Switching between the high set pressure state and the low set pressure state is performed by controlling the operation of the control valve 44. Switching control between the high set pressure state and the low set pressure state is performed based on the result of comparing the engine torque calculated (obtained) based on the outputs of the various sensors with a predetermined torque. Ru. The predetermined torque is determined based on whether or not the engaging pressure of the clutch device CA needs to be equal to or higher than the predetermined pressure. Then, when the engine torque is the torque required to make the engagement pressure of the clutch equal to or higher than the predetermined pressure, the control valve 44 is controlled so that the high setting pressure state is established, and the engine torque becomes the engagement pressure of the clutch The control valve 44 is controlled to be in the low set pressure state when it is a torque that may be less than the pressure. More specifically, here, the control valve 44 is de-energized when in the high set pressure state, and is controlled in the low set pressure state. Thus, a part of the ECU serves as a valve control means configured to control the operation of the valve 44. The ECU also controls the operation of each unit such as the injector of the engine according to a predetermined program according to the engine operating state.
 図1及び図2は、リリーフ圧力の設定圧が高い状態つまり高設定圧状態でのリリーフバルブ10を示し、その高設定圧状態での制御バルブ44の作動状態を示す。図3及び図4は、リリーフ圧力の設定圧が低い状態つまり低設定圧状態でのリリーフバルブ10を示し、その低設定圧状態での制御バルブ44の作動状態を示す。制御バルブ44は、第2導入ポート36を供給流路12に連通させる供給ポート44aと、第2導入ポート36をドレン流路44cに連通させるドレンポート44bとを備えたスプール式のソレノイドバルブである。ただし、制御バルブ44は他の構成の電磁弁であってもよい。 FIGS. 1 and 2 show the relief valve 10 in a state where the set pressure of the relief pressure is high, that is, in the high set pressure state, and shows the operating state of the control valve 44 in the high set pressure state. 3 and 4 show the relief valve 10 in a state where the set pressure of the relief pressure is low, that is, in the low set pressure state, and shows the operating state of the control valve 44 in the low set pressure state. The control valve 44 is a spool type solenoid valve provided with a supply port 44a for connecting the second introduction port 36 to the supply flow path 12 and a drain port 44b for connecting the second introduction port 36 to the drain flow path 44c. . However, the control valve 44 may be a solenoid valve of another configuration.
 図1及び図2の高設定圧状態では、制御バルブ44が開通状態となり、矢印A1で示すように第2導入ポート36にオイルが導入される。したがって、コイルスプリング24の付勢力Fと、第2導入ポート36から導入されたオイルによる油圧(以下、閉鎖圧)(単位面積当りの圧力P1×第2受圧面22hの面積)CPとの合力RFと、第1導入ポート34から導入されたオイルによる油圧(以下、解放圧)(単位面積当りの圧力P1×第1受圧面22eの面積)OPとの釣り合いに応じた位置に、弁体22は、内部空間32において移動され得、位置付けられ得る。図1は、解放圧OPが合力RFに負けていて弁体22が排出不能位置にある状態の、リリーフバルブ10を示す。この状態では、流入ポート38は弁体22の第1径部22cにより閉じられている。図2は、解放圧OPが弁体が排出不能位置にあるときの合力RFに勝った結果、弁体22が排出可能位置にある状態の、リリーフバルブ10を示す。この状態では、流入ポート38が開き、流入ポート38を介して内部空間にオイルは流入でき、よって、その流入したオイルは排出ポートを介してポンプ14の上流側に排出される(図2の矢印A2参照)。このように、高設定圧状態では、解放圧OPに対抗する力として、コイルスプリング48の付勢力Fに閉鎖圧CPが加わるので、リリーフ圧力の設定圧が高くなる。 In the high set pressure state of FIGS. 1 and 2, the control valve 44 is in the open state, and oil is introduced into the second introduction port 36 as indicated by the arrow A1. Therefore, the combined force RF of the biasing force F of the coil spring 24 and the hydraulic pressure (hereinafter, closing pressure) (pressure per unit area P1 × area of the second pressure receiving surface 22h) CP by oil introduced from the second introduction port 36 The valve body 22 is located at a position corresponding to the balance between oil pressure introduced from the first introduction port 34 (hereinafter, release pressure) (pressure per unit area P1 × area of the first pressure receiving surface 22e) OP. , Can be moved and positioned in the interior space 32. FIG. 1 shows the relief valve 10 in a state where the release pressure OP loses to the resultant force RF and the valve body 22 is in the non-ejectable position. In this state, the inflow port 38 is closed by the first diameter portion 22 c of the valve body 22. FIG. 2 shows the relief valve 10 with the valve body 22 in the ejectable position as a result of the release pressure OP overcoming the resultant force RF when the valve body is in the non-ejectable position. In this state, the inflow port 38 is opened, and the oil can flow into the internal space through the inflow port 38, and thus the inflowing oil is discharged upstream of the pump 14 through the discharge port (arrow in FIG. 2) See A2). As described above, in the high setting pressure state, the closing pressure CP is added to the biasing force F of the coil spring 48 as a force against the release pressure OP, so the setting pressure of the relief pressure becomes high.
