JP7089743B2 - Hard materials and their manufacturing methods - Google Patents

Hard materials and their manufacturing methods Download PDF

Info

Publication number
JP7089743B2
JP7089743B2 JP2018097000A JP2018097000A JP7089743B2 JP 7089743 B2 JP7089743 B2 JP 7089743B2 JP 2018097000 A JP2018097000 A JP 2018097000A JP 2018097000 A JP2018097000 A JP 2018097000A JP 7089743 B2 JP7089743 B2 JP 7089743B2
Authority
JP
Japan
Prior art keywords
hard
hard material
phase
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018097000A
Other languages
Japanese (ja)
Other versions
JP2019203149A (en
JP2019203149A5 (en
Inventor
亮一 古嶋
慶三 小林
明 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018097000A priority Critical patent/JP7089743B2/en
Publication of JP2019203149A publication Critical patent/JP2019203149A/en
Publication of JP2019203149A5 publication Critical patent/JP2019203149A5/ja
Application granted granted Critical
Publication of JP7089743B2 publication Critical patent/JP7089743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属炭化物の硬質相と、アルミニウム合金の結合相を複合した硬質材料およびその製造方法に関する。 The present invention relates to a hard material in which a hard phase of a metal carbide and a bonded phase of an aluminum alloy are combined, and a method for producing the same.

WC-Co超硬合金は硬質粒子である炭化タングステン(WC)粒子と金属コバルト(Co)で焼き固めた硬質材料である。WC-Co超硬合金は硬さと靭性のバランスに優れた材料であるため、切削工具や金型材料など精密加工分野において非常に広く用いられている。 WC-Co cemented carbide is a hard material that is hardened with tungsten carbide (WC) particles, which are hard particles, and metallic cobalt (Co). Since WC-Co cemented carbide is a material with an excellent balance between hardness and toughness, it is very widely used in the precision machining field such as cutting tools and mold materials.

しかし、超硬合金の結合相として用いられているCoは600℃以上の高温において酸化が促進しやすい面を持っている。この酸化の影響により、超硬合金は600℃以上の高温における強度の低下や耐酸化性に課題を抱えている。本課題を克服したすなわち600℃以上の高温における強度の維持や高温耐酸化性を有した硬質材料を作製するためには、高温強度や高温耐酸化性に優れた結合相の材質を選択し、WCなどの硬質粒子と複合化させることが有力な案である。 However, Co used as a bonding phase of cemented carbide has a surface in which oxidation is easily promoted at a high temperature of 600 ° C. or higher. Due to the influence of this oxidation, cemented carbide has problems such as a decrease in strength and oxidation resistance at a high temperature of 600 ° C. or higher. In order to overcome this problem, that is, to maintain the strength at a high temperature of 600 ° C or higher and to produce a hard material having high temperature oxidation resistance, select a material of the bonded phase having excellent high temperature strength and high temperature oxidation resistance. It is a promising idea to combine it with hard particles such as WC.

高温強度や高温耐酸化性に優れる結合相の材質の候補としてAlを含む合金や金属間化合物が挙げられる。例えば、特許文献1には鉄アルミニウム(FeAl)合金を結合相としてWCと複合化させることにより、高温耐酸化性に優れた超硬合金が得られたと記載されている。 Examples of the material of the bonded phase having excellent high-temperature strength and high-temperature oxidation resistance include alloys containing Al and intermetallic compounds. For example, Patent Document 1 describes that a cemented carbide having excellent high temperature oxidation resistance was obtained by combining an iron-aluminum (FeAl) alloy with WC as a bonding phase.

FeAl合金は600℃付近の高温において優れた降伏強度を示すため、この温度域においてFeAl合金を結合相に用いた硬質材料(以下FeAl合金硬質材料と記載)は、硬度や強度・靭性などの機械的特性に優れた特徴を有する。また、ニッケルアルミニウム(NiAl)合金もFeAl合金と同様600℃付近の高温において優れた強度を示すため、この温度域においてNiAl合金を結合相に用いた硬質材料(以下NiAl合金硬質材料と記載)も、硬度や強度・靭性などの機械的特性に優れた特徴を有する。以上のことからFeAl合金硬質材料およびNiAl合金硬質材料はWC-Co超硬合金よりも600℃付近の高温特性に優れた硬質材料として期待できる。 Since FeAl alloys show excellent yield strength at high temperatures around 600 ° C, hard materials using FeAl alloys for the bonding phase in this temperature range (hereinafter referred to as FeAl alloy hard materials) are machines with hardness, strength, toughness, etc. It has excellent characteristics. In addition, since nickel-aluminum (NiAl) alloy also exhibits excellent strength at high temperatures around 600 ° C like FeAl alloy, hard materials using NiAl alloy as the bonding phase in this temperature range (hereinafter referred to as NiAl alloy hard material) are also available. , Has excellent mechanical properties such as hardness, strength and toughness. From the above, FeAl alloy hard material and NiAl alloy hard material can be expected as hard materials having excellent high temperature characteristics around 600 ° C than WC-Co cemented carbide.

しかし、FeAl合金硬質材料やNiAl合金硬質材料の室温における機械的特性は、WC-Co超硬合金に比べ、同じ結合相の体積率で比較すると硬度では若干上回るが、強度や靭性が低いという問題がある。室温における強度や靭性などの機械的特性は高温における機械的特性にも影響を与えるため、室温強度や靭性の向上がFeAl合金焼結体やNiAl合金硬質材料の重要な課題となる。 However, the mechanical properties of FeAl alloy hard materials and NiAl alloy hard materials at room temperature are slightly higher than those of WC-Co cemented carbide in terms of the volume ratio of the same bonded phase, but the strength and toughness are low. There is. Since mechanical properties such as strength and toughness at room temperature also affect mechanical properties at high temperatures, improving room temperature strength and toughness is an important issue for FeAl alloy sintered bodies and NiAl alloy hard materials.

FeAl合金硬質材料やNiAl合金硬質材料の室温における強度や靭性を上げるには、硬質相に対する結合相の割合を増やす手法が簡便であるが、本手法は代償として硬さが低下してしまう。このため硬さを低下させず、強度や靭性を向上させる手法が望ましい。 In order to increase the strength and toughness of FeAl alloy hard materials and NiAl alloy hard materials at room temperature, it is convenient to increase the ratio of the bonded phase to the hard phase, but this method reduces the hardness at the cost. Therefore, a method of improving strength and toughness without reducing hardness is desirable.

硬さを低下させず、強度や靭性を向上させる手法として、添加物の利用が挙げられる。添加物の候補の1つとしてホウ素(B)が挙げられる。実際、特許文献2により、材料中にBを分散させることで強度や靭性を向上させたCoフリーの超硬合金(FeAl合金焼結体)が報告されている。 The use of additives can be mentioned as a method for improving strength and toughness without reducing hardness. Boron (B) is one of the candidates for additives. In fact, Patent Document 2 reports a Co-free cemented carbide (FeAl alloy sintered body) having improved strength and toughness by dispersing B in a material.

