JP2023121171A - Thrust generation device using synthetic vibration wave - Google Patents

Thrust generation device using synthetic vibration wave Download PDF

Info

Publication number
JP2023121171A
JP2023121171A JP2022024345A JP2022024345A JP2023121171A JP 2023121171 A JP2023121171 A JP 2023121171A JP 2022024345 A JP2022024345 A JP 2022024345A JP 2022024345 A JP2022024345 A JP 2022024345A JP 2023121171 A JP2023121171 A JP 2023121171A
Authority
JP
Japan
Prior art keywords
vibration
reaction plate
plate
vertical shaft
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022024345A
Other languages
Japanese (ja)
Other versions
JP7087216B1 (en
Inventor
英策 柴田
Eisaku Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022024345A priority Critical patent/JP7087216B1/en
Application granted granted Critical
Publication of JP7087216B1 publication Critical patent/JP7087216B1/en
Publication of JP2023121171A publication Critical patent/JP2023121171A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

To make vibration periods of sine waves of a vibration plate and half-sine pulse wave of a recoil plate coincident with each other to generate inertial force with synthetic vibration, without requiring a reaction force due to jets such as fossil fuels to the outside of a device, on the ground and in space.SOLUTION: A plurality of vibration devices that generates unbalanced centrifugal force by a weight 3 is arranged evenly on a disc diaphragm 5, and their positions are synchronously controlled by a system motor 1; the diaphragm 5 and a vertical shaft 4 are fixed; the vertical shaft 4 is made to stand upright without being connected to the center of a disc reaction plate 10 whose outer periphery is fixed; the diaphragm 5 and the reaction plate 10, which are made of flexible metal materials, are equally interlocked by the rotational stress of the weight 3; a length from an upper end of an adjustment nut 11 to a lower end 4a of the vertical axis is set to a fixed reference length; and by controlling the vibration range of the reaction plate 10, thrust due to inertial force can be generated by a composite wave of a half-sine pulse wave due to the restoring force of the reaction plate 10, which has the same vibration period as the sine wave of the diaphragm 5.SELECTED DRAWING: Figure 1

Description

本発明は、ロケットエンジン等とは異なり、噴流物を外部に放出することなく、振動板及び反動板による合成波振動の慣性力により推進力を得る推進力発生装置に関するものである。 The present invention relates to a propulsive force generating device that obtains propulsive force from the inertial force of synthetic wave vibration generated by a diaphragm and a reaction plate without emitting a jet to the outside, unlike a rocket engine or the like.

地上から宇宙空間に到達し活動するためには、地球重力脱出速度が必要とされ、加速度を得るためロケットの推進には大量の打ち上げ燃料を必要とする。また、飛行機のジェットエンジンなどは大量の高温ガスを放出し地球温暖化の原因にもなっている。また、これら飛行体は気象状況に影響され状況次第では飛行ができず度々欠航が発生する。 Earth gravity escape velocity is required to reach outer space from the ground and operate, and a large amount of launch fuel is required to propel the rocket to obtain acceleration. In addition, jet engines of airplanes emit a large amount of high-temperature gas and cause global warming. In addition, these aircraft are affected by weather conditions, and depending on the situation, they cannot fly, and flight cancellations occur frequently.

この改善策として、装置の外部側に噴流物による反作用を必要とせず、特定方向にのみ慣性力が作用し、極めて安全性が高い合成振動波による推進力発生装置を提供する。 As a measure to improve this, a propulsive force generating device using synthetic vibration waves is provided that does not require a reaction by a jet on the outside of the device, and inertial force acts only in a specific direction, and is extremely safe.

特開2001-73927号公報Japanese Unexamined Patent Application Publication No. 2001-73927 特願2008-522224号公報Japanese Patent Application No. 2008-522224

振動は実体的な波であり、あらゆる物体に影響を及ぼす。例えば、媒質内を進むA振動波と、逆方向から進行するB振動波を合成することが可能で、合成後も物体同士の衝突と違い、互いの波は消滅することなく進む。また、合成時に2つの波の合成振動が媒質に伝わることも、波の独立性として証明されている。 Vibrations are tangible waves and affect all objects. For example, it is possible to synthesize an A-oscillating wave that travels in a medium and a B-oscillating wave that travels in the opposite direction. It has also been proved that the combined vibration of two waves propagates through a medium as wave independence.

衝撃パルスという波があり、力学系では、物体に過度な動的外乱を与える波とされる。これは、電子機器、自動車、航空宇宙産業などで使用される電子製品などの衝撃試験の際、波の効力として応用されている。
数種類ある衝撃パルスのなかで、正弦半パルス波は、正弦波の半分、すなわち正の部分あるいは負の部分のみの半サイクルの波形をいう。
本発明は、正弦半パルス波を正弦波と合成することにより、特定方向に振動エネルギーを増幅させ、慣性力により推進力を得ることを目的とする。
There is a wave called a shock pulse, and in a dynamic system, it is a wave that gives an excessive dynamic disturbance to an object. This has been applied as a wave effect during shock testing of electronic products such as those used in electronics, automobiles, the aerospace industry, and the like.
Among several types of shock pulses, a half-sine pulse wave refers to a half-cycle waveform of a half-sine wave, that is, only a positive portion or a negative portion.
SUMMARY OF THE INVENTION An object of the present invention is to amplify vibration energy in a specific direction by synthesizing a half-sine pulse wave with a sine wave to obtain a driving force by inertial force.

前記の合成波を形成するため、振動板に発生する正弦波の振動と、反動板の復元力を応用して正弦半パルス波を発生させ、双方を効率的に合成させる方法を課題とする。 In order to form the composite wave, the object is to generate a sinusoidal half-pulse wave by applying the vibration of the sinusoidal wave generated in the diaphragm and the restoring force of the reaction plate, and to combine them efficiently.