 これに対して、図3及び図4の低設定圧状態では、制御バルブ44が閉鎖状態となり、第2導入ポート36にオイルは導入されない。この場合、制御バルブ44に至ったオイルは第2導入ポート36に至らず、一方で、第2導入ポート36に既に達しているオイルはドレンポート44bを介してドレン流路44cからオイルパン16に戻ることになる。したがって、コイルスプリング24の付勢力Fのみが、第1導入ポート34から導入されたオイルによる油圧つまり解放圧に対抗することになる。図3は、解放圧OPが付勢力Fに負けていて弁体22が排出不能位置にある状態の、リリーフバルブ10を示す。図4は、解放圧OPが弁体が排出不能位置にあるときの付勢力Fに勝った結果、弁体22が排出可能位置にある状態の、リリーフバルブ10を示す。このように、低設定圧状態では、解放圧OPに対抗する力として、コイルスプリング24の付勢力Fのみが弁体22に作用するので、リリーフ圧力の設定圧が低くなる。 On the other hand, in the low set pressure state of FIG. 3 and FIG. 4, the control valve 44 is closed and oil is not introduced into the second introduction port 36. In this case, the oil reaching the control valve 44 does not reach the second introduction port 36, while the oil already reaching the second introduction port 36 passes from the drain passage 44c to the oil pan 16 via the drain port 44b. I will be back. Therefore, only the biasing force F of the coil spring 24 opposes the hydraulic pressure or release pressure by the oil introduced from the first introduction port 34. FIG. 3 shows the relief valve 10 in a state where the release pressure OP is lost to the biasing force F and the valve body 22 is in the non-ejectable position. FIG. 4 shows the relief valve 10 in a state in which the valve body 22 is in the dischargeable position as a result of the release pressure OP overcoming the biasing force F when the valve body is in the discharge impossible position. As described above, in the low setting pressure state, only the biasing force F of the coil spring 24 acts on the valve body 22 as a force against the release pressure OP, so the setting pressure of the relief pressure becomes low.
 以上説明したように、第1実施形態に係るリリーフバルブ10は、上記構成を備え、特に、制御バルブ44の開時に当該制御バルブを介して導入された油圧を受ける第2受圧面22hは、常時油圧を受ける第1受圧面22eと反対方向を向くように、形成されている。そして、コイルスプリング24から弁体22に作用する力の方向と、第2受圧面を介して弁体22に作用する力の方向とが概して同じである。そして、第2導入ポート36へのオイルの導入量を可変とするように制御バルブ44が設けられている。したがって、リリーフバルブ10は、設定圧つまりリリーフ圧力を可変にする構成を備え、その構成の点で特許文献1のリリーフバルブとは異なる構成を有する。 As described above, the relief valve 10 according to the first embodiment has the above-described configuration, and in particular, the second pressure receiving surface 22h for receiving the hydraulic pressure introduced through the control valve 44 when the control valve 44 is opened is always It is formed to face in the opposite direction to the first pressure receiving surface 22e that receives the hydraulic pressure. The direction of the force acting on the valve body 22 from the coil spring 24 and the direction of the force acting on the valve body 22 through the second pressure receiving surface are generally the same. A control valve 44 is provided to make the amount of oil introduced into the second introduction port 36 variable. Therefore, the relief valve 10 has a configuration for varying the set pressure, that is, the relief pressure, and has a configuration different from that of the relief valve of Patent Document 1 in terms of the configuration.
