JP7091220B2 - 計算機、センシングシステム、及びデータ通信方法 - Google Patents

計算機、センシングシステム、及びデータ通信方法 Download PDF

Info

Publication number
JP7091220B2
JP7091220B2 JP2018197505A JP2018197505A JP7091220B2 JP 7091220 B2 JP7091220 B2 JP 7091220B2 JP 2018197505 A JP2018197505 A JP 2018197505A JP 2018197505 A JP2018197505 A JP 2018197505A JP 7091220 B2 JP7091220 B2 JP 7091220B2
Authority
JP
Japan
Prior art keywords
data
dictionary
sensor
sensor terminal
sparse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018197505A
Other languages
English (en)
Other versions
JP2020065225A (ja
Inventor
敬亮 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018197505A priority Critical patent/JP7091220B2/ja
Priority to PCT/JP2019/039293 priority patent/WO2020080143A1/ja
Publication of JP2020065225A publication Critical patent/JP2020065225A/ja
Application granted granted Critical
Publication of JP7091220B2 publication Critical patent/JP7091220B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Complex Calculations (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

本発明は、センサ端末からセンサデータを収集するセンシングシステムに関する。
本技術分野の背景技術として、スパース性を用いた劣決定系の解探索方法が提案されている(非特許文献1)。例えば、圧縮センシングは、ランダムに間引いた観測値からスパース性を用いて元の情報を復元する方法であり、主にMRIの画像処理や、A/Dコンバータの非等間隔サンプリングを用いたサンプルレートの低減等、ランダムに一部の観測値を得るシステムで用いられている。
また、同様の方法として、劣決定系の方程式の変換行列とスパース信号との関係を用いて、観測値の特徴量を抽出し、ノイズを低減するスパースコーディング及び辞書学習と称される方法が提案されている(非特許文献2)。
一方、近年はIoT(Internet of Things)と称される、複数センサを用いて高度な情報サービスを提供するアプリケーションが注目されている。
D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. A. M. Tillmann, "On the Computational Intractability of Exact and Approximate Dictionary Learning", IEEE Signal Processing Letters 22(1), 2015: 45-49.
従来のセンシングシステムでは、センサ端末が測定したセンサデータをエッジノードで収集しており、センサ端末の数や、センサデータの量が増大すると、センサ端末とエッジノードとの間の通信帯域がボトルネックとなり、所望のセンサデータが収集できなくなる問題がある。この場合、従来のセンシングシステムでは、センサ端末が特徴量を抽出したり、センサ端末の間欠動作によって通信データ量を削減する必要がある。通常、エッジノードに比べてセンサ端末の演算能力は低いため、センサデータの解析や特徴量の抽出はシステム全体のパフォーマンスを低下させる。
このため、センサデータのデータ量を適切に削減して、通信のボトルネックを解消できるシステムが求められている。