特許文献2によるとB粉末をWCなどの原料粉末に添加することにより、室温強度の向上に成功している。しかし、室温強度の向上を実現するB粉末の添加量は微量であるため、Bの均一分散が難しいという課題があった。 According to Patent Document 2, the room temperature strength has been successfully improved by adding the B powder to the raw material powder such as WC. However, since the amount of B powder added to improve the room temperature strength is very small, there is a problem that uniform dispersion of B is difficult.

B以外の添加物の候補として、窒素(N)が挙げられる。N添加による影響は、WC-Co超硬合金と同じ代表的硬質材料である炭化チタン(TiC)系サーメットにおいて効果が認められている。例えば非特許文献2には、TiCに窒化チタンTiNを添加し、硬質相をTiCからNを含む炭窒化チタン(TiCN)に変更することにより、固溶体Ti(C,N)を形成させることでサーメットの靱性の向上や粒成長抑制による硬さの向上が確認されたことが報告されている。 Nitrogen (N) is a candidate for additives other than B. The effect of N addition has been confirmed in titanium carbide (TiC) -based cermet, which is the same typical hard material as WC-Co cemented carbide. For example, in Non-Patent Document 2, cermet is formed by adding titanium nitride TiN to TiC and changing the hard phase from TiC to titanium carbonitride (TiCN) containing N to form a solid solution Ti (C, N). It has been reported that the improvement of toughness and the improvement of hardness by suppressing grain growth were confirmed.

FeAl合金硬質材料やNiAl合金硬質材料へのNの添加は、焼結中に窒素ガスに晒す手法が考えられる。しかし、本手法はFeAl合金硬質材料内部まで均一にNを拡散させることはできず、効果が焼結体表面のみに限定される。このため、硬化した表面層を維持するため、焼結体の加工は大きく制限される。したがって本手法は、切削チップなどの単純形状の部品については適用できるが、ドリルやエンドミル工具などの精密な加工を必要とする複雑形状の部品には適用が困難である。製品形状の制約をなくすためには、焼結体内部までNを均質に拡散させることが必要であった。 For the addition of N to FeAl alloy hard materials and NiAl alloy hard materials, a method of exposing to nitrogen gas during sintering can be considered. However, this method cannot evenly diffuse N into the inside of the FeAl alloy hard material, and the effect is limited to the surface of the sintered body. Therefore, in order to maintain the cured surface layer, the processing of the sintered body is greatly restricted. Therefore, although this method can be applied to simple-shaped parts such as cutting tips, it is difficult to apply to complex-shaped parts such as drills and end mill tools that require precision machining. In order to eliminate the restrictions on the product shape, it was necessary to diffuse N evenly into the inside of the sintered body.

特開平07-003357号公報Japanese Unexamined Patent Publication No. 07-003357 特開2012-77352号公報Japanese Unexamined Patent Publication No. 2012-77352

D.E. Almanら,Wear of iron-aluminide intermetallic-based alloys and composites by hard particles,Wear 2001年 251巻 p.875-884D.E. Alman et al., Wear of iron-aluminide intermetallic-based alloys and composites by hard particles, Wear 2001, Vol. 251 p.875-884 勝村裕次ら,最近のTiN系サーメットの特性,精密機械 1980年 46巻 p.553-559Yuji Katsumura et al., Characteristics of recent TiN cermets, Precision Machinery 1980 Vol. 46, p.553-559

本発明は上述のような問題に鑑みてなされたものであり、BとNを内部まで均質に拡散させることにより室温での硬度や靱性に優れた耐熱性硬質材料と、その製造方法を提供することを課題とするものである。 The present invention has been made in view of the above-mentioned problems, and provides a heat-resistant hard material having excellent hardness and toughness at room temperature by uniformly diffusing B and N to the inside, and a method for producing the same. That is the subject.

上記課題を達成するために、本発明の硬質材料は、(1)4族、5族、6族の金属炭化物のうち少なくとも1種を含む硬質相と、(2)アルミニウム(Al)の割合が20原子%以上50原子%以下である鉄アルミニウム合金、および、アルミニウム(Al)の割合が20原子%以上50原子%以下であるニッケルアルミニウム合金のうち少なくとも1種を含む結合相を複合した硬質材料であって、前記結合相にホウ素(B)および窒素(N)が固溶していることを特徴とする。
この硬質材料において、ホウ素(B)および窒素(N)が六方晶窒化ホウ素(h-BN)に由来することが好ましい。
本発明の硬質材料の製造方法は、前記硬質材料を製造する方法であって、六方晶窒化ホウ素粉末(h-BN)を原料粉末に添加し、混合および/または粉砕して混合粉末を得る工程と、前記混合粉末を焼結する工程を含むことを特徴としている。
In order to achieve the above problems, the hard material of the present invention has a hard phase containing at least one of (1) group 4, group 5 and group 6 metal alloys, and (2) a ratio of aluminum (Al). A hard material that combines a bonded phase containing at least one of an iron-aluminum alloy having a proportion of 20 atomic% or more and 50 atomic% or less and a nickel-aluminum alloy having an aluminum (Al) ratio of 20 atomic% or more and 50 atomic% or less. It is characterized in that boron (B) and nitrogen (N) are solidly dissolved in the bonded phase.
In this hard material, boron (B) and nitrogen (N) are preferably derived from hexagonal boron nitride (h-BN).
The method for producing a hard material of the present invention is a method for producing the hard material, which is a step of adding hexagonal boron nitride powder (h-BN) to a raw material powder and mixing and / or pulverizing the mixture to obtain a mixed powder. It is characterized by including a step of sintering the mixed powder.

本発明によれば、BやNを内部まで均質に固溶させたFeAl合金またはNiAl合金の結合相を有することで、室温における硬度や靭性(強度)などの機械的特性に優れた耐熱性硬質材料を得ることができる。 According to the present invention, a heat-resistant hard material having excellent mechanical properties such as hardness and toughness (strength) at room temperature by having a bonded phase of FeAl alloy or NiAl alloy in which B and N are uniformly dissolved to the inside. The material can be obtained.

耐酸化試験後のサンプルの外観を示す写真である。It is a photograph which shows the appearance of a sample after an oxidation resistance test.

