JP2004126488A - Chaos vibration generating device - Google Patents

Chaos vibration generating device Download PDF

Info

Publication number
JP2004126488A
JP2004126488A JP2002324509A JP2002324509A JP2004126488A JP 2004126488 A JP2004126488 A JP 2004126488A JP 2002324509 A JP2002324509 A JP 2002324509A JP 2002324509 A JP2002324509 A JP 2002324509A JP 2004126488 A JP2004126488 A JP 2004126488A
Authority
JP
Japan
Prior art keywords
vibration
movable plate
strap
pendulum
chaotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002324509A
Other languages
Japanese (ja)
Inventor
Koichi Kameoka
亀岡 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002324509A priority Critical patent/JP2004126488A/en
Publication of JP2004126488A publication Critical patent/JP2004126488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device whose mechanism and vibration system are not only different from those of the conventional device, but also with which chaos vibration, period doubling vibration and the window of three periods can be visually observed easily and which is more general as a dynamic model and which is suitable for learing or studying chaso. <P>SOLUTION: In a state in which a strap 7 is twisted around the side face of a rotary disk 6 attached to a rotary shaft 5 and an initial tension is given to the strap 7 by binding both ends of the strap 7 to coil springs 8, 9, other ends of the springs are hung from the level part of an upper frame 10, Moreover, shaft supporters 11 and the frame 10 are fixed on a movable plate 12 which is horizontally movable only from left to right of the figure 2. The movable plate 12 is forcibly displaced and excited in a sinusoidal wave shape with a certain means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
非線形の復元トルクを有する倒立振子の回転軸を水平方向に変位強制加振することにより振子にカオス振動を発生させる技術分野。
【0002】
【従来の技術】
図1に示す装置が、カオス振動の研究用としてすでに開発されている。この装置では、回転円盤1の重心位置Gを回転軸2の中心から偏心させ、回転に対して渦巻きばね3で回転角θに比例した復元トルクを発生させ、重心の偏心によりsinθに比例した復元トルクを発生させる。回転軸2は両端で軸受4で支持されている。このばね3の一端を軸中心に関する円弧方向に正弦波状に加振する。すなわち回転軸2へばねの巻き付けと巻き戻しをくり返して正弦波状の加振力を作用させることにより、回転円盤1にカオス振動を発生させる。この場合の回転円盤1は、形状は振子状ではないが、力学的には倒立振子と等価と考えてよい。
【0003】
【発明が解決しようとする課題】
本発明は、機構および加振方式が従来のものと異なるだけでなく、より一般的なカオス振動発生装置であって、カオスの学習用あるいは研究用に適した装置を提供するためのものである。
【0004】
【発明によるカオス振動発生の方法】
図2に本発明による装置の機構と加振方向を示す。回転軸5に取り付けた回転円盤6の側面にひも7を巻き付け、そのひもの両端をコイルばね8,9に結びつけて初張力を与えた状態でばね他端を上方のフレーム10の水平部分から吊るす。軸受11およびフレーム10は図2の左右へのみ水平移動可能な可動板12の上に固定する。この可動板12を、何らかの手段で水平方向に正弦波状強制変位加振を行うことにより、ある加振振幅の領域で回転軸5に倒立状態で取り付けた振子13にカオス振動を発生させることができる。
【0005】
【振子の運動方程式と静止平衡点】
図2に示す倒立した振子13の回転角θに関する運動方程式は

