JP7085885B2 - Photoelectric sensor - Google Patents

Photoelectric sensor Download PDF

Info

Publication number
JP7085885B2
JP7085885B2 JP2018086257A JP2018086257A JP7085885B2 JP 7085885 B2 JP7085885 B2 JP 7085885B2 JP 2018086257 A JP2018086257 A JP 2018086257A JP 2018086257 A JP2018086257 A JP 2018086257A JP 7085885 B2 JP7085885 B2 JP 7085885B2
Authority
JP
Japan
Prior art keywords
light
light emitting
lens
emitting element
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018086257A
Other languages
Japanese (ja)
Other versions
JP2019193183A (en
Inventor
貴之 細井
知広 高宮
実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2018086257A priority Critical patent/JP7085885B2/en
Priority to CN201910307833.5A priority patent/CN110411487B/en
Publication of JP2019193183A publication Critical patent/JP2019193183A/en
Application granted granted Critical
Publication of JP7085885B2 publication Critical patent/JP7085885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/28Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication
    • G01D5/30Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication the beams of light being detected by photocells

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Electronic Switches (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

この発明は、検出体による反射光を受光する光電センサに関する。 The present invention relates to a photoelectric sensor that receives light reflected by a detector.

従来から、投光素子が赤外光を発光する光電センサが知られている(例えば特許文献1参照)。赤外光は、可視光(赤色光)に対して発光効率が高く検出性能がよいため、光電センサに用いられることがある。しかしながら、投光素子が赤外光を発光する場合、その発光された光及び検出体に当たった光を目視することはできない。 Conventionally, a photoelectric sensor in which a light projecting element emits infrared light has been known (see, for example, Patent Document 1). Infrared light is sometimes used for photoelectric sensors because it has high luminous efficiency and good detection performance with respect to visible light (red light). However, when the light projecting element emits infrared light, the emitted light and the light hitting the detector cannot be visually recognized.

そこで、従来から、赤外光を発光する赤外光用の投光素子に加え、可視光を発光する可視光用の投光素子を備えた光電センサが知られている(例えば特許文献2,3参照)。特許文献2に開示された光電センサでは、可視光用の投光素子が、赤外光用の投光素子に対して着脱可能に構成されている。また、特許文献3に開示された光電センサでは、基板上に赤外光用の投光素子と可視光用の投光素子とが並べて配置され、この2つの投光素子に対して単一の投光レンズを共通に用いている。 Therefore, conventionally, a photoelectric sensor including a light projecting element for visible light that emits visible light in addition to a light projecting element for infrared light that emits infrared light has been known (for example, Patent Document 2 and 2). 3). In the photoelectric sensor disclosed in Patent Document 2, the light projecting element for visible light is configured to be detachable from the light projecting element for infrared light. Further, in the photoelectric sensor disclosed in Patent Document 3, a light projecting element for infrared light and a light projecting element for visible light are arranged side by side on a substrate, and a single light projecting element is provided for these two light projecting elements. A floodlight lens is commonly used.

特開2012-74412号公報Japanese Unexamined Patent Publication No. 2012-74412 特開平05-62573号公報Japanese Unexamined Patent Publication No. 05-62573 特開平05-274967号公報Japanese Unexamined Patent Publication No. 05-274967

しかしながら、特許文献2に開示された従来の光電センサでは、赤外光用の投光素子と可視光用の投光素子とが別体の構造物に設けられているため、赤外光用の投光素子の光軸と可視光用の投光素子の光軸との間にずれが発生する。
また、特許文献3に開示された従来の光電センサでは、赤外光用の投光素子と可視光用の投光素子に対して単一の投光レンズが共通に用いられているため、赤外光用の投光素子の光軸と可視光用の投光素子の光軸との間にずれが発生する。すなわち、赤外光用の投光素子用に最適化された投光レンズを用いた場合、基板上に赤外光用の投光素子と可視光用の投光素子とを並べて配置すると、赤外光用の投光素子と投光レンズの中心とを通る軸と、可視光用の投光素子と投光レンズの中心とを通る軸が平行ではなくなり、光軸ずれが発生する。
However, in the conventional photoelectric sensor disclosed in Patent Document 2, since the light projecting element for infrared light and the light projecting element for visible light are provided in separate structures, they are used for infrared light. A deviation occurs between the optical axis of the light projecting element and the optical axis of the light projecting element for visible light.
Further, in the conventional photoelectric sensor disclosed in Patent Document 3, since a single light projecting lens is commonly used for the light projecting element for infrared light and the light projecting element for visible light, it is red. A deviation occurs between the optical axis of the light projecting element for external light and the optical axis of the light projecting element for visible light. That is, when a light projecting lens optimized for an infrared light projecting element is used, when the infrared light projecting element and the visible light projecting element are arranged side by side on the substrate, it is red. The axis passing through the center of the light projecting element for external light and the center of the light projecting lens and the axis passing through the center of the light projecting element for visible light and the center of the light projecting lens are not parallel, and an optical axis shift occurs.

この発明は、上記のような課題を解決するためになされたもので、赤外光用の投光素子及び可視光用の投光素子を備えた光電センサにおいて、光軸ずれの発生を回避可能な光電センサを提供することを目的としている。 The present invention has been made to solve the above-mentioned problems, and it is possible to avoid the occurrence of optical axis deviation in a photoelectric sensor provided with a light projecting element for infrared light and a light projecting element for visible light. The purpose is to provide a light photoelectric sensor.