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、センサデータを収集するセンシングシステムであって、センサによる計測結果に基づいてセンサデータを生成するセンサ端末と、前記センサ端末からセンサデータを受信するエッジノードとを備え、前記エッジノードは、基底ベクトルからなる行列で構成される辞書を学習し、前記辞書を時系列的に変化させる辞書学習部と、学習した辞書を用いて、スパース性に基づいて、前記センサ端末から受信した、データ量が削減されたデータからセンサデータを復元するスパース復元処理を行うスパース復元処理部とを備える。
本発明の一態様によれば、効率的なセンシングシステムを実現できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。
本発明の実施例のセンシングシステムの構成を示す図である。 本実施例のデータ通信方法を示す図である。 本実施例の時系列に変化する辞書を用いたデータ通信方法を示す図である。 本実施例のセンシングシステムの機能ブロックを示す図である。 本実施例のセンサ端末とエッジノードとの通信手順を示すシーケンス図である。 本実施例の間引き率を制御パラメータとして用いた場合のセンサ端末とエッジノードとの通信手順を示す図である。 本実施例の間引き率を制御パラメータとして用いた場合の通信データと観測値の状態を示す図である。 本実施例の明示的に信号品質を測定する際のフレームフォーマットの一例を示す図である。 本実施例の固定フレームフォーマットを用いる場合のフレーム構成を示す図である。 本実施例のデータ通信量とエッジノードで復元された信号品質の関係を示す図である。 本実施例の間引かれた圧縮データを復元しつつ、復元品質を推定する方法を示す図である。
以下、本発明の実施例を図面を用いて説明する。
図1は、本実施例のセンシングシステムの構成を示す図である。
本実施例のセンシングシステムは、クラウド11、クラウド11と接続されたエッジノード13、計算機(PC)15及びストレージ12等のローカルリソースと接続されたエッジノード14、及びセンサ端末16によって構成される。センサ端末16はエッジノード13、14を介してネットワーク(図示省略)と接続され、センサ端末16とエッジノード13、14、エッジノード13、14同士、クラウド11とエッジノード13との間のリンクのそれぞれの通信帯域がボトルネックになり得る。そのため、各リンクの通信データ量の削減が望まれている。本発明の実施例では、主に演算能力が低いセンサ端末16とエッジノード13、14との間のデータ通信量の低減に着目しているが、エッジノード13、14間のリンクや、エッジノード13とクラウド11の接続にも本発明の手法を適用できる。
エッジノード13、14は、プロセッサ(CPU)、メモリ、補助記憶装置、通信インターフェースを有する計算機によって構成される。
プロセッサは、メモリに格納されたプログラムを実行する演算装置である。プロセッサが、各種プログラムを実行することによって、エッジノード13、14の各種機能が実現される。なお、プロセッサがプログラムを実行して行う処理の一部を、他の演算装置(例えば、FPGA(Field Programable Gate Array)やASIC(Application Specific Integrated Circuit)などのハードウェア)で実行してもよい。
メモリは、不揮発性の記憶素子であるROM及び揮発性の記憶素子であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶素子であり、プロセッサが実行するプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。
補助記憶装置は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置である。また、補助記憶装置は、プロセッサがプログラムの実行時に使用するデータ、及びプロセッサが実行するプログラム(辞書学習プログラム、スパース復元処理プログラム、特徴量抽出処理プログラム、制御プログラムなど)を格納する。すなわち、プログラムは、補助記憶装置から読み出されて、メモリにロードされて、プロセッサによって実行されることによって、エッジノード13、14の各機能を実現する。
通信インターフェースは、所定のプロトコルに従って、他の装置との通信を制御するネットワークインターフェース装置である。
