JP7081098B2 - 走行環境認識装置、走行環境認識方法、プログラム - Google Patents

走行環境認識装置、走行環境認識方法、プログラム Download PDF

Info

Publication number
JP7081098B2
JP7081098B2 JP2017168536A JP2017168536A JP7081098B2 JP 7081098 B2 JP7081098 B2 JP 7081098B2 JP 2017168536 A JP2017168536 A JP 2017168536A JP 2017168536 A JP2017168536 A JP 2017168536A JP 7081098 B2 JP7081098 B2 JP 7081098B2
Authority
JP
Japan
Prior art keywords
dimensional object
grid
map
moving
existence probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017168536A
Other languages
English (en)
Other versions
JP2019046147A (ja
Inventor
一樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017168536A priority Critical patent/JP7081098B2/ja
Publication of JP2019046147A publication Critical patent/JP2019046147A/ja
Application granted granted Critical
Publication of JP7081098B2 publication Critical patent/JP7081098B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Description

本開示は、車両の走行環境を認識する技術に関する。
特許文献1には、車載カメラにより取得された撮像画像に基づいて生成されたグリッド状の平面マップにおいて、撮像画像に基づいて路面と特定されたグリッドである路面グリッドと、平面マップ上における路面グリッド間のグリッドと、を路面領域として検出する、という技術が提案されている。以下、特許文献1に記載の技術を従来技術という。
特開2016-146113号公報
しかしながら、従来技術では、路面グリッド間のグリッドも路面領域として検出するので、車載カメラの分解能が粗くなる遠方においては、上記路面領域のように路面グリッド間のグリッドを路面領域であると補間するため、車両が走行可能な領域である走行可能領域を平面マップ上で精度良く特定することが困難である、という問題が生じ得る。
本開示の一つの局面は、車両が走行する環境を認識する走行環境認識装置であって、車両から遠方における走行可能領域をマップ上で従来技術よりも精度よく特定する技術を提供する。
本開示の一つの局面は、走行環境認識装置(10)であって、情報取得部(S10)と、属性特定部(S40)と、マップ生成部(S50)と、を備える。情報取得部は、車両の周囲において車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得する。属性特定部は、検出情報に基づき、立体物が移動体であることを特定する。マップ生成部は、車両が走行可能な領域である走行可能領域を表すマップを生成する。マップ生成部は、マップにおいて、属性特定部で移動体であると特定された立体物である移動立体物を表す領域の少なくとも一部を含む領域、を走行可能領域として表す。
このような構成によれば、検出情報に基づいて遠方において移動体が検出された場合には該移動体を表す領域の少なくとも一部を含む領域が走行可能領域と特定されるので、遠方における走行可能領域をマップ上で従来技術よりも精度良く特定することができる。
本開示のもう一つの局面は、走行環境認識方法である。走行環境認識方法は、車両の周囲において車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得し、検出情報に基づき、立体物が移動体であることを特定し、車両が走行可能な領域である走行可能領域を表すマップを生成し、マップにおいて、属性特定部で移動体であると特定された立体物である移動立体物を表す領域の少なくとも一部を含む領域、を走行可能領域として表す。
このように構成された認識方法においても、遠方における走行可能領域をマップ上で従来技術よりも精度良く特定することができる。
本開示の更なるもう一つの局面は、コンピュータを機能させるプログラムであって、情報取得部(S10)と、属性特定部(S40)と、マップ生成部(S50)として、コンピュータを機能させる。情報取得部は、車両の周囲において車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得する。属性特定部は、検出情報に基づき、立体物が移動体であることを特定する。マップ生成部は、車両が走行可能な領域である走行可能領域を表すマップを生成する。マップ生成部は、マップにおいて、属性特定部で移動体であると特定された立体物である移動立体物を表す領域の少なくとも一部を含む領域、を走行可能領域として表す。
このように構成されたプログラムにおいても、遠方における走行可能領域をマップ上で従来技術よりも精度良く特定することができる。
なお、この欄及び特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
走行環境認識システム1の構成を示すブロック図。 領域判定処理のフローチャート。 1周期前の占有グリッドマップを補正する例を説明する説明図。 マップ生成処理のフローチャート。 センサモデルの例を示す説明図と、センサモデルに従って静止物が検出される例を説明する説明図と、センサモデルに従って移動立体物が検出される例を説明する説明図。 LIDARによる観測方位の例を説明する説明図。 占有グリッドマップの生成を説明する説明図。 占有グリッドマップの更新を説明する説明図。 占有グリッドマップにおいて、走行可能領域を説明する図。 自車両がレーンチェンジを行おうとする時の走行可能領域の例を示す説明図。 自車両が左折を行おうとする時の走行可能領域の例を示す説明図。
以下、図面を参照しながら、本開示の実施形態を説明する。なお、以下でいう「同一」とは、厳密な意味での同一に限るものではなく、同様の効果を奏するのであれば厳密に同一でなくてもよい。
[1.構成]