この発明に係る光電センサは、赤外光を発光する第1発光素子、及び、当該第1発光素子により発光された赤外光を外部に投光する第1投光レンズを有する第1投光部と、第1発光素子と並んで配置されて可視光を発光する第2発光素子、及び、当該第2発光素子により発光された可視光を外部に投光する第2投光レンズを有する第2投光部と、光を集光する受光レンズ、及び、当該受光レンズにより集光された光を受光する受光素子を有する受光部とを備え、第2発光素子は、第1発光素子と受光素子との間に配置され、第2投光部は、第1投光部により投光される赤外光と同一方向に可視光を投光し、第1投光レンズは、軸方向から見て凹んだ形状に構成された凹部を有し、第2投光レンズは、軸方向から見て前記凹部における凹んだ領域内に配置されたことを特徴とする。 The photoelectric sensor according to the present invention has a first light emitting element that emits infrared light and a first light emitting lens that emits infrared light emitted by the first light emitting element to the outside. A second light emitting element having a unit, a second light emitting element arranged side by side with the first light emitting element and emitting visible light, and a second light emitting lens that emits visible light emitted by the second light emitting element to the outside. The second light emitting element includes a light receiving unit having a light emitting unit, a light receiving lens that collects light, and a light receiving element that receives light collected by the light receiving lens, and the second light emitting element is a first light emitting element and light receiving light. Arranged between the elements, the second floodlight unit projects visible light in the same direction as the infrared light projected by the first floodlight unit , and the first floodlight lens is viewed from the axial direction. It has a concave portion formed in a concave shape, and the second light projecting lens is characterized in that it is arranged in the concave region of the concave portion when viewed from the axial direction .

この発明によれば、上記のように構成したので、赤外光用の投光素子及び可視光用の投光素子を備えた光電センサにおいて、光軸ずれの発生を回避可能である。 According to the present invention, since it is configured as described above, it is possible to avoid the occurrence of optical axis deviation in a photoelectric sensor provided with a light projecting element for infrared light and a light projecting element for visible light.

この発明の実施の形態1に係る距離設定形光電センサの構成例を示す図である。It is a figure which shows the structural example of the distance setting type photoelectric sensor which concerns on Embodiment 1 of this invention. この発明の実施の形態1における赤外光用の投光部、可視光用の投光部、受光部及び素子ホルダの構成例を示す側面図である。It is a side view which shows the structural example of the light emitting part for infrared light, the light emitting part for visible light, the light receiving part, and the element holder in Embodiment 1 of this invention. 図3A、図3Bは、この発明の実施の形態1における赤外光用の投光レンズ及び可視光用の投光レンズの構成例を示す図であり、図3Aは側面図であり、図3Bは正面図である。3A and 3B are views showing a configuration example of a projection lens for infrared light and a projection lens for visible light according to the first embodiment of the present invention, and FIG. 3A is a side view and FIG. 3B. Is a front view. 図4A、図4Bは、この発明の実施の形態1における赤外光用の投光レンズ及び可視光用の投光レンズの別の構成例を示す図であり、図4Aは側面図であり、図4Bは正面図である。4A and 4B are views showing another configuration example of the infrared light projecting lens and the visible light projecting lens according to the first embodiment of the present invention, and FIG. 4A is a side view. FIG. 4B is a front view. この発明の実施の形態1における受光素子上での受光位置と検出体までの距離との関係の一例を示す図である。It is a figure which shows an example of the relationship between the light-receiving position on a light-receiving element and the distance to a detection body in Embodiment 1 of this invention. この発明の実施の形態1における判定部の構成例を示す図である。It is a figure which shows the structural example of the determination part in Embodiment 1 of this invention. この発明の実施の形態1における素子ホルダの構成例を示す正面図である。It is a front view which shows the structural example of the element holder in Embodiment 1 of this invention.

以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る距離設定形光電センサの構成例を示す図であり、図2はこの発明の実施の形態1における投光部2、投光部3、受光部4及び素子ホルダ7の構成例を示す側面図である。実施の形態1では、光電センサとして距離設定形光電センサを用いた場合を示す。
距離設定形光電センサは、三角測距の原理を利用し、検出領域における検出体10の有無を判定する。距離設定形光電センサは、図1,2に示すように、基板1、赤外光用の投光部(第1投光部)2、可視光(赤色光)用の投光部(第2投光部)3、受光部4、判定部5、制御部6及び素子ホルダ7を備えている。投光部2は、発光素子(第1発光素子)21及び投光レンズ(第1投光レンズ)22を有している。投光部3は、発光素子(第2発光素子)31及び投光レンズ(第2投光レンズ)32を有している。受光部4は受光レンズ41及び受光素子42を有している。なお図1では、受光素子42として2分割フォトダイオードを用いた場合を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a distance setting type photoelectric sensor according to the first embodiment of the present invention, and FIG. 2 is a light projecting unit 2, a light emitting unit 3, and a light receiving unit 4 in the first embodiment of the present invention. It is a side view which shows the structural example of the element holder 7. In the first embodiment, a case where a distance setting type photoelectric sensor is used as the photoelectric sensor is shown.
The distance setting type photoelectric sensor uses the principle of triangular distance measurement to determine the presence or absence of the detector 10 in the detection region. As shown in FIGS. 1 and 2, the distance setting type photoelectric sensor includes a substrate 1, a light projecting unit for infrared light (first light projecting unit) 2, and a light projecting unit for visible light (red light) (second light emitting unit). It includes a light projecting unit) 3, a light receiving unit 4, a determination unit 5, a control unit 6, and an element holder 7. The light projecting unit 2 has a light emitting element (first light emitting element) 21 and a light projecting lens (first light emitting lens) 22. The light projecting unit 3 has a light emitting element (second light emitting element) 31 and a light projecting lens (second light emitting lens) 32. The light receiving unit 4 has a light receiving lens 41 and a light receiving element 42. Note that FIG. 1 shows a case where a two-divided photodiode is used as the light receiving element 42.

