JP2013030645A - Photoelectric sensor - Google Patents

Photoelectric sensor Download PDF

Info

Publication number
JP2013030645A
JP2013030645A JP2011166321A JP2011166321A JP2013030645A JP 2013030645 A JP2013030645 A JP 2013030645A JP 2011166321 A JP2011166321 A JP 2011166321A JP 2011166321 A JP2011166321 A JP 2011166321A JP 2013030645 A JP2013030645 A JP 2013030645A
Authority
JP
Japan
Prior art keywords
light
light receiving
wavelength
receiving element
photoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011166321A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
隆志 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Panasonic Industrial Devices SUNX Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Industrial Devices SUNX Co Ltd filed Critical Panasonic Industrial Devices SUNX Co Ltd
Priority to JP2011166321A priority Critical patent/JP2013030645A/en
Priority to CN201110434104XA priority patent/CN102901991A/en
Priority to CN201120538908XU priority patent/CN202453518U/en
Priority to TW100149107A priority patent/TW201305538A/en
Priority to KR1020120003094A priority patent/KR20130014315A/en
Publication of JP2013030645A publication Critical patent/JP2013030645A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1407Greenhouses of flexible synthetic material
    • A01G9/1415Greenhouses of flexible synthetic material with double or multiple walls
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/16Dismountable or portable greenhouses ; Greenhouses with sliding roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B7/00Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections
    • F16B7/04Clamping or clipping connections

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric sensor which can contribute to cost reduction while minimizing the effect of disturbance light.SOLUTION: A control unit 13 receives the light projected from a light projection element 21, and detects the presence or absence of a workpiece W based on a light receiving signal output from the light-receiving element 22. The light projection element 21 projects a near infrared ray R having a peak power for a wavelength of 900 nm or more. The light-receiving element 22 is a photodiode corresponding to the near infrared ray R, and a cut filter 22a for removing the light having a wavelength of 900 nm or less is provided in the pre-stage of the light-receiving element 22.

Description

本発明は、光電センサに関するものである。   The present invention relates to a photoelectric sensor.

従来、光電センサは、投光素子から投光された光を受光素子で受光し、その受光素子から出力される受光信号に基づいて検出物の有無を検出するようになっている(例えば特許文献1参照)。   Conventionally, a photoelectric sensor receives light projected from a light projecting element with a light receiving element, and detects the presence or absence of a detection object based on a light reception signal output from the light receiving element (for example, Patent Documents). 1).

特開2005−285500号公報JP 2005-285500 A

ところで、上記のような光電センサでは、投光素子に可視光や可視光に極めて近い波長帯の光(例えば、パワーが860nmの波長でピークとなる光)を投光する素子を用い、その投光素子が投光する光のピーク波長帯の光のみを通過させるカットフィルタを受光素子の前段に設けている。このカットフィルタによって、工場内の蛍光灯照明や太陽光等の外乱光が受光素子の前段で除去されるため、受光素子が外乱光を受光することによって生じる誤検出を抑制することができるようになっている。しかしながら、カットフィルタにより投光素子のピーク波長帯以外の波長の光を除去するためには、投光素子のピーク波長よりも短波長側と長波長側の両方の波長帯を除去する特殊なフィルタが必要となるため、コストの増加を招いていた。   By the way, in the photoelectric sensor as described above, an element that projects visible light or light in a wavelength band very close to visible light (for example, light having a peak at a wavelength of 860 nm) is used as the light projecting element. A cut filter that allows only light in the peak wavelength band of the light projected by the optical element to pass is provided in front of the light receiving element. This cut filter removes disturbance light such as fluorescent lamp illumination and sunlight in the factory in front of the light receiving element, so that it is possible to suppress false detection caused by the light receiving element receiving disturbance light. It has become. However, in order to remove light with a wavelength other than the peak wavelength band of the light projecting element by the cut filter, a special filter that removes both the short wavelength side and the long wavelength side of the peak wavelength of the light projecting element. Is required, which increases the cost.

本発明は、上記課題を解決するためになされたものであって、その目的は、外乱光の影響を抑えつつも低コスト化に寄与できる光電センサを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a photoelectric sensor that can contribute to cost reduction while suppressing the influence of disturbance light.

上記課題を解決するために、請求項1に記載の発明は、投光素子から投光された光を受光素子で受光し、該受光素子から出力される受光信号に基づいて検出物の有無を検出する光電センサであって、前記投光素子は、パワーが900nm以上の波長でピークとなる近赤外光を投光するものであり、前記受光素子は、前記近赤外光に対応したフォトダイオードであり、該受光素子の前段には、900nm以下の波長の光を除去するカットフィルタが設けられていることを特徴とする。   In order to solve the above-described problem, the invention according to claim 1 is configured such that the light projected from the light projecting element is received by the light receiving element, and the presence or absence of the detection object is determined based on the light reception signal output from the light receiving element. A photoelectric sensor for detecting, wherein the light projecting element projects near infrared light whose power peaks at a wavelength of 900 nm or more, and the light receiving element is a photo corresponding to the near infrared light. It is a diode, and a cut filter for removing light having a wavelength of 900 nm or less is provided in a stage preceding the light receiving element.

