JP7082506B2 - Thermally conductive inorganic substrates and semiconductor devices - Google Patents

Thermally conductive inorganic substrates and semiconductor devices Download PDF

Info

Publication number
JP7082506B2
JP7082506B2 JP2018050091A JP2018050091A JP7082506B2 JP 7082506 B2 JP7082506 B2 JP 7082506B2 JP 2018050091 A JP2018050091 A JP 2018050091A JP 2018050091 A JP2018050091 A JP 2018050091A JP 7082506 B2 JP7082506 B2 JP 7082506B2
Authority
JP
Japan
Prior art keywords
semiconductor element
conductive inorganic
recess
inorganic substrate
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018050091A
Other languages
Japanese (ja)
Other versions
JP2019161189A (en
Inventor
裕基 田内
俊幸 三井
博昭 田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Leadmikk Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Leadmikk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Leadmikk Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2018050091A priority Critical patent/JP7082506B2/en
Publication of JP2019161189A publication Critical patent/JP2019161189A/en
Application granted granted Critical
Publication of JP7082506B2 publication Critical patent/JP7082506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features

Landscapes

  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱伝導性無機基板及び半導体装置に関する。 The present invention relates to a thermally conductive inorganic substrate and a semiconductor device.

IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の半導体素子は、電流により駆動される際に熱を発生する。近年、モータ駆動等の用途に供する半導体素子では、高い電流密度の電流が用いられる傾向があり、半導体素子における発熱は増大する傾向にある。 Semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) and power MOSFETs (Metal Oxide Semiconductor Transform Transistors) generate heat when driven by an electric current. In recent years, semiconductor devices used for motor drive and the like tend to use a current having a high current density, and heat generation in the semiconductor device tends to increase.

半導体素子の放熱を促すため、通常、半導体素子は、金属基板等の熱伝導率の大きい熱伝導性無機基板上にはんだ等の接合材を介して実装される。半導体素子から熱を取り除く機構としては、半導体素子とヒートシンク等の放熱器とが熱伝導性無機基板を介して熱的に接続される機構や、半導体素子を実装する熱伝導性無機基板自体が大気等に直接放熱する機構が知られている。 In order to promote heat dissipation of the semiconductor element, the semiconductor element is usually mounted on a thermally conductive inorganic substrate having a large thermal conductivity such as a metal substrate via a bonding material such as solder. As a mechanism for removing heat from a semiconductor element, a mechanism in which a semiconductor element and a radiator such as a heat sink are thermally connected via a heat conductive inorganic substrate, or a heat conductive inorganic substrate itself on which a semiconductor element is mounted is the atmosphere. A mechanism that directly dissipates heat is known.

ところで、半導体素子の放熱を促す熱伝導性無機基板は、金属等の熱伝導率の大きい材料により形成されるので、一般的に半導体素子よりも熱膨張率が大きい。また、半導体素子が熱伝導性無機基板上に実装される際には、はんだ等の接合材を融解するために半導体素子の実装領域周辺が高温に加熱される。このため、半導体素子が熱伝導性無機基板に実装された後、半導体素子の熱膨張率と熱伝導性無機基板の熱膨張率とが相違することに起因して、半導体素子と熱伝導性無機基板との間に残留応力が発生しやすい。 By the way, since the thermally conductive inorganic substrate that promotes heat dissipation of the semiconductor element is formed of a material having a large thermal conductivity such as metal, the thermal expansion rate is generally larger than that of the semiconductor element. Further, when the semiconductor element is mounted on the thermally conductive inorganic substrate, the periphery of the mounting region of the semiconductor element is heated to a high temperature in order to melt the bonding material such as solder. Therefore, after the semiconductor element is mounted on the heat conductive inorganic substrate, the heat expansion rate of the semiconductor element and the heat expansion rate of the heat conductive inorganic substrate are different from each other, so that the semiconductor element and the heat conductive inorganic substrate are different from each other. Residual stress is likely to occur between the substrate and the substrate.

半導体素子と熱伝導性無機基板との間で発生した残留応力は、半導体素子に反りを生じさせる。半導体素子に反りが生じている場合には、半導体素子が電流で駆動する際の発熱によって半導体素子の反り量が変化する。特に、半導体素子の材料として化合物半導体、具体的にはSiC(シリコンカーバイド)やGaN(窒化ガリウム)などが用いられる場合には、半導体素子を高温で動作させることが可能となるので、発熱による半導体素子の変形はより顕著になる。そして半導体素子の変形が繰り返されると、半導体素子が破損する懸念がある。 The residual stress generated between the semiconductor device and the thermally conductive inorganic substrate causes the semiconductor device to warp. When the semiconductor element is warped, the amount of warpage of the semiconductor element changes due to heat generated when the semiconductor element is driven by an electric current. In particular, when a compound semiconductor, specifically SiC (silicon carbide) or GaN (gallium nitride) is used as the material of the semiconductor element, the semiconductor element can be operated at a high temperature, so that the semiconductor due to heat generation can be operated. The deformation of the element becomes more remarkable. If the semiconductor element is repeatedly deformed, there is a concern that the semiconductor element may be damaged.

そこで、半導体素子の発熱によって生じる応力を緩和することを目的とした熱伝導性無機基板が提案されている(特許文献1)。特許文献1の熱伝導性無機基板(ベース板)は、半導体素子の実装領域の外周縁に沿って窪み(凹所外周部)が形成されるものであり、この窪みに充填される接合材が半導体素子に生じる応力を緩和するとされている。 Therefore, a thermally conductive inorganic substrate has been proposed for the purpose of relaxing the stress generated by the heat generation of the semiconductor element (Patent Document 1). In the heat conductive inorganic substrate (base plate) of Patent Document 1, a recess (the outer peripheral portion of the recess) is formed along the outer peripheral edge of the mounting region of the semiconductor element, and the bonding material filled in the recess is formed. It is said to relieve the stress generated in semiconductor devices.