以下、本発明を詳細に説明する。
本発明の硬質材料は、結合相にホウ素(B)および窒素(N)が固溶していることを特徴とし、BおよびNは、好ましくは六方晶窒化ホウ素(h-BN)に由来する。すなわち、Alを含む合金で金属炭化物を結合した複合材料において、h-BNを添加し、焼結時のh-BNとFeAl合金またはNiAl合金の反応を利用して製造される。h-BNは、固体潤滑剤として知られ、粉末中に均一分散させるのが容易である、さらに1100℃以上の高温でFeAl合金またはNiAl合金と反応を起こす。この反応により、h-BNが微量な添加量であっても焼結後にはB、Nを硬質材料中に均質分散させることができる。Bは主にFeAl合金またはNiAl合金中に均質に固溶する。本発明の重要な点は、h-BNとFeAl合金またはNiAl合金の反応によりBとN成分を硬質材料中に均質に分散させることである。B源としてB粉末、N源は金属粉末に含まれるNを用いることも考えられるが、B粉末は添加量が微小であるため硬質材料中への均質拡散が難しい。また金属粉末に含まれるNは、焼結初期の段階で大部分が脱離し、不確定な量のみ硬質材料中に残存するためN源として用いるには制御が困難である。これに対しh-BNは、硬質材料が緻密化する温度より50℃から200℃低い温度でFeAl合金またはNiAl合金と反応を起こすことで、目的の量のB成分とN成分を硬質材料中に均質に分散させることができ、かつN成分をほとんど脱離させることがない。h-BNは、熱的に安定な化合物として知られており、鋳鉄の溶湯用部材として用いられている。このためh-BNを添加しても、硬質材料中にh-BN単体として残存することが想定されるため、特性向上に繋がらないと考えられたが、比較的低温でFeAl合金またはNiAl合金と反応するという知見が得られ、本発明を完成するに至った。
Hereinafter, the present invention will be described in detail.
The rigid material of the present invention is characterized in that boron (B) and nitrogen (N) are dissolved in the bonded phase, and B and N are preferably derived from hexagonal boron nitride (h-BN). That is, it is produced by adding h-BN to a composite material in which metal carbides are bonded with an alloy containing Al, and utilizing the reaction between h-BN and FeAl alloy or NiAl alloy at the time of sintering. h-BN, known as a solid lubricant, is easy to disperse uniformly in powders and reacts with FeAl or NiAl alloys at high temperatures above 1100 ° C. By this reaction, even if the amount of h-BN added is very small, B and N can be homogeneously dispersed in the hard material after sintering. B mainly dissolves homogeneously in FeAl alloy or NiAl alloy. An important point of the present invention is to uniformly disperse the B and N components in the hard material by the reaction of h-BN and FeAl alloy or NiAl alloy. It is conceivable to use B powder as the B source and N contained in the metal powder as the N source, but it is difficult to uniformly diffuse the B powder into the hard material because the addition amount is very small. In addition, most of N contained in the metal powder is desorbed at the initial stage of sintering, and only an uncertain amount remains in the hard material, so that it is difficult to control it as an N source. On the other hand, h-BN reacts with FeAl alloy or NiAl alloy at a temperature 50 ° C to 200 ° C lower than the temperature at which the hard material becomes densified, so that the target amount of B component and N component can be added to the hard material. It can be dispersed uniformly and hardly desorbs the N component. h-BN is known as a thermally stable compound and is used as a member for molten metal of cast iron. Therefore, even if h-BN is added, it is assumed that h-BN remains as a simple substance in the hard material, so it was thought that it would not lead to improvement in characteristics. The finding that it reacts was obtained, and the present invention was completed.

本発明の硬質材料において、結合相の鉄とニッケルの合計量を100重量%とした時、Bの含有量は0.03重量%以上0.6重量%以下が好ましく、0.1重量%以上0.3重量%以下がより好ましい。 In the hard material of the present invention, when the total amount of iron and nickel in the bonded phase is 100% by weight, the content of B is preferably 0.03% by weight or more and 0.6% by weight or less, and more preferably 0.1% by weight or more and 0.3% by weight or less. preferable.

本発明の硬質材料において、結合相の鉄とニッケルの合計量を100重量%とした時、Nの含有量は0.1重量%以上1.0重量%以下が好ましく、0.4重量%以上0.8重量%以下がより好ましい。 In the hard material of the present invention, when the total amount of iron and nickel in the bonded phase is 100% by weight, the content of N is preferably 0.1% by weight or more and 1.0% by weight or less, and more preferably 0.4% by weight or more and 0.8% by weight or less. preferable.

本発明の硬質材料の結合相は、鉄アルミニウム(FeAl)合金およびニッケルアルミニウム(NiAl)合金のうち少なくとも1種を含む。FeAl合金は、Alの割合が20原子%以上50原子%以下である。NiAl合金は、Alの割合が20原子%以上50原子%以下である。結合相として用いるFeAl合金およびNiAl合金の組成は、Alが20原子%以上50原子%以下で残りはFeまたはNiで構成される。この合金組成を持つ結合相を有することにより、室温から600℃付近までの破壊靭性や強度および耐酸化性に優れる硬質材料が得られる。特に、結合相を構成するアルミニウム合金が、FeAl系金属間化合物、NiAl系金属間化合物のうち少なくとも1種であることが好ましい。固溶体を含まないFeAl系金属化合物、すなわちB2型のFeAl金属間化合物、D03型のFe3Al金属間化合物や、固溶体を含まないNiAl系金属間化合物、すなわちB2型のNiAl金属間化合物、L12型のNi3Al金属間化合物で構成される場合は、耐酸化性と破壊靱性や強度とのバランスが良い硬質材料を作製することができる。合金中のAlの割合が20原子%より少ないと硬質材料の耐酸化性が低下する。一方、Alの割合が50原子%より大きいと結合相の破壊靭性や強度が低下し、硬質材料が脆性的になり、強度や靭性が低下する。 The bonded phase of the hard material of the present invention comprises at least one of an iron-aluminum (FeAl) alloy and a nickel-aluminum (NiAl) alloy. The FeAl alloy has an Al content of 20 atomic% or more and 50 atomic% or less. The NiAl alloy has an Al content of 20 atomic% or more and 50 atomic% or less. The composition of the FeAl alloy and NiAl alloy used as the bonding phase is such that Al is 20 atomic% or more and 50 atomic% or less, and the rest is Fe or Ni. By having a bonded phase having this alloy composition, a hard material having excellent fracture toughness, strength and oxidation resistance from room temperature to around 600 ° C. can be obtained. In particular, it is preferable that the aluminum alloy constituting the bonded phase is at least one of a FeAl-based intermetallic compound and a NiAl-based intermetallic compound. FeAl-based intermetallic compound that does not contain a solid solution, that is, B2 type FeAl intermetallic compound, D03 type Fe 3 Al intermetallic compound, and NiAl-based intermetallic compound that does not contain a solid solution, that is, B2 type NiAl intermetallic compound, L1 2 When composed of a type of Ni 3 Al intermetallic compound, it is possible to prepare a hard material having a good balance between oxidation resistance, fracture toughness and strength. If the proportion of Al in the alloy is less than 20 atomic%, the oxidation resistance of the hard material decreases. On the other hand, when the ratio of Al is larger than 50 atomic%, the fracture toughness and strength of the bonded phase are lowered, the hard material becomes brittle, and the strength and toughness are lowered.

