JP7087216B1 - Propulsion force generator by synthetic vibration wave - Google Patents

Propulsion force generator by synthetic vibration wave Download PDF

Info

Publication number
JP7087216B1
JP7087216B1 JP2022024345A JP2022024345A JP7087216B1 JP 7087216 B1 JP7087216 B1 JP 7087216B1 JP 2022024345 A JP2022024345 A JP 2022024345A JP 2022024345 A JP2022024345 A JP 2022024345A JP 7087216 B1 JP7087216 B1 JP 7087216B1
Authority
JP
Japan
Prior art keywords
plate
reaction plate
vibration
vertical axis
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022024345A
Other languages
Japanese (ja)
Other versions
JP2023121171A (en
Inventor
英策 柴田
Original Assignee
英策 柴田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英策 柴田 filed Critical 英策 柴田
Priority to JP2022024345A priority Critical patent/JP7087216B1/en
Application granted granted Critical
Publication of JP7087216B1 publication Critical patent/JP7087216B1/en
Publication of JP2023121171A publication Critical patent/JP2023121171A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

【課題】地上及び宇宙空間において、装置の外部側へ化石燃料などの噴流物による反作用力を要することなく、振動板の正弦波と反動板の正弦半パルス波の振動周期を一致させ、合成振動により慣性力を発生させる。【解決手段】錘3によるアンバランスな遠心力を発生する複数の振動装置を、円板の振動板5に複数均等配置してシステムモーター1により同期位置制御し、振動板5と垂直軸4を固定し、外周を固定した円板の反動板10中心に垂直軸4を結合することなく直立させ、可撓性金属材料である振動板5及び反動板10は、錘3の回転応力により等しく連動し、調整ナット11上端から垂直軸下端4aまでの長さを固定基準長に設定し、反動板10の振動範囲を制御することにより、振動板5の正弦波と振動周期が等しい反動板10の復元力による正弦半パルス波の合成波により、慣性力による推進力を発生させることが可能となる。【選択図】図1PROBLEM TO BE SOLVED: To match the vibration period of a sine wave of a vibrating plate and a sine half-pulse wave of a reaction plate to a synthetic vibration on the ground and in space without requiring a reaction force by a jet substance such as fossil fuel to the outside of the device. Generates an inertial force. SOLUTION: A plurality of vibrating devices for generating an unbalanced centrifugal force by a weight 3 are evenly arranged on a vibrating plate 5 of a disk, and a system motor 1 controls a synchronous position to control the vibrating plate 5 and a vertical axis 4. The vertical axis 4 is made upright without being coupled to the center of the reaction plate 10 of the disk fixed and the outer circumference is fixed, and the vibrating plate 5 and the reaction plate 10 which are flexible metal materials are equally interlocked by the rotational stress of the weight 3. By setting the length from the upper end of the adjusting nut 11 to the lower end 4a of the vertical axis as the fixed reference length and controlling the vibration range of the reaction plate 10, the vibration plate 10 has the same vibration period as the sinusoidal wave of the vibration plate 5. The combined wave of the sine half-pulse wave by the restoring force makes it possible to generate the propulsive force by the inertial force. [Selection diagram] Fig. 1

Description

本発明は、ロケットエンジン等とは異なり、噴流物を外部に放出することなく、振動板及び反動板による合成波振動の慣性力により推進力を得る推進力発生装置に関するものである。 The present invention relates to a propulsion force generator that obtains propulsion force by the inertial force of synthetic wave vibration by a diaphragm and a reaction plate without discharging jets to the outside, unlike a rocket engine or the like.

地上から宇宙空間に到達し活動するためには、地球重力脱出速度が必要とされ、加速度を得るためロケットの推進には大量の打ち上げ燃料を必要とする。また、飛行機のジェットエンジンなどは大量の高温ガスを放出し地球温暖化の原因にもなっている。また、これら飛行体は気象状況に影響され状況次第では飛行ができず度々欠航が発生する。 In order to reach outer space from the ground and operate, the earth's gravity escape velocity is required, and in order to obtain acceleration, a large amount of launch fuel is required to propel the rocket. In addition, jet engines of airplanes emit a large amount of high-temperature gas, which is also a cause of global warming. In addition, these aircraft cannot fly depending on the weather conditions and are often canceled.

この改善策として、装置の外部側に噴流物による反作用を必要とせず、特定方向にのみ慣性力が作用し、極めて安全性が高い合成振動波による推進力発生装置を提供する。 As a remedy for this, we provide a propulsion force generator using synthetic vibration waves, which does not require a reaction due to jets on the outside of the device, has an inertial force acting only in a specific direction, and is extremely safe.

特開2001-73927号公報Japanese Unexamined Patent Publication No. 2001-73927 特願2008-522224号公報Japanese Patent Application No. 2008-522224

振動は実体的な波であり、あらゆる物体に影響を及ぼす。例えば、媒質内を進むA振動波と、逆方向から進行するB振動波を合成することが可能で、合成後も物体同士の衝突と違い、互いの波は消滅することなく進む。また、合成時に2つの波の合成振動が媒質に伝わることも、波の独立性として証明されている。 Vibrations are substantive waves that affect any object. For example, it is possible to combine an A vibration wave traveling in a medium and a B vibration wave traveling from the opposite direction, and even after the synthesis, unlike collisions between objects, each other's waves proceed without disappearing. It is also proved as wave independence that the combined vibration of two waves is transmitted to the medium at the time of synthesis.

衝撃パルスという波があり、力学系では、物体に過度な動的外乱を与える波とされる。これは、電子機器、自動車、航空宇宙産業などで使用される電子製品などの衝撃試験の際、波の効力として応用されている。
数種類ある衝撃パルスのなかで、正弦半パルス波は、正弦波の半分、すなわち正の部分あるいは負の部分のみの半サイクルの波形をいう。
本発明は、正弦半パルス波を正弦波と合成することにより、特定方向に振動エネルギーを増幅させ、慣性力により推進力を得ることを目的とする。
There is a wave called an impact pulse, and in a dynamical system, it is a wave that gives an excessive dynamic disturbance to an object. This is applied as a wave effect in impact testing of electronic products used in electronic devices, automobiles, aerospace industry, and the like.
Among several types of impact pulses, a sine and cosine half-pulse wave is a half-cycle waveform of half a sine wave, that is, only a positive part or a negative part.
An object of the present invention is to amplify vibration energy in a specific direction by synthesizing a sine and cosine half-pulse wave with a sine wave, and to obtain a propulsive force by an inertial force.

