JP7090374B2 - Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell - Google Patents

Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP7090374B2
JP7090374B2 JP2016214549A JP2016214549A JP7090374B2 JP 7090374 B2 JP7090374 B2 JP 7090374B2 JP 2016214549 A JP2016214549 A JP 2016214549A JP 2016214549 A JP2016214549 A JP 2016214549A JP 7090374 B2 JP7090374 B2 JP 7090374B2
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode catalyst
polymer electrolyte
electrode
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016214549A
Other languages
Japanese (ja)
Other versions
JP2018073709A (en
Inventor
まどか 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2016214549A priority Critical patent/JP7090374B2/en
Publication of JP2018073709A publication Critical patent/JP2018073709A/en
Application granted granted Critical
Publication of JP7090374B2 publication Critical patent/JP7090374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、電極触媒層、膜電極接合体及び固体高分子形燃料電池に関する。 The present invention relates to an electrode catalyst layer, a membrane electrode assembly and a polymer electrolyte fuel cell.

燃料電池は、水素と酸素の化学反応から電気を生み出す発電システムである。従来の発電方式と比較して高効率、低環境負荷、低騒音といった特徴を持ち、将来のクリーンなエネルギー源として注目されている。特に、室温付近で使用可能な固体高分子形燃料電池は、車載用電源や家庭用定置電源などへの使用が有望視されており、近年、固体高分子形燃料電池に関する様々な研究開発が行われている。その実用化に向けての課題には、発電特性や耐久性などの電池性能向上、インフラ整備、製造コストの低減、等が挙げられる。 A fuel cell is a power generation system that produces electricity from a chemical reaction between hydrogen and oxygen. Compared to conventional power generation methods, it has features such as high efficiency, low environmental load, and low noise, and is attracting attention as a clean energy source in the future. In particular, polymer electrolyte fuel cells that can be used near room temperature are expected to be used for in-vehicle power supplies and stationary power sources for home use, and in recent years, various research and development on polymer electrolyte fuel cells have been carried out. It has been. Issues for its practical application include improvement of battery performance such as power generation characteristics and durability, infrastructure development, and reduction of manufacturing cost.

固体高分子形燃料電池は、一般的に、多数の単セルが積層されて構成されている。単セルは、燃料ガスを供給する燃料極(アノード)と酸化剤を供給する酸素極(カソード)の二つの電極で高分子電解質膜を挟んで接合した膜電極接合体を、ガス流路および冷却水流路を有するセパレーターで挟んだ構造をしている。これらの燃料極及び酸素極の各々は、白金系の貴金属などの触媒物質、導電性担体および高分子電解質を少なくとも含む電極触媒層と、ガス通気性と導電性とを兼ね備えたガス拡散層とで主に構成されている。 A polymer electrolyte fuel cell is generally composed of a large number of single cells stacked together. A single cell is a gas flow path and cooling of a film electrode junction formed by sandwiching a polymer electrolyte membrane between two electrodes, a fuel electrode (anode) that supplies fuel gas and an oxygen electrode (cathode) that supplies an oxidizing agent. It has a structure sandwiched between separators having a water flow path. Each of these fuel electrode and oxygen electrode is an electrode catalyst layer containing at least a catalyst substance such as a platinum-based noble metal, a conductive carrier and a polymer electrolyte, and a gas diffusion layer having both gas permeability and conductivity. It is mainly composed.

固体高分子形燃料電池では、以下のような電気化学反応を経て電気を取り出すことが出来る。まず、燃料極側の電極触媒層において、燃料ガスに含まれる水素が触媒物質により酸化され、プロトンおよび電子となる。生成したプロトンは、電極触媒層内の高分子電解質および電極触媒層に接している高分子電解質膜を通り、酸素極側の電極触媒層に達する。また、同時に生成した電子は、電極触媒層内の導電性担体、電極触媒層の高分子電解質膜と異なる側に接しているガス拡散層、セパレーターおよび外部回路を通って酸素極側の電極触媒層に達する。そして、酸素極側の電極触媒層において、プロトンおよび電子が酸化剤ガスに含まれる酸素と反応し、水を生成する。 In a polymer electrolyte fuel cell, electricity can be extracted through the following electrochemical reactions. First, in the electrode catalyst layer on the fuel electrode side, hydrogen contained in the fuel gas is oxidized by the catalytic substance to become protons and electrons. The generated protons pass through the polyelectrolyte in the electrode catalyst layer and the polyelectrolyte film in contact with the electrode catalyst layer, and reach the electrode catalyst layer on the oxygen electrode side. Further, the electrons generated at the same time pass through the conductive carrier in the electrode catalyst layer, the gas diffusion layer in contact with the side different from the polymer electrolyte membrane of the electrode catalyst layer, the separator and the external circuit, and the electrode catalyst layer on the oxygen electrode side. To reach. Then, in the electrode catalyst layer on the oxygen electrode side, protons and electrons react with oxygen contained in the oxidant gas to generate water.

膜電極接合体を構成している電極触媒層には、製造工程で発生するムラが存在することがある。電極触媒層に発生するムラは、触媒物質、導電性担体および高分子電解質の偏在や、電極触媒層内部の局所的な熱履歴の差や、電極触媒層の厚みのばらつきによるものである。ムラのある電極触媒層を有する膜電極接合体は、周辺部材と積層してセル化し、発電した際に、高分子電解質膜またはガス拡散層と電極触媒層の密着性が部分的に低下して生成水が滞留したり、電極触媒層の内部に局所的に高い電気的負荷のかかる部分が存在したりするおそれがある。このような局所的な負荷は膜電極接合体の劣化を促進しやすく、長期的には破膜等を生じる可能性が高い。 The electrode catalyst layer constituting the membrane electrode assembly may have unevenness generated in the manufacturing process. The unevenness generated in the electrode catalyst layer is due to uneven distribution of the catalyst substance, the conductive carrier and the polymer electrolyte, the difference in the local thermal history inside the electrode catalyst layer, and the variation in the thickness of the electrode catalyst layer. A membrane electrode assembly having an uneven electrode catalyst layer is laminated with a peripheral member to form a cell, and when power is generated, the adhesion between the polymer electrolyte membrane or the gas diffusion layer and the electrode catalyst layer is partially reduced. There is a risk that the generated water will stay or that there will be a locally high electrical load portion inside the electrode catalyst layer. Such a local load tends to accelerate the deterioration of the membrane electrode assembly, and there is a high possibility that the membrane breaks or the like occurs in the long term.

上述のような電極触媒層にムラのある膜電極接合体が燃料電池に用いられた場合、電池性能や耐久性の著しい低下を生じるため、膜電極接合体の製造工程において、問題となるムラを高精度で検出し、不良品を除外する方法が提案されている。
膜電極接合体やガス拡散層の欠陥部の検出には、欠陥部における照射光の透過光や反射光を撮像し、画像処理する方法がある。例えば、特許文献1に記載されている方法は、シート部材の片側から検査光を照射して、欠損部で透過した検査光を反対側に設けた検出器で検出するものである。
When a membrane electrode assembly having unevenness in the electrode catalyst layer as described above is used for a fuel cell, the battery performance and durability are significantly deteriorated, which causes a problem in the manufacturing process of the membrane electrode assembly. A method of detecting with high accuracy and excluding defective products has been proposed.
To detect the defective portion of the membrane electrode assembly or the gas diffusion layer, there is a method of capturing the transmitted light or the reflected light of the irradiation light in the defective portion and performing image processing. For example, the method described in Patent Document 1 irradiates inspection light from one side of a sheet member, and detects the inspection light transmitted through the defective portion with a detector provided on the other side.

また、特許文献2に記載されている方法は、膜電極接合体の片側から検査光を照射して、欠陥部で反射した検査光を検出器で検出するものである。
また、特許文献3に記載されている方法は、多孔質電極基材の表面に検査光を照射し、その透過光、正反射光および散乱光を撮像し、それらの撮像データを画像処理部にて解析し、その欠陥の種類、存在位置および大きさを知るものである。
Further, the method described in Patent Document 2 irradiates inspection light from one side of the membrane electrode assembly, and detects the inspection light reflected by the defective portion with a detector.
Further, in the method described in Patent Document 3, the surface of the porous electrode base material is irradiated with inspection light, the transmitted light, the specular reflected light and the scattered light are imaged, and the imaged data thereof is sent to the image processing unit. And analyze it to know the type, location and size of the defect.

特開2014-190706号公報Japanese Unexamined Patent Publication No. 2014-190706 特開2014-225340号公報Japanese Unexamined Patent Publication No. 2014-225340 特許第5306053号公報Japanese Patent No. 5306053

しかしながら、特許文献1による方法では、検査の光源として透過光を用いるため、光を透過しない電極触媒層に発生したムラの検査には適用できないという問題があった。
また、特許文献2による方法は、検査に反射光を用いるものであるが、膜電極接合体の表面に相紙を設置するため、シワを検出することは出来ても電極触媒層の表面に発生したムラを検出することは出来ないという問題があった。
However, since the method according to Patent Document 1 uses transmitted light as a light source for inspection, there is a problem that it cannot be applied to inspection of unevenness generated in an electrode catalyst layer that does not transmit light.
Further, the method according to Patent Document 2 uses reflected light for inspection, but since the photographic paper is placed on the surface of the membrane electrode assembly, wrinkles can be detected but occur on the surface of the electrode catalyst layer. There was a problem that it was not possible to detect the unevenness.

特許文献3による方法は、披検査体の表面に直接検査光を照射して欠陥を検出するものであり、電極触媒層の検査にも応用できる可能性がある。しかし、多孔質電極基材に発生する欠陥と電極触媒層に発生するムラではサイズやコントラストが異なるため、そのまま適用することはできない。また、特許文献3では電極触媒層に関しては言及されておらず、電極触媒層に発生したムラの良否の基準が不明であるという問題があった。 The method according to Patent Document 3 directly irradiates the surface of the inspection body with inspection light to detect defects, and may be applicable to inspection of the electrode catalyst layer. However, since the size and contrast are different between the defect generated in the porous electrode base material and the unevenness generated in the electrode catalyst layer, it cannot be applied as it is. Further, Patent Document 3 does not mention the electrode catalyst layer, and there is a problem that the criteria for quality of unevenness generated in the electrode catalyst layer are unknown.