本発明の硬質材料において、硬質相は、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)などの4族の金属炭化物、炭化ニオブ(NbC)などの5族の金属炭化物、炭化モリブデン(Mo2C)、炭化タングステン(WC)などの6族の金属炭化物のうち少なくとも1種を含む。本発明の特性上、いずれの炭化物を硬質相に用いても問題なく、本発明の有意差を生み出すBやNの含有量に影響を与えることはない。ただし、加圧焼結を用いる方法以外の焼結法、例えば液相焼結を利用した真空下での焼結法においては、硬質相は、結合相であるFeAl合金またはNiAl合金との濡れ性に優れたWCを、硬質相全体の体積を100体積%とした時、50体積%以上含むことが好ましい。加圧焼結を用いる場合は、WCの他に軽量で、FeAl合金またはNiAl合金との濡れ性が比較的良好なTiCを硬質相として用いることが好ましい。硬質相の体積は、走査型電子顕微鏡などから得られる画像を用いれば、化合物のモル質量の大きさにより濃淡が現れるため、硬質材料の種類が容易に識別でき、体積分率を求められる。濃淡による識別が困難な場合、エネルギー分散型X線分光法を併用することで対象元素を確認し、硬質材料の種類の特定が可能である。 In the hard material of the present invention, the hard phase is a group 4 metal carbide such as titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), a group 5 metal carbide such as niobide (NbC), and carbide. Contains at least one of Group 6 metal carbides such as molybdenum (Mo 2 C) and tungsten carbide (WC). Due to the characteristics of the present invention, there is no problem even if any of the carbides is used for the hard phase, and the content of B or N that produces a significant difference of the present invention is not affected. However, in a sintering method other than the method using pressure sintering, for example, in a sintering method under vacuum using liquid phase sintering, the hard phase has wettability with a FeAl alloy or a NiAl alloy as a bonded phase. It is preferable to contain WC having excellent WC in an amount of 50% by volume or more when the total volume of the hard phase is 100% by volume. When pressure sintering is used, it is preferable to use TiC, which is lightweight and has relatively good wettability with FeAl alloy or NiAl alloy, as the hard phase in addition to WC. As for the volume of the hard phase, if an image obtained from a scanning electron microscope or the like is used, shading appears depending on the magnitude of the molar mass of the compound, so that the type of hard material can be easily identified and the volume fraction can be obtained. When it is difficult to distinguish by shading, it is possible to confirm the target element and specify the type of hard material by using energy dispersive X-ray spectroscopy in combination.

本発明の硬質材料は、混合粉末を得る工程と、得られた混合粉末を焼結する焼結工程を経て製造することができる。混合粉末を得る工程では、h-BNを原料粉末に添加し、混合および/または粉砕する。具体的には、Alを含む合金粉末と炭化物硬質粉末などの原料粉末に加えh-BN粉末を添加し、混合および/または粉砕して混合粉末を調製する。h-BN中のBは焼結工程でFeAl合金またはNiAl合金と反応し、固溶する。FeとNiの合計量を100重量%とした時のBの含有率は、波長分散型のX線分光器により検出、評価できる。一方、h-BN中のN成分の一部は蒸発するが、残りはFeAl合金またはNiAl合金中に固溶する。FeとNiの合計量を100重量%とした時のNの含有率は、不活性ガス融解-熱伝導度法を用いた窒素分析装置などを用いて測定できる。 The hard material of the present invention can be produced through a step of obtaining a mixed powder and a sintering step of sintering the obtained mixed powder. In the step of obtaining a mixed powder, h-BN is added to the raw material powder, mixed and / or ground. Specifically, h-BN powder is added in addition to the alloy powder containing Al and the raw material powder such as the carbide hard powder, and mixed and / or pulverized to prepare a mixed powder. B in h-BN reacts with FeAl alloy or NiAl alloy in the sintering process and dissolves in solid solution. The content of B when the total amount of Fe and Ni is 100% by weight can be detected and evaluated by a wavelength dispersive X-ray spectroscope. On the other hand, a part of the N component in h-BN evaporates, but the rest dissolves in the FeAl alloy or NiAl alloy. The content of N when the total amount of Fe and Ni is 100% by weight can be measured by using a nitrogen analyzer using the inert gas melting-heat conductivity method.

焼結工程では、前記混合粉末を焼結する。本発明の硬質材料は、100Pa以下の真空において、原料を混合した混合粉末を型に充填して10MPa以上200MPa以下の加圧下において1150℃以上1300℃以下の温度で焼結するか、または、前記混合粉末の成形体を1350℃以上1600℃以下の温度で無加圧焼結することによって製造することができる。具体的には、前者では混合粉末を型に充填し、100Pa以下の真空下で通電パルス焼結やホットプレスなどの加圧焼結を用いて焼結する。後者では、混合粉末を金型に充填し加圧成形した後、100Pa以下の真空において焼結(以下真空焼結と記載)する。通電パルス焼結の場合は、放射温度計を型に合わせ、表示された温度を焼結温度と見なした場合、1150℃以上1300℃以下の範囲で緻密化が可能である。一般に加圧焼結を用いた方が、真空焼結より緻密な合金焼結体を製造することができる。ただし、硬質相中にWCが体積率として25%以上含まれていない硬質材料の場合は、通常の真空焼結での緻密化は困難である。また、真空焼結、加圧焼結いずれにおいても、降温過程で、アルゴンなどの不活性ガスなどを入れて冷却するなどの処理を行っても構わない。 In the sintering step, the mixed powder is sintered. The hard material of the present invention is filled with a mixed powder mixed with raw materials in a vacuum of 100 Pa or less and sintered at a temperature of 1150 ° C. or more and 1300 ° C. or less under a pressure of 10 MPa or more and 200 MPa or less, or the above. It can be produced by subjecting a molded product of a mixed powder to sintering without pressure at a temperature of 1350 ° C. or higher and 1600 ° C. or lower. Specifically, in the former case, the mixed powder is filled in a mold and sintered using pressure sintering such as energization pulse sintering or hot pressing under a vacuum of 100 Pa or less. In the latter, the mixed powder is filled in a mold, pressure-molded, and then sintered in a vacuum of 100 Pa or less (hereinafter referred to as vacuum sintering). In the case of energization pulse sintering, if the radiation thermometer is adjusted to the mold and the displayed temperature is regarded as the sintering temperature, densification is possible in the range of 1150 ° C or higher and 1300 ° C or lower. Generally, it is possible to produce a denser alloy sintered body by using pressure sintering than by vacuum sintering. However, in the case of a hard material in which WC is not contained in the hard phase at a volume fraction of 25% or more, it is difficult to densify by ordinary vacuum sintering. Further, in both vacuum sintering and pressure sintering, a process such as adding an inert gas such as argon to cool the temperature may be performed in the temperature lowering process.

