JP7089899B2 - Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment - Google Patents

Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment Download PDF

Info

Publication number
JP7089899B2
JP7089899B2 JP2018031186A JP2018031186A JP7089899B2 JP 7089899 B2 JP7089899 B2 JP 7089899B2 JP 2018031186 A JP2018031186 A JP 2018031186A JP 2018031186 A JP2018031186 A JP 2018031186A JP 7089899 B2 JP7089899 B2 JP 7089899B2
Authority
JP
Japan
Prior art keywords
lubricating oil
oil composition
less
hydrocarbon group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018031186A
Other languages
Japanese (ja)
Other versions
JP2019143107A (en
Inventor
衆一 坂上
達也 濱地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2018031186A priority Critical patent/JP7089899B2/en
Priority to PCT/JP2019/003989 priority patent/WO2019163509A1/en
Publication of JP2019143107A publication Critical patent/JP2019143107A/en
Application granted granted Critical
Publication of JP7089899B2 publication Critical patent/JP7089899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/12Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

本発明は、潤滑油組成物、潤滑油組成物の製造方法及び駆動系機器に関する。 The present invention relates to a lubricating oil composition, a method for producing a lubricating oil composition, and drive system equipment.

緩衝器、変速機、パワーステアリング等の駆動系機器、エンジン、油圧作動等の様々な用途に用いられる潤滑油組成物には、各用途に応じた特性が求められている。潤滑油組成物の特性は、使用する基油の性状、添加剤の種類等に大きく左右される場合が多く、要求された特性を発現し得る潤滑油組成物を製造するために、基油及び添加剤の開発、またこれらの配合の開発等が広く行われている。 Lubricating oil compositions used in various applications such as shock absorbers, transmissions, drive system devices such as power steering, engines, and hydraulic operation are required to have characteristics according to each application. The characteristics of the lubricating oil composition are often greatly affected by the properties of the base oil used, the types of additives, etc., and in order to produce a lubricating oil composition capable of exhibiting the required characteristics, the base oil and the lubricating oil composition are produced. The development of additives and the development of these formulations are widely carried out.

例えば、緩衝器は、四輪車、二輪車等の自動車の駆動系機器として用いられるほか、住宅の耐震機構等の幅広い分野で用いられる機器である。緩衝器に用いられる潤滑油組成物は、緩衝器内に充填され、ピストンが伸縮する際に流体抵抗を生じ、自動車用緩衝器であれば路面から車体に伝わる振動、住宅用緩衝器であれば地震等による振動、を減衰する性能とともに、緩衝器内の摺動箇所を潤滑する性能が要求される。
自動車用緩衝器の場合、潤滑箇所としては、ロッド-ブッシュ間、ロッド-オイルシール間、インナーチューブ-ピストンバンド間等があり、これらの箇所における摩擦特性を最適化することにより、自動車の乗り心地を制御するとともに、部品の摩擦及び摩耗を防止し、耐久性が得られることとなる。例えば、特許文献1には、基油として水素化改質鉱油、合成油を使用し、高分子量のポリ(メタ)アクリレート等の粘度指数向上剤を特定量で用いたショックアブソーバー油組成物が開示されている。
For example, shock absorbers are used as drive train devices for automobiles such as four-wheeled vehicles and two-wheeled vehicles, and are also used in a wide range of fields such as earthquake-resistant mechanisms of houses. The lubricating oil composition used for the shock absorber is filled in the shock absorber and causes fluid resistance when the piston expands and contracts. In the case of an automobile shock absorber, vibration transmitted from the road surface to the vehicle body, and in the case of a residential shock absorber Along with the ability to dampen vibrations caused by earthquakes, the ability to lubricate sliding points inside the shock absorber is required.
In the case of a shock absorber for automobiles, the lubrication points include the rod-bush section, the rod-oil seal section, the inner tube-piston band section, etc., and by optimizing the friction characteristics at these points, the ride quality of the car In addition to controlling the friction and wear of parts, durability can be obtained. For example, Patent Document 1 discloses a shock absorber oil composition using a hydrogenated modified mineral oil or a synthetic oil as a base oil and using a specific amount of a viscosity index improver such as a high molecular weight poly (meth) acrylate. Has been done.

特開2005-314609号公報Japanese Unexamined Patent Publication No. 2005-314609

ところで、ピストンバンドには、強化材としてガラス繊維が配合されていると、このガラス繊維の配合に起因して、緩衝器の耐久性が低下するといった問題が生じる場合がある。耐久性の低下は、ガラス繊維が配合されたピストンバンドに接するインナーチューブ上に摺動方向に生じる摩耗痕による摩耗量の増加に伴い、インナーチューブ-ピストンバンド間の隙間が広くなることで、減衰性能が低下し、結果として緩衝器の性能が損なわれることで発生するものである。そして、この耐久性の低下は、緩衝器に用いられる潤滑油組成物の耐摩耗性が不足する場合に、顕著となる。すなわち、緩衝器の耐久性を向上させるには、潤滑油組成物の耐摩耗性を向上させて、インナーチューブの摩耗痕の発生を抑制することが重要となる。また、自動車の性能向上とともに、運転条件が年々過酷となってきていることから、潤滑油組成物には、耐摩耗性に加えて、より高い酸化安定性も求められるようになっている。 By the way, if glass fiber is blended in the piston band as a reinforcing material, there may be a problem that the durability of the shock absorber is lowered due to the blending of the glass fiber. The decrease in durability is caused by the increase in the amount of wear due to the wear marks generated in the sliding direction on the inner tube in contact with the piston band containing the glass fiber, and the widening of the gap between the inner tube and the piston band. It occurs when the performance deteriorates and as a result the performance of the shock absorber is impaired. The decrease in durability becomes remarkable when the wear resistance of the lubricating oil composition used for the shock absorber is insufficient. That is, in order to improve the durability of the shock absorber, it is important to improve the wear resistance of the lubricating oil composition and suppress the occurrence of wear marks on the inner tube. Further, as the performance of automobiles is improved and the operating conditions are becoming harsher year by year, the lubricating oil composition is required to have higher oxidative stability in addition to wear resistance.

本発明は、上記事情に鑑みてなされたものであり、耐摩耗性及び酸化安定性に優れた潤滑油組成物、該潤滑油組成物の製造方法及び該潤滑油組成物を用いた駆動系機器を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a lubricating oil composition having excellent wear resistance and oxidation stability, a method for producing the lubricating oil composition, and a drive system device using the lubricating oil composition. The purpose is to provide.

本発明者らは、上記課題に鑑みて鋭意検討の結果、下記の発明により上記課題を解決できることを見出した。すなわち、本発明は、下記の構成を有する潤滑油組成物、該潤滑油組成物の製造方法及び該潤滑油組成物を用いた駆動系機器を提供するものである。 As a result of diligent studies in view of the above problems, the present inventors have found that the above problems can be solved by the following inventions. That is, the present invention provides a lubricating oil composition having the following constitution, a method for producing the lubricating oil composition, and a drive system device using the lubricating oil composition.

1.基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む潤滑油組成物。 1. 1. A lubricating oil composition containing a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.

Figure 0007089899000001

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
2.基油と、上記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを配合する潤滑油組成物の製造方法。
3.基油と、上記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む潤滑油組成物を用いた駆動系機器。
Figure 0007089899000001

(In the general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
2. 2. A method for producing a lubricating oil composition, which comprises a base oil, a phosphorus compound represented by the above general formula (1), and zinc dithiophosphate.
3. 3. A drive system device using a lubricating oil composition containing a base oil, a phosphorus compound represented by the above general formula (1), and zinc dithiophosphate.

本発明によれば、耐摩耗性及び酸化安定性に優れた潤滑油組成物、該潤滑油組成物の製造方法及び該潤滑油組成物を用いた駆動系機器を提供することができる。 According to the present invention, it is possible to provide a lubricating oil composition having excellent wear resistance and oxidative stability, a method for producing the lubricating oil composition, and a drive system device using the lubricating oil composition.

