JP7090760B2 - Semiconductor devices, semiconductor device manufacturing methods, and power conversion devices - Google Patents

Semiconductor devices, semiconductor device manufacturing methods, and power conversion devices Download PDF

Info

Publication number
JP7090760B2
JP7090760B2 JP2021018212A JP2021018212A JP7090760B2 JP 7090760 B2 JP7090760 B2 JP 7090760B2 JP 2021018212 A JP2021018212 A JP 2021018212A JP 2021018212 A JP2021018212 A JP 2021018212A JP 7090760 B2 JP7090760 B2 JP 7090760B2
Authority
JP
Japan
Prior art keywords
layer
main surface
electrode
diode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021018212A
Other languages
Japanese (ja)
Other versions
JP2021077911A (en
Inventor
龍 上馬場
政良 多留谷
真也 曽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2021018212A priority Critical patent/JP7090760B2/en
Publication of JP2021077911A publication Critical patent/JP2021077911A/en
Application granted granted Critical
Publication of JP7090760B2 publication Critical patent/JP7090760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、半導体装置、半導体装置の製造方法、および電力変換装置に関する。 The present invention relates to a semiconductor device, a method for manufacturing a semiconductor device, and a power conversion device.

従来、家電製品、電気自動車、または鉄道など幅広い分野で用いられているインバータ装置は、誘導モータなどの誘導性負荷を駆動する場合が多い。インバータ装置は、IGBT(insulated gate bipolar transistor)またはMOSFET(metal-oxide-semiconductor field-effect transistor)などのスイッチング素子、並びに還流ダイオード(以下、単に「ダイオード」と称する)などの電力用半導体装置を複数個用いて構成される。インバータ装置は、高効率で小電力であることが求められるため、電力用半導体装置の高性能化と低コスト化が市場より要求されている。 Conventionally, inverter devices used in a wide range of fields such as home appliances, electric vehicles, and railways often drive inductive loads such as inductive motors. Inverter devices include switching elements such as IGBTs (insulated gate bipolar transistors) or MOSFETs (metal-oxide-semiconductor field-effect transistors), and semiconductor devices for power such as freewheeling diodes (hereinafter simply referred to as "diodes"). It is composed of individual pieces. Since inverter devices are required to have high efficiency and low power consumption, the market demands higher performance and lower cost of power semiconductor devices.

電力用半導体装置の高性能化と低コスト化のため、トレンチMOSゲート構造、半導体基板の薄板化、IGBTとダイオードを同一半導体基板に内蔵して一体化した逆導通型IGBT(RC-IGBT:Reverse Conducting IGBT)などが開発されている。 In order to improve the performance and cost of power semiconductor devices, a trench MOS gate structure, a thinner semiconductor substrate, and a reverse conduction type IGBT (RC-IGBT: Reverse) in which an IGBT and a diode are integrated in the same semiconductor substrate are integrated. Conducting IGBT) etc. have been developed.

RC-IGBTに関する先行技術文献として、例えば特許文献1ないし4がある。特許文献1は、MOSトランジスタセルとダイオードセルが併設された半導体装置を開示している。特許文献1の半導体装置は、第1トレンチと第2トレンチを備えている。第1トレンチの内部には、ゲート絶縁膜とゲート電極が形成され、第2トレンチの内部にはエミッタ電極が埋め込まれている。 Prior art documents relating to RC-IGBT include, for example, Patent Documents 1 to 4. Patent Document 1 discloses a semiconductor device in which a MOS transistor cell and a diode cell are provided side by side. The semiconductor device of Patent Document 1 includes a first trench and a second trench. A gate insulating film and a gate electrode are formed inside the first trench, and an emitter electrode is embedded inside the second trench.

特許文献2には、RC-IGBTのダイオード動作する領域のコンタクトホール幅を、IGBT動作するコンタクトホール幅よりも広くすることが開示されている。 Patent Document 2 discloses that the contact hole width of the diode operating region of the RC-IGBT is made wider than the contact hole width of the IGBT operating region.

特許文献3には、エミッタ電極のアルミニウムシリコンと半導体基板との接合に関し、IGBT領域においてはバリアメタルとタングステンプラグを介して接合し、ダイオード領域においては直接接合することが提案されている。 Patent Document 3 proposes that the aluminum silicon of the emitter electrode and the semiconductor substrate are bonded to each other via a barrier metal and a tungsten plug in the IGBT region and directly bonded in the diode region.

特許文献4は、ダイオード領域においてアノード層とアルミニウム電極とをタングステンプラグを介さず直接接合する構成を開示している。しかし、ダイオード領域の第1電極は、チタン(Ti)、チタンタングステン(TiW)または窒化チタン(TiN)などのバリアメタルである一方、IGBT領域の第1電極はアルミニウムであり、両者の材料が異なるため、半導体装置を用いたアセンブリプロセスでの問題が生じる。例えば、ワイヤボンディングの条件を変更しなければならない。また、製造手法において、IGBT領域にバリアメタルを形成する前に、アルミニウムを形成および除去する工程が必要であるため、アルミニウムがベース層へ拡散したり、ベース層へエッチングダメージが発生したりするおそれがある。 Patent Document 4 discloses a configuration in which an anode layer and an aluminum electrode are directly bonded in a diode region without a tungsten plug. However, the first electrode in the diode region is a barrier metal such as titanium (Ti), titanium tungsten (TiW) or titanium nitride (TiN), while the first electrode in the IGBT region is aluminum, and the materials of both are different. Therefore, a problem arises in the assembly process using the semiconductor device. For example, the conditions of wire bonding must be changed. Further, in the manufacturing method, since a step of forming and removing aluminum is required before forming the barrier metal in the IGBT region, aluminum may diffuse to the base layer or etching damage may occur to the base layer. There is.

特開2009-027152号公報Japanese Unexamined Patent Publication No. 2009-027152 特許第5937413号公報Japanese Patent No. 5937413 国際公開第2016/080269号International Publication No. 2016/080269 特開2015-106695号公報JP-A-2015-106695

従来のRC-IGBTでは、IGBT領域において、半導体基板、バリアメタル、タングステンプラグ、および表面電極の積層構造が設けられる。この積層構造は、IGBTにおいて一般的に構成されている構造であり、同一半導体基板上のダイオード領域にも設けられる。しかし、ダイオード領域では、p型アノード層とバリアメタルとのコンタクト抵抗が大きいため、その対策としてp型アノード層とバリアメタルとの間に高濃度のp+型アノード層が設けられる。 In the conventional RC-IGBT, a laminated structure of a semiconductor substrate, a barrier metal, a tungsten plug, and a surface electrode is provided in the IGBT region. This laminated structure is a structure generally configured in an IGBT, and is also provided in a diode region on the same semiconductor substrate. However, since the contact resistance between the p-type anode layer and the barrier metal is large in the diode region, a high-concentration p + type anode layer is provided between the p-type anode layer and the barrier metal as a countermeasure.

しかしながら、p+型アノード層の不純物濃度が高いほど、動作オン時のキャリアの供給量が多くなるため、動作オフ時のキャリア排出が大幅に遅くなるという課題がある。 However, the higher the impurity concentration of the p + type anode layer, the larger the supply amount of carriers when the operation is on, so that there is a problem that the carrier discharge when the operation is off is significantly delayed.

特許文献3では、バリアメタルとタングステンプラグをIGBT領域のみに用い、ダイオード領域ではアルミニウムシリコンとp型アノード層とを直接接合することにより、上記の課題を解決している。しかし、IGBT領域にタングステンプラグを用いていることから製造コストが高くなるという課題がある。 In Patent Document 3, the barrier metal and the tungsten plug are used only in the IGBT region, and the aluminum silicon and the p-type anode layer are directly bonded in the diode region to solve the above-mentioned problems. However, since the tungsten plug is used in the IGBT region, there is a problem that the manufacturing cost is high.

また、特許文献4では、IGBT領域にタングステンプラグを用いていないが、IGBT領域とダイオード領域とで異なる材質の表面電極を用いている。従って、半導体装置を用いたアセンブリプロセスにおいて、IGBT領域とダイオード領域とでワイヤボンディングの条件を変更するなど、異なるプロセス条件を適用しなければならないという問題があった。 Further, in Patent Document 4, although the tungsten plug is not used in the IGBT region, surface electrodes made of different materials are used in the IGBT region and the diode region. Therefore, in the assembly process using the semiconductor device, there is a problem that different process conditions must be applied, such as changing the wire bonding conditions between the IGBT region and the diode region.

本発明は上記の課題に鑑みてなされたものであり、一つの半導体基板上にスイッチング素子領域とダイオード領域が併設された半導体装置において、良好なダイオード特性と低コスト性の実現を目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to realize good diode characteristics and low cost in a semiconductor device in which a switching element region and a diode region are provided side by side on one semiconductor substrate.

本発明に係る半導体装置は、半導体基体、第1電極、層間絶縁膜、およびバリアメタルを備える。半導体基体は、一方主面および他方主面を有し、一方主面と他方主面との間に第1導電型のドリフト層を有し、一方主面から他方主面にわたりトランジスタを構成するトランジスタ領域と、一方主面から他方主面にわたりダイオードを構成するダイオード領域と、を有する。第1電極は、トランジスタ領域とダイオード領域の上に亘り、半導体基体の一方主面上に形成される。トランジスタ領域は、半導体基体の一方主面側に設けられた第2導電型の第1ベース層と、第1ベース層の一方主面側に設けられ、上面が一方主面を構成する第1導電型のエミッタ層と、第1ベース層の一方主面側に設けられ、上面が一方主面を構成し、第1ベース層より不純物濃度が高い第2ベース層と、エミッタ層の上面からエミッタ層と第1ベース層とを貫通しドリフト層に達するトレンチの内部に絶縁膜を介して設けられたゲート電極と、を備える。ダイオード領域は、半導体基体の一方主面側に設けられ、一方主面を構成する上面が第1電極に接触し、ドリフト層と第1電極とを隔離する第2導電型のアノード層を備える。層間絶縁膜は、ゲート電極を覆い、第2ベース層およびエミッタ層の上面を露出するコンタクトホールを有する。バリアメタルは、コンタクトホール内で第2ベース層およびエミッタ層と第1電極との間に設けられ、第2ベース層およびエミッタ層の上面と第1電極とに接触する。 The semiconductor device according to the present invention includes a semiconductor substrate, a first electrode, an interlayer insulating film, and a barrier metal. The semiconductor substrate has one main surface and the other main surface, has a first conductive type drift layer between one main surface and the other main surface, and constitutes a transistor from one main surface to the other main surface. It has a region and a diode region that constitutes a diode from one main surface to the other main surface. The first electrode extends over the transistor region and the diode region and is formed on one main surface of the semiconductor substrate. The transistor region is provided on one main surface side of the second conductive type first base layer provided on one main surface side of the semiconductor substrate and on one main surface side of the first base layer, and the upper surface constitutes one main surface. The second base layer, which is provided on one main surface side of the mold emitter layer and the first base layer, the upper surface thereof constitutes one main surface, and the impurity concentration is higher than that of the first base layer, and the emitter layer from the upper surface of the emitter layer. And a gate electrode provided through an insulating film inside a trench that penetrates the first base layer and reaches the drift layer. The diode region is provided on one main surface side of the semiconductor substrate, and the upper surface constituting the one main surface is in contact with the first electrode and includes a second conductive type anode layer that separates the drift layer and the first electrode. The interlayer insulating film has contact holes that cover the gate electrode and expose the upper surfaces of the second base layer and the emitter layer. The barrier metal is provided between the second base layer and the emitter layer and the first electrode in the contact hole, and comes into contact with the upper surface of the second base layer and the emitter layer and the first electrode.