図1に示す走行環境認識システム1は、車両に搭載されるシステムである。以下では、走行環境認識システム1が搭載される車両を自車両ともいう。走行環境認識システム1は、信号処理ECU10を備える。走行環境認識システム1は、周辺監視センサ20、車速センサ30、ヨーレートセンサ40、車両制御装置50、及び表示装置60を備えていてもよい。なお、本実施形態では、走行環境認識システム1は、図1において点線で示されている無線通信機70を備えてなくてもよい。走行環境認識システム1が無線通信機70を備える例については、他の実施形態にて説明する。
周辺監視センサ20は、車両の周囲に存在する立体物を検出するセンサを備える。ここでいう立体物とは、車両の走行の障害となる物体である。立体物には、例えば、人、車、固定物等が含まれ得る。周辺監視センサ20は、例えば、LIDAR(Laser Detection and Ranging)、レーダ、単眼カメラ、ステレオカメラ等であり得る。本実施形態では、周辺監視センサ20は、LIDARを備える。
LIDARは、車両の前部に設けられ、発光部からパルス状のレーザ光を出射し、車両前方に存在する物体によって反射されたレーザ光を受光部で受光する。ここでいう車両前方に存在する物体には立体物だけでなく、例えば路面等といった車両の走行の障害にならない物体も含まれる。なお、以下でいう観測点とは、物体が観測された位置であり、本実施形態ではレーザ光の反射が観測された位置をいう。
LIDARは、レーザ光の出射時刻と反射光の受光時刻との時間差、反射光強度、反射光が得られたレーザ光の照射角度を表す計測情報を信号処理ECU10へ出力する。信号処理ECU10は、計測情報に基づいて、周辺監視センサ20の取付位置(以下、センサ位置)を座標原点とする3次元座標(x、y、z)によって物体の検出結果を表わし、立体物を特定する。
車速センサ30、ヨーレートセンサ40は、車両の運動量を検出するためのセンサである。車速センサ30は車両の走行速度を検出し、ヨーレートセンサ40は車両に作用するヨーレートを検出する。信号処理ECU10は、車速センサ30、ヨーレートセンサ40からの検出信号に基づき、車両の運動量を算出する。具体的には、車両の進行方向及び変位量が運動量として算出される。
車両制御装置50は、CPU、ROM、RAM等を備える電子制御装置であり、信号処理ECU10から出力される走行可能領域の認識結果に基づいて、車両が走行可能領域内を走行するように、車両の操舵やエンジン、ブレーキ等の制御を行う。走行可能領域とは、マップ上において、車両が走行可能な領域をいう。例えば、路面が走行可能領域に含まれる。
表示装置60は、信号処理ECU10から出力される走行可能領域の認識結果に基づいて、例えば、走行可能領域を表す画像等を表示する装置である。表示装置60は、例えば、ナビゲーション装置の画面や、ヘッドアップディスプレイであり得る。
信号処理ECU10は、CPUと、ROM、RAM、及びフラッシュメモリ等の半導体メモリ(以下、メモリ)と、を有するマイクロコンピュータ(以下、マイコン)を備える。信号処理ECU10が実現する各機能は、CPUが非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、半導体メモリが、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムの実行により、プログラムに対応する方法が実行される。なお、信号処理ECU10を構成するマイコンの数は1つでも複数でもよい。
信号処理ECU10は、周辺監視センサ20、車速センサ30、ヨーレートセンサ40から出力される検出信号に基づいて、車両の周辺の走行環境を認識する。本実施形態では、信号処理ECU10は、特に車両の前方の走行環境を認識する。ここでいう走行環境とは、道路環境のことであり、例えば、車両の走行の障害となる上記立体物の存在の有無によって表され得る。
具体的には、信号処理ECU10は、周辺監視センサ20からの情報である検出情報に基づいて、車両に対する観測点の相対位置、すなわち車両に対する観測点の距離及び方位を判定し、該相対位置を絶対座標系における位置に変換して、点群データを生成する機能を有する。
ここでいう、点群データとは、周辺監視センサ20としてのLIDARにて得られた各照射領域における3次元の観測点のデータの集合を示す。観測点のデータは、上記センサ
位置を原点とする、(x、y、z)座標で表される。
上記絶対座標系は、車両の位置、つまりセンサ位置を原点としてX軸及びY軸を任意の向きに設定した独自の座標系であり、緯度経度座標に直接対応するものではない。本実施形態で用いる絶対座標系はセンサ位置を原点とするが、これに限定されるものでは無く、任意の地点を原点としてもよい。
なお、単眼カメラ、ステレオカメラが周辺監視センサ20として用いられる場合は、単眼カメラ、ステレオカメラにより撮像された撮像画像を検出情報として、該検出情報に基づいて、点群データが生成されてもよい。
また、信号処理ECU10は、検出情報、すなわち点群データに基づいて、領域判定処理を実行することにより、車両周辺の走行環境を認識する機能を有する。
[2.処理]
[2-1.概要]
次に、本実施形態の走行環境認識システム1において実行される処理の概要について説明する。
この走行環境認識システム1では、車両周辺の走行環境を認識するためのマップとして占有グリッドマップ(以下、OGM)を生成する。OGMとは、走行環境を確率で表現するマップであり、走行可能領域を表すマップである。走行可能領域は、該OGM上において、車両が走行可能な領域を表す。
具体的には、信号処理ECU10は、ある時間t=0における車両の位置、つまりセンサ位置を原点に、車両左右方向をX軸、車両前後方向をY軸とした絶対座標系を基準単位でメッシュ状、つまりグリッド状に分割し、立体物の存在確率をグリッド毎に記憶することにより、OGMを生成する。
車両の走行の障害となる上記立体物の存在確率は、周辺監視センサ20からの情報に基づき求められる。存在確率とは、立体物が存在する確率であって、立体物が存在する場合に立体物が存在しない場合よりも大きく設定される。OGMにおいて、立体物の存在確率が低い領域、つまり立体物の存在確率が低いグリッドが走行可能領域に相当する。
なお、グリッドサイズは任意あるいは周辺監視センサ20の検出精度に応じて、最適なサイズに決定される。グリッドは、本実施形態では、1m角の正方形グリッドであるものとする。
生成されたOGM、及びOGMに基づく走行可能領域の認識結果は、車両制御装置50において、例えば、アダプティブクルーズ制御やプリクラッシュセーフティ制御等といった前方監視制御を実現するための衝突系アプリケーションによって利用されても良い。
[2-2.処理手順]
信号処理ECU10は、図2に示す領域判定処理を実施する。領域判定処理は、例えば車両の電源が投入されると開始される処理であり、その後、一定の周期毎に繰り返し実施される処理である。
信号処理ECU10は、図2に示すように、まずS10にて、各種センサ類からセンサデータを取得する。