本発明は、上記の問題を解決するためになされたものであり、固体高分子形燃料電池の実用において問題となる電極触媒層のムラを高精度で検出して不良品を除外し、長期的にも電池性能や耐久性の著しい低下を生じることのない電極触媒層、膜電極接合体および固体高分子形燃料電池を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems, and it detects unevenness of the electrode catalyst layer, which is a problem in practical use of a polymer electrolyte fuel cell, with high accuracy and excludes defective products for a long period of time. Another object of the present invention is to provide an electrode catalyst layer, a membrane electrode assembly, and a polymer electrolyte fuel cell that do not significantly reduce the battery performance and durability.

上記課題を解決するために、本発明の第1態様に係る電極触媒層は、触媒物質と導電性担体と高分子電解質とを少なくとも含む電極触媒層であって、当該電極触媒層の表面において、所定の面積を有する領域にブリュースター角で入射する検査光を照射した際の正反射光のうち、P偏光成分のみを通過させる偏光子を通過した光の反射光量をLpとし、4096階調で表したとき、前記領域を重複させることなく前記電極触媒層の表面の概ね全域を走査して得られる反射光量Lpの標準偏差σが、30以上150以下であることを特徴としている。 In order to solve the above problems, the electrode catalyst layer according to the first aspect of the present invention is an electrode catalyst layer containing at least a catalytic substance, a conductive carrier and a polymer electrolyte, and is formed on the surface of the electrode catalyst layer. Of the positively reflected light when the region having a predetermined area is irradiated with the inspection light incident at Brewster's angle, the amount of reflected light that has passed through the polarizing element that allows only the P-polarizing component to pass is Lp, and is 4096 gradations. When represented, it is characterized in that the standard deviation σ of the reflected light amount Lp obtained by scanning almost the entire surface of the surface of the electrode catalyst layer without overlapping the regions is 30 or more and 150 or less.

また、この電極触媒層において、前記領域の所定の面積が、1600μm2以上10000μm2以下であることが好ましい。
また、この電極触媒層において、前記電極触媒層の表面と直交する方向の厚みが、1μm以上30μm以下の範囲内となるように構成されていことが好ましく、当該厚みが、2μm以上20μm以下の範囲内となるように構成されていることが一層好ましい。
Further, in this electrode catalyst layer, it is preferable that the predetermined area of the region is 1600 μm 2 or more and 10000 μm 2 or less.
Further, in this electrode catalyst layer, it is preferable that the thickness in the direction orthogonal to the surface of the electrode catalyst layer is within the range of 1 μm or more and 30 μm or less, and the thickness is in the range of 2 μm or more and 20 μm or less. It is more preferable that it is configured to be inside.

また、この電極触媒層において、前記導電性担体の重量に対する前記高分子電解質の重量の比率が、0.8以上1.6以下となるように構成されていることが好ましい。
また、上記課題を解決するために、本発明の第2態様に係る膜電極接合体は、高分子電解質膜と、該高分子電解質膜の少なくとも酸素極側の面に接合された上記第1態様に係る電極触媒層とを備えていることを特徴としている。
また、上記課題を解決するために、本発明の第3態様に係る固体高分子形燃料電池は、上記第2態様に係る膜電極接合体を備えていることを特徴としている。
Further, it is preferable that the electrode catalyst layer is configured such that the ratio of the weight of the polymer electrolyte to the weight of the conductive carrier is 0.8 or more and 1.6 or less.
Further, in order to solve the above-mentioned problems, the membrane electrode assembly according to the second aspect of the present invention has the polymer electrolyte membrane and the first aspect bonded to at least the surface on the oxygen electrode side of the polymer electrolyte membrane. It is characterized by having an electrode catalyst layer according to the above.
Further, in order to solve the above problems, the polymer electrolyte fuel cell according to the third aspect of the present invention is characterized by including the membrane electrode assembly according to the second aspect.

本発明に係る電極触媒層、膜電極接合体及び固体高分子形燃料電池によれば、電極触媒層を、当該電極触媒層の表面において、所定の面積を有する領域にブリュースター角で入射する検査光を照射した際の正反射光のうち、P偏光成分のみを通過させる偏光子を通過した光の反射光量をLpとし、4096階調で表したとき、前記領域を重複させることなく前記電極触媒層の表面の概ね全域を走査して得られる反射光量Lpの標準偏差σが、30以上150以下となるように構成した。これにより、触媒物質、導電性担体および高分子電解質の偏在や、電極触媒層内部の局所的な熱履歴の差や、電極触媒層の厚みのばらつきを抑制し、長期的にも電池性能や耐久性の著しい低下を生じることのない電極触媒層、膜電極接合体および固体高分子形燃料電池を提供することが可能となる。 According to the electrode catalyst layer, the membrane electrode junction, and the solid polymer fuel cell according to the present invention, an inspection in which the electrode catalyst layer is incident on the surface of the electrode catalyst layer at a brewer angle in a region having a predetermined area. Of the positively reflected light when irradiated with light, the amount of reflected light that has passed through the polarizing element that allows only the P-polarizing component to pass is Lp, and when expressed in 4096 gradations, the electrode catalyst does not overlap the regions. The standard deviation σ of the reflected light amount Lp obtained by scanning almost the entire surface of the layer is configured to be 30 or more and 150 or less. As a result, the uneven distribution of the catalyst substance, the conductive carrier and the polymer electrolyte, the difference in the local thermal history inside the electrode catalyst layer, and the variation in the thickness of the electrode catalyst layer are suppressed, and the battery performance and durability are suppressed even in the long term. It is possible to provide an electrode catalyst layer, a membrane electrode junction, and a solid polymer fuel cell that do not cause a significant deterioration in properties.

本発明の実施形態に係る膜電極接合体を示し、(a)は、膜電極接合体を電極触媒層の上面側(酸素極側)から見た平面図、(b)は、(a)のX-X´線に沿う断面図である。The membrane electrode assembly according to the embodiment of the present invention is shown, (a) is a plan view of the membrane electrode assembly viewed from the upper surface side (oxygen electrode side) of the electrode catalyst layer, and (b) is (a). It is sectional drawing along the XX'line. 本発明の実施形態に係る電極触媒層を形成した触媒層付き転写基材の説明図である。It is explanatory drawing of the transfer base material with a catalyst layer which formed the electrode catalyst layer which concerns on embodiment of this invention. 本発明の実施形態に係る電極触媒層の表面において反射光量Lpを得る際の構成例を示す説明図である。It is explanatory drawing which shows the structural example at the time of obtaining the reflected light amount Lp on the surface of the electrode catalyst layer which concerns on embodiment of this invention. 本発明の実施形態に係る固体高分子形燃料電池の構成例を示す分解斜視図である。It is an exploded perspective view which shows the structural example of the polymer electrolyte fuel cell which concerns on embodiment of this invention. 実施例1の反射光量Lpのマッピング画像を示す図である。It is a figure which shows the mapping image of the reflected light amount Lp of Example 1. 実施例1の反射光量Lpのヒストグラムである。It is a histogram of the reflected light amount Lp of Example 1.

以下、本発明の実施形態について、図面を参照しつつ説明する。なお、本実施形態は、以下に記載する実施形態に限定されるものではなく、当業者の知識に基づく設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本実施形態の範囲に含まれるものである。また、各図面は理解を容易にするため適宜誇張して表現している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the present embodiment is not limited to the embodiments described below, and modifications such as design changes based on the knowledge of those skilled in the art can be added, and such modifications are added. The embodiment is also included in the scope of the present embodiment. In addition, each drawing is exaggerated as appropriate to facilitate understanding.

本発明者は、固体高分子形燃料電池の発電性能と耐久性能について鋭意検討を行った結果、これらの性能には電極触媒層における触媒物質、導電性担体および高分子電解質の偏在や、電極触媒層内部の局所的な熱履歴の差や、電極触媒層の厚みのばらつきが大きく影響していることを見出した。そして、電極触媒層における反射輝度のばらつきを所定の範囲内として膜電極接合体における局所的な負荷が生じないようにすることで、劣化を抑制し、長期的にも高い発電性能を発揮する固体高分子形燃料電池を得ることに成功した。 As a result of diligent studies on the power generation performance and durability performance of the polymer electrolyte fuel cell, the present inventor has found that these performances include the uneven distribution of the catalyst substance, the conductive carrier and the polymer electrolyte in the electrode catalyst layer, and the electrode catalyst. It was found that the difference in the local thermal history inside the layer and the variation in the thickness of the electrode catalyst layer had a great influence. Then, by keeping the variation in the reflected brightness in the electrode catalyst layer within a predetermined range and preventing a local load from occurring in the membrane electrode assembly, deterioration is suppressed and a solid exhibiting high power generation performance even in the long term. We succeeded in obtaining a polymer electrolyte fuel cell.

(膜電極接合体及び電極触媒層の構成)
以下、本実施形態に係る膜電極接合体及び電極触媒層の具体的な構成を説明する。
図1(a)は、本実施形態に係る膜電極接合体1を電極触媒層12Cの上面側(酸素極側)から見た平面図であり、図1(b)は、図1(a)のX-X´線に沿う断面図(電極触媒層12Cの表面と直交する厚さ方向の断面図)である。
(Structure of membrane electrode assembly and electrode catalyst layer)
Hereinafter, specific configurations of the membrane electrode assembly and the electrode catalyst layer according to the present embodiment will be described.
FIG. 1A is a plan view of the membrane electrode assembly 1 according to the present embodiment as viewed from the upper surface side (oxygen electrode side) of the electrode catalyst layer 12C, and FIG. 1B is FIG. 1A. It is a cross-sectional view along the XX'line (cross-sectional view in the thickness direction orthogonal to the surface of the electrode catalyst layer 12C).