本発明に係る半導体装置において、トランジスタ領域の半導体層はバリアメタルを介して第1電極と接触する一方、ダイオード領域の半導体層はバリアメタルを介さず第1電極と接触する。従って、コンタクト抵抗を低くするためダイオード領域に高濃度のアノード層を設ける必要がなく、良好なダイオード特性を得ることができる。また、コンタクトホールの内部に第1電極が入り込むことによりMOSゲート構造の半導体層と接触するため、タングステンプラグ等の高価なプラグコンタクトを必要とせず、低コストに半導体装置を製造することができる。 In the semiconductor device according to the present invention, the semiconductor layer in the transistor region contacts the first electrode via the barrier metal, while the semiconductor layer in the diode region contacts the first electrode without passing through the barrier metal. Therefore, it is not necessary to provide a high-concentration anode layer in the diode region in order to lower the contact resistance, and good diode characteristics can be obtained. Further, since the first electrode enters the inside of the contact hole and comes into contact with the semiconductor layer of the MOS gate structure, an expensive plug contact such as a tungsten plug is not required, and the semiconductor device can be manufactured at low cost.

本発明の前提技術に係るIGBTの断面図である。It is sectional drawing of the IGBT which concerns on the premise technique of this invention. 本発明の前提技術に係るダイオードの断面図である。It is sectional drawing of the diode which concerns on the premise technique of this invention. 本発明の前提技術に係るRC-IGBTの断面図である。It is sectional drawing of RC-IGBT which concerns on the premise technique of this invention. 本発明に係るRC-IGBTの断面図である。It is sectional drawing of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの要部拡大図である。It is an enlarged view of the main part of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第1の製造方法を示すフローチャートである。It is a flowchart which shows the 1st manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第1の製造方法を説明する断面図である。It is sectional drawing explaining the 1st manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第1の製造方法を説明する断面図である。It is sectional drawing explaining the 1st manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第1の製造方法を説明する断面図である。It is sectional drawing explaining the 1st manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第1の製造方法を説明する断面図である。It is sectional drawing explaining the 1st manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第1の製造方法を説明する断面図である。It is sectional drawing explaining the 1st manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第1の製造方法を説明する断面図である。It is sectional drawing explaining the 1st manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第2の製造方法を示すフローチャートである。It is a flowchart which shows the 2nd manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第2の製造方法を説明する断面図である。It is sectional drawing explaining the 2nd manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第2の製造方法を説明する断面図である。It is sectional drawing explaining the 2nd manufacturing method of RC-IGBT which concerns on this invention. 本発明に係るRC-IGBTの第2の製造方法を説明する断面図である。It is sectional drawing explaining the 2nd manufacturing method of RC-IGBT which concerns on this invention. 本発明に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power conversion system to which the power conversion apparatus which concerns on this invention is applied.

以下、添付の図面を参照しながら実施形態について説明する。図面は模式的に示されたものであるため、異なる図面にそれぞれ示されている画像のサイズおよび位置の相互関係は、必ずしも正確ではなく適宜変更され得る。また、以下の説明では、同様の構成要素には同じ符号を付して図示し、それらの名称および機能も同様のものとする。よって、それらについての詳細な説明を省略する場合がある。 Hereinafter, embodiments will be described with reference to the accompanying drawings. Since the drawings are schematically shown, the interrelationships between the sizes and positions of the images shown in the different drawings are not always accurate and may vary from time to time. Further, in the following description, similar components are illustrated with the same reference numerals, and their names and functions are also the same. Therefore, detailed description about them may be omitted.

また、以下の説明では、「上」、「下」、「側」、「底」、「表」または「裏」などの特定の位置および方向を意味する用語が用いられる場合があるが、これらの用語は、実施形態の内容を理解することを容易にするため便宜上用いられているものであり、実際に実施される際の方向を限定するものではない。 Also, in the following description, terms such as "top", "bottom", "side", "bottom", "front" or "back" may be used to mean a specific position and direction. The term is used for convenience to facilitate understanding of the contents of the embodiment, and does not limit the direction in which it is actually implemented.

また、半導体の導電型について、第1導電型をn型、第2導電型をp型として説明を行う。しかし、これらを反対にし、第1導電型をp型、第2導電型をn型としても良い。また、n+型はn型よりも不純物濃度が高く、n-型はn型よりも不純物濃度が低いことを意味する。同様に、p+型はp型よりも不純物濃度が高く、p-型はp型よりも不純物濃度が低いことを意味する。 Further, the conductive type of the semiconductor will be described with the first conductive type as the n type and the second conductive type as the p type. However, these may be reversed, and the first conductive type may be p-type and the second conductive type may be n-type. Further, the n + type has a higher impurity concentration than the n type, and the n− type has a lower impurity concentration than the n type. Similarly, the p + type has a higher impurity concentration than the p type, and the p- type has a lower impurity concentration than the p type.

<A.前提技術>
本発明の前提技術として、トレンチゲート型のIGBT、ダイオード、RC-IGBTの構成を説明する。まず、トレンチゲート型のIGBTについて説明する。図1は、トレンチゲート型のIGBT101の断面図である。IGBT101は、n-型ドリフト層1、p型ベース層2、n型バッファ層9、n+型エミッタ層4、ゲート絶縁膜6、ゲート電極7、p型コレクタ層10、p+型ベース層3、エミッタ電極15、バリアメタル12、タングステンプラグ14、およびコレクタ電極16を備えている。
<A. Prerequisite technology>
As a prerequisite technique of the present invention, the configuration of a trench gate type IGBT, a diode, and an RC-IGBT will be described. First, a trench gate type IGBT will be described. FIG. 1 is a cross-sectional view of a trench gate type IGBT 101. The IGBT 101 includes an n-type drift layer 1, a p-type base layer 2, an n-type buffer layer 9, an n + type emitter layer 4, a gate insulating film 6, a gate electrode 7, a p-type collector layer 10, a p + type base layer 3, and an emitter. It includes an electrode 15, a barrier metal 12, a tungsten plug 14, and a collector electrode 16.

n-型ドリフト層1の上面にp型ベース層2が形成される。p型ベース層2の上面には、n+型エミッタ層4とp+型ベース層3が選択的に形成される。n+型エミッタ層4は、p+型ベース層3を囲って形成される。n-型ドリフト層1の下面にはn型バッファ層9、p型コレクタ層10がこの順で形成される。p型コレクタ層10の下面にはコレクタ電極16が形成される。 The p-type base layer 2 is formed on the upper surface of the n-type drift layer 1. An n + type emitter layer 4 and a p + type base layer 3 are selectively formed on the upper surface of the p-type base layer 2. The n + type emitter layer 4 is formed so as to surround the p + type base layer 3. An n-type buffer layer 9 and a p-type collector layer 10 are formed in this order on the lower surface of the n-type drift layer 1. A collector electrode 16 is formed on the lower surface of the p-type collector layer 10.

n+型エミッタ層4の上面からn+型エミッタ層4とp型ベース層2を貫通しn-型ドリフト層1に達するトレンチ5が複数形成される。トレンチ5の内壁にはゲート絶縁膜6とゲート電極7が埋め込まれている。ゲート電極7は、ゲート絶縁膜6を介してp型ベース層2に対向している。 A plurality of trenches 5 are formed from the upper surface of the n + type emitter layer 4 through the n + type emitter layer 4 and the p-type base layer 2 to reach the n− type drift layer 1. A gate insulating film 6 and a gate electrode 7 are embedded in the inner wall of the trench 5. The gate electrode 7 faces the p-type base layer 2 via the gate insulating film 6.

IGBT101は、トレンチMOSゲート構造によりチャネル密度を増加させ、n-型ドリフト層1を薄くすることで低損失化を実現する。n-型ドリフト層1を薄くすると、スイッチングオフ時にp型ベース層2とn-型ドリフト層1のpn接合から伸びる空乏層のストッパーが必要となるため、ストッパーとしてn-型ドリフト層1よりも不純物濃度が高いn型バッファ層9が設けられる。但し、n型バッファ層9の有無は製品用途によって決まり、製品用途によってはn型バッファ層9が設けられない場合もある。 The IGBT 101 realizes low loss by increasing the channel density by the trench MOS gate structure and thinning the n-type drift layer 1. When the n-type drift layer 1 is made thinner, a stopper for the depletion layer extending from the pn junction between the p-type base layer 2 and the n-type drift layer 1 is required at the time of switching off, so that the stopper is higher than that of the n-type drift layer 1. An n-type buffer layer 9 having a high impurity concentration is provided. However, the presence or absence of the n-type buffer layer 9 is determined by the product application, and the n-type buffer layer 9 may not be provided depending on the product application.

IGBT101のオン時には、p型ベース層2、n+型エミッタ層4、ゲート絶縁膜6、およびゲート電極7によりnチャネルMOSFETが形成され、p型コレクタ層10、n型バッファ層9、n-型ドリフト層1、p型ベース層2、n+型エミッタ層4の経路で電流が流れる。すなわち、p型ベース層2、n+型エミッタ層4、ゲート絶縁膜6、およびゲート電極7はトランジスタ構造である。 When the IGBT 101 is turned on, an n-channel MOSFET is formed by the p-type base layer 2, the n + type emitter layer 4, the gate insulating film 6, and the gate electrode 7, and the p-type collector layer 10, the n-type buffer layer 9, and the n-type drift are formed. A current flows through the path of the layer 1, the p-type base layer 2, and the n + type emitter layer 4. That is, the p-type base layer 2, the n + type emitter layer 4, the gate insulating film 6, and the gate electrode 7 have a transistor structure.

ゲート電極7の上面は層間絶縁膜11に覆われ、これによりゲート電極7とエミッタ電極15の絶縁が図られている。層間絶縁膜11にはコンタクトホール13が形成されており、コンタクトホール13からp+型ベース層3とn+型エミッタ層4が露出する。p+型ベース層3は、スイッチングオフ時に発生するキャリアの掃き出しと、エミッタ電極15とのコンタクト抵抗を下げる効果を持つ。 The upper surface of the gate electrode 7 is covered with an interlayer insulating film 11, whereby the gate electrode 7 and the emitter electrode 15 are insulated from each other. A contact hole 13 is formed in the interlayer insulating film 11, and the p + type base layer 3 and the n + type emitter layer 4 are exposed from the contact hole 13. The p + type base layer 3 has the effect of sweeping out carriers generated at the time of switching off and reducing the contact resistance with the emitter electrode 15.