プロセッサが実行するプログラムは、ネットワーク又はリムーバブルメディア(CD-ROM、フラッシュメモリなど)を介してエッジノード13、14に提供され、非一時的記憶媒体である不揮発性の補助記憶装置に格納される。
エッジノード13、14は、物理的に一つの計算機上で、又は、論理的又は物理的に構成された複数の計算機上で構成される計算機システムであり、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。
図2は、本実施例のデータ通信方法を示す図である。
本実施例では、センサ端末16が、ランダムにデータ間引き24を行い、データ通信量を削減してエッジノード13、14に送信し、エッジノード13、14においてスパース復元処理を209行い、観測値200を復元する。スパース復元処理は、間引きされた観測値をy、元の観測値のスパース表現をx、変換行列をAとすると、数式(1)で表される最小値探索問題となる。
Figure 0007091220000001
一般的なスパース復元処理の変換行列はDCTやウェーブレット変換等の汎用的な辞書(例えば、基底ベクトルからなる行列)が用いられるが、本実施例のスパース復元処理では、現場のセンサデータに特化した辞書を現場で学習することによって、よりスパースな表現を得て、復元可能なデータ間引き率を向上させる。センサデータからの辞書学習は、学習する辞書をD、間引きされた観測値をY、観測値のスパース表現をxとすると、数式(2)で表される。
Figure 0007091220000002
数式(2)は、学習する辞書Dを固定してスパース表現xを求める処理と、スパース表現xを固定して辞書Dを求める処理を交互に繰り返すことによって収束した解を得ることが可能である。このような方法でセンサの観測値に特化した辞書を作成した場合、辞書を作成した時と観測値の状態が変化しなければ、汎用的な辞書を用いた場合に比べて、スパース性が強い、すなわち、間引き率が大きくても復元可能なスパース表現を得ることができる。一方、辞書を学習した際と、観測値の状態が変化すると、正しい復元は困難となり、汎用的な辞書と比較して特性が劣化する。図2において、観測値の状態1に対して辞書学習を行い、それをスパース復元に用いる。この場合、間引き率が大きい送信データに対しても、復元された状態1の波形210は、元の状態1の波形201に近い形で復元されるが、復元された状態2の波形211は元の状態2の波形211と異なる波形となり易い。
そこで、本実施例では、時系列に変化する辞書をその場で学習し、波形の状態変化に追従することによって、復元波形の品質を保ちつつ高い間引き率を実現する。
図3は、本実施例の時系列に変化する辞書を用いたデータ通信方法を示す図である。
図3において、動的辞書生成部は観測値の状態の変化を検出し、辞書の再学習及び切り替えを行う。動的に辞書を生成することによって、復元された状態2の波形34は元の状態2の波形202に近い波形となることが期待できる。
図4は、本実施例のセンシングシステムの機能ブロック図である。
センサ端末16は、センサ412、アナログフロントエンド411、間引き処理部410及び制御部413を有し、エッジノード13、14からの制御信号に基づいて間引き率及びアナログフロントエンド411の動作速度及び帯域の少なくとも一つを変化させて、観測値をエッジノード13、14に送信する。センサ412は、センサ端末16の周囲の物理量(温度、振動など)の測定値を出力する。アナログフロントエンド411は、センサ412が出力した測定値をデジタル信号(センサデータ)に変換するADコンバータを含む。間引き処理部410は、センサデータをランダムに間引くことによって、データ量を削減する。制御部413は、エッジノード13、14と制御パラメータを送受信し、センサ端末16の動作を制御する。なお、410における間引き処理は、実用的には非等間隔であればよく、等間隔でない任意の固定パターンや、疑似的なランダムパターンでもよい。
エッジノード13、14は、辞書学習部407、スパース復元処理部408、特徴量抽出処理部409及び制御部414を有する。辞書学習部407は、辞書学習を行う際には、間引きなしのセンサデータを受け取り、辞書を学習する。また、辞書学習部407は、必要に応じてクラウド11に学習データを送り、既知の辞書をクラウド11から受け取る。スパース復元処理部408は、学習後のデータ通信を行う際には、センサ端末から受け取った間引きデータを、学習した辞書を用いて復元する。また、スパース復元処理部408は、復元した信号の品質に応じて間引き率を制御し、制御部414を介してセンサ端末16へ通知する。特徴量抽出処理部409は、復元した観測値を用いてデータを解析し、特徴量を抽出し、クラウド11へ通知する。制御部414は、センサ端末16と制御パラメータを送受信し、エッジノード13、14の動作を制御する。クラウド11がデータ解析や特徴量抽出を行う場合、エッジノード13、14は、復元波形そのものをクラウド11へ送る。