Figure 2004126488
ただし
J:回転軸まわりの慣性モーメント
C:回転軸まわりの減衰係数
K:θに比例する復元トルクの比例定数
m:振子の質量
g:重力加速度
h:回転中心から振子重心までの距離
a:加振振幅
ω:角振動数
t:時間
と書くことができる。したがって、振子13の静止平衡点は
Kθ−mghsinθ=0          (2)
を満足する点であって
θ=0,±θ(θ≠0)         (3)
と書くことができる。ここで、θ=0は不安定平衡点、±θは安定平衡点である。
【0006】
【分岐図によるカオス振動発生の確認】
式(1)は非線形微分方程式であるから、加振振幅aを変化させたときには、非線形系に特有の現象である倍周期振動およびカオス振動の発生が期待できる。この発生の有無は、ポアンカレ写像から分岐図を描くことにより調べることができる。
【0007】
図3は、システムパラメータにある数値を与え、かつ初期値θ(0)=θ=330,
Figure 2004126488
この図から、おおよそ次の振動現象が生じることが読み取れる。
(1)1倍周期振動 (a<75)
(2)2倍周期振動 (75<a<80)
(3)カオス振動 (85<a<100)
(4)3倍周期振動 (105<a<150)
(5)カオス振動 (a>160)
なお、上記(2)と(3),(4)と(5)の間をさらに詳しく調べるならば、より大きな倍周期振動の発生が確認できる。
【0008】
【実験によるカオス振動発生の確認】
図3に示す分岐図を得た条件と同一条件で実験を行った。可動板12を水平加振するために、減速機付電気モータの出力軸にアームを取り付け、アーム上で軸中心からaだけ偏心した点と可動板12の右側面の一点をワイヤで連結した。また、可動板12の左方向への復帰用としてその左側面の一点にコイルばねを取り付けて初張力を与えてその他端を左方に固定した。この方法において、ワイヤの長さを2mと比較的長くしてモータを回転させることにより、近似的な正弦波状の強制変位acosωtを発生させた。ωは分岐図を作成したときと同一の値すなわち、1.95rad/sに設定した。振子13の回転角θは、回転軸5にポテンショメータを取り付け、その出力をAD変換器を介してパソコンに取り込んで測定した。
【0009】
図4〜8に実験結果を示す。aのそれぞれの値に対して実験で得られたθ(t)の波形である。その原点は、応答が十分な過渡時間を経過して定常状態に達したと思われる時刻にとっている。図4に示すa=70の場合では、加振と同周期の応答が得られている。つまり1倍周期振動となっている。図5のa=80では、2倍周期振動である。図6のa=97では、不規則な応答波形になっている。つまりカオス振動の状態である。図7に示すa=120の場合では3倍周期振動が得られる。上記の2つのカオス領域間に生じる3倍周期振動の区間は「3周期の窓」と呼ばれる。図8のa=160では、再びカオス振動が現れる。以上の実験結果は、理論より得られた分岐図から予想される定性的性質ときわめて良い一致を示している。
【0010】
【発明の効果】
以上のように、本発明の装置では、カオス振動はもちろんのこと、倍周期振動、3周期の窓など非線形系特有の豊かな現象を発生させることができる。また、加振は可動板12を水平方向に強制変位させる方式であり、これが通常、懸垂状態から倒立状態へ制御される倒立振子の一般的な加振方式であることから、本装置は制御で取り扱われるモデルとも関連した基本的な力学モデルといえる。さらに、諸現象の目視観察も容易である。したがって、本発明は、カオスの学習用あるいは研究用として有用なものと考えられる。
【図面の簡単な説明】
【図1】従来のカオス振動発生装置の機構と加振方向を示す図である。
【図2】本発明のカオス振動発生装置の機構と加振方向を示す図である。
【図3】加振振幅aの変化に対する分岐図である。
【図4】a=70の場合の応答θ(t)を示す図である。
【図5】a=80の場合の応答θ(t)を示す図である。
【図6】a=97の場合の応答θ(t)を示す図である。
【図7】a=120の場合の応答θ(t)を示す図である。
【図8】a=160の場合の応答θ(t)を示す図である。
【符号の説明】
1・・・回転円盤、2・・・回転軸、3・・・渦巻きばね、4・・・軸受、5・・・回転軸、6・・・回転円盤、7・・・ひも、8,9・・・コイルばね、10・・・フレーム、11・・・軸受、12・・・可動板、13・・・振子。[0001]
TECHNICAL FIELD OF THE INVENTION
Technical field to generate chaotic vibration in a pendulum by forcibly displacing the rotating axis of an inverted pendulum having a non-linear restoration torque in the horizontal direction.
[0002]
[Prior art]
The device shown in FIG. 1 has already been developed for the study of chaotic oscillations. In this device, the position G of the center of gravity of the rotating disk 1 is eccentric from the center of the rotating shaft 2, a recovery torque proportional to the rotation angle θ is generated by the spiral spring 3 with respect to the rotation, and the recovery is proportional to sin θ due to the eccentricity of the center of gravity. Generates torque. The rotating shaft 2 is supported at both ends by bearings 4. One end of the spring 3 is vibrated in a sine wave shape in an arc direction about the axis center. That is, the oscillating force of a sine wave is applied by repeatedly winding and unwinding the spring on the rotating shaft 2, thereby generating chaotic vibration on the rotating disk 1. The rotating disk 1 in this case is not in a pendulum shape, but may be considered mechanically equivalent to an inverted pendulum.
[0003]
[Problems to be solved by the invention]
The present invention not only differs from the conventional one in the mechanism and the excitation method, but also provides a more general chaotic vibration generator, which is suitable for learning or researching chaos. .
[0004]
Method of generating chaotic vibration according to the present invention
FIG. 2 shows the mechanism of the device according to the present invention and the vibration direction. A string 7 is wound around the side surface of a rotating disk 6 attached to the rotating shaft 5, and both ends of the string are tied to coil springs 8 and 9, and the other end of the spring is hung from a horizontal portion of the upper frame 10 under initial tension. . The bearing 11 and the frame 10 are fixed on a movable plate 12 that can move horizontally only in the left and right directions in FIG. By subjecting the movable plate 12 to forced sine-wave displacement displacement in the horizontal direction by any means, chaotic vibration can be generated in the pendulum 13 which is attached to the rotating shaft 5 in an inverted state in a range of a given excitation amplitude. .
[0005]
[Equilibrium point of motion of pendulum and stationary point]
The equation of motion for the rotation angle θ of the inverted pendulum 13 shown in FIG.
Figure 2004126488
J: Moment of inertia around the rotation axis C: Damping coefficient around the rotation axis K: Proportion constant of restoration torque proportional to θ m: Pendulum mass g: Gravitational acceleration h: Distance from rotation center to center of pendulum a: Addition Vibration amplitude ω: angular frequency t: time can be written. Therefore, the stationary equilibrium point of the pendulum 13 is Kθ−mghsinθ = 0 (2)