図1(a),(b)に示すように、膜電極接合体1は、一対の電極触媒層12C、12Aが高分子電解質膜11を挟んで対向配置され、接合しているものである。本実施形態において、高分子電解質膜11の上面に形成される電極触媒層12Cは酸素極を構成するカソード側触媒層であり、高分子電解質膜11の下面に形成される電極触媒層12Aは燃料極を構成するアノード側触媒層である。以下、一対の電極触媒層12C、12Aは、区別する必要が無い場合に、「電極触媒層12」と略記する場合がある。 As shown in FIGS. 1 (a) and 1 (b), in the membrane electrode assembly 1, a pair of electrode catalyst layers 12C and 12A are arranged and bonded to each other with the polymer electrolyte membrane 11 interposed therebetween. In the present embodiment, the electrode catalyst layer 12C formed on the upper surface of the polymer electrolyte film 11 is a cathode-side catalyst layer constituting an oxygen electrode, and the electrode catalyst layer 12A formed on the lower surface of the polymer electrolyte film 11 is a fuel. It is an anode side catalyst layer constituting a pole. Hereinafter, the pair of electrode catalyst layers 12C and 12A may be abbreviated as "electrode catalyst layer 12" when it is not necessary to distinguish them.

なお、電極触媒層12の外周部は、ガスケット等(図示せず)によりシールされていてもよい。
本実施形態に係る電極触媒層12は、少なくとも触媒物質と導電性担体と高分子電解質とを含んでいる。
本実施形態において用いられる触媒物質としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、及びこれらの合金、酸化物、複酸化物、炭化物等を用いることが可能である。
The outer peripheral portion of the electrode catalyst layer 12 may be sealed with a gasket or the like (not shown).
The electrode catalyst layer 12 according to the present embodiment contains at least a catalyst substance, a conductive carrier, and a polymer electrolyte.
The catalytic material used in this embodiment includes platinum, palladium, ruthenium, iridium, rhodium, and osmium, as well as platinum group elements, as well as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum. Metals such as, and alloys, oxides, compound oxides, carbides and the like thereof can be used.

また、これらの触媒を担持する導電性担体は、微粉末状で導電性を有し、触媒に侵されないものであればどのようなものでも構わないが、一般的にカーボン粒子が使用される。例えば、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、フラーレンを好ましく用いることが可能である。カーボン粒子の粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると電極触媒層のガス拡散性が低下したり、触媒の利用率が低下したりするので、10~1000nm程度が好ましい。更に好ましくは、10~100nmが良い。 Further, the conductive carrier that supports these catalysts may be any kind as long as it is in the form of a fine powder and has conductivity and is not affected by the catalyst, but carbon particles are generally used. For example, carbon black, graphite, graphite, activated carbon, carbon nanotubes, carbon nanofibers, and fullerenes can be preferably used. If the particle size of the carbon particles is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusivity of the electrode catalyst layer decreases and the utilization rate of the catalyst decreases, so it is about 10 to 1000 nm. Is preferable. More preferably, 10 to 100 nm is preferable.

本実施形態において用いられる高分子電解質膜11や電極触媒層12に含まれる高分子電解質は、プロトン伝導性を有するものであれば良く、フッ素系高分子電解質、炭化水素系高分子電解質を用いることが可能である。この場合、フッ素系高分子電解質としては、例えば、デュポン社製の「Nafion(登録商標)」、旭硝子社製の「Flemion(登録商標)」、旭化成社製の「Aciplex(登録商標)」、等を用いることが可能である。また、炭化水素系高分子電解質としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等を用いることが可能である。特に、高分子電解質膜11として、デュポン社製の「Nafion(登録商標)」系材料を好適に用いることが可能である。また、電極触媒層12に含まれる高分子電解質としては、様々なものを用いることが可能である。但し、高分子電解質膜11と電極触媒層12との界面抵抗や、湿度変化時の高分子電解質膜11と電極触媒層12とにおける寸法変化率の点から考慮すると、高分子電解質膜11に含まれる高分子電解質と、電極触媒層12に含まれる高分子電解質とは同じか類似の成分であることが好適である。 The polyelectrolyte contained in the polyelectrolyte film 11 and the electrode catalyst layer 12 used in the present embodiment may be any as long as it has proton conductivity, and a fluoropolymer electrolyte or a hydrocarbon-based polyelectrolyte should be used. Is possible. In this case, examples of the fluoropolymer electrolyte include "Nafion (registered trademark)" manufactured by DuPont, "Flemion (registered trademark)" manufactured by Asahi Glass Co., Ltd., "Aciplex (registered trademark)" manufactured by Asahi Kasei Corporation, and the like. Can be used. Further, as the hydrocarbon-based polymer electrolyte, sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether ether sulfone, sulfonated polysulfide, sulfonated polyphenylene and the like can be used. In particular, as the polymer electrolyte membrane 11, it is possible to preferably use a "Nafion (registered trademark)" material manufactured by DuPont. Further, various polyelectrolytes contained in the electrode catalyst layer 12 can be used. However, considering the interface resistance between the polyelectrolyte film 11 and the electrode catalyst layer 12 and the dimensional change rate between the polyelectrolyte film 11 and the electrode catalyst layer 12 when the humidity changes, the polyelectrolyte film 11 is included. It is preferable that the polyelectrolyte to be used and the polyelectrolyte contained in the electrode catalyst layer 12 have the same or similar components.

高分子電解質膜11の上面及び下面に電極触媒層12を形成し、膜電極接合体1を得る方法としては、高分子電解質膜11の表面に直接、触媒物質と導電性担体と高分子電解質と溶媒とを少なくとも含む触媒インクを塗布し、触媒インクの塗膜から溶媒成分を除去して電極触媒層12を形成する方法や、予め用意した触媒層付き転写基材2(図2参照)を用いて、高分子電解質膜11と電極触媒層12の表面を接触させて加熱・加圧することで接合及び転写を行う方法を用いることができる。 As a method of forming the electrode catalyst layer 12 on the upper surface and the lower surface of the polymer electrolyte membrane 11 to obtain the membrane electrode joint 1, the catalyst substance, the conductive carrier, and the polymer electrolyte are directly formed on the surface of the polymer electrolyte membrane 11. Using a method of applying a catalyst ink containing at least a catalyst and removing a catalyst component from the coating film of the catalyst ink to form an electrode catalyst layer 12, or a transfer substrate 2 with a catalyst layer (see FIG. 2) prepared in advance. Therefore, a method of bonding and transferring by contacting the surface of the polymer electrolyte membrane 11 and the surface of the electrode catalyst layer 12 with heating and pressurization can be used.

図2は、触媒層付き転写基材2の説明図(電極触媒層12の表面と直交する厚さ方向の断面図)である。図2に示すように、触媒層付き転写基材2は、基材13の表面に触媒物質と導電性担体と高分子電解質と溶媒とを少なくとも含む触媒インクを塗布し、触媒インクの塗膜から溶媒成分を除去して電極触媒層12が形成されているものである。
触媒インクは、少なくとも上述のような触媒物質と導電性担体と高分子電解質と溶媒とを混合し、分散処理を加えることにより得られる。分散処理には、例えば、遊星ボールミル、ビーズミル、超音波ホモジナイザー等の様々な手法を用いることが可能である。
FIG. 2 is an explanatory view of the transfer base material 2 with a catalyst layer (cross-sectional view in the thickness direction orthogonal to the surface of the electrode catalyst layer 12). As shown in FIG. 2, in the transfer base material 2 with a catalyst layer, a catalyst ink containing at least a catalyst substance, a conductive carrier, a polymer electrolyte, and a solvent is applied to the surface of the base material 13, and the coating film of the catalyst ink is used. The electrode catalyst layer 12 is formed by removing the solvent component.
The catalyst ink is obtained by mixing at least the above-mentioned catalyst substance, a conductive carrier, a polyelectrolyte, and a solvent, and subjecting them to a dispersion treatment. For the dispersion treatment, for example, various methods such as a planetary ball mill, a bead mill, and an ultrasonic homogenizer can be used.

また、触媒インクの分散媒として使用される溶媒は、触媒物質や導電性担体や高分子電解質を浸食することがなく、流動性の高い状態で高分子電解質を溶解または微細ゲルとして分散できるものあれば特に制限はない。
なお、溶媒には高分子電解質となじみがよい水が含まれていてもよい。触媒インク中には揮発性の液体有機溶媒が少なくとも含まれることが望ましいが、溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。水の添加量は、高分子電解質が分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。
Further, the solvent used as the dispersion medium of the catalyst ink is one that can dissolve the polymer electrolyte or disperse it as a fine gel in a highly fluid state without eroding the catalyst substance, the conductive carrier or the polymer electrolyte. There are no particular restrictions.
The solvent may contain water that is familiar with the polyelectrolyte. It is desirable that the catalyst ink contains at least a volatile liquid organic solvent, but those using a lower alcohol as the solvent have a high risk of ignition, and when such a solvent is used, it should be mixed with water. It is preferable to do so. The amount of water added is not particularly limited as long as the polyelectrolyte does not separate and cause cloudiness or gelation.

触媒インクを塗布する方法としては、例えば、ダイコート、ロールコート、カーテンコート、スプレーコート、スキージーなど様々な塗工方法を用いることが可能であるが、塗布中間部分の膜厚が安定しており間欠塗工にも対応可能であるダイコートを、特に好適に用いることが可能である。
また、塗布した触媒インクの乾燥には、例えば、温風オーブン、IR乾燥、ホットプレート、減圧乾燥等を用いることが可能である。
As a method of applying the catalyst ink, for example, various coating methods such as die coat, roll coat, curtain coat, spray coat, and squeegee can be used, but the film thickness of the coating intermediate portion is stable and intermittent. It is possible to particularly preferably use a die coat that can be used for coating.
Further, for drying the applied catalyst ink, for example, a warm air oven, IR drying, a hot plate, vacuum drying or the like can be used.