以下、本発明の実施形態(以後、単に「本実施形態」と称する場合がある。)について説明する。なお、本明細書中において、数値範囲の記載に関する「以上」、「以下」及び「~」に係る数値は任意に組み合わせできる数値である。 Hereinafter, embodiments of the present invention (hereinafter, may be simply referred to as “the present embodiment”) will be described. In addition, in this specification, the numerical values relating to "greater than or equal to", "less than or equal to" and "..." relating to the description of the numerical range are numerical values that can be arbitrarily combined.

[潤滑油組成物]
本実施形態の潤滑油組成物は、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含むものである。以下、本実施形態の潤滑油組成物が含有し得る各成分について具体的に説明する。
[Lubricating oil composition]
The lubricating oil composition of the present embodiment contains a phosphorus compound represented by the following general formula (1) and zinc dithiophosphate. Hereinafter, each component that can be contained in the lubricating oil composition of the present embodiment will be specifically described.

Figure 0007089899000002

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
Figure 0007089899000002

(In the general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)

(リン化合物)
本実施形態の潤滑油組成物は、下記一般式(1)で表されるリン化合物(以下、単に「リン化合物」と称することがある。)を含有することを要する。本実施形態の潤滑油組成物において、前記リン化合物を含有しないと、特に耐摩耗性が低下するため、優れた耐摩耗性及び酸化安定性が同時に得られない。これまで、耐摩耗性を向上させることを目的としてリン酸エステル及び亜リン酸エステル(いずれも、分子中に含まれる全ての炭化水素基と、リン原子と、が酸素原子を介して結合する構造を有するエステル)等の耐摩耗剤が汎用されていたが、これらの耐摩耗剤とジチオリン酸亜鉛と組み合わせると、耐摩耗性は向上するものの酸化安定性が低下することがあり、耐摩耗性と酸化安定性とは二律相反の関係にあった。また、これらの耐摩耗剤とジチオリン酸亜鉛とが反応し、沈殿を生じる場合があり、混合安定性の点でも問題が生じる場合があった。本実施形態の潤滑油組成物は、特定のリン化合物とジチオリン酸亜鉛とを組み合わせることにより、沈殿が生じることがなく、また酸化安定性を維持しつつ耐摩耗性が向上するため、結果として優れた耐摩耗性と酸化安定性とを両立することを可能とした。
(Phosphorus compound)
The lubricating oil composition of the present embodiment is required to contain a phosphorus compound represented by the following general formula (1) (hereinafter, may be simply referred to as "phosphorus compound"). If the lubricating oil composition of the present embodiment does not contain the phosphorus compound, the wear resistance is particularly lowered, so that excellent wear resistance and oxidative stability cannot be obtained at the same time. So far, for the purpose of improving wear resistance, a phosphate ester and a phosphite ester (both have a structure in which all the hydrocarbon groups contained in the molecule and the phosphorus atom are bonded via an oxygen atom. Abrasion resistant agents such as (esters with) have been widely used, but when these abrasion resistant agents are combined with zinc dithiophosphate, the abrasion resistance may be improved but the oxidation stability may be lowered. There was a bilateral reciprocal relationship with oxidative stability. In addition, these wear resistant agents may react with zinc dithiophosphate to cause precipitation, which may cause a problem in terms of mixing stability. The lubricating oil composition of the present embodiment is excellent as a result because by combining a specific phosphorus compound and zinc dithiophosphate, precipitation does not occur and wear resistance is improved while maintaining oxidative stability. It has made it possible to achieve both wear resistance and oxidation stability.

Figure 0007089899000003
Figure 0007089899000003

一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。 In the general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.

11の炭化水素基としては、1価の炭化水素基であれば特に制限はなく、例えば、耐摩耗性を向上させる観点から、アルキル基、アルケニル基、シクロアルキル基、アリール基等が好ましく挙げられ、アルキル基、アルケニル基がより好ましく、アルキル基が更に好ましい。これらの1価の炭化水素基がアルキル基、アルケニル基の場合は直鎖状、分岐状のいずれであってもよく、シクロアルキル基、アリール基は例えばデカリル基、ナフチル基等の多環式の基であってもよい。また、これらの1価の炭化水素基は、水酸基、カルボキシ基、アミノ基、アミド基、ニトロ基、シアノ基等の酸素原子及び/又は窒素原子を含む置換基を有するもの、また窒素原子、酸素原子、ハロゲン原子等により一部が置換されたものであってもよく、1価の炭化水素基がシクロアルキル基、アリール基の場合は更にアルキル基、アルケニル基等の置換基を有していてもよい。 The hydrocarbon group of R 11 is not particularly limited as long as it is a monovalent hydrocarbon group, and for example, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group and the like are preferably mentioned from the viewpoint of improving wear resistance. Alkyl groups and alkenyl groups are more preferable, and alkyl groups are even more preferable. When these monovalent hydrocarbon groups are alkyl groups or alkenyl groups, they may be linear or branched, and the cycloalkyl groups and aryl groups are polycyclic groups such as decalyl groups and naphthyl groups. It may be a group. Further, these monovalent hydrocarbon groups have a substituent containing an oxygen atom and / or a nitrogen atom such as a hydroxyl group, a carboxy group, an amino group, an amide group, a nitro group and a cyano group, and a nitrogen atom and oxygen. It may be partially substituted with an atom, a halogen atom or the like, and when the monovalent hydrocarbon group is a cycloalkyl group or an aryl group, it further has a substituent such as an alkyl group or an alkenyl group. May be good.

耐摩耗性を向上させる観点から、R11の炭化水素基の炭素数としては、1価の炭化水素基がアルキル基の場合、好ましくは1以上、より好ましくは2以上、更に好ましくは4以上であり、上限として好ましくは24以下、より好ましくは22以下、更に好ましくは20以下であり、1価の炭化水素がアルケニル基の場合、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上であり、上限として好ましくは24以下、より好ましくは22以下、更に好ましくは20以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上20以下である。 From the viewpoint of improving wear resistance, the number of carbon atoms of the hydrocarbon group of R 11 is preferably 1 or more, more preferably 2 or more, still more preferably 4 or more when the monovalent hydrocarbon group is an alkyl group. The upper limit is preferably 24 or less, more preferably 22 or less, still more preferably 20 or less, and when the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more. The upper limit is preferably 24 or less, more preferably 22 or less, and further preferably 20 or less. When the monovalent hydrocarbon is a cycloalkyl group, the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.

12及びR13は、少なくとも一方が炭化水素基であることを要する。R12及びR13の両方が水素原子であると、優れた耐摩耗性が得られにくくなる。より優れた耐摩耗性を得る観点から、R12及びR13の両方が炭化水素基であることが好ましい。
12及びR13の炭化水素基としては、1価の炭化水素基であれば特に制限なく、R11の炭化水素基として上記例示したものが好ましく挙げられる。R12及びR13の両方が炭化水素基である場合、R12及びR13は同じでも異なっていてもよいが、耐摩耗性を向上させる観点から、同じであることが好ましい。
At least one of R 12 and R 13 is required to be a hydrocarbon group. When both R 12 and R 13 are hydrogen atoms, it becomes difficult to obtain excellent wear resistance. From the viewpoint of obtaining better wear resistance, it is preferable that both R 12 and R 13 are hydrocarbon groups.
The hydrocarbon groups of R 12 and R 13 are not particularly limited as long as they are monovalent hydrocarbon groups, and the above-exemplified hydrocarbon groups of R 11 are preferably mentioned. When both R 12 and R 13 are hydrocarbon groups, R 12 and R 13 may be the same or different, but are preferably the same from the viewpoint of improving wear resistance.