具体的には、信号処理ECU10は、周辺監視センサ20から検出情報を取得する。そして、信号処理ECU10は、本領域判定処理とは別処理によって該検出情報に基づいて上記点群データを生成し、生成された点群データを取得する。
また、信号処理ECU10は、車両の走行速度を車速センサ30から取得し、車両に作用するヨーレートをヨーレートセンサ40から取得する。
続いて、信号処理ECU10は、S20では、検出情報に基づいて生成された点群データを用いて、立体物の判定を行う。具体的には、信号処理ECU10は、点群データの高さ情報、すなわちz座標に基づいて、「立体物上の点」と「路面上の点」とを判定する。ここで、信号処理ECU10は、点群データの高さ情報が所定の路面高さ閾値以上である場合に、該点群データに対応する観測点が「立体物上の点」であると判断する。一方、信号処理ECU10は、点群データの高さ情報が路面高さ閾値未満である場合に、該点群データに対応する観測点が「路面上の点」であると判断する。路面高さ閾値は、実験等に基づいて予め定められており、メモリに予め記憶されている。路面高さの閾値は、例えば、数cm~数十cm程度であり得る。
次に、信号処理ECU10は、S30では、後述するS70にて生成された占有グリッドマップであって、1周期前に生成された占有グリッドマップ(以下、OGM-1)を取得し、OGM-1の座標原点が現周期のセンサ位置となるように、1周期の間の座標原点の移動量をOGM-1に加味して、OGM-1を補正する。
図3は、実際の走行環境(以下、実環境)であって1周期前の実環境において、自車両100の前方に静止している立体物(以下、静止物)が存在し、自車両100の左右に壁が存在する場合のOGM-1を補正する例を示す。1周期の間における座標原点の移動量は、つまり周辺監視センサ20の移動量は、1周期の間における自車両100の運動量に基づいて算出される。図3では、1周期前の実環境における矢印が、自車両100の運動量を表している。なお、信号処理ECU10は、S10にて取得した車速及びヨーレートに基づいて、自車両100の運動量を推定する。
続いて、信号処理ECU10は、S40では、点群データに基づき、S20で判定された立体物が移動体であることを特定する。移動体とは、所定の速度以上の速度で移動している物体をいう。ここでいう所定の速度とは、例えば、歩行者の移動速度以上であってもよい。移動体には、例えば、車両、歩行者、自転車等が含まれ得る。
具体的には、信号処理ECU10は、移動体を検出するにあたり、まず、S20にて「立体物上の点」として判定された、立体物上の観測点群をクラスタリングし、個々の立体物を認識する。つまり、信号処理ECU10は、立体物上の観測点群のうち、相互の距離が所定の閾値よりも短いもの同士をまとめたクラスタを生成し、そのクラスタを個々の立体物として認識する。
更に、信号処理ECU10は、トラッキングを行う。信号処理ECU10は、本実施形態では、現周期の点群データである最新の点群データと1周期前に取得された点群データとを用いて、クラスタを追跡する。但し、これに限定されるものでは無く、最新の点群データと直近の過去複数周期の間に取得された点群データを用いてトラッキングが行われてもよい。
具体的には、信号処理ECU10は、例えば、カルマンフィルタやパーティクルフィルタ等を用いて、クラスタの移動状態を監視し、移動の前後において大きさや形状が類似するクラスタを同じ立体物を表すものとして追跡する。
そして、信号処理ECU10は、追跡した立体物について、サイズや移動速度等を認識し、該サイズや移動速度等に基づいて、該立体物が移動体であることを特定し、更に該立体物の属性を特定する。例えば、車両、歩行者、自転車等といった、立体物の属性が特定
される。信号処理ECU10は、このようにして、立体物が移動体であることを判定し、移動体のサイズや移動速度を特定し、更にその属性を特定する。
なお、信号処理ECU10は、単眼カメラ、ステレオカメラが周辺監視センサ20として用いられる場合は、単眼カメラ、ステレオカメラにより撮像された撮像画像に基づいて、教師データにより学習した識別器を用いて、立体物が移動体であることを判定し、移動体のサイズや移動速度を特定し、更にその属性を特定してもよい。
次に、信号処理ECU10は、S50では、マップ生成処理を実行する。マップ生成処理では、現周期における占有グリッドマップ(以下、OGM0)を生成する。なお、本実施形態では、X-Y平面である2次元のマップを生成する。マップ生成処理の詳細を図4に示すフローチャートに基づいて説明する。
信号処理ECU10は、S110では、S10で検出情報に基づいて生成した点群データを用いて、観測点を含むグリッドにおける立体物の存在確率を算出する。図5は、周辺監視センサ20としてのLIDARの発光部と観測点とを通る直線上の位置と、立体物の存在確率との対応関係を規定したセンサモデルである。信号処理ECU10は、図6に示すように、レーザ光が照射される複数の方位のうちの1方位毎に、センサモデルに従い、各グリッドに対する存在確率を計算する。
センサモデルでは、「立体物上の点」として観測された観測点における存在確率は、1に近い値(以下、存在確率α)に設定される。本実施形態では、存在確率αは1に設定される。また、センサモデルでは、「路面上の点」として観測された観測点における存在確率(以下、存在確率β)は、0に近い値に設定される。本実施形態では、存在確率βは0に設定される。
また、「立体物上の点」として観測された観測点よりも手前の位置であって立体物が存在しているか否かが不明である領域(以下、不明領域)の存在確率(以下、存在確率ε)は、0に近い値であって、存在確率βよりも大きく後述する存在確率Mよりも小さい値に設定される。また、該観測点よりも後ろの位置の存在確率(以下、存在確率M)は、αとβとの中間的な値に設定される。本実施形態では、存在確率Mは0.5に設定される。
これは、「立体物上の点」として観測された観測点よりも手前には立体物が存在しないと推測され、該観測点の後ろには立体物が存在するか否かが不明だからである。なお、センサモデルは、図5に示すものに限定されるものではなく、任意に設定され得る。
続いて、信号処理ECU10は、S120では、レーザ光が照射される複数の方位のうちの全方位においてそれぞれ存在確率を計算した後に、グリッド毎に存在確率を記憶させて、OGM0のベースとなるベースマップを生成する。図7に、自車両100の前方に移動車両が存在し、自車両100の左右に壁が存在する実環境に対応するベースマップの例を示す。図7において、立体物上の観測点は三角で示されている。特に移動立体物上の観測点は黒い三角で示されている。
次に、信号処理ECU10は、S130では、ベースマップにおいて、移動立体物を表すグリッドに記憶する存在確率を、走行領域閾値未満の値に更新し、OGM0を生成する。移動立体物とは、上記S40で移動体であると特定された立体物のことを表す。走行領域閾値とは、後述するS70で実施される閾値判定で用いられる閾値を表す。走行領域閾値は、例えば、存在確率M未満の値であり得る。また、走行領域閾値は、例えば、存在確率M未満の値であり、且つ、存在確率ε未満であり得る。