触媒層付き転写基材2を用い、高分子電解質膜11と電極触媒層12を接触させて加熱・加圧することで接合及び転写を行う場合には、電極触媒層12にかかる圧力が膜電極接合体1の発電性能に影響する。そのため、発電性能の良い膜電極接合体1を得るには、積層体にかかる圧力は、0.5MPa以上20MPa以下の範囲内であることが望ましく、2MPa以上15MPa以下の範囲内であることがより望ましい。20MPaより大きい圧力では電極触媒層12が圧縮されすぎ、また0.5MPより小さい圧力では電極触媒層12と高分子電解質膜11の接合性が低下して、発電性能が低下する。 When bonding and transfer are performed by contacting the polymer electrolyte film 11 and the electrode catalyst layer 12 with the transfer base material 2 with the catalyst layer to heat and pressurize, the pressure applied to the electrode catalyst layer 12 is the membrane electrode assembly. It affects the power generation performance of body 1. Therefore, in order to obtain the membrane electrode assembly 1 having good power generation performance, the pressure applied to the laminated body is preferably in the range of 0.5 MPa or more and 20 MPa or less, and more preferably in the range of 2 MPa or more and 15 MPa or less. desirable. If the pressure is higher than 20 MPa, the electrode catalyst layer 12 is compressed too much, and if the pressure is lower than 0.5 MPa, the bondability between the electrode catalyst layer 12 and the polymer electrolyte film 11 is lowered, and the power generation performance is lowered.

また、接合時の温度は、電極触媒層の高分子電解質のガラス転移点付近に設定するのが、高分子電解質膜11と電極触媒層12の界面の接合性が向上し、界面抵抗を抑えられる点で効果的であり、望ましい。
また、基材13としては、例えばエチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などの転写性に優れたフッ素系樹脂を用いることができる。また、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレートなどの高分子フィルムも用いることができる。
Further, setting the temperature at the time of bonding near the glass transition point of the polymer electrolyte of the electrode catalyst layer improves the bondability of the interface between the polymer electrolyte film 11 and the electrode catalyst layer 12 and suppresses the interface resistance. Effective and desirable in terms of points.
The base material 13 includes, for example, ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), and polytetrafluoro. A fluororesin having excellent transferability such as ethylene (PTFE) can be used. Further, polymer films such as polyimide, polyethylene terephthalate, polyamide (nylon), polysulfone, polyether sulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyallylate, and polyethylene naphthalate can also be used.

また、基材13として、ガス拡散層を用いることもできる。
本発明の実施形態に係る電極触媒層12は、図3に示すような電極触媒層12の表面において、所定の面積を有する領域Dにブリュースター角θで入射する検査光を照射した際の正反射光のうち、P偏光成分のみを通過させる偏光子15を通過した光の反射光量をLpとし、4096階調で表したとき、領域Dを重複させることなく当該電極触媒層12の表面の概ね全域を走査して得られる反射光量Lpの標準偏差σが、30以上150以下となるように構成されている。検査光は光源14より照射され、電極触媒層12の表面で反射されて偏光子15を透過した光が受光部16に入射し、検出される。このとき検出された光の反射光量がLpとなる。
Further, a gas diffusion layer can also be used as the base material 13.
The electrode catalyst layer 12 according to the embodiment of the present invention is the surface of the electrode catalyst layer 12 as shown in FIG. 3 when the region D having a predetermined area is irradiated with the inspection light incident on the Brewster angle θ B. Of the specularly reflected light, the amount of reflected light that has passed through the polarizing element 15 that allows only the P polarization component to pass is Lp, and when expressed in 4096 gradations, the surface of the electrode catalyst layer 12 does not overlap the region D. The standard deviation σ of the reflected light amount Lp obtained by scanning the entire area is configured to be 30 or more and 150 or less. The inspection light is emitted from the light source 14, reflected on the surface of the electrode catalyst layer 12, and the light transmitted through the polarizing element 15 is incident on the light receiving unit 16 and detected. The amount of reflected light of the light detected at this time is Lp.

即ち、領域Dを重複させることなく電極触媒層12の表面の概ね全域を走査して得られる反射光量Lpの標準偏差σは、小さいほど電極触媒層12が均一であり、大きいほど触媒物質、導電性担体および高分子電解質の偏在や、電極触媒層12の局所的な熱履歴の差や厚みのばらつきが大きいという指標となる。
反射光量Lpの標準偏差σの算出方法は、検査光を電極触媒層12の表面に照射し、反射光をP偏光成分のみを通過させる偏光子15を通して受光部16で検出する方法で取得した全ての反射光量Lpのデータについてヒストグラム分析を行うことで得られる。
That is, the standard deviation σ of the reflected light amount Lp obtained by scanning almost the entire surface of the surface of the electrode catalyst layer 12 without overlapping the regions D is that the smaller the standard deviation σ is, the more uniform the electrode catalyst layer 12 is, and the larger the catalyst substance and conductivity. It is an index that the uneven distribution of the sex carrier and the polymer electrolyte, the difference in the local thermal history of the electrode catalyst layer 12, and the variation in the thickness are large.
The method of calculating the standard deviation σ of the reflected light amount Lp is all obtained by irradiating the surface of the electrode catalyst layer 12 with the inspection light and detecting the reflected light with the light receiving unit 16 through the polarizing element 15 that allows only the P polarization component to pass through. It is obtained by performing a histogram analysis on the data of the reflected light amount Lp of.

ここで、図3においては、電極触媒層12は高分子電解質膜11の表面に形成されているが、基材13の表面に形成されていてもよい。
ここで、光源14としては、例えば、LED(Light Emitting Diode:発光ダイオード)やハロゲンランプやキセノンランプ等が用いられる。なお、検査光は、被検査体の全幅に対して均一な照射を行えるよう平行光もしくは高指向性であるのが望ましく、均一照明レンズやテレセントリックレンズを併用してもよい。
Here, in FIG. 3, the electrode catalyst layer 12 is formed on the surface of the polymer electrolyte membrane 11, but may be formed on the surface of the base material 13.
Here, as the light source 14, for example, an LED (Light Emitting Diode), a halogen lamp, a xenon lamp, or the like is used. The inspection light is preferably parallel light or highly directional so that uniform irradiation can be performed on the entire width of the object to be inspected, and a uniform illumination lens or a telecentric lens may be used in combination.

また、受光部16としては、CCD(Charge Coupled Device)イメージセンサーを用いたエリアカメラやラインスキャンカメラが用いられる。特に、被検査体の全幅に対してラインスキャンカメラを設置し、受光部16と垂直の方向に被検査体を移動させながら順次検査を行った場合、検査精度と検査効率に優れるとともに、様々な被検査体のサイズに対応することが可能であり、好適である。 Further, as the light receiving unit 16, an area camera or a line scan camera using a CCD (Charge Coupled Device) image sensor is used. In particular, when a line scan camera is installed for the entire width of the inspected object and the inspected object is sequentially inspected while moving in the direction perpendicular to the light receiving portion 16, the inspection accuracy and the inspection efficiency are excellent, and various inspections are performed. It is possible and suitable for the size of the object to be inspected.

なお、光源14および受光部16の有効サイズが十分に大きい場合には、走査することなく複数の領域Dにおける反射光量Lpを得ることが可能である。
一般的に、平滑な被検査体の表面にブリュースター角で光が入射した場合、P偏光の反射率は0であり、S偏光のみが反射する。つまり、披検査体の表面で反射した光がP偏光成分のみを通過させる偏光子15を通過した場合には、受光部16には、光が入射しない。
When the effective sizes of the light source 14 and the light receiving unit 16 are sufficiently large, it is possible to obtain the reflected light amount Lp in the plurality of regions D without scanning.
Generally, when light is incident on the surface of a smooth object to be inspected at a Brewster's angle, the reflectance of P-polarized light is 0, and only S-polarized light is reflected. That is, when the light reflected on the surface of the inspection body passes through the polarizing element 15 that allows only the P polarization component to pass through, the light is not incident on the light receiving unit 16.

しかし、電極触媒層12の表面のようにミクロな凹凸が存在する場合、凹凸面で光が散乱するためP偏光成分のみを通過させる偏光子15が選択されている場合でも受光部16に検査光が入射する。さらに、電極触媒層12の表面に平滑性や組成の異なる部分が存在する場合、反射率が異なるため、受光部16に入射し、検出される光の反射光量Lpが異なる。
本発明の実施形態に係る電極触媒層12は、領域Dを重複させることなく当該電極触媒層12の表面の概ね全域を走査して得られる反射光量Lpの標準偏差σが、30以上150以下となるように構成されている。
However, when micro-concavities and convexities are present such as on the surface of the electrode catalyst layer 12, light is scattered on the concavo-convex surface. Is incident. Further, when there are portions having different smoothness and composition on the surface of the electrode catalyst layer 12, the reflectances are different, so that the reflected light amount Lp of the light incident on the light receiving portion 16 and being detected is different.
In the electrode catalyst layer 12 according to the embodiment of the present invention, the standard deviation σ of the reflected light amount Lp obtained by scanning almost the entire surface of the electrode catalyst layer 12 without overlapping the regions D is 30 or more and 150 or less. It is configured to be.

反射光量Lpの標準偏差σが150よりも大きい場合には、触媒物質、導電性担体および高分子電解質の偏在や、電極触媒層12の局所的な熱履歴の差や厚みのばらつきが大きく、周辺部材と積層してセル化し発電した際に、電池の出力や耐久性の著しい低下を生じる。これは、高分子電解質膜11またはガス拡散層と電極触媒層12の密着性が部分的に低下したり、電極触媒層12や膜電極接合体1に局所的に高い電気的負荷のかかる部分が存在したりするためであると考えられる。一方、反射光量Lpの標準偏差σが30よりも小さい場合には、導電性担体が密に詰まりすぎている状態であり、発電により生成及び凝縮した水が細孔に詰まってガスの通り道を塞ぎやすいため、電池の出力が低下する。 When the standard deviation σ of the reflected light amount Lp is larger than 150, the catalyst substance, the conductive carrier, and the polymer electrolyte are unevenly distributed, and the difference in the local thermal history and the thickness of the electrode catalyst layer 12 are large, and the periphery is large. When the battery is laminated with a member to form a cell and generate power, the output and durability of the battery are significantly reduced. This is because the adhesion between the polymer electrolyte film 11 or the gas diffusion layer and the electrode catalyst layer 12 is partially reduced, or the electrode catalyst layer 12 or the membrane electrode assembly 1 is locally subjected to a high electrical load. It is thought that this is because it exists. On the other hand, when the standard deviation σ of the reflected light amount Lp is smaller than 30, the conductive carrier is in a state of being too tightly clogged, and the water generated and condensed by power generation clogs the pores and blocks the gas passage. Because it is easy, the output of the battery decreases.