層間絶縁膜11上とコンタクトホール13の内壁には、バリアメタル12が形成される。バリアメタル12は、コンタクトホール13においてp+型ベース層3およびn+型エミッタ層4の上面に接触する。コンタクトホール13には、バリアメタル12の上からタングステンプラグ14が埋め込まれる。タングステンプラグ14は、デザインルールの微細化を実現するために使用されている。 A barrier metal 12 is formed on the interlayer insulating film 11 and on the inner wall of the contact hole 13. The barrier metal 12 contacts the upper surfaces of the p + type base layer 3 and the n + type emitter layer 4 in the contact hole 13. A tungsten plug 14 is embedded in the contact hole 13 from above the barrier metal 12. The tungsten plug 14 is used to realize miniaturization of design rules.

バリアメタル12はシリコン半導体基板と接触することでシリサイド化し、n+型エミッタ層4およびp+型ベース層3との接触抵抗を低減する効果を持つ。また、タングステンプラグ14を形成する際に使用するWF6ガスとシリコン半導体基板が反応し、ケミカルエッチングされるのを防ぐ効果を持つ。コンタクトホール13にタングステンプラグ14を用いる場合、バリアメタル12は、上述した効果を得るために遷移金属、例えばチタンや窒化チタンの多層構造を用いることが一般的である。 The barrier metal 12 is silicidized by contacting with a silicon semiconductor substrate, and has the effect of reducing the contact resistance with the n + type emitter layer 4 and the p + type base layer 3. Further, it has an effect of preventing the WF6 gas used for forming the tungsten plug 14 from reacting with the silicon semiconductor substrate and being chemically etched. When the tungsten plug 14 is used for the contact hole 13, the barrier metal 12 generally uses a multi-layer structure of a transition metal such as titanium or titanium nitride in order to obtain the above-mentioned effects.

バリアメタル12およびタングステンプラグ14の上にはエミッタ電極15が形成される。エミッタ電極15には、一般的にアルミニウム合金が使用される。エミッタ電極15は、バリアメタル12およびタングステンプラグ14を介して、n+型エミッタ層4およびp+型ベース層3と接合している。以上が、IGBT101の構成である。 An emitter electrode 15 is formed on the barrier metal 12 and the tungsten plug 14. An aluminum alloy is generally used for the emitter electrode 15. The emitter electrode 15 is bonded to the n + type emitter layer 4 and the p + type base layer 3 via the barrier metal 12 and the tungsten plug 14. The above is the configuration of the IGBT 101.

次に、ダイオードの構成を説明する。図2は、ダイオード102の断面図である。ダイオード102は、カソード電極25、n+型カソード層23、n-型ドリフト層1、p型アノード層21、およびアノード電極24がこの順に積層された構造である。 Next, the configuration of the diode will be described. FIG. 2 is a cross-sectional view of the diode 102. The diode 102 has a structure in which a cathode electrode 25, an n + type cathode layer 23, an n− type drift layer 1, a p-type anode layer 21, and an anode electrode 24 are laminated in this order.

アノード電極24には、一般的にp型拡散層と良好なオーミックコンタクトを形成するアルミニウム合金が使用される。 For the anode electrode 24, an aluminum alloy that forms good ohmic contact with the p-type diffusion layer is generally used.

ダイオード102のオン時には、p型アノード層21、n-型ドリフト層1、n+型カソード層23の経路で電流が流れる。すなわち、p型アノード層21、およびn-型ドリフト層1はダイオード構造である。 When the diode 102 is turned on, a current flows through the path of the p-type anode layer 21, the n-type drift layer 1, and the n + type cathode layer 23. That is, the p-type anode layer 21 and the n-type drift layer 1 have a diode structure.

次に、RC-IGBTの構成を説明する。図3は、RC-IGBT103の断面図である。RC-IGBT103は、IGBTとダイオードを同一の半導体基板に内蔵した構成であり、IGBTを内蔵する領域をIGBT領域103A、ダイオードを内蔵する領域をダイオード領域103Bとする。IGBT領域103Aには、複数のIGBTセルがまとまって形成されており、ダイオード領域103Bには、複数のダイオードセルがまとまって形成されている。 Next, the configuration of the RC-IGBT will be described. FIG. 3 is a cross-sectional view of RC-IGBT103. The RC-IGBT 103 has a configuration in which an IGBT and a diode are built in the same semiconductor substrate, and the region in which the IGBT is built is the IGBT region 103A and the region in which the diode is built is the diode region 103B. A plurality of IGBT cells are collectively formed in the IGBT region 103A, and a plurality of diode cells are collectively formed in the diode region 103B.

RC-IGBT103はIGBT領域103Aにおいて、n-型ドリフト層1、p型ベース層2、p+型ベース層3、n+型エミッタ層4、ゲート絶縁膜6、ゲート電極7、n型バッファ層9、p型コレクタ層10、バリアメタル12、タングステンプラグ14、および層間絶縁膜11を備えている。これらの構成は図1に示したIGBT101と同様である。 In the IGBT region 103A, the RC-IGBT 103 has an n-type drift layer 1, a p-type base layer 2, a p + type base layer 3, an n + type emitter layer 4, a gate insulating film 6, a gate electrode 7, an n-type buffer layer 9, p. It includes a mold collector layer 10, a barrier metal 12, a tungsten plug 14, and an interlayer insulating film 11. These configurations are the same as the IGBT 101 shown in FIG.

また、IGBT領域103Aにおいて、p+型ベース層3およびn+型エミッタ層4はバリアメタル12およびタングステンプラグ14を介して第1電極31と接合する。第1電極31は、IGBT領域103Aとダイオード領域103Bにおいて共用され、IGBT領域103Aにおいてはエミッタ電極、ダイオード領域103Bにおいてはアノード電極として機能する。第1電極31には、一般的にアルミニウム合金が使用される。 Further, in the IGBT region 103A, the p + type base layer 3 and the n + type emitter layer 4 are joined to the first electrode 31 via the barrier metal 12 and the tungsten plug 14. The first electrode 31 is shared in the IGBT region 103A and the diode region 103B, and functions as an emitter electrode in the IGBT region 103A and an anode electrode in the diode region 103B. An aluminum alloy is generally used for the first electrode 31.

また、IGBT領域103Aにおいて、p型コレクタ層10の下面には第2電極32が形成されている。第2電極32はダイオード領域103Bにも形成されており、IGBT領域103Aとダイオード領域103Bにおいて共用される。第2電極32はIGBT領域103Aにおいてコレクタ電極、ダイオード領域103Bにおいてカソード電極として機能する。第2電極32には、一般的にアルミニウム合金が使用される。 Further, in the IGBT region 103A, the second electrode 32 is formed on the lower surface of the p-type collector layer 10. The second electrode 32 is also formed in the diode region 103B, and is shared in the IGBT region 103A and the diode region 103B. The second electrode 32 functions as a collector electrode in the IGBT region 103A and a cathode electrode in the diode region 103B. An aluminum alloy is generally used for the second electrode 32.

RC-IGBT103はダイオード領域103Bにおいて、n-型ドリフト層1、p型アノード層21、およびn+型カソード層23を備えている。これらの構成は図2に示したダイオード102と同様である。さらに、RC-IGBT103はダイオード領域103Bにおいて、n-型ドリフト層1とn+型カソード層23の間にn型バッファ層9を備え、p型アノード層21の上にp+型アノード層22を備える。IGBT領域103Aとダイオード領域103Bにおいて、n-型ドリフト層1とn型バッファ層9は共通に使用される。 The RC-IGBT 103 includes an n-type drift layer 1, a p-type anode layer 21, and an n + -type cathode layer 23 in the diode region 103B. These configurations are similar to the diode 102 shown in FIG. Further, the RC-IGBT 103 includes an n-type buffer layer 9 between the n-type drift layer 1 and the n + type cathode layer 23 in the diode region 103B, and a p + type anode layer 22 on the p-type anode layer 21. In the IGBT region 103A and the diode region 103B, the n-type drift layer 1 and the n-type buffer layer 9 are commonly used.

ダイオード領域103Bにおいて、p+型アノード層22の上面からp+型アノード層22およびp型アノード層21を貫通してn-型ドリフト層1に至るトレンチ5が形成される。トレンチ5の内壁にはゲート絶縁膜6とダミーゲート電極26が形成される。ダミーゲート電極26は、一般的にフローティングもしくは第1電極31と接地される。 In the diode region 103B, a trench 5 is formed from the upper surface of the p + type anode layer 22 through the p + type anode layer 22 and the p-type anode layer 21 to reach the n− type drift layer 1. A gate insulating film 6 and a dummy gate electrode 26 are formed on the inner wall of the trench 5. The dummy gate electrode 26 is generally floating or grounded with the first electrode 31.

層間絶縁膜11、バリアメタル12およびタングステンプラグ14は、IGBT領域103Aと同様にダイオード領域103Bにも設けられる。すなわち、第1電極31はダイオード領域103Bにおいて、タングステンプラグ14およびバリアメタル12を介してp+型アノード層305と接触する。ここでは、バリアメタル12とp型アノード層21とを直接接触させると、オーミック性が悪くコンタクト抵抗が大きくなるため、高濃度のp+型アノード層30により実効的なコンタクト抵抗の低下を図っている。 The interlayer insulating film 11, the barrier metal 12, and the tungsten plug 14 are provided in the diode region 103B as well as in the IGBT region 103A. That is, the first electrode 31 contacts the p + type anode layer 305 via the tungsten plug 14 and the barrier metal 12 in the diode region 103B. Here, when the barrier metal 12 and the p-type anode layer 21 are brought into direct contact with each other, the ohmic property is poor and the contact resistance is increased. Therefore, the high-concentration p + type anode layer 30 is intended to effectively reduce the contact resistance. ..

以上が、RC-IGBT103の構成である。上述のとおり、RC-IGBT103のダイオード領域103Bには、バリアメタル12とのコンタクト抵抗を低くするため高濃度のp+型アノード層305が設けられている。しかし、p+型アノード層305の不純物濃度が高い程、ダイオードのオン時におけるキャリアの供給量が多くなるため、ダイオードのオフ時におけるキャリア排出が遅くなるという問題がある。 The above is the configuration of RC-IGBT103. As described above, the diode region 103B of the RC-IGBT 103 is provided with a high-concentration p + type anode layer 305 in order to reduce the contact resistance with the barrier metal 12. However, the higher the impurity concentration of the p + type anode layer 305, the larger the carrier supply amount when the diode is on, so that there is a problem that the carrier discharge is delayed when the diode is off.