Θ = 0, ± θ 00 ≠ 0) (3)
Can be written. Here, θ = 0 is an unstable equilibrium point, and ± θ 0 is a stable equilibrium point.
[0006]
[Confirmation of occurrence of chaotic vibration by bifurcation diagram]
Since the equation (1) is a nonlinear differential equation, when the excitation amplitude a is changed, it is expected that a double period vibration and a chaotic vibration which are phenomena peculiar to the nonlinear system will be generated. The presence or absence of this occurrence can be checked by drawing a bifurcation diagram from the Poincare map.
[0007]
FIG. 3 gives a certain numerical value for the system parameter, and the initial value θ (0) = θ 0 = 330,
Figure 2004126488
From this figure, it can be seen that the following vibration phenomenon occurs approximately.
(1) 1-time periodic vibration (a <75)
(2) Double period vibration (75 <a <80)
(3) Chaotic vibration (85 <a <100)
(4) Triple cycle vibration (105 <a <150)
(5) Chaotic vibration (a> 160)
In addition, if the sections between (2) and (3) and between (4) and (5) are examined in more detail, generation of a larger double-period vibration can be confirmed.
[0008]
[Confirmation of chaotic vibration generation by experiment]
An experiment was performed under the same conditions as those for obtaining the bifurcation diagram shown in FIG. In order to horizontally vibrate the movable plate 12, an arm was attached to the output shaft of the electric motor with a speed reducer, and a point on the arm decentered by a from the axis center and one point on the right side of the movable plate 12 was connected by a wire. A coil spring was attached to one point on the left side of the movable plate 12 for returning the movable plate 12 to the left, an initial tension was applied, and the other end was fixed to the left. In this method, an approximate sinusoidal forced displacement acos ωt was generated by rotating the motor with a relatively long wire length of 2 m. ω was set to the same value as when the bifurcation diagram was created, that is, 1.95 rad / s. The rotation angle θ of the pendulum 13 was measured by attaching a potentiometer to the rotation shaft 5 and taking its output into a personal computer via an AD converter.
[0009]
4 to 8 show the experimental results. 9 is a waveform of θ (t) obtained by an experiment for each value of a. The origin is at the time when the response seems to have reached a steady state after a sufficient transient time. In the case of a = 70 shown in FIG. 4, a response having the same cycle as the excitation is obtained. That is, it has a one-time periodic vibration. When a = 80 in FIG. 5, the vibration is a double period vibration. At a = 97 in FIG. 6, the response waveform is irregular. That is, it is a state of chaotic vibration. In the case of a = 120 shown in FIG. 7, a triple cycle vibration is obtained. The section of the triple-period oscillation generated between the two chaotic regions is called a “three-period window”. At a = 160 in FIG. 8, chaotic oscillation appears again. The above experimental results show very good agreement with the qualitative properties expected from the bifurcation diagram obtained from the theory.
[0010]
【The invention's effect】
As described above, the apparatus of the present invention can generate rich phenomena peculiar to nonlinear systems, such as not only chaotic vibration, but also double-period vibration and three-period windows. In addition, the vibration is a method of forcibly displacing the movable plate 12 in the horizontal direction, and since this is a general vibration method of an inverted pendulum that is normally controlled from a suspended state to an inverted state, the present apparatus is controlled. It can be said that it is a basic dynamic model related to the model handled. Further, visual observation of various phenomena is easy. Therefore, the present invention is considered to be useful for learning or researching chaos.
[Brief description of the drawings]
FIG. 1 is a diagram showing a mechanism and a vibration direction of a conventional chaotic vibration generator.
FIG. 2 is a diagram showing a mechanism and a vibration direction of the chaotic vibration generator of the present invention.
FIG. 3 is a bifurcation diagram for a change in excitation amplitude a.
FIG. 4 is a diagram showing a response θ (t) when a = 70.
FIG. 5 is a diagram showing a response θ (t) when a = 80.
FIG. 6 is a diagram showing a response θ (t) when a = 97.
FIG. 7 is a diagram showing a response θ (t) when a = 120.
FIG. 8 is a diagram showing a response θ (t) when a = 160.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotating disk, 2 ... Rotating shaft, 3 ... Spiral spring, 4 ... Bearing, 5 ... Rotating shaft, 6 ... Rotating disk, 7 ... String, 8, 9 ... Coil spring, 10 ... Frame, 11 ... Bearing, 12 ... Movable plate, 13 ... Pendula.

