JP7080165B2 - Distributed power system - Google Patents

Distributed power system Download PDF

Info

Publication number
JP7080165B2
JP7080165B2 JP2018236328A JP2018236328A JP7080165B2 JP 7080165 B2 JP7080165 B2 JP 7080165B2 JP 2018236328 A JP2018236328 A JP 2018236328A JP 2018236328 A JP2018236328 A JP 2018236328A JP 7080165 B2 JP7080165 B2 JP 7080165B2
Authority
JP
Japan
Prior art keywords
power
charge
power generation
charging
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018236328A
Other languages
Japanese (ja)
Other versions
JP2020099133A (en
Inventor
尚克 秋岡
未央 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2018236328A priority Critical patent/JP7080165B2/en
Publication of JP2020099133A publication Critical patent/JP2020099133A/en
Application granted granted Critical
Publication of JP7080165B2 publication Critical patent/JP7080165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、電力系統に接続される交流線と、交流線に接続される第1発電装置と、交流線に接続される第2発電装置と、交流線に接続され、交流線との間で電力の充放電を行う蓄電池を含む充放電部、及び、所定の上限充電レベルを充放電部の充電レベルの上限とし且つ所定の下限充電レベルを充放電部の充電レベルの下限として充放電部による充放電を制御する充放電制御部を有する充放電装置とを備え、交流線に電力消費装置が接続されている分散型電源システムに関する。 The present invention is between an AC line connected to an AC line, a first power generation device connected to the AC line, a second power generation device connected to the AC line, and an AC line connected to the AC line. A charging / discharging unit including a storage battery for charging / discharging electric power, and a charging / discharging unit with a predetermined upper limit charging level as the upper limit of the charging level of the charging / discharging unit and a predetermined lower limit charging level as the lower limit of the charging level of the charging / discharging unit. The present invention relates to a distributed power supply system including a charge / discharge device having a charge / discharge control unit for controlling charge / discharge, and a power consumption device connected to an AC line.

特許文献1には、太陽光発電装置及び充放電装置を備える分散型電源システムが記載されている。この分散型電源システムでは、充放電装置がグリーンモードという動作モードで動作する例が記載されている。このグリーンモードでは、負荷による総消費電力が太陽光発電装置の発電電力よりも大きい場合、即ち、不足電力が発生している場合、その不足電力に見合った電力を充放電装置が放電する。それに対して、太陽光発電装置の発電電力のうち、負荷で使用されない余剰電力が発生する場合、その余剰電力を充放電装置が充電する。但し、充放電装置が既に満充電である場合は、余剰電力を電力系統へと売電する。このように、グリーンモードでは、分散型電源システムと電力系統との間での電力の売買が少なくなるように充放電装置が動作する。 Patent Document 1 describes a distributed power supply system including a photovoltaic power generation device and a charging / discharging device. In this distributed power supply system, an example in which the charging / discharging device operates in an operation mode called a green mode is described. In this green mode, when the total power consumption due to the load is larger than the generated power of the photovoltaic power generation device, that is, when a shortage power is generated, the charging / discharging device discharges the power corresponding to the shortage power. On the other hand, when surplus power that is not used by the load is generated among the power generated by the photovoltaic power generation device, the charge / discharge device charges the surplus power. However, if the charging / discharging device is already fully charged, the surplus power is sold to the power system. As described above, in the green mode, the charging / discharging device operates so that the buying and selling of electric power between the distributed power supply system and the electric power system is reduced.

尚、特許文献1では、充放電装置に加えて複数の発電装置が設置された分散型電源システムは記載されていない。 It should be noted that Patent Document 1 does not describe a distributed power supply system in which a plurality of power generation devices are installed in addition to the charging / discharging device.

特開2015-159726号公報Japanese Unexamined Patent Publication No. 2015-159726

特許文献1には太陽光発電装置が発電した余剰電力が売電される例が記載されているが、太陽光発電装置とは別の発電装置が追加で設置された分散型発電システムの場合、電力系統への売電単価が発電装置毎に異なることも想定される。その場合、電力系統へ売電される余剰電力は、売電単価の高い発電装置の発電電力になる可能性や、売電単価の低い発電装置の発電電力になる可能性がある。そのため、上述したようなグリーンモードで充放電装置を動作させるとしても、売電単価の低い電力ができるだけ充放電装置で充電されるような制御を行うことができれば好ましい。つまり、売電単価の低い発電装置の発電電力が大きくなる時点よりも前には、充放電装置の充放電部に充分な充電余裕が確保されていることが好ましい。 Patent Document 1 describes an example in which surplus power generated by a photovoltaic power generation device is sold, but in the case of a distributed power generation system in which a power generation device other than the photovoltaic power generation device is additionally installed, It is also assumed that the unit price of electricity sold to the power system will differ for each power generation device. In that case, the surplus power sold to the power system may be the generated power of a power generation device having a high unit selling price or the power generated by a power generation device having a low unit selling price. Therefore, even if the charging / discharging device is operated in the green mode as described above, it is preferable that the charging / discharging device can be controlled so that the electric power having a low unit selling price can be charged as much as possible. That is, it is preferable that a sufficient charge margin is secured in the charge / discharge portion of the charge / discharge device before the time when the generated power of the power generation device having a low unit selling price becomes large.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、電力系統との間での電力の売買を少なくしつつ、電力系統への売電を行う場合には経済的なメリットが大きくなるような分散型電源システムを提供する点にある。 The present invention has been made in view of the above problems, and an object of the present invention is an economic merit in selling electric power to an electric power system while reducing the sale and purchase of electric power to and from the electric power system. The point is to provide a distributed power supply system that increases the size of the power supply.