前記の合成波を形成するため、振動板に発生する正弦波の振動と、反動板の復元力を応用して正弦半パルス波を発生させ、双方を効率的に合成させる方法を課題とする。 In order to form the above-mentioned combined wave, the subject is a method of efficiently combining both by generating a sine half-pulse wave by applying the vibration of the sine wave generated in the diaphragm and the restoring force of the reaction plate.

上記の課題を解決するための発明は、錘3及びアーム16を取り付けた回転子2及び軸受6により構成されるアンバランスな遠心力を発生する振動装置と、複数の振動装置を円板である振動板5の端部に均等配置し、振動装置をジョイント7で連結するシステムモーター1により同期位置制御し、振動板5中心を中心軸19を軸心とする垂直軸4に結合し、円板の反動板10の外周を固定する中空固定リング22、または反動板10に支持フレーム15を固定し、かつ垂直軸4に調整輪11を取り付け、垂直軸4を滑り軸受12及び横フレーム9で支持し、調整輪11上端から垂直軸下端4aまでの長さを、中心軸19と交わる横フレーム9の衝撃受け9aから同じく中心軸19と交わる平衡線10a(反動板上面)までの長さである固定基準長20と一致させ、垂直軸4を反動板10中心に結合することなく直立させる。 The invention for solving the above-mentioned problems is a vibrating device for generating an unbalanced centrifugal force composed of a rotor 2 to which a weight 3 and an arm 16 are attached and a bearing 6, and a disk having a plurality of vibrating devices. It is evenly arranged at the end of the vibrating plate 5, and the vibrating device is controlled in synchronization by the system motor 1 connected by the joint 7, and the center of the vibrating plate 5 is connected to the vertical axis 4 centered on the central axis 19 to form a disk. The support frame 15 is fixed to the hollow fixing ring 22 for fixing the outer periphery of the reaction plate 10 or the reaction plate 10, the adjusting wheel 11 is attached to the vertical shaft 4, and the vertical shaft 4 is supported by the sliding bearing 12 and the horizontal frame 9. The length from the upper end of the adjusting wheel 11 to the lower end 4a of the vertical axis is the length from the impact receiving 9a of the horizontal frame 9 intersecting the central axis 19 to the equilibrium line 10a (upper surface of the reaction plate) also intersecting the central axis 19. Match the fixed reference length 20 and make the vertical axis 4 stand upright without being coupled to the center of the reaction plate 10.

上記振動板5及び反動板10は可撓性金属材料で、主に鉄系金属材料であって、応力が及ぶ双方の中心に対する相対撓み量が、振動板5の撓み量と反動板10の撓み量が等しいか、反動板10の撓み量が小さい関係になるように双方の大きさと厚さを決定する。フックの法則から応力による撓み量と振動振幅は等しい関係になる。 The vibrating plate 5 and the reaction plate 10 are flexible metal materials, mainly iron-based metal materials, and the relative deflection amount with respect to both centers to which stress is applied is the deflection amount of the vibration plate 5 and the deflection of the reaction plate 10. Both sizes and thicknesses are determined so that the amounts are equal or the amount of deflection of the reaction plate 10 is small. According to Hooke's law, the amount of deflection due to stress and the vibration amplitude are in the same relationship.

振動装置の錘3をシステムモーター1で回転同期させると、振動板5は遠心力により正弦波振動し垂直軸4と接触する反動板10もその力を受けて振動し、双方の撓み量が等しい場合、振動板5及び反動板10は振幅・周期が等しい振動となり、垂直軸4と反動板10は密着状態で振動する。 When the weight 3 of the vibrating device is rotationally synchronized by the system motor 1, the vibrating plate 5 vibrates in a sine wave due to centrifugal force, and the reaction plate 10 in contact with the vertical axis 4 also vibrates under the force, and the amount of deflection of both is equal. In this case, the vibrating plate 5 and the reaction plate 10 vibrate with the same amplitude and period, and the vertical axis 4 and the reaction plate 10 vibrate in close contact with each other.

垂直軸4に取り付けた調整輪11が横フレーム9下端の衝撃受け9aに衝撃すると、反動板10及び垂直軸下端4aは平衡線10aで瞬間停止し、上昇側には物理的に振動できない。振動板5と振幅・周期が等しい反動板10の復元力による衝撃振動は、正弦波の半波長である正弦半パルス波となって垂直軸4を伝播し、振動板5の正弦波と振動周期が等しい合成波を形成することになる。 When the adjusting wheel 11 attached to the vertical shaft 4 impacts the impact receiver 9a at the lower end of the horizontal frame 9, the reaction plate 10 and the lower end 4a of the vertical shaft stop momentarily at the equilibrium line 10a and cannot physically vibrate to the ascending side. The shock vibration due to the restoring force of the reaction plate 10 having the same amplitude and period as the vibrating plate 5 becomes a sine half pulse wave which is a half wavelength of the sine wave and propagates on the vertical axis 4, and the sine wave and the vibration period of the vibrating plate 5 Will form an equal composite wave.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。 Since the present invention is configured as described above, the present invention has the effects described below.

振動板5と反動板10に使用する金属材料は、正弦波振動するものであればヤング率及び引張強度などの弾性率が多少異なる金属材料の組み合わせであってもよく、応力による双方の撓み量が等しい場合、または、反動板10の撓み量が小さい場合は双方の振動周期が一致するようになる。 The metal material used for the vibrating plate 5 and the reaction plate 10 may be a combination of metal materials having slightly different elastic moduli such as Young's modulus and tensile strength as long as they vibrate in a sinusoidal wave. If they are equal, or if the amount of deflection of the reaction plate 10 is small, both vibration cycles will be the same.