クラウド11は、辞書格納部404、データ解析部405及び制御部406を有する。また、辞書格納部404は、辞書学習部407が学習した辞書を格納し、必要に応じてエッジノード13、14と辞書のやり取りを行う。データ解析部405は、アプリケーションに応じて、エッジから送信された特徴量やデータを解析する。制御部406は、クラウド11の動作を制御する。
図5は、本実施例のセンサ端末16とエッジノード13、14との通信手順を示すシーケンス図である。
本実施例では、まずエッジノード13、14から、制御部414が学習用のトレーニング要求51をセンサ端末16に通知する。センサ端末16は、トレーニング要求51を受信すると、アナログフロントエンド411からトレーニング信号52をエッジノード13、14へ送る。エッジノード13、14の辞書学習部407は、トレーニング信号52を用いて辞書学習56を行う。学習完了後、制御部414がデータ要求53をセンサ端末16に通知する。データ要求53によって、間引き率がセンサ端末16に通知される。センサ端末16がデータ要求53を受信すると、データ要求53によって通知された間引き率に従って、間引き処理部410がデータ量を削減し、データ54を送信する。
エッジノード13、14のスパース復元処理部408は、データの復元品質を逐次評価し、信号品質の低下が検知された場合、観測値の状態が変化したと判定し(57)、再度、制御部414が、学習用のトレーニング要求57を送信し、辞書学習部407が、トレーニング信号52を用いて辞書を学習し、更新する。トレーニング要求57は明示的な制御信号として通知してもよいが、学習用のトレーニング信号52はセンサ端末16の観測値そのものであるため、間引き率の通知によって、トレーニング要求57及びデータ要求53の両方のフォーマットを共通化できる。
図6は、本実施例の間引き率を制御パラメータとして用いた場合のセンサ端末16とエッジノード13、14の通信手順を示すシーケンス図である。
エッジノード13、14の制御部414は、間引きなしのデータ送信を要求する制御パラメータである学習用のトレーニング要求61をセンサ端末16に送信する。センサ端末16は、通知を受けると、アナログフロントエンド411から間引きなしのデータ62をエッジノード13、14に送信する。エッジノード13、14の辞書学習部407は、間引きなしのデータを用いて辞書学習66を行う。学習完了後、エッジノード13、14の制御部414は、間引き率を指定した制御パラメータ63をセンサ端末16に送信する。センサ端末16は、制御パラメータ63によって通知された間引き率に従って、間引き処理部410がデータ量を削減し、間引き後のデータ64を送信する。
エッジノード13、14のスパース復元処理部408は、データの復元品質を逐次評価し、信号品質の低下が検知された場合、観測値の状態が変化したと判定し(67)、再度、制御部414が、学習用トレーニング要求68を送信し、辞書学習部407が、間引きなしのデータ62を用いて辞書を学習し、更新する。
この手順を用いた場合、センサ端末16は、エッジノード13、14の状態を把握する必要がなく、間引き率を変更する簡易な制御で、データ量を削減できる。
図7は、本実施例の間引き率を制御パラメータとして用いた場合の通信データと観測値の状態を示す図である。
図7において、トレーニング信号71は、元データと送信データとの比率が1対1の間引きなしのデータである。学習後のデータ送信時には、間引きしたデータ72、73、74をエッジノード13、14に送信する。エッジノード13、14では、間引きデータの復元品質から、観測値の状態変化をモニタリングしており、状態の変化を検出した場合には間引きなしのデータ要求をエッジノード13、14からセンサ端末16へ通知する。
図7において、間引きなしデータ要求77のタイミングは、状態75から状態76への変化と同期しているが、実際には、エッジノード13、14は、復元品質に基づいて状態の変化を推定しており、観測値の状態が変化した場合でも、高い復元品質が得られている場合には、間引きなしデータを要求しない。