Claims (1)

回転軸を有する円盤の側面にひもを巻きつけ、そのひもの両端をコイルばねに結びつけて初張力を与えた状態でそのコイルばね他端を上方のフレームの水平部分から吊るすことにより軸の回転角θに比例した復元トルクを発生させ、かつ回転軸に振子を倒立した状態で取り付けることによりsinθに比例した負の復元トルクを発生させる機構を可動板上に設け、その可動板を水平方向に正弦波状に変位強制振動させて振子にカオス振動を発生させる装置。A string is wrapped around the side of a disk having a rotating shaft, and both ends of the string are tied to a coil spring to give an initial tension. A mechanism is provided on the movable plate to generate a restoring torque proportional to θ and to generate a negative restoring torque proportional to sin θ by mounting the pendulum on the rotating shaft in an inverted state. A device that generates chaotic vibrations on a pendulum by forcibly displacing vibrations in the form of waves.
JP2002324509A 2002-10-02 2002-10-02 Chaos vibration generating device Pending JP2004126488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324509A JP2004126488A (en) 2002-10-02 2002-10-02 Chaos vibration generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324509A JP2004126488A (en) 2002-10-02 2002-10-02 Chaos vibration generating device

Publications (1)

Publication Number Publication Date
JP2004126488A true JP2004126488A (en) 2004-04-22