発光素子21は、基板1上に配置され、赤外光を発光する。なお、発光素子21は、所定のデューティーをもったパルス光を発光するのが望ましい。
投光レンズ22は、発光素子21により発光された赤外光を外部に投光する。この投光レンズ22は、検出領域に対向配置され、発光素子21により発光された赤外光を検出領域に投光する。
The light emitting element 21 is arranged on the substrate 1 and emits infrared light. It is desirable that the light emitting element 21 emits pulsed light having a predetermined duty.
The light projecting lens 22 projects infrared light emitted by the light emitting element 21 to the outside. The projection lens 22 is arranged to face the detection region, and the infrared light emitted by the light emitting element 21 is projected onto the detection region.

発光素子31は、基板1上に発光素子21と並んで配置され、可視光を発光する。発光素子31は、発光素子21と受光素子42との間で中央(略中央の意味を含む)に配置されている。なお、発光素子31は、発光素子21が発する光のパルス波形に影響を及ぼさないように、直流光を発光するのが望ましい。
投光レンズ32は、発光素子31により発光された可視光を外部に投光する。この投光レンズ32は、検出領域に対向配置され、発光素子31により発光された可視光を検出領域に投光する。すなわち、投光部3は、投光部2により投光される赤外光と同一(略同一の意味を含む)方向に可視光を投光する。
The light emitting element 31 is arranged side by side with the light emitting element 21 on the substrate 1 and emits visible light. The light emitting element 31 is arranged in the center (including the meaning of substantially the center) between the light emitting element 21 and the light receiving element 42. It is desirable that the light emitting element 31 emits direct current light so as not to affect the pulse waveform of the light emitted by the light emitting element 21.
The light projecting lens 32 projects the visible light emitted by the light emitting element 31 to the outside. The projection lens 32 is arranged to face the detection region, and the visible light emitted by the light emitting element 31 is projected onto the detection region. That is, the light projecting unit 3 projects visible light in the same direction (including substantially the same meaning) as the infrared light projected by the light projecting unit 2.

図3は投光レンズ22及び投光レンズ32の構成例を示している。図3では、投光レンズ22及び投光レンズ32が一体に構成されている。また、投光レンズ22は一部に凹部221を有し、投光レンズ32はこの凹部221の領域に配置されている。
また、投光レンズ32は、投光レンズ22に比べ非常に小さい。また、投光レンズ22の一部(上側の両端)に凸部を残すことで、投光レンズ32による投光レンズ22の性能への影響を抑えることができる。
また、投光レンズ32の形状は、図3Bに示すような矩形型に限らず、例えば図4Bに示すような丸型でもよい。また、凹部221の形状についても同様に、図3Bに示すような矩形型に限らず、例えば図4Bに示すような丸みを有する形状でもよい。
FIG. 3 shows a configuration example of the floodlight lens 22 and the floodlight lens 32. In FIG. 3, the floodlight lens 22 and the floodlight lens 32 are integrally configured. Further, the floodlight lens 22 has a recess 221 in a part thereof, and the floodlight lens 32 is arranged in the region of the recess 221.
Further, the floodlight lens 32 is much smaller than the floodlight lens 22. Further, by leaving convex portions on a part of the light projecting lens 22 (both upper ends), it is possible to suppress the influence of the light projecting lens 32 on the performance of the light projecting lens 22.
Further, the shape of the light projecting lens 32 is not limited to the rectangular shape as shown in FIG. 3B, and may be, for example, a round shape as shown in FIG. 4B. Similarly, the shape of the concave portion 221 is not limited to the rectangular shape as shown in FIG. 3B, and may be a rounded shape as shown in FIG. 4B, for example.

受光レンズ41は、光を集光する。この受光レンズ41は、検出領域に対向配置され、検出領域からの光を集光する。
受光素子42は、基板1上に配置され、受光レンズ41により集光された光を受光する。受光素子42は、N側受光面(Near側)及びF側受光面(Far側)を有する。N側受光面は、検出体10が設定距離よりも近い領域(近距離領域)に位置する場合に当該検出体10による拡散反射光を受光可能である。また、F側受光面は、検出体10が設定距離よりも遠い領域(遠距離領域)に位置する場合に当該検出体10による拡散反射光を受光可能である。
The light receiving lens 41 collects light. The light receiving lens 41 is arranged to face the detection area and collects light from the detection area.
The light receiving element 42 is arranged on the substrate 1 and receives the light collected by the light receiving lens 41. The light receiving element 42 has an N side light receiving surface (Near side) and an F side light receiving surface (Far side). The N-side light receiving surface can receive diffusely reflected light from the detector 10 when the detector 10 is located in a region closer to the set distance (short distance region). Further, the F-side light receiving surface can receive diffuse reflected light by the detector 10 when the detector 10 is located in a region (long distance region) farther than the set distance.