<B.実施の形態1>
本発明の実施の形態1では、RC-IGBTのダイオード領域にバリアメタルを形成しないことにより上記の問題を解決する。
<B. Embodiment 1>
In the first embodiment of the present invention, the above problem is solved by not forming a barrier metal in the diode region of the RC-IGBT.

<B-1.構成>
図4は、本発明の実施の形態1に係る半導体装置であるRC-IGBT104の断面図である。RC-IGBT104は、IGBTとダイオードを同一の半導体基板に内蔵している。RC-IGBT104のトランジスタを内蔵する領域をトランジスタ領域104A、ダイオードを内蔵する領域をダイオード領域104Bとする。ここで、半導体基板には、例えばケイ素(Si)を含むものが用いられる。
<B-1. Configuration>
FIG. 4 is a cross-sectional view of RC-IGBT104, which is a semiconductor device according to the first embodiment of the present invention. The RC-IGBT 104 has an IGBT and a diode built in the same semiconductor substrate. The region in which the transistor of the RC-IGBT104 is built is referred to as the transistor region 104A, and the region in which the diode is built is referred to as the diode region 104B. Here, as the semiconductor substrate, for example, one containing silicon (Si) is used.

RC-IGBT104は、前提技術で説明したRC-IGBT103の構成と比較すると、トランジスタ領域104Aとダイオード領域104Bにおいてタングステンプラグを有さず、ダイオード領域104Bにおいてさらにp+型アノード層22、層間絶縁膜11、およびバリアメタル12を有していない。RC-IGBT104のトランジスタ領域104Aでは、層間絶縁膜11のコンタクトホール13には、タングステンプラグ14ではなく表面電極304が埋め込まれている。RC-IGBT104のダイオード領域104Bでは、p型アノード層21と表面電極304とが直接接触する。上記以外のRC-IGBT104の構成は、RC-IGBT103と同様であるため説明を省略する。 Compared with the configuration of RC-IGBT103 described in the prerequisite technique, the RC-IGBT 104 does not have a tungsten plug in the transistor region 104A and the diode region 104B, and further in the diode region 104B, the p + type anode layer 22, the interlayer insulating film 11, and the like. And does not have the barrier metal 12. In the transistor region 104A of the RC-IGBT 104, the surface electrode 304 is embedded in the contact hole 13 of the interlayer insulating film 11 instead of the tungsten plug 14. In the diode region 104B of the RC-IGBT 104, the p-type anode layer 21 and the surface electrode 304 are in direct contact with each other. Since the configuration of the RC-IGBT104 other than the above is the same as that of the RC-IGBT103, the description thereof will be omitted.

RC-IGBT104のトランジスタ領域104Aでは、n-型ドリフト層1、p型ベース層2、p+型ベース層3、n+型エミッタ層4、ゲート絶縁膜6およびゲート電極7により、MOSゲート構造33が構成される。また、RC-IGBT104のトランジスタ領域104Aでは、n-型ドリフト層1とp型アノード層21により、pn接合を有するダイオード構造34が構成される。本明細書では、MOSゲート構造33、ダイオード構造34、n型バッファ層9、p型コレクタ層10、およびn+型カソード層23からなる構成を半導体基体35と称する。また、半導体基体35の図4の紙面における上側の面を一方主面35A、下側の面を他方主面35Bと称する。 In the transistor region 104A of the RC-IGBT104, the MOS gate structure 33 is composed of an n-type drift layer 1, a p-type base layer 2, a p + type base layer 3, an n + type emitter layer 4, a gate insulating film 6, and a gate electrode 7. Will be done. Further, in the transistor region 104A of the RC-IGBT104, the n-type drift layer 1 and the p-type anode layer 21 form a diode structure 34 having a pn junction. In the present specification, the configuration including the MOS gate structure 33, the diode structure 34, the n-type buffer layer 9, the p-type collector layer 10, and the n + type cathode layer 23 is referred to as a semiconductor substrate 35. Further, the upper surface of the semiconductor substrate 35 on the paper surface of FIG. 4 is referred to as one main surface 35A, and the lower surface is referred to as the other main surface 35B.

すなわち、RC-IGBT104は、トランジスタ領域104Aにおいて半導体基体35の一方主面35A側にMOSゲート構造33を有する。 That is, the RC-IGBT 104 has a MOS gate structure 33 on one main surface 35A side of the semiconductor substrate 35 in the transistor region 104A.

また、半導体基体35は、トランジスタ領域104Aにおいて他方主面35B側にp型コレクタ層10を備え、トランジスタ領域104AはIGBTを構成する。 Further, the semiconductor substrate 35 includes a p-type collector layer 10 on the other main surface 35B side in the transistor region 104A, and the transistor region 104A constitutes an IGBT.

RC-IGBT104において、半導体基体35の一方主面35Aから深さ方向(図4の上下方向)に、複数のトレンチ5が形成されている。図4において、トレンチ5はトランジスタ領域104Aとダイオード領域104Bの夫々に設けられているが、ダイオード領域104Bにはトレンチ5が形成されなくても良い。トレンチ5の奥行方向は限定しないが、複数のトレンチ5間で奥行方向が同一となるように配置される。図4の例では、トランジスタ領域104Aにとダイオード領域104Bにおいて、全てのトレンチ5の奥行方向は同一である。 In the RC-IGBT104, a plurality of trenches 5 are formed in the depth direction (vertical direction in FIG. 4) from one main surface 35A of the semiconductor substrate 35. In FIG. 4, the trench 5 is provided in each of the transistor region 104A and the diode region 104B, but the trench 5 may not be formed in the diode region 104B. The depth direction of the trench 5 is not limited, but the trench 5 is arranged so that the depth direction is the same among the plurality of trenches 5. In the example of FIG. 4, the depth directions of all the trenches 5 are the same in the transistor region 104A and the diode region 104B.

トランジスタ領域104Aにおいて、p型ベース層2の下方にn型のキャリア蓄積(Carrier Stored:CS)層を設けても良い。 In the transistor region 104A, an n-type carrier stored (CS) layer may be provided below the p-type base layer 2.

ダイオード領域104Bにおいて、半導体基体35の一方主面35A側には、トレンチ5に囲まれたp型アノード層21が設けられている。p型アノード層21の不純物濃度は、所望の順方向電圧が得られるように定められる。 In the diode region 104B, a p-type anode layer 21 surrounded by a trench 5 is provided on one main surface 35A side of the semiconductor substrate 35. The impurity concentration of the p-type anode layer 21 is determined so that a desired forward voltage can be obtained.

図4は、ダイオード領域104Bのダミーゲート電極26が層間絶縁膜13に覆われていない場合を示しているが、覆われていても良い。 FIG. 4 shows a case where the dummy gate electrode 26 in the diode region 104B is not covered with the interlayer insulating film 13, but it may be covered.

バリアメタル12には、例えば遷移金属となるチタンが用いられる。バリアメタル12は、n+型エミッタ層10とのコンタクト抵抗を下げることを目的として、半導体基板との界面でシリサイド化される。バリアメタルは、窒化チタン、炭化チタン、またはチタンシリサイドを含む。 For the barrier metal 12, for example, titanium as a transition metal is used. The barrier metal 12 is silicated at the interface with the semiconductor substrate for the purpose of reducing the contact resistance with the n + type emitter layer 10. Barrier metals include titanium nitride, titanium carbide, or titanium silicide.

第1電極31には、Al-Siや、Al-Cu、Al-Si-Cuなどのアルミニウム合金が用いられる。アルミニウム合金におけるアルミニウム以外の成分の含有量は、シリコン半導体基板への相互拡散を抑えるため0.1%以上が望ましい。 Aluminum alloys such as Al—Si, Al—Cu, and Al—Si—Cu are used for the first electrode 31. The content of components other than aluminum in the aluminum alloy is preferably 0.1% or more in order to suppress mutual diffusion into the silicon semiconductor substrate.

層間絶縁膜11のコンタクトホール13にプラグコンタクトを用いず、第1電極31を埋め込むことにより、低コストで良好な半導体装置を実現する。コンタクトホール13への第1電極31の埋め込み性には、層間絶縁膜11の厚み、形状、および開口寸法などが影響する。図5は、層間絶縁膜11のコンタクトホール13周辺の拡大図である。一例として、図5に示す層間絶縁膜11の下面におけるコンタクトホール13の開口幅13aを500nm、層間絶縁膜11の上面におけるコンタクトホール13の開口幅13bを800nm、層間絶縁膜11の厚み11aを500nmとした場合に、コンタクトホール13への第1電極31の埋め込み性に問題はない。隣接する2つのトレンチ5間の距離であるピッチ幅5aは、上述したコンタクトホール13の各部の寸法との兼ね合いで設定することができる。例えば、コンタクトホール13の各部の寸法を上記の通りとすれば、ピッチ幅5aは2.4μmとすることができる。 By embedding the first electrode 31 in the contact hole 13 of the interlayer insulating film 11 without using a plug contact, a good semiconductor device can be realized at low cost. The embedding property of the first electrode 31 in the contact hole 13 is affected by the thickness, shape, opening size, and the like of the interlayer insulating film 11. FIG. 5 is an enlarged view of the periphery of the contact hole 13 of the interlayer insulating film 11. As an example, the opening width 13a of the contact hole 13 on the lower surface of the interlayer insulating film 11 shown in FIG. 5 is 500 nm, the opening width 13b of the contact hole 13 on the upper surface of the interlayer insulating film 11 is 800 nm, and the thickness 11a of the interlayer insulating film 11 is 500 nm. In this case, there is no problem in the implantability of the first electrode 31 in the contact hole 13. The pitch width 5a, which is the distance between the two adjacent trenches 5, can be set in consideration of the dimensions of each part of the contact hole 13 described above. For example, if the dimensions of each part of the contact hole 13 are as described above, the pitch width 5a can be 2.4 μm.

ダイオード領域104Bにはバリアメタルが設けられていない。p型アノード層21はバリアメタルと接合せず、第1電極31と直接接触するため、低いコンタクト抵抗を得ることができる。第1電極31にはアルミニウム合金を用いることにより、第1電極31とp型アノード層21との間でアルミニウム成分とシリコン成分の相互拡散を防ぐことができる。なお、ダイオード領域104Bのダミーゲート電極26がトランジスタ領域104Aのゲート電極7と同じく層間絶縁膜11に覆われる場合、ダミーゲート電極26を覆う層間絶縁膜11の少なくとも一部の表面にバリアメタル12が形成されても良い。なぜなら、p型アノード層21にバリアメタル12が接合しない限り、低いコンタクト抵抗を得ることができるからである。 No barrier metal is provided in the diode region 104B. Since the p-type anode layer 21 is not bonded to the barrier metal and is in direct contact with the first electrode 31, low contact resistance can be obtained. By using an aluminum alloy for the first electrode 31, it is possible to prevent mutual diffusion of the aluminum component and the silicon component between the first electrode 31 and the p-type anode layer 21. When the dummy gate electrode 26 in the diode region 104B is covered with the interlayer insulating film 11 like the gate electrode 7 in the transistor region 104A, the barrier metal 12 is formed on at least a part of the surface of the interlayer insulating film 11 covering the dummy gate electrode 26. It may be formed. This is because low contact resistance can be obtained as long as the barrier metal 12 is not bonded to the p-type anode layer 21.