本実施形態では、OGM0上において移動立体物を表す領域(以下、移動体領域)、つまり移動立体物を表すグリッドは、少なくとも1つのグリッドから成る。例えば、OGM0上において、移動立体物としての移動している車両(以下、移動車両)を表す領域(以下、移動車両領域)、つまり移動車両を表すグリッドは、複数のグリッドから成り、OGM0上における自車両100の形状及び大きさと同一となるように、予め定められている。信号処理ECU10は、移動車両上の観測点を表すグリッドが含まれるように、移動車両領域を特定する。図7に、上記ベースマップに基づいて生成されたOGM0の例を示す。図7に示すOGM0では、6つのグリッドを含む領域Pが移動車両領域を表す。
なお、移動体領域の形状及び大きさは、移動体の属性毎に設定されていてもよい。または、移動体領域の形状及び大きさは、移動体の属性に関係なく、一定に設定されていてもよい。また、本実施形態では、上述のように、移動車両領域は、OGM0上における自車両100の形状及び大きさと同一の大きさに設定されているが、これに限定されるものではない。
移動車両領域は、検出誤差を加味してOGM0上における自車両100よりも大きい領域としてもよいし、検出誤差を加味して小さい領域としてもよい。また、例えば、移動車両領域は、自車両100の後ろ半分や自車両100の後ろ四分の一といったように、OGM0上における自車両100の前後方向における一部の形状及び大きさと同一に設定されてもよい。このように、移動体領域は、OGM0上における移動立体物そのものを表す領域の少なくとも一部を含む。
上記ベースマップにおいて、移動立体物を表すグリッドには、存在確率αまたは存在確率Mが存在確率として記憶されている。本S130では、信号処理ECU10は、移動立体物を表すグリッドに記憶する存在確率を存在確率βに、すなわち0に、更新する。このようにして、OGM0が生成される。生成されたOGM0は、メモリに記憶される。信号処理ECU10は、以上でマップ生成処理を終了し、処理をS60へ移行させる。
図2に戻り、説明を続ける。信号処理ECU10は、S60では、OGMの更新を行う。具体的には、図8に示すように、信号処理ECU10は、OGM-1とOGM0とを重ね合わせたものを、新たなOGM0としてメモリに記憶する。なお、図8に示す実環境では、自車両100の前方に移動車両が存在し、該移動車両は時間t-1から時間t0の間に移動している。このため、補正後のOGM-1では、移動車両の軌跡による領域に対応するグリッドに存在確率βが記憶される。該補正後のOGM-1と、時間t0における実環境に対応するOGM0とが重ね合わされて、更新後の新たなOGM0が生成される。
続いて、信号処理ECU10は、S70では、OGM0において、存在確率が走行領域閾値未満であるグリッドを走行可能領域として特定する。
これにより、図9に示すように、「路面上の点」として観測された観測点を含むグリッドが走行可能領域として特定される。更に、移動立体物を表す領域の少なくとも一部を含む領域、具体的には移動車両領域が走行可能領域として特定される。
なお、信号処理ECU10は、OGM0において静止物を特定してもよい。具体的には、信号処理ECU10は、所定の静止物閾値以上である存在確率が記憶されたグリッドを、静止物を表す領域として特定する。静止物閾値は、存在確率Mより大きい値であり、且つ、存在確率α以上の値に設定され得る。また、信号処理ECU10は、OGM0において、走行可能領域及び静止物を表す領域以外の領域を不明領域である、と特定してもよい。以上で、信号処理ECU10は領域判定処理を終了する。
[3.効果]
以上詳述した実施形態によれば、以下の効果を奏する。
(3a)信号処理ECU10は、S10では、検出情報を取得する。信号処理ECU10は、S40では、検出情報に基づき、立体物が移動立体物であることを特定する。信号処理ECU10は、S50では、OGMを走行可能領域を表すマップとして生成し、該マップにおいて移動立体物を表す領域の少なくとも一部を含む領域、を走行可能領域として表す。
その結果、検出情報に基づいて遠方において移動立体物が検出された場合には該移動立体物を表す領域の少なくとも一部を含む領域が走行可能領域と特定されるので、遠方における走行可能領域を、走行可能領域を表すマップ上で従来技術よりも精度良く特定することができる。
ここで、信号処理ECU10と比較するための装置であって、立体物を静止物と移動立体物とに区別せず、立体物が存在する領域を走行可能領域として特定しないように構成された比較装置を想定する。該比較装置では、例えば図5に示すように、自車両前方の坂道上に移動立体物としての移動車両が存在する場合、移動車両を単に立体物として特定するので、該移動車両を表す領域、すなわち坂道上の領域を、マップ上における走行可能領域として特定することができない。
一方、信号処理ECU10は、立体物を静止物と移動立体物とに区別して移動立体物が存在する領域を走行可能領域として特定する。このため信号処理ECU10は、例えば図5に示すように、自車両前方の坂道上に移動立体物としての移動車両が存在する場合、該移動車両を表す領域、すなわち坂道上の領域を、マップ上における走行可能領域として特定することができる。
このように、信号処理ECU10は、自車両前方の坂道を、精度良く特定することができる。
(3b)走行可能領域を表すマップは複数のグリッドを含む。信号処理ECU10は、S120では、存在確率をグリッド毎に算出し、上記マップであって存在確率をグリッド毎に記憶したOGMを生成する。信号処理ECU10は、S130では、OGMにおいて、移動立体物を表すグリッドに記憶する存在確率を、立体物が存在しない場合の存在確率に近い値であって所定の走行領域閾値未満の値に更新する。信号処理ECU10は、S70では、OGMにおいて、存在確率が走行領域閾値未満であるグリッドを走行可能領域として特定する。
その結果、自車両の走行環境を確率で表すOGM上において走行可能領域を特定することができる。
(3c)信号処理ECU10において、走行領域閾値は、立体物が存在する場合の存在確率αと、立体物が存在しない場合の存在確率βとの中間的な値Mよりも小さい値である。
その結果、走行領域閾値を用いた閾値判定によって、立体物が存在しない場合の存在確率により近い存在確率を表す領域を走行可能領域を特定することができる。
(3d)信号処理ECU10は、S130では、占有グリッドマップにおいて、移動立体物を表すグリッドに記憶する存在確率を、立体物が無いことを表す存在確率β、具体的には0、とするように構成されている。その結果、移動立体物を表すグリッドを、確実に、走行可能領域として特定することができる。