上記の課題を解決するための発明は、錘3及びアーム16を取り付けた回転子2及び軸受6により構成されるアンバランスな遠心力を発生する振動装置と、複数の振動装置を円板である振動板5の端部に均等配置し、振動装置をジョイント7で連結するシステムモーター1により同期位置制御し、振動板5中心を中心軸19を軸心とする垂直軸4に結合し、円板の反動板10の外周を固定する中空固定リング22、または反動板10に支持フレーム15を固定し、かつ垂直軸4に調整輪11を取り付け、垂直軸4を滑り軸受12及び横フレーム9で支持し、調整輪11上端から垂直軸下端4aまでの長さを、中心軸19と交わる横フレーム9の衝撃受け9aから同じく中心軸19と交わる平衡線10a(反動板上面)までの長さである固定基準長20と一致させ、垂直軸4を反動板10中心に結合することなく直立させる。 The invention for solving the above problems is a vibrating device that generates an unbalanced centrifugal force and is composed of a rotor 2 and a bearing 6 to which a weight 3 and an arm 16 are attached, and a plurality of vibrating devices that are discs. The diaphragm 5 is evenly arranged at the end of the diaphragm 5, and the system motor 1 connecting the vibration device with the joint 7 controls the synchronous position, and the center of the diaphragm 5 is connected to the vertical shaft 4 having the central axis 19 as the axis, and the disk or a support frame 15 is fixed to the reaction plate 10, an adjusting ring 11 is attached to the vertical shaft 4, and the vertical shaft 4 is supported by the slide bearing 12 and the horizontal frame 9. The length from the upper end of the adjustment wheel 11 to the lower end 4a of the vertical shaft is the length from the impact receiver 9a of the horizontal frame 9 that intersects the central axis 19 to the equilibrium line 10a (upper surface of the recoil plate) that also intersects the central axis 19. Matching the fixed reference length 20, the vertical axis 4 is erected without being coupled to the center of the reaction plate 10. - 特許庁

上記振動板5及び反動板10は可撓性金属材料で、主に鉄系金属材料であって、応力が及ぶ双方の中心に対する相対撓み量が、振動板5の撓み量と反動板10の撓み量が等しいか、反動板10の撓み量が小さい関係になるように双方の大きさと厚さを決定する。フックの法則から応力による撓み量と振動振幅は等しい関係になる。 The vibration plate 5 and the reaction plate 10 are made of a flexible metal material, mainly a ferrous metal material. Both sizes and thicknesses are determined so that the amounts are equal or the amount of bending of the reaction plate 10 is small. According to Hooke's law, the amount of deflection due to stress and the amplitude of vibration are in the same relationship.

振動装置の錘3をシステムモーター1で回転同期させると、振動板5は遠心力により正弦波振動し垂直軸4と接触する反動板10もその力を受けて振動し、双方の撓み量が等しい場合、振動板5及び反動板10は振幅・周期が等しい振動となり、垂直軸4と反動板10は密着状態で振動する。 When the weight 3 of the vibration device is synchronized in rotation with the system motor 1, the vibration plate 5 vibrates sinusoidally due to the centrifugal force, and the reaction plate 10 in contact with the vertical shaft 4 also vibrates due to the force, and the amount of deflection of both is equal. In this case, the vibration plate 5 and the recoil plate 10 vibrate with the same amplitude and period, and the vertical shaft 4 and the recoil plate 10 vibrate in close contact with each other.

垂直軸4に取り付けた調整輪11が横フレーム9下端の衝撃受け9aに衝撃すると、反動板10及び垂直軸下端4aは平衡線10aで瞬間停止し、上昇側には物理的に振動できない。振動板5と振幅・周期が等しい反動板10の復元力による衝撃振動は、正弦波の半波長である正弦半パルス波となって垂直軸4を伝播し、振動板5の正弦波と振動周期が等しい合成波を形成することになる。 When the adjustment wheel 11 attached to the vertical shaft 4 impacts the impact receiver 9a at the lower end of the horizontal frame 9, the reaction plate 10 and the lower end 4a of the vertical shaft momentarily stop at the equilibrium line 10a, and cannot physically vibrate upward. The impact vibration due to the restoring force of the reaction plate 10, which has the same amplitude and period as the diaphragm 5, propagates along the vertical axis 4 as a sine half-pulse wave that is half the wavelength of the sine wave, and the sine wave of the diaphragm 5 and the vibration period will form a composite wave with equal

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。 Since the present invention is configured as described above, it has the following effects.

振動板5と反動板10に使用する金属材料は、正弦波振動するものであればヤング率及び引張強度などの弾性率が多少異なる金属材料の組み合わせであってもよく、応力による双方の撓み量が等しい場合、または、反動板10の撓み量が小さい場合は双方の振動周期が一致するようになる。 The metal materials used for the vibration plate 5 and the reaction plate 10 may be a combination of metal materials having somewhat different elastic moduli such as Young's modulus and tensile strength as long as they vibrate sinusoidally. are equal to each other, or when the amount of deflection of the reaction plate 10 is small, the two vibration periods match each other.