この発明では、投光素子は、パワーが900nm以上の波長でピークとなる近赤外光を投光するものであり、受光素子はその近赤外光に対応したフォトダイオードである。このようなフォトダイオードは、長波長帯(例えば、1050nm以上の波長帯)での受光感度が小さい(図2参照)ため、長波長帯の光を除去するためのフィルタを設けずとも、長波長帯の外乱光による誤検出の発生を抑えることが可能となる。一方、短波長帯の外乱光(900nm以下の波長の光)は、受光素子の前段に設けられたカットフィルタによって除去されるため、短波長帯の外乱光による誤検出の発生を抑えることが可能となる。これにより、特殊なフィルタを用いず、投光素子のピーク波長(即ち、受光素子の受光感度のピーク波長)よりも短波長側をカットするカットフィルタのみのフィルタ構成とすることで低コスト化を実現しつつ、短波長側及び長波長側の外乱光による誤検出の発生を抑えることが可能となる。   In the present invention, the light projecting element projects near infrared light whose power peaks at a wavelength of 900 nm or more, and the light receiving element is a photodiode corresponding to the near infrared light. Such a photodiode has a low light receiving sensitivity in a long wavelength band (for example, a wavelength band of 1050 nm or more) (see FIG. 2), so that a long wavelength can be obtained without providing a filter for removing light in the long wavelength band. It is possible to suppress the occurrence of erroneous detection due to the band disturbance light. On the other hand, disturbance light in the short wavelength band (light with a wavelength of 900 nm or less) is removed by a cut filter provided in the front stage of the light receiving element, so that it is possible to suppress the occurrence of erroneous detection due to disturbance light in the short wavelength band. It becomes. As a result, the cost can be reduced by using only a cut filter that cuts the shorter wavelength side than the peak wavelength of the light projecting element (that is, the peak wavelength of the light receiving sensitivity of the light receiving element) without using a special filter. While realizing, it is possible to suppress the occurrence of false detection due to disturbance light on the short wavelength side and the long wavelength side.

請求項2に記載の発明は、請求項1に記載の光電センサにおいて、前記カットフィルタは、前記受光素子の受光面に一体に設けられていることを特徴とする。
この発明では、カットフィルタが受光素子の受光面に一体に設けられるため、カットフィルタを受光素子とは別に設ける構成に比べて構成の簡素化に寄与できる。
According to a second aspect of the present invention, in the photoelectric sensor according to the first aspect, the cut filter is integrally provided on a light receiving surface of the light receiving element.
In this invention, since the cut filter is integrally provided on the light receiving surface of the light receiving element, it is possible to contribute to simplification of the configuration as compared with the structure in which the cut filter is provided separately from the light receiving element.

請求項3に記載の発明は、請求項2に記載の光電センサにおいて、前記カットフィルタは、前記受光素子の受光面に蒸着されていることを特徴とする。
この発明では、カットフィルタが受光素子の受光面に蒸着されるため、カットフィルタを受光素子の受光面に容易に構成することができる。
According to a third aspect of the present invention, in the photoelectric sensor according to the second aspect, the cut filter is deposited on a light receiving surface of the light receiving element.
In this invention, since the cut filter is deposited on the light receiving surface of the light receiving element, the cut filter can be easily configured on the light receiving surface of the light receiving element.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の光電センサにおいて、前記受光素子を有する受光器は、前記受光素子を内部に有するハウジングと、前記ハウジングの受光面側に設けられ前記投光素子からの光を透過させる透明部材からなるレンズ部材と、前記ハウジング内に設けられた光軸合わせ用の表示灯とを備えていることを特徴とする。   The invention according to claim 4 is the photoelectric sensor according to any one of claims 1 to 3, wherein the light receiver having the light receiving element includes a housing having the light receiving element therein, and a light receiving surface of the housing. A lens member made of a transparent member that is provided on the side and transmits light from the light projecting element, and an indicator lamp for aligning the optical axis provided in the housing.

この発明では、受光素子に900nm以上の波長でピークとなる近赤外光に対応したフォトダイオードを用いることで特殊なフィルタが不要となるため、受光器のレンズ部材に特殊なフィルタ加工が施されて可視光を透過させない部材を用いる必要がなくなり、透明部材を用いることができる。このため、ハウジング内に設けられた光軸合わせ用の表示灯の光を、受光面側に設けられたレンズ部材を通して視認することが可能となる。従って、光軸合わせの作業中における表示灯の点灯確認が容易となるため、光軸合わせの作業性を向上させることが可能となる。   In the present invention, a special filter is not required by using a photodiode corresponding to near-infrared light having a peak at a wavelength of 900 nm or more as the light receiving element. Therefore, a special filter process is applied to the lens member of the light receiver. Thus, there is no need to use a member that does not transmit visible light, and a transparent member can be used. For this reason, it becomes possible to visually recognize the light of the optical axis alignment indicator lamp provided in the housing through the lens member provided on the light receiving surface side. Accordingly, since it is easy to confirm the lighting of the indicator lamp during the optical axis alignment operation, it is possible to improve the optical axis alignment workability.

請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の光電センサにおいて、前記投光素子は、パワーが900nm〜1000nmの波長でピークとなる近赤外光を投光するものであり、前記受光素子は、前記近赤外光に対応して、900nm〜1000nmの波長の光を受光する感度が最も高い特性を有するフォトダイオードであることを特徴とする。   According to a fifth aspect of the present invention, in the photoelectric sensor according to any one of the first to fourth aspects, the light projecting element projects near-infrared light whose power peaks at a wavelength of 900 nm to 1000 nm. The light receiving element is a photodiode having the highest sensitivity for receiving light having a wavelength of 900 nm to 1000 nm corresponding to the near infrared light.

この発明では、外乱光の光強度は、900nm〜1000nmの波長領域で急激に落ち込む特性があり(図3参照)、受光素子の受光感度が最も高くなる波長を900nm〜1000nmに設定することで、外乱光による誤検出の発生をより抑えることが可能となる。   In this invention, the light intensity of the disturbance light has a characteristic of drastically dropping in the wavelength region of 900 nm to 1000 nm (see FIG. 3), and by setting the wavelength at which the light receiving sensitivity of the light receiving element is highest to 900 nm to 1000 nm, It is possible to further suppress the occurrence of erroneous detection due to ambient light.