 更に、上記リリーフバルブ10は、第1端部22a側に第1受圧面22eを有し、第2端部22b側に第2受圧面22hを有し、この第2受圧面22hがコイルスプリング24の一端が当接する当接面としての役目を果たす。このように、コイルスプリングから力を受ける面と、第2導入ポート36を介して導入されたオイルから油圧を受ける第2受圧面を同じにしたので、リリーフバルブ10はその小型化の点で優れる。 Furthermore, the relief valve 10 has a first pressure receiving surface 22e on the first end 22a side and a second pressure receiving surface 22h on the second end 22b side, and the second pressure receiving surface 22h is a coil spring 24. Serves as a contact surface against which one end of the As described above, since the surface receiving the force from the coil spring and the second pressure receiving surface receiving the oil pressure from the oil introduced through the second introduction port 36 are the same, the relief valve 10 is excellent in the miniaturization thereof. .
 また、上記リリーフバルブ10では、第1導入ポート34とは別に吸入ポート38を設けた。それ故、弁体22が排出不能位置にあるとき、吸入ポート38を、弁体22のうちの、最大直径である第1直径D1を有する第1径部22cで閉じることができる。したがって、上記リリーフバルブ10では、弁体22が排出不能位置にあるとき、流入ポート38を介して内部空間32にオイルが導入されることを防ぐことができ、そのオイルから弁体22が余剰な力を受けることを防ぐことができる。なお、本開示の態様は、第1導入ポート34が吸入ポートとしても機能するように設けられ、弁体が排出可能位置にあるとき、第1導入ポート34から内部空間32に導入されたオイルが排出ポートから排出される構成を排除するものではなく、リリーフバルブ10はこのように変更されることが可能である。これは、以下に説明する第2実施形態のリリーフバルブ110でも同じである。 Further, in the relief valve 10, the suction port 38 is provided separately from the first introduction port 34. Therefore, when the valve body 22 is in the non-ejecting position, the suction port 38 can be closed by the first diameter portion 22 c of the valve body 22 having the first diameter D1 which is the largest diameter. Therefore, in the relief valve 10, when the valve body 22 is in the non-ejectable position, oil can be prevented from being introduced into the internal space 32 through the inflow port 38, and the valve body 22 is surplus from the oil. It can prevent you from receiving power. In the aspect of the present disclosure, the oil introduced from the first introduction port 34 into the internal space 32 is provided such that the first introduction port 34 also functions as a suction port and the valve body is in the dischargeable position. The relief valve 10 can be changed in this way, without excluding the configuration for being discharged from the discharge port. The same applies to the relief valve 110 of the second embodiment described below.
(第2実施形態)
 第2実施形態に係る油圧制御弁としてのリリーフバルブ110を図5から図8に基づいて説明する。以下では、主として、第1実施形態のリリーフバルブ10に対する、第2実施形態に係るリリーフバルブ110の相違点を説明する。特に言及しない限り、第2実施形態のリリーフバルブ110も、第1実施形態のリリーフバルブ10と同様の作用効果を奏する。
Second Embodiment
A relief valve 110 as a hydraulic pressure control valve according to a second embodiment will be described based on FIG. 5 to FIG. Hereinafter, differences between the relief valve 110 according to the second embodiment and the relief valve 10 according to the first embodiment will be mainly described. Unless otherwise stated, the relief valve 110 of the second embodiment also exhibits the same effects as the relief valve 10 of the first embodiment.