正弦半パルス波を発生させるための構成として、垂直軸4に取り付けた調整輪11上端から垂直軸下端4aまでの長さを、中心軸19と交わる横フレーム9下端の衝撃受け9aから同じく中心軸19と交わる反動板10の平衡線10a(反動板上面)までの長さである固定基準長20と一致させることにより、垂直軸4により反動板10の振動範囲は物理的に制限され、反動板10は平衡線10aより下方側にのみ振動し上方側には振動できない。 As a configuration for generating a sine half-pulse wave, the length from the upper end of the adjusting wheel 11 attached to the vertical axis 4 to the lower end 4a of the vertical axis is set from the impact receiver 9a at the lower end of the horizontal frame 9 intersecting the central axis 19 to the central axis as well. By matching with the fixed reference length 20 which is the length of the reaction plate 10 intersecting with 19 up to the equilibrium line 10a (upper surface of the reaction plate), the vibration range of the reaction plate 10 is physically limited by the vertical axis 4, and the reaction plate 10 is physically limited. 10 vibrates only below the equilibrium line 10a and cannot vibrate above it.

垂直軸4と反動板10は結合していないので、振動板5が錘3の遠心力により平衡状態より上昇側に振動しても、反動板10はその影響を受けることはなく、平衡線10aより下方側の範囲で垂直軸4と反動板10は密着状態で振動する。 Since the vertical axis 4 and the reaction plate 10 are not coupled, even if the diaphragm 5 vibrates to the ascending side from the equilibrium state due to the centrifugal force of the weight 3, the reaction plate 10 is not affected by the vibration and the equilibrium line 10a is not affected. The vertical axis 4 and the reaction plate 10 vibrate in close contact with each other in the lower range.

そのため反動板10の復元力により、垂直軸4に取り付けた調整輪11が衝撃受け9aに衝撃すると、衝撃力は正弦波の半波長に相当する正弦半パルス波となり、垂直軸4を伝搬し振動板5の正弦波と合成し慣性力を発生する。 Therefore, when the adjusting wheel 11 attached to the vertical axis 4 impacts the impact receiver 9a due to the restoring force of the reaction plate 10, the impact force becomes a sine half pulse wave corresponding to the half wavelength of the sine wave and propagates on the vertical axis 4 to vibrate. It is combined with the sine wave of the plate 5 to generate an inertial force.

反動板10の振幅が振動板5の振幅より小さい場合は、反動板10の波長が短くなっても振動板5の振動周期に遅れないため、垂直軸4と反動板10は密着状態で振動し慣性力を発生する。 When the amplitude of the reaction plate 10 is smaller than the amplitude of the diaphragm 5, the vertical axis 4 and the reaction plate 10 vibrate in close contact with each other because the vibration cycle of the diaphragm 5 is not delayed even if the wavelength of the reaction plate 10 is shortened. Generates inertial force.

しかし、反動板10の振幅が振動板5より大きくなると振動周期が長くなって遅れることになり一致した振動にならない。従って、振動板5と反動板10は弾性率などの特性が等しい金属材料であって、双方の撓み量を一致させると振動周期も一致し効率の良い合成波振動となる。 However, if the amplitude of the reaction plate 10 is larger than that of the diaphragm 5, the vibration cycle becomes longer and delayed, and the vibrations do not match. Therefore, the diaphragm 5 and the reaction plate 10 are metal materials having the same characteristics such as elastic modulus, and when the deflection amounts of both are matched, the vibration periods are also matched, resulting in efficient synthetic wave vibration.

本発明に係る実施例を示す正面図1である。FIG. 1 is a front view showing an embodiment of the present invention. 本発明に係る実施例を示す正面図2である。FIG. 2 is a front view showing an embodiment of the present invention. 正弦波と正弦半パルス波による合成波の説明図である。It is explanatory drawing of the composite wave by a sine wave and a sine half pulse wave. 実験装置の斜視図である。It is a perspective view of an experimental apparatus. 中空固定リングによる反動板の固定状況を示す図である。It is a figure which shows the fixing state of the reaction plate by a hollow fixing ring. 正弦波と正弦半パルス波の合成点を示す図である。It is a figure which shows the synthesis point of a sine wave and a sine half pulse wave.

以下、実施例として実験結果をもとに詳細に説明する。 Hereinafter, examples will be described in detail based on the experimental results.

実験例1
図4は本発明に係る実験装置で、ともに円板である振動板5と反動板10には、鉄系金属材料のSPCC(冷間圧延軟鋼板)を使用した。また、金属材料の撓み計算式は、振動板5の場合、垂直軸4に円板中心を固定した中心集中荷重・数式1で、反動板10は外周に支持ボルト14を取り付け、さらに、固定金具21により数個所周辺固定した中心集中荷重・数式2で、何れも円板の中心に応力が集中作用する。
Experimental Example 1
FIG. 4 shows the experimental apparatus according to the present invention, in which SPCC (cold rolled mild steel plate), which is an iron-based metal material, was used for the diaphragm 5 and the reaction plate 10, both of which are disks. In the case of the vibrating plate 5, the formula for calculating the deflection of the metal material is center concentrated load / formula 1 in which the center of the disk is fixed to the vertical axis 4. Center concentrated load fixed around several places by 21 ・ In the formula 2, stress concentrates on the center of the disk.