また、耐摩耗性を向上させる観点から、R12及びR13の炭化水素基の炭素数としては、1価の炭化水素基がアルキル基の場合、好ましくは1以上、より好ましくは2以上であり、上限として好ましくは12以下、より好ましくは8以下、更に好ましくは6以下である。1価の炭化水素がアルケニル基の場合、好ましくは2以上であり、上限として好ましくは12以下、より好ましくは8以下、更に好ましくは4以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上20以下である。 Further, from the viewpoint of improving wear resistance, the number of carbon atoms of the hydrocarbon groups of R 12 and R 13 is preferably 1 or more, more preferably 2 or more when the monovalent hydrocarbon group is an alkyl group. The upper limit is preferably 12 or less, more preferably 8 or less, still more preferably 6 or less. When the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, and the upper limit is preferably 12 or less, more preferably 8 or less, still more preferably 4 or less. When the monovalent hydrocarbon is a cycloalkyl group, the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.

リン化合物の組成物全量基準の含有量は、耐摩耗性及び酸化安定性をより効率的に向上させる観点から、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、上限として好ましくは3質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下である。 The content of the phosphorus compound based on the total amount of the composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably, from the viewpoint of more efficiently improving wear resistance and oxidation stability. Is 0.3% by mass or more, and the upper limit is preferably 3% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less.

(ジチオリン酸亜鉛)
本実施形態の潤滑油組成物は、ジチオリン酸亜鉛を含むことを要する。本実施形態の潤滑油組成物において、ジチオリン酸亜鉛を含有しないと、特に酸化安定性が低下するため、優れた耐摩耗性及び酸化安定性が同時に得られない。本実施形態の潤滑油組成物に用いられるジチオリン酸亜鉛は、以下の一般式(2)で表されるものが好ましく挙げられる。
(Zinc dithiophosphate)
The lubricating oil composition of the present embodiment is required to contain zinc dithiophosphate. If the lubricating oil composition of the present embodiment does not contain zinc dithiophosphate, the oxidative stability is particularly lowered, so that excellent wear resistance and oxidative stability cannot be obtained at the same time. As the zinc dithiophosphate used in the lubricating oil composition of the present embodiment, those represented by the following general formula (2) are preferably mentioned.

Figure 0007089899000004
Figure 0007089899000004

一般式(2)中、R21~R24は各々独立に炭化水素基を示す。炭化水素基としては、1価の炭化水素基であれば特に制限はなく、例えば、酸化安定性を向上させる観点から、アルキル基、アルケニル基、シクロアルキル基、アリール基等が好ましく挙げられ、アルキル基、アリール基がより好ましく、アルキル基が更に好ましい。すなわち、本実施形態で用いられるジチオリン酸亜鉛としては、ジアルキルジチオリン酸亜鉛、ジアリールジチオリン酸亜鉛がより好ましく、ジアルキルジチオリン酸亜鉛が更に好ましい。 In the general formula (2), R 21 to R 24 each independently represent a hydrocarbon group. The hydrocarbon group is not particularly limited as long as it is a monovalent hydrocarbon group. For example, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group and the like are preferably mentioned from the viewpoint of improving oxidative stability. A group and an aryl group are more preferable, and an alkyl group is further preferable. That is, as the zinc dithiophosphate used in the present embodiment, zinc dialkyldithiophosphate and zinc diaryldithiophosphate are more preferable, and zinc dialkyldithiophosphate is even more preferable.

21~R24のアルキル基、アルケニル基は直鎖状、分岐状のいずれであってもよいが、より優れた酸化安定性を得る観点から、第一級、第二級のものが好ましく、中でも第一級アルキル基、第二級アルキル基が好ましく、第一級アルキル基がより好ましい、すなわち本実施形態で用いられるジアルキルジチオリン酸亜鉛としては、中でも第一級ジアルキルジチオリン酸亜鉛、第二級ジアルキルジチオリン酸亜鉛が好ましく、第一級ジアルキルジチオリン酸亜鉛がより好ましい。
21~R24のシクロアルキル基、アリール基は、例えばデカリル基、ナフチル基等の多環式の基であってもよい。
また、これらの1価の炭化水素基は、上記R11~R13が有し得る置換基として例示した置換基を有していてもよく、窒素原子、酸素原子、ハロゲン原子等により置換されたものであってもよい。
The alkyl group and alkenyl group of R 21 to R 24 may be linear or branched, but from the viewpoint of obtaining better oxidative stability, primary and secondary ones are preferable. Among them, a primary alkyl group and a secondary alkyl group are preferable, and a primary alkyl group is more preferable. Zinc dialkyldithiophosphate is preferable, and primary zinc dialkyldithiophosphate is more preferable.
The cycloalkyl group and aryl group of R 21 to R 24 may be a polycyclic group such as a decalyl group or a naphthyl group.
Further, these monovalent hydrocarbon groups may have a substituent exemplified as a substituent that can be possessed by R 11 to R 13 , and are substituted with a nitrogen atom, an oxygen atom, a halogen atom or the like. It may be a thing.

酸化安定性を向上させる観点から、R21~R24の炭化水素基の炭素数としては、1価の炭化水素基がアルキル基の場合、好ましくは1以上、より好ましくは2以上、更に好ましくは3以上であり、上限として好ましくは24以下、より好ましくは18以下、更に好ましくは12以下であり、1価の炭化水素がアルケニル基の場合、好ましくは2以上、より好ましくは3以上であり、上限として好ましくは24以下、より好ましくは18以下、更に好ましくは12以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上、上限として好ましくは20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上、上限として好ましくは20以下である。 From the viewpoint of improving oxidative stability, the number of carbon atoms of the hydrocarbon groups of R 21 to R 24 is preferably 1 or more, more preferably 2 or more, still more preferably 2 or more when the monovalent hydrocarbon group is an alkyl group. It is 3 or more, and the upper limit is preferably 24 or less, more preferably 18 or less, still more preferably 12 or less, and when the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, more preferably 3 or more. The upper limit is preferably 24 or less, more preferably 18 or less, still more preferably 12 or less. When the monovalent hydrocarbon is a cycloalkyl group, the number of carbon atoms is preferably 5 or more, and the upper limit is preferably 20 or less. When the monovalent hydrocarbon is an aryl group, the number of carbon atoms is preferably 6 or more. The upper limit is preferably 20 or less.

ジチオリン酸亜鉛の組成物全量基準の含有量は、酸化安定性をより効率的に向上させる観点から、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上である。また、耐摩耗性をより向上させる観点から、上限として好ましくは3質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下である。 The content of zinc dithiophosphate based on the total amount of the composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0. 3% by mass or more. Further, from the viewpoint of further improving the wear resistance, the upper limit is preferably 3% by mass or less, more preferably 2% by mass or less, still more preferably 1% by mass or less.

(基油)
本実施形態の潤滑油組成物に含まれる基油としては、鉱油、合成油のいずれであってもよい。
鉱油としては、パラフィン基系、ナフテン基系、中間基系の原油を常圧蒸留して得られる常圧残油;該常圧残油を減圧蒸留して得られた留出油;該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等のうちの1つ以上の処理を行って精製した鉱油、例えば、軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油、ブライトストック、またフィッシャー・トロプシュ法等により製造されるワックス(GTLワックス)を異性化することで得られる鉱油等が挙げられる。
また、鉱油としては、API(米国石油協会)の基油カテゴリーにおいて、グループ1、2、3のいずれに分類されるものでもよいが、スラッジ生成をより抑制することができ、また粘度特性、酸化劣化等に対する安定性を得る観点から、グループ2、3に分類されるものが好ましい。
(Base oil)
The base oil contained in the lubricating oil composition of the present embodiment may be either mineral oil or synthetic oil.
As the mineral oil, the atmospheric pressure residual oil obtained by atmospheric distillation of paraffin-based, naphthen-based, and intermediate-based crude oil; the distillate obtained by vacuum distillation of the atmospheric residual oil; the distillate. Mineral oil refined by performing one or more treatments such as solvent desorption, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc., for example, light neutral oil, medium neutral. Examples thereof include oil, heavy neutral oil, bright stock, and mineral oil obtained by isomerizing a wax (GTL wax) produced by the Fisher-Tropsch method or the like.
The mineral oil may be classified into any of groups 1, 2, and 3 in the base oil category of API (American Petroleum Institute), but sludge formation can be further suppressed, and viscosity characteristics and oxidation can be achieved. From the viewpoint of obtaining stability against deterioration and the like, those classified into groups 2 and 3 are preferable.