以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

(1)h-BN添加して作製したWC-FeAl、WC-NiAl、TiC-FeAl硬質材料のN量の変化
原料粉末として、WC粉末(平均粒径2.0μm 日本新金属(株)製)、TiC粉末(平均粒径1.7μm 日本新金属(株)製)、Fe粉末(粒径3-5μm (株)高純度科学研究所製)、Al粉末(平均粒径10μmまたは粒径3-5μm (株)高純度科学研究所製)、h-BN粉末(平均粒径2μm,AP-20S,MARUKA製)を用意した。まず原料粉末に含まれるN量を不活性ガス融解-熱伝導度法を用いた分析装置(TC-436, Leco株式会社製)により測定した。その結果を表1に示す。原料粉末でNが有意量検出さされたのは、Fe粉末とh-BN粉末の2種類で、他の粉末は検出範囲外であった。
(1) Changes in N amount of WC-FeAl, WC-NiAl, TiC-FeAl hard materials prepared by adding h-BN As raw material powder, WC powder (average particle size 2.0 μm, manufactured by Nippon Shinkinzoku Co., Ltd.), TiC powder (average particle size 1.7 μm manufactured by Nippon Shinkinzoku Co., Ltd.), Fe powder (particle size 3-5 μm manufactured by High Purity Science Laboratory Co., Ltd.), Al powder (average particle size 10 μm or particle size 3-5 μm) High Purity Science Laboratory Co., Ltd.) and h-BN powder (average particle size 2 μm, AP-20S, manufactured by MARUKA) were prepared. First, the amount of N contained in the raw material powder was measured by an analyzer (TC-436, manufactured by Leco Co., Ltd.) using an inert gas melting-thermal conductivity method. The results are shown in Table 1. Significant amounts of N were detected in the raw material powders in two types, Fe powder and h-BN powder, and the other powders were out of the detection range.

Figure 0007089743000001
Figure 0007089743000001

原料粉末に含まれるN量を明らかにした後、所定量のWC粉末、TiC粉末、Fe粉末、Al粉末、Ni粉末を420mlのステンレスポットに入れ、直径9.3mmの超硬ボール900g、アセトン100mlを添加し、湿式によるボールミル混合を72時間行った。その後、エバポレータを用いてスラリーを乾燥し混合粉末を得た。この混合粉末にAl粉末を添加し、擂潰器による乾式混合を行った。得られた混合粉末と所定量のh-BN粉末を、乳鉢を用いて乾式混合し、混合後粉末を黒鉛型に入れ、通電パルス焼結装置にて焼結を行った。加圧は40MPa、最高温度(焼結温度)は収縮量を見極めサンプルごとに1150℃から1260℃の範囲で変えた。一般的傾向として、h-BN添加割合の増加や合金結合相のAlの割合が増えるに従い、焼結温度は低下する。今回作製した硬質材料の結合相であるFeAl合金またはNiAl合金の組成は、表2に示すようにFe0.33Al0.67、Fe0.5Al0.5、Fe0.7Al0.3、Ni0.7Al0.3の4組成とし、略称をそれぞれF3A7、Fe5A5、F7A3、N7A3とする。 After clarifying the amount of N contained in the raw material powder, put the prescribed amount of WC powder, TiC powder, Fe powder, Al powder, and Ni powder in a 420 ml stainless steel pot, and add 900 g of carbide balls with a diameter of 9.3 mm and 100 ml of acetone. It was added and mixed with a wet ball mill for 72 hours. Then, the slurry was dried using an evaporator to obtain a mixed powder. Al powder was added to this mixed powder, and dry mixing was performed using a grinder. The obtained mixed powder and a predetermined amount of h-BN powder were dry-mixed using a mortar, and after mixing, the powder was placed in a graphite mold and sintered with a current-carrying pulse sintering device. The pressurization was 40 MPa, and the maximum temperature (sintering temperature) was changed in the range of 1150 ° C to 1260 ° C for each sample after checking the shrinkage amount. As a general tendency, the sintering temperature decreases as the addition ratio of h-BN increases and the ratio of Al in the alloy-bonded phase increases. As shown in Table 2, the composition of the FeAl alloy or NiAl alloy, which is the bonding phase of the hard material produced this time, is abbreviated as four compositions of Fe 0.33 Al 0.67 , Fe 0.5 Al 0.5 , Fe 0.7 Al 0.3 , and Ni 0.7 Al 0.3 . Let be F3A7, Fe5A5, F7A3, and N7A3, respectively.

Figure 0007089743000002
Figure 0007089743000002

焼結した硬質材料に含まれるN量を調べるため、得られた焼結体を平面研削した後、一部を切り出した上で砕き、破片を不活性ガス融解-熱伝導度法を用いた分析装置(TC-436, Leco株式会社製)によりN含有量を測定した。窒素量測定に用いた部分以外のサンプルは研磨により表面を鏡面に仕上げた。このサンプルの見かけ密度をアルキメデス法により測定した後、鏡面にダイヤモンド圧子を打ち込み、JIS Z2244に基づいたビッカース硬さ測定、IF法による破壊靱性の測定を行った。破壊靭性値KICはShettyらが提案した以下の式(1)より求めた。
(数1)
IC=1.39×(H・P/C)0.5 (1)
ここで、Hはビッカース硬さ(GPa)、Pは押込み加重(N)、及びCは平均亀裂長さ(μm)を示している。表3~表5に、各硬質材料における硬質粒子の種類、結合相の組成、結合相の体積率、B含有率、合金結合相におけるAlの割合、硬質材料における結合相の体積割合、硬質材料中のB含有率、結合相のFeまたはNi成分に対するBの割合、硬質材料中のN含有率(測定値/理論値)、結合相のFeまたはNi成分に対するNの割合、焼結した各サンプルの見かけ密度、相対密度、ビッカース硬さ、破壊靭性値を示す。なお、相対密度は、見かけ密度を理論密度で除して得られる値を示しているが、理論密度を求める際に、硬質相と結合相が反応しないという仮定や、結合相の組成に基づく合金結合相の理論的算出過程を含んでいる。このため、相対密度は、サンプルの緻密度を評価するのに有用な指標ではあるが、若干の誤差を含んでおり、サンプルによっては相対密度が100%を超えることもあり得ることを明記しておく。
In order to investigate the amount of N contained in the sintered hard material, the obtained sintered body is surface-ground, then a part is cut out and crushed, and the debris is melted by an inert gas-analysis using the thermal conductivity method. The N content was measured by an apparatus (TC-436, manufactured by Leco Co., Ltd.). The surface of the sample other than the part used for measuring the amount of nitrogen was mirror-finished by polishing. After measuring the apparent density of this sample by the Archimedes method, a diamond indenter was driven into the mirror surface, and the Vickers hardness was measured based on JIS Z 2244 and the fracture toughness was measured by the IF method. The fracture toughness value K IC was obtained from the following equation (1) proposed by Shetty et al.
(Number 1)
K IC = 1.39 × (H v・ P / C) 0.5 (1)
Here, H v indicates the Vickers hardness (GPa), P indicates the indentation load (N), and C indicates the average crack length (μm). Tables 3 to 5 show the types of hard particles in each hard material, the composition of the bonded phase, the volume ratio of the bonded phase, the B content, the ratio of Al in the alloy bonded phase, the volume ratio of the bonded phase in the hard material, and the hard material. B content in, ratio of B to Fe or Ni component of bound phase, N content in hard material (measured / theoretical), ratio of N to Fe or Ni component of bound phase, sintered samples The apparent density, relative density, Vickers hardness, and fracture toughness value of are shown. The relative density indicates a value obtained by dividing the apparent density by the theoretical density, but when determining the theoretical density, it is assumed that the hard phase and the bonded phase do not react, and the alloy is based on the composition of the bonded phase. It includes the theoretical calculation process of the bound phase. For this reason, the relative density is a useful index for assessing the density of a sample, but it contains some errors, and it is clearly stated that the relative density may exceed 100% depending on the sample. back.