なお、上記実施形態において、信号処理ECU10が走行環境認識装置、情報取得部、属性特定部、マップ生成部、グリッドマップ部、更新部、領域特定部に相当し、周辺監視
センサ20が検出装置に相当する。また、S10が情報取得部としての処理に相当し、S40が属性特定部としての処理に相当し、S50がマップ生成部としての処理に相当し、S70が領域特定部としての処理に相当する。S120がグリッドマップ部としての処理に相当し、S130が更新部としての処理に相当する。また、占有グリッドマップが、マップ、グリッドマップに相当する。
[4.変形例]
(4a)変形例1
信号処理ECU10では、更新部は、特定精度を取得し、移動立体物を表すグリッドに記憶する存在確率を、前記特定精度が大きいほど小さく算出するように構成されていてもよい。特定精度とは、属性特定部が移動立体物を特定する正確さの度合いを表す値であって、正確であるほど大きい値で表される値である。
その結果、特定精度が大きいほど、移動立体物を表す領域が走行可能領域として特定され易くすることができる。
具体的には、信号処理ECU10では、情報取得部は、検出情報を繰り返し取得するように構成されていてもよい。更新部は、検出情報に基づいて移動立体物が連続して検出されている回数を特定し、移動立体物が連続して検出されている回数が多いほど特定精度を大きい値とするように構成されてもよい。そして、更新部は、該特定精度に基づいて、移動立体物を表すグリッドに記憶する存在確率を算出するように構成されていてもよい。
その結果、移動立体物が連続して検出されている回数が多いほど特定精度が大きくなり、移動体を表すグリッドに記憶する存在確率が小さく算出される。つまり、移動立体物が連続して検出されている回数が多いほど、該移動立体物を表す領域が走行可能領域として特定され易くすることができる。
(4b)変形例2
信号処理ECU10では、属性特定部は、移動立体物が、自車両と同一の大きさであることを特定するように構成されていてもよい。そして、更新部は、自車両と同一の大きさであると特定された移動立体物を表すグリッドに記憶する存在確率を、自車両と同一の大きさであると特定されなかった移動立体物を表すグリッドに記憶する存在確率よりも小さくする、ように構成されてもよい。
その結果、自車両にとって大きすぎることが無く、また自車両にとって小さすぎることが無いように、OGMにおける自車両にとっての走行可能領域を精度よく特定することができる。
(4c)変形例3
信号処理ECU10では、領域特定部は、占有グリッドマップを表す画像であって、占有グリッドマップ上に走行領域を表した画像、を生成し、生成した画像を表示装置60に表示させるように構成されてもよい。また、信号処理ECU10では、領域特定部は、OGM又はOGMにおける走行可能領域の認識結果を車両制御装置50に出力するように構成されてもよい。
(4d)変形例4
信号処理ECU10では、複数の移動立体物、例えば図10や図11に示すように、自車両100の周囲に複数の移動車両が存在する場合も、上記実施形態と同様にして、マップ上において走行可能領域を特定してもよい。具体的には、信号処理ECU10は、上記実施形態と同様にして、ベースマップを生成し、該ベースマップにおける複数の移動車両それぞれを表すグリッドに記憶する存在確率を更新してもよい。
その結果、例えば図10に示すような自車両100がレーンチェンジを行おうとする時や、例えば図11に示すような自車両100の左折時に、自車両100の周囲に複数の移動車両が存在する場合においても、OGM上における走行可能領域を特定することができる。
[5.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
(5a)上記実施形態では、OGMを走行可能領域を表すマップとして生成したが、走行可能領域を表すマップはこれに限定されるものではない。例えば、信号処理ECU10は、地図データに基づいて作成されたマップ上において移動立体物を表す領域を走行可能領域として特定したマップ、を上記マップとして生成してもよい。
(5b)上記実施形態では、LIDARが周辺監視センサ20として用いられたが、これに限定されるものではない。例えば、レーダが周辺監視センサ20として用いられてもよい。また例えば、単眼カメラやステレオカメラが、周辺監視センサ20として用いられてもよい。
(5c)上記実施形態では、信号処理ECU10は、自車両前方の走行可能領域を特定するよう構成されていたが、これに限定されるものではない。信号処理ECU10は、自車両後方、自車両右、自車両左等といった、自車両の周囲であって自車両に対する任意方向における移動立体物を特定し、走行可能領域を特定するように構成されてもよい。
(5d)上記実施形態では、自車両に搭載された信号処理ECU10が、走行領域検出処理を実施し、マップ上における自車両100の走行可能領域を特定する例を説明したが、これに限定されるものではない。図1にて点線で示すように、自車両に搭載された無線通信機70と無線通信可能なサーバ9が、マップ上における自車両100の走行可能領域を特定するように構成されてもよい。サーバ9は、自車両の外部に設置されており、CPU、ROMやRAM等といったメモリ、を備える電子制御装置を備える。また、無線通信機70と無線通信可能な通信機を備える。
この場合、サーバ9が、図2に示す走行領域検出処理と同様の処理を実施するように構成されてもよい。ここで、信号処理ECU10は、各種センサの検出結果を、無線通信機70を介してサーバ9へ送信するように構成されてもよい。各種センサの検出結果には、例えば、周辺監視センサ20からの検出情報に基づく点群データや、車速センサ30及びヨーレートセンサ40の検出結果が含まれる。
一方、サーバ9は、図2のS10に代えて、受信した検出情報を取得するように構成されてもよい。また、サーバ9は、受信した検出情報に基づいて、図2のS20-S70の処理を実行し、OGM上における走行可能領域を特定するように構成されてもよい。そして、サーバ9は、OGM上における走行可能領域を表す情報を、無線通信機70へ送信するように構成されてもよい。
信号処理ECU10は、サーバ9から無線通信機70を介して、OGM上における走行可能領域を表す情報を取得し、該情報に基づいて、車両制御装置50や表示装置60への指示を出力するように構成されてもよい。
(5e)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素
によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
(5f)上述した信号処理ECU10、走行環境認識システム1、サーバ9の他、信号処理ECU10を機能させるためのプログラム、サーバ9を機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、走行環境認識方法など、種々の形態で本開示を実現することもできる。
10 信号処理ECU、20 周辺環境センサ。