正弦半パルス波を発生させるための構成として、垂直軸4に取り付けた調整輪11上端から垂直軸下端4aまでの長さを、中心軸19と交わる横フレーム9下端の衝撃受け9aから同じく中心軸19と交わる反動板10の平衡線10a(反動板上面)までの長さである固定基準長20と一致させることにより、垂直軸4により反動板10の振動範囲は物理的に制限され、反動板10は平衡線10aより下方側にのみ振動し上方側には振動できない。 As a configuration for generating a sine half-pulse wave, the length from the upper end of the adjustment wheel 11 attached to the vertical shaft 4 to the lower end 4a of the vertical shaft 4 is extended from the impact receiver 9a at the lower end of the horizontal frame 9 that intersects with the central axis 19 to the same central axis. By matching the fixed reference length 20, which is the length to the equilibrium line 10a (upper surface of the recoil plate) of the recoil plate 10 that intersects with 19, the vibration range of the recoil plate 10 is physically limited by the vertical axis 4, and the recoil plate 10 vibrates only downward from the equilibrium line 10a and cannot vibrate upward.

垂直軸4と反動板10は結合していないので、振動板5が錘3の遠心力により平衡状態より上昇側に振動しても、反動板10はその影響を受けることはなく、平衡線10aより下方側の範囲で垂直軸4と反動板10は密着状態で振動する。 Since the vertical shaft 4 and the recoil plate 10 are not coupled, even if the vibrating plate 5 vibrates upward from the equilibrium state due to the centrifugal force of the weight 3, the recoil plate 10 is not affected by the centrifugal force, and the equilibrium line 10a In the lower range, the vertical shaft 4 and the reaction plate 10 vibrate while being in close contact with each other.

そのため反動板10の復元力により、垂直軸4に取り付けた調整輪11が衝撃受け9aに衝撃すると、衝撃力は正弦波の半波長に相当する正弦半パルス波となり、垂直軸4を伝搬し振動板5の正弦波と合成し慣性力を発生する。 Therefore, when the adjustment wheel 11 attached to the vertical shaft 4 impacts the impact receiver 9a due to the restoring force of the reaction plate 10, the impact force becomes a half-sine pulse wave corresponding to the half wavelength of the sine wave, propagates through the vertical shaft 4, and vibrates. It combines with the sine wave of the plate 5 to generate an inertial force.

反動板10の振幅が振動板5の振幅より小さい場合は、反動板10の波長が短くなっても振動板5の振動周期に遅れないため、垂直軸4と反動板10は密着状態で振動し慣性力を発生する。 If the amplitude of the recoil plate 10 is smaller than that of the diaphragm 5, even if the wavelength of the recoil plate 10 is shortened, the oscillation period of the recoil plate 5 is not delayed, so the vertical shaft 4 and the recoil plate 10 vibrate in close contact with each other. Generate inertial force.

しかし、反動板10の振幅が振動板5より大きくなると振動周期が長くなって遅れることになり一致した振動にならない。従って、振動板5と反動板10は弾性率などの特性が等しい金属材料であって、双方の撓み量を一致させると振動周期も一致し効率の良い合成波振動となる。 However, when the amplitude of the recoil plate 10 becomes larger than that of the diaphragm 5, the vibration cycle becomes longer and lags behind, so that the vibrations do not coincide with each other. Therefore, the vibration plate 5 and the reaction plate 10 are made of metal materials having the same characteristics such as elastic modulus.

本発明に係る実施例を示す正面図1である。1 is a front view 1 showing an embodiment according to the present invention; FIG. 本発明に係る実施例を示す正面図2である。FIG. 2 is a front view 2 showing an embodiment according to the present invention; 正弦波と正弦半パルス波による合成波の説明図である。FIG. 4 is an explanatory diagram of a composite wave composed of a sine wave and a sine half-pulse wave; 実験装置の斜視図である。It is a perspective view of an experimental device. 中空固定リングによる反動板の固定状況を示す図である。FIG. 10 is a diagram showing how the recoil plate is fixed by the hollow fixing ring; 正弦波と正弦半パルス波の合成点を示す図である。It is a figure which shows the synthetic|combination point of a sine wave and a sine half-pulse wave.

以下、実施例として実験結果をもとに詳細に説明する。 Examples will be described below in detail based on experimental results.

実験例1
図4は本発明に係る実験装置で、ともに円板である振動板5と反動板10には、鉄系金属材料のSPCC(冷間圧延軟鋼板)を使用した。また、金属材料の撓み計算式は、振動板5の場合、垂直軸4に円板中心を固定した中心集中荷重・数式1で、反動板10は外周に支持ボルト14を取り付け、さらに、固定金具21により数個所周辺固定した中心集中荷重・数式2で、何れも円板の中心に応力が集中作用する。
Experimental example 1
FIG. 4 shows an experimental apparatus according to the present invention. SPCC (cold-rolled mild steel plate), which is an iron-based metal material, was used for the vibration plate 5 and the reaction plate 10, both of which are discs. In the case of the vibration plate 5, the deflection calculation formula of the metal material is a central concentrated load with the center of the disc fixed to the vertical shaft 4, Equation 1. Central concentrated load fixed around several points by 21. In Equation 2, the stress concentrates on the center of the disc.

実験装置は、回転子2に取り付けたアーム16の錘3を回転同期するため、垂直軸4を回転軸とする大傘歯車17に、モータ13に取り付けた小傘歯車18をかみ合わせ、ジョイント7を介して軸受6を回転する。これらの振動装置を円板の振動板5に3個均等配置し、この振動板5中心を垂直軸4に結合し、さらに円板の反動板10に支持フレーム15を固定し、調整輪11を取り付けた垂直軸4を、滑り軸受12及び横フレーム9で支持し、反動板10中心に結合することなく直立させる構成である。 In the experimental apparatus, in order to synchronize the rotation of the weight 3 of the arm 16 attached to the rotor 2, the small bevel gear 18 attached to the motor 13 is meshed with the large bevel gear 17 having the vertical axis 4 as the rotation axis, and the joint 7 is set. Rotate the bearing 6 via. Three of these vibrating devices are evenly arranged on a disk diaphragm 5, the center of the diaphragm 5 is connected to the vertical shaft 4, a support frame 15 is fixed to a disk reaction plate 10, and an adjustment wheel 11 is attached. The attached vertical shaft 4 is supported by the slide bearing 12 and the horizontal frame 9, and is erected without being connected to the center of the reaction plate 10. - 特許庁