合成油としては、例えば、ポリブテン、エチレン-α-オレフィン共重合体、α-オレフィン単独重合体又は共重合体等のポリα-オレフィン類;ポリオールエステル、二塩基酸エステル、リン酸エステル等の各種エステル油;ポリフェニルエーテル等の各種エーテル;ポリグリコール;アルキルベンゼン;アルキルナフタレン等が挙げられる。 Examples of the synthetic oil include poly-α-olefins such as polybutene, ethylene-α-olefin copolymer, α-olefin homopolymer or copolymer; various types such as polyol ester, dibasic acid ester and phosphoric acid ester. Examples thereof include ester oils; various ethers such as polyphenyl ethers; polyglycols; alkylbenzenes; alkylnaphthalene and the like.

本実施形態においては、基油は、少なくとも一種の鉱油、少なくとも一種の合成油、又は少なくとも一種の鉱油と少なくとも一種の合成油とを混合した混合油でもよい。本実施形態においては、安価であり、より優れた粘度特性、蒸発しにくい性状、及び低粘度化による省燃費性能を得る観点から、鉱油が好ましい。 In the present embodiment, the base oil may be at least one kind of mineral oil, at least one kind of synthetic oil, or a mixed oil in which at least one kind of mineral oil and at least one kind of synthetic oil are mixed. In the present embodiment, mineral oil is preferable from the viewpoints of low cost, better viscosity characteristics, resistance to evaporation, and fuel saving performance due to low viscosity.

基油の粘度については特に制限はないが、高温時の焼付き防止の観点から、40℃動粘度は、3mm/s以上が好ましく、5mm/s以上がより好ましく、7mm/s以上が更に好ましい。また、低温流動性の確保の観点から、35mm/s以下が好ましく、25mm/s以下がより好ましく、20mm/s以下が更に好ましい。これと同様の観点から、基油の100℃動粘度は、1mm/s以上が好ましく、1.5mm/s以上がより好ましく、2mm/s以上が更に好ましい。また上限は、15mm/s以下が好ましく、10mm/s以下がより好ましく、5mm/s以下が更に好ましい。
また、基油の粘度指数は、85以上が好ましく、90以上がより好ましく、100以上が更に好ましい。本明細書において、動粘度、及び粘度指数は、JIS K 2283:2000に準拠し、ガラス製毛管式粘度計を用いて測定した値である。基油の動粘度、粘度指数が上記範囲内であると、潤滑油組成物としてより適正な粘度を有するものとなり、また耐摩耗性及び酸化安定性が向上する。
The viscosity of the base oil is not particularly limited, but from the viewpoint of preventing seizure at high temperatures, the kinematic viscosity at 40 ° C. is preferably 3 mm 2 / s or more, more preferably 5 mm 2 / s or more, and 7 mm 2 / s or more. Is more preferable. Further, from the viewpoint of ensuring low temperature fluidity, 35 mm 2 / s or less is preferable, 25 mm 2 / s or less is more preferable, and 20 mm 2 / s or less is further preferable. From the same viewpoint, the kinematic viscosity of the base oil at 100 ° C. is preferably 1 mm 2 / s or more, more preferably 1.5 mm 2 / s or more, still more preferably 2 mm 2 / s or more. The upper limit is preferably 15 mm 2 / s or less, more preferably 10 mm 2 / s or less, and even more preferably 5 mm 2 / s or less.
The viscosity index of the base oil is preferably 85 or more, more preferably 90 or more, and even more preferably 100 or more. In the present specification, the kinematic viscosity and the viscosity index are values measured using a glass capillary viscometer according to JIS K 2283: 2000. When the kinematic viscosity and the viscosity index of the base oil are within the above ranges, the lubricating oil composition has a more appropriate viscosity, and the wear resistance and the oxidation stability are improved.

基油の組成物全量基準の含有量は、潤滑油組成物としてより適正な粘度を有するものとし、また耐摩耗性及び酸化安定性を向上させる観点から、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは85質量%以上である。また上限として好ましくは99.9質量%以下、より好ましくは99質量%以下であり、更に好ましくは98質量%以下である。 The content of the base oil based on the total amount of the composition is preferably 60% by mass or more, more preferably 60% by mass or more, from the viewpoint of having a more appropriate viscosity as a lubricating oil composition and improving wear resistance and oxidation stability. It is 70% by mass or more, more preferably 85% by mass or more. The upper limit is preferably 99.9% by mass or less, more preferably 99% by mass or less, and further preferably 98% by mass or less.

(その他添加剤)
本実施形態の潤滑油組成物は、上記基油、リン化合物、及びジチオリン酸亜鉛を含むものであり、基油、リン化合物、及びジチオリン酸亜鉛からなるものであってもよいし、また、基油、リン化合物、及びジチオリン酸亜鉛以外に、例えば、粘度指数向上剤、分散剤、酸化防止剤、極圧剤、金属不活性化剤、消泡剤、摩擦低減剤、油性剤等のその他添加剤を含むものであってもよい。これらのその他添加剤は、単独で、又は複数種を組み合わせて用いることができる。
これらのその他添加剤の合計含有量は、所望に応じて適宜決定すればよく、特に制限はないが、その他添加剤を添加する効果を考慮すると、組成物全量基準で、好ましくは0.10質量%以上、より好ましくは0.20質量%以上、更に好ましくは0.30質量%以上であり、上限として好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。
(Other additives)
The lubricating oil composition of the present embodiment contains the above-mentioned base oil, a phosphorus compound, and zinc dithiophosphate, and may be composed of a base oil, a phosphorus compound, and zinc dithiophosphate, or a group. In addition to oils, phosphorus compounds, and zinc dithiophosphate, for example, other additions such as viscosity index improvers, dispersants, antioxidants, extreme pressure agents, metal inactivating agents, defoamers, friction reducing agents, and oily agents. It may contain an agent. These other additives can be used alone or in combination of two or more.
The total content of these other additives may be appropriately determined as desired and is not particularly limited, but considering the effect of adding the other additives, it is preferably 0.10 mass based on the total amount of the composition. % Or more, more preferably 0.20% by mass or more, still more preferably 0.30% by mass or more, and the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less. be.

粘度指数向上剤としては、例えば、質量平均分子量(Mw)が好ましくは500~1,000,000、より好ましくは5,000~800,000、更に好ましくは10,000~700,000の非分散型ポリメタクリレート、分散型ポリメタクリレート等のポリメタクリレート;質量平均分子量(Mw)が好ましくは800~300,000、より好ましくは10,000~200,000、更に好ましくは20,000~150,000のオレフィン系共重合体(例えば、エチレン-プロピレン共重合体等)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン共重合体、スチレン-イソプレン共重合体等)等の重合体;などが挙げられる。 As the viscosity index improver, for example, the mass average molecular weight (Mw) is preferably 500 to 1,000,000, more preferably 5,000 to 800,000, still more preferably 10,000 to 700,000. Polymethacrylates such as type polymethacrylates and dispersed polymethacrylates; the mass average molecular weight (Mw) is preferably 800 to 300,000, more preferably 10,000 to 200,000, still more preferably 20,000 to 150,000. Olefin-based copolymers (eg, ethylene-propylene copolymers, etc.), dispersed olefin-based copolymers, styrene-based copolymers (eg, styrene-diene copolymers, styrene-isoprene copolymers, etc.), etc. Polymers; and the like.