特許文献1の熱伝導性無機基板は、半導体素子の実装領域の外周縁に沿って窪みが予め形成される構成であるため、実装領域の形状を事前に定めておく必要がある。つまり、実装する半導体素子の形状が、予め形成される窪みによって規定されることになる。 Since the thermally conductive inorganic substrate of Patent Document 1 has a configuration in which a recess is formed in advance along the outer peripheral edge of the mounting region of the semiconductor element, it is necessary to determine the shape of the mounting region in advance. That is, the shape of the semiconductor element to be mounted is defined by the recess formed in advance.

特開2015-128154号公報Japanese Unexamined Patent Publication No. 2015-128154

本発明は、上述のような事情に基づいてなされたものであり、半導体素子に生じる応力を抑制できるとともに、半導体素子の実装領域を比較的自由に規定できる熱伝導性無機基板及び半導体装置を提供することを目的とする。 The present invention has been made based on the above circumstances, and provides a thermally conductive inorganic substrate and a semiconductor device capable of suppressing stress generated in a semiconductor element and relatively freely defining a mounting region of the semiconductor element. The purpose is to do.

上記課題を解決するためになされた発明は、少なくとも一方の表面に半導体素子を実装するための領域を有し、この実装領域に接合材を介して半導体素子を実装する熱伝導性無機基板であって、上記実装領域内に、表面側から深さ方向に向かって開口面積が漸減する凹部を有する。 The invention made to solve the above problems is a thermally conductive inorganic substrate having a region for mounting a semiconductor element on at least one surface and mounting the semiconductor element in this mounting region via a bonding material. Therefore, the mounting area has a recess in which the opening area gradually decreases from the surface side toward the depth direction.

当該熱伝導性無機基板は、半導体素子の実装領域内に、表面側から深さ方向に向かって開口面積が漸減する凹部を有しているので、半導体素子の実装時において接合材が凹部内に充填される。接合材が充填される凹部は開口側が底部側より広く形成されているので、凹部内の接合材は比較的容易に変形できる。このため、半導体素子が実装領域に実装された際に、半導体素子の熱膨張率と熱伝導性無機基板の熱膨張率とが相違することに起因して発生する応力は、凹部に充填される接合材の変形によって緩和される。つまり、当該熱伝導性無機基板は、凹部に充填される接合材によって半導体素子に生じる応力を抑制できる。また、当該熱伝導性無機基板は、半導体素子の実装領域の外周縁より内側に凹部を有しているので、凹部の開口形状より大きいという条件のもとで半導体素子の実装領域を比較的自由に規定できる。 Since the thermally conductive inorganic substrate has a recess in the mounting region of the semiconductor element in which the opening area gradually decreases from the surface side toward the depth direction, the bonding material is placed in the recess when the semiconductor element is mounted. Filled. Since the concave portion filled with the joint material is formed wider on the opening side than on the bottom side, the joint material in the concave portion can be deformed relatively easily. Therefore, when the semiconductor element is mounted in the mounting region, the stress generated due to the difference between the thermal expansion rate of the semiconductor element and the thermal expansion rate of the thermally conductive inorganic substrate is filled in the concave portion. It is alleviated by the deformation of the joint material. That is, the heat conductive inorganic substrate can suppress the stress generated in the semiconductor element by the joining material filled in the recess. Further, since the thermally conductive inorganic substrate has a recess inside the outer peripheral edge of the mounting region of the semiconductor element, the mounting region of the semiconductor element is relatively free under the condition that it is larger than the opening shape of the recess. Can be specified in.

上記凹部が、内周面に表面側から深さ方向に向かって上記凹部の開口幅を漸減させる1以上のテーパ部を有するとよい。これにより、凹部に充填される接合材の変形が適切に促されるので、半導体素子に生じる応力が効率よく抑制される。 It is preferable that the concave portion has one or more tapered portions on the inner peripheral surface that gradually reduce the opening width of the concave portion from the surface side toward the depth direction. As a result, the deformation of the joining material filled in the recess is appropriately promoted, so that the stress generated in the semiconductor element is efficiently suppressed.

上記実装領域の表面における上記凹部の開口幅が、1mm以上10mm以下であるとよい。凹部の開口幅が上記範囲内であると、凹部に充填される接合材による応力の緩和作用と半導体素子から熱伝導性無機基板への熱伝導性とが適切なバランスで調整される。 The opening width of the concave portion on the surface of the mounting region is preferably 1 mm or more and 10 mm or less. When the opening width of the recess is within the above range, the stress relaxing action of the joining material filled in the recess and the thermal conductivity from the semiconductor element to the thermally conductive inorganic substrate are adjusted in an appropriate balance.

上記凹部の深さが0.05mm以上0.5mm以下であるとよい。凹部の深さが上記範囲内であると、凹部に充填される接合材による応力の緩和作用と半導体素子から熱伝導性無機基板への熱伝導性とが適切なバランスで調整される。 The depth of the recess is preferably 0.05 mm or more and 0.5 mm or less. When the depth of the recess is within the above range, the stress relaxing action of the joining material filled in the recess and the thermal conductivity from the semiconductor element to the thermally conductive inorganic substrate are adjusted in an appropriate balance.

上記課題を解決するためになされた別の発明は、上記熱伝導性無機基板と、半導体素子とを備え、上記半導体素子を上記実装領域に実装する半導体装置である。 Another invention made to solve the above-mentioned problems is a semiconductor device provided with the above-mentioned heat conductive inorganic substrate and the above-mentioned semiconductor element, and the above-mentioned semiconductor element is mounted in the above-mentioned mounting region.