アーム16(アルミ製)と錘3(鉄板)の合計質量は15.3g。回転子2の材質SPCC、直径12cm厚さ2.3mm。モータ13はDCモータ・12V仕様の電流制御方式で、外部側のコントローラーと繋がっている。垂直軸4は直径10mm(ステンレス製)で、この3個のモータによる錘3の遠心力の総和を200Nとして以降の説明をする。 The total mass of the arm 16 (made of aluminum) and the weight 3 (iron plate) is 15.3g. Rotor 2 material SPCC, diameter 12 cm, thickness 2.3 mm. The motor 13 is a DC motor with a 12V current control system, and is connected to an external controller. The vertical shaft 4 has a diameter of 10 mm (made of stainless steel), and the total centrifugal force of the weight 3 generated by these three motors is assumed to be 200N.

3個の回転子2及び軸受6で構成する振動装置とモータ13を設置するため、振動板5の直径400mm厚さ2.0mmとし、反動板10は直径300mm厚さ1.2mmの材料を使用した。仮に反動板10の直径を296mmにした場合、理論的には双方の撓み量を一致させることができ、200Nの応力を掛けた場合、それぞれ中心軸19に対する相対撓み量は2.75mmで一致する。また、400Nの応力で5.51mm、800Nの応力で11.03mmとなり常に同じ撓み量になる。 In order to install the motor 13 and the vibration device consisting of three rotors 2 and bearings 6, the diaphragm 5 has a diameter of 400 mm and a thickness of 2.0 mm, and the reaction plate 10 has a diameter of 300 mm and a thickness of 1.2 mm. did. If the diameter of the recoil plate 10 is set to 296 mm, theoretically, both deflection amounts can be matched, and if a stress of 200 N is applied, the deflection amount relative to the central axis 19 will match at 2.75 mm. . Also, the amount of deflection is always the same, which is 5.51 mm with a stress of 400 N and 11.03 mm with a stress of 800 N.

金属材料のヤング率(縦弾性係数)は、次の関係にある。
ヤング率(E)=応力(σ) / ひずみ(ε)
振動板5と反動板10のヤング率等の弾性率は同じ金属材料であり等しい。また、双方に掛かる遠心力による応力は垂直軸4によって連動するため等しい。そのため、振動板5と形状が同じで固定方法のみが異なる反動板10の場合、板厚と大きさが適切であれば、応力の変化に伴い中心軸19に対する相対撓み量は等しくなり、振動板5と反動板10は振動振幅・振動周期が常に等しい関係で振動する。
The Young's modulus (modulus of longitudinal elasticity) of metal materials has the following relationship.
Young's modulus (E) = stress (σ) / strain (ε)
The vibration plate 5 and the reaction plate 10 have the same elastic modulus such as Young's modulus because they are made of the same metal material. Moreover, since the stress due to the centrifugal force acting on both is interlocked by the vertical axis 4, it is equal. Therefore, in the case of the reaction plate 10 having the same shape as the diaphragm 5 but different only in the fixing method, if the thickness and size of the plate are appropriate, the amount of relative deflection with respect to the central axis 19 becomes the same as the stress changes, and the diaphragm 5 and the reaction plate 10 vibrate in a relationship that the vibration amplitude and vibration period are always equal.

振動板5の、固有振動時の振動加速度は、10.1m/sec2で重力加速度より幾分大きく、これよりさらに速い振動加速度のSPCC金属材料は、板厚が薄いものになり振幅が大きくなり過ぎて実験材料として不適格であった。 The vibration acceleration of the vibration plate 5 at the time of natural vibration is 10.1 m/ sec2 , which is somewhat larger than the gravitational acceleration. too much and was unsuitable as an experimental material.

実験に用いたモータ13の無負荷回転数は8170rpm(136Hz)で、振動板5の固有振動数をバネ定数から求めると30.2Hzとなる。振動板5は中心部を垂直軸4に結合しているため減衰があり、固有振動より速い速度でモータ13による外力が作用するため位相遅れになる。 The no-load rotation speed of the motor 13 used in the experiment is 8170 rpm (136 Hz), and the natural frequency of the diaphragm 5 is 30.2 Hz when calculated from the spring constant. Since the diaphragm 5 is connected to the vertical shaft 4 at its center, there is damping, and the external force from the motor 13 acts at a speed faster than the natural vibration, resulting in a phase lag.

実験装置を電子計量器上に設置し、反動板10の外周を固定金具21で数個所電子計量器の天板に固定し、実験装置に発生する推進力を観測した。 The experimental device was installed on an electronic scale, and the outer circumference of the reaction plate 10 was fixed to the top plate of the electronic scale at several points with fixing metal fittings 21, and the propulsive force generated in the experimental device was observed.

実験装置の部材を一部改良したため、ここからは本発明の一実施例を示す図1及び図2にもとづいて発明原理を説明する。
回転子2及び軸受6からなる振動装置と振動板5、及び反動板10は実験装置と同じである。実験装置の滑り軸受12のベアリングを、本実施例に於いては、垂直方向の運動に適したスライドユニットに改良した。
Since the members of the experimental apparatus have been partially improved, the principle of the invention will now be described with reference to FIGS. 1 and 2 showing an embodiment of the present invention.
A vibrating device comprising a rotor 2 and bearings 6, a vibrating plate 5, and a reaction plate 10 are the same as those of the experimental device. The bearing of the slide bearing 12 of the experimental device was modified to a slide unit suitable for vertical movement in this example.