請求項6に記載の発明は、請求項5に記載の光電センサにおいて、前記投光素子は、930nm〜950nmの波長でピークとなる近赤外光を投光するものであり、前記受光素子は、前記近赤外光に対応して、930nm〜950nmの波長の光を受光する感度が最も高い特性を有するフォトダイオードであることを特徴とする。   The invention according to claim 6 is the photoelectric sensor according to claim 5, wherein the light projecting element projects near-infrared light having a peak at a wavelength of 930 nm to 950 nm. The photodiode has the highest sensitivity for receiving light having a wavelength of 930 nm to 950 nm corresponding to the near infrared light.

この発明では、外乱光の光強度は、900nm〜1000nmの波長領域内において約940nmで最も低く(図3参照)、受光素子の受光感度が最も高くなる波長を930nm〜950nmに設定することで、外乱光による誤検出の発生を更に抑えることが可能となる。   In this invention, the light intensity of disturbance light is lowest at about 940 nm in the wavelength region of 900 nm to 1000 nm (see FIG. 3), and the wavelength at which the light receiving sensitivity of the light receiving element is highest is set to 930 nm to 950 nm. It is possible to further suppress the occurrence of erroneous detection due to ambient light.

従って、上記記載の発明によれば、外乱光の影響を抑えつつも低コスト化に寄与できる。   Therefore, according to the above-described invention, it is possible to contribute to cost reduction while suppressing the influence of disturbance light.

本実施形態の光電センサの概略構成図。The schematic block diagram of the photoelectric sensor of this embodiment. 本実施形態の受光素子の分光感度特性を示すグラフ。The graph which shows the spectral sensitivity characteristic of the light receiving element of this embodiment. 太陽光の分光放射分布を示すグラフ。The graph which shows the spectral radiation distribution of sunlight.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1に示すように、本実施形態の光電センサ10は、投光器11と、受光器12と、投光器11及び受光器12を制御するための制御部13とを備えている。投光器11は、そのハウジング11a内に投光素子21を備えている。投光素子21には、前面発光タイプの950nm発光LED素子が用いられており、この投光素子21は、950nmの波長がパワーピークである近赤外光Rを投光するものである。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
As shown in FIG. 1, the photoelectric sensor 10 of the present embodiment includes a projector 11, a light receiver 12, and a control unit 13 for controlling the projector 11 and the light receiver 12. The light projector 11 includes a light projecting element 21 in the housing 11a. As the light projecting element 21, a front emission type 950 nm light emitting LED element is used. This light projecting element 21 projects near infrared light R having a power peak at a wavelength of 950 nm.

受光器12は、そのハウジング12a内に受光素子22を備えている。受光素子22には、投光素子21から投光される近赤外光Rに対応した950nm受光シリコンフォトダイオードが用いられている。ハウジング12a受光面側には、透明部材からなるレンズ部材23が設けられており、投光素子21からの光は、レンズ部材23を透過してハウジング12a内に入射し、そのハウジング12a内の受光素子22の受光面で受光されるようになっている。また、受光器12のハウジング12a内には、光軸合わせ用の表示灯24が設けられており、表示灯24が発する光は、受光器12の受光面側のレンズ部材23を介して視認することが可能となっている。   The light receiver 12 includes a light receiving element 22 in the housing 12a. For the light receiving element 22, a 950 nm light receiving silicon photodiode corresponding to the near infrared light R projected from the light projecting element 21 is used. A lens member 23 made of a transparent member is provided on the light receiving surface side of the housing 12a, and light from the light projecting element 21 passes through the lens member 23 and enters the housing 12a, and receives light in the housing 12a. Light is received by the light receiving surface of the element 22. In addition, an indicator lamp 24 for aligning the optical axis is provided in the housing 12 a of the light receiver 12, and light emitted from the indicator lamp 24 is visually recognized through the lens member 23 on the light receiving surface side of the light receiver 12. It is possible.

ここで、受光素子22に用いる950nm受光シリコンフォトダイオードの分光感度特性を図2に示す。同図に示すように、950nm受光シリコンフォトダイオードの受光感度は、受光する光の波長によって異なっており、950nm付近の波長の光を受光する感度が最も高く、図2のグラフではそのピーク波長の受光感度を1(基準値)としている。受光感度のピーク波長よりも短波長側を見ると、受光する光の波長が短い程、受光感度が低く、850nmの波長の光の受光感度はおよそ0.9で、750nmの波長の光の受光感度は0に近い値となっている。一方、受光感度のピーク波長よりも長波長側では、受光する光の波長が長い程、受光感度が低く、1000nmの波長の光の受光感度はおよそ0.9で、1050nmの波長の光の受光感度はおよそ0.5であり、1150nmの波長の光の受光感度は0に近い値となっている。   Here, the spectral sensitivity characteristics of the 950 nm light-receiving silicon photodiode used for the light-receiving element 22 are shown in FIG. As shown in FIG. 2, the light receiving sensitivity of the 950 nm light-receiving silicon photodiode varies depending on the wavelength of light to be received. The sensitivity to receive light having a wavelength near 950 nm is the highest. In the graph of FIG. The light receiving sensitivity is set to 1 (reference value). Looking at the shorter wavelength side than the peak wavelength of the light receiving sensitivity, the shorter the wavelength of the received light, the lower the light receiving sensitivity. The light receiving sensitivity of the light having the wavelength of 850 nm is about 0.9, and the light having the wavelength of 750 nm is received. The sensitivity is close to zero. On the other hand, on the longer wavelength side than the peak wavelength of the light reception sensitivity, the longer the wavelength of the received light, the lower the light reception sensitivity. The light reception sensitivity of the light with a wavelength of 1000 nm is approximately 0.9, and the light reception with a wavelength of 1050 nm. The sensitivity is approximately 0.5, and the light receiving sensitivity of light having a wavelength of 1150 nm is close to zero.