当該半導体装置は、上述の熱伝導性無機基板を備えているので、熱伝導性無機基板の凹部に充填される接合材によって半導体素子に生じる応力を抑制できる。また、当該半導体装置は、熱伝導性無機基板の凹部の開口形状より大きいという条件のもとで半導体素子の実装領域を比較的自由に規定できる。 Since the semiconductor device includes the above-mentioned thermally conductive inorganic substrate, the stress generated in the semiconductor element by the bonding material filled in the recesses of the thermally conductive inorganic substrate can be suppressed. Further, in the semiconductor device, the mounting region of the semiconductor element can be relatively freely defined under the condition that the shape is larger than the opening shape of the recess of the heat conductive inorganic substrate.

本発明の熱伝導性無機基板及び半導体装置は、半導体素子に生じる応力を抑制できるとともに、半導体素子の実装領域を比較的自由に規定できる。 The thermally conductive inorganic substrate and the semiconductor device of the present invention can suppress the stress generated in the semiconductor element and can relatively freely define the mounting region of the semiconductor element.

本発明の一実施形態の熱伝導性無機基板の実装領域付近を部分的に示す模式的斜視図である。It is a schematic perspective view partially showing the vicinity of the mounting area of the heat conductive inorganic substrate of one embodiment of the present invention. 図1の熱伝導性無機基板におけるA-A断面図である。FIG. 3 is a cross-sectional view taken along the line AA of the thermally conductive inorganic substrate of FIG. 本発明の一実施形態の半導体装置の実装領域付近を部分的に示す模式的断面図である。It is a schematic sectional drawing partially showing the vicinity of the mounting area of the semiconductor device of one Embodiment of this invention.

以下、本発明に係る熱伝導性無機基板及び半導体装置の実施形態について図を参照しつつ詳説する。 Hereinafter, embodiments of the thermally conductive inorganic substrate and the semiconductor device according to the present invention will be described in detail with reference to the drawings.

[熱伝導性無機基板]
図1の熱伝導性無機基板1は、表面に半導体素子を実装するための実装領域2を有しており、この実装領域2に接合材を介して半導体素子を実装する。また、熱伝導性無機基板1は、この実装領域2内に、表面側から深さ方向に向かって開口面積が漸減する凹部3を有している。なお、実装領域2は、熱伝導性無機基板1の少なくとも一方の表面に存在すればよく、例えば熱伝導性無機基板1の両面に存在してもよい。
[Thermal conductive inorganic substrate]
The thermally conductive inorganic substrate 1 of FIG. 1 has a mounting region 2 for mounting a semiconductor element on the surface, and the semiconductor element is mounted in the mounting region 2 via a bonding material. Further, the heat conductive inorganic substrate 1 has a recess 3 in the mounting region 2 in which the opening area gradually decreases from the surface side toward the depth direction. The mounting region 2 may be present on at least one surface of the heat conductive inorganic substrate 1, and may be present on both sides of the heat conductive inorganic substrate 1, for example.

熱伝導性無機基板1は、表面の実装領域2に実装された半導体素子から受け取った熱を外部に排出する部材であり、特に限定されないが、例えば平面視で略矩形の板状に形成されている。熱伝導性無機基板1は、例えば、半導体素子をはんだペースト等の接合材を介して実装し、外部配線と電気的接続を行うリードフレーム、半導体素子から受け取った熱を外部に排出するヒートシンク、又は半導体素子とヒートシンクとの間に配設され、半導体素子からヒートシンクへ熱を伝達する放熱板等とすることができる。熱伝導性無機基板1の材料としては、特に限定されないが、例えば銅、アルミニウム、銅及びアルミニウムの合金、又はセラミックに銅をDirect Copper Bond(DCB)法により直接接合したもの等、熱伝導性の高い材料を用いることができる。また、熱伝導性無機基板1は、例えばプレス加工によって成形されるが、熱伝導性無機基板1の大きさ、形状及び厚みは、実装する半導体素子の種類や使用目的等により適宜選択される。 The heat conductive inorganic substrate 1 is a member that discharges heat received from a semiconductor element mounted on the surface mounting region 2 to the outside, and is not particularly limited, but is formed, for example, in a substantially rectangular plate shape in a plan view. There is. The heat conductive inorganic substrate 1 is, for example, a lead frame in which a semiconductor element is mounted via a bonding material such as solder paste and electrically connected to an external wiring, a heat sink that discharges heat received from the semiconductor element to the outside, or a heat sink. It can be arranged between the semiconductor element and the heat sink and can be a heat dissipation plate or the like that transfers heat from the semiconductor element to the heat sink. The material of the heat conductive inorganic substrate 1 is not particularly limited, but is of heat conductive, for example, copper, aluminum, an alloy of copper and aluminum, or a material in which copper is directly bonded to a ceramic by the Direct Copper Bond (DCB) method. Higher materials can be used. The thermally conductive inorganic substrate 1 is formed by, for example, press working, and the size, shape, and thickness of the thermally conductive inorganic substrate 1 are appropriately selected depending on the type of semiconductor element to be mounted, the purpose of use, and the like.

実装領域2に実装される半導体素子としては、例えばIGBT、パワーMOSFET等のトランジスタ、ダイオード、IC等の公知の半導体素子を採用することができる。半導体素子は、特に限定されないが、例えば線熱膨張係数が3ppm/K以上5ppm/K以下、ヤング率が100GPa以上500GPa以下、実装領域2の表面に沿った幅が2mm以上20mm以下、厚さが0.05mm以上0.3mm以下であると半導体素子に生じる応力の抑制の観点から好ましい。 As the semiconductor element mounted in the mounting region 2, for example, a known semiconductor element such as a transistor such as an IGBT or a power MOSFET, a diode, or an IC can be adopted. The semiconductor element is not particularly limited, but for example, the linear thermal expansion coefficient is 3 ppm / K or more and 5 ppm / K or less, the Young's modulus is 100 GPa or more and 500 GPa or less, the width along the surface of the mounting region 2 is 2 mm or more and 20 mm or less, and the thickness is When it is 0.05 mm or more and 0.3 mm or less, it is preferable from the viewpoint of suppressing the stress generated in the semiconductor element.