また、円板の反動板10を同じ外径の基礎リング23及び中空固定リング22により固定し、中空固定リング22または反動板10に支持フレーム15を固定し、垂直軸4を滑り軸受12及び横フレーム9で支持し、調整輪11を取り付けた垂直軸4を反動板10の中心に結合することなく直立させる。 In addition, the disk reaction plate 10 is fixed by a base ring 23 and a hollow fixing ring 22 having the same outer diameter, the support frame 15 is fixed to the hollow fixing ring 22 or the reaction plate 10, and the vertical shaft 4 is connected to the plain bearing 12 and the horizontal shaft. The vertical shaft 4 supported by the frame 9 and fitted with the adjustment wheel 11 is erected without being connected to the center of the reaction plate 10. - 特許庁

中心軸19と交わる横フレーム9の衝撃受け9aから同じく中心軸19と交わる平衡線10a(反動板上面)までの長さである固定基準長20の長さが、例えば200mmであった場合、反動板10と接触する垂直軸下端4aから調整輪11の上端までを200mmに調整して固定する。さらに、垂直軸4上部側に振動装置等を取り付けた振動板5を固定ナット8で設置すると、調整輪11と衝撃受け9aの間に荷重による撓みができても、これによる調整は行わない。重力の影響で撓みができても、反動板10にそれ以上の速さの振動加速度(復元力)が発生しこの撓みは解消される。 If the length of the fixed reference length 20, which is the length from the impact receiver 9a of the horizontal frame 9 intersecting the central axis 19 to the equilibrium line 10a (upper surface of the reaction plate) also intersecting the central axis 19, is, for example, 200 mm, the reaction The distance from the lower end 4a of the vertical shaft contacting the plate 10 to the upper end of the adjusting wheel 11 is adjusted to 200 mm and fixed. Furthermore, if the diaphragm 5 with the vibrating device or the like mounted on the upper side of the vertical shaft 4 is installed with the fixing nut 8, even if the load between the adjustment wheel 11 and the impact receiver 9a is bent, the adjustment is not performed. Even if the reaction plate 10 is flexed under the influence of gravity, a faster vibration acceleration (restoring force) is generated in the reaction plate 10 to cancel the flexure.

振動板5に配置するシステムモーター1は4個均等配置し、装置の中空固定リング22を固定ネジ24により外部側に固定する。 Four system motors 1 are evenly arranged on the diaphragm 5, and a hollow fixing ring 22 of the device is fixed to the outside with a fixing screw 24. As shown in FIG.

以上の構成からなる本実施例の装置を始動させると、錘3の遠心力により振動板5に撓みが発生して正弦波振動し、同時に垂直軸4に密着する反動板10も連動して振動する。反動板10の復元力により、垂直軸4が振動波形の谷から山へ振動し、垂直軸4に取り付けた調整輪11が横フレーム9下端の衝撃受け9aに衝撃した瞬間、反動板10及び垂直軸下端4aは平衡線10aで瞬間停止する。 When the apparatus of this embodiment having the above structure is started, the centrifugal force of the weight 3 causes the vibration plate 5 to bend and vibrate sinusoidally, and at the same time, the reaction plate 10 in close contact with the vertical shaft 4 also vibrates. do. The restoring force of the reaction plate 10 causes the vertical shaft 4 to vibrate from the troughs to the peaks of the vibration waveform. The shaft lower end 4a stops momentarily at the equilibrium line 10a.

そのため反動板10は上昇側に撓み振動することはなく、ここからさらに、回転子2の錘3が180°回転すると、再び垂直軸4は下降し始め反動板10は下方側に撓むことになる。 Therefore, the reaction plate 10 does not flex and vibrate upward, and when the weight 3 of the rotor 2 rotates by 180°, the vertical shaft 4 begins to descend again and the reaction plate 10 bends downward. Become.

さらに振動加速が重力加速度以上に増幅し、反動板10が垂直軸4から振動を受けると、反動板10には錘3の遠心力による振動エネルギーが蓄積する。振動板5と反動板10の撓み量及び振動数は等しいため、双方の振動振幅・振動速度も等しい。 Further, when the vibration acceleration is amplified beyond the gravitational acceleration and the recoil plate 10 receives vibration from the vertical shaft 4 , the vibration energy due to the centrifugal force of the weight 3 is accumulated in the recoil plate 10 . Since the vibration plate 5 and the reaction plate 10 have the same amount of deflection and the same frequency, they also have the same vibration amplitude and vibration speed.

そのため反動板10と垂直軸4は密着状態で振動し、反動板10の復元力により垂直軸4に取り付けた調整輪11が、横フレーム9下端の衝撃受け9aに衝撃すると、この衝撃振動は垂直軸4を伝搬し振動板5に伝わる。 Therefore, the recoil plate 10 and the vertical shaft 4 vibrate in close contact with each other, and when the adjustment wheel 11 attached to the vertical shaft 4 impacts the impact receiver 9a at the lower end of the horizontal frame 9 due to the restoring force of the recoil plate 10, the impact vibration is vertical. It propagates along the shaft 4 and reaches the diaphragm 5 .

反動板10の衝撃振動は上方側に振動しない片振幅であり、上昇方向の力である正の部分の要素だけを持つもので、反動板10の復元力による衝撃振動は半サイクルの正弦半パルス波といえる。 The impact vibration of the reaction plate 10 is a half-amplitude that does not vibrate upward, and has only a positive component that is a force in the upward direction. You can call it a wave.