受光素子42上での受光位置と距離設定形光電センサから検出体10までの距離との関係を図5に示す。
図5に示すように、検出体10までの距離が距離b(設定距離)の場合には、当該検出体10による反射光がN側受光面(PD_Near)とF側受光面(PD_Far)との境界近傍に受光される。また、検出体10までの距離が、距離bよりも距離設定形光電センサに近い距離a(近距離領域上)の場合には、当該検出体10による反射光がN側受光面に受光される。また、検出体10までの距離が、距離bよりも距離設定形光電センサから遠い距離c(遠距離領域上)の場合には、当該検出体10による反射光がF側受光面に受光される。
FIG. 5 shows the relationship between the light receiving position on the light receiving element 42 and the distance from the distance setting type photoelectric sensor to the detector 10.
As shown in FIG. 5, when the distance to the detector 10 is the distance b (set distance), the light reflected by the detector 10 is a light receiving surface on the N side (PD_Near) and a light receiving surface on the F side (PD_Far). Light is received near the boundary. When the distance to the detector 10 is closer to the distance setting type photoelectric sensor than the distance b (on the short distance region), the reflected light from the detector 10 is received by the N-side light receiving surface. .. Further, when the distance to the detector 10 is a distance c (on a long distance region) farther from the distance setting type photoelectric sensor than the distance b, the reflected light by the detector 10 is received by the light receiving surface on the F side. ..

判定部5は、受光部4による受光結果に基づいて、検出領域における検出体10の有無を判定する。この判定部5は、図6に示すように、位置判定部51を有している。 The determination unit 5 determines the presence / absence of the detector 10 in the detection region based on the light reception result by the light receiving unit 4. As shown in FIG. 6, the determination unit 5 has a position determination unit 51.

位置判定部51は、受光部4(受光素子42)により受光された光の受光位置を判定する。この際、位置判定部51は、N側受光面に受光された光を示す信号I_NearとF側受光面に受光された光を示す信号I_Farとを比較し、信号I_Nearの方が大きな値をとるときに受光位置がN側受光面であると判定する。 The position determination unit 51 determines the light receiving position of the light received by the light receiving unit 4 (light receiving element 42). At this time, the position determination unit 51 compares the signal I_Near indicating the light received on the light receiving surface on the N side with the signal I_Far indicating the light received on the light receiving surface on the F side, and the signal I_Near takes a larger value. Sometimes it is determined that the light receiving position is the N side light receiving surface.

判定部5は、位置判定部51による判定結果から検出体10の有無を判定する。ここで、判定部5は、位置判定部51により受光位置がN側受光面であると判定された場合には、検出体10が有ると判定する。また、判定部5は、位置判定部51により受光位置がN側受光面であると判定されない場合には、検出体10が無いと判定する。 The determination unit 5 determines the presence / absence of the detection body 10 from the determination result by the position determination unit 51. Here, when the position determination unit 51 determines that the light receiving position is the N-side light receiving surface, the determination unit 5 determines that the detector 10 is present. Further, when the position determination unit 51 does not determine that the light receiving position is the N-side light receiving surface, the determination unit 5 determines that the detector 10 is absent.

制御部6は、発光素子21及び発光素子31の発光を制御する。この制御部6は、距離設定形光電センサの動作モードが調整モードである場合に、発光素子21及び発光素子31を発光させる。調整モードは、距離設定形光電センサを感度調整する際に距離設定形光電センサに対してユーザにより設定される動作モードである。また、制御部6は、距離設定形光電センサの動作モードが通常モードである場合に、発光素子21を発光させる。通常モードは、距離設定形光電センサを運用する際に距離設定形光電センサに対してユーザにより設定される動作モードである。 The control unit 6 controls the light emission of the light emitting element 21 and the light emitting element 31. The control unit 6 causes the light emitting element 21 and the light emitting element 31 to emit light when the operation mode of the distance setting type photoelectric sensor is the adjustment mode. The adjustment mode is an operation mode set by the user for the distance setting type photoelectric sensor when adjusting the sensitivity of the distance setting type photoelectric sensor. Further, the control unit 6 causes the light emitting element 21 to emit light when the operation mode of the distance setting type photoelectric sensor is the normal mode. The normal mode is an operation mode set by the user for the distance setting type photoelectric sensor when operating the distance setting type photoelectric sensor.

なお、判定部5及び制御部6は、システムLSI(Large Scale Integration)等の処理回路、又はメモリ等に記憶されたプログラムを実行するCPU(Central Processing Unit)等により実現される。 The determination unit 5 and the control unit 6 are realized by a processing circuit such as a system LSI (Large Scale Integration), a CPU (Central Processing Unit) that executes a program stored in a memory or the like, or the like.