Claims (10)

  1. 走行環境認識装置(10)であって、
    車両の周囲において前記車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得する情報取得部(S10)と、
    前記検出情報に基づき、前記立体物が移動体であることを特定する属性特定部(S40)と、
    前記車両が走行可能な領域である走行可能領域を表すマップを生成するマップ生成部であって、前記マップにおいて、前記属性特定部で前記移動体であると特定された前記立体物である移動立体物を表す領域の少なくとも一部を含む領域、を前記走行可能領域として表すマップ生成部(S50)と、
    を備え、
    前記マップは複数のグリッドを含み、
    前記マップ生成部は、
    前記検出情報に基づき、前記立体物が存在する確率であって前記立体物が存在する場合に前記立体物が存在しない場合よりも大きく設定される存在確率を前記グリッド毎に算出し、前記マップであって前記存在確率を前記グリッド毎に記憶したグリッドマップ、を生成するグリッドマップ部(S120)と、
    前記グリッドマップにおいて、前記移動立体物を表す前記グリッドに記憶する前記存在確率を、前記立体物が存在しない場合の存在確率に近い値に更新するように構成された更新部(S130)と、
    を備え、
    当該走行環境認識装置は、
    前記グリッドマップにおいて、存在確率が走行領域閾値未満である前記グリッドを前記走行可能領域として特定する領域特定部(S70)
    を更に備え、
    前記更新部は、前記属性特定部が前記移動立体物を特定する正確さの度合いを表す値であって正確であるほど大きい値で表される特定精度を取得し、前記移動立体物を表すグリ
    ッドに記憶する存在確率を、前記特定精度が大きいほど小さく算出するように構成された 走行環境認識装置。
  2. 請求項1に記載の走行環境認識装置であって、
    前記走行領域閾値は、前記立体物が存在する場合の存在確率と、前記立体物が存在しない場合の存在確率との中間的な値よりも小さい値である
    走行環境認識装置。
  3. 請求項1又は請求項2に記載の走行環境認識装置であって、
    前記情報取得部は前記検出情報を繰り返し取得するように構成されており、
    前記更新部は、前記検出情報に基づいて前記検出装置によって前記移動立体物が連続して検出されている回数を特定し、前記移動立体物が連続して検出されている回数が多いほど前記特定精度を大きい値とし、該特定精度に基づいて前記移動立体物を表すグリッドに記憶する存在確率を算出するように構成された
    走行環境認識装置。
  4. 請求項1から請求項3のいずれか一項に記載の環境認識装置であって、
    前記属性特定部は、前記移動立体物が、前記車両と同一の大きさであることを特定するように構成されており、
    前記更新部は、前記車両と同一の大きさであると特定された前記移動立体物を表す前記グリッドに記憶する存在確率を、前記車両と同一の大きさであると特定されなかった前記移動立体物を表す前記グリッドに記憶する存在確率よりも小さくするように構成された
    走行環境認識装置。
  5. 走行環境認識装置(10)であって、
    車両の周囲において前記車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得する情報取得部(S10)と、
    前記検出情報に基づき、前記立体物が移動体であることを特定する属性特定部(S40)と、
    前記車両が走行可能な領域である走行可能領域を表すマップを生成するマップ生成部であって、前記マップにおいて、前記属性特定部で前記移動体であると特定された前記立体物である移動立体物を表す領域の少なくとも一部を含む領域、を前記走行可能領域として表すマップ生成部(S50)と、
    を備え、
    前記マップは複数のグリッドを含み、
    前記マップ生成部は、
    前記検出情報に基づき、前記立体物が存在する確率であって前記立体物が存在する場合に前記立体物が存在しない場合よりも大きく設定される存在確率を前記グリッド毎に算出し、前記マップであって前記存在確率を前記グリッド毎に記憶したグリッドマップ、を生成するグリッドマップ部(S120)と、
    前記グリッドマップにおいて、前記移動立体物を表す前記グリッドに記憶する前記存在確率を、前記立体物が存在しない場合の存在確率に近い値に更新するように構成された更新部(S130)と、
    を備え、
    当該走行環境認識装置は、
    前記グリッドマップにおいて、存在確率が走行領域閾値未満である前記グリッドを前記走行可能領域として特定する領域特定部(S70)
    を更に備え、
    前記属性特定部は、前記移動立体物が、前記車両と同一の大きさであることを特定するように構成されており、
    前記更新部は、前記車両と同一の大きさであると特定された前記移動立体物を表す前記グリッドに記憶する存在確率を、前記車両と同一の大きさであると特定されなかった前記移動立体物を表す前記グリッドに記憶する存在確率よりも小さくするように構成された
    走行環境認識装置。
  6. 請求項5に記載の走行環境認識装置であって、
    前記走行領域閾値は、前記立体物が存在する場合の存在確率と、前記立体物が存在しない場合の存在確率との中間的な値よりも小さい値である
    走行環境認識装置。
  7. 車両の周囲において前記車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得し、
    前記検出情報に基づき、前記立体物が移動体であることを特定し、
    前記車両が走行可能な領域である走行可能領域を表すマップを生成し、前記マップにおいて、前記移動体であると特定された前記立体物である移動立体物を表す領域の少なくとも一部を含む領域、を前記走行可能領域として表し、
    前記マップは複数のグリッドを含み、
    前記検出情報に基づき、前記立体物が存在する確率であって前記立体物が存在する場合に前記立体物が存在しない場合よりも大きく設定される存在確率を前記グリッド毎に算出し、前記マップであって前記存在確率を前記グリッド毎に記憶したグリッドマップ、を生成し、
    前記グリッドマップにおいて、前記移動立体物を表す前記グリッドに記憶する前記存在確率を、前記立体物が存在しない場合の存在確率に近い値に更新し、