この正弦半パルス波は、振動板5の正弦波の振動周期と一致するため、双方の振動波は振動板5で合成振動波となり上方側に慣性力による推進力が発生する。 Since this sine half-pulse wave coincides with the vibration period of the sine wave of the diaphragm 5, both vibration waves become a composite vibration wave on the diaphragm 5, and a propulsive force is generated upward due to the inertial force.

図3(a)(b)(c)は、前記合成波の一連の形成過程を示す。
(a)は、振動板5の正弦波が軸受6側から垂直軸4に進む状況を示す。
(b)は、反動板10の復元力により調整ネジ11が衝撃受け9aに衝撃し正弦半パルス波が垂直軸4を伝搬し、軸受6側に進む状況を示す。
(c)は、双方の振動波が合成し、慣性力の発生方向を示す。
FIGS. 3(a), 3(b) and 3(c) show a series of formation processes of the composite wave.
(a) shows the situation where the sine wave of the diaphragm 5 travels from the bearing 6 side to the vertical axis 4 .
(b) shows a situation in which the restoring force of the reaction plate 10 impacts the adjusting screw 11 against the impact receiver 9a, and the sine half-pulse wave propagates along the vertical shaft 4 and advances toward the bearing 6 side.
(c) shows the direction in which the inertial force is generated by synthesizing both vibration waves.

図5は中空固定リング22による反動板10の固定状況を示す。
(a)は、中空固定リング22の斜視図である。
(b)は、上記の断面図である。
FIG. 5 shows how the recoil plate 10 is fixed by the hollow fixing ring 22 .
(a) is a perspective view of a hollow fixing ring 22. FIG.
(b) is a cross-sectional view of the above.

図6(a)(b)は正弦波と正弦半パルス波が重なる先頭の合成点を示す図である。振動周期が一致する箇所で、力が作用する軸受6と垂直軸4の直線間でのみ合成する。
(a)は、軸受6などの振動装置が3個設置された場合を示す。
(b)は、上記の装置が4個設置の場合を示す。
FIGS. 6(a) and 6(b) are diagrams showing the leading synthetic point where the sine wave and the sine half-pulse wave overlap. Synthesis occurs only between straight lines of the bearing 6 and the vertical axis 4 where the force acts, where the vibration periods coincide.
(a) shows the case where three vibration devices such as bearings 6 are installed.
(b) shows the case where four of the above devices are installed.

実験装置で観測した推進力は、装置の質量が1.5~2kg程度常に軽減するもので、この時の錘の回転数は1900~2000rpm程である。 The propulsive force observed in the experimental apparatus is such that the mass of the apparatus is constantly reduced by about 1.5 to 2 kg, and the rotation speed of the weight at this time is about 1900 to 2000 rpm.

振動板5は錘3の回転偶力により回るため、振動板5の端部などを抑える回り止めを設けると安定する。 Since the diaphragm 5 rotates due to the rotational couple of the weight 3, it is stabilized by providing a detent for restraining the end of the diaphragm 5 and the like.

実験例2
回転子2及び軸受6からなる振動装置と振動板5は、実験例1と以降の実験例4まで同じ装置で、反動板10のみを取り換えて実験した。反動板10の直径が実験例1と同じ300mmで、厚さ1.0mmのSPCC金属材料では、静的撓み量が4.88mmとなり振動板5の撓み量2.75mmより大きい。これを振動させると反動板10の振幅が大きいため正弦波とは異なる振動モードになり、反動板10と垂直軸4が離れて振動し、双方が衝撃し合い外乱振動になる。振動板5より撓み量が大きい反動板10は周期が一致しない。
Experimental example 2
The vibrating device consisting of the rotor 2 and the bearing 6 and the diaphragm 5 were the same devices from Experimental Example 1 to Experimental Example 4, and the experiments were conducted by replacing only the reaction plate 10 . When the diameter of the reaction plate 10 is 300 mm, which is the same as in Experimental Example 1, and the SPCC metal material is 1.0 mm thick, the amount of static deflection is 4.88 mm, which is larger than the amount of deflection of the diaphragm 5 of 2.75 mm. When this is vibrated, the amplitude of the reaction plate 10 is large, so that the vibration mode is different from that of the sine wave, and the reaction plate 10 and the vertical shaft 4 vibrate apart, and they impact each other, causing disturbance vibration. The recoil plate 10 having a greater amount of deflection than the vibration plate 5 has a different period.

実験例3
反動板10の直径300mm厚さ1.6mmのSPCC金属材料では、撓み量が1.19mmであっても推進力は発生する。これは、双方が同じ金属材料で弾性が等しいため、反動板10は垂直軸4と密着して振動し、振幅に比例して波長の短い正弦半パルス波が発生する。この正弦半パルス波は振動板5の正弦波と振幅は異なっても周期は等しくなるので、1対1の関係で合成する。復元力は反動板10の質量も影響することから、不安定ながらも実験例1相当の推進力が観測された。理論的には、反動板10の直径を454mmにすると振動板5と同じ撓み量2.73mmになり、質量も増えるため復元力も大きくなるといえる。
Experimental example 3
If the reaction plate 10 is made of SPCC metal material with a diameter of 300 mm and a thickness of 1.6 mm, a propulsive force is generated even if the amount of deflection is 1.19 mm. This is because both are made of the same metal material and have the same elasticity, so that the reaction plate 10 vibrates in close contact with the vertical shaft 4, generating a sine half-pulse wave with a short wavelength in proportion to the amplitude. Since this sine half-pulse wave and the sine wave of the diaphragm 5 have the same period even though the amplitude is different, they are synthesized in a one-to-one relationship. Since the restoring force is also affected by the mass of the reaction plate 10, a propulsive force equivalent to Experimental Example 1 was observed, although unstable. Theoretically, if the diameter of the recoil plate 10 is set to 454 mm, the amount of deflection will be 2.73 mm, which is the same as that of the diaphragm 5, and the mass will increase, so the restoring force will also increase.