エッジノード13、14における復元品質のモニタリングには、状況に応じて、明示的な方法と非明示的な方法とのいずれかを用いればよい。明示的な方法では、センサ端末16は、トレーニング信号に比べて十分短い長さの間引きなしデータを、パイロット信号として、間引きデータ送信時に一定の割合で挿入する。エッジノード13、14は、パイロット信号に間引き処理及びスパース復元処理を行い、復元信号の品質を直接モニタリングする。非明示的な手法では、エッジノード13、14は、間引きによってデータ量が削減されたデータを用いて復元品質を推定する。具体的には、スパース復元時のスパース性や、目的関数の大きさから、現在の観測値が辞書と整合しているかによって、復元品質を推定し、状態の変化を推定する。
ここで、スパース性は、前述した数式(1)における1次ノルムであり、変数xの絶対値であり、目的関数の大きさは、数式(1)そのものである。
図8は、本実施例の明示的に信号品質を測定する際のフレームフォーマットの一例を示す図である。
センサ端末から送信されるフレームは、トレーニング信号81と、間引きデータ82、トレーニング信号処理十分短いパイロット信号83を含む。パイロット信号83は、トレーニング信号81と同様に、間引きなしのデータを用いるのが望ましいが、データ通信用の間引きデータと比べて十分大きい間引き率のデータを用いてもよい。
本方法では、図5、図6を用いて示したように、データ通信量削減のための制御信号のやり取りが、センサ端末16とエッジノード13、14との間で必要となるが、システムの効率より、制御の簡便性を重視する構成を採用する場合には、トレーニング信号81と間引きデータ82とパイロット信号83との送信期間を、一定の予め決められた間隔で設定した固定のフレームフォーマットを用いることができる。この場合、トレーニング信号の送信間隔の分、状態変化の検知に遅延が生じるが、センサ端末16はエッジノード13、14からの通知を解釈して、送信信号を制御する必要がなくなり、システム構成を簡略化できる。一方、状態の変化を検知できずに、高品質の復元波形が得られない時間の長さと、実効的なデータ通信量の削減量とは、トレードオフの関係にあり、システムパフォーマンスは動的なフレームフォーマットに劣る。
図9は、本実施例の固定フレームフォーマットを用いる場合のフレーム構成を示す図である。
固定フレームフォーマットにおいては、トレーニング信号91と、データ及びパイロット信号92との間隔は定められている。センサ端末16は、定められた周期でトレーニング信号91とデータ92とを繰り返し送信する。エッジノード13、14は、信号品質の劣化を検知した場合には、次に送信されるトレーニング信号91を用いて辞書学習を行う。
図10は、本実施例のデータ通信量とエッジノードで復元された信号品質の関係を示す図である。
図10において、実線は本実施例のセンサデータに特化した動的辞書学習を用いてスパース復元処理を行った際の復元品質を示し、破線は汎用的な離散コサイン変換辞書でスパース復元処理を行った復元品質を示す。図の横軸は、元のデータ1024点に対して、復元に用いたデータ点数を表しており、縦軸の信号品質は元の信号xと復元信号yとの相関係数である。相関係数ρは数式(3)で表される。数式(3)において、上線が付された符号は、各符号が示す値の期待値である。
Figure 0007091220000003
相関係数の値が0.7で比較すると、本実施例の方法は、データ点が60点程度から復元可能であるのに対し、従来の方法では、データ点が170点程度必要である。このように、本実施例の方法を用いるとデータ通信量を低減できる。
図11は、本実施例の間引かれた圧縮信号から、元の信号を復元しつつ、復元品質を推定する方法を示す図である。
Dは信号復元に用いる間引きデータであり、Tは復元品質推定用の受信信号である。図11に示す復元品質推定方法では、間引きデータから元の信号を復元する。復元結果Rは復元信号として利用される。このとき、復元品質を推定するため、間引きデータDの一部を復元品質推定用のデータTとして、信号の復元から除外した復元信号Rを生成し、復元信号Rと復元信号推定用のデータTとを比較して復元信号の品質を推定する。図11に示す方法によって、圧縮した間引きデータを復元しつつ、復元信号の品質を推定できる。
以上に説明したように、本発明の実施例によると、受信機(エッジノード13、14)は、基底ベクトルからなる行列で構成される辞書を学習し、前記辞書を時系列的に変化させる辞書学習部407と、学習した辞書を用いて、スパース性に基づいて、前記センサ端末から受信した、データ量が削減されたデータからセンサデータを復元するスパース復元処理を行うスパース復元処理部408とを備えるので、センサ端末16が送信するセンシングデータの復元品質を維持しつつ、通信量を削減でき、効率的なセンシングシステムを実現できる。