素子ホルダ7は、図2,7に示すように、投光部2(発光素子21及び投光レンズ22)を収容する投光収容部71、投光部3(発光素子31及び投光レンズ32)を収容する投光収容部72、及び、受光部4(受光レンズ41及び受光素子42)を収容する受光収容部73を有する。図7では、距離設定形光電センサのうちの素子ホルダ7の構成のみを図示している。 As shown in FIGS. ), And a light receiving unit 73 that accommodates the light receiving unit 4 (light receiving lens 41 and light receiving element 42). FIG. 7 illustrates only the configuration of the element holder 7 in the distance setting type photoelectric sensor.

投光収容部71は、一面が開口された筐体構造に構成されている。図2,7に示すように、投光収容部71の内部奥には、発光素子21が配置される位置に設けられる開口部711が設けられている。また、投光収容部71の開口部711と反対側の開口端には、投光レンズ22が取付けられるレンズ取付け部712が設けられている。また、投光収容部71の内面(上面、底面及び左右面)には、段差部713が設けられている。段差部713は、開口部711側からレンズ取付け部712側に沿って広がった階段状に構成されている。 The floodlight accommodating portion 71 is configured in a housing structure with one side open. As shown in FIGS. 2 and 7, an opening 711 provided at a position where the light emitting element 21 is arranged is provided in the inner part of the light projecting accommodating portion 71. Further, a lens mounting portion 712 to which the floodlight lens 22 is mounted is provided at the opening end of the floodlight accommodating portion 71 on the opposite side of the opening portion 711. Further, a step portion 713 is provided on the inner surface (upper surface, bottom surface, left and right surface) of the floodlight accommodating portion 71. The step portion 713 is configured in a stepped shape extending from the opening 711 side along the lens mounting portion 712 side.

投光収容部72は、一面が開口された筐体構造に構成されている。図2,7に示すように、投光収容部72の内部奥には、発光素子31が配置される位置に設けられる開口部721が設けられている。また、投光収容部72の開口部721と反対側の開口端には、投光レンズ32が取付けられるレンズ取付け部722が設けられている。 The floodlight accommodating portion 72 is configured in a housing structure with one side open. As shown in FIGS. 2 and 7, an opening 721 provided at a position where the light emitting element 31 is arranged is provided in the inner part of the light projecting accommodating portion 72. Further, a lens mounting portion 722 to which the floodlight lens 32 is mounted is provided at the opening end of the floodlight accommodating portion 72 on the opposite side of the opening portion 721.

受光収容部73は、一面が開口された筐体構造に構成されている。図2,7に示すように、受光収容部73の内部奥には、受光素子42が配置される位置に設けられる開口部731が設けられている。また、受光収容部73の開口部731と反対側の開口端には、受光レンズ41が取付けられるレンズ取付け部732が設けられている。また、受光収容部73の内面(上面、底面及び左右面)には、段差部733が設けられている。段差部733は、開口部731側からレンズ取付け部732側に沿って広がった階段状に構成されている。 The light receiving accommodating portion 73 is configured in a housing structure having one side open. As shown in FIGS. 2 and 7, an opening 731 provided at a position where the light receiving element 42 is arranged is provided in the inner part of the light receiving accommodating portion 73. Further, a lens mounting portion 732 to which the light receiving lens 41 is mounted is provided at the opening end of the light receiving accommodating portion 73 on the opposite side of the opening 731. Further, a step portion 733 is provided on the inner surface (upper surface, bottom surface, left and right surface) of the light receiving accommodating portion 73. The step portion 733 is configured in a staircase shape extending from the opening 731 side along the lens mounting portion 732 side.

素子ホルダ7は、発光素子21と発光素子31(投光側)の間にしきりの壁を持つことを特徴とする。投光側にしきりの壁を設けているのは、発光素子21からの光が投光レンズ32を通して外部に投光されて検出性能に影響を与えることがないようにするためと、発光素子31からの光が投光レンズ22を通して外部に投光されて投光スポットの見た目に影響を与えることがないようにするためである。
なお、発光素子31と受光素子42(受光側)の間にしきりの壁を設けていないのは、受光素子42は光のパルス波形を検出して動作するため、発光素子31による光が直流光である場合は、発光素子31による光が受光素子42に入射しても検出性能への影響がないためである。一方、発光素子31と受光素子42との間にしきりの壁を設けてもよい。
The element holder 7 is characterized by having a wall between the light emitting element 21 and the light emitting element 31 (light emitting side). The reason why the wall is provided on the light emitting side is to prevent the light from the light emitting element 21 from being projected to the outside through the light emitting lens 32 and affecting the detection performance, and the light emitting element 31. This is to prevent the light from the light beam from being projected to the outside through the floodlight lens 22 and affecting the appearance of the floodlight spot.
The reason why no wall is provided between the light emitting element 31 and the light receiving element 42 (light receiving side) is that the light receiving element 42 operates by detecting the pulse waveform of the light, so that the light from the light emitting element 31 is DC light. This is because even if the light emitted from the light emitting element 31 enters the light receiving element 42, the detection performance is not affected. On the other hand, a wall may be provided between the light emitting element 31 and the light receiving element 42.