実験例4
反動板10を直径300mm厚さ1.5mmのステンレス板(SUS304)で実験した。静的撓み量は1.45mmで、引張強度がSPCC材料は270Mpaに対しステンレス板は520Mpaで2倍ほど引張強度が異なる。振動の始まりには推進力が発生する兆候があるものの、すぐに観測できなくなる。引張強度が大きく異なる材料では動的撓み速度が一致し難い。しかし、弾性限度を超えるものではないため、直径を414mmにすると撓み量は2.77mmになり振幅は一致することになる。
Experimental example 4
An experiment was conducted using a stainless plate (SUS304) with a diameter of 300 mm and a thickness of 1.5 mm as the recoil plate 10 . The amount of static deflection is 1.45 mm, and the tensile strength of the SPCC material is 270 Mpa, while the stainless steel plate is 520 Mpa, which is about twice the tensile strength. At the beginning of the oscillation, there are signs of propulsive force, but it soon becomes unobservable. It is difficult to match the dynamic deflection rates of materials with large differences in tensile strength. However, since it does not exceed the elastic limit, if the diameter is 414 mm, the amount of deflection will be 2.77 mm and the amplitude will be the same.

以上の実験結果から、振動板5及び反動板10に用いる材料は、ヤング率及び引張強度の弾性率が多少異なる金属材料の組合せでもよく、双方の撓み量が等しい場は効率が良い推進力が発生するといえる。 From the above experimental results, the materials used for the vibration plate 5 and the reaction plate 10 may be a combination of metal materials having somewhat different Young's modulus and elastic modulus of tensile strength. can be said to occur.

実施例とした図1及び図2に於いて、錘3をサイクル同期位置制御するシステムモーター1は、モータ、エンコーダ、位置決めドライバを内蔵し、外部とオンライン指令により稼働する。また、実験装置と同じく歯車による同期方法として、垂直軸4を回転軸とする大傘歯車17に、モータ13に取り付けた小傘歯車18をかみ合わせて連結すると、容易に同期回転が可能になる。尚、センサーにより制御可能なモータであれば、実施例に於いてモータの種類や制御方法及び設置個数は限定されるものではない。 1 and 2 as an embodiment, the system motor 1 for cycle-synchronous position control of the weight 3 incorporates a motor, an encoder, and a positioning driver, and operates according to external and on-line commands. As a synchronization method using gears as in the experimental apparatus, synchronous rotation can be easily achieved by meshing and connecting a small bevel gear 18 attached to a motor 13 to a large bevel gear 17 whose rotation axis is the vertical shaft 4 . In the embodiment, the type, control method and number of motors to be installed are not limited as long as the motor can be controlled by a sensor.

円板の中心固定による撓み量は、次式により求められる。

Figure 2023121171000002
The amount of deflection due to the fixation of the center of the disk is obtained by the following equation.
Figure 2023121171000002

円板の外周固定による撓み量は、次式により求められる。

Figure 2023121171000003
The amount of deflection due to fixing the outer circumference of the disk is obtained by the following equation.
Figure 2023121171000003

1 システムモーター
2 回転子
3 錘
4 垂直軸
4a 垂直軸下端
5 振動板
6 軸受
7 ジョイント
9 横フレーム
9a 衝撃受け
10 反動板
10a 平衡線(反動板上面)
11 調整輪
12 滑り軸受
13 モータ
15 支持フレーム
19 中心軸
20 固定基準長
21 固定金具
22 中空固定リング
23 基礎リング





















(1)
1 system motor 2 rotor 3 weight 4 vertical shaft 4a lower end of vertical shaft 5 vibration plate 6 bearing 7 joint 9 horizontal frame 9a impact receiver 10 reaction plate 10a balance line (upper surface of reaction plate)
11 Adjusting ring 12 Slide bearing 13 Motor 15 Support frame 19 Central axis 20 Fixed reference length 21 Fixing bracket 22 Hollow fixing ring 23 Foundation ring





















(1)

Claims (2)