受光素子22は、以上のような特性を有する950nm受光シリコンフォトダイオードの受光面にカットフィルタ22aが蒸着されて構成されている。カットフィルタ22aは、900nm以下の波長の光を除去するものであり、このため、受光素子22の受光面には、900nmよりも長波長の光のみが受光されるようになっている。   The light receiving element 22 is configured by depositing a cut filter 22a on the light receiving surface of a 950 nm light receiving silicon photodiode having the above characteristics. The cut filter 22a removes light having a wavelength of 900 nm or less. For this reason, the light receiving surface of the light receiving element 22 receives only light having a wavelength longer than 900 nm.

外乱光の一例として太陽光の分光放射分布特性を図3に示す。同図に示すように、太陽光の光強度は、可視光領域で最も高く、可視光よりも長波長側においては、900nm以下の領域でも比較的高くなっている。ここで、本実施形態の受光素子22の受光面には、900nm以下の波長の光を除去するカットフィルタ22aが設けられているため、太陽光のうち、光強度が高く誤検出の原因となりえる900nm以下の波長の光は、カットフィルタ22aによって除去されて受光素子22で受光されないようになっている。   FIG. 3 shows the spectral radiation distribution characteristic of sunlight as an example of disturbance light. As shown in the figure, the light intensity of sunlight is highest in the visible light region, and relatively high in the region of 900 nm or less on the longer wavelength side than visible light. Here, since the light-receiving surface of the light-receiving element 22 of the present embodiment is provided with a cut filter 22a that removes light with a wavelength of 900 nm or less, the light intensity of sunlight is high and may cause false detection. Light having a wavelength of 900 nm or less is removed by the cut filter 22 a and is not received by the light receiving element 22.

一方、太陽光において、900nmよりも長波長領域での光強度は比較的小さく、また、この長波長領域の受光素子22の受光感度は低いため、この長波長領域の太陽光によっては受光素子22の誤検出が起こりにくくなっている。また、太陽光の光強度は、900nm〜1000nmの波長領域で急激に落ち込む特性があり、この波長領域内においては約940nmで最も低くなっている。そして、本実施形態の受光素子22には、930nm〜950nmの波長の光を受光する感度が最も高い特性を有するフォトダイオードが用いられているため、外乱光(太陽光)による誤検出が特に起こりにくくなっている。   On the other hand, in sunlight, the light intensity in a wavelength region longer than 900 nm is relatively small, and the light receiving sensitivity of the light receiving element 22 in this long wavelength region is low. It is difficult for false detections to occur. Further, the light intensity of sunlight has a characteristic of drastically dropping in the wavelength region of 900 nm to 1000 nm, and is lowest at about 940 nm in this wavelength region. In addition, since the photodiode having the highest sensitivity for receiving light with a wavelength of 930 nm to 950 nm is used for the light receiving element 22 of this embodiment, erroneous detection due to ambient light (sunlight) occurs particularly. It has become difficult.

次に、本実施形態の作用について説明する。
制御部13は、投光素子21から近赤外光Rを投光させ、その光路上に検出物としてのワークWが無いときには、近赤外光Rがカットフィルタ22aを介して受光素子22の受光面で受光される。このとき、受光素子22から制御部13に出力される受光信号は、所定の閾値以上となり、制御部13はワークWが近赤外光Rの光路上に無いと判定する。
Next, the operation of this embodiment will be described.
The control unit 13 projects the near-infrared light R from the light projecting element 21, and when there is no workpiece W as a detected object on the optical path, the near-infrared light R is transmitted through the cut filter 22a to the light receiving element 22. Light is received by the light receiving surface. At this time, the light reception signal output from the light receiving element 22 to the control unit 13 is equal to or greater than a predetermined threshold, and the control unit 13 determines that the workpiece W is not on the optical path of the near infrared light R.

一方、ワークWが投光素子21から投光された近赤外光Rを遮る位置にあると、受光素子22から制御部13に出力される受光信号が前記閾値を下回り、制御部13はワークWが近赤外光Rの光路上に有ると判定する。   On the other hand, when the workpiece W is in a position where the near-infrared light R projected from the light projecting element 21 is blocked, the light reception signal output from the light receiving element 22 to the control unit 13 falls below the threshold, and the control unit 13 It is determined that W is on the optical path of the near infrared light R.

ここで、本実施形態の光電センサ10では、受光素子22の受光面にカットフィルタ22aが設けられているため、太陽光や工場内の蛍光灯照明の光等の外乱光の900nm以下の波長の光は、カットフィルタ22aによって除去されて受光素子22で受光されないようになっている。これにより、短波長領域の外乱光によるワークWの誤検出は、極力生じないようになっている。一方、外乱光の900nmよりも長波長領域の光は、その強度自体が低く、また、受光素子22の受光感度特性により受光されにくいため、長波長領域の外乱光によるワークWの誤検出は生じにくくなっている。つまり、本実施形態では、900nm以下の波長の光を除去するカットフィルタ22aのみのフィルタ構成で、外乱光の短波長領域の光及び長波長領域の光による誤検出の発生が抑えられるようになっている。   Here, in the photoelectric sensor 10 of this embodiment, since the cut filter 22a is provided on the light receiving surface of the light receiving element 22, the wavelength of 900 nm or less of disturbance light such as sunlight or light of fluorescent lamp illumination in a factory is used. The light is removed by the cut filter 22 a and is not received by the light receiving element 22. Thereby, the erroneous detection of the workpiece | work W by the disturbance light of a short wavelength area is prevented as much as possible. On the other hand, light in the wavelength region longer than 900 nm of disturbance light has a low intensity itself and is not easily received due to the light receiving sensitivity characteristic of the light receiving element 22, so that erroneous detection of the workpiece W due to disturbance light in the long wavelength region occurs. It has become difficult. That is, in this embodiment, the filter configuration of only the cut filter 22a that removes light having a wavelength of 900 nm or less can suppress the occurrence of erroneous detection due to light in the short wavelength region and light in the long wavelength region of disturbance light. ing.