第1電極31はトランジスタ領域104Aからダイオード領域104Bに亘って形成される。すなわち、RC-IGBT104の上面は、トランジスタ領域104Aもダイオード領域104Bも第1電極31により共通化されている。従って、RC-IGBT104を用いてパッケージを製造するアセンブリプロセスにおいて、トランジスタ領域104Aとダイオード領域104Bでワイヤボンディング等の条件を変更する必要がない。 The first electrode 31 is formed from the transistor region 104A to the diode region 104B. That is, on the upper surface of the RC-IGBT 104, both the transistor region 104A and the diode region 104B are shared by the first electrode 31. Therefore, in the assembly process of manufacturing a package using RC-IGBT104, it is not necessary to change the conditions such as wire bonding in the transistor region 104A and the diode region 104B.

<B-2.第1の製造方法>
次に、RC-IGBT104の第1の製造方法について説明する。図6はRC-IGBT104の第1の製造方法において、表面素子構造の形成から第1電極31の形成までの工程を示すフローチャートである。また、図7ないし図12は、第1の製造方法によるRC-IGBT104の製造途中の状態を示す断面図である。
<B-2. First manufacturing method>
Next, the first manufacturing method of RC-IGBT104 will be described. FIG. 6 is a flowchart showing a process from the formation of the surface element structure to the formation of the first electrode 31 in the first manufacturing method of RC-IGBT104. 7 to 12 are cross-sectional views showing a state in which RC-IGBT104 is being manufactured by the first manufacturing method.

まず、MOSゲート構造33と、ダイオード構造34を作成する(ステップS1)。具体的には、トランジスタ領域104Aにおいて、n-型ドリフト層1の上面にp型ベース層2を形成し、p型ベース層2の上面に選択的にp+型ベース層3とn+型エミッタ層4を形成する。次に、n+型エミッタ層4の上面からn+型エミッタ層4とp型ベース層2を貫通するとトレンチ5を形成する。そして、トレンチ5の内壁にゲート絶縁膜6を形成し、さらにトレンチ5内にゲート電極7を埋め込む。ダイオード領域104Bにおいては、n-型ドリフト層1の上面にp型アノード層21を形成する。そして、p型アノード層21の上面からp型アノード層21を貫通するトレンチ5を形成する。そして、トレンチ5の内壁にゲート絶縁膜6を形成し、さらにトレンチ5内にダミーゲート電極26を埋め込む。以上で、図7に示す構造が完成する。 First, the MOS gate structure 33 and the diode structure 34 are created (step S1). Specifically, in the transistor region 104A, the p-type base layer 2 is formed on the upper surface of the n-type drift layer 1, and the p + type base layer 3 and the n + type emitter layer 4 are selectively formed on the upper surface of the p-type base layer 2. To form. Next, when the n + type emitter layer 4 and the p-type base layer 2 are penetrated from the upper surface of the n + type emitter layer 4, a trench 5 is formed. Then, the gate insulating film 6 is formed on the inner wall of the trench 5, and the gate electrode 7 is further embedded in the trench 5. In the diode region 104B, the p-type anode layer 21 is formed on the upper surface of the n-type drift layer 1. Then, a trench 5 is formed from the upper surface of the p-type anode layer 21 to penetrate the p-type anode layer 21. Then, a gate insulating film 6 is formed on the inner wall of the trench 5, and a dummy gate electrode 26 is further embedded in the trench 5. This completes the structure shown in FIG. 7.

次に、MOSゲート構造33およびダイオード構造34の上面に層間絶縁膜11を形成する(ステップS2)。こうして、図8に示す構造を得る。 Next, the interlayer insulating film 11 is formed on the upper surfaces of the MOS gate structure 33 and the diode structure 34 (step S2). In this way, the structure shown in FIG. 8 is obtained.

その後、フォトリソグラフィにより、層間絶縁膜11上にレジストマスク36を形成する。レジストマスク36は、トランジスタ領域104Aの層間絶縁膜11上に選択的に開口を有している。レジストマスク36を用いて、トランジスタ領域104Aの層間絶縁膜11にコンタクトホール13を形成する(ステップS3)。例えば、トリフルオロメタン(CHF)またはテトラフルオロメタン(CF)などを用いた反応性イオンエッチング(Reactive Ion Etching:RIE)、あるいはフッ素系のウェットエッチングにより、コンタクトホール13を形成することができる。こうして、図9に示す構造を得る。その後、レジストマスク36を除去する。 Then, the resist mask 36 is formed on the interlayer insulating film 11 by photolithography. The resist mask 36 selectively has an opening on the interlayer insulating film 11 of the transistor region 104A. The resist mask 36 is used to form the contact hole 13 in the interlayer insulating film 11 of the transistor region 104A (step S3). For example, the contact hole 13 can be formed by reactive ion etching (RIE) using trifluoromethane (CHF 3 ), tetrafluoromethane (CF 4 ), or the like, or fluorine-based wet etching. In this way, the structure shown in FIG. 9 is obtained. After that, the resist mask 36 is removed.

次に、トランジスタ領域104Aからダイオード領域104Bに亘り、コンタクトホール13と層間絶縁膜11上にバリアメタル12を形成する(ステップS4)。バリアメタル12はスパッタリングにより堆積され、その主成分はチタンなどの遷移金属である。バリアメタル12は、コンタクトホール13に露出するケイ素系のp+型ベース層3またはn+型エミッタ4と接触することにより、接触界面でシリサイド化する。また、スパッタリングの後、窒素雰囲気中の熱処理により、バリアメタル12の表面は窒化される。こうして、図10に示す構造を得る。すなわち、バリアメタルは、チタンシリサイド、チタン、および窒化チタンがこの順に積層された構造となる。 Next, the barrier metal 12 is formed on the contact hole 13 and the interlayer insulating film 11 from the transistor region 104A to the diode region 104B (step S4). The barrier metal 12 is deposited by sputtering, and its main component is a transition metal such as titanium. The barrier metal 12 is silicidized at the contact interface by contacting with the silicon-based p + type base layer 3 or n + type emitter 4 exposed in the contact hole 13. Further, after sputtering, the surface of the barrier metal 12 is nitrided by heat treatment in a nitrogen atmosphere. In this way, the structure shown in FIG. 10 is obtained. That is, the barrier metal has a structure in which titanium silicide, titanium, and titanium nitride are laminated in this order.

次に、トランジスタ領域104Aにレジストマスク37を形成し、レジストマスク37を用いてダイオード領域104Bのバリアメタル12と層間絶縁膜11を除去する(ステップS5)。ダイオード領域104Bのバリアメタル12と層間絶縁膜11は、トリフルオロメタンまたはテトラフルオロメタンなどを用いたRIEなどのドライエッチングにより除去される。ドライエッチングによりダイオード構造34上の層間絶縁膜11とバリアメタル12を一度に除去することにより、低コストなプロセスとなる。こうして、図11に示す構造を得る。その後、レジストマスク37を除去する。 Next, a resist mask 37 is formed in the transistor region 104A, and the barrier metal 12 and the interlayer insulating film 11 in the diode region 104B are removed by using the resist mask 37 (step S5). The barrier metal 12 and the interlayer insulating film 11 in the diode region 104B are removed by dry etching such as RIE using trifluoromethane or tetrafluoromethane. By removing the interlayer insulating film 11 and the barrier metal 12 on the diode structure 34 at once by dry etching, the process becomes a low cost process. In this way, the structure shown in FIG. 11 is obtained. After that, the resist mask 37 is removed.

次に、トランジスタ領域104Aとダイオード領域104Bに亘り、アルミニウム合金をスパッタリングで堆積することにより第1電極31を形成する(ステップS6)。トランジスタ領域104Aにおいて、第1電極13はコンタクトホール13内に入り込んで形成される。こうして、図12に示す構造を得る。その後、n-型ドリフト層1の下面側の構造、すなわちn型バッファ層9、p型コレクタ層10、n+型カソード層23、および第2電極32を形成し、図4に示したRC-IGBT104が完成する。 Next, the first electrode 31 is formed by depositing an aluminum alloy by sputtering over the transistor region 104A and the diode region 104B (step S6). In the transistor region 104A, the first electrode 13 is formed by entering into the contact hole 13. In this way, the structure shown in FIG. 12 is obtained. After that, the structure on the lower surface side of the n-type drift layer 1, that is, the n-type buffer layer 9, the p-type collector layer 10, the n + -type cathode layer 23, and the second electrode 32 were formed, and the RC-IGBT104 shown in FIG. 4 was formed. Is completed.

<B-3.効果>
実施の形態1に係るRC-IGBT104は、半導体基体35と、第1電極31を備える。半導体基体35は、一方主面35Aと他方主面35Bとを有し、一方主面35Aから他方主面35Bに亘りトランジスタを構成するトランジスタ領域104Aと、一方主面35Aから他方主面35Bに亘りダイオードを構成するダイオード領域104Bとを備える。第1電極31は、トランジスタ領域104Aとダイオード領域104Bの上に亘り、半導体基体35の一方主面35A上に形成される。半導体基体35は、トランジスタ領域104Aにおいて一方主面35A側にMOSゲート構造33を有する。RC-IGBT104は、層間絶縁膜11と、バリアメタル12とを備える。層間絶縁膜11は、MOSゲート構造33のゲート電極7を覆い、MOSゲート構造33の半導体層を露出するコンタクトホール13を有する。バリアメタル12は、コンタクトホール13の内部に形成される。第1電極31は、コンタクトホール13に入り込み、コンタクトホール13の内部でバリアメタル12を介してMOSゲート構造33の半導体層と接触し、半導体基体35のダイオード領域104Bにおける半導体層と直接接触する。
<B-3. Effect>
The RC-IGBT 104 according to the first embodiment includes a semiconductor substrate 35 and a first electrode 31. The semiconductor substrate 35 has one main surface 35A and the other main surface 35B, a transistor region 104A constituting a transistor from one main surface 35A to the other main surface 35B, and one main surface 35A to the other main surface 35B. It includes a diode region 104B constituting a diode. The first electrode 31 extends over the transistor region 104A and the diode region 104B, and is formed on one main surface 35A of the semiconductor substrate 35. The semiconductor substrate 35 has a MOS gate structure 33 on one side of the main surface 35A in the transistor region 104A. The RC-IGBT 104 includes an interlayer insulating film 11 and a barrier metal 12. The interlayer insulating film 11 has a contact hole 13 that covers the gate electrode 7 of the MOS gate structure 33 and exposes the semiconductor layer of the MOS gate structure 33. The barrier metal 12 is formed inside the contact hole 13. The first electrode 31 enters the contact hole 13, contacts the semiconductor layer of the MOS gate structure 33 inside the contact hole 13 via the barrier metal 12, and directly contacts the semiconductor layer in the diode region 104B of the semiconductor substrate 35.