熱伝導性無機基板1と半導体素子とを接合する接合材は、半導体素子の熱伝導性無機基板1への実装時に熱伝導性無機基板1と半導体素子との間に導入されることで接合層を形成する。接合材の材料としては、例えば、錫、銀及び銅の合金系の鉛フリーはんだ、銀ろう、銀ペースト等の軟化温度が比較的低くかつ軟らかい材料が用いられる。これらの材料が接合材の材料として用いられることで、接合材は、熱伝導性無機基板1と半導体素子との間で生じる応力に対して緩衝材的な役割を果たす。 The bonding material for bonding the heat conductive inorganic substrate 1 and the semiconductor element is introduced between the heat conductive inorganic substrate 1 and the semiconductor element when the semiconductor element is mounted on the heat conductive inorganic substrate 1, so that the bonding layer is formed. To form. As the material of the bonding material, for example, a lead-free solder made of an alloy of tin, silver and copper, silver brazing, silver paste and the like, which have a relatively low softening temperature and are soft, are used. When these materials are used as the material of the joining material, the joining material plays a role of a cushioning material against the stress generated between the heat conductive inorganic substrate 1 and the semiconductor element.

<実装領域>
実装領域2は、熱伝導性無機基板1の表面の一部を区画する略平坦な領域であり、この領域に接合材を介して半導体素子が実装される。実装領域2は、平面視で半導体素子の底部領域の形状と等しい形状であり、図1においてはこの外周縁が略矩形の仮想線で示されている。熱伝導性無機基板1に半導体素子が実装される際には、実装領域2にはんだ等の接合材が導入され、この接合材を介して実装領域2上に半導体素子が実装される。
<Mounting area>
The mounting region 2 is a substantially flat region that partitions a part of the surface of the thermally conductive inorganic substrate 1, and a semiconductor element is mounted in this region via a joining material. The mounting region 2 has a shape equal to the shape of the bottom region of the semiconductor element in a plan view, and in FIG. 1, the outer peripheral edge thereof is shown by a substantially rectangular virtual line. When a semiconductor element is mounted on the thermally conductive inorganic substrate 1, a bonding material such as solder is introduced into the mounting region 2, and the semiconductor element is mounted on the mounting region 2 via the bonding material.

(凹部)
熱伝導性無機基板1は、実装領域2の外周縁より内側に、開口面積が実装領域2の面積より小さい凹部3を有している。凹部3は、実装領域2の略中央に形成されており、平面視で略方形の開口を有するとともに、表面側から深さ方向に向かって開口面積が漸減し、底部において略方形の平面を有する形状となっている。凹部3は、特に限定されないが、例えば金型を用いたプレス加工、切削加工、又はエッチング等により形成することができる。
(Recess)
The thermally conductive inorganic substrate 1 has a recess 3 whose opening area is smaller than the area of the mounting region 2 inside the outer peripheral edge of the mounting region 2. The recess 3 is formed substantially in the center of the mounting region 2, has a substantially square opening in a plan view, and the opening area gradually decreases from the surface side toward the depth direction, and has a substantially square plane at the bottom. It has a shape. The recess 3 is not particularly limited, but can be formed by, for example, pressing using a mold, cutting, etching, or the like.

図1及び図2に示すように、凹部3は、内周面に表面側から深さ方向に向かって凹部3の開口幅を漸減させる3つ(3段)のテーパ部を有している。ここで、凹部3の開口幅とは、凹部3の開口における実装領域2の表面に平行な方向の幅を示す。テーパ部は、凹部3の底部に向かって下降する傾斜面を有しており、同一深さにおいて連なり、かつ凹部3の内周面に沿って平面視で略方形環状に形成されている。また、2つのテーパ部間には実装領域2の表面と平行な略方形環状の平面が形成されている。なお、凹部3は、内周面に3つのテーパ部を有するものに特に限定されず、内周面に1以上のテーパ部を有していればよい。 As shown in FIGS. 1 and 2, the recess 3 has three (three-stage) tapered portions on the inner peripheral surface that gradually reduce the opening width of the recess 3 from the surface side toward the depth direction. Here, the opening width of the recess 3 indicates the width of the opening of the recess 3 in the direction parallel to the surface of the mounting region 2. The tapered portion has an inclined surface that descends toward the bottom of the recess 3, is continuous at the same depth, and is formed in a substantially square annular shape in a plan view along the inner peripheral surface of the recess 3. Further, a substantially square annular plane parallel to the surface of the mounting region 2 is formed between the two tapered portions. The recess 3 is not particularly limited to having three tapered portions on the inner peripheral surface, and may have one or more tapered portions on the inner peripheral surface.

テーパ部の表面と実装領域2の表面との交角の下限としては、15度が好ましく、20度がより好ましく、25度がさらに好ましい。一方、上記交角の上限としては、85度が好ましく、80度がより好ましく、60度がさらに好ましい。上記交角が上記下限に満たないと、凹部3に充填される接合材の量が少なくなり、凹部3に充填される接合材が緩衝材的な役割を十分に果たさないおそれがある。逆に、上記交角が上記上限を超えると、凹部3に充填される接合材の厚みが急激に変化することによって接合材の円滑な変形が阻害され、接合材が緩衝材的な役割を十分に果たさないおそれがある。 The lower limit of the intersection angle between the surface of the tapered portion and the surface of the mounting region 2 is preferably 15 degrees, more preferably 20 degrees, and even more preferably 25 degrees. On the other hand, as the upper limit of the crossing angle, 85 degrees is preferable, 80 degrees is more preferable, and 60 degrees is further preferable. If the crossing angle does not reach the lower limit, the amount of the joining material filled in the recess 3 becomes small, and the joining material filled in the recess 3 may not sufficiently serve as a cushioning material. On the contrary, when the crossing angle exceeds the upper limit, the thickness of the joining material filled in the recess 3 suddenly changes, which hinders the smooth deformation of the joining material, and the joining material sufficiently serves as a cushioning material. There is a risk that it will not be fulfilled.