実験装置は、回転子2に取り付けたアーム16の錘3を回転同期するため、垂直軸4を回転軸とする大傘歯車17に、モータ13に取り付けた小傘歯車18をかみ合わせ、ジョイント7を介して軸受6を回転する。これらの振動装置を円板の振動板5に3個均等配置し、この振動板5中心を垂直軸4に結合し、さらに円板の反動板10に支持フレーム15を固定し、調整輪11を取り付けた垂直軸4を、滑り軸受12及び横フレーム9で支持し、反動板10中心に結合することなく直立させる構成である。 In the experimental device, in order to rotate and synchronize the weight 3 of the arm 16 attached to the rotor 2, the small bearing gear 18 attached to the motor 13 is engaged with the large bearing gear 17 having the vertical axis 4 as the rotation axis, and the joint 7 is engaged. The bearing 6 is rotated through the bearing 6. Three of these vibrating devices are evenly arranged on the vibrating plate 5 of the disk, the center of the vibrating plate 5 is connected to the vertical axis 4, the support frame 15 is fixed to the reaction plate 10 of the disk, and the adjusting wheel 11 is provided. The attached vertical shaft 4 is supported by the sliding bearing 12 and the horizontal frame 9, and is configured to stand upright without being coupled to the center of the reaction plate 10.

アーム16(アルミ製)と錘3(鉄板)の合計質量は15.3g。回転子2の材質SPCC、直径12cm厚さ2.3mm。モータ13はDCモータ・12V仕様の電流制御方式で、外部側のコントローラーと繋がっている。垂直軸4は直径10mm(ステンレス製)で、この3個のモータによる錘3の遠心力の総和を200Nとして以降の説明をする。 The total mass of the arm 16 (made of aluminum) and the weight 3 (iron plate) is 15.3 g. Rotor 2 material SPCC, diameter 12 cm, thickness 2.3 mm. The motor 13 is a DC motor, 12V specification current control method, and is connected to an external controller. The vertical axis 4 has a diameter of 10 mm (made of stainless steel), and the total centrifugal force of the weights 3 by these three motors is set to 200 N, which will be described below.

3個の回転子2及び軸受6で構成する振動装置とモータ13を設置するため、振動板5の直径400mm厚さ2.0mmとし、反動板10は直径300mm厚さ1.2mmの材料を使用した。仮に反動板10の直径を296mmにした場合、理論的には双方の撓み量を一致させることができ、200Nの応力を掛けた場合、それぞれ中心軸19に対する相対撓み量は2.75mmで一致する。また、400Nの応力で5.51mm、800Nの応力で11.03mmとなり常に同じ撓み量になる。 In order to install the vibration device and the motor 13 composed of the three rotors 2 and the bearing 6, the diameter of the diaphragm 5 is 400 mm and the thickness is 2.0 mm, and the reaction plate 10 is made of a material having a diameter of 300 mm and a thickness of 1.2 mm. did. If the diameter of the recoil plate 10 is 296 mm, the amount of deflection of both can be theoretically matched, and when a stress of 200 N is applied, the amount of relative deflection with respect to the central axis 19 is 2.75 mm. .. Further, the stress of 400 N is 5.51 mm, and the stress of 800 N is 11.03 mm, and the amount of deflection is always the same.

金属材料のヤング率(縦弾性係数)は、次の関係にある。
ヤング率(E)=応力(σ) / ひずみ(ε)
振動板5と反動板10のヤング率等の弾性率は同じ金属材料であり等しい。また、双方に掛かる遠心力による応力は垂直軸4によって連動するため等しい。そのため、振動板5と形状が同じで固定方法のみが異なる反動板10の場合、板厚と大きさが適切であれば、応力の変化に伴い中心軸19に対する相対撓み量は等しくなり、振動板5と反動板10は振動振幅・振動周期が常に等しい関係で振動する。
Young's modulus (longitudinal elastic modulus) of a metal material has the following relationship.
Young's modulus (E) = stress (σ) / strain (ε)
The elastic modulus such as Young's modulus of the diaphragm 5 and the reaction plate 10 is the same metal material and is equal. Further, the stress due to the centrifugal force applied to both is equal because they are interlocked by the vertical axis 4. Therefore, in the case of the reaction plate 10 having the same shape as the diaphragm 5 but different only in the fixing method, if the plate thickness and size are appropriate, the relative deflection amount with respect to the central axis 19 becomes equal with the change in stress, and the diaphragm 5 and the reaction plate 10 vibrate in a relationship in which the vibration amplitude and the vibration cycle are always equal.

振動板5の、固有振動時の振動加速度は、10.1m/sec2で重力加速度より幾分大きく、これよりさらに速い振動加速度のSPCC金属材料は、板厚が薄いものになり振幅が大きくなり過ぎて実験材料として不適格であった。 The vibration acceleration of the vibrating plate 5 at the time of natural vibration is 10.1 m / sec 2 , which is slightly larger than the gravitational acceleration. It was too unsuitable as an experimental material.

実験に用いたモータ13の無負荷回転数は8170rpm(136Hz)で、振動板5の固有振動数をバネ定数から求めると30.2Hzとなる。振動板5は中心部を垂直軸4に結合しているため減衰があり、固有振動より速い速度でモータ13による外力が作用するため位相遅れになる。 The no-load rotation speed of the motor 13 used in the experiment is 8170 rpm (136 Hz), and the natural frequency of the diaphragm 5 is 30.2 Hz when calculated from the spring constant. Since the center of the diaphragm 5 is coupled to the vertical axis 4, there is damping, and the external force of the motor 13 acts at a speed faster than the natural vibration, resulting in a phase delay.

実験装置を電子計量器上に設置し、反動板10の外周を固定金具21で数個所電子計量器の天板に固定し、実験装置に発生する推進力を観測した。 The experimental device was installed on the electronic measuring instrument, and the outer periphery of the reaction plate 10 was fixed to the top plate of the electronic measuring instrument at several points with the fixing metal fittings 21, and the propulsive force generated in the experimental device was observed.

実験装置の部材を一部改良したため、ここからは本発明の一実施例を示す図1及び図2にもとづいて発明原理を説明する。
回転子2及び軸受6からなる振動装置と振動板5、及び反動板10は実験装置と同じである。実験装置の滑り軸受12のベアリングを、本実施例に於いては、垂直方向の運動に適したスライドユニットに改良した。
Since the members of the experimental apparatus have been partially improved, the principle of the invention will be described below with reference to FIGS. 1 and 2 showing an embodiment of the present invention.
The vibrating device including the rotor 2 and the bearing 6, the vibrating plate 5, and the reaction plate 10 are the same as the experimental device. In this embodiment, the bearing of the slide bearing 12 of the experimental device has been improved to a slide unit suitable for vertical movement.