次に、投光器11と受光器12を設置する際の光軸合わせについて説明する。まず、受光器12を所定位置に設定し、次に、ユーザが投光器11を持って、その投光器11から近赤外光Rを投光させた状態で投光素子21と受光素子22の光軸を合わせる。投光素子21と受光素子22の光軸を合うと、制御部13は受光素子22からの受光信号に基づき表示灯24を点灯させる。このとき、表示灯24は、レンズ部材23(透明部材)を介して受光器12の受光面側で点灯するため、ユーザは、投光器11を持って光軸合わせの作業をしたまま表示灯24の点灯を視認することができ、これにより、光軸合わせの作業性が向上されるようになっている。   Next, optical axis alignment when installing the projector 11 and the light receiver 12 will be described. First, the light receiver 12 is set at a predetermined position, and then the optical axis of the light projecting element 21 and the light receiving element 22 in a state where the user holds the light projector 11 and projects the near infrared light R from the light projector 11. Adjust. When the optical axes of the light projecting element 21 and the light receiving element 22 are aligned, the control unit 13 turns on the indicator lamp 24 based on the light reception signal from the light receiving element 22. At this time, since the indicator lamp 24 is lit on the light receiving surface side of the light receiver 12 via the lens member 23 (transparent member), the user holds the projector 11 and performs the operation of aligning the optical axis. The lighting can be visually recognized, thereby improving the workability of optical axis alignment.

次に、本実施形態の特徴的な効果を記載する。
(1)制御部13は、投光素子21から投光された光を受光素子22で受光し、該受光素子22から出力される受光信号に基づいてワークWの有無を検出する。そして、投光素子21は、パワーが900nm以上の波長でピークとなる近赤外光Rを投光するものであり、受光素子22は、近赤外光Rに対応したフォトダイオードであり、該受光素子22の前段には、900nm以下の波長の光を除去するカットフィルタ22aが設けられる。これにより、受光素子22の長波長帯(例えば、1050nm以上の波長帯)での受光感度が小さい(図2参照)ため、長波長帯の光を除去するためのフィルタを設けずとも、長波長帯の外乱光による誤検出の発生を抑えることが可能となる。一方、短波長帯の外乱光(900nm以下の波長の光)は、受光素子22の前段に設けられたカットフィルタ22aによって除去されるため、短波長帯の外乱光による誤検出の発生を抑えることが可能となる。これにより、特殊なフィルタを用いず、投光素子21のピーク波長(即ち、受光素子22の受光感度のピーク波長)よりも短波長側をカットするカットフィルタ22aのみのフィルタ構成とすることで低コスト化を実現しつつ、短波長側及び長波長側の外乱光による誤検出の発生を抑えることが可能となる。
Next, characteristic effects of the present embodiment will be described.
(1) The control unit 13 receives the light projected from the light projecting element 21 by the light receiving element 22 and detects the presence or absence of the workpiece W based on the light reception signal output from the light receiving element 22. The light projecting element 21 projects near infrared light R having a peak at a wavelength of 900 nm or more, and the light receiving element 22 is a photodiode corresponding to the near infrared light R. In front of the light receiving element 22, a cut filter 22a for removing light having a wavelength of 900 nm or less is provided. Accordingly, since the light receiving sensitivity of the light receiving element 22 in the long wavelength band (for example, a wavelength band of 1050 nm or more) is small (see FIG. 2), the long wavelength can be obtained without providing a filter for removing light in the long wavelength band. It is possible to suppress the occurrence of erroneous detection due to the band disturbance light. On the other hand, disturbance light in the short wavelength band (light having a wavelength of 900 nm or less) is removed by the cut filter 22a provided in the front stage of the light receiving element 22, and therefore, occurrence of erroneous detection due to disturbance light in the short wavelength band is suppressed. Is possible. As a result, a special filter is not used, and the filter configuration includes only the cut filter 22a that cuts the shorter wavelength side than the peak wavelength of the light projecting element 21 (that is, the peak wavelength of the light receiving sensitivity of the light receiving element 22). While realizing cost reduction, it is possible to suppress the occurrence of erroneous detection due to disturbance light on the short wavelength side and the long wavelength side.

(2)カットフィルタ22aが受光素子22の受光面に一体に設けられるため、カットフィルタ22aを受光素子22とは別に設ける構成に比べて構成の簡素化に寄与できる。
(3)カットフィルタ22aが受光素子22の受光面に蒸着されるため、カットフィルタ22aを受光素子22の受光面に容易に構成することができる。
(2) Since the cut filter 22a is integrally provided on the light receiving surface of the light receiving element 22, it is possible to contribute to simplification of the configuration as compared with the structure in which the cut filter 22a is provided separately from the light receiving element 22.
(3) Since the cut filter 22 a is deposited on the light receiving surface of the light receiving element 22, the cut filter 22 a can be easily configured on the light receiving surface of the light receiving element 22.