以上の構成によれば、MOSゲート構造33の半導体層はバリアメタル12と接触するため、直接第1電極31と接触する場合に比べてコンタクト抵抗が低くなる。また、第1電極31の金属材料であるAlなどと半導体層の材料であるSiなどの相互拡散を抑制できる。また、ダイオード領域104Bの半導体層であるp型アノード層21が第1電極31と直接接触するため、p型アノード層を高濃度にしなくてもコンタクト抵抗を低くすることができる。また、高濃度のp型アノード層が存在しないことで、オフ時のキャリア排出を遅くせずに済む。また、トランジスタ領域104Aとダイオード領域104Bで第1電極を共用するため、RC-IGBT104を用いたアセンブリプロセスにおいて、ワイヤボンディングまたは半田濡れ性といった条件をトランジスタ領域104Aとダイオード領域104Bで同一にすることができる。また、第1電極31をコンタクトホール13に入れ込んでMOSゲート構造33の半導体層と接触することにより、タングステンプラグなどの高価なコンタクトプラグを用いる必要がないため、RC-IGBT104の製造コストを下げることができる。 According to the above configuration, since the semiconductor layer of the MOS gate structure 33 is in contact with the barrier metal 12, the contact resistance is lower than in the case of direct contact with the first electrode 31. In addition, mutual diffusion between Al or the like, which is the metal material of the first electrode 31, and Si, which is the material of the semiconductor layer, can be suppressed. Further, since the p-type anode layer 21 which is the semiconductor layer of the diode region 104B is in direct contact with the first electrode 31, the contact resistance can be lowered without increasing the concentration of the p-type anode layer. Further, since the absence of the high-concentration p-type anode layer, it is not necessary to delay the carrier discharge at the time of off. Further, since the first electrode is shared by the transistor region 104A and the diode region 104B, the conditions such as wire bonding or solder wettability may be the same in the transistor region 104A and the diode region 104B in the assembly process using the RC-IGBT104. can. Further, by inserting the first electrode 31 into the contact hole 13 and contacting it with the semiconductor layer of the MOS gate structure 33, it is not necessary to use an expensive contact plug such as a tungsten plug, so that the manufacturing cost of RC-IGBT104 is reduced. be able to.

また、RC-IGBT104の第1の製造方法は、(a)半導体基体35の一方主面35A側にMOSゲート構造33とダイオード構造34を形成する工程と、(b)MOSゲート構造33とダイオード構造34の上に層間絶縁膜11を形成する工程と、(c)MOSゲート構造33の上の層間絶縁膜11に、MOSゲート構造33の半導体層を露出させるコンタクトホール13を開口する工程と、(d)コンタクトホール13内の半導体層上および層間絶縁膜11上にバリアメタル12を形成する工程と、(e)ダイオード構造34の上の層間絶縁膜11とバリアメタル12を除去する工程と、(f)コンタクトホール13内、およびダイオード構造34の上に第1電極31を形成する工程と、を備える。この製造方法によれば、p型アノード層21に不要な電極層を一度も接合させずにRC-IGBT104を製造することができる。 Further, the first manufacturing method of RC-IGBT104 is (a) a step of forming a MOS gate structure 33 and a diode structure 34 on one main surface 35A side of a semiconductor substrate 35, and (b) a step of forming a MOS gate structure 33 and a diode structure. A step of forming the interlayer insulating film 11 on the 34 and (c) a step of opening a contact hole 13 for exposing the semiconductor layer of the MOS gate structure 33 in the interlayer insulating film 11 on the MOS gate structure 33 (c). d) A step of forming the barrier metal 12 on the semiconductor layer and the interlayer insulating film 11 in the contact hole 13, and (e) a step of removing the interlayer insulating film 11 and the barrier metal 12 on the diode structure 34, (e). f) The step of forming the first electrode 31 in the contact hole 13 and on the diode structure 34 is provided. According to this manufacturing method, RC-IGBT104 can be manufactured without joining an unnecessary electrode layer to the p-type anode layer 21 even once.

<C.実施の形態2>
<C-1.第2の製造方法>
実施の形態2では、RC-IGBT104の第2の製造方法を説明する。図13は、RC-IGBT104の第2の製造方法を示すフローチャートである。図13に示すように、第2の製造方法のステップS1ないしS4とステップS6は図6に示した第1の製造方法と同様であり、図6のステップS5に代えてステップS5AとステップS5Bを行う点のみが異なる。すなわち、第2の製造方法は、バリアメタル12をIGBT領域104Aとダイオード領域104Bの全面に形成した後、ダイオード領域104Bからバリアメタル12を除去する方法が第1の製造方法とは異なる。
<C. Embodiment 2>
<C-1. Second manufacturing method>
In the second embodiment, a second manufacturing method of RC-IGBT104 will be described. FIG. 13 is a flowchart showing a second manufacturing method of RC-IGBT104. As shown in FIG. 13, steps S1 to S4 and step S6 of the second manufacturing method are the same as those of the first manufacturing method shown in FIG. 6, and steps S5A and S5B are performed instead of step S5 of FIG. Only the points to be done are different. That is, the second manufacturing method is different from the first manufacturing method in that the barrier metal 12 is formed on the entire surfaces of the IGBT region 104A and the diode region 104B, and then the barrier metal 12 is removed from the diode region 104B.

図13のステップS1からステップS4までは第1の製造方法と同様であるため、説明を省略する。ステップS4の後、IGBT領域104Aにレジストマスク37を形成し、レジストマスク37を用いてダイオード領域104Bのバリアメタル12と層間絶縁膜11を除去する(ステップS5A)。第1の製造方法では、RIEなどのドライエッチングによりダイオード領域104Bの層間絶縁膜11を完全に除去したが、第2の製造方法では、p型アノード層21が露出しないよう層間絶縁膜11を一部の膜厚だけ残す。図14には、ステップS5Aで残る層間絶縁膜を層間絶縁膜11Aとして示している。層間絶縁膜11の一部の除去は、トリフルオロメタンまたはテトラフルオロメタンなどを用いたRIEなどのドライエッチングにより行われる。残る層間絶縁膜11Aの厚みは、特に限定しない。 Since steps S1 to S4 in FIG. 13 are the same as the first manufacturing method, the description thereof will be omitted. After step S4, a resist mask 37 is formed in the IGBT region 104A, and the barrier metal 12 and the interlayer insulating film 11 in the diode region 104B are removed by using the resist mask 37 (step S5A). In the first manufacturing method, the interlayer insulating film 11 in the diode region 104B was completely removed by dry etching such as RIE, but in the second manufacturing method, the interlayer insulating film 11 was removed so that the p-type anode layer 21 was not exposed. Leave only the film thickness of the part. In FIG. 14, the interlayer insulating film remaining in step S5A is shown as the interlayer insulating film 11A. Part of the interlayer insulating film 11 is removed by dry etching such as RIE using trifluoromethane or tetrafluoromethane. The thickness of the remaining interlayer insulating film 11A is not particularly limited.

次に、レジストマスク37を除去し、新たなレジストマスク38を形成する。レジストマスク38もレジストマスク37と同様、ダイオード領域104Bに開口を有しているが、図15に示すようにその開口はレジストマスク37の開口よりも若干小さい。すなわち、レジストマスク38がダイオード領域104Bの端部に重なっている。 Next, the resist mask 37 is removed to form a new resist mask 38. Like the resist mask 37, the resist mask 38 also has an opening in the diode region 104B, but as shown in FIG. 15, the opening is slightly smaller than the opening of the resist mask 37. That is, the resist mask 38 overlaps the end of the diode region 104B.

次に、レジストマスク38を用いたウェットエッチングにより層間絶縁膜11Aを完全に除去する(ステップS5B)。ここでは、例えばフッ素系のウェットエッチングが用いられる。層間絶縁膜11Aを除去してp型アノード層21を露出する際、ドライエッチングではなくウェットエッチングを用いることにより、p型アノード層21へのダメージを抑えることができる。なお、ウェットエッチングにおいて、バリアメタル12のエッチングレートが高くサイドエッチング量が多くなるが、上記の通り、レジストマスク38がダイオード領域104Bの端部に重なるため、IGBT領域104A側のバリアメタル12がサイドエッチングにより除去されることはない。 Next, the interlayer insulating film 11A is completely removed by wet etching using the resist mask 38 (step S5B). Here, for example, fluorine-based wet etching is used. When the interlayer insulating film 11A is removed to expose the p-type anode layer 21, damage to the p-type anode layer 21 can be suppressed by using wet etching instead of dry etching. In wet etching, the etching rate of the barrier metal 12 is high and the amount of side etching is large. However, as described above, since the resist mask 38 overlaps the end of the diode region 104B, the barrier metal 12 on the side of the IGBT region 104A is on the side. It is not removed by etching.

次に、IGBT領域104Aとダイオード領域104Bに亘り、アルミニウム合金をスパッタリングで堆積することにより第1電極31を形成する(ステップS6)。こうして、図16に示す構造を得る。その後、n-型ドリフト層1の下面側の構造、すなわちn型バッファ層9、p型コレクタ層10、n+型カソード層23、および第2電極32を形成し、図4に示したRC-IGBT104が完成する。 Next, the first electrode 31 is formed by depositing an aluminum alloy by sputtering over the IGBT region 104A and the diode region 104B (step S6). In this way, the structure shown in FIG. 16 is obtained. After that, the structure on the lower surface side of the n-type drift layer 1, that is, the n-type buffer layer 9, the p-type collector layer 10, the n + -type cathode layer 23, and the second electrode 32 were formed, and the RC-IGBT104 shown in FIG. 4 was formed. Is completed.