実装領域2の表面における凹部3の開口幅の下限としては、1mmが好ましく、1.5mmがより好ましく、2mmがさらに好ましい。一方、上記開口幅の上限としては、10mmが好ましく、8mmがより好ましく、7mmがさらに好ましい。上記開口幅が上記下限に満たないと、凹部3に充填される接合材の量が少なくなり、凹部3に充填される接合材が緩衝材的な役割を十分に果たさないおそれがある。逆に、上記開口幅が上記上限を超えると、凹部3に充填される接合材の量が多くなり、半導体素子から熱伝導性無機基板1への熱伝導性が低下するおそれがある。また、凹部3中央における熱伝導性無機基板1と半導体素子との密着性が低下するため、凹部3上の半導体素子の変形が防止されないおそれもある。 As the lower limit of the opening width of the recess 3 on the surface of the mounting region 2, 1 mm is preferable, 1.5 mm is more preferable, and 2 mm is further preferable. On the other hand, as the upper limit of the opening width, 10 mm is preferable, 8 mm is more preferable, and 7 mm is further preferable. If the opening width does not reach the lower limit, the amount of the joining material filled in the recess 3 becomes small, and the joining material filled in the recess 3 may not sufficiently serve as a cushioning material. On the contrary, when the opening width exceeds the upper limit, the amount of the bonding material filled in the recess 3 increases, and the thermal conductivity from the semiconductor element to the thermally conductive inorganic substrate 1 may decrease. Further, since the adhesion between the thermally conductive inorganic substrate 1 and the semiconductor element in the center of the recess 3 is lowered, the deformation of the semiconductor element on the recess 3 may not be prevented.

凹部3の深さの下限としては、0.05mmが好ましく、0.1mmがより好ましく、0.15mmがさらに好ましい。一方、凹部3の深さの上限としては、0.5mmが好ましく、0.4mmがより好ましく、0.3mmがさらに好ましい。ここで、凹部3の深さとは、実装領域2の表面から凹部3の底部までの深さを示す。凹部3の深さが上記下限に満たないと、凹部3に充填される接合材の量が少なくなり、凹部3に充填される接合材が緩衝材的な役割を十分に果たさないおそれがある。逆に、凹部3の深さが上記上限を超えると、凹部3に充填される接合材の量が多くなり、半導体素子から熱伝導性無機基板1への熱伝導性が低下するおそれがある。また、凹部3中央における熱伝導性無機基板1と半導体素子との密着性が低下するため、凹部3上の半導体素子の変形が防止されないおそれもある。 The lower limit of the depth of the recess 3 is preferably 0.05 mm, more preferably 0.1 mm, and even more preferably 0.15 mm. On the other hand, as the upper limit of the depth of the recess 3, 0.5 mm is preferable, 0.4 mm is more preferable, and 0.3 mm is further preferable. Here, the depth of the recess 3 indicates the depth from the surface of the mounting region 2 to the bottom of the recess 3. If the depth of the recess 3 is less than the above lower limit, the amount of the joining material filled in the recess 3 is small, and the joining material filled in the recess 3 may not sufficiently serve as a cushioning material. On the contrary, when the depth of the recess 3 exceeds the above upper limit, the amount of the bonding material filled in the recess 3 increases, and the thermal conductivity from the semiconductor element to the thermally conductive inorganic substrate 1 may decrease. Further, since the adhesion between the thermally conductive inorganic substrate 1 and the semiconductor element in the center of the recess 3 is lowered, the deformation of the semiconductor element on the recess 3 may not be prevented.

[半導体装置]
図3の半導体装置は、上述の熱伝導性無機基板1と、半導体素子4とを備え、半導体素子4を熱伝導性無機基板1の実装領域2に実装する構成である。図3では実装領域2が図示されていないが、上述の通り、実装領域2は、平面視で半導体素子の底部領域と等しい形状である。
[Semiconductor device]
The semiconductor device of FIG. 3 includes the above-mentioned thermally conductive inorganic substrate 1 and the semiconductor element 4, and the semiconductor element 4 is mounted in the mounting region 2 of the thermally conductive inorganic substrate 1. Although the mounting region 2 is not shown in FIG. 3, as described above, the mounting region 2 has the same shape as the bottom region of the semiconductor element in a plan view.

半導体素子4は、接合材で形成された接合層5を介して実装領域2に実装される。接合材は、凹部3の内部を含む実装領域2及び半導体素子4間に隙間なく充填され、接合層5は、平面視で少なくとも実装領域2と重畳している。 The semiconductor element 4 is mounted in the mounting region 2 via a bonding layer 5 formed of a bonding material. The bonding material is filled tightly between the mounting region 2 including the inside of the recess 3 and the semiconductor element 4, and the bonding layer 5 overlaps with at least the mounting region 2 in a plan view.

実装領域2の表面から半導体素子4の底部までの間に形成される接合層5の厚さは、半導体素子4の大きさや発熱量等によって最適な厚さが異なるため、特に限定されない。しかしながら、熱伝導性の観点から、接合層5の上記厚さの下限としては、10μmが好ましく、20μmがより好ましい一方、接合層5の上記厚さの上限としては、200μmが好ましく、150μmがより好ましい。 The thickness of the bonding layer 5 formed between the surface of the mounting region 2 and the bottom of the semiconductor element 4 is not particularly limited because the optimum thickness varies depending on the size of the semiconductor element 4, the amount of heat generated, and the like. However, from the viewpoint of thermal conductivity, the lower limit of the thickness of the bonding layer 5 is preferably 10 μm and more preferably 20 μm, while the upper limit of the thickness of the bonding layer 5 is preferably 200 μm and more preferably 150 μm. preferable.