次に、実施の形態1に係る距離設定形光電センサの効果について説明する。
実施の形態1に係る距離設定形光電センサでは、距離設定形光電センサを感度調整する際に、投光部2により投光された赤外光がどの領域に当たっているかを示すため、この赤外光と同一方向に可視光を投光する投光部3を追加している。なお、投光部2と投光部3は単一の素子ホルダ7内に設けられている。更に、実施の形態1では、投光部3が、投光部2が有する投光レンズ22とは別体である専用の投光レンズ32を有している。これにより、実施の形態1に係る距離設定形光電センサでは、投光部3の光軸を投光部2の光軸と一致(略一致の意味を含む)させることが可能となり、光軸ずれを回避できる。
Next, the effect of the distance setting type photoelectric sensor according to the first embodiment will be described.
In the distance setting type photoelectric sensor according to the first embodiment, when the sensitivity of the distance setting type photoelectric sensor is adjusted, the infrared light projected by the light projecting unit 2 indicates which region the infrared light is exposed to. A light projecting unit 3 that projects visible light in the same direction as the above is added. The light projecting unit 2 and the light projecting unit 3 are provided in a single element holder 7. Further, in the first embodiment, the light projecting unit 3 has a dedicated light projecting lens 32 which is different from the light projecting lens 22 of the light projecting unit 2. As a result, in the distance setting type photoelectric sensor according to the first embodiment, the optical axis of the light projecting unit 3 can be aligned with the optical axis of the light projecting unit 2 (including the meaning of substantially matching), and the optical axis shifts. Can be avoided.

また図2では、発光素子21及び発光素子31が単一の基板1上に配置されている。これにより、発光素子21と発光素子31の位置関係のずれを容易に回避できる。また図2~4では、投光レンズ22及び投光レンズ32が一体に構成されている。これにより、投光レンズ22及び投光レンズ32の位置関係のずれを容易に回避できる。
なお図2では、発光素子21及び発光素子31が単一の基板1上に配置されているが、これに限らず、発光素子21及び発光素子31が異なる基板上に配置されていてもよい。また図2~4では、投光レンズ22及び投光レンズ32が一体に構成されているが、これに限らず、投光レンズ22及び投光レンズ32が別体であってもよい。
Further, in FIG. 2, the light emitting element 21 and the light emitting element 31 are arranged on a single substrate 1. Thereby, the deviation of the positional relationship between the light emitting element 21 and the light emitting element 31 can be easily avoided. Further, in FIGS. 2 to 4, the floodlight lens 22 and the floodlight lens 32 are integrally configured. As a result, it is possible to easily avoid the displacement of the positional relationship between the floodlight lens 22 and the floodlight lens 32.
In FIG. 2, the light emitting element 21 and the light emitting element 31 are arranged on a single substrate 1, but the present invention is not limited to this, and the light emitting element 21 and the light emitting element 31 may be arranged on different substrates. Further, in FIGS. 2 to 4, the floodlight lens 22 and the floodlight lens 32 are integrally configured, but the present invention is not limited to this, and the floodlight lens 22 and the floodlight lens 32 may be separate bodies.

また、投光部2と受光部4との間に可視光用の投光部3を配置する場合に、投光部2と受光部4との間の隙間が広がると、近距離デッド領域が広がってしまう。近距離デッド領域とは、検出体10が距離設定形光電センサに近すぎるために検出体10が無いと判定してしまう距離領域である。そこで、図3,4に示すように、投光レンズ22の一部に凹部221を形成し、この凹部221の領域に投光レンズ32を配置することで、上記隙間が広がることを抑制できる。 Further, when the light emitting unit 3 for visible light is arranged between the light emitting unit 2 and the light receiving unit 4, if the gap between the light emitting unit 2 and the light receiving unit 4 is widened, a short-distance dead region is created. It will spread. The short-distance dead region is a distance region in which it is determined that the detector 10 is absent because the detector 10 is too close to the distance setting type photoelectric sensor. Therefore, as shown in FIGS. 3 and 4, by forming the recess 221 in a part of the floodlight lens 22 and arranging the floodlight lens 32 in the region of the recess 221, it is possible to suppress the expansion of the gap.

また、制御部6は、調整モードの場合に投光部3による可視光の投光を実施させ、運転モードの場合には投光部3による可視光の投光は停止させることで、省エネを実現できる。 Further, the control unit 6 saves energy by causing the light projecting unit 3 to project visible light in the adjustment mode and stopping the visible light projecting by the light projecting unit 3 in the operation mode. realizable.

なお上記では、受光素子42として2分割フォトダイオードを用いた場合を示した。しかしながら、これに限らず、受光素子42として、PSD(Position Sensitive Device)又は多分割フォトダイオード等の位置検出素子を用いてもよい。 In the above, the case where the two-divided photodiode is used as the light receiving element 42 is shown. However, the present invention is not limited to this, and a position detection element such as a PSD (Position Sensitive Device) or a multi-segment photodiode may be used as the light receiving element 42.