<C-2.効果>
また、RC-IGBT104の第2の製造方法は、(a)半導体基体35の一方主面35A側にMOSゲート構造33とダイオード構造34を形成する工程と、(b)MOSゲート構造33とダイオード構造34の上に層間絶縁膜11を形成する工程と、(c)MOSゲート構造33の上の層間絶縁膜11に、MOSゲート構造33の半導体層を露出させるコンタクトホール13を開口する工程と、(d)コンタクトホール13内の半導体層上および層間絶縁膜11上にバリアメタル12を形成する工程と、(e)ダイオード構造34の上の層間絶縁膜11とバリアメタル12を除去する工程と、(f)ダイオード構造34の上に第1電極31を形成する工程と、を備え、工程(e)は、(e1)ダイオード構造34の上の、バリアメタル12と、層間絶縁膜11の一部の膜厚をドライエッチングで除去する工程と、(e2)工程(e1)で残ったダイオード構造34の上の層間絶縁膜11をウェットエッチングで除去する工程と、を備える。このように、ダイオード領域104Bのバリアメタル12を除去してp型アノード層21を露出させる際のエッチング処理に、ドライエッチングではなくウェットエッチングを用いることにより、エッチングによるp型アノード層21へのダメージを抑制することができる。
<C-2. Effect>
The second manufacturing method of RC-IGBT104 includes (a) a step of forming a MOS gate structure 33 and a diode structure 34 on one main surface 35A side of the semiconductor substrate 35, and (b) a step of forming a MOS gate structure 33 and a diode structure. A step of forming the interlayer insulating film 11 on the 34 and (c) a step of opening a contact hole 13 for exposing the semiconductor layer of the MOS gate structure 33 in the interlayer insulating film 11 on the MOS gate structure 33 (c). d) A step of forming the barrier metal 12 on the semiconductor layer and the interlayer insulating film 11 in the contact hole 13, and (e) a step of removing the interlayer insulating film 11 and the barrier metal 12 on the diode structure 34, (e). f) A step of forming the first electrode 31 on the diode structure 34 is provided, and the step (e) is a step (e1) of the barrier metal 12 on the diode structure 34 and a part of the interlayer insulating film 11. It includes a step of removing the film thickness by dry etching and a step of removing the interlayer insulating film 11 on the diode structure 34 remaining in the step (e2) step (e1) by wet etching. In this way, by using wet etching instead of dry etching for the etching process when the barrier metal 12 in the diode region 104B is removed to expose the p-type anode layer 21, damage to the p-type anode layer 21 due to etching is performed. Can be suppressed.

<D.実施の形態3>
本実施の形態は、実施の形態1,2で説明したRC-IGBT104を電力変換装置に適用したものである。本発明は特定の電力変換装置に限定されるものではないが、以下、実施の形態3として、三相のインバータに本発明を適用した場合について説明する。
<D. Embodiment 3>
In this embodiment, the RC-IGBT104 described in the first and second embodiments is applied to a power conversion device. Although the present invention is not limited to a specific power conversion device, the case where the present invention is applied to a three-phase inverter will be described below as the third embodiment.

図17は、本実施の形態にかかる電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 17 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.

図17に示す電力変換システムは、電源400、電力変換装置500、負荷600から構成される。電源400は、直流電源であり、電力変換装置500に直流電力を供給する。電源400は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源400を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 The power conversion system shown in FIG. 17 includes a power supply 400, a power conversion device 500, and a load 600. The power supply 400 is a DC power supply, and supplies DC power to the power conversion device 500. The power supply 400 can be configured with various things, for example, it can be configured with a DC system, a solar cell, a storage battery, or it can be configured with a rectifier circuit or an AC / DC converter connected to an AC system. May be good. Further, the power supply 400 may be configured by a DC / DC converter that converts the DC power output from the DC system into a predetermined power.

電力変換装置500は、電源400と負荷600の間に接続された三相のインバータであり、電源400から供給された直流電力を交流電力に変換し、負荷600に交流電力を供給する。電力変換装置500は、図17に示すように、直流電力を交流電力に変換して出力する主変換回路501と、主変換回路501の各スイッチング素子を駆動する駆動信号を出力する駆動回路502と、駆動回路502を制御する制御信号を駆動回路502に出力する制御回路503とを備えている。 The power conversion device 500 is a three-phase inverter connected between the power supply 400 and the load 600, converts the DC power supplied from the power supply 400 into AC power, and supplies AC power to the load 600. As shown in FIG. 17, the power conversion device 500 includes a main conversion circuit 501 that converts DC power into AC power and outputs it, and a drive circuit 502 that outputs a drive signal that drives each switching element of the main conversion circuit 501. A control circuit 503 that outputs a control signal for controlling the drive circuit 502 to the drive circuit 502 is provided.

負荷600は、電力変換装置500から供給された交流電力によって駆動される三相の電動機である。なお、負荷600は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 600 is a three-phase electric motor driven by AC power supplied from the power conversion device 500. The load 600 is not limited to a specific application, and is an electric motor mounted on various electric devices. For example, the load 600 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.

以下、電力変換装置500の詳細を説明する。主変換回路501は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源400から供給される直流電力を交流電力に変換し、負荷600に供給する。主変換回路501の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路501は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路501の各スイッチング素子と各還流ダイオードには、実施の形態1,2で説明したRC-IGBT104を適用する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路501の3つの出力端子は、負荷600に接続される。 Hereinafter, the details of the power conversion device 500 will be described. The main conversion circuit 501 includes a switching element and a freewheeling diode (not shown), and by switching the switching element, the DC power supplied from the power supply 400 is converted into AC power and supplied to the load 600. There are various specific circuit configurations of the main conversion circuit 501, but the main conversion circuit 501 according to the present embodiment is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can consist of six anti-parallel freewheeling diodes. The RC-IGBT104 described in the first and second embodiments is applied to each switching element and each freewheeling diode of the main conversion circuit 501. The six switching elements are connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. Then, the output terminals of each upper and lower arm, that is, the three output terminals of the main conversion circuit 501 are connected to the load 600.

駆動回路502は、主変換回路501のスイッチング素子を駆動する駆動信号を生成し、主変換回路501のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路503からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 The drive circuit 502 generates a drive signal for driving the switching element of the main conversion circuit 501 and supplies the drive signal to the control electrode of the switching element of the main conversion circuit 501. Specifically, according to the control signal from the control circuit 503 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrode of each switching element. When the switching element is kept on, the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element, and when the switching element is kept off, the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).

制御回路503は、負荷600に所望の電力が供給されるよう主変換回路501のスイッチング素子を制御する。具体的には、負荷600に供給すべき電力に基づいて主変換回路501の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路501を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、駆動回路502に制御指令(制御信号)を出力する。駆動回路502は、この制御信号に従い、各スイッチング素子の制御電極にオン信号またはオフ信号を駆動信号として出力する。 The control circuit 503 controls the switching element of the main conversion circuit 501 so that the desired power is supplied to the load 600. Specifically, the time (on time) for each switching element of the main conversion circuit 501 to be in the on state is calculated based on the power to be supplied to the load 600. For example, the main conversion circuit 501 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is output to the drive circuit 502 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off. The drive circuit 502 outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.

本実施の形態に係る電力変換装置では、主変換回路501のスイッチング素子として実施の形1,2で説明したRC-IGBT104を適用するため、良好なダイオード特性と低コスト性を実現することができる。 In the power conversion device according to the present embodiment, the RC-IGBT104 described in the first and second embodiments is applied as the switching element of the main conversion circuit 501, so that good diode characteristics and low cost can be realized. ..

本実施の形態では、2レベルの三相インバータに本発明を適用する例を説明したが、本発明は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本発明を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本発明を適用することも可能である。 In the present embodiment, an example of applying the present invention to a two-level three-phase inverter has been described, but the present invention is not limited to this, and can be applied to various power conversion devices. In the present embodiment, a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used, and when power is supplied to a single-phase load, the present invention is applied to a single-phase inverter. You may apply it. Further, when supplying electric power to a DC load or the like, the present invention can be applied to a DC / DC converter or an AC / DC converter.

また、本発明を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、または誘導加熱調理器や非接触器給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 Further, the power conversion device to which the present invention is applied is not limited to the case where the above-mentioned load is an electric motor, and is, for example, a power source for a discharge processing machine, a laser processing machine, an induction heating cooker, or a non-contact power supply system. It can be used as a device, and can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

1 n-型ドリフト層、2 p型ベース層、5 トレンチ、6 ゲート絶縁膜、7 ゲート電極、9 n型バッファ層、10 p型コレクタ層、11 層間絶縁膜、12 バリアメタル、13 コンタクトホール、14 タングステンプラグ、15 エミッタ電極、16 コレクタ電極、21 p型アノード層、24 アノード電極、25 カソード電極、26 ダミーゲート電極、31 第1電極、32 第2電極、33 MOSゲート構造、34 ダイオード構造、35 半導体基体、104A トランジスタ領域、104B ダイオード領域、304 表面電極、400 電源、500 電力変換装置、501 主変換回路、502 駆動回路、503 制御回路、600 負荷。 1 n-type drift layer, 2 p-type base layer, 5 trench, 6 gate insulating film, 7 gate electrode, 9 n type buffer layer, 10 p type collector layer, 11 interlayer insulating film, 12 barrier metal, 13 contact hole, 14 Tungsten plug, 15 emitter electrode, 16 collector electrode, 21 p-type anode layer, 24 anode electrode, 25 cathode electrode, 26 dummy gate electrode, 31 first electrode, 32 second electrode, 33 MOS gate structure, 34 diode structure, 35 semiconductor substrate, 104A transistor region, 104B diode region, 304 surface electrode, 400 power supply, 500 power conversion device, 501 main conversion circuit, 502 drive circuit, 503 control circuit, 600 load.

Claims (11)