本発明の硬質材料のN含有率の理論値は、h-BN粉由来のNとFe粉由来のNの2つの和から算出している。表4の結果から、Feを結合相に含む実験例においてN含有率の測定値は、理論値より低いことがわかった。Feを含む結合相の体積率が35%の実験例(比較例1と実施例1から実施例4)においては、測定値が理論値の5分の1以下になった。これは、Fe粉末由来のNがサンプル内部に残存すると仮定して理論値を求めたが、実際には添加したNのほとんどはサンプル中に残存せず焼結中に脱離したためと考えられる。一般にFe粉末に含まれるNは、共有結合性が弱く、加熱中に脱離しやすいと考えられる。一方、h-BN由来のNは共有結合性が強く、加熱により容易に脱離しないと考えられる。実際、N成分を含まないN7A3を結合相とした比較例11と実施例21から実施例23においては、測定値と理論値はほぼ一致する。以上のことから、Fe金属粉に含まれるNの大部分は焼結中に脱離し、h-BN由来のNはFeAl合金に固溶すると考えられる。 The theoretical value of the N content of the hard material of the present invention is calculated from the sum of N derived from h-BN powder and N derived from Fe powder. From the results in Table 4, it was found that the measured value of the N content was lower than the theoretical value in the experimental example containing Fe in the bound phase. In the experimental example (Comparative Example 1 and Example 1 to Example 4) in which the volume fraction of the bound phase containing Fe was 35%, the measured value was one-fifth or less of the theoretical value. It is considered that this is because the theoretical value was obtained on the assumption that N derived from Fe powder remained inside the sample, but most of the added N did not actually remain in the sample and was desorbed during sintering. In general, N contained in Fe powder has a weak covalent bond and is considered to be easily desorbed during heating. On the other hand, N derived from h-BN has a strong covalent bond and is considered not to be easily desorbed by heating. In fact, in Comparative Example 11 and Examples 21 to 23 in which N7A3 containing no N component is used as the binding phase, the measured values and the theoretical values are almost the same. From the above, it is considered that most of the N contained in the Fe metal powder is desorbed during sintering, and the N derived from h-BN is dissolved in the FeAl alloy.

(2)h-BNを添加したWC-FeAl硬質材料の機械的特性における結合相の組成、結合相の体積率の割合の影響
表3~表5の結果から、FeAl合金結合相の組成がF7A3、F5A5の場合(比較例1から実施例17を参照)、B量やN量によるビッカース硬さや破壊靭性の変化が明瞭に見られ、B量やN量に最適値が存在した。ビッカース硬さまたは破壊靭性が最大となるh-BN添加量の最適値は、Feを100重量%とした時のB成分の重量に換算して少なくとも0.03重量%以上0.6重量%以下の範囲で、Feを100重量%とした時のN成分の重量に換算して、少なくとも0.1重量%以上1重量%以下の範囲に存在することがわかった。したがって、同範囲内を満たすようなh-BNの添加は、h-BN無添加の系に比べて特性を向上させることは明らかといえる。
(2) Effect of the composition of the bonded phase and the ratio of the volume ratio of the bonded phase on the mechanical properties of the WC-FeAl hard material to which h-BN was added From the results in Tables 3 to 5, the composition of the FeAl alloy bonded phase is F7A3. In the case of F5A5 (see Comparative Examples 1 to 17), changes in Vickers hardness and fracture toughness were clearly observed depending on the amount of B and N, and the optimum values existed for the amount of B and N. The optimum value of the amount of h-BN added that maximizes Vickers hardness or breaking toughness is at least 0.03% by weight or more and 0.6% by weight or less in terms of the weight of component B when Fe is 100% by weight. It was found that it exists in the range of at least 0.1% by weight or more and 1% by weight or less in terms of the weight of the N component when Fe is 100% by weight. Therefore, it can be clearly said that the addition of h-BN that satisfies the same range improves the characteristics as compared with the system without h-BN addition.

一方、FeAl合金結合相の組成がF3A7の場合、B量やN量の増加によるビッカース硬さの向上の効果はほとんど見られず、破壊靭性には明確な傾向が見られなかった(比較例5から比較例10を参照)。このことから、BやN成分の分散がWC-FeAl硬質材料の特性向上に寄与するかは、FeAl合金結合相の組成により異なることがわかった。Alの割合が50原子%より大きくなると、金属間化合物FeAl2を形成する可能性があり、これがh-BN添加の効果を阻害している可能性がある。このことから本発明においてFeAl合金の結合相中のAlの割合は50原子%以下である。 On the other hand, when the composition of the FeAl alloy bonded phase was F3A7, the effect of improving the Vickers hardness by increasing the amount of B and N was hardly seen, and no clear tendency was seen in the fracture toughness (Comparative Example 5). Refer to Comparative Example 10). From this, it was found that whether the dispersion of B and N components contributes to the improvement of the characteristics of the WC-FeAl hard material depends on the composition of the FeAl alloy bonded phase. When the proportion of Al is greater than 50 atomic%, it may form the intermetallic compound FeAl 2 , which may inhibit the effect of h-BN addition. From this, in the present invention, the ratio of Al in the bonded phase of the FeAl alloy is 50 atomic% or less.

今回の実験例における結合相の体積率は15%、25%、35%のいずれかであるが、どの体積率においてもB量やN量の変化によるビッカース硬さや破壊靭性の変化が明瞭に見られ、B量やN量に最適値が存在した。すなわち、結合相の体積率の変化は、硬質相であるWCの体積率の変化を意味するが、WCの割合が変わることで、h-BN添加によるWC-FeAl硬質材料の機械的特性へ向上の効果が失われることはなかった。このことからh-BN は硬質相であるWCとは基本的に反応しないことが示唆された。 The volume fraction of the bound phase in this experimental example is 15%, 25%, or 35%, but the changes in Vickers hardness and fracture toughness due to changes in the amount of B and N can be clearly seen at any volume fraction. There were optimum values for the B and N quantities. That is, the change in the volume fraction of the bonded phase means the change in the volume fraction of WC, which is a hard phase, but by changing the ratio of WC, the mechanical properties of the WC-FeAl hard material by adding h-BN are improved. The effect of was not lost. This suggests that h-BN basically does not react with WC, which is a hard phase.