また、投光部2による光がパルス光であり且つ投光部3による光が直流光である場合、制御部6は、例えば最初に光電センサを工場のライン等にセッティングをして投受光のチューニングを行う場合等に、投光部2と投光部3を併用して使用することも可能である。よってこの場合、ユーザは、対象物に正確に投光されているかを直流光で目視しながら、赤外光の投光部2と受光部4による投受光のチューニングを行うことが可能となる。 When the light from the light projecting unit 2 is pulsed light and the light from the light projecting unit 3 is DC light, the control unit 6 first sets the photoelectric sensor on a factory line or the like to receive light. It is also possible to use the light projecting unit 2 and the light projecting unit 3 in combination when tuning or the like. Therefore, in this case, the user can tune the light emission / reception by the infrared light projection unit 2 and the light receiving unit 4 while visually observing whether the light is accurately projected onto the object with direct current light.

また上記では、光電センサとして、距離設定形光電センサを用いた場合を示した。しかしながら、これに限らず、検出体10による反射光を受光する光電センサであればよい。光電センサとして、反射形光電センサを用いてもよく、上記と同様の効果を得ることができる。 Further, in the above, the case where the distance setting type photoelectric sensor is used as the photoelectric sensor is shown. However, the present invention is not limited to this, and any photoelectric sensor that receives the reflected light from the detector 10 may be used. A reflective photoelectric sensor may be used as the photoelectric sensor, and the same effect as described above can be obtained.

以上のように、この実施の形態1によれば、赤外光を発光する発光素子21、及び、当該発光素子21により発光された赤外光を外部に投光する投光レンズ22を有する投光部2と、発光素子21と並んで配置されて可視光を発光する発光素子31、及び、当該発光素子31により発光された可視光を外部に投光する投光レンズ32を有する投光部3とを備え、投光部3は、投光部2により投光される赤外光と同一方向に可視光を投光するように構成したので、投光部3の光軸を投光部2の光軸に一致させることができ、光軸ずれの発生を回避可能である。 As described above, according to the first embodiment, the projectile has a light emitting element 21 that emits infrared light and a light projecting lens 22 that emits infrared light emitted by the light emitting element 21 to the outside. A light projecting unit having a light emitting unit 2, a light emitting element 31 arranged side by side with the light emitting element 21 to emit visible light, and a light projecting lens 32 that emits visible light emitted by the light emitting element 31 to the outside. Since the light projecting unit 3 is configured to project visible light in the same direction as the infrared light projected by the light projecting unit 2, the optical axis of the light projecting unit 3 is set as the light projecting unit. It can be matched with the optical axis of 2, and the occurrence of optical axis deviation can be avoided.

なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to modify any component of the embodiment or omit any component of the embodiment.

1 基板
2 投光部(第1投光部)
3 投光部(第2投光部)
4 受光部
5 判定部
6 制御部
7 素子ホルダ
10 検出体
21 発光素子(第1発光素子)
22 投光レンズ(第1投光レンズ)
31 発光素子(第2発光素子)
32 投光レンズ(第2投光レンズ)
41 受光レンズ
42 受光素子
51 位置判定部
71 投光収容部
72 投光収容部
73 受光収容部
221 凹部
711 開口部
712 レンズ取付け部
713 段差部
721 開口部
722 レンズ取付け部
731 開口部
732 レンズ取付け部
733 段差部
1 Substrate 2 Floodlight (1st floodlight)
3 Floodlight section (2nd floodlight section)
4 Light receiving unit 5 Judgment unit 6 Control unit 7 Element holder 10 Detector 21 Light emitting element (first light emitting element)
22 Floodlight lens (1st floodlight lens)
31 Light emitting element (second light emitting element)
32 Floodlight lens (second floodlight lens)
41 Light-receiving lens 42 Light-receiving element 51 Position determination unit 71 Light-emitting housing 72 Light-emitting housing 73 Light-receiving unit 221 Recession 711 Opening 712 Lens mounting 713 Step 721 Opening 722 Lens mounting 731 Opening 732 Lens mounting 733 Steps

Claims (3)

赤外光を発光する第1発光素子、及び、当該第1発光素子により発光された赤外光を外部に投光する第1投光レンズを有する第1投光部と、
前記第1発光素子と並んで配置されて可視光を発光する第2発光素子、及び、当該第2発光素子により発光された可視光を外部に投光する第2投光レンズを有する第2投光部と
光を集光する受光レンズ、及び、当該受光レンズにより集光された光を受光する受光素子を有する受光部とを備え、
前記第2発光素子は、前記第1発光素子と前記受光素子との間に配置され、
前記第2投光部は、前記第1投光部により投光される赤外光と同一方向に可視光を投光し、
前記第1投光レンズは、軸方向から見て凹んだ形状に構成された凹部を有し、
前記第2投光レンズは、軸方向から見て前記凹部における凹んだ領域内に配置された
ことを特徴とする光電センサ。
A first light emitting element that emits infrared light, and a first light emitting unit having a first light emitting lens that emits infrared light emitted by the first light emitting element to the outside.
A second throwing element having a second light emitting element arranged side by side with the first light emitting element and emitting visible light, and a second light emitting lens that emits visible light emitted by the second light emitting element to the outside. Hikaribe and
A light receiving lens that collects light and a light receiving unit having a light receiving element that receives light collected by the light receiving lens are provided.
The second light emitting element is arranged between the first light emitting element and the light receiving element.
The second light projecting unit projects visible light in the same direction as the infrared light projected by the first light projecting unit .
The first floodlight lens has a recess formed in a concave shape when viewed from the axial direction.
The second light projecting lens was arranged in a recessed region in the recess when viewed from the axial direction.
A photoelectric sensor characterized by this.
前記第1発光素子及び前記第2発光素子が配置された単一の基板を備えた
ことを特徴とする請求項1記載の光電センサ。
The photoelectric sensor according to claim 1, further comprising a single substrate on which the first light emitting element and the second light emitting element are arranged.
前記第1投光レンズ及び前記第2投光レンズは一体に構成された
ことを特徴とする請求項1又は請求項2記載の光電センサ
The photoelectric sensor according to claim 1 or 2, wherein the first floodlight lens and the second floodlight lens are integrally configured .
JP2018086257A 2018-04-27 2018-04-27 Photoelectric sensor Active JP7085885B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018086257A JP7085885B2 (en) 2018-04-27 2018-04-27 Photoelectric sensor
CN201910307833.5A CN110411487B (en) 2018-04-27 2019-04-17 Photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086257A JP7085885B2 (en) 2018-04-27 2018-04-27 Photoelectric sensor