(利点)
当該熱伝導性無機基板1は、半導体素子の実装領域2内に、表面側から深さ方向に向かって開口面積が漸減する凹部3を有しているので、半導体素子が実装領域2に実装された際に、半導体素子の熱膨張率と熱伝導性無機基板1の熱膨張率とが相違することに起因して発生する応力が凹部3に充填される接合材の変形によって緩和される。つまり、当該熱伝導性無機基板1は、凹部3に充填される接合材によって半導体素子に生じる応力を抑制できる。また、当該熱伝導性無機基板1は、半導体素子の実装領域2の内側に凹部3を有しているので、凹部3の開口形状より大きいという条件のもとで半導体素子の実装領域2を比較的自由に規定できる。
(advantage)
Since the heat conductive inorganic substrate 1 has a recess 3 in the mounting region 2 of the semiconductor element in which the opening area gradually decreases from the surface side toward the depth direction, the semiconductor element is mounted in the mounting region 2. At that time, the stress generated due to the difference between the thermal expansion rate of the semiconductor element and the thermal expansion rate of the thermally conductive inorganic substrate 1 is alleviated by the deformation of the bonding material filled in the recess 3. That is, the heat conductive inorganic substrate 1 can suppress the stress generated in the semiconductor element by the joining material filled in the recess 3. Further, since the thermally conductive inorganic substrate 1 has the recess 3 inside the mounting region 2 of the semiconductor element, the mounting region 2 of the semiconductor element is compared under the condition that the concave shape is larger than the opening shape of the recess 3. Can be freely defined.

また、当該熱伝導性無機基板1は、凹部3の内周面に表面側から深さ方向に向かって凹部3の開口幅を漸減させる1以上のテーパ部を有しているので、凹部3に充填される接合材の変形が適切に促され、半導体素子に生じる応力が効率よく抑制される。 Further, since the heat conductive inorganic substrate 1 has one or more tapered portions on the inner peripheral surface of the recess 3 that gradually reduces the opening width of the recess 3 from the surface side toward the depth direction, the recess 3 has a tapered portion. Deformation of the bonded material to be filled is appropriately promoted, and the stress generated in the semiconductor element is efficiently suppressed.

また、当該熱伝導性無機基板1は、実装領域2の表面における凹部3の開口幅が、1mm以上10mm以下であり、凹部3の深さが0.05mm以上0.5mm以下であるので、凹部3に充填される接合材による応力の緩和作用と半導体素子から熱伝導性無機基板1への熱伝導性とが適切なバランスで調整される。 Further, in the heat conductive inorganic substrate 1, the opening width of the recess 3 on the surface of the mounting region 2 is 1 mm or more and 10 mm or less, and the depth of the recess 3 is 0.05 mm or more and 0.5 mm or less. The stress relaxing action of the bonding material filled in 3 and the thermal conductivity from the semiconductor element to the thermally conductive inorganic substrate 1 are adjusted in an appropriate balance.

また、当該半導体装置は、熱伝導性無機基板1を備えているので、熱伝導性無機基板1の凹部3に充填される接合材(接合層5)によって半導体素子4に生じる応力を抑制できる。また、当該半導体装置は、熱伝導性無機基板1の凹部3の開口形状より大きいという条件のもとで半導体素子4の実装領域2を比較的自由に規定できる。 Further, since the semiconductor device includes the thermally conductive inorganic substrate 1, the stress generated in the semiconductor element 4 can be suppressed by the bonding material (bonding layer 5) filled in the recess 3 of the thermally conductive inorganic substrate 1. Further, the semiconductor device can relatively freely define the mounting region 2 of the semiconductor element 4 under the condition that the shape of the recess 3 of the thermally conductive inorganic substrate 1 is larger than the opening shape.

[その他の実施形態]
本発明の熱伝導性無機基板及び半導体装置は、上記実施形態に限定されない。
[Other embodiments]
The thermally conductive inorganic substrate and semiconductor device of the present invention are not limited to the above embodiments.

上記実施形態では、凹部3が平面視で略方形の開口を有するものについて説明したが、開口の形状は略方形に限定されず、例えば開口の形状が略矩形、略円形又は略楕円形であってもよい。 In the above embodiment, the concave portion 3 having a substantially square opening in a plan view has been described, but the shape of the opening is not limited to the substantially square shape, and for example, the shape of the opening is a substantially rectangular shape, a substantially circular shape, or a substantially elliptical shape. You may.

また、上記実施形態では、凹部3が内周面に1以上の略方形環状のテーパ部を有するものについて説明したが、テーパ部の形状は、凹部3の開口の形状と相似する形状に限定されない。テーパ部の形状は、凹部3の開口の形状と相似しない形状であってもよく、例えば矩形環状であってもよいし、完全な環状でなくてもよい。 Further, in the above embodiment, the recess 3 having one or more substantially rectangular annular tapered portions on the inner peripheral surface has been described, but the shape of the tapered portion is not limited to a shape similar to the shape of the opening of the recess 3. .. The shape of the tapered portion may be a shape that does not resemble the shape of the opening of the recess 3, for example, may be a rectangular annular shape, or may not be a perfect annular shape.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

上述の半導体装置のモデルについてシミュレーション計算を実行し、半導体素子に生じる応力を解析した。シミュレーション計算は、機構解析シミュレータソフトウェア「MemsONE」(みずほ情報総研株式会社製)を用い、以下の条件下で実行した。なお、下記の値はいずれも25℃での値である。 Simulation calculations were performed on the above-mentioned semiconductor device model to analyze the stress generated in the semiconductor device. The simulation calculation was performed under the following conditions using the mechanism analysis simulator software "MemsONE" (manufactured by Mizuho Information & Research Institute, Ltd.). The following values are all values at 25 ° C.