分散剤としては、例えば、ホウ素非含有コハク酸イミド類、ホウ素含有コハク酸イミド類、ベンジルアミン類、ホウ素含有ベンジルアミン類、コハク酸エステル類、脂肪酸あるいはコハク酸で代表される一価又は二価カルボン酸アミド類等の無灰系分散剤が挙げられる。 Examples of the dispersant include boron-free succinic acid imides, boron-containing succinic acid imides, benzylamines, boron-containing benzylamines, succinic acid esters, fatty acids, and monovalent or divalent succinic acid. Examples thereof include ashless dispersants such as carboxylic acid amides.

酸化防止剤としては、例えば、ジフェニルアミン系酸化防止剤、ナフチルアミン系酸化防止剤等のアミン系酸化防止剤;モノフェノール系酸化防止剤、ジフェノール系酸化防止剤、ヒンダードフェノール系酸化防止剤等のフェノール系酸化防止剤;三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなるモリブデンアミン錯体等のモリブデン系酸化防止剤;などが挙げられる。 Examples of the antioxidant include amine-based antioxidants such as diphenylamine-based antioxidants and naphthylamine-based antioxidants; monophenol-based antioxidants, diphenol-based antioxidants, hindered phenol-based antioxidants, and the like. Examples include a phenol-based antioxidant; a molybdenum-based antioxidant such as a molybdenum amine complex formed by reacting molybdenum trioxide and / or molybdic acid with an amine compound; and the like.

極圧剤としては、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイド、チアジアゾール化合物、アルキルチオカルバモイル化合物、チオカーバメート化合物等の硫黄系極圧剤;ジアルキルチオカルバミン酸亜鉛(Zn-DTC)、ジアルキルチオカルバミン酸モリブデン(Mo-DTC)等の硫黄-窒素系極圧剤;ジアルキルジチオリン酸モリブデン(Mo-DTP)等の硫黄-リン系極圧剤;などが挙げられる。 Extreme pressure agents include sulfur-based extreme pressure agents such as sulfide oils and fats, sulfide fatty acids, sulfide esters, sulfide olefins, dihydrocarbylpolysulfide, thiadiazol compounds, alkylthiocarbamoyl compounds, and thiocarbamate compounds; zinc dialkylthiocarbamate (Zn-DTC). , Sulfur-nitrogen extreme pressure agent such as dialkylthiocarbamic acid molybdenum (Mo-DTC); sulfur-phosphorus extreme pressure agent such as dialkyldithiophosphate molybdenum (Mo-DTP); and the like.

また、金属不活性化剤としては、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、及びイミダゾール系化合物等が挙げられ、消泡剤としては、シリコーン油、フルオロシリコーン油等のシリコーン系消泡剤、フルオロアルキルエーテル等のエーテル系消泡剤が挙げられ、摩擦低減剤としては、例えば脂肪族アルコール、脂肪酸、脂肪酸エステル、脂肪族アミン、脂肪族アミン塩、脂肪族アミド等が挙げられ、また油性剤としてはグリセロールモノオレエート、グリセロールジオレエート等のグリセロールエステル等が挙げられる。 Examples of the metal inactivating agent include benzotriazole-based, tolyltriazole-based, thiadiazol-based, and imidazole-based compounds, and examples of the defoaming agent include silicone-based defoaming agents such as silicone oil and fluorosilicone oil. Examples thereof include ether-based defoaming agents such as fluoroalkyl ethers, and examples of the friction reducing agent include aliphatic alcohols, fatty acids, fatty acid esters, aliphatic amines, aliphatic amine salts, and aliphatic amides, and oil-based agents. Examples thereof include glycerol esters such as glycerol monooleate and glycerol dioleate.

(潤滑油組成物の各種物性)
本実施形態の潤滑油組成物の40℃における動粘度は、高温時の焼付き防止、及び低温流動性の確保の観点から、好ましくは5mm/s以上35mm/s以下、より好ましくは7mm/s以上25mm/s以下、更に好ましくは9mm/s以上15mm/s以下である。これと同様の観点から、本実施形態の潤滑油組成物の100℃における動粘度は、好ましくは0.5mm/s以上15mm/s以下、より好ましくは1mm/s以上10mm/s以下、更に好ましくは1.5mm/s以上5mm/s以下である。また、本実施形態の潤滑油組成物の粘度指数は、好ましくは85以上、より好ましくは90以上、更に好ましくは100以上である。
(Various physical characteristics of lubricating oil composition)
The kinematic viscosity of the lubricating oil composition of the present embodiment at 40 ° C. is preferably 5 mm 2 / s or more and 35 mm 2 / s or less, more preferably 7 mm, from the viewpoint of preventing seizure at high temperature and ensuring low temperature fluidity. It is 2 / s or more and 25 mm 2 / s or less, more preferably 9 mm 2 / s or more and 15 mm 2 / s or less. From the same viewpoint as this, the kinematic viscosity of the lubricating oil composition of the present embodiment at 100 ° C. is preferably 0.5 mm 2 / s or more and 15 mm 2 / s or less, and more preferably 1 mm 2 / s or more and 10 mm 2 / s. Below, it is more preferably 1.5 mm 2 / s or more and 5 mm 2 / s or less. The viscosity index of the lubricating oil composition of the present embodiment is preferably 85 or more, more preferably 90 or more, and further preferably 100 or more.

本実施形態の潤滑油組成物のリン原子の含有量について、組成物に含まれる全リン原子含有量をP(質量%)とし、リン化合物に由来のリン原子含有量をP(質量%)としたときに、該全リン原子含有量に対するリン化合物由来のリン原子含有量の割合P/Pは、より効率的に耐摩耗性及び酸化安定性を向上させる観点から、好ましくは50%以下、より好ましくは45%以下、更に好ましくは40%以下、特に好ましくは35%以下であり、下限としては、コスト面から少なければ少ないほど好ましいが、リン化合物の使用効果の観点から、通常1%以上、好ましくは5%以上である。 Regarding the phosphorus atom content of the lubricating oil composition of the present embodiment, the total phosphorus atom content contained in the composition is P 0 (mass%), and the phosphorus atom content derived from the phosphorus compound is P 1 (mass%). ), The ratio P 1 / P 0 of the phosphorus atom content derived from the phosphorus compound to the total phosphorus atom content is preferably 50 from the viewpoint of more efficiently improving wear resistance and oxidation stability. % Or less, more preferably 45% or less, still more preferably 40% or less, particularly preferably 35% or less, and the lower limit is preferably as small as possible from the viewpoint of cost, but it is usually used from the viewpoint of the effect of using the phosphorus compound. It is 1% or more, preferably 5% or more.

(潤滑油組成物の用途)
本実施形態の潤滑油組成物は、耐摩耗性及び酸化安定性に優れるものであるため、例えば、緩衝器、変速機、パワーステアリング等の駆動系機器用、エンジン用、油圧作動用、タービン用、圧縮機用、工作機械用、切削用、ギヤ用、流体軸受け用、転がり軸受け用等の様々な用途に好適に用いられる。中でも、耐摩耗性及び酸化安定性に優れるという特徴を考慮すると、駆動系機器に用いられることが好ましく、緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器に用いられることがより好ましい。
また、特に優れた耐摩耗性を有効に活用する観点から、上記機器で、強化材としてガラス繊維が配合されている部材を有する機器に好適に用いることができ、例えば強化材としてガラス繊維が配合されているピストンバンドを部材として有し、インナーチューブ-ピストンバンド間の潤滑が必要となる緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器に好適に用いられる。
(Use of lubricating oil composition)
Since the lubricating oil composition of the present embodiment is excellent in wear resistance and oxidation stability, for example, it is used for drive system equipment such as shock absorbers, transmissions and power steering, for engines, for hydraulic operation, and for turbines. , For compressors, machine tools, cutting, gears, fluid bearings, rolling bearings, etc. Among them, considering the characteristics of excellent wear resistance and oxidative stability, it is preferably used for drive system equipment, and shock absorbers, especially automobile shock absorbers such as four-wheeled vehicles and two-wheeled vehicles, particularly four-wheeled vehicle shock absorbers. It is more preferable to be used in.
Further, from the viewpoint of effectively utilizing particularly excellent wear resistance, the above-mentioned equipment can be suitably used for equipment having a member containing glass fiber as a reinforcing material, for example, glass fiber is blended as a reinforcing material. It is suitably used for shock absorbers that have a piston band as a member and require lubrication between the inner tube and the piston band, especially for automobile shock absorbers such as four-wheeled vehicles and two-wheeled vehicles, and especially for four-wheeled vehicle shock absorbers. Will be.