    前記グリッドマップにおいて、存在確率が走行領域閾値未満である前記グリッドを前記走行可能領域として特定し、
    前記移動立体物を特定する正確さの度合いを表す値であって正確であるほど大きい値で表される特定精度を取得し、前記移動立体物を表すグリッドに記憶する存在確率を、前記特定精度が大きいほど小さく算出する
    走行環境認識方法。
  8. 車両の周囲において前記車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得し、
    前記検出情報に基づき、前記立体物が移動体であることを特定し、
    前記車両が走行可能な領域である走行可能領域を表すマップを生成し、前記マップにおいて、前記移動体であると特定された前記立体物である移動立体物を表す領域の少なくとも一部を含む領域、を前記走行可能領域として表し、
    前記マップは複数のグリッドを含み、
    前記検出情報に基づき、前記立体物が存在する確率であって前記立体物が存在する場合に前記立体物が存在しない場合よりも大きく設定される存在確率を前記グリッド毎に算出し、前記マップであって前記存在確率を前記グリッド毎に記憶したグリッドマップ、を生成し、
    前記グリッドマップにおいて、前記移動立体物を表す前記グリッドに記憶する前記存在確率を、前記立体物が存在しない場合の存在確率に近い値に更新し、
    前記グリッドマップにおいて、存在確率が走行領域閾値未満である前記グリッドを前記走行可能領域として特定し、
    前記移動立体物が、前記車両と同一の大きさであることを特定し、
    前記車両と同一の大きさであると特定された前記移動立体物を表す前記グリッドに記憶する存在確率を、前記車両と同一の大きさであると特定されなかった前記移動立体物を表す前記グリッドに記憶する存在確率よりも小さくする
    走行環境認識方法。
  9. 車両の周囲において前記車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得する情報取得部(S10)と、
    前記検出情報に基づき、前記立体物が移動体であることを特定する属性特定部(S40)と、
    前記車両が走行可能な領域である走行可能領域を表すマップを生成するマップ生成部であって、前記マップにおいて、前記属性特定部で前記移動体であると特定された前記立体物である移動立体物を表す領域の少なくとも一部を含む領域、を前記走行可能領域として表すマップ生成部(S50)として、
    コンピュータを機能させるプログラムであって、
    前記マップは複数のグリッドを含み、
    前記マップ生成部は、
    前記検出情報に基づき、前記立体物が存在する確率であって前記立体物が存在する場合に前記立体物が存在しない場合よりも大きく設定される存在確率を前記グリッド毎に算出し、前記マップであって前記存在確率を前記グリッド毎に記憶したグリッドマップ、を生成するグリッドマップ部(S120)と、
    前記グリッドマップにおいて、前記移動立体物を表す前記グリッドに記憶する前記存在確率を、前記立体物が存在しない場合の存在確率に近い値に更新するように構成された更新部(S130)と、
    を備え、
    当該プログラムは、更に、
    前記グリッドマップにおいて、存在確率が走行領域閾値未満である前記グリッドを前記走行可能領域として特定する領域特定部(S70)として前記コンピュータを機能させ
    前記更新部は、前記属性特定部が前記移動立体物を特定する正確さの度合いを表す値であって正確であるほど大きい値で表される特定精度を取得し、前記移動立体物を表すグリッドに記憶する存在確率を、前記特定精度が大きいほど小さく算出するように構成された プログラム。
  10. 車両の周囲において前記車両の走行の障害となる物体を表す立体物を検出する検出装置(20)からの情報を表す検出情報を取得する情報取得部(S10)と、
    前記検出情報に基づき、前記立体物が移動体であることを特定する属性特定部(S40)と、
    前記車両が走行可能な領域である走行可能領域を表すマップを生成するマップ生成部であって、前記マップにおいて、前記属性特定部で前記移動体であると特定された前記立体物である移動立体物を表す領域の少なくとも一部を含む領域、を前記走行可能領域として表すマップ生成部(S50)として、
    コンピュータを機能させるプログラムであって、
    前記マップは複数のグリッドを含み、
    前記マップ生成部は、
    前記検出情報に基づき、前記立体物が存在する確率であって前記立体物が存在する場合に前記立体物が存在しない場合よりも大きく設定される存在確率を前記グリッド毎に算出し、前記マップであって前記存在確率を前記グリッド毎に記憶したグリッドマップ、を生成するグリッドマップ部(S120)と、
    前記グリッドマップにおいて、前記移動立体物を表す前記グリッドに記憶する前記存在確率を、前記立体物が存在しない場合の存在確率に近い値に更新するように構成された更新部(S130)と、
    を備え、
    当該プログラムは、更に、
    前記グリッドマップにおいて、存在確率が走行領域閾値未満である前記グリッドを前記
    走行可能領域として特定する領域特定部(S70)として前記コンピュータを機能させ
    前記属性特定部は、前記移動立体物が、前記車両と同一の大きさであることを特定するように構成されており、
    前記更新部は、前記車両と同一の大きさであると特定された前記移動立体物を表す前記グリッドに記憶する存在確率を、前記車両と同一の大きさであると特定されなかった前記移動立体物を表す前記グリッドに記憶する存在確率よりも小さくするように構成された
    プログラム。
JP2017168536A 2017-09-01 2017-09-01 走行環境認識装置、走行環境認識方法、プログラム Active JP7081098B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017168536A JP7081098B2 (ja) 2017-09-01 2017-09-01 走行環境認識装置、走行環境認識方法、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017168536A JP7081098B2 (ja) 2017-09-01 2017-09-01 走行環境認識装置、走行環境認識方法、プログラム