(4)受光素子22を有する受光器12は、受光素子22を内部に有するハウジング12aと、ハウジング12aの受光面側に設けられ投光素子21からの光を透過させる透明部材からなるレンズ部材23と、ハウジング12a内に設けられた光軸合わせ用の表示灯24とを備える。これにより、受光素子22に900nm以上の波長でピークとなる近赤外光Rに対応したフォトダイオードを用いることで特殊なフィルタが不要となるため、受光器12のレンズ部材23に特殊なフィルタ加工が施されて可視光を透過させない部材を用いる必要が無くなり、透明部材を用いることができる。このため、ハウジング12a内に設けられた光軸合わせ用の表示灯24の光を、受光面側に設けられたレンズ部材23を通して視認することが可能となり、その結果、光軸合わせの作業中における表示灯24の点灯確認が容易となり、光軸合わせの作業性を向上させることが可能となる。   (4) The light receiver 12 having the light receiving element 22 includes a housing 12a having the light receiving element 22 therein, and a lens member 23 formed of a transparent member that is provided on the light receiving surface side of the housing 12a and transmits light from the light projecting element 21. And an indicator lamp 24 for aligning the optical axis provided in the housing 12a. As a result, a special filter is not required by using a photodiode corresponding to the near-infrared light R having a peak at a wavelength of 900 nm or more for the light receiving element 22, so that a special filter processing is performed on the lens member 23 of the light receiver 12. Therefore, it is not necessary to use a member that does not transmit visible light and a transparent member can be used. For this reason, it becomes possible to visually recognize the light of the indicator lamp 24 for optical axis alignment provided in the housing 12a through the lens member 23 provided on the light receiving surface side, and as a result, during the optical axis alignment operation. It becomes easy to confirm the lighting of the indicator lamp 24, and the workability of optical axis alignment can be improved.

(5)投光素子21は、パワーが900nm〜1000nmの波長でピークとなる近赤外光Rを投光するものであり、受光素子22は、近赤外光Rに対応して、900nm〜1000nmの波長の光を受光する感度が最も高い特性を有するフォトダイオードである。外乱光の光強度は、900nm〜1000nmの波長領域で急激に落ち込む特性がある(図3参照)ため、受光素子22の受光感度が最も高くなる波長を900nm〜1000nmに設定することで、外乱光による誤検出の発生をより抑えることが可能となる。   (5) The light projecting element 21 projects near-infrared light R whose power peaks at a wavelength of 900 nm to 1000 nm, and the light receiving element 22 corresponds to the near-infrared light R, and has a wavelength of 900 nm to This is a photodiode having the highest sensitivity for receiving light having a wavelength of 1000 nm. Since the intensity of the disturbance light has a characteristic of drastically dropping in the wavelength region of 900 nm to 1000 nm (see FIG. 3), the disturbance light is set by setting the wavelength at which the light receiving sensitivity of the light receiving element 22 is highest to 900 nm to 1000 nm. It is possible to further suppress the occurrence of erroneous detection due to.

(6)投光素子21は、930nm〜950nmの波長でピークとなる近赤外光Rを投光するものであり、受光素子22は、近赤外光Rに対応して、930nm〜950nmの波長の光を受光する感度が最も高い特性を有するフォトダイオードである。外乱光の光強度は、900nm〜1000nmの波長領域内において約940nmで最も低く(図3参照)、受光素子22の受光感度が最も高くなる波長を930nm〜950nmに設定することで、外乱光による誤検出の発生を更に抑えることが可能となる。   (6) The light projecting element 21 projects near infrared light R having a peak at a wavelength of 930 nm to 950 nm, and the light receiving element 22 corresponds to the near infrared light R and has a wavelength of 930 nm to 950 nm. This is a photodiode having the highest sensitivity for receiving light of a wavelength. The light intensity of the disturbance light is lowest at about 940 nm in the wavelength region of 900 nm to 1000 nm (see FIG. 3), and the wavelength at which the light receiving sensitivity of the light receiving element 22 is highest is set to 930 nm to 950 nm, thereby causing disturbance light. It is possible to further suppress the occurrence of erroneous detection.

尚、本発明の実施形態は、以下のように変更してもよい。
・上記実施形態では、投光素子21に950nm発光LED素子を用い、受光素子22に950nm受光シリコンフォトダイオードを用いたが、これ以外に例えば、ピーク波長が900nm〜1000nmの範囲内であれば、ピーク波長が950nm以外の発光LED素子を用いてもよい。また、その場合、受光素子22には、投光素子21のピーク波長に合わせた、900nm〜1000nmの範囲内のいずれかの波長の光を受光する感度が最も高い特性を有するシリコンフォトダイオードを用いる。このような構成によっても、長波長側の外乱光の影響を好適に抑えることが可能となるが、その中でも、投光素子21にピーク波長が930〜950nmの発光LED素子を用い、受光素子22に930nm〜950nmの波長の光を受光する感度が最も高い特性を有するフォトダイオードを用いた構成では、長波長側の外乱光の影響をより好適に抑えることが可能となる。また、その中でも、上記実施形態のように、投光素子21に950nmの発光LED素子を用い、受光素子22に950nm受光シリコンフォトダイオードを用いた構成とすると、長波長側の外乱光の影響を特に好適に抑えることが可能となる。
In addition, you may change embodiment of this invention as follows.
In the above embodiment, a 950 nm light emitting LED element is used as the light projecting element 21 and a 950 nm light receiving silicon photodiode is used as the light receiving element 22, but, for example, if the peak wavelength is in the range of 900 nm to 1000 nm, A light emitting LED element having a peak wavelength other than 950 nm may be used. In this case, the light receiving element 22 is a silicon photodiode having the highest sensitivity for receiving light of any wavelength within the range of 900 nm to 1000 nm that matches the peak wavelength of the light projecting element 21. . Even with such a configuration, it is possible to suitably suppress the influence of disturbance light on the long wavelength side. Among them, a light emitting LED element having a peak wavelength of 930 to 950 nm is used as the light projecting element 21, and the light receiving element 22 is used. In the configuration using the photodiode having the highest sensitivity for receiving light with a wavelength of 930 nm to 950 nm, it is possible to more suitably suppress the influence of disturbance light on the long wavelength side. Among them, as in the above-described embodiment, when a light emitting LED element of 950 nm is used for the light projecting element 21 and a silicon light receiving silicon photodiode is used for the light receiving element 22, the influence of disturbance light on the long wavelength side is affected. It becomes possible to suppress especially suitably.