より望ましくは、領域Dの所定の面積が、1600μm2以上10000μm2以下であるのが良い。領域Dの面積が10000μm2よりも大きい場合には、より広いエリアが平均化されてしまうため電極触媒層12に存在するムラを正確に検出することができない。また、領域Dの面積が1600μm2よりも小さい場合には、非常に高解像度の受光部を要し、電極触媒層の全域を走査するための時間も長く要することから、製造工程の観点で実用的ではない。 More preferably, the predetermined area of the region D is 1600 μm 2 or more and 10000 μm 2 or less. When the area of the region D is larger than 10000 μm 2 , the wider area is averaged, so that the unevenness existing in the electrode catalyst layer 12 cannot be accurately detected. Further, when the area of the region D is smaller than 1600 μm 2 , a very high resolution light receiving portion is required, and it takes a long time to scan the entire area of the electrode catalyst layer, so that it is practical from the viewpoint of the manufacturing process. Not the target.

また、本発明の実施形態に係る電極触媒層12の厚みは、1μm以上30μm以下の範囲内の厚さであると良く、製造上のばらつき等を考慮すると、2μm以上20μm以下の範囲内とすることがより好ましい。
電極触媒層12の厚みが30μmよりも厚い場合には、電極触媒層表面にひび割れが生じたり、ガスや生成する水の拡散を妨げたり、導電性が低下したりして、燃料電池に用いた際の出力が低下する。また、電極触媒層12の厚みが1μmよりも薄い場合には、層厚にばらつきが生じ易くなり、内部の触媒物質や高分子電解質が不均一となりやすい。電極触媒層12の表面のひび割れや、厚みの不均一性は、燃料電池として使用し、長期に渡り運転した際の耐久性に悪影響を及ぼす可能性が高く、好ましくない。
Further, the thickness of the electrode catalyst layer 12 according to the embodiment of the present invention is preferably in the range of 1 μm or more and 30 μm or less, and is in the range of 2 μm or more and 20 μm or less in consideration of manufacturing variations and the like. Is more preferable.
When the thickness of the electrode catalyst layer 12 is thicker than 30 μm, the surface of the electrode catalyst layer is cracked, the diffusion of gas and generated water is hindered, and the conductivity is lowered, so that the fuel cell is used. The output is reduced. Further, when the thickness of the electrode catalyst layer 12 is thinner than 1 μm, the layer thickness tends to vary, and the internal catalyst substance and the polymer electrolyte tend to become non-uniform. Cracks on the surface of the electrode catalyst layer 12 and non-uniformity in thickness are not preferable because they are likely to adversely affect the durability when used as a fuel cell and operated for a long period of time.

電極触媒層12の厚みは、例えば、以下のようにして確認することができる。まず電極触媒層12の断面を露出させ、走査型電子顕微鏡(SEM)を用いて3000倍から10000倍程度で5カ所以上の断面を観察する。各観察点で3点以上厚さを計測し、その平均値を各観察点での代表値とする。これら代表値の平均値を、電極触媒層12の厚みとする。 The thickness of the electrode catalyst layer 12 can be confirmed, for example, as follows. First, the cross section of the electrode catalyst layer 12 is exposed, and five or more cross sections are observed using a scanning electron microscope (SEM) at a magnification of 3000 to 10000 times. Measure the thickness at 3 or more points at each observation point, and use the average value as the representative value at each observation point. The average value of these representative values is taken as the thickness of the electrode catalyst layer 12.

電極触媒層12の断面を露出させる方法としては、例えば、イオンミリング、ウルトラミクロトーム等の公知の方法を用いることができる。断面を露出させる加工を行う際には、電極触媒層12を構成する高分子電解質へのダメージを軽減するため、電極触媒層12を冷却しながら加工を行うことが好ましい。
また、電極触媒層12は、当該電極触媒層12中の導電性担体の重量に対する高分子電解質の重量の比率が、0.8以上1.6以下の範囲内となるように構成されている。重量比率が1.6よりも高い場合には、高分子電解質が電極触媒層内の細孔を塞いでしまい、ガスや生成する水の拡散を妨げて燃料電池の出力が低下する可能性がある。また、重量比率が0.8よりも低い場合には、高分子電解質のプロトン伝導パスの減少や遮断が生じ、燃料電池の出力が低下する可能性がある。
As a method for exposing the cross section of the electrode catalyst layer 12, for example, a known method such as ion milling or ultramicrotome can be used. When processing to expose the cross section, it is preferable to perform processing while cooling the electrode catalyst layer 12 in order to reduce damage to the polymer electrolyte constituting the electrode catalyst layer 12.
Further, the electrode catalyst layer 12 is configured such that the ratio of the weight of the polymer electrolyte to the weight of the conductive carrier in the electrode catalyst layer 12 is in the range of 0.8 or more and 1.6 or less. If the weight ratio is higher than 1.6, the polyelectrolyte may block the pores in the electrode catalyst layer, hindering the diffusion of gas and generated water and reducing the output of the fuel cell. .. Further, when the weight ratio is lower than 0.8, the proton conduction path of the polymer electrolyte may be reduced or blocked, and the output of the fuel cell may be reduced.

(固体高分子形燃料電池の構成)
次に、図4を参照しつつ、本発明の実施形態に係る膜電極接合体を備えた固体高分子形燃料電池の具体的な構成を説明する。図2は、膜電極接合体1を装着した固体高分子形燃料電池3の構成例を示す分解斜視図である。但し、図4は、単セルの構成例であり、この構成に限らず、複数の単セルを積層した構成としてもよい。
(Construction of polymer electrolyte fuel cell)
Next, with reference to FIG. 4, a specific configuration of the polymer electrolyte fuel cell provided with the membrane electrode assembly according to the embodiment of the present invention will be described. FIG. 2 is an exploded perspective view showing a configuration example of the polymer electrolyte fuel cell 3 equipped with the membrane electrode assembly 1. However, FIG. 4 is an example of a single cell configuration, and the configuration is not limited to this, and a configuration in which a plurality of single cells are stacked may be used.

図4に示すように、固体高分子形燃料電池3は、膜電極接合体1と、ガス拡散層17Cと、ガス拡散層17Aとを備える。ガス拡散層17Cは、膜電極接合体1の酸素極側のカソード側触媒層である電極触媒層12Cと対向して配置され、ガス拡散層17Aは、膜電極接合体1の燃料極側のアノード側触媒層である電極触媒層12Aと対向して配置されている。電極触媒層12Cおよびガス拡散層17Cから酸素極4Cが構成され、電極触媒層12Aおよびガス拡散層17Aから燃料極4Aが構成される。 As shown in FIG. 4, the polymer electrolyte fuel cell 3 includes a membrane electrode assembly 1, a gas diffusion layer 17C, and a gas diffusion layer 17A. The gas diffusion layer 17C is arranged so as to face the electrode catalyst layer 12C which is the cathode side catalyst layer on the oxygen electrode side of the membrane electrode assembly 1, and the gas diffusion layer 17A is the anode on the fuel electrode side of the membrane electrode assembly 1. It is arranged so as to face the electrode catalyst layer 12A which is a side catalyst layer. The oxygen electrode 4C is composed of the electrode catalyst layer 12C and the gas diffusion layer 17C, and the fuel electrode 4A is composed of the electrode catalyst layer 12A and the gas diffusion layer 17A.

さらに、固体高分子形燃料電池3は、酸素極4Cに面して配置されたセパレーター18Cと、燃料極4Aに面して配置されたセパレーター18Aとを備える。
セパレーター18Cは、導電性でかつガス不透過性の材料からなり、ガス拡散層17Cに面して配置された反応ガス流通用のガス流路19Cと、ガス流路19Cと相対する主面に配置された冷却水流通用の冷却水流路20Cとを備える。さらに、セパレーター18Aは、セパレーター18Cと同様の構成を有しており、ガス拡散層17Aに面して配置されたガス流路19Aと、ガス流路19Aと相対する主面に配置された冷却水流路20Aとを備える。
Further, the polymer electrolyte fuel cell 3 includes a separator 18C arranged to face the oxygen electrode 4C and a separator 18A arranged to face the fuel electrode 4A.
The separator 18C is made of a conductive and gas impermeable material, and is arranged on the gas flow path 19C for the reaction gas flow arranged facing the gas diffusion layer 17C and the main surface facing the gas flow path 19C. The cooling water flow path 20C for flowing the cooling water is provided. Further, the separator 18A has the same configuration as the separator 18C, and has a gas flow path 19A arranged facing the gas diffusion layer 17A and a cooling water flow arranged on the main surface facing the gas flow path 19A. It is provided with a road 20A.

この固体高分子形燃料電池3は、セパレーター18Cのガス流路19Cを通って空気や酸素などの酸化剤が酸素極4Cに供給され、セパレーター18Aのガス流路19Aを通って水素を含む燃料ガスもしくは有機物燃料が燃料極4Aに供給されることによって、発電するようになっている。 In the solid polymer fuel cell 3, an oxidizing agent such as air or oxygen is supplied to the oxygen electrode 4C through the gas flow path 19C of the separator 18C, and the fuel gas containing hydrogen passes through the gas flow path 19A of the separator 18A. Alternatively, organic fuel is supplied to the fuel electrode 4A to generate power.

以上、本実施形態では、電極触媒層12を、当該電極触媒層12の表面において、所定の面積を有する領域Dにブリュースター角θで入射する検査光を照射した際の正反射光のうち、P偏光成分のみを通過させる偏光子15を通過した光の反射光量をLpとし、4096階調で表したとき、領域Dを重複させることなく当該電極触媒層12の表面の概ね全域を走査して得られる反射光量Lpの標準偏差σが、30以上150以下となるように構成した。これにより、触媒物質、導電性担体および高分子電解質の偏在や、電極触媒層12の局所的な熱履歴の差や厚みのばらつきを適正な状態とし、周辺部材と積層してセル化し発電した際に、電池の出力や耐久性に優れた電極触媒層および膜電極接合体を得ることが可能となる。 As described above, in the present embodiment, among the specularly reflected light when the electrode catalyst layer 12 is irradiated with the inspection light incident on the region D having a predetermined area at the Brewster angle θ B on the surface of the electrode catalyst layer 12. When the amount of reflected light that has passed through the polarizing element 15 that allows only the P-polarizing component to pass is Lp and expressed in 4096 gradations, the entire surface of the surface of the electrode catalyst layer 12 is scanned without overlapping the regions D. The standard deviation σ of the amount of reflected light Lp obtained is 30 or more and 150 or less. As a result, when the catalyst substance, the conductive carrier and the polymer electrolyte are unevenly distributed, and the difference in the local thermal history and the variation in the thickness of the electrode catalyst layer 12 are set to an appropriate state, they are laminated with the peripheral members to form a cell and generate power. In addition, it is possible to obtain an electrode catalyst layer and a membrane electrode assembly having excellent battery output and durability.