[No.1の半導体装置]
熱伝導性無機基板1 材質:銅、厚さ:2mm、密度:8930kg/m、ヤング率129.84GPa、ポアソン比:0.343、熱伝導率:398W/(m・K)、比熱:386J/(kg・K)、線膨張係数:17ppm/K
実装領域2 領域:4.5mm×6.5mm
凹部3 表面側の開口:4mm×4mm、底部の平面:2mm×2mm、方形環状のテーパ部:4mm×4mm(外周縁)、3mm×3mm(外周縁)、2mm×2mm(内周縁)、表面から各平面への深さ:0.05mm、0.1mm、0.2mm(底部)
半導体素子4 底部領域:4.5mm×6.5mm、厚み:0.2mm、密度:2340kg/m、ヤング率112.78GPa、ポアソン比:0.22、熱伝導率:148W/(m・K)、比熱:713J/(kg・K)、線膨張係数:4ppm/K
接合層5 材質:錫、銀及び銅の合金系、実装領域2の表面から半導体素子4の底部までの厚さ:0.05mm、密度:7400kg/m、ヤング率31GPa、ポアソン比:0.4、熱伝導率:55W/(m・K)、比熱:234J/(kg・K)、線膨張係数:21ppm/K、0.2%耐力:27MPa
[No. 1 semiconductor device]
Thermally conductive inorganic substrate 1 Material: Copper, Thickness: 2 mm, Density: 8930 kg / m 3 , Young's modulus 129.84 GPa, Poisson's ratio: 0.343, Thermal conductivity: 398 W / (m · K), Specific heat: 386 J / (Kg ・ K), linear expansion coefficient: 17ppm / K
Mounting area 2 Area: 4.5 mm x 6.5 mm
Recessed portion 3 Surface side opening: 4 mm x 4 mm, bottom flat surface: 2 mm x 2 mm, square annular tapered portion: 4 mm x 4 mm (outer peripheral edge), 3 mm x 3 mm (outer peripheral edge), 2 mm x 2 mm (inner peripheral edge), surface Depth from to each plane: 0.05 mm, 0.1 mm, 0.2 mm (bottom)
Semiconductor element 4 Bottom region: 4.5 mm x 6.5 mm, thickness: 0.2 mm, density: 2340 kg / m 3 , Young's modulus 112.78 GPa, Poisson's ratio: 0.22, thermal conductivity: 148 W / (m · K) ), Specific heat: 713J / (kg · K), Linear expansion coefficient: 4ppm / K
Bonding layer 5 Material: Tin, silver and copper alloy, thickness from the surface of the mounting area 2 to the bottom of the semiconductor element 4: 0.05 mm, density: 7400 kg / m 3 , Young's modulus 31 GPa, Poisson ratio: 0. 4. Thermal conductivity: 55W / (m · K), specific heat: 234J / (kg · K), coefficient of linear expansion: 21ppm / K, 0.2% proof stress: 27MPa

また、比較例として、凹部3を有していないNo.2の半導体装置についてもシミュレーション計算を実行した。No.2の半導体装置は、熱伝導性無機基板1が凹部3を有していないこと以外はNo.1の半導体装置と同じ条件である。 Further, as a comparative example, No. 1 having no recess 3 is used. Simulation calculations were also performed for the semiconductor device of 2. No. The semiconductor device of No. 2 is No. 1 except that the thermally conductive inorganic substrate 1 does not have the recess 3. The conditions are the same as those of the semiconductor device of 1.

シミュレーション計算では、接合温度である200℃で半導体素子4を実装領域2に実装した後、25℃まで冷却した場合の半導体素子4の反り量を算出した。半導体素子4の中央位置(中心)を基準とした場合における中心からの距離(mm)と反り量(μm)との関係について、計算結果を表1に示す。 In the simulation calculation, the amount of warpage of the semiconductor element 4 when the semiconductor element 4 was mounted in the mounting region 2 at the junction temperature of 200 ° C. and then cooled to 25 ° C. was calculated. Table 1 shows the calculation results regarding the relationship between the distance (mm) from the center and the amount of warpage (μm) when the center position (center) of the semiconductor element 4 is used as a reference.

Figure 0007082506000001
Figure 0007082506000001

表1に示すように、No.1の半導体装置は、中心からの距離が0.5mmから1.5mmの範囲及び2.5mmにおいて、No.2の半導体装置よりも半導体素子4の反り量が小さいことが確認された。これにより、No.1の半導体装置のように熱伝導性無機基板1が凹部3を有していれば、半導体素子4の反り量が低減されるといえる。 As shown in Table 1, No. The semiconductor device of No. 1 has a distance from the center in the range of 0.5 mm to 1.5 mm and 2.5 mm. It was confirmed that the amount of warpage of the semiconductor element 4 was smaller than that of the semiconductor device of 2. As a result, No. If the thermally conductive inorganic substrate 1 has the recess 3 as in the semiconductor device of 1, it can be said that the amount of warpage of the semiconductor element 4 is reduced.

また、半導体素子4に加わる最大応力についても計算を実行すると、No.2の半導体装置では最大応力が261.7MPaであったのに対し、No.1の半導体装置では最大応力が242.5MPaとなり、No.1の半導体装置の方が最大応力を約7%低減できることが確認された。したがって、熱伝導性無機基板1が凹部3を有していれば、半導体素子4に加わる最大応力についても低減されるといえる。 Further, when the calculation is executed for the maximum stress applied to the semiconductor element 4, No. In the semiconductor device of No. 2, the maximum stress was 261.7 MPa, whereas No. 2 was used. In the semiconductor device of No. 1, the maximum stress was 242.5 MPa, and No. It was confirmed that the semiconductor device of No. 1 can reduce the maximum stress by about 7%. Therefore, if the thermally conductive inorganic substrate 1 has the recess 3, it can be said that the maximum stress applied to the semiconductor element 4 is also reduced.