・上記実施形態では、カットフィルタ22aは受光素子22の受光面に蒸着される構成としたが、これ以外に例えば、カットフィルタ22aを受光素子22の受光面に接着してもよく、また、カットフィルタを前段に配置されたフィルタ板で構成してもよい。   In the above embodiment, the cut filter 22a is deposited on the light receiving surface of the light receiving element 22. However, for example, the cut filter 22a may be bonded to the light receiving surface of the light receiving element 22, or the cut You may comprise a filter with the filter board arrange | positioned in the front | former stage.

・上記実施形態では、投光器11と受光器12とが分離された構成の光電センサ10に適用したが、これ以外に例えば、投光器と受光器が一体型の光電センサに適用してもよい。このような構成において、投光素子と受光素子を内部に収容するハウジングの前面(投受光面)のレンズ部材を透明部材とし、ハウジング内部に可視光のポインターを設ければ、そのポインターの光を透明のレンズ部材を介してハウジング外部に出射することが可能となる。   In the above embodiment, the light emitting device 11 and the light receiving device 12 are separated from each other. However, for example, the light projecting device and the light receiving device may be applied to an integrated photoelectric sensor. In such a configuration, if the lens member on the front surface (light emitting / receiving surface) of the housing that houses the light projecting element and the light receiving element is a transparent member, and a visible light pointer is provided inside the housing, the light of the pointer is transmitted. The light can be emitted to the outside of the housing through the transparent lens member.

R…近赤外光、10…光電センサ、12…受光器、12a…受光器のハウジング、21…投光素子、22…受光素子、22a…カットフィルタ、23…レンズ部材、24…表示灯。   R: near infrared light, 10: photoelectric sensor, 12: light receiver, 12a: housing of light receiver, 21: light projecting element, 22: light receiving element, 22a: cut filter, 23: lens member, 24: indicator lamp.

Claims (6)

投光素子から投光された光を受光素子で受光し、該受光素子から出力される受光信号に基づいて検出物の有無を検出する光電センサであって、
前記投光素子は、パワーが900nm以上の波長でピークとなる近赤外光を投光するものであり、
前記受光素子は、前記近赤外光に対応したフォトダイオードであり、該受光素子の前段には、900nm以下の波長の光を除去するカットフィルタが設けられていることを特徴とする光電センサ。
A photoelectric sensor that receives light projected from a light projecting element by a light receiving element and detects the presence or absence of a detection object based on a light reception signal output from the light receiving element,
The light projecting element projects near infrared light whose power peaks at a wavelength of 900 nm or more,
The photoelectric sensor according to claim 1, wherein the light receiving element is a photodiode corresponding to the near-infrared light, and a cut filter for removing light having a wavelength of 900 nm or less is provided in front of the light receiving element.
請求項1に記載の光電センサにおいて、
前記カットフィルタは、前記受光素子の受光面に一体に設けられていることを特徴とする光電センサ。
The photoelectric sensor according to claim 1,
The photoelectric sensor according to claim 1, wherein the cut filter is integrally provided on a light receiving surface of the light receiving element.
請求項2に記載の光電センサにおいて、
前記カットフィルタは、前記受光素子の受光面に蒸着されていることを特徴とする光電センサ。
The photoelectric sensor according to claim 2,
The photoelectric filter according to claim 1, wherein the cut filter is deposited on a light receiving surface of the light receiving element.
請求項1〜3のいずれか1項に記載の光電センサにおいて、
前記受光素子を有する受光器は、
前記受光素子を内部に有するハウジングと、
前記ハウジングの受光面側に設けられ前記投光素子からの光を透過させる透明部材からなるレンズ部材と、
前記ハウジング内に設けられた光軸合わせ用の表示灯と
を備えていることを特徴とする光電センサ。
The photoelectric sensor according to any one of claims 1 to 3,
A light receiver having the light receiving element,
A housing having the light receiving element therein;
A lens member made of a transparent member provided on the light receiving surface side of the housing and transmitting light from the light projecting element;
A photoelectric sensor comprising an indicator lamp for aligning an optical axis provided in the housing.
請求項1〜4のいずれか1項に記載の光電センサにおいて、
前記投光素子は、パワーが900nm〜1000nmの波長でピークとなる近赤外光を投光するものであり、
前記受光素子は、前記近赤外光に対応して、900nm〜1000nmの波長の光を受光する感度が最も高い特性を有するフォトダイオードであることを特徴とする光電センサ。
The photoelectric sensor according to any one of claims 1 to 4,
The light projecting element projects near-infrared light whose power peaks at a wavelength of 900 nm to 1000 nm,
The photoelectric sensor, wherein the light receiving element is a photodiode having the highest sensitivity for receiving light having a wavelength of 900 nm to 1000 nm corresponding to the near infrared light.
請求項5に記載の光電センサにおいて、
前記投光素子は、930nm〜950nmの波長でピークとなる近赤外光を投光するものであり、
前記受光素子は、前記近赤外光に対応して、930nm〜950nmの波長の光を受光する感度が最も高い特性を有するフォトダイオードであることを特徴とする光電センサ。
The photoelectric sensor according to claim 5,
The light projecting element projects near infrared light having a peak at a wavelength of 930 nm to 950 nm,
The photoelectric sensor, wherein the light receiving element is a photodiode having the highest sensitivity for receiving light having a wavelength of 930 nm to 950 nm corresponding to the near infrared light.
JP2011166321A 2011-07-29 2011-07-29 Photoelectric sensor Pending JP2013030645A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011166321A JP2013030645A (en) 2011-07-29 2011-07-29 Photoelectric sensor
CN201110434104XA CN102901991A (en) 2011-07-29 2011-12-07 Photoelectronic sensor
CN201120538908XU CN202453518U (en) 2011-07-29 2011-12-07 Photoelectric sensor
TW100149107A TW201305538A (en) 2011-07-29 2011-12-28 Photoelectronic sensor
KR1020120003094A KR20130014315A (en) 2011-07-29 2012-01-10 Photoelectronic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166321A JP2013030645A (en) 2011-07-29 2011-07-29 Photoelectric sensor