さらに、電極触媒層12の表面における領域Dの所定の面積を、1600μm2以上10000μm2以下とした。これにより、電極触媒層12に存在するムラを、実用上適切な速度で正確に検出することが可能となる。
また、電極触媒層12の厚みを、1μm以上30μm以下の範囲内に構成したので、層厚ムラや表面のひび割れ等の問題がない電極触媒層12を得ることが可能となり、更には、耐久性に優れた膜電極接合体1を得ることが可能となる。
Further, the predetermined area of the region D on the surface of the electrode catalyst layer 12 is set to 1600 μm 2 or more and 10000 μm 2 or less. This makes it possible to accurately detect the unevenness existing in the electrode catalyst layer 12 at a practically appropriate speed.
Further, since the thickness of the electrode catalyst layer 12 is configured within the range of 1 μm or more and 30 μm or less, it is possible to obtain the electrode catalyst layer 12 without problems such as uneven layer thickness and surface cracks, and further, durability. It is possible to obtain an excellent membrane electrode assembly 1.

また、電極触媒層12を、該電極触媒層12中の導電性担体に対する高分子電解質の重量比率が、0.8以上1.6以下の範囲内となるように構成したので、ガスや水の拡散性を維持しつつ、高いプロトン伝導性を有する電極触媒層および膜電極接合体を得ることが可能となる。
また、膜電極接合体1を用いて固体高分子形燃料電池3を構成したので、フラッディング現象及びプロトン伝導性低下による発電性能の低下がなく、高い発電性能を発揮し、耐久性にも優れた固体高分子形燃料電池を得ることが可能となる。
Further, since the electrode catalyst layer 12 is configured such that the weight ratio of the polymer electrolyte to the conductive carrier in the electrode catalyst layer 12 is within the range of 0.8 or more and 1.6 or less, gas or water. It is possible to obtain an electrode catalyst layer and a membrane electrode assembly having high proton conductivity while maintaining diffusivity.
Further, since the polymer electrolyte fuel cell 3 is configured by using the membrane electrode assembly 1, there is no deterioration in power generation performance due to a flooding phenomenon and a decrease in proton conductivity, high power generation performance is exhibited, and durability is also excellent. It becomes possible to obtain a polymer electrolyte fuel cell.

以下、本発明の実施例に係る膜電極接合体を備えた燃料電池と、比較例に係る膜電極接合体を備えた燃料電池とについて、これらの性能を比較した結果を説明する。
(実施例1)
白金担持カーボン触媒(TEC10E50E,田中貴金属工業社製)と水、エタノールの混合溶媒と高分子電解質(ナフィオン(登録商標),Dupont社製)分散液を混合し、遊星型ボールミルで30分間分散処理を行い、触媒インクを調製した。その際、カーボン担体に対する高分子電解質の重量比率が1.0となるようにした。
Hereinafter, the results of comparing the performances of the fuel cell provided with the membrane electrode assembly according to the embodiment of the present invention and the fuel cell provided with the membrane electrode assembly according to the comparative example will be described.
(Example 1)
A platinum-supported carbon catalyst (TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), a mixed solvent of water and ethanol, and a polyelectrolyte (Nafion (registered trademark), manufactured by Dupont) dispersion are mixed and dispersed in a planetary ball mill for 30 minutes. This was done to prepare the catalyst ink. At that time, the weight ratio of the polymer electrolyte to the carbon carrier was set to 1.0.

調整した触媒インクを、PTFEフィルムの表面にスリットダイコーターにより矩形に塗布し、続けて、触媒インクが塗布されたPTFEフィルムを80度の温風オーブンに入れて、触媒インクのタックがなくなるまで乾燥させ、カソード側触媒層をPTFE表面に形成した。また、同様の方法で、アノード側触媒層をPTFE表面に形成した。
そして、PTFEフィルム上に形成したカソード側触媒層とアノード側触媒層とを、高分子電解質膜(ナフィオン211(登録商標),Dupont社製)の両面に対面するように配置し、この積層体を120℃、10MPaの条件でホットプレスした後にPTFEフィルムを剥離することで、実施例1の膜電極接合体を得た。
The adjusted catalyst ink is applied to the surface of the PTFE film in a rectangular shape with a slit die coater, and then the PTFE film coated with the catalyst ink is placed in a warm air oven at 80 degrees and dried until the catalyst ink is no longer tacked. The cathode side catalyst layer was formed on the surface of the PTFE. Moreover, the anode side catalyst layer was formed on the surface of PTFE by the same method.
Then, the cathode side catalyst layer and the anode side catalyst layer formed on the PTFE film are arranged so as to face both sides of the polymer electrolyte membrane (Nafion 211 (registered trademark), manufactured by Dupont), and this laminate is placed. The PTFE film was peeled off after hot pressing at 120 ° C. and 10 MPa to obtain a membrane electrode assembly of Example 1.

(実施例2)
カソード側触媒層の塗布量を2倍とした以外は上記実施例1と同様にして、実施例2の膜電極接合体を得た。
(実施例3)
触媒インクを調製する際に、カーボン担体に対する高分子電解質の重量比率が0.8となるようにした以外は上記実施例1と同様にして、実施例3の膜電極接合体を得た。
(Example 2)
A membrane electrode assembly of Example 2 was obtained in the same manner as in Example 1 except that the coating amount of the cathode side catalyst layer was doubled.
(Example 3)
A membrane electrode assembly of Example 3 was obtained in the same manner as in Example 1 above, except that the weight ratio of the polymer electrolyte to the carbon carrier was 0.8 when the catalyst ink was prepared.

(実施例4)
触媒インクを調製する際に、カーボン担体に対する高分子電解質の重量比率が1.6となるようにした以外は上記実施例1と同様にして、実施例4の膜電極接合体を得た。
(比較例1)
触媒インクを調製する際に、分散時間10分間となるようにした以外は上記実施例1と同様にして、比較例1の膜電極接合体を得た。
(Example 4)
A membrane electrode assembly of Example 4 was obtained in the same manner as in Example 1 above, except that the weight ratio of the polymer electrolyte to the carbon carrier was 1.6 when the catalyst ink was prepared.
(Comparative Example 1)
A membrane electrode assembly of Comparative Example 1 was obtained in the same manner as in Example 1 above except that the dispersion time was set to 10 minutes when preparing the catalyst ink.

(比較例2)
触媒インクを調製する際に、分散時間が300分間となるようにした以外は上記実施例1と同様にして、比較例2の膜電極接合体を得た。
(比較例3)
触媒インクを調製する際に、カーボン担体に対する高分子電解質の重量比率が0.7となるようにした以外は上記実施例1と同様にして、比較例3の膜電極接合体を得た。
(Comparative Example 2)
A membrane electrode assembly of Comparative Example 2 was obtained in the same manner as in Example 1 above except that the dispersion time was set to 300 minutes when preparing the catalyst ink.
(Comparative Example 3)
A membrane electrode assembly of Comparative Example 3 was obtained in the same manner as in Example 1 above, except that the weight ratio of the polymer electrolyte to the carbon carrier was 0.7 when the catalyst ink was prepared.

(比較例4)
触媒インクを調製する際に、カーボン担体に対する高分子電解質の重量比率が1.7となるようにした以外は上記実施例1と同様にして、比較例4の膜電極接合体を得た。
(比較例5)
カソード側触媒層の塗布量を5倍とした以外は上記実施例1と同様にして、比較例5の膜電極接合体を得た。
(Comparative Example 4)
A membrane electrode assembly of Comparative Example 4 was obtained in the same manner as in Example 1 above, except that the weight ratio of the polymer electrolyte to the carbon carrier was 1.7 when the catalyst ink was prepared.
(Comparative Example 5)
A membrane electrode assembly of Comparative Example 5 was obtained in the same manner as in Example 1 above except that the coating amount of the cathode side catalyst layer was increased by 5 times.

(比較例6)
温風オーブンの風量を3倍とした以外は上記実施例1と同様にして、比較例6の膜電極接合体を得た。
(評価)
以下、上記実施例1~4の膜電極接合体および上記比較例1~6の膜電極接合体を備えた燃料電池のそれぞれの、カーボン担体に対する高分子電解質の重量比率と、カソード電極触媒層の厚みと、電極触媒層表面における反射光量Lpの標準偏差σと、発電性能と、耐久性とを比較した結果を説明する。
(Comparative Example 6)
A membrane electrode assembly of Comparative Example 6 was obtained in the same manner as in Example 1 above except that the air volume of the hot air oven was tripled.
(evaluation)
Hereinafter, the weight ratio of the polymer electrolyte to the carbon carrier of each of the membrane electrode assembly of Examples 1 to 4 and the membrane electrode assembly of Comparative Examples 1 to 6 and the cathode electrode catalyst layer The result of comparing the thickness, the standard deviation σ of the reflected light amount Lp on the surface of the electrode catalyst layer, the power generation performance, and the durability will be described.

(電極触媒層の厚み計測)
電極触媒層の厚みは、走査型電子顕微鏡(SEM)を用いて電極触媒層の断面を観察することで得られた。具体的には、まず、日立ハイテクノロジー社製イオンミリング装置IM4000を使用して電極触媒層の断面を露出させた。次いで、得られた断面を、日立ハイテクノロジー社製FE-SEM S-4800を使用して、5000倍で観察し、5カ所の観察点における視野内で3点の厚みを計測して、その平均値を各観察点での代表値とした。5カ所の観察点における代表値の平均値を、電極触媒層の厚みとした。
(Measurement of thickness of electrode catalyst layer)
The thickness of the electrode catalyst layer was obtained by observing the cross section of the electrode catalyst layer using a scanning electron microscope (SEM). Specifically, first, a cross section of the electrode catalyst layer was exposed using an ion milling device IM4000 manufactured by Hitachi High-Technology. Next, the obtained cross section was observed at 5000 times using FE-SEM S-4800 manufactured by Hitachi High Technology Co., Ltd., and the thickness of 3 points was measured in the field of view at 5 observation points, and the average thereof was measured. The values were taken as representative values at each observation point. The average value of the representative values at the five observation points was taken as the thickness of the electrode catalyst layer.