また、円板の反動板10を同じ外径の基礎リング23及び中空固定リング22により固定し、中空固定リング22または反動板10に支持フレーム15を固定し、垂直軸4を滑り軸受12及び横フレーム9で支持し、調整輪11を取り付けた垂直軸4を反動板10の中心に結合することなく直立させる。 Further, the reaction plate 10 of the disk is fixed by the foundation ring 23 and the hollow fixing ring 22 having the same outer diameter, the support frame 15 is fixed to the hollow fixing ring 22 or the reaction plate 10, and the vertical shaft 4 is the sliding bearing 12 and the lateral. The vertical axis 4 supported by the frame 9 and to which the adjusting ring 11 is attached stands upright without being connected to the center of the reaction plate 10.

中心軸19と交わる横フレーム9の衝撃受け9aから同じく中心軸19と交わる平衡線10a(反動板上面)までの長さである固定基準長20の長さが、例えば200mmであった場合、反動板10と接触する垂直軸下端4aから調整輪11の上端までを200mmに調整して固定する。さらに、垂直軸4上部側に振動装置等を取り付けた振動板5を固定ナット8で設置すると、調整輪11と衝撃受け9aの間に荷重による撓みができても、これによる調整は行わない。重力の影響で撓みができても、反動板10にそれ以上の速さの振動加速度(復元力)が発生しこの撓みは解消される。 If the length of the fixed reference length 20 which is the length from the impact receiving 9a of the horizontal frame 9 intersecting the central axis 19 to the equilibrium line 10a (upper surface of the reaction plate) also intersecting the central axis 19 is, for example, 200 mm, the recoil The length from the lower end 4a of the vertical shaft in contact with the plate 10 to the upper end of the adjusting wheel 11 is adjusted to 200 mm and fixed. Further, when the diaphragm 5 to which the vibrating device or the like is attached is installed on the upper side of the vertical shaft 4 with the fixing nut 8, even if the adjusting wheel 11 and the impact receiving 9a are bent due to the load, the adjustment is not performed. Even if bending is caused by the influence of gravity, vibration acceleration (restoring force) faster than that is generated in the reaction plate 10, and this bending is eliminated.

振動板5に配置するシステムモーター1は4個均等配置し、装置の中空固定リング22を固定ネジ24により外部側に固定する。 Four system motors 1 arranged on the diaphragm 5 are evenly arranged, and the hollow fixing ring 22 of the device is fixed to the outside by the fixing screw 24.

以上の構成からなる本実施例の装置を始動させると、錘3の遠心力により振動板5に撓みが発生して正弦波振動し、同時に垂直軸4に密着する反動板10も連動して振動する。反動板10の復元力により、垂直軸4が振動波形の谷から山へ振動し、垂直軸4に取り付けた調整輪11が横フレーム9下端の衝撃受け9aに衝撃した瞬間、反動板10及び垂直軸下端4aは平衡線10aで瞬間停止する。 When the apparatus of the present embodiment having the above configuration is started, the diaphragm 5 is bent by the centrifugal force of the weight 3 and vibrates in a sine wave, and at the same time, the reaction plate 10 in close contact with the vertical axis 4 also vibrates in conjunction with it. do. The moment the vertical axis 4 vibrates from the valley to the mountain of the vibration waveform due to the restoring force of the reaction plate 10, and the adjusting wheel 11 attached to the vertical axis 4 impacts the impact receiver 9a at the lower end of the horizontal frame 9, the reaction plate 10 and the vertical The lower end 4a of the shaft stops momentarily at the equilibrium line 10a.

そのため反動板10は上昇側に撓み振動することはなく、ここからさらに、回転子2の錘3が180°回転すると、再び垂直軸4は下降し始め反動板10は下方側に撓むことになる。 Therefore, the recoil plate 10 does not bend and vibrate to the ascending side, and when the weight 3 of the rotor 2 further rotates by 180 °, the vertical axis 4 starts to descend again and the recoil plate 10 bends downward. Become.

さらに振動加速が重力加速度以上に増幅し、反動板10が垂直軸4から振動を受けると、反動板10には錘3の遠心力による振動エネルギーが蓄積する。振動板5と反動板10の撓み量及び振動数は等しいため、双方の振動振幅・振動速度も等しい。 Further, when the vibration acceleration is amplified more than the gravitational acceleration and the reaction plate 10 receives vibration from the vertical axis 4, the vibration energy due to the centrifugal force of the weight 3 is accumulated in the reaction plate 10. Since the amount of deflection and the frequency of the diaphragm 5 and the reaction plate 10 are the same, the vibration amplitude and the vibration speed of both are also the same.

そのため反動板10と垂直軸4は密着状態で振動し、反動板10の復元力により垂直軸4に取り付けた調整輪11が、横フレーム9下端の衝撃受け9aに衝撃すると、この衝撃振動は垂直軸4を伝搬し振動板5に伝わる。 Therefore, the reaction plate 10 and the vertical shaft 4 vibrate in close contact with each other, and when the adjusting wheel 11 attached to the vertical shaft 4 by the restoring force of the reaction plate 10 impacts the impact receiver 9a at the lower end of the horizontal frame 9, this impact vibration is vertical. It propagates through the shaft 4 and propagates to the vibrating plate 5.

反動板10の衝撃振動は上方側に振動しない片振幅であり、上昇方向の力である正の部分の要素だけを持つもので、反動板10の復元力による衝撃振動は半サイクルの正弦半パルス波といえる。 The impact vibration of the reaction plate 10 is a one-sided amplitude that does not vibrate upward, and has only the element of the positive part that is the force in the ascending direction. It can be called a wave.