(3)h-BNを添加した硬質材料の硬質粒子の違いによる機械的特性への影響
硬質相をWCからTiCに変えたTiC-FeAl硬質材料とした場合も、表3~表5の結果からB量やN量の変化によるビッカース硬さや破壊靭性の変化が明瞭に見られ、B量やN量に最適値が存在した(比較例10と実施例18から実施例20を参照)。TiCはh-BNと焼結過程で反応する可能性があるが、機械的特性向上をもたらすB量やN量の最適値は、Alを除く合金成分の重量すなわちこの場合Feの重量を基準値に取る限り、大きな変動はないことから、焼結中でのTiCとh-BNの反応は起こらないもしくはわずかであり、h-BNとFeAl合金との反応が優先していることが示唆された。
(3) Effect of difference in hard particles of hard material with h-BN on mechanical properties Even when using TiC-FeAl hard material in which the hard phase is changed from WC to TiC, the results in Tables 3 to 5 are obtained. Changes in Vickers hardness and fracture toughness due to changes in the amount of B and N were clearly seen, and optimum values existed for the amount of B and N (see Comparative Examples 10 and 18 to 20). TiC may react with h-BN in the sintering process, but the optimum values for the B and N amounts that improve mechanical properties are based on the weight of the alloy components excluding Al, that is, the weight of Fe in this case. As far as we can see, there is no large fluctuation, suggesting that the reaction between TiC and h-BN during sintering does not occur or is slight, and that the reaction between h-BN and FeAl alloy is prioritized. ..

(4)h-BNを添加した硬質材料の結合相の違いによる機械的特性への影響
表3~表5の結果から、結合相をFeAl合金からNiAl合金(N7A3)に変えたWC-NiAl硬質材料とした場合も、基本的にB量やN量によるビッカース硬さや破壊靭性の変化が明瞭に見られB量やN量に最適値が存在した(比較例11と実施例21から実施例23を参照)。機械的特性が最大となるB量やN量の最適値は、Feの場合と同様、Niの重量を基準値とした場合、大きな変動は見られなかった。このことから、h-BNとNiAlも反応を起こし、FeAl合金の結合相の場合と同様のメカニズムで特性が向上したことが示唆された。
(4) Effect of difference in bonded phase of hard material with h-BN on mechanical properties From the results in Tables 3 to 5, WC-NiAl hard with the bonded phase changed from FeAl alloy to NiAl alloy (N7A3). Even when used as a material, changes in Vickers hardness and fracture toughness were basically clearly observed depending on the amount of B and N, and optimum values existed for the amount of B and N (Comparative Example 11 and Examples 21 to 23). See). As in the case of Fe, the optimum values of the amount of B and the amount of N, which maximize the mechanical properties, did not change significantly when the weight of Ni was used as the reference value. From this, it was suggested that h-BN and NiAl also reacted, and the characteristics were improved by the same mechanism as in the case of the bonded phase of FeAl alloy.

Figure 0007089743000003
Figure 0007089743000003

Figure 0007089743000004
Figure 0007089743000004

Figure 0007089743000005
Figure 0007089743000005

(5)h-BN添加したWC-FeAl硬質材料の高温耐酸化性評価
本発明の硬質材料と市販のWC-Co(K10種)の耐酸化性試験を行った。実施例6と実施例14の組成のサンプルを準備し、直径14mm、厚さ約3mmの円板状に切り出し、大気中600℃24時間保持後の各サンプルの酸化による重量増分を測定した。図1に耐酸化試験後のサンプルの外観を示し、表6に各硬質材料の単位表面積当たりの酸化による重量増分の結果を示す。
(5) High-temperature oxidation resistance evaluation of WC-FeAl hard material to which h-BN was added The oxidation resistance test of the hard material of the present invention and commercially available WC-Co (K10 type) was carried out. Samples having the compositions of Example 6 and Example 14 were prepared, cut into a disk shape having a diameter of 14 mm and a thickness of about 3 mm, and the weight increase due to oxidation of each sample after holding at 600 ° C. for 24 hours in the air was measured. FIG. 1 shows the appearance of the sample after the oxidation resistance test, and Table 6 shows the result of weight increase due to oxidation per unit surface area of each hard material.

Figure 0007089743000006
Figure 0007089743000006

図1から市販のWC-Co(K10種)は耐酸化性試験後のサンプルの表面が割れ、飛散しているのが分かる。これは、サンプル表面だけでなく内部まで酸素が拡散し、酸化による体積膨張が起きたことを意味する。このことからWC-Coは600℃で長時間の使用は困難であるといえる。一方、実施例6、実施例14とも大気中600℃、24時間保持後において、鉄の酸化に起因する茶色の着色が見られるが、形状は保たれている。これはFeAlから酸化アルミニウムのような表面保護膜が形成されることで、サンプル内部までの酸素の拡散を抑制しているためと考えられる。その結果として、表6に示すように実施例6、実施例14とも酸化による重量増加はWC-Coよりも少なく、酸化が抑制されていることがわかる。以上の結果から、本発明の硬質材料は600℃周辺の温度域においてWC-Coより耐熱性に優れた硬質材料だといえる。 From FIG. 1, it can be seen that the surface of the sample after the oxidation resistance test of the commercially available WC-Co (K10 type) is cracked and scattered. This means that oxygen diffused not only to the surface of the sample but also to the inside, causing volume expansion due to oxidation. From this, it can be said that it is difficult to use WC-Co at 600 ° C for a long time. On the other hand, in both Examples 6 and 14, brown coloring due to the oxidation of iron was observed after holding at 600 ° C. in the air for 24 hours, but the shape was maintained. It is considered that this is because the surface protective film such as aluminum oxide is formed from FeAl to suppress the diffusion of oxygen to the inside of the sample. As a result, as shown in Table 6, the weight increase due to oxidation in both Examples 6 and 14 is smaller than that in WC-Co, and it can be seen that the oxidation is suppressed. From the above results, it can be said that the hard material of the present invention is a hard material having better heat resistance than WC-Co in the temperature range around 600 ° C.

本発明の耐熱性合金焼結体は、WC-Co超硬合金比較して耐熱性に優れており、さらにホウ素と窒素を内部まで均一分散させたFeAl合金またはNiAl合金の結合相を有することで、材料内部にわたり室温および600℃付近の高温における硬度、靭性などの機械的特性に優れた焼結体であることから600℃以上の高温環境下に晒される切削工具や金型などの材料として好適に利用することができる。また、WC-Co超硬合金と類似の作製プロセスを用いても高特性の耐熱性合金焼結体が作製できるため、WC-Co代替材料としての普及が期待できる。
The heat-resistant alloy sintered body of the present invention has excellent heat resistance as compared with the WC-Co cemented carbide, and further has a bonded phase of FeAl alloy or NiAl alloy in which boron and nitrogen are uniformly dispersed to the inside. Since it is a sintered body with excellent mechanical properties such as hardness and toughness at room temperature and high temperature around 600 ° C throughout the material, it can be used as a material for cutting tools and molds exposed to high temperature environments of 600 ° C or higher. It can be suitably used. Further, since a heat-resistant alloy sintered body having high characteristics can be produced by using a production process similar to that of WC-Co cemented carbide, it can be expected to be widely used as a substitute material for WC-Co.