本発明の熱伝導性無機基板及び半導体装置は、半導体素子に生じる応力を抑制できるとともに、半導体素子の実装領域を比較的自由に規定できる。 The thermally conductive inorganic substrate and the semiconductor device of the present invention can suppress the stress generated in the semiconductor element and can relatively freely define the mounting region of the semiconductor element.

1 熱伝導性無機基板
2 実装領域
3 凹部
4 半導体素子
5 接合層
1 Thermally conductive inorganic substrate 2 Mounting area 3 Recess 4 Semiconductor element 5 Bonding layer

Claims (4)

少なくとも一方の表面に半導体素子を実装するための領域を有し、この実装領域に接合材を介して半導体素子を実装する熱伝導性無機基板であって、
上記実装領域内に、表面側から深さ方向に向かって開口面積が漸減する凹部を有し、
上記凹部が、内周面に表面側から深さ方向に向かって上記凹部の開口幅を漸減させる複数段のテーパ部を有する熱伝導性無機基板。
A thermally conductive inorganic substrate having a region for mounting a semiconductor element on at least one surface and mounting the semiconductor element in this mounting region via a bonding material.
The mounting area has a recess in which the opening area gradually decreases from the surface side toward the depth direction.
A heat-conducting inorganic substrate having a plurality of tapered portions on the inner peripheral surface of the concave portion, which gradually reduces the opening width of the concave portion from the surface side toward the depth direction .
上記実装領域の表面における上記凹部の開口幅が1mm以上10mm以下である請求項1に記載の熱伝導性無機基板。 The heat conductive inorganic substrate according to claim 1, wherein the opening width of the concave portion on the surface of the mounting region is 1 mm or more and 10 mm or less. 上記凹部の深さが0.05mm以上0.5mm以下である請求項1又は請求項2に記載の熱伝導性無機基板。 The heat conductive inorganic substrate according to claim 1 or 2, wherein the depth of the recess is 0.05 mm or more and 0.5 mm or less. 請求項1から請求項のいずれか1項に記載の熱伝導性無機基板と、
半導体素子と
を備え、
上記半導体素子を上記実装領域に実装する半導体装置。
The thermally conductive inorganic substrate according to any one of claims 1 to 3 ,
Equipped with semiconductor elements,
A semiconductor device that mounts the semiconductor element in the mounting area.
JP2018050091A 2018-03-16 2018-03-16 Thermally conductive inorganic substrates and semiconductor devices Active JP7082506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018050091A JP7082506B2 (en) 2018-03-16 2018-03-16 Thermally conductive inorganic substrates and semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050091A JP7082506B2 (en) 2018-03-16 2018-03-16 Thermally conductive inorganic substrates and semiconductor devices

Publications (2)

Publication Number Publication Date
JP2019161189A JP2019161189A (en) 2019-09-19
JP7082506B2 true JP7082506B2 (en) 2022-06-08

Family

ID=67996586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050091A Active JP7082506B2 (en) 2018-03-16 2018-03-16 Thermally conductive inorganic substrates and semiconductor devices

Country Status (1)

Country Link
JP (1) JP7082506B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096042A (en) 2005-09-29 2007-04-12 Rohm Co Ltd Semiconductor device
JP2015109294A (en) 2013-12-03 2015-06-11 三菱電機株式会社 Power semiconductor device and method of manufacturing the same
JP2016146458A (en) 2015-01-28 2016-08-12 株式会社東芝 Semiconductor device
US20170084510A1 (en) 2014-08-04 2017-03-23 Taizhou Beyond Technology Co., Ltd. A Wide Band Gap Semiconductor Device and Its Fabrication Process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832642U (en) * 1981-08-28 1983-03-03 日本電気ホームエレクトロニクス株式会社 semiconductor equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096042A (en) 2005-09-29 2007-04-12 Rohm Co Ltd Semiconductor device
JP2015109294A (en) 2013-12-03 2015-06-11 三菱電機株式会社 Power semiconductor device and method of manufacturing the same
US20170084510A1 (en) 2014-08-04 2017-03-23 Taizhou Beyond Technology Co., Ltd. A Wide Band Gap Semiconductor Device and Its Fabrication Process
JP2016146458A (en) 2015-01-28 2016-08-12 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JP2019161189A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6168152B2 (en) Power semiconductor module
JP6487122B2 (en) Power semiconductor device
JP7000544B2 (en) Manufacturing method of semiconductor module
JP6336138B2 (en) Semiconductor device
JP2008294280A (en) Semiconductor device
JP7047895B2 (en) Semiconductor device
JP2008311294A (en) Method of manufacturing substrate for power module
JP2013149695A (en) Thermal conduction member and semiconductor device having the same
JPWO2018092319A1 (en) Semiconductor device
JP6860334B2 (en) Semiconductor device
JP6139329B2 (en) Ceramic circuit board and electronic device
JP2012248700A (en) Semiconductor device
US11637052B2 (en) Semiconductor device and semiconductor device manufacturing method
JP7082506B2 (en) Thermally conductive inorganic substrates and semiconductor devices
JP6818801B2 (en) Power module and its manufacturing method
JP2008124187A6 (en) Power module base
TWI660471B (en) Chip package
JP2008124187A (en) Base for power module
JP4498966B2 (en) Metal-ceramic bonding substrate
JP5092274B2 (en) Semiconductor device
CN107611111B (en) Semiconductor module and power conversion device
JP5693395B2 (en) Semiconductor device
JP7130928B2 (en) semiconductor equipment
JP2022059117A (en) Semiconductor device, manufacturing method for semiconductor device, and power conversion device
EP3627546A1 (en) Power semiconductor module arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220527

R150 Certificate of patent or registration of utility model

Ref document number: 7082506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150