(電極触媒層表面における反射光量Lpの標準偏差σの算出)
電極触媒層表面における反射光量Lpの標準偏差σは、検査光を電極触媒層表面に照射し、反射光をP偏光子を通してラインCCDカメラで検出する方法で取得した全ての反射光量Lpのデータについてヒストグラム分析を行うことで算出した。
(Calculation of standard deviation σ of reflected light amount Lp on the surface of the electrode catalyst layer)
The standard deviation σ of the reflected light amount Lp on the surface of the electrode catalyst layer is the data of all the reflected light amount Lp acquired by the method of irradiating the surface of the electrode catalyst layer with inspection light and detecting the reflected light through a P-polarizer with a line CCD camera. Calculated by performing histogram analysis.

具体的には、まず、膜電極接合体を、多孔質真空吸着板を用いた検査ステージにシワやたるみがないようして載置し、真空ポンプを用いて固定した。入射角がブリュースター角である50度となるように設置した高指向性直線照明を検査光源として用い、多孔質真空吸着板に固定された膜電極接合体の電極触媒層部分で検査光を反射させた。反射した検査光は、P偏光のみ透過させるように設置された偏光子を通してラインCCDカメラで検出した。その際、検査光源、偏光子およびラインCCDカメラの有効幅は電極触媒層の幅以上とし、検査光源およびラインCCDカメラの主走査方向と直交する方向に検査ステージを移動させながら順次、反射光量Lpのデータを取得した。なお、領域DにあたるCCDカメラの一画素のサイズは6400μm2であった。取得した全ての反射光量Lpのデータについてヒストグラム分析を行い、標準偏差σを得た。具体的には、下記(1)~(3)の手順で標準偏差σを得た。図5は、CCDカメラで撮像した反射光量Lpのマッピング画像の一例を示す図であり、図6は、反射光量Lpのヒストグラムの一例である
(1)電極触媒層の表面の全域を、撮像領域Dを重複させることなく走査して、
(2)領域D毎の反射光量Lpのデータを取得し、
(3)そのデータを直接、標準偏差の一般的な計算式(下記式(1))を用いて、標準偏差を算出する。

Figure 0007090374000001
Specifically, first, the membrane electrode assembly was placed on an inspection stage using a porous vacuum adsorption plate without wrinkles or slack, and fixed using a vacuum pump. Highly directional linear illumination installed so that the incident angle is 50 degrees, which is the Brewster's angle, is used as the inspection light source, and the inspection light is reflected by the electrode catalyst layer portion of the membrane electrode assembly fixed to the porous vacuum adsorption plate. I let you. The reflected inspection light was detected by a line CCD camera through a polarizing element installed so as to transmit only P-polarized light. At that time, the effective width of the inspection light source, the spectrometer and the line CCD camera is set to be equal to or larger than the width of the electrode catalyst layer, and the reflected light amount Lp is sequentially moved while the inspection stage is moved in the direction orthogonal to the main scanning direction of the inspection light source and the line CCD camera. Data was acquired. The size of one pixel of the CCD camera corresponding to the area D was 6400 μm 2 . Histogram analysis was performed on all the acquired data of the reflected light amount Lp, and the standard deviation σ was obtained. Specifically, the standard deviation σ was obtained by the following procedures (1) to (3). FIG. 5 is a diagram showing an example of a mapping image of the reflected light amount Lp captured by the CCD camera, and FIG. 6 is an example of a histogram of the reflected light amount Lp .
(1) The entire surface of the electrode catalyst layer is scanned without overlapping the imaging region D.
(2) Acquire the data of the reflected light amount Lp for each region D, and obtain the data.
(3) The standard deviation is calculated directly from the data using the general formula for calculating the standard deviation (formula (1) below).
Figure 0007090374000001

(発電性能の測定)
発電性能の測定には、膜電極接合体の両面にガス拡散層およびガスケット、セパレーターを配置し、所定の面圧となるように締め付けたセルを評価用単セルとして用いた。そして、新エネルギー・産業技術総合開発機構(NEDO)の刊行している小冊子である「セル評価解析プロトコル」に記載の方法に概ね準じてI-V測定を実施した。
(Measurement of power generation performance)
For the measurement of power generation performance, a cell in which a gas diffusion layer, a gasket, and a separator were arranged on both sides of the membrane electrode assembly and tightened to a predetermined surface pressure was used as a single cell for evaluation. Then, the IV measurement was carried out in accordance with the method described in the "Cell Evaluation and Analysis Protocol", which is a booklet published by the New Energy and Industrial Technology Development Organization (NEDO).

(耐久性の測定)
耐久性の測定には、発電性能の測定に用いた評価用単セルを用いた。そして、新エネルギー・産業技術総合開発機構(NEDO)の刊行している小冊子である「セル評価解析プロトコル」に記載の方法に概ね準じて湿度サイクル試験を実施した。
(Measurement of durability)
For the measurement of durability, a single cell for evaluation used for measuring the power generation performance was used. Then, the humidity cycle test was carried out in accordance with the method described in the "Cell Evaluation and Analysis Protocol", which is a booklet published by the New Energy and Industrial Technology Development Organization (NEDO).

(比較結果)
上記実施例1~4の膜電極接合体および上記比較例1~6の膜電極接合体を備えた燃料電池のそれぞれのカーボン担体に対する高分子電解質の重量比率と、カソード電極触媒層の厚みと、電極触媒層表面における反射光量Lpの標準偏差σと、発電性能と耐久性とを表1に示す。なお、発電性能については、電圧0.6Vにおける電流が、20A以上を「○」20A未満を「×」として記載した。また、耐久性については、8000サイクル後の水素クロスリーク電流が初期値の10倍未満を「○」初期値の10倍以上を「×」として記載した。
(Comparison result)
The weight ratio of the polymer electrolyte to each carbon carrier of the fuel cell provided with the membrane electrode assembly of Examples 1 to 4 and the membrane electrode assembly of Comparative Examples 1 to 6 and the thickness of the cathode electrode catalyst layer. Table 1 shows the standard deviation σ of the reflected light amount Lp on the surface of the electrode catalyst layer, and the power generation performance and durability. Regarding the power generation performance, a current of 20 A or more at a voltage of 0.6 V is described as “◯” and a current of less than 20 A is described as “x”. Regarding the durability, the hydrogen cross leak current after 8000 cycles is described as "◯" when it is less than 10 times the initial value, and "x" when it is 10 times or more the initial value.

本実施例においては、上記実施例1~4のいずれも、カーボン担体に対する高分子電解質の重量比率が0.8以上1.6以下であり、カソード電極触媒層の厚みは2μm以上20μm以下の範囲内となった。また、電極触媒層表面における反射光量Lpの標準偏差σが30以上150以下の範囲内となった。そして、発電性能および耐久性については、いずれも「○」となった。すなわち、上記実施例1~4において、発電性能および耐久性に優れた燃料電池を構成可能な膜電極接合体が得られた。 In this example, in each of the above Examples 1 to 4, the weight ratio of the polymer electrolyte to the carbon carrier is 0.8 or more and 1.6 or less, and the thickness of the cathode electrode catalyst layer is in the range of 2 μm or more and 20 μm or less. It became inside. Further, the standard deviation σ of the reflected light amount Lp on the surface of the electrode catalyst layer was within the range of 30 or more and 150 or less. The power generation performance and durability were all marked with "○". That is, in Examples 1 to 4, a membrane electrode assembly capable of forming a fuel cell having excellent power generation performance and durability was obtained.

一方、比較例においては、カーボン担体に対する高分子電解質の重量比率は、比較例1、2、5、6においては0.8以上1.6以下であるが、比較例3、4においてはこの範囲内ではなかった。カソード電極触媒層の厚みは、比較例1~4および比較例6においては2μm以上20μm以下の範囲内となったが、比較例5においてはこの範囲内ではなかった。また、電極触媒層表面における反射光量Lpの標準偏差σは、比較例1~5のいずれも30以上150以下の範囲内ではなかった。そして、発電性能については、比較例1、2、4で「×」となり、耐久性については、比較例1および比較例3~6で「×」となった。すなわち、電極触媒層のムラを表す指標である電極触媒層表面における反射光量Lpの標準偏差σが上記各範囲外となることで発電性能および耐久性の少なくとも一方が低下した。 On the other hand, in Comparative Example, the weight ratio of the polymer electrolyte to the carbon carrier is 0.8 or more and 1.6 or less in Comparative Examples 1, 2, 5 and 6, but in Comparative Examples 3 and 4, it is in this range. It wasn't inside. The thickness of the cathode electrode catalyst layer was within the range of 2 μm or more and 20 μm or less in Comparative Examples 1 to 4 and Comparative Example 6, but was not within this range in Comparative Example 5. Further, the standard deviation σ of the reflected light amount Lp on the surface of the electrode catalyst layer was not in the range of 30 or more and 150 or less in any of Comparative Examples 1 to 5. The power generation performance was "x" in Comparative Examples 1, 2 and 4, and the durability was "x" in Comparative Examples 1 and 3 to 6. That is, when the standard deviation σ of the reflected light amount Lp on the surface of the electrode catalyst layer, which is an index showing the unevenness of the electrode catalyst layer, is out of each of the above ranges, at least one of the power generation performance and the durability is deteriorated.