この正弦半パルス波は、振動板5の正弦波の振動周期と一致するため、双方の振動波は振動板5で合成振動波となり上方側に慣性力による推進力が発生する。 Since this sine half pulse wave coincides with the vibration period of the sine wave of the vibrating plate 5, both vibrating waves become a combined vibration wave at the vibrating plate 5 and a propulsive force due to an inertial force is generated on the upper side.

図3(a)(b)(c)は、前記合成波の一連の形成過程を示す。
(a)は、振動板5の正弦波が軸受6側から垂直軸4に進む状況を示す。
(b)は、反動板10の復元力により調整ネジ11が衝撃受け9aに衝撃し正弦半パルス波が垂直軸4を伝搬し、軸受6側に進む状況を示す。
(c)は、双方の振動波が合成し、慣性力の発生方向を示す。
FIGS. 3 (a), 3 (b) and 3 (c) show a series of formation processes of the synthetic wave.
(A) shows a situation in which the sine wave of the diaphragm 5 travels from the bearing 6 side to the vertical axis 4.
(B) shows a situation in which the adjusting screw 11 impacts the impact receiver 9a due to the restoring force of the reaction plate 10 and the sine half-pulse wave propagates on the vertical axis 4 and advances to the bearing 6 side.
(C) shows the direction in which the inertial force is generated by combining both vibration waves.

図5は中空固定リング22による反動板10の固定状況を示す。
(a)は、中空固定リング22の斜視図である。
(b)は、上記の断面図である。
FIG. 5 shows a fixing state of the recoil plate 10 by the hollow fixing ring 22.
(A) is a perspective view of the hollow fixing ring 22.
(B) is the above sectional view.

図6(a)(b)は正弦波と正弦半パルス波が重なる先頭の合成点を示す図である。振動周期が一致する箇所で、力が作用する軸受6と垂直軸4の直線間でのみ合成する。
(a)は、軸受6などの振動装置が3個設置された場合を示す。
(b)は、上記の装置が4個設置の場合を示す。
6 (a) and 6 (b) are diagrams showing the top composite points where the sine wave and the sine half pulse wave overlap. It is combined only between the straight line of the bearing 6 and the vertical axis 4 on which the force acts at the points where the vibration cycles match.
(A) shows a case where three vibration devices such as a bearing 6 are installed.
(B) shows the case where four of the above devices are installed.

実験装置で観測した推進力は、装置の質量が1.5~2kg程度常に軽減するもので、この時の錘の回転数は1900~2000rpm程である。 The propulsive force observed by the experimental device is such that the mass of the device is constantly reduced by about 1.5 to 2 kg, and the rotation speed of the weight at this time is about 1900 to 2000 rpm.

振動板5は錘3の回転偶力により回るため、振動板5の端部などを抑える回り止めを設けると安定する。 Since the diaphragm 5 is rotated by the rotational couple of the weight 3, it is stabilized by providing a detent to suppress the end portion of the diaphragm 5.

実験例2
回転子2及び軸受6からなる振動装置と振動板5は、実験例1と以降の実験例4まで同じ装置で、反動板10のみを取り換えて実験した。反動板10の直径が実験例1と同じ300mmで、厚さ1.0mmのSPCC金属材料では、静的撓み量が4.88mmとなり振動板5の撓み量2.75mmより大きい。これを振動させると反動板10の振幅が大きいため正弦波とは異なる振動モードになり、反動板10と垂直軸4が離れて振動し、双方が衝撃し合い外乱振動になる。振動板5より撓み量が大きい反動板10は周期が一致しない。
Experimental Example 2
The vibrating device and the vibrating plate 5 including the rotor 2 and the bearing 6 were the same devices up to Experimental Example 1 and subsequent Experimental Example 4, and only the reaction plate 10 was replaced in the experiment. With the SPCC metal material having a diameter of the reaction plate 10 of 300 mm, which is the same as that of Experimental Example 1, and a thickness of 1.0 mm, the static deflection amount is 4.88 mm, which is larger than the deflection amount of the diaphragm 5 of 2.75 mm. When this is vibrated, the amplitude of the reaction plate 10 is large, so that the vibration mode is different from that of the sine wave. The recoil plates 10 having a larger amount of deflection than the diaphragm 5 do not have the same period.

実験例3
反動板10の直径300mm厚さ1.6mmのSPCC金属材料では、撓み量が1.19mmであっても推進力は発生する。これは、双方が同じ金属材料で弾性が等しいため、反動板10は垂直軸4と密着して振動し、振幅に比例して波長の短い正弦半パルス波が発生する。この正弦半パルス波は振動板5の正弦波と振幅は異なっても周期は等しくなるので、1対1の関係で合成する。復元力は反動板10の質量も影響することから、不安定ながらも実験例1相当の推進力が観測された。理論的には、反動板10の直径を454mmにすると振動板5と同じ撓み量2.73mmになり、質量も増えるため復元力も大きくなるといえる。
Experimental Example 3
With the SPCC metal material having a diameter of 300 mm and a thickness of 1.6 mm of the reaction plate 10, propulsive force is generated even if the amount of deflection is 1.19 mm. This is because both are made of the same metal and have the same elasticity, so that the reaction plate 10 vibrates in close contact with the vertical axis 4, and a sine and cosine half-pulse wave having a short wavelength is generated in proportion to the amplitude. Since this sine and cosine half pulse wave has the same period as the sine wave of the diaphragm 5 even if the amplitude is different, it is synthesized in a one-to-one relationship. Since the restoring force is also affected by the mass of the reaction plate 10, a propulsive force equivalent to that of Experimental Example 1 was observed although it was unstable. Theoretically, if the diameter of the reaction plate 10 is 454 mm, the amount of deflection is 2.73 mm, which is the same as that of the diaphragm 5, and the mass increases, so that the restoring force also increases.