また、スパース復元処理部408は、スパース復元処理の結果から復元品質を測定し、辞書学習部407は、測定された復元品質に応じて辞書を変化させるので、観測値の状態の変化に応じて辞書を変化させて、適切なデータ削減率(間引き率)で効率的な通信ができる。
また、エッジノード13、14の制御部414は、測定された復元品質に応じて、トレーニング信号の送信をセンサ端末16に要求し(51、61)、センサ端末16は、トレーニング信号要求に応じてトレーニング信号52、62を送信し、エッジノード13、14の制御部414は、辞書学習後にデータ量が削減された(間引かれた)データの送信をセンサ端末16に要求し(53、63)、センサ端末16は、エッジノード13、14からのデータ要求に応じて、データ量が削減されたデータ54、64を送信するので、不要なトレーニング信号が送信されず、実効レートの低下を抑制できる。
また、トレーニング信号52、62は、間引きされていないセンサデータであり、辞書学習後にセンサ端末16から送信されるデータ54、64は、間引き処理によってデータ量が削減されたデータとするので、センサ端末16の処理負荷を軽減できる。また、特にトレーニング用の信号を準備しなくてもよい。
また、スパース復元処理部408は、間引きされていないデータ(パイロット信号)に間引き処理及びスパース復元処理を行い、復元品質を測定するので、復元信号の品質を正確に測定でき、信号の復元品質を向上できる。
また、スパース復元処理部408は、間引きされたデータを用いて(例えば、間引きデータから復元されたセンサデータと辞書との整合によって)、復元品質を測定するので、間引きされていないデータ(パイロット信号)を送信する必要がなく、送信されるデータ量を削減できる。
また、スパース復元処理部408は、スパース復元処理において算出されたスパース性、及び、スパース復元処理の目的関数の大きさから復元品質を測定するので、パイロット信号が不要なので伝送効率の低下を抑制できる。また、少ない計算量で復元信号の品質を推定できる。このため、センサデータの波形が頻繁に変わる場合に有効である。
また、センサ端末16は、センサデータをランダムに間引くことによって、データ量を削減するので、センサ端末16が受信機能を有さなくてもよく、システム構成やセンサ端末16の構成を簡素化できる。
また、センサ端末16は、所定の周期でトレーニング信号81、91及びデータ量が削減されたデータ82、92を繰り返し送信するので、センサ端末16の処理負荷の増加を抑制しつつ、送信されるデータ量を削減できる。
なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。
また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。
11:クラウド、12:ストレージ、13:エッジノード、15:制御端末、16:センサ端末、200:観測値、201:状態1の観測値の波形、202:状態2の観測値の波形、203:センサ端末、205:間引き後の送信データ、206:エッジノード、207:状態1の辞書生成部、208、状態1の辞書、212:復元された観測値、210:復元された状態1の観測値の波形、211:復元された状態2の観測値の波形、31:動的辞書生成部、32:動的に生成される時系列辞書、33:時系列辞書を用いて復元された状態1の観測値の復元波形、34:時系列辞書を用いて復元された状態1の観測値の復元波形、404:辞書格納部、405:データ解析、406:制御部、407:辞書学習部、408:スパース復元処理部、409:特徴抽出部、410:間引き処理部、411:アナログフロントエンド、412:センサ、51:トレーニング要求、52:トレーニング信号、53:データ要求、54:データ送信、55:辞書学習、56:状態変化検知、61:トレーニング信号用の間引き率通知、62:間引きなしデータ、63:データ用の間引き率通知、64:間引きデータ、71:データ比率1/1のデータ、72:データ比率1/10のデータ、73:データ比率1/30のデータ、74:データ比率1/100のデータ、81:トレーニング信号、82:間引きデータ、83:パイロット信号、91:トレーニング信号、92:データ及びパイロット信号