[潤滑油組成物の製造方法]
本実施形態の潤滑油組成物の製造方法は、基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを配合することを特徴とするものである。
[Manufacturing method of lubricating oil composition]
The method for producing a lubricating oil composition of the present embodiment is characterized by blending a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.

Figure 0007089899000005

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
Figure 0007089899000005

(In the general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)

本実施形態の潤滑油組成物の製造方法において、基油、リン化合物、ジチオリン酸亜鉛は、本実施形態の潤滑油組成物に含まれるものとして説明したものと同じであり、これらの含有量は、本実施形態の潤滑油組成物における含有量として説明したものと同じである。また、本実施形態の潤滑油組成物の製造方法において、基油、リン化合物、ジチオリン酸亜鉛以外の成分、例えば本実施形態の潤滑油組成物に含み得る成分として説明したその他添加剤を配合してもよい。 In the method for producing the lubricating oil composition of the present embodiment, the base oil, the phosphorus compound, and zinc dithiophosphate are the same as those described as those contained in the lubricating oil composition of the present embodiment, and their contents are the same. , The content is the same as that described as the content in the lubricating oil composition of the present embodiment. Further, in the method for producing the lubricating oil composition of the present embodiment, components other than the base oil, the phosphorus compound and zinc dithiophosphate, for example, other additives described as components that can be contained in the lubricating oil composition of the present embodiment are blended. You may.

潤滑油組成物を製造するに際し、基油とリン化合物とジチオリン酸亜鉛との配合において、より安定した性状の潤滑油組成物を得る観点から、基油にリン化合物とジチオリン酸亜鉛とを加えることが好ましい。また、これと同様の観点から、その他添加剤を配合する場合、その他添加剤として用いる各種添加剤を、基油とリン化合物とジチオリン酸亜鉛とを配合したものに、逐次配合することが好ましい。 When producing a lubricating oil composition, the phosphorus compound and zinc dithiophosphate are added to the base oil from the viewpoint of obtaining a lubricating oil composition having more stable properties in the blending of the base oil, the phosphorus compound and zinc dithiophosphate. Is preferable. From the same viewpoint as this, when other additives are added, it is preferable to sequentially add various additives used as other additives to a mixture of a base oil, a phosphorus compound and zinc dithiophosphate.

[駆動系機器]
本実施形態の駆動系機器は、基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む潤滑油組成物を用いることを特徴とするものである。
[Drive system equipment]
The drive system device of the present embodiment is characterized by using a lubricating oil composition containing a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.

Figure 0007089899000006

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
Figure 0007089899000006

(In the general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)

本実施形態の駆動系機器に用いられる潤滑油組成物に含まれる基油、リン化合物、ジチオリン酸亜鉛は、本実施形態の潤滑油組成物に含まれるものとして説明したものと同じであり、これらの含有量は、本実施形態の潤滑油組成物における含有量として説明したものと同じである。また、本実施形態の駆動系機器に用いられる潤滑油組成物には、基油、リン化合物、ジチオリン酸亜鉛以外の成分、例えば本実施形態の潤滑油組成物に含み得る成分として説明したその他添加剤を配合してもよい。 The base oil, phosphorus compound, and zinc dithiophosphate contained in the lubricating oil composition used for the drive system equipment of the present embodiment are the same as those described as those contained in the lubricating oil composition of the present embodiment, and these are the same. The content of the above is the same as that described as the content in the lubricating oil composition of the present embodiment. Further, in the lubricating oil composition used for the driving system equipment of the present embodiment, components other than the base oil, the phosphorus compound and zinc dithiophosphate, for example, other components described as components that can be contained in the lubricating oil composition of the present embodiment are added. The agent may be blended.

駆動系機器としては、主に緩衝器、変速機、パワーステアリング等が挙げられる。本実施形態の駆動系機器に用いられる潤滑油組成物の特に優れる耐摩耗性を有効に活用する観点から、強化材としてガラス繊維が配合されている部材を有する機器が好ましい。例えば、強化材としてガラス繊維が配合されているピストンバンドを部材として有し、インナーチューブ-ピストンバンド間の潤滑が必要となる緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器が好ましい。 Drivetrain equipment mainly includes shock absorbers, transmissions, power steering and the like. From the viewpoint of effectively utilizing the particularly excellent wear resistance of the lubricating oil composition used in the drive system device of the present embodiment, a device having a member containing glass fiber as a reinforcing material is preferable. For example, a shock absorber having a piston band containing glass fiber as a reinforcing material and requiring lubrication between the inner tube and the piston band, especially a shock absorber for automobiles such as four-wheeled vehicles and two-wheeled vehicles, particularly four. A shock absorber for a wheel wheel is preferable.

次に、実施例により本発明をさらに具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

潤滑油組成物の性状、性能の測定及び評価は以下の方法で行った。
(1)動粘度
JIS K 2283:2000に準拠し、40℃、100℃における動粘度を測定した。
(2)粘度指数(VI)
JIS K 2283:2000に準拠して測定した。
(3)外観の評価
表1に記載の各成分を60℃にて混合した後、室温下(20℃)にて1日間貯蔵した各実施例及び比較例の潤滑油組成物の外観を目視で確認し、沈殿の発生の有無を評価した。沈殿が発生するものは、混合安定性が低いものであり、潤滑油組成物としての使用に耐えられないものである。
(4)耐摩耗性の評価
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、ボール・オン・ディスク型の往復動摩擦試験機(バウデン・レーベン式)使い、荷重29.4N、温度100℃、すべり速度50mm/s、ストローク10mm、時間30分で摩擦試験を行い、ディスク上の摩耗痕幅を測定した。ボールは、ガラス球(直径12mm)であり、ディスクは材質SPCC-SBである。摩耗痕幅が小さいほど、耐摩耗性に優れているといえる。
(5)酸化安定性の評価
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、JIS K2514-1:2013に準拠するISOT試験にて、該潤滑油組成物に銅板と鉄板を触媒として入れて、試験温度120℃、試験時間24時間、撹拌速度1300rpmとして試料を劣化させた後、銅の溶出量を測定した。銅の溶出量が少ないほど、酸化安定性に優れているといえる。
The properties and performance of the lubricating oil composition were measured and evaluated by the following methods.
(1) Dynamic viscosity The kinematic viscosity at 40 ° C and 100 ° C was measured according to JIS K 2283: 2000.
(2) Viscosity index (VI)
Measured according to JIS K 2283: 2000.
(3) Appearance Evaluation Visually observe the appearance of the lubricating oil compositions of Examples and Comparative Examples in which each component shown in Table 1 was mixed at 60 ° C. and then stored at room temperature (20 ° C.) for 1 day. It was confirmed and the presence or absence of precipitation was evaluated. Those in which precipitation occurs have low mixing stability and cannot withstand use as a lubricating oil composition.
(4) Evaluation of Wear Resistance For the lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1, a ball-on-disk type reciprocating friction tester (Bowden-Leben). Using the formula), a friction test was performed with a load of 29.4 N, a temperature of 100 ° C., a slip speed of 50 mm / s, a stroke of 10 mm, and a time of 30 minutes, and the wear mark width on the disk was measured. The ball is a glass ball (diameter 12 mm), and the disc is made of the material SPCC-SB. It can be said that the smaller the wear mark width, the better the wear resistance.
(5) Evaluation of Oxidation Stability The lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1 were subjected to an ISOT test based on JIS K2514-1: 2013. A copper plate and an iron plate were added to the lubricating oil composition as catalysts, the sample was deteriorated at a test temperature of 120 ° C., a test time of 24 hours, and a stirring speed of 1300 rpm, and then the amount of copper elution was measured. It can be said that the smaller the elution amount of copper, the better the oxidative stability.