実験例4
反動板10を直径300mm厚さ1.5mmのステンレス板(SUS304)で実験した。静的撓み量は1.45mmで、引張強度がSPCC材料は270Mpaに対しステンレス板は520Mpaで2倍ほど引張強度が異なる。振動の始まりには推進力が発生する兆候があるものの、すぐに観測できなくなる。引張強度が大きく異なる材料では動的撓み速度が一致し難い。しかし、弾性限度を超えるものではないため、直径を414mmにすると撓み量は2.77mmになり振幅は一致することになる。
Experimental Example 4
The recoil plate 10 was tested on a stainless steel plate (SUS304) having a diameter of 300 mm and a thickness of 1.5 mm. The amount of static deflection is 1.45 mm, and the tensile strength of the SPCC material is 270 MPa, while that of the stainless steel plate is 520 MPa, which is about twice as different. There are signs that propulsion will occur at the beginning of the vibration, but it will soon become unobservable. It is difficult for the dynamic bending velocities to match for materials with greatly different tensile strengths. However, since it does not exceed the elastic limit, when the diameter is 414 mm, the amount of deflection becomes 2.77 mm and the amplitudes match.

以上の実験結果から、振動板5及び反動板10に用いる材料は、ヤング率及び引張強度の弾性率が多少異なる金属材料の組合せでもよく、双方の撓み量が等しい場は効率が良い推進力が発生するといえる。 From the above experimental results, the material used for the diaphragm 5 and the reaction plate 10 may be a combination of metal materials having slightly different Young's modulus and elastic modulus of tensile strength, and when both bending amounts are equal, efficient propulsion force is obtained. It can be said that it occurs.

実施例とした図1及び図2に於いて、錘3をサイクル同期位置制御するシステムモーター1は、モータ、エンコーダ、位置決めドライバを内蔵し、外部とオンライン指令により稼働する。また、実験装置と同じく歯車による同期方法として、垂直軸4を回転軸とする大傘歯車17に、モータ13に取り付けた小傘歯車18をかみ合わせて連結すると、容易に同期回転が可能になる。尚、センサーにより制御可能なモータであれば、実施例に於いてモータの種類や制御方法及び設置個数は限定されるものではない。 In FIGS. 1 and 2 as examples, the system motor 1 that controls the cycle-synchronous position of the weight 3 has a built-in motor, an encoder, and a positioning driver, and operates by an external command and an online command. Further, as a synchronization method using gears as in the experimental device, if the small bevel gear 18 attached to the motor 13 is engaged with the large bevel gear 17 having the vertical axis 4 as the rotation axis, the synchronous rotation can be easily performed. As long as the motor can be controlled by the sensor, the type, control method, and number of installed motors are not limited in the embodiments.

円板の中心固定による撓み量は、次式により求められる。

Figure 0007087216000002
The amount of deflection due to fixing the center of the disk is calculated by the following equation.
Figure 0007087216000002

円板の外周固定による撓み量は、次式により求められる。

Figure 0007087216000003
The amount of bending due to fixing the outer circumference of the disk is calculated by the following equation.
Figure 0007087216000003

1 システムモーター
2 回転子
3 錘
4 垂直軸
4a 垂直軸下端
5 振動板
6 軸受
7 ジョイント
9 横フレーム
9a 衝撃受け
10 反動板
10a 平衡線(反動板上面)
11 調整輪
12 滑り軸受
13 モータ
15 支持フレーム
19 中心軸
20 固定基準長
21 固定金具
22 中空固定リング
23 基礎リング





















(1)
1 System motor 2 Rotor 3 Weight 4 Vertical axis 4a Vertical axis lower end 5 Diaphragm 6 Bearing 7 Joint 9 Horizontal frame 9a Impact receiver 10 Reaction plate 10a Balance line (upper surface of reaction plate)
11 Adjusting wheel 12 Plain bearing 13 Motor 15 Support frame 19 Central shaft 20 Fixed reference length 21 Fixing bracket 22 Hollow fixing ring 23 Foundation ring





















(1)

Claims (2)