Claims (13)

  1. センサ端末からデータを受信する計算機であって、
    前記計算機は、
    基底ベクトルからなる行列で構成される辞書を学習し、前記辞書を時系列的に変化させる辞書学習部と、
    前記学習した辞書を用いて、スパース性に基づいて、前記センサ端末から受信した、データ量が削減されたデータからセンサデータを復元するスパース復元処理を行うスパース復元処理部と、
    前記センサ端末と制御パラメータを送受信する制御部とを備えることを特徴とする計算機。
  2. 請求項1に記載の計算機であって、
    前記スパース復元処理部は、スパース復元処理の結果から復元品質を測定し、
    前記辞書学習部は、前記測定された復元品質に応じて前記辞書を変化させることを特徴とする計算機。
  3. 請求項2に記載の計算機であって、
    前記制御部は、
    前記測定された復元品質に応じて、トレーニング信号の送信を前記センサ端末に要求し、
    前記辞書の学習後に、前記データ量が削減されたデータの送信を前記センサ端末に要求することを特徴とする計算機。
  4. 請求項3に記載の計算機であって、
    前記トレーニング信号は、間引きされていないセンサデータであり、
    前記辞書の学習後に受信するデータは、間引き処理によってデータ量が削減されたデータであることを特徴とする計算機。
  5. 請求項2に記載の計算機であって、
    前記スパース復元処理部は、間引きされていないデータに間引き処理及びスパース復元処理を行い、前記復元品質を測定することを特徴とする計算機。
  6. 請求項2に記載の計算機であって、
    前記スパース復元処理部は、前記データ量が削減されたデータを用いて復元品質を測定することを特徴とする計算機。
  7. 請求項6に記載の計算機であって、
    前記スパース復元処理部は、前記スパース復元処理において算出されたスパース性、及び、前記スパース復元処理の目的関数の大きさから復元品質を測定することを特徴とする計算機。
  8. センサデータを収集するセンシングシステムであって、
    センサによる計測結果に基づいてセンサデータを生成するセンサ端末と、
    前記センサ端末からセンサデータを受信するエッジノードとを備え、
    前記エッジノードは、
    基底ベクトルからなる行列で構成される辞書を学習し、前記辞書を時系列的に変化させる辞書学習部と、
    学習した辞書を用いて、スパース性に基づいて、前記センサ端末から受信した、データ量が削減されたデータからセンサデータを復元するスパース復元処理を行うスパース復元処理部とを備えることを特徴とするセンシングシステム。
  9. 請求項8に記載のセンシングシステムであって、
    前記センサ端末は、
    前記エッジノードからのトレーニング信号要求に応じて、トレーニング信号を送信し、
    前記エッジノードからのデータ要求に応じて、前記データ量が削減されたデータを送信することを特徴とするセンシングシステム。
  10. 請求項8に記載のセンシングシステムであって、
    前記センサ端末は、センサデータをランダムに間引くことによって、データ量を削減することを特徴とするセンシングシステム。
  11. 請求項8に記載のセンシングシステムであって、
    前記センサ端末は、所定の周期でトレーニング信号及び前記データ量が削減されたデータを繰り返し送信することを特徴とするセンシングシステム。
  12. センサデータを収集するセンシングシステムにおけるデータ通信方法であって、
    前記センシングシステムは、センサによる計測結果に基づいてセンサデータを生成するセンサ端末と、前記センサ端末からセンサデータを受信するエッジノードとを有し、
    前記データ通信方法は、
    前記エッジノードが、基底ベクトルからなる行列で構成される辞書を学習し、前記辞書を時系列的に変化させる辞書学習手順と、
    前記エッジノードが、学習した辞書を用いて、スパース性に基づいて、前記センサ端末から受信した、データ量が削減されたデータからセンサデータを復元するスパース復元手順とを含むことを特徴とするデータ通信方法。
  13. 請求項12に記載のデータ通信方法であって、
    前記センサ端末が、前記エッジノードからのトレーニング信号要求に応じて、トレーニング信号を送信する手順と、
    前記センサ端末が、前記エッジノードからのデータ要求に応じて、前記データ量が削減されたデータを送信する手順とを含むことを特徴とするデータ通信方法。
JP2018197505A 2018-10-19 2018-10-19 計算機、センシングシステム、及びデータ通信方法 Active JP7091220B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018197505A JP7091220B2 (ja) 2018-10-19 2018-10-19 計算機、センシングシステム、及びデータ通信方法
PCT/JP2019/039293 WO2020080143A1 (ja) 2018-10-19 2019-10-04 計算機、センシングシステム、及びデータ通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018197505A JP7091220B2 (ja) 2018-10-19 2018-10-19 計算機、センシングシステム、及びデータ通信方法