 第2実施形態に係るリリーフバルブ110では、弁体22の排出可能位置側に位置付けられる第2端部22bにおいて、第2受圧面22hが、コイルスプリング24が当接する当接面22jから独立して形成されている。第2端部22bの端面22b´に当接面22jが形成されている。ここでは、第2端部22bの端面22b´は、第2軸方向面つまり第2受圧面22hと平行であり、かつ、第2受圧面22hと同じ方向(第2軸方向)を向くように形成されている。コイルスプリング24は、キャップ部材30のうちで内部空間32に配置される円筒状のガイド部30a内に配置されている。なお、端面22b´はここでは円形である。 In the relief valve 110 according to the second embodiment, the second pressure receiving surface 22h at the second end 22b positioned on the dischargeable position side of the valve body 22 is independent of the contact surface 22j with which the coil spring 24 abuts. It is formed. An abutment surface 22j is formed on the end face 22b 'of the second end 22b. Here, the end surface 22b 'of the second end 22b is parallel to the second axial surface, that is, the second pressure receiving surface 22h, and faces in the same direction (second axial direction) as the second pressure receiving surface 22h. It is formed. The coil spring 24 is disposed in a cylindrical guide portion 30 a disposed in the internal space 32 of the cap member 30. The end face 22b 'is circular here.
 リリーフバルブ110では、第2受圧面22hを当接面22jとは別に形成したことで、第1実施形態のリリーフバルブ10に比べて、第4径部22gの軸方向の長さを短くすることができ、弁体22の縮小化を図ることができる。その一方で、コイルスプリング24の配置領域(作動空間)をガイド部30a内に確保する観点から、リリーフバルブ110の全長は、第1実施形態に係るリリーフバルブ10よりも長くなり易い。弁体22の縮小化の度合いと、リリーフバルブ全体での縮小化の度合いとは、コスト、部材の選択設計などを総合的に考慮し、設定されるとよい。これは、上記第1実施形態に係るリリーフバルブ10でも同様である。 In the relief valve 110, by forming the second pressure receiving surface 22h separately from the contact surface 22j, the axial length of the fourth diameter portion 22g is shortened as compared with the relief valve 10 of the first embodiment. Thus, the valve body 22 can be reduced. On the other hand, from the viewpoint of securing the arrangement area (working space) of the coil spring 24 in the guide portion 30a, the total length of the relief valve 110 tends to be longer than the relief valve 10 according to the first embodiment. The degree of reduction of the valve body 22 and the degree of reduction of the relief valve as a whole may be set in consideration of cost, selection design of members, and the like. The same applies to the relief valve 10 according to the first embodiment.
 第2実施形態に係るリリーフバルブ110において、図5及び図6は、リリーフ圧力の設定圧が高い状態つまり高設定圧状態での作動状態を示し、図7及び図8は、リリーフ圧力の設定圧が低い状態つまり低設定圧状態での作動状態を示す。そして、図5及び図7は弁体22が排出不能位置にある状態を示し、図6及び図8は弁体22が排出可能位置にある状態を示す。図5から図8の各状態でのオイルの流れ、制御バルブ44の制御等は、第1実施形態のリリーフバルブ10に関して図1から図4に基づいて説明した通りであるので、それらの説明は省略する。 In the relief valve 110 according to the second embodiment, FIGS. 5 and 6 show a state where the setting pressure of the relief pressure is high, that is, an operating state in a high setting pressure state, and FIGS. 7 and 8 show the setting pressure of the relief pressure. Indicates the operating condition at the low setting pressure condition. 5 and 7 show a state in which the valve body 22 is in the non-dischargeable position, and FIGS. 6 and 8 show a state in which the valve body 22 is in the dischargeable position. The flow of oil in each state of FIGS. 5 to 8, the control of the control valve 44, etc. are as described based on FIGS. 1 to 4 with respect to the relief valve 10 of the first embodiment. I omit it.