錘(3)及びアーム(16)を取り付けた回転子(2)及び軸受(6)により構成される振動装置と、円板である振動板(5)の端部に前記振動装置の回転子(2)を垂直に複数個均等配置し、前記振動装置とジョイント(7)を介してシステムモーター(1)により同期位置制御し、前記振動板(5)中心と中心軸(19)を軸心とする垂直軸(4)を結合し、円板の反動板(10)の外周を基礎リング(23)及び中空固定リング(22)により固定し、前記中空固定リング(22)または前記反動板(10)に支持フレーム(15)を固定し、更に横フレーム(9)を取り付け、調整輪(11)を取り付けた前記垂直軸(4)を、滑り軸受(12)及び前記横フレーム(9)で支持し、前記垂直軸(4)を前記反動板(10)中心に結合することなく直立させ、可撓性金属材料である前記振動板(5)及び前記反動板(10)は、錘(3)の回転応力による中心軸(19)に対する相 撓み量が等しいか、前記反動板(10)の撓み量が小さい関係であって、前記垂直軸(4)に取り付けた前記調整輪(11)上端から垂直軸下端(4a)までの長さを、中心軸(19)と交わる前記横フレーム(9)下端である衝撃受け(9a)から前記反動板(10 )上面の平衡線(10a)までの長さである固定基準長(20)に一致させ、前記反動板 (10)の振動範囲を物理的に制限し、前記錘(3)の遠心力により前記振動板(5)に 撓みが発生して正弦波振動し、同時に前記垂直軸(4)に密着する前記反動板(10)も 連動して振動することにより、前記反動板(10)の復元力により前記調整輪(11)が 前記衝撃受け(9a)に衝撃し正弦半パルス波を発生させ、振動周期が等しい前記振動板(5)の正弦波と合成波となって慣性力を発生させる合成振動波による推進力発生装置。A vibrating device composed of a rotor (2) and a bearing (6) to which a weight (3) and an arm (16) are attached, and a rotor of the vibrating device (5) at the end of a vibrating plate (5) which is a disk. A plurality of 2) are evenly arranged vertically, the synchronous position is controlled by the system motor (1) via the vibrating device and the joint (7), and the center of the vibrating plate (5) and the central axis (19) are used as the axis. The vertical axis (4) is connected, and the outer periphery of the reaction plate (10) of the disk is fixed by the foundation ring (23) and the hollow fixing ring (22), and the hollow fixing ring (22) or the reaction plate (10) is fixed. ) Is fixed to the support frame (15), the horizontal frame (9) is further attached, and the vertical axis (4) to which the adjusting wheel (11) is attached is supported by the sliding bearing (12) and the horizontal frame (9). Then, the vertical axis (4) is made to stand upright without being coupled to the center of the reaction plate (10), and the vibration plate (5) and the reaction plate (10), which are flexible metal materials, are formed by a weight (3). The relative deflection amount with respect to the central axis (19) due to the rotational stress of the above is equal, or the deflection amount of the reaction plate (10) is small, and the upper end of the adjusting wheel (11) attached to the vertical axis (4). The length from the lower end of the vertical axis (4a) to the equilibrium line (10a) on the upper surface of the reaction plate (10 ) from the impact receiver (9a) at the lower end of the horizontal frame (9) intersecting the central axis (19). The vibration range of the reaction plate (10) is physically limited by matching the fixed reference length (20), which is the length, and the vibration plate (5) is bent by the centrifugal force of the weight (3). The reaction plate (10) that vibrates in a sinusoidal manner and at the same time vibrates in conjunction with the reaction plate (10) that is in close contact with the vertical axis (4). A propulsion force generator using a synthetic vibration wave that impacts a receiver (9a) to generate a sine half-pulse wave and becomes a combined wave with the sine wave of the vibrating plate (5) having the same vibration period to generate an inertial force. 垂直軸(4)を回転軸とする大傘歯車(17)に、複数のモータ(13)の回転軸に取り付けた小傘歯車(18)をかみ合わせて連結し、錘(3)及びアーム(16)を取り付けた回転子(2)及び軸受(6)からなる複数の振動装置とジョイント(7)を介して同期位置制御する請求項1記載の合成振動波による推進力発生装置。A small bearing gear (18) attached to the rotating shafts of a plurality of motors (13) is engaged and connected to a large bearing gear (17) having a vertical axis (4) as a rotating shaft, and a weight (3) and an arm (16 ) are connected. The propulsion force generating device by the synthetic vibration wave according to claim 1, wherein the synchronous position is controlled via a joint (7) and a plurality of vibrating devices including a rotor (2) and a bearing (6) to which the ) is attached.
JP2022024345A 2022-02-20 2022-02-20 Propulsion force generator by synthetic vibration wave Active JP7087216B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022024345A JP7087216B1 (en) 2022-02-20 2022-02-20 Propulsion force generator by synthetic vibration wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022024345A JP7087216B1 (en) 2022-02-20 2022-02-20 Propulsion force generator by synthetic vibration wave

Publications (2)

Publication Number Publication Date
JP7087216B1 true JP7087216B1 (en) 2022-06-20
JP2023121171A JP2023121171A (en) 2023-08-31

Family

ID=82067877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022024345A Active JP7087216B1 (en) 2022-02-20 2022-02-20 Propulsion force generator by synthetic vibration wave

Country Status (1)

Country Link
JP (1) JP7087216B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158488U (en) 2010-01-20 2010-04-02 岡本 家春 Propulsion machine
JP2012137082A (en) 2010-05-19 2012-07-19 Eisaku Shibata Propulsive force generating device by centrifugal force

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084799A (en) * 2014-10-28 2016-05-19 英策 柴田 Propelling force generating device with vibration wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158488U (en) 2010-01-20 2010-04-02 岡本 家春 Propulsion machine
JP2012137082A (en) 2010-05-19 2012-07-19 Eisaku Shibata Propulsive force generating device by centrifugal force

Also Published As

Publication number Publication date
JP2023121171A (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP2994946B2 (en) Method for counteracting vibration propagation of a dynamically unbalanced rotating rotor, and a device for generating a rotating force vector and a oscillating couple
JP3794764B2 (en) Modular double reversing eccentric mass vibration force generator
US5213184A (en) Device for compensating a vibrational force or torque acting on a body
JP4335689B2 (en) Structure and method for reducing its resonance
US9004246B2 (en) System for damping oscillations in a structure
CN111458241B (en) Servo coaxial dual-drive inertia vibration exciter
Yatsun et al. Equations of motion of vibration machines with a translational motion of platforms and a vibration exciter in the form of a passive auto-balancer
JP7087216B1 (en) Propulsion force generator by synthetic vibration wave
Hudson Resonance testing of full-scale structures
NL2023723B1 (en) Shaker for gentle driving of piles
KR20180134991A (en) Method and apparatus for controlling vibration of a ship propulsion system
Majewski Vibratory forces and synchronization in physical systems
RU2013101101A (en) METHOD OF DIRECTED INERTIAL VIBRATION EXCITATION AND DEBALANCE VIBRATION EXCITER OF DIRECTED ACTION FOR ITS IMPLEMENTATION
Chen et al. Dynamic analysis of a geared rotor-bearing system with translational motion due to shaft deformation under residual shaft bow effect
RU2338669C1 (en) Method for flying in outer space
Sakata et al. Vibration analysis of a high speed and light weight rotor system subjected to a pitching or turning motion: I: A rigid rotor system on flexible suspensions
JP3154597B2 (en) Active vibration suppression device using unbalanced shaker
Filimonikhin et al. The dynamics of a resonance single-mass vibratory machine with a vibration exciter of targeted action that operates on the Sommerfeld effect
JP2004126488A (en) Chaos vibration generating device
RU83550U1 (en) DEVICE FOR GETTING FORCE OF INERTIA
Filimonikhin et al. Estimating the Stability of Steady Motion of Vibration Machines Operating on the Somerfeld Effect Using An Empirical Method
JP2018071533A (en) Propulsion power generating device with oscillatory wave
JP2813453B2 (en) Low frequency exciter
JPS61165042A (en) Vibration suppressing device
Poćwiardowski et al. Kinematics of concurrent vibratory rolling-screw system on the example of screen

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7087216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150