(実施例1、2、及び比較例1~5の潤滑油組成物の作製)
下記表1に示す配合処方に従い配合して、潤滑油組成物を作製した。得られた各潤滑油組成物について、上記方法により測定した各性状及び性能の評価結果を表1に示す。
(Preparation of Lubricating Oil Compositions of Examples 1 and 2 and Comparative Examples 1 to 5)
A lubricating oil composition was prepared by blending according to the blending formula shown in Table 1 below. Table 1 shows the evaluation results of each property and performance measured by the above method for each of the obtained lubricating oil compositions.

Figure 0007089899000007
Figure 0007089899000007

本実施例で用いた表1に示される各成分の詳細は以下の通りである。
・基油1:60N水素化精製油(40℃動粘度:7.83mm/s、100℃動粘度:2.22mm/s、粘度指数:83)
・基油2:70N水素化精製油(40℃動粘度:9.92mm/s、100℃動粘度:2.71mm/s、粘度指数:114)
・リン化合物1:ジエチルステアリルホスホネート(一般式(1)において、R11がステアリル基であり、R12及びR13がエチル基であるリン化合物)
・リン化合物2:モノオレイルアシッドホスフェート
・リン化合物3:トリクレジルホスファイト
・ジチオリン酸亜鉛1:第一級ジアルキルジチオリン酸亜鉛(分子中に炭素数3、4及び6の第一級アルキル基の少なくとも一種のアルキル基を有するものの混合物)
・ジチオリン酸亜鉛2:第一級ジアルキルジチオリン酸亜鉛(分子中に炭素数8及び10の第一級アルキル基の少なくとも一種のアルキル基を有するものの混合物)
・脂肪酸アミド:イソステアリン酸とテトラエチレンペンタミンの反応物である。
・粘度指数向上剤1:ポリメタクリレート(Mw:140,000)
・粘度指数向上剤2:ポリメタクリレート(Mw:550,000)
・その他添加剤:フェノール系酸化防止剤、金属不活性化剤(チアジアゾール等)、シリコーン系消泡剤
The details of each component shown in Table 1 used in this example are as follows.
-Base oil 1: 60N hydrorefined oil (40 ° C. kinematic viscosity: 7.83 mm 2 / s, 100 ° C. kinematic viscosity: 2.22 mm 2 / s, viscosity index: 83)
-Base oil 2: 70N hydrorefined oil (40 ° C. kinematic viscosity: 9.92 mm 2 / s, 100 ° C. kinematic viscosity: 2.71 mm 2 / s, viscosity index: 114)
-Phosphorus compound 1: Diethylstearylphosphonate (in the general formula ( 1 ), R11 is a stearyl group and R12 and R13 are ethyl groups).
-Phosphorus compound 2: Monooleyl acid phosphate-Phosphorus compound 3: Tricredyl phosphite-Zinc dithiophosphate 1: Primary dialkyl Zinc dithiophosphate (primary alkyl groups having 3, 4 and 6 carbon atoms in the molecule) A mixture of those having at least one alkyl group)
Zinc dithiophosphate 2: Primary dialkyl Zinc dithiophosphate (a mixture of molecules having at least one alkyl group of 8 and 10 carbon atoms)
-Fatty acid amide: A reaction product of isostearic acid and tetraethylenepentamine.
-Viscosity index improver 1: Polymethacrylate (Mw: 140,000)
-Viscosity index improver 2: Polymethacrylate (Mw: 550,000)
-Other additives: Phenolic antioxidants, metal deactivating agents (thiadiazole, etc.), silicone defoamers

表1の結果から、本実施形態の潤滑油組成物は、いずれも沈殿を生じることがなく混合安定性に優れており、また摩耗痕幅が0.55mm以下、好ましくは0.53mm以下と優れた耐摩耗性を有しており、銅の溶出量が10質量ppm以下、好ましくは5質量ppm以下と優れた酸化安定性を有するものであることが確認された。
一方、一般式(1)で表されるリン化合物を含まない比較例1及び2の潤滑油組成物は、摩耗痕幅が0.64mm、0.61mmであり、優れた耐摩耗性を有するものとはいえないものであった。比較例3の潤滑油組成物は、一般式(1)で表されるリン化合物のかわりにオレイルアシッドホスフェート及びトリクレジルホスファイトを配合し、ジチオリン酸亜鉛を配合しなかったものであり、摩耗痕幅は0.52mmと優れた耐摩耗性を有するものであったが、銅の溶出量が105質量ppmと酸化安定性に極めて劣るものであった。比較例4の潤滑油組成物は、一般式(1)で表されるリン化合物のかわりにオレイルアシッドホスフェートを配合したものであるが、オレイルアシッドホスフェートとジチオリン酸亜鉛との反応により沈殿が生じており、潤滑油組成物として使用できるものではなかった(そのため、耐摩耗性及び酸化安定性の評価は行わなかった。)。また、比較例5の潤滑油組成物は、ジチオリン酸亜鉛を配合しなかったものであり、銅の溶出量は2質量ppm以下と優れた酸化安定性を有するものであったが、摩耗痕幅が0.57mmであり、耐摩耗性に優れているとはいえないものであった。
From the results shown in Table 1, the lubricating oil compositions of the present embodiment are excellent in mixing stability without causing precipitation, and have an excellent wear mark width of 0.55 mm or less, preferably 0.53 mm or less. It was confirmed that the copper has excellent wear resistance and the elution amount of copper is 10% by mass or less, preferably 5% by mass or less, and has excellent oxidative stability.
On the other hand, the lubricating oil compositions of Comparative Examples 1 and 2 containing no phosphorus compound represented by the general formula (1) have wear scar widths of 0.64 mm and 0.61 mm and have excellent wear resistance. It couldn't be said. The lubricating oil composition of Comparative Example 3 contained oleyl acid phosphate and tricresyl phosphite in place of the phosphorus compound represented by the general formula (1) and did not contain zinc dithiophosphate, and was worn. The trace width was 0.52 mm, which was excellent in wear resistance, but the elution amount of copper was 105 mass ppm, which was extremely inferior in oxidative stability. The lubricating oil composition of Comparative Example 4 contains oleyl acid phosphate instead of the phosphorus compound represented by the general formula (1), but precipitation occurs due to the reaction between oleyl acid phosphate and zinc dithiophosphate. Therefore, it could not be used as a lubricating oil composition (therefore, wear resistance and oxidation stability were not evaluated). Further, the lubricating oil composition of Comparative Example 5 did not contain zinc dithiophosphate, and the elution amount of copper was 2% by mass or less, which was excellent in oxidative stability, but the wear scar width. Was 0.57 mm, which was not excellent in wear resistance.