 以上、本開示の技術を2つの実施形態に基づいて説明したが、本開示の技術は、それら実施形態に限定されない。例えば、第1受圧面及び第2受圧面は、互いに対して反対方向を向くように形成されることに限定されず、第1受圧面は第1導入ポートから内部空間に導入された作動油から排出不能位置側から排出可能位置側への力を受けることができる種々の構成を有するように変更可能であり、第2受圧面は第2導入ポートから内部空間に導入された作動油から排出可能位置側から排出不能位置側への力を受けることができる種々の構成を有するように変更可能である。具体的には、第1受圧面及び第2受圧面は、それぞれ、上記実施形態では、弁体の軸線又はリリーフバルブの内部空間の軸線に直交する面であったが、それらに斜めに傾いた面とされることも可能である。 Although the technology of the present disclosure has been described above based on the two embodiments, the technology of the present disclosure is not limited to these embodiments. For example, the first pressure receiving surface and the second pressure receiving surface are not limited to be formed to face in opposite directions with respect to each other, and the first pressure receiving surface may be formed of hydraulic oil introduced into the internal space from the first introduction port. It can be modified to have various configurations capable of receiving a force from the non-discharge position side to the dischargeable position side, and the second pressure receiving surface can be discharged from the hydraulic oil introduced into the internal space from the second introduction port It can be modified to have various configurations capable of receiving a force from the position side to the non-ejecting position side. Specifically, in the above embodiment, the first pressure receiving surface and the second pressure receiving surface are planes orthogonal to the axis of the valve body or the axis of the internal space of the relief valve in the above embodiment, but are inclined obliquely thereto It is also possible to be a face.
 また、第2導入ポートを複数個設け、第2導入ポート毎に第2受圧面を設けて、設定圧を3段階以上に切換設定できるようにリリーフバルブを構成してもよい。その場合、付加的に設けられる第2導入ポートは、吸入ポートと同様に、バルブ本体に形成されるとよい。そして、付加的に設けられる第2導入ポートから導入されたオイルから油圧を受ける付加的な受圧面は、最大直径よりも短い直径を有する付加的な径部を弁体に設けることで形成されることができる。 Alternatively, a plurality of second introduction ports may be provided, a second pressure receiving surface may be provided for each second introduction port, and the relief valve may be configured to switch and set the set pressure in three or more stages. In that case, the additionally provided second introduction port may be formed in the valve body in the same manner as the suction port. The additional pressure receiving surface for receiving the oil pressure from the oil introduced from the additionally provided second introduction port is formed by providing the valve body with an additional diameter portion having a diameter shorter than the maximum diameter. be able to.
 以上、本開示の技術の代表的な実施形態について説明したが、本開示の技術は種々の変更が可能である。本願の特許請求の範囲によって定義される本開示の精神及び範囲から逸脱しない限り、種々の置換、変更が可能である。 Although the representative embodiments of the technology of the present disclosure have been described above, the technology of the present disclosure can be variously modified. Various substitutions and modifications are possible without departing from the spirit and scope of the present disclosure as defined by the claims of the present application.
 本出願は、2017年11月15日付で出願された日本国特許出願(特願2017-219911)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on the Japanese Patent Application (Japanese Patent Application No. 2017-219911) filed on November 15, 2017, the contents of which are incorporated herein by reference.
 本開示の油圧制御弁は、設定圧を変更するといった点において有用である。 The hydraulic control valve of the present disclosure is useful in that the set pressure is changed.
10、110 リリーフバルブ
12 供給流路
14 オイルポンプ
16 オイルパン
18 吸入流路
20 バルブボディ
22 弁体
24 スプリング
26 導入量可変装置
28 ボディ本体
30 キャップ部材
32 内部空間
34 第1導入ポート
36 第2導入ポート
38 流入ポート
40 排出ポート
42 圧抜き孔
44 バルブ
10, 110 relief valve 12 supply flow path 14 oil pump 16 oil pan 18 suction flow path 20 valve body 22 valve body 24 spring 26 introduction amount variable device 28 body main body 30 cap member 32 internal space 34 first introduction port 36 second introduction Port 38 Inflow port 40 Exhaust port 42 Pressure relief hole 44 valve

Claims (5)

  1.  内部空間を区画形成するとともに、該内部空間に作動油を導入可能な第1導入ポート及び第2導入ポートと、前記内部空間に流入した作動油を排出可能な排出ポートとを区画形成する、バルブボディと、
     前記内部空間に該内部空間の軸方向に可動に配置される弁体であって、前記排出ポートからの作動油の排出を可能にする第1位置と、前記排出ポートからの作動油の排出を不能にする第2位置との間で可動である、弁体と、
     前記弁体を前記第1位置側から前記第2位置側に付勢するように構成された付勢部材と、
     前記第2導入ポートへの作動油の導入量を可変とするように構成された導入量可変装置と
    を備え、
     前記弁体は、前記第1導入ポートから前記内部空間に導入された作動油から前記第1位置側への力を受けることができるように構成された第1受圧面と、前記第2導入ポートから前記内部空間に導入された作動油から前記第2位置側への力を受けることができるように構成された第2受圧面とを備える、油圧制御弁。
    A valve defining an inner space and defining a first introduction port and a second introduction port capable of introducing hydraulic oil into the inner space, and a discharge port capable of discharging the hydraulic oil flowing into the inner space Body and
    A valve body movably disposed in the inner space in the axial direction of the inner space, the first position enabling discharge of hydraulic oil from the discharge port, and discharging the hydraulic oil from the discharge port; A valve body movable between a disabling second position;
    A biasing member configured to bias the valve body from the first position side to the second position side;
    An introduction amount variable device configured to change an introduction amount of the hydraulic oil to the second introduction port;
    The valve body includes a first pressure receiving surface configured to be able to receive a force toward the first position from hydraulic oil introduced into the internal space from the first introduction port; and the second introduction port And a second pressure receiving surface configured to be capable of receiving a force toward the second position from the hydraulic oil introduced from the second space into the inner space.