Publications (2)

Publication Number Publication Date
JP2019193183A JP2019193183A (en) 2019-10-31
JP7085885B2 true JP7085885B2 (en) 2022-06-17

Family

ID=68357628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086257A Active JP7085885B2 (en) 2018-04-27 2018-04-27 Photoelectric sensor

Country Status (2)

Country Link
JP (1) JP7085885B2 (en)
CN (1) CN110411487B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352188A (en) 2001-05-25 2002-12-06 Sony Corp Optical device for reading barcode and method for manufacturing the same
JP2007266049A (en) 2006-03-27 2007-10-11 Rohm Co Ltd Optical communication module
JP2009043982A (en) 2007-08-09 2009-02-26 Rohm Co Ltd Optical communication module
JP2012074412A (en) 2010-09-27 2012-04-12 Panasonic Electric Works Co Ltd Reflection type photoelectric sensor
WO2014054420A1 (en) 2012-10-05 2014-04-10 株式会社村田製作所 Light sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88211359U (en) * 1988-01-19 1988-12-28 华东交通大学 Infrared alarming device
JPH0562573A (en) * 1991-06-18 1993-03-12 Fuji Electric Co Ltd Photo-electric switch
JPH05274967A (en) * 1992-03-27 1993-10-22 Omron Corp Photoelectric switch
US6766957B2 (en) * 2001-05-25 2004-07-27 Sony Corporation Optical device for bar-code reading, method for manufacturing an optical device, and light projection/receiving package
JP2013030645A (en) * 2011-07-29 2013-02-07 Panasonic Industrial Devices Sunx Co Ltd Photoelectric sensor
JP6014295B2 (en) * 2012-04-11 2016-10-25 株式会社キーエンス Multi-axis photoelectric sensor
WO2014185024A1 (en) * 2013-05-17 2014-11-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Temperature measurement device and temperature measurement method
JP6767072B2 (en) * 2015-10-06 2020-10-14 アズビル株式会社 Distance setting type photoelectric sensor
JP6614909B2 (en) * 2015-10-15 2019-12-04 アズビル株式会社 Photoelectric sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352188A (en) 2001-05-25 2002-12-06 Sony Corp Optical device for reading barcode and method for manufacturing the same
JP2007266049A (en) 2006-03-27 2007-10-11 Rohm Co Ltd Optical communication module
JP2009043982A (en) 2007-08-09 2009-02-26 Rohm Co Ltd Optical communication module
JP2012074412A (en) 2010-09-27 2012-04-12 Panasonic Electric Works Co Ltd Reflection type photoelectric sensor
WO2014054420A1 (en) 2012-10-05 2014-04-10 株式会社村田製作所 Light sensor

Also Published As

Publication number Publication date
JP2019193183A (en) 2019-10-31
CN110411487B (en) 2022-04-05
CN110411487A (en) 2019-11-05

Similar Documents

Publication Publication Date Title
US7880888B2 (en) Photoelectric sensor for sensing a target
US8836920B2 (en) Structure of an optical path for laser range finding
JP6264934B2 (en) Photoelectric sensor
JP4932045B1 (en) Light source inspection device
TWI664398B (en) Optical rotary encoder
JPH10221064A (en) Optical distance-measuring device
US20050201096A1 (en) Object detecting apparatus for vehicle
JP2008157718A (en) Optical device and electronic apparatus
US11209527B2 (en) Optical scanning device
JP2018181191A (en) Optical sensor for smoke sensor
JP2006351680A (en) Regression reflection photoelectric switch
JP7085885B2 (en) Photoelectric sensor
US7869048B2 (en) Photoelectonic sensor
WO2020022206A1 (en) Distance measurement device
JP2018128905A (en) Smoke detection optical sensor
JP5266859B2 (en) Photoelectric sensor
JP6338378B2 (en) Optical fiber head, optical sensor
CN211740241U (en) Non-visible light sensor
JP6925216B2 (en) Photoelectric sensor
JP2003294413A (en) Optical detector
JP2005084033A (en) Human body detection device
JP2000121725A (en) Distance measuring apparatus
JP4906626B2 (en) Photoelectric sensor
JP2024129696A (en) Distance measuring sensor device and electronic device
JPWO2004068175A1 (en) Object detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7085885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150