Publications (2)

Publication Number Publication Date
JP2019046147A JP2019046147A (ja) 2019-03-22
JP7081098B2 true JP7081098B2 (ja) 2022-06-07

Family

ID=65815726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017168536A Active JP7081098B2 (ja) 2017-09-01 2017-09-01 走行環境認識装置、走行環境認識方法、プログラム

Country Status (1)

Country Link
JP (1) JP7081098B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020004545T5 (de) * 2019-09-25 2022-08-18 Sony Group Corporation Signalverarbeitungsvorrichtung, signalverarbeitungsverfahren, programm und mobile vorrichtung
JP7344743B2 (ja) * 2019-10-09 2023-09-14 日産自動車株式会社 占有マップの作成方法、及び、占有マップの作成装置
JP7343446B2 (ja) * 2020-06-16 2023-09-12 Kddi株式会社 モデル生成装置、方法及びプログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048642A (ja) 2010-08-30 2012-03-08 Denso Corp 走行環境認識装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048642A (ja) 2010-08-30 2012-03-08 Denso Corp 走行環境認識装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Naoki Suganuma, et al,Robust environment perception based on occupancy grid maps for autonomous vehicle,Proceedings of SICE Annual Conference 2010,米国,IEEE,2010年,2354-2357

Also Published As

Publication number Publication date
JP2019046147A (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
JP5206752B2 (ja) 走行環境認識装置
US10325163B2 (en) Vehicle vision
US11506502B2 (en) Robust localization
JP6520740B2 (ja) 物体検出方法、物体検出装置、およびプログラム
JP6453701B2 (ja) 姿勢推定装置
JP7077967B2 (ja) 走行車線推定装置、走行車線推定方法、及び制御プログラム
JP2007300181A (ja) 周辺認識装置、周辺認識方法、プログラム
US20210302582A1 (en) A point cloud feature-based obstacle filter system
US12085403B2 (en) Vehicle localisation
JP7081098B2 (ja) 走行環境認識装置、走行環境認識方法、プログラム
US11400923B2 (en) Information processing device, vehicle control device, and mobile object control method
CN112824997A (zh) 用于局部行进车道感知的方法和系统
KR20230031344A (ko) 자동차를 둘러싼 영역 내 장애물을 검출하기 위한 시스템 및 방법
US11693110B2 (en) Systems and methods for radar false track mitigation with camera
JP7322845B2 (ja) 自動運転装置
CN112744217A (zh) 碰撞检测方法、行驶路径的推荐方法及其装置和存储介质
JP6705270B2 (ja) 移動体の自動運転制御システム
JPWO2019123582A1 (ja) 物体情報生成装置及び物体情報生成プログラム
CN112613335B (zh) 识别装置、识别方法及存储介质
CN116724248A (zh) 用于产生非模态长方体的系统和方法
JP7028838B2 (ja) 周辺認識装置、周辺認識方法、およびプログラム
JP2018185156A (ja) 物標位置推定方法及び物標位置推定装置
KR20230015658A (ko) 그리드 맵 생성 장치 및 방법
JP7567848B2 (ja) 車両制御装置
JP2024139348A (ja) 外界認識装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R151 Written notification of patent or utility model registration

Ref document number: 7081098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151