Claims (14)

基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む、緩衝器用の潤滑油組成物。
Figure 0007089899000008

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
A lubricating oil composition for a shock absorber containing a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
Figure 0007089899000008

(In the general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
前記一般式(1)において、R11が炭素数1以上24以下のアルキル基又は炭素数2以上24以下のアルケニル基であり、R12及びR13が各々独立に炭素数1以上12以下のアルキル基又は炭素数2以上12以下のアルケニル基である請求項1に記載の潤滑油組成物。 In the general formula (1), R 11 is an alkyl group having 1 or more and 24 or less carbon atoms or an alkenyl group having 2 or more and 24 or less carbon atoms, and R 12 and R 13 are independently alkyl groups having 1 or more and 12 or less carbon atoms. The lubricating oil composition according to claim 1, which is a group or an alkenyl group having 2 or more and 12 or less carbon atoms. 前記リン化合物の組成物全量基準の含有量が、0.01質量%以上3質量%以下である請求項1又は2に記載の潤滑油組成物。 The lubricating oil composition according to claim 1 or 2, wherein the content of the phosphorus compound based on the total amount of the composition is 0.01% by mass or more and 3% by mass or less. 前記ジチオリン酸亜鉛が、ジアルキルジチオリン酸亜鉛である請求項1~3のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 3, wherein the zinc dithiophosphate is zinc dialkyl dithiophosphate. 前記ジアルキルジチオリン酸亜鉛が、第一級ジアルキルジチオリン酸亜鉛である請求項4に記載の潤滑油組成物。 The lubricating oil composition according to claim 4, wherein the zinc dialkyldithiophosphate is a primary zinc dialkyldithiophosphate. 前記第一級ジアルキルジチオリン酸亜鉛が、炭素数が1以上24以下の第一級アルキル基を有する請求項4又は5に記載の潤滑油組成物。 The lubricating oil composition according to claim 4 or 5, wherein the zinc primary dialkyl dithiophosphate has a primary alkyl group having 1 or more and 24 or less carbon atoms. 前記ジチオリン酸亜鉛の組成物全量基準の含有量が、0.01質量%以上3質量%以下である請求項1~6のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 6, wherein the content of the zinc dithiophosphate based on the total amount of the composition is 0.01% by mass or more and 3% by mass or less. 全リン原子含有量P(質量%)に対する、前記リン化合物に由来のリン原子含有量P(質量%)の割合P/Pが50%以下である請求項1~7のいずれか1項に記載の潤滑油組成物。 Any of claims 1 to 7, wherein the ratio P 1 / P 0 of the phosphorus atom content P 1 (mass%) derived from the phosphorus compound to the total phosphorus atom content P 0 (mass%) is 50% or less. The lubricating oil composition according to item 1. 40℃動粘度が5mm/s以上35mm/s以下である請求項1~8のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 8, wherein the 40 ° C. kinematic viscosity is 5 mm 2 / s or more and 35 mm 2 / s or less. 粘度指数が、85以上である請求項1~9のいずれか1項に記載の潤滑油組成物。The lubricating oil composition according to any one of claims 1 to 9, which has a viscosity index of 85 or more. さらに、油性剤として、グリセロールエステルを含有する請求項1~10のいずれか1項に記載の潤滑油組成物。The lubricating oil composition according to any one of claims 1 to 10, further comprising a glycerol ester as an oily agent. 基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを配合する、緩衝器用の潤滑油組成物の製造方法。
Figure 0007089899000009

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
A method for producing a lubricating oil composition for a shock absorber, which comprises a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
Figure 0007089899000009

(In the general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む、緩衝器用の潤滑油組成物を用いた緩衝器。
Figure 0007089899000010

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
A shock absorber using a lubricating oil composition for a shock absorber, which comprises a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate .
Figure 0007089899000010

(In the general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
自動車用である、請求項13に記載の緩衝器。13. The shock absorber according to claim 13, which is for automobiles.
JP2018031186A 2018-02-23 2018-02-23 Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment Active JP7089899B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018031186A JP7089899B2 (en) 2018-02-23 2018-02-23 Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment
PCT/JP2019/003989 WO2019163509A1 (en) 2018-02-23 2019-02-05 Lubricant oil composition, method for manufacturing lubricant oil composition and driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018031186A JP7089899B2 (en) 2018-02-23 2018-02-23 Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment

Publications (2)

Publication Number Publication Date
JP2019143107A JP2019143107A (en) 2019-08-29
JP7089899B2 true JP7089899B2 (en) 2022-06-23

Family

ID=67688238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018031186A Active JP7089899B2 (en) 2018-02-23 2018-02-23 Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment

Country Status (2)

Country Link
JP (1) JP7089899B2 (en)
WO (1) WO2019163509A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114945652A (en) * 2020-01-17 2022-08-26 雅富顿化学公司 Friction modifier compounds and related compositions and methods
JP2024093384A (en) * 2022-12-27 2024-07-09 出光興産株式会社 Lubricant composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172660A (en) 1999-12-16 2001-06-26 Nippon Mitsubishi Oil Corp Hydraulic fluid composition for shock absorber
JP2005002215A (en) 2003-06-11 2005-01-06 Nippon Oil Corp Lubricating oil composition for internal combustion engine
JP2008255239A (en) 2007-04-05 2008-10-23 Japan Energy Corp Gear oil composition
JP2009013380A (en) 2007-07-09 2009-01-22 Idemitsu Kosan Co Ltd Lubricant composition for shock absorber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158633A (en) * 1978-03-30 1979-06-19 Edwin Cooper, Inc. Lubricating oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172660A (en) 1999-12-16 2001-06-26 Nippon Mitsubishi Oil Corp Hydraulic fluid composition for shock absorber
JP2005002215A (en) 2003-06-11 2005-01-06 Nippon Oil Corp Lubricating oil composition for internal combustion engine
JP2008255239A (en) 2007-04-05 2008-10-23 Japan Energy Corp Gear oil composition
JP2009013380A (en) 2007-07-09 2009-01-22 Idemitsu Kosan Co Ltd Lubricant composition for shock absorber

Also Published As

Publication number Publication date
JP2019143107A (en) 2019-08-29
WO2019163509A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US11072759B2 (en) Lubricating oil composition, lubrication method, and transmission
JP6978153B2 (en) Lubricating oil composition, lubricating method, and transmission
WO2015025977A1 (en) Lubricating oil composition for shock absorber
JP6035175B2 (en) Lubricating oil composition
JP7129035B2 (en) LUBRICANT OIL COMPOSITION FOR DRIVE SYSTEM DEVICE AND MANUFACTURING METHOD THEREOF, METHOD FOR LUBRICATING DRIVE SYSTEM DEVICE, AND DRIVE SYSTEM DEVICE
JP7089899B2 (en) Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment
JP6753608B2 (en) Lubricating oil composition, lubricating method, and transmission
WO2015025976A1 (en) Lubricating oil composition for shock absorber
JP6917359B2 (en) Lubricating oil composition, lubricating method, and transmission
JP5961097B2 (en) Lubricating oil composition
JP2020180267A (en) Lubricant composition for driving system device, production method thereof, lubrication method of driving system device, and driving system device
JP4079509B2 (en) Lubricating oil composition
WO2022004870A1 (en) Lubricating oil composition, shock absorber, and method for using lubricating oil composition
WO2022009791A1 (en) Lubricating oil composition, buffer and method for using lubricating oil composition
JP7099876B2 (en) Lubricating oil composition and its manufacturing method, lubrication method of drive system equipment, and drive system equipment
JP7126357B2 (en) lubricating oil composition
WO2020085153A1 (en) Lubricating oil composition, mechanical device equipped with lubricating oil composition, and method for producing lubricating oil composition
JP6857317B2 (en) Lubricating oil composition
WO2018043495A1 (en) Lubricant composition
JP7348747B2 (en) Lubricating oil composition for transmissions, method for producing the same, lubrication method using the lubricating oil composition for transmissions, and transmissions
WO2023058440A1 (en) Lubricating oil composition, lubrication method, and transmission
WO2021010265A1 (en) Lubricating oil composition
JP2023165448A (en) Lubricant composition, lubrication method and transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7089899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150