Family

ID=32289863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324509A Pending JP2004126488A (en) 2002-10-02 2002-10-02 Chaos vibration generating device

Country Status (1)

Country Link
JP (1) JP2004126488A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622928A (en) * 2012-03-01 2012-08-01 合肥工业大学 Nonlinear buoyancy chaotic experiment device
CN104503240A (en) * 2014-12-23 2015-04-08 福建船政交通职业学院 Ergonomic dynamic design method based on chaotic recognition
CN106228874A (en) * 2016-09-09 2016-12-14 合肥通用机械研究院 SANYE Chaos Pendulum apparatus for demonstrating
CN106228872A (en) * 2016-09-09 2016-12-14 合肥通用机械研究院 A kind of Chaos Pendulum device that can demonstrate continuously
CN107469702A (en) * 2017-08-03 2017-12-15 太原科技大学 A kind of nonlinear chaotic vibration rod
CN110654568A (en) * 2019-09-29 2020-01-07 中国直升机设计研究所 Hub couple loading device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622928A (en) * 2012-03-01 2012-08-01 合肥工业大学 Nonlinear buoyancy chaotic experiment device
CN104503240A (en) * 2014-12-23 2015-04-08 福建船政交通职业学院 Ergonomic dynamic design method based on chaotic recognition
CN106228874A (en) * 2016-09-09 2016-12-14 合肥通用机械研究院 SANYE Chaos Pendulum apparatus for demonstrating
CN106228872A (en) * 2016-09-09 2016-12-14 合肥通用机械研究院 A kind of Chaos Pendulum device that can demonstrate continuously
CN106228874B (en) * 2016-09-09 2020-06-23 合肥通用机械研究院有限公司 Three-leaf chaotic pendulum demonstration device
CN106228872B (en) * 2016-09-09 2020-06-23 合肥通用机械研究院有限公司 Chaotic pendulum device capable of continuously demonstrating
CN107469702A (en) * 2017-08-03 2017-12-15 太原科技大学 A kind of nonlinear chaotic vibration rod
CN110654568A (en) * 2019-09-29 2020-01-07 中国直升机设计研究所 Hub couple loading device
CN110654568B (en) * 2019-09-29 2022-09-06 中国直升机设计研究所 Hub couple loading device

Similar Documents

Publication Publication Date Title
Gonçalves et al. The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis
JP2013187928A (en) Oscillation power generator
JP4281985B2 (en) Improvement on offset removal device for vibrating gyroscope
JP2004126488A (en) Chaos vibration generating device
KR101087018B1 (en) Micromechanical motion sensor
JP6789908B2 (en) Vibration meter
Miwadinou et al. Nonlinear oscillations of nonlinear damping gyros: resonances, hysteresis and multistability
JP6303846B2 (en) Vibration power generator
JP5475719B2 (en) Vibrating body control device and vibrating body control method
Avanço et al. The pendulum dynamic analysis with DC motors and generators for sea waves energy harvest
Hossain et al. Chaos and multiple periods in an unsymmetrical spring and damping system with clearance
Kuo Chaotic analysis of the geometrically nonlinear nonlocal elastic single-walled carbon nanotubes on elastic medium
Hosaka et al. High-power Vibration Generator Using Gyroscopic Effect.
TW201215887A (en) Inertia sensing device and using method thereof
JP2002248430A (en) Chaos vibration generating machine
Karami et al. Nonlinear dynamics of the hybrid rotary-translational energy harvester
Smith et al. Vibration of bell towers excited by bell ringing—A new approach to analysis
Watanabe et al. Fundamental Study on Friction-Driven Gyroscopic Power Generator Works Under Arbitrary Vibration
JP3035120U (en) Biaxial forced vibration device
Zhang et al. Energy harvesting from vehicle tyres using stochastic resonance
RU2335350C2 (en) Method of excitation of resonance mechanical oscillations and device for its realisation
RU2191993C2 (en) Process of dynamic test of articles
Novkoski et al. Nonlinear dynamics of a hanging string with a freely pivoting attached mass
RU2006173C1 (en) Vibratory electric drive
Frith et al. Vibration in Engineering