Figure 0007090374000002
Figure 0007090374000002

本発明によれば、固体高分子形燃料電池の運転において問題となる電極触媒層のムラを高精度で検出して不良品を除外し、長期的な使用に供しても電池出力や耐久性に優れた電極触媒層、膜電極接合体および固体高分子形燃料電池を得ることができる。
したがって、本発明は固体高分子形燃料電池を利用した、定置型コジェネレーションシステムや燃料電池自動車などに好適に用いることのできる性能を有し、産業上の利用価値が大きい。
According to the present invention, unevenness of the electrode catalyst layer, which is a problem in the operation of a polymer electrolyte fuel cell, is detected with high accuracy to exclude defective products, and the battery output and durability can be improved even when used for a long period of time. Excellent electrode catalyst layers, membrane electrode assemblies and polymer electrolyte fuel cells can be obtained.
Therefore, the present invention has a performance that can be suitably used for a stationary cogeneration system, a fuel cell vehicle, or the like using a polymer electrolyte fuel cell, and has great industrial utility value.

1…膜電極接合体
2…触媒層付き転写基材
3…固体高分子形燃料電池
4C…酸素極
4A…燃料極
11…高分子電解質膜
12,12C,12A…電極触媒層
13…基材
14…光源
15…偏光子
16…受光部
17C,17A…ガス拡散層
18C,18A…セパレーター
19C,19A…ガス流路
20C,20A…冷却水流路
1 ... Membrane electrode assembly 2 ... Transfer substrate with catalyst layer 3 ... Solid polymer fuel cell 4C ... Oxygen electrode 4A ... Fuel electrode 11 ... Polymer electrolyte membrane 12, 12C, 12A ... Electrode catalyst layer 13 ... Base material 14 ... Light source 15 ... Polarizer 16 ... Light receiving unit 17C, 17A ... Gas diffusion layer 18C, 18A ... Separator 19C, 19A ... Gas flow path 20C, 20A ... Cooling water flow path

Claims (7)

触媒物質と導電性担体と高分子電解質とを少なくとも含む電極触媒層であって、
当該電極触媒層の表面において、所定の面積を有する領域にブリュースター角で入射する検査光を照射した際の正反射光のうち、P偏光成分のみを通過させる偏光子を通過した光の反射光量をLpとし、4096階調で表したとき、前記領域を重複させることなく前記電極触媒層の表面の全域を走査して得られる反射光量Lpの標準偏差σが、30以上150以下であることを特徴とする電極触媒層。
An electrode catalyst layer containing at least a catalyst substance, a conductive carrier, and a polymer electrolyte.
On the surface of the electrode catalyst layer, the amount of reflected light that has passed through a polarizing element that allows only the P-polarizing component to pass through the specularly reflected light when the inspection light incident on the region having a predetermined area at Brewster's angle is irradiated. Is Lp, and when expressed in 4096 gradations, the standard deviation σ of the reflected light amount Lp obtained by scanning the entire surface of the surface of the electrode catalyst layer without overlapping the regions is 30 or more and 150 or less. The electrode catalyst layer is characterized by.
前記領域の所定の面積が、1600μm2以上10000μm2以下であることを特徴とする請求項1に記載の電極触媒層。 The electrode catalyst layer according to claim 1, wherein the predetermined area of the region is 1600 μm 2 or more and 10000 μm 2 or less. 前記電極触媒層の表面と直交する方向の厚みが、1μm以上30μm以下の範囲内となるように構成されていることを特徴とする請求項1又は2に記載の電極触媒層。 The electrode catalyst layer according to claim 1 or 2, wherein the thickness in the direction orthogonal to the surface of the electrode catalyst layer is set to be within the range of 1 μm or more and 30 μm or less. 前記電極触媒層の表面と直交する方向の厚みが、2μm以上20μm以下の範囲内となるように構成されていることを特徴とする請求項3に記載の電極触媒層。 The electrode catalyst layer according to claim 3, wherein the thickness in the direction orthogonal to the surface of the electrode catalyst layer is set to be within a range of 2 μm or more and 20 μm or less. 前記導電性担体の重量に対する前記高分子電解質の重量の比率が、0.8以上1.6以下となるように構成されていることを特徴とする請求項1乃至4のいずれか1項に記載の電極触媒層。 The invention according to any one of claims 1 to 4, wherein the ratio of the weight of the polymer electrolyte to the weight of the conductive carrier is 0.8 or more and 1.6 or less. Electrode catalyst layer. 高分子電解質膜と、該高分子電解質膜の少なくとも酸素極側の面に接合された請求項1乃至5のいずれか1項に記載の電極触媒層とを備えていることを特徴とする膜電極接合体。 The membrane electrode according to any one of claims 1 to 5, which comprises a polyelectrolyte film and an electrode catalyst layer bonded to at least a surface on the oxygen electrode side of the polyelectrolyte film. Joined body. 請求項6に記載の膜電極接合体を備えていることを特徴とする固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 6.
JP2016214549A 2016-11-01 2016-11-01 Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell Active JP7090374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016214549A JP7090374B2 (en) 2016-11-01 2016-11-01 Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016214549A JP7090374B2 (en) 2016-11-01 2016-11-01 Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2018073709A JP2018073709A (en) 2018-05-10
JP7090374B2 true JP7090374B2 (en) 2022-06-24

Family

ID=62112782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016214549A Active JP7090374B2 (en) 2016-11-01 2016-11-01 Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP7090374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6957899B2 (en) * 2017-02-28 2021-11-02 凸版印刷株式会社 Evaluation method of electrode catalyst layer

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294175A (en) 2004-04-02 2005-10-20 Nissan Motor Co Ltd Electrode catalyst layer and its manufacturing method
JP2008003488A (en) 2006-06-26 2008-01-10 Konica Minolta Business Technologies Inc Method for detecting surface state of member to be detected and image forming apparatus
JP2008098152A (en) 2006-09-11 2008-04-24 Toray Ind Inc Manufacturing method of membrane/electrode assembly
JP2010117337A (en) 2008-11-12 2010-05-27 Nippon Electro Sensari Device Kk Surface defect inspection device
JP2010153188A (en) 2008-12-25 2010-07-08 Dainippon Printing Co Ltd Membrane-catalyst layer assembly, membrane-electrode assembly, and their manufacturing methods
JP2010164559A (en) 2008-12-19 2010-07-29 Fujifilm Corp Inspection device
JP2011007695A (en) 2009-06-26 2011-01-13 Hitachi High-Technologies Corp Apparatus for detecting pasted state
JP2011141119A (en) 2008-05-01 2011-07-21 Nikon Corp Surface inspection system
JP2013145130A (en) 2012-01-13 2013-07-25 Toppan Printing Co Ltd Method for pattern inspection
JP2015227827A (en) 2014-06-02 2015-12-17 横河電機株式会社 Polarization inspection device
JP2016042442A (en) 2014-08-19 2016-03-31 凸版印刷株式会社 Catalyst ink, and method for manufacturing the same
JP2016091605A (en) 2014-10-29 2016-05-23 日産自動車株式会社 Method for manufacturing electrode catalyst layer for fuel battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138183A (en) * 1976-05-14 1977-11-18 Toshiba Corp Inspecting apparatus for flaw

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294175A (en) 2004-04-02 2005-10-20 Nissan Motor Co Ltd Electrode catalyst layer and its manufacturing method
JP2008003488A (en) 2006-06-26 2008-01-10 Konica Minolta Business Technologies Inc Method for detecting surface state of member to be detected and image forming apparatus
JP2008098152A (en) 2006-09-11 2008-04-24 Toray Ind Inc Manufacturing method of membrane/electrode assembly
JP2011141119A (en) 2008-05-01 2011-07-21 Nikon Corp Surface inspection system
JP2010117337A (en) 2008-11-12 2010-05-27 Nippon Electro Sensari Device Kk Surface defect inspection device
JP2010164559A (en) 2008-12-19 2010-07-29 Fujifilm Corp Inspection device
JP2010153188A (en) 2008-12-25 2010-07-08 Dainippon Printing Co Ltd Membrane-catalyst layer assembly, membrane-electrode assembly, and their manufacturing methods
JP2011007695A (en) 2009-06-26 2011-01-13 Hitachi High-Technologies Corp Apparatus for detecting pasted state
JP2013145130A (en) 2012-01-13 2013-07-25 Toppan Printing Co Ltd Method for pattern inspection
JP2015227827A (en) 2014-06-02 2015-12-17 横河電機株式会社 Polarization inspection device
JP2016042442A (en) 2014-08-19 2016-03-31 凸版印刷株式会社 Catalyst ink, and method for manufacturing the same
JP2016091605A (en) 2014-10-29 2016-05-23 日産自動車株式会社 Method for manufacturing electrode catalyst layer for fuel battery

Also Published As

Publication number Publication date
JP2018073709A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP2021043210A (en) Membrane electrode assembly inspection device
US20100261089A1 (en) Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell
US20210013524A1 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2007179809A (en) Manufacturing method of membrane electrode assembly having identification mark, and solid polymer electrolyte fuel using it
US20230317968A1 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP7314785B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP2022087296A (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP6131944B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
US11581546B2 (en) Catalyst layer, membrane electrode assembly, and polyelectrolyte fuel cell
JP7090374B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP6515656B2 (en) Electrocatalyst layer, membrane electrode assembly and solid polymer fuel cell
US20230052473A1 (en) Membrane electrode assembly and polymer electrolyte fuel
JP6957899B2 (en) Evaluation method of electrode catalyst layer
JP6299286B2 (en) Catalyst layer correction method, catalyst layer correction device, catalyst layer sheet or membrane electrode assembly manufacturing method and manufacturing device
JP2017069056A (en) Electrode catalyst layer, membrane-electrode assembly and solid polymer fuel cell
WO2022014683A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP6521168B1 (en) Catalyst layer, membrane electrode assembly, solid polymer fuel cell
JP2015197947A (en) Method of manufacturing catalyst layer, method of manufacturing catalyst layer-electrolyte membrane laminate, method of manufacturing electrode and method of manufacturing membrane-electrode assembly
US20220006099A1 (en) Catalyst layer for polymer electrolyte fuel cells, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2024015840A (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP2024011834A (en) Electrode catalyst layer, membrane-electrode assembly, and solid polymer type fuel battery
JP2015146287A (en) Method for inspecting fuel battery
Wang et al. The Impact of Hot-Press Conditions on the Durability of Polymer Electrolyte Membrane Fuel Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210126

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210426

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211130

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220405

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220517

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7090374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150