錘(3)及びアーム(16)を取り付けた回転子(2)及び軸受(6)により構成される振動装置と、円板である振動板(5)の端部に前記振動装置を複数個均等配置し、前記振動装置とジョイント(7)を介してシステムモーター(1)により同期位置制御し、前記振動板(5)中心と中心軸(19)を軸心とする垂直軸(4)を結合し、円板の反動板(10)の外周を基礎リング(23)及び中空固定リング(22)により固定し、前記中空固定リング(22)または前記反動板(10)に支持フレーム(15)を固定し、調整輪(11)を取り付けた前記垂直軸(4)を滑り軸受(12)及び横フレーム(9)で支持し、前記垂直軸(4)を前記反動板(10)中心に結合することなく直立させ、可撓性金属材料である前記振動板(5)及び前記反動板(10)は、錘(3)の回転応力による撓み量が等しいか、前記反動板(10)の撓み量が小さい関係であって、前記垂直軸(4)に取り付けた前記調整輪(11)上端から垂直軸下端(4a)までの長さを、中心軸(19)と交わる衝撃受け(9a)から平衡線(10a)までの長さである固定基準長(20)に一致させ、前記反動板(10)の復元力による衝撃振動により正弦半パルス波を発生させ、振動周期が等しい前記振動板(5)の正弦波と合成波となって慣性力を発生させる合成振動波による推進力発生装置。 A vibrating device composed of a rotor (2) and a bearing (6) to which a weight (3) and an arm (16) are attached, and a plurality of the vibrating devices at the ends of a disk-like diaphragm (5). Synchronous position control by the system motor (1) through the vibration device and the joint (7), and the vertical axis (4) centered on the center axis (19) of the diaphragm (5) is coupled. The outer circumference of the disc reaction plate (10) is fixed by a base ring (23) and a hollow fixed ring (22), and a support frame (15) is attached to the hollow fixed ring (22) or the reaction plate (10). The vertical shaft (4) fixed and fitted with the adjusting ring (11) is supported by the sliding bearing (12) and the horizontal frame (9), and the vertical shaft (4) is coupled to the center of the reaction plate (10). The vibration plate (5) and the reaction plate (10), which are flexible metal materials, have the same deflection amount due to the rotational stress of the weight (3), or the deflection amount of the reaction plate (10) is equal. is small, and the length from the upper end of the adjustment wheel (11) attached to the vertical shaft (4) to the lower end (4a) of the vertical shaft (4a) is the balance The fixed reference length (20), which is the length up to the line (10a), is matched, and a sine half-pulse wave is generated by impact vibration due to the restoring force of the reaction plate (10), and the vibration plate (5) with the same vibration period is generated. ) is a sine wave and a composite wave to generate inertial force. 垂直軸(4)を回転軸とする大傘歯車(17)に、モータ(13)に取り付けた小傘歯車(18)をかみ合わせて連結し、錘(3)を取り付けた回転子(2)及び軸受(6)からなる複数の振動装置とジョイント(7)を介して同期位置制御する請求項1記載の合成振動波による推進力発生装置。

















(1)
A rotor (2) in which a small bevel gear (18) attached to a motor (13) is meshed and connected to a large bevel gear (17) whose rotation axis is a vertical shaft (4), and a weight (3) is attached to the rotor (2); 2. A propulsive force generating device by synthetic vibration waves according to claim 1, wherein synchronous position control is performed via a plurality of vibrating devices comprising bearings (6) and joints (7).

















(1)
JP2022024345A 2022-02-20 2022-02-20 Propulsion force generator by synthetic vibration wave Active JP7087216B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022024345A JP7087216B1 (en) 2022-02-20 2022-02-20 Propulsion force generator by synthetic vibration wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022024345A JP7087216B1 (en) 2022-02-20 2022-02-20 Propulsion force generator by synthetic vibration wave

Publications (2)

Publication Number Publication Date
JP7087216B1 JP7087216B1 (en) 2022-06-20
JP2023121171A true JP2023121171A (en) 2023-08-31

Family

ID=82067877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022024345A Active JP7087216B1 (en) 2022-02-20 2022-02-20 Propulsion force generator by synthetic vibration wave

Country Status (1)

Country Link
JP (1) JP7087216B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158488U (en) * 2010-01-20 2010-04-02 岡本 家春 Propulsion machine
JP2012137082A (en) * 2010-05-19 2012-07-19 Eisaku Shibata Propulsive force generating device by centrifugal force
JP2016084799A (en) * 2014-10-28 2016-05-19 英策 柴田 Propelling force generating device with vibration wave

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158488U (en) * 2010-01-20 2010-04-02 岡本 家春 Propulsion machine
JP2012137082A (en) * 2010-05-19 2012-07-19 Eisaku Shibata Propulsive force generating device by centrifugal force
JP2016084799A (en) * 2014-10-28 2016-05-19 英策 柴田 Propelling force generating device with vibration wave

Also Published As

Publication number Publication date
JP7087216B1 (en) 2022-06-20

Similar Documents

Publication Publication Date Title
JP2994946B2 (en) Method for counteracting vibration propagation of a dynamically unbalanced rotating rotor, and a device for generating a rotating force vector and a oscillating couple
JP3794764B2 (en) Modular double reversing eccentric mass vibration force generator
JP4335689B2 (en) Structure and method for reducing its resonance
US9004246B2 (en) System for damping oscillations in a structure
US5213184A (en) Device for compensating a vibrational force or torque acting on a body
Yatsun et al. Equations of motion of vibration machines with a translational motion of platforms and a vibration exciter in the form of a passive auto-balancer
CN111458241B (en) Servo coaxial dual-drive inertia vibration exciter
JP2023121171A (en) Thrust generation device using synthetic vibration wave
EP2985222A1 (en) Helicopter vibration control system and circular force generation system for cancelling vibrations
KR20180134991A (en) Method and apparatus for controlling vibration of a ship propulsion system
Majewski Vibratory forces and synchronization in physical systems
Sakata et al. Vibration analysis of a high speed and light weight rotor system subjected to a pitching or turning motion: I: A rigid rotor system on flexible suspensions
RU2338669C1 (en) Method for flying in outer space
US3313163A (en) Gyroscopic vibration absorber
JP3154597B2 (en) Active vibration suppression device using unbalanced shaker
RU83550U1 (en) DEVICE FOR GETTING FORCE OF INERTIA
JP2016084799A (en) Propelling force generating device with vibration wave
JP2018071533A (en) Propulsion power generating device with oscillatory wave
JP2004126488A (en) Chaos vibration generating device
Samardžić et al. A forced oscillation system for damping derivative measurement in the T-38 trisonic wind tunnel
Filimonikhin et al. The dynamics of a resonance single-mass vibratory machine with a vibration exciter of targeted action that operates on the Sommerfeld effect
EP4088162B1 (en) Pendulum device
Yefremov et al. The issue of balancing of eccentric-type vibrators
WO2009023336A9 (en) Force/energy re-vectoring device
LIFICIU et al. Studies regarding the pendulous vibrators with adjustable disturbing force. Structural analysis

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7087216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150