Publications (2)

Publication Number Publication Date
JP2020065225A JP2020065225A (ja) 2020-04-23
JP7091220B2 true JP7091220B2 (ja) 2022-06-27

Family

ID=70284354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018197505A Active JP7091220B2 (ja) 2018-10-19 2018-10-19 計算機、センシングシステム、及びデータ通信方法

Country Status (2)

Country Link
JP (1) JP7091220B2 (ja)
WO (1) WO2020080143A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116194933A (zh) * 2020-09-25 2023-05-30 日本电信电话株式会社 处理系统、处理方法以及处理程序
WO2024150511A1 (ja) * 2023-01-10 2024-07-18 国立大学法人大阪大学 信号送信装置、信号復元処理装置及び信号伝送システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120259590A1 (en) 2011-04-11 2012-10-11 Jong Chul Ye Method and apparatus for compressed sensing with joint sparsity
JP2013109759A (ja) 2011-11-18 2013-06-06 Mitsubishi Electric Corp 辞書を用いてパンクロマチック画像及びマルチスペクトル画像をパンシャープン化する方法
US20150242463A1 (en) 2014-02-25 2015-08-27 Tsung-Han Lin Systems, apparatuses, and methods for deep learning of feature detectors with sparse coding
JP2018033131A (ja) 2016-08-24 2018-03-01 三菱電機株式会社 デコーダ、エンコーダおよび符号化値を復号化する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120259590A1 (en) 2011-04-11 2012-10-11 Jong Chul Ye Method and apparatus for compressed sensing with joint sparsity
JP2013109759A (ja) 2011-11-18 2013-06-06 Mitsubishi Electric Corp 辞書を用いてパンクロマチック画像及びマルチスペクトル画像をパンシャープン化する方法
US20150242463A1 (en) 2014-02-25 2015-08-27 Tsung-Han Lin Systems, apparatuses, and methods for deep learning of feature detectors with sparse coding
JP2018033131A (ja) 2016-08-24 2018-03-01 三菱電機株式会社 デコーダ、エンコーダおよび符号化値を復号化する方法

Also Published As

Publication number Publication date
WO2020080143A1 (ja) 2020-04-23
JP2020065225A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
Izadi et al. A compressed-sensing-based compressor for ECG
Achim et al. Compressive sensing for ultrasound RF echoes using a-stable distributions
US20130198272A1 (en) Operation log storage system, device, and program
JP6374466B2 (ja) センサインタフェース装置、測定情報通信システム、測定情報通信方法、及び測定情報通信プログラム
JP7091220B2 (ja) 計算機、センシングシステム、及びデータ通信方法
Chen et al. Energy efficient signal acquisition via compressive sensing in wireless sensor networks
JP7523563B2 (ja) 超音波検査のための位相ベースのアプローチ
Nagahara et al. Compressive sampling for remote control systems
JP6311218B2 (ja) センサ装置、ターゲット応答推定方法、及びセンサ装置用ターゲット応答推定プログラム
Pant et al. Reconstruction of ECG signals for compressive sensing by promoting sparsity on the gradient
CN113923723B (zh) 流量重构方法、装置、设备及存储介质
US20170359234A1 (en) Sampling-densification technique to facilitate high-sampling-density signatures for telemetry data in enterprise computing systems
US10635992B2 (en) Reducing bandwidth requirements for telemetry data using a cross-imputability analysis technique
WO2020020001A1 (zh) 量测矩阵扰动时压缩感知感知矩阵构建方法、系统及介质
Pritz et al. Fast-fourier-forecasting resource utilisation in distributed systems
JP6858798B2 (ja) 特徴量生成装置、特徴量生成方法及びプログラム
Sahasranand et al. Anomaly-aware adaptive sampling for electrical signal compression
Zhang et al. Towards probabilistic robust and sparsity-free compressive sampling in civil engineering: A review
Zonoobi et al. Low rank and sparse matrix reconstruction with partial support knowledge for surveillance video processing
Andráš et al. Compressed sensing with continuous parametric reconstruction.
Tang et al. Deterministic sensing matrices based on multidimensional pseudo-random sequences
CN114491403A (zh) 边缘计算数据处理方法、装置、设备及可读存储介质
JP6190780B2 (ja) Web表示待ち時間推定装置、方法及びプログラム
JP5945520B2 (ja) 圧縮信号復元装置、圧縮信号復元方法、プログラム
CN107850917B (zh) 使用流信号的事件检测的系统和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220615

R150 Certificate of patent or registration of utility model

Ref document number: 7091220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150