一方主面および他方主面を有し、前記一方主面と前記他方主面との間に第1導電型のドリフト層を有し、前記一方主面から前記他方主面にわたりトランジスタを構成するトランジスタ領域と、前記一方主面から前記他方主面にわたりダイオードを構成するダイオード領域と、を有する半導体基体と、
前記トランジスタ領域と前記ダイオード領域の上に亘り、前記半導体基体の前記一方主面上に形成される第1電極と、
を備える半導体装置であって、
前記トランジスタ領域は、
前記半導体基体の前記一方主面側に設けられた第2導電型の第1ベース層と、
前記第1ベース層の前記一方主面側に設けられ、上面が前記一方主面を構成する第1導電型のエミッタ層と、
前記第1ベース層の前記一方主面側に設けられ、上面が前記一方主面を構成し、前記第1ベース層より不純物濃度が高い第2ベース層と、
前記エミッタ層の上面から前記エミッタ層と前記第1ベース層とを貫通し前記ドリフト層に達するトレンチの内部に絶縁膜を介して設けられたゲート電極と、を備え
前記ダイオード領域は、
前記半導体基体の前記一方主面側に設けられ、前記一方主面を構成する上面が前記第1電極に接触し、前記ドリフト層と前記第1電極とを隔離する第2導電型のアノード層を備え、
前記半導体装置は、
前記ゲート電極を覆い、前記第2ベース層および前記エミッタ層の上面を露出するコンタクトホールを有する層間絶縁膜と、
前記コンタクトホール内で前記第2ベース層および前記エミッタ層と前記第1電極との間に設けられ、前記第2ベース層および前記エミッタ層の上面と前記第1電極とに接触するバリアメタルとを備える、
半導体装置。
A diode having one main surface and the other main surface, having a first conductive type drift layer between the one main surface and the other main surface, and forming a transistor from the one main surface to the other main surface. A semiconductor substrate having a region and a diode region constituting a diode from the one main surface to the other main surface.
A first electrode formed on the one main surface of the semiconductor substrate over the transistor region and the diode region.
It is a semiconductor device equipped with
The transistor region is
A second conductive type first base layer provided on the one main surface side of the semiconductor substrate, and
A first conductive type emitter layer provided on the one main surface side of the first base layer and having an upper surface constituting the one main surface.
A second base layer provided on the one main surface side of the first base layer, the upper surface constituting the one main surface, and a higher impurity concentration than the first base layer.
The diode region comprises a gate electrode provided via an insulating film inside a trench that penetrates the emitter layer and the first base layer from the upper surface of the emitter layer and reaches the drift layer.
A second conductive type anode layer provided on the one main surface side of the semiconductor substrate and having an upper surface constituting the one main surface in contact with the first electrode and separating the drift layer and the first electrode. Prepare,
The semiconductor device is
An interlayer insulating film having a contact hole that covers the gate electrode and exposes the upper surfaces of the second base layer and the emitter layer.
A barrier metal provided between the second base layer and the emitter layer and the first electrode in the contact hole and in contact with the upper surface of the second base layer and the emitter layer and the first electrode is provided. Prepare, prepare
Semiconductor device.
前記ダイオード領域は、
前記アノード層の上面から前記アノード層を貫通し前記ドリフト層に達するトレンチの内部に絶縁膜を介して設けられ、前記第1電極に接触するダミーゲート電極を備える、
請求項1に記載の半導体装置。
The diode region is
A dummy gate electrode provided via an insulating film inside a trench that penetrates the anode layer from the upper surface of the anode layer and reaches the drift layer, and is in contact with the first electrode.
The semiconductor device according to claim 1.
前記第1電極は、前記ダイオード領域における前記半導体基体の前記一方主面のうち前記ダミーゲート電極が設けられない領域において、前記アノード層のみと接触する、
請求項2に記載の半導体装置。
The first electrode contacts only the anode layer in the region of the one main surface of the semiconductor substrate in the diode region where the dummy gate electrode is not provided.
The semiconductor device according to claim 2.
前記バリアメタルは、窒化チタン、炭化チタン、またはチタンシリサイドを含む、
請求項1から3のいずれか1項に記載の半導体装置。
The barrier metal comprises titanium nitride, titanium carbide, or titanium silicide.
The semiconductor device according to any one of claims 1 to 3.
前記第1電極はアルミニウム合金である、
請求項1から4のいずれか1項に記載の半導体装置。
The first electrode is an aluminum alloy.
The semiconductor device according to any one of claims 1 to 4.
前記バリアメタルは、前記第2ベース層および前記エミッタ層との接触界面にシリサイドを有する、
請求項1から5のいずれか1項に記載の半導体装置。
The barrier metal has silicide at the contact interface with the second base layer and the emitter layer.
The semiconductor device according to any one of claims 1 to 5.
(a)一方主面と他方主面との間に第1導電型のドリフト層を有する半導体基体の前記一方主面側に、第2導電型の第1ベース層、前記第1ベース層の前記一方主面側に設けられた第1導電型のエミッタ層、および前記第1ベース層の前記一方主面側に設けられた前記第1ベース層より不純物濃度が高い第2導電型の第2ベース層を有するMOSゲート構造と、前記半導体基体の前記一方主面側に前記一方主面と前記ドリフト層とを隔離する第2導電型のアノード層を有するダイオード構造とを形成する工程と、
(b)前記MOSゲート構造と前記ダイオード構造の上に層間絶縁膜を形成する工程と、
(c)前記MOSゲート構造の上の前記層間絶縁膜に、前記エミッタ層および前記第2ベース層の上面を露出させるコンタクトホールを開口する工程と、
(d)前記コンタクトホール内の前記エミッタ層および前記第2ベース層の上面、ならびに前記層間絶縁膜上にバリアメタルを形成する工程と、
(e)前記ダイオード構造の上の前記層間絶縁膜と前記バリアメタルを除去する工程と、
(f)前記バリアメタルおよび前記アノード層に接触する第1電極を、前記MOSゲート構造の上と前記ダイオード構造の上とに同時に形成する工程と、を備える、
半導体装置の製造方法。
(A) The second conductive type first base layer and the first base layer on the one main surface side of the semiconductor substrate having the first conductive type drift layer between one main surface and the other main surface. On the other hand, a second conductive type second base having a higher impurity concentration than the first conductive type emitter layer provided on the main surface side and the first base layer provided on the one main surface side of the first base layer. A step of forming a MOS gate structure having a layer and a diode structure having a second conductive type anode layer separating the one main surface and the drift layer on the one main surface side of the semiconductor substrate.
(B) A step of forming an interlayer insulating film on the MOS gate structure and the diode structure,
(C) A step of opening a contact hole in the interlayer insulating film on the MOS gate structure to expose the upper surfaces of the emitter layer and the second base layer.
(D) A step of forming a barrier metal on the upper surface of the emitter layer and the second base layer in the contact hole, and the interlayer insulating film.
(E) A step of removing the interlayer insulating film and the barrier metal on the diode structure,
(F) A step of simultaneously forming a first electrode in contact with the barrier metal and the anode layer on the MOS gate structure and the diode structure.
Manufacturing method for semiconductor devices.
前記第1電極は、前記アノード層によってのみ前記ダイオード構造と接触する、
請求項7に記載の半導体装置の製造方法。
The first electrode is in contact with the diode structure only by the anode layer.
The method for manufacturing a semiconductor device according to claim 7.
前記工程(e)は、前記ダイオード構造の上の前記層間絶縁膜と前記バリアメタルをドライエッチングで除去する工程である、
請求項7または8に記載の半導体装置の製造方法。
The step (e) is a step of removing the interlayer insulating film and the barrier metal on the diode structure by dry etching.
The method for manufacturing a semiconductor device according to claim 7.
前記工程(e)は、
(e1)前記ダイオード構造の上の、前記バリアメタルと、前記層間絶縁膜の一部の膜厚をドライエッチングで除去する工程と、
(e2)前記工程(e1)で残った前記ダイオード構造の上の前記層間絶縁膜をウェットエッチングで除去する工程と、を備える、
請求項7または8に記載の半導体装置の製造方法。
The step (e) is
(E1) A step of removing the film thickness of the barrier metal and a part of the interlayer insulating film on the diode structure by dry etching.
(E2) The step of removing the interlayer insulating film on the diode structure remaining in the step (e1) by wet etching is provided.
The method for manufacturing a semiconductor device according to claim 7.
請求項1から5のいずれか1項に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
前記半導体装置を駆動する駆動信号を前記半導体装置に出力する駆動回路と、
前記駆動回路を制御する制御信号を前記駆動回路に出力する制御回路と、を備える、
電力変換装置。
A main conversion circuit having the semiconductor device according to any one of claims 1 to 5 and converting and outputting input power.
A drive circuit that outputs a drive signal for driving the semiconductor device to the semiconductor device,
A control circuit that outputs a control signal for controlling the drive circuit to the drive circuit is provided.
Power converter.
JP2021018212A 2021-02-08 2021-02-08 Semiconductor devices, semiconductor device manufacturing methods, and power conversion devices Active JP7090760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021018212A JP7090760B2 (en) 2021-02-08 2021-02-08 Semiconductor devices, semiconductor device manufacturing methods, and power conversion devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021018212A JP7090760B2 (en) 2021-02-08 2021-02-08 Semiconductor devices, semiconductor device manufacturing methods, and power conversion devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017075726A Division JP6952483B2 (en) 2017-04-06 2017-04-06 Semiconductor devices, semiconductor device manufacturing methods, and power converters

Publications (2)

Publication Number Publication Date
JP2021077911A JP2021077911A (en) 2021-05-20
JP7090760B2 true JP7090760B2 (en) 2022-06-24

Family

ID=75898309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018212A Active JP7090760B2 (en) 2021-02-08 2021-02-08 Semiconductor devices, semiconductor device manufacturing methods, and power conversion devices

Country Status (1)

Country Link
JP (1) JP7090760B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113990926B (en) * 2021-10-26 2023-11-24 电子科技大学 RC-IGBT structure for reducing reverse recovery loss of integrated diode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165018A (en) 2012-04-27 2012-08-30 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2014192351A (en) 2013-03-27 2014-10-06 Mitsubishi Electric Corp Semiconductor device manufacturing method
JP2015188066A (en) 2014-03-10 2015-10-29 パナソニックIpマネジメント株式会社 Semiconductor element and manufacturing method of the same
JP2016096222A (en) 2014-11-13 2016-05-26 三菱電機株式会社 Semiconductor device
WO2016080269A1 (en) 2014-11-17 2016-05-26 富士電機株式会社 Semiconductor device and method for producing semiconductor device
JP2016111110A (en) 2014-12-03 2016-06-20 ルネサスエレクトロニクス株式会社 Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165018A (en) 2012-04-27 2012-08-30 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2014192351A (en) 2013-03-27 2014-10-06 Mitsubishi Electric Corp Semiconductor device manufacturing method
JP2015188066A (en) 2014-03-10 2015-10-29 パナソニックIpマネジメント株式会社 Semiconductor element and manufacturing method of the same
JP2016096222A (en) 2014-11-13 2016-05-26 三菱電機株式会社 Semiconductor device
WO2016080269A1 (en) 2014-11-17 2016-05-26 富士電機株式会社 Semiconductor device and method for producing semiconductor device
JP2016111110A (en) 2014-12-03 2016-06-20 ルネサスエレクトロニクス株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2021077911A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6952483B2 (en) Semiconductor devices, semiconductor device manufacturing methods, and power converters
US20220254904A1 (en) Silicon carbide semiconductor device, power converter, and method of manufacturing silicon carbide semiconductor device
JP4815885B2 (en) Method for controlling semiconductor device
JP2009033036A (en) Semiconductor device, and electric circuit device using same
JPWO2018155566A1 (en) Silicon carbide semiconductor device and power converter
JP7055056B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6870119B2 (en) Semiconductor devices and power converters
WO2020026401A1 (en) Wide band gap semiconductor device and power conversion device
JP7250473B2 (en) semiconductor equipment
US20210288140A1 (en) Semiconductor device and power converter
US11239350B2 (en) Semiconductor device, method of manufacturing semiconductor device, power conversion device
JP7090760B2 (en) Semiconductor devices, semiconductor device manufacturing methods, and power conversion devices
JP2021093496A (en) Silicon carbide semiconductor device and power conversion device
WO2020157815A1 (en) Semiconductor device and power conversion device
JP7061953B2 (en) Silicon carbide semiconductor device and power conversion device
JP7158317B2 (en) semiconductor equipment
JP7094439B2 (en) Silicon carbide semiconductor device and power conversion device
WO2023002795A1 (en) Semiconductor device
WO2023189164A1 (en) Semiconductor device and electric power conversion device
JP7330396B2 (en) Semiconductor device and power conversion device
TWI836801B (en) Semiconductor device, manufacturing method of semiconductor device, and power conversion device
WO2022097262A1 (en) Semiconductor device and power conversion device
WO2021049090A1 (en) Semiconductor device and power conversion device
TW202339187A (en) Semiconductor device and power conversion device
TW202339290A (en) Semiconductor device, method for manufacturing semiconductor device, and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220614

R150 Certificate of patent or registration of utility model

Ref document number: 7090760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150