Claims (6)

(1)4族、5族、6族の金属炭化物のうち少なくとも1種を含む硬質相と、
(2)アルミニウムの割合が20原子%以上50原子%以下である鉄アルミニウム合金、および、アルミニウムの割合が20原子%以上50原子%以下であるニッケルアルミニウム合金のうち少なくとも1種を含む結合相を複合した硬質材料であって、
前記結合相にホウ素および窒素が固溶していて、
前記結合相の鉄とニッケルの合計量を100重量%とした時、ホウ素の含有量が、0.03重量%以上0.6重量%以下であり、
前記結合相の鉄とニッケルの合計量を100重量%とした時、窒素の含有量が0.1重量%以上1.02重量%以下であることを特徴とする硬質材料。
(1) A hard phase containing at least one of Group 4, Group 5, and Group 6 metal carbides,
(2) A bonded phase containing at least one of an iron-aluminum alloy having an aluminum ratio of 20 atomic% or more and 50 atomic% or less and a nickel-aluminum alloy having an aluminum ratio of 20 atomic% or more and 50 atomic% or less. It is a composite hard material
Boron and nitrogen are dissolved in the bonded phase ,
When the total amount of iron and nickel in the bonded phase is 100% by weight, the boron content is 0.03% by weight or more and 0.6% by weight or less.
A hard material having a nitrogen content of 0.1% by weight or more and 1.02% by weight or less when the total amount of iron and nickel in the bonded phase is 100% by weight .
結合相を構成するアルミニウム合金が、FeAl系金属間化合物、NiAl系金属間化合物のうち少なくとも1種であることを特徴とする請求項1に記載の硬質材料。 The hard material according to claim 1, wherein the aluminum alloy constituting the bonded phase is at least one of a FeAl-based intermetallic compound and a NiAl-based intermetallic compound. 前記硬質相は、硬質相全体の体積を100体積%とした時、50体積%以上の炭化タングステンを含むことを特徴とする請求項1または2に記載の硬質材料。 The hard material according to claim 1 or 2 , wherein the hard phase contains 50% by volume or more of tungsten carbide when the total volume of the hard phase is 100% by volume. 前記硬質相は、硬質相全体の体積を100体積%とした時、50体積%以上の炭化チタンを含むことを特徴とする請求項1からのいずれか一項に記載の硬質材料。 The hard material according to any one of claims 1 to 3 , wherein the hard phase contains 50% by volume or more of titanium carbide when the total volume of the hard phase is 100% by volume. 請求項1からのいずれかに記載の硬質材料を製造する方法であって、六方晶窒化ホウ素粉末を原料粉末に添加し、混合および/または粉砕して混合粉末を得る工程と、
前記混合粉末を焼結する工程を含む、硬質材料の製造方法。
The method for producing a hard material according to any one of claims 1 to 4 , wherein a hexagonal boron nitride powder is added to a raw material powder, and the mixture is mixed and / or pulverized to obtain a mixed powder.
A method for producing a hard material, which comprises a step of sintering the mixed powder.
前記混合粉末を焼結する際に、100Pa以下の真空において、原料を混合した混合粉末を型に充填して10MPa以上200MPa以下の加圧下において1150℃以上1300℃以下の温度で焼結するか、または、前記混合粉末の成形体を1350℃以上1600℃以下の温度で無加圧焼結することを特徴とする請求項に記載の硬質材料の製造方法。 When sintering the mixed powder, in a vacuum of 100 Pa or less, the mixed powder mixed with the raw materials is filled in a mold and sintered at a temperature of 1150 ° C or more and 1300 ° C or less under a pressure of 10 MPa or more and 200 MPa or less. The method for producing a hard material according to claim 5 , wherein the molded body of the mixed powder is sintered without pressure at a temperature of 1350 ° C. or higher and 1600 ° C. or lower.
JP2018097000A 2018-05-21 2018-05-21 Hard materials and their manufacturing methods Active JP7089743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097000A JP7089743B2 (en) 2018-05-21 2018-05-21 Hard materials and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097000A JP7089743B2 (en) 2018-05-21 2018-05-21 Hard materials and their manufacturing methods

Publications (3)

Publication Number Publication Date
JP2019203149A JP2019203149A (en) 2019-11-28
JP2019203149A5 JP2019203149A5 (en) 2021-04-15
JP7089743B2 true JP7089743B2 (en) 2022-06-23

Family

ID=68726205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097000A Active JP7089743B2 (en) 2018-05-21 2018-05-21 Hard materials and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP7089743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823303B2 (en) 2008-12-01 2014-09-02 Mitsubishi Electric Corporation Alternating-current direct-current converter and electric motor driver

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447913B2 (en) 2019-11-08 2024-03-12 住友電気工業株式会社 Resin compositions and power cables
CN113652594B (en) * 2021-08-02 2022-11-22 自贡硬质合金有限责任公司 Refractory metal-based alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077352A (en) 2010-10-01 2012-04-19 National Institute Of Advanced Industrial Science & Technology Cemented carbide alloy, and cemented carbide tool
WO2016056487A1 (en) 2014-10-10 2016-04-14 国立研究開発法人産業技術総合研究所 High-temperature oxidation resistant rare-metal-free hard sintered body, and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077352A (en) 2010-10-01 2012-04-19 National Institute Of Advanced Industrial Science & Technology Cemented carbide alloy, and cemented carbide tool
WO2016056487A1 (en) 2014-10-10 2016-04-14 国立研究開発法人産業技術総合研究所 High-temperature oxidation resistant rare-metal-free hard sintered body, and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
福永 稔 他3名,FeAlを結合相とする超硬合金のパルス通電焼結による作製,粉体および粉末冶金,47巻 5号,日本,2000年,p.510-514

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823303B2 (en) 2008-12-01 2014-09-02 Mitsubishi Electric Corporation Alternating-current direct-current converter and electric motor driver

Also Published As

Publication number Publication date
JP2019203149A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
CN100526490C (en) Hard alloy sintered by high-entropy alloy binder and compound carbide and preparation method thereof
JP6082650B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP7089743B2 (en) Hard materials and their manufacturing methods
KR102441723B1 (en) Cermet, cutting tool, and method for manufacturing cermet
JP5807851B1 (en) Cermets and cutting tools
JPWO2011002008A1 (en) Cermet and coated cermet
WO2015156004A1 (en) Cermet, method for producing cermet, and cutting tool
JP2010517792A (en) Ti-based cermet
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP6615108B2 (en) High temperature oxidation resistant rare metal-free hard sintered body and method for producing the same
JP2016160108A (en) Sintered material and cutting tool
JPWO2018074275A1 (en) Composite sintered body
JP6283985B2 (en) Sintered body
Simsir et al. Effects of sintering temperature and addition of Fe and B 4 C on hardness and wear resistance of diamond reinforced metal matrix composites
JP5079940B2 (en) Tungsten carbide cemented carbide composite material sintered body
JP3606311B2 (en) Composite material containing ultra-hard particles
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP2004339591A (en) W-Ti-C TYPE COMPOSITE BODY AND ITS MANUFACTURING METHOD
JPH10310840A (en) Superhard composite member and its production
JP6304615B1 (en) tool
JP2019123903A (en) Heat-resistant WC-based composite material having high thermal conductivity and method for producing the same
JP7429432B2 (en) Pressure sintered body and its manufacturing method
Shimojima et al. Improvement of Wet Milled TiC-FeAl Alloys
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member
JPH10310839A (en) Super hard composite member with high toughness, and its production

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7089743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150