  2.  前記第1受圧面は、前記第2受圧面と反対方向を向くように、形成されている、請求項1に記載の油圧制御弁。 The hydraulic control valve according to claim 1, wherein the first pressure receiving surface is formed to face in the opposite direction to the second pressure receiving surface.
  3.  前記弁体は、
     前記内部空間において、前記第2位置側に位置付けられる第1端部と、前記第1位置側に位置付けられる第2端部とを有し、
     前記第1端部側に前記第1受圧面を有し、前記第2端部側に前記第2受圧面を有し、
     前記第2端部側に、前記付勢部材が当接する当接面を有する、請求項1又は2に記載の油圧制御弁。
    The valve body is
    In the internal space, it has a first end located on the second position side, and a second end located on the first position side,
    The first end side has the first pressure receiving surface, and the second end side has the second pressure receiving surface.
    The oil pressure control valve according to claim 1 or 2, further comprising: an abutting surface on the second end side with which the biasing member abuts.
  4.  前記バルブボディは、作動油が流入可能な流入ポートを更に備え、
     前記排出ポートは、前記流入ポートを介して前記内部空間に流入した作動油を排出可能に構成されている、請求項1から3のいずれか一項に記載の油圧制御弁。
    The valve body further includes an inflow port through which hydraulic fluid can flow.
    The hydraulic control valve according to any one of claims 1 to 3, wherein the discharge port is configured to be able to discharge the hydraulic oil that has flowed into the internal space via the inflow port.
  5.  前記弁体は、略円柱形状を有し、第1直径を有する第1径部と、前記第1直径よりも短い直径を有する第2径部とを有し、
     前記内部空間において前記弁体が前記第2位置にあるとき、前記流入ポートは前記第1径部で閉じられ、
     前記内部空間において前記弁体が前記第1位置にあるとき、前記流入ポートは前記第2径部周囲を介して前記排出ポートにつながる、請求項4に記載の油圧制御弁。
    The valve body has a substantially cylindrical shape, and has a first diameter portion having a first diameter and a second diameter portion having a diameter shorter than the first diameter.
    When the valve body is in the second position in the internal space, the inflow port is closed at the first diameter portion,
    The hydraulic control valve according to claim 4, wherein when the valve body is at the first position in the internal space, the inflow port is connected to the discharge port via the periphery of the second diameter portion.