Publications (1)

Publication Number Publication Date
JP2013030645A true JP2013030645A (en) 2013-02-07

Family

ID=46869373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166321A Pending JP2013030645A (en) 2011-07-29 2011-07-29 Photoelectric sensor

Country Status (4)

Country Link
JP (1) JP2013030645A (en)
KR (1) KR20130014315A (en)
CN (2) CN102901991A (en)
TW (1) TW201305538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353425A (en) * 2015-12-23 2016-02-24 深圳市艾礼安安防设备有限公司 Method for calibrating active infrared detector by adopting fill-in light
JP2021100130A (en) * 2016-07-29 2021-07-01 コーデンシ株式会社 Optical sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085885B2 (en) * 2018-04-27 2022-06-17 アズビル株式会社 Photoelectric sensor
CN108663721A (en) * 2018-05-03 2018-10-16 芜湖懒人智能科技有限公司 A kind of a wide range of collision detection sensor
JP7336404B2 (en) * 2020-02-28 2023-08-31 ローム株式会社 Infrared measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116230A (en) * 1980-02-15 1981-09-11 Matsushita Electric Works Ltd Photoelectric switch
JPH05122774A (en) * 1991-10-25 1993-05-18 Matsushita Electric Works Ltd Mechanism for preventing malfunction due to inverter light receiving part of infrared-ray remote controller
JP2000357816A (en) * 1999-06-15 2000-12-26 Sharp Corp Optical coupling device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354322B2 (en) * 2004-03-29 2009-10-28 株式会社キーエンス Photoelectric sensor, floodlighting device, and retroreflective mirror for photoelectric sensor
JP2007271382A (en) * 2006-03-30 2007-10-18 Sunx Ltd Physical quantity sensor device, storage unit, control unit, and program storage medium
DE102007011877A1 (en) * 2007-03-13 2008-09-18 Eppendorf Ag Optical sensor system on a device for the treatment of liquids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116230A (en) * 1980-02-15 1981-09-11 Matsushita Electric Works Ltd Photoelectric switch
JPH05122774A (en) * 1991-10-25 1993-05-18 Matsushita Electric Works Ltd Mechanism for preventing malfunction due to inverter light receiving part of infrared-ray remote controller
JP2000357816A (en) * 1999-06-15 2000-12-26 Sharp Corp Optical coupling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353425A (en) * 2015-12-23 2016-02-24 深圳市艾礼安安防设备有限公司 Method for calibrating active infrared detector by adopting fill-in light
JP2021100130A (en) * 2016-07-29 2021-07-01 コーデンシ株式会社 Optical sensor
JP7118466B2 (en) 2016-07-29 2022-08-16 コーデンシ株式会社 light sensor

Also Published As

Publication number Publication date
CN102901991A (en) 2013-01-30
KR20130014315A (en) 2013-02-07
TW201305538A (en) 2013-02-01
CN202453518U (en) 2012-09-26

Similar Documents

Publication Publication Date Title
CN105629213B (en) Multi-sensor proximity sensing
JP2013030645A (en) Photoelectric sensor
JP2011257337A5 (en)
JP6264934B2 (en) Photoelectric sensor
JP3971844B2 (en) Optical device, photoelectric switch, fiber type photoelectric switch, and color identification sensor
TWI464445B (en) Miniaturized optical system, light source module and portable electronic device
US7869048B2 (en) Photoelectonic sensor
JP2014029301A (en) Light projection/reception sensor
JP4957254B2 (en) Photoelectric sensor and photoelectric sensor light receiving unit
KR20150083768A (en) Light projection head and optical sensor
EP4001893A3 (en) Particle detection sensor and particle detector
CN210922655U (en) Multi-emission source photoelectric sensor
US20180274770A1 (en) Headlight, vehicle with headlight and method for monitoring a headlight
JP2007003348A (en) Regression reflection typed photo-electronic sensor
CN110411487B (en) Photoelectric sensor
JP7258334B2 (en) Remote control receiver, transmitter and remote control transmission/reception system
JP6317218B2 (en) Dimmable smoke detector
JP2015115186A (en) Photoelectric switch
JP2008131425A (en) Light detecting sensitivity control system for photodetector
US20150318663A1 (en) Sensing module and laser device
JP2007093337A (en) Photoelectric sensor
JP3180338U (en) Photoelectric sensor
TW202030441A (en) Light box structure
CN110906961A (en) Multi-emission source photoelectric sensor
JP2019039801A (en) Object detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150701