PCT/JP2018/041302 2017-11-15 2018-11-07 Hydraulic pressure control valve WO2019098103A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017-219911 2017-11-15
JP2017219911A JP2019090484A (en) 2017-11-15 2017-11-15 Hydraulic control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201880073794.0A CN111344494A (en) 2017-11-15 2018-11-07 Oil pressure control valve
PH12020550618A PH12020550618A1 (en) 2017-11-15 2020-05-12 Hydraulic pressure control valve

Publications (1)

Publication Number Publication Date
WO2019098103A1 true WO2019098103A1 (en) 2019-05-23

Family

ID=66539650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041302 WO2019098103A1 (en) 2017-11-15 2018-11-07 Hydraulic pressure control valve

Country Status (4)

Country Link
JP (1) JP2019090484A (en)
CN (1) CN111344494A (en)
PH (1) PH12020550618A1 (en)
WO (1) WO2019098103A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890715A (en) * 1955-08-26 1959-06-16 Warner Swasey Co Multi-pressure relief valve
JPS63225701A (en) * 1987-02-18 1988-09-20 Heilmeier & Weinlein Hydraulic pressure controller
JPH01120405A (en) * 1987-11-04 1989-05-12 Sumitomo Heavy Ind Ltd Composite valve
JPH04105676U (en) * 1991-02-26 1992-09-11
JPH0624276U (en) * 1992-08-31 1994-03-29 エヌオーケー株式会社 Relief valve
JP2009191634A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp Lubricating device for internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293118A (en) * 1940-02-12 1942-08-18 Vickerts Inc Power transmission
JPS4631889Y1 (en) * 1968-10-12 1971-11-04
JPS5917074A (en) * 1982-07-16 1984-01-28 Hitachi Constr Mach Co Ltd Logic valve
JP2001193854A (en) * 2000-01-06 2001-07-17 Smc Corp Pilot type two-port valve
AU2001294572A1 (en) * 2000-09-19 2002-05-21 Curtiss Wright Corporation Pressure releif valve actuated by pilot valve
JP5483567B2 (en) * 2010-03-26 2014-05-07 アイシン精機株式会社 Relief valve with relief pressure change function
JP4942833B2 (en) * 2010-04-07 2012-05-30 アイシン精機株式会社 Relief valve with relief pressure change function
DE102013013231A1 (en) * 2013-08-08 2015-02-12 Man Diesel & Turbo Se Valve arrangement for a fuel supply system and fuel supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890715A (en) * 1955-08-26 1959-06-16 Warner Swasey Co Multi-pressure relief valve
JPS63225701A (en) * 1987-02-18 1988-09-20 Heilmeier & Weinlein Hydraulic pressure controller
JPH01120405A (en) * 1987-11-04 1989-05-12 Sumitomo Heavy Ind Ltd Composite valve
JPH04105676U (en) * 1991-02-26 1992-09-11
JPH0624276U (en) * 1992-08-31 1994-03-29 エヌオーケー株式会社 Relief valve
JP2009191634A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp Lubricating device for internal combustion engine

Also Published As

Publication number Publication date
PH12020550618A1 (en) 2021-02-15
CN111344494A (en) 2020-06-26
JP2019090484A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US7263924B2 (en) Hydraulic circuit and its valve gear
JP6167004B2 (en) Control valve
JP5483567B2 (en) Relief valve with relief pressure change function
US20150252908A1 (en) Fluid control valve
CN109139246B (en) Switching valve and connecting rod for controlling the hydraulic fluid flow of a connecting rod of a variable compression internal combustion engine
US20160108781A1 (en) Variable-flow rate oil pump
US20170314577A1 (en) Load sensing valve device
US7766042B2 (en) Direct operated cartridge valve assembly
WO2019098103A1 (en) Hydraulic pressure control valve
JP5561528B2 (en) Relief valve with relief pressure change function
JP5655960B2 (en) Hydraulic control circuit
JP2016223498A (en) Fluid control device
JP6709235B2 (en) Hydraulic supply system
CN106438135B (en) Pressure relief valve device
JP2017020562A (en) Relief valve
KR101491267B1 (en) Hydraulic pressure control apparatus for dual clutch transmission
JP4749103B2 (en) Load sensing control device
US20190376534A1 (en) Electromagnetic pressure reducing valve and fluid pressure control device including electromagnetic pressure reducing valve
JP6610598B2 (en) Hydraulic transmission device for automatic transmission
KR101929871B1 (en) Hydraulic Driving System for Vehicle
JP6487749B2 (en) Oil pump
KR101988784B1 (en) Hydraulic control circuit
JP2010090807A (en) Double vane pump
JP2014085005A (en) Hydraulic control apparatus
JP2021011829A (en) Working fluid supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878947

Country of ref document: EP

Kind code of ref document: A1