上記目的を達成するための本発明に係る分散型電源システムの特徴構成は、電力系統に接続される交流線と、前記交流線に接続される第1発電装置と、前記交流線に接続される第2発電装置と、前記交流線に接続され、前記交流線との間で電力の充放電を行う蓄電池を含む充放電部、及び、所定の上限充電レベルを前記充放電部の充電レベルの上限とし且つ所定の下限充電レベルを前記充放電部の充電レベルの下限として前記充放電部による充放電を制御する充放電制御部を有する充放電装置とを備え、前記交流線に電力消費装置が接続されている分散型電源システムであって、
前記第1発電装置の発電電力を前記電力系統に売電するときの第1売電単価が、前記第2発電装置の発電電力を前記電力系統に売電するときの第2売電単価よりも低く設定されており、
前記充放電装置の前記充放電制御部は、
前記第1発電装置の発電電力と前記第2発電装置の発電電力との和である合計発電電力が前記電力消費装置の消費電力以上である余剰電力発生状態の場合、前記充放電部の充電レベルが前記上限充電レベルになるまで、前記合計発電電力から前記消費電力を減算して導出できる余剰電力に相当する電力を前記交流線から前記充放電部に充電することを目標とする余剰電力対処モードで前記充放電部の動作を制御し、
前記合計発電電力が前記消費電力より小さい不足電力発生状態の場合、前記充放電部の充電レベルが前記下限充電レベルになるまで、前記消費電力から前記合計発電電力を減算して導出できる不足電力に相当する電力を前記充放電部から前記交流線に放電することを目標とする不足電力対処モードで前記充放電部の動作を制御し、
前記余剰電力発生状態の場合に前記充放電部で充電できなかった分の未処理余剰電力は前記電力系統へ、前記第1売電単価及び前記第2売電単価に基づいて決定される所定の売電料金で売電され、
前記不足電力発生状態の場合に前記充放電部の放電により賄うことができなかった分の未処理不足電力は前記電力系統から所定の買電料金で買電され、
前記余剰電力対処モードで前記充放電部の動作を制御する場合、1日の中の、前記第1発電装置の発電電力が相対的に大きくなる第1時間帯では所定の第1上限レベルを前記上限充電レベルに設定して前記充放電部による充電を制御し、1日の中の、前記第1発電装置の発電電力が相対的に小さくなる第2時間帯では、前記第1上限レベルよりも小さい所定の第2上限レベルを前記上限充電レベルに設定して前記充放電部による充電を制御する点にある。
ここで、前記第1発電装置及び前記第2発電装置の少なくとも一方は、自然エネルギを利用して発電する装置であってもよい。
The characteristic configuration of the distributed power supply system according to the present invention for achieving the above object is the AC line connected to the power system, the first power generation device connected to the AC line, and the AC line. The second power generation device, a charge / discharge unit including a storage battery connected to the AC line and charging / discharging power between the AC lines, and a predetermined upper limit charge level as the upper limit of the charge level of the charge / discharge unit. A charging / discharging device having a charging / discharging control unit for controlling charging / discharging by the charging / discharging unit is provided with a predetermined lower limit charging level as the lower limit of the charging level of the charging / discharging unit, and a power consuming device is connected to the AC line. It is a distributed power supply system that has been developed.
The first power selling unit price when selling the generated power of the first power generation device to the power system is higher than the second power selling unit price when selling the generated power of the second power generation device to the power system. It is set low and
The charge / discharge control unit of the charge / discharge device is
When the total generated power, which is the sum of the generated power of the first power generation device and the generated power of the second power generation device, is equal to or greater than the power consumption of the power consuming device, the charging level of the charging / discharging unit is in the surplus power generation state. Is a surplus power coping mode in which the charging / discharging portion is charged with power corresponding to the surplus power that can be derived by subtracting the power consumption from the total power generation until the upper limit charging level is reached. Controls the operation of the charge / discharge unit with
When the total generated power is smaller than the power consumption, the total generated power can be derived by subtracting the total generated power from the power consumption until the charge level of the charge / discharge unit reaches the lower limit charge level. The operation of the charge / discharge unit is controlled in the insufficient power coping mode, which aims to discharge the corresponding power from the charge / discharge unit to the AC line.
In the case of the surplus power generation state, the unprocessed surplus power that could not be charged by the charging / discharging unit is determined to the power system based on the first power selling unit price and the second power selling unit price. Power is sold at the power selling fee,
In the case of the shortage power generation state, the unprocessed shortage power that could not be covered by the discharge of the charge / discharge unit is purchased from the power system at a predetermined power purchase fee.
When controlling the operation of the charge / discharge unit in the surplus power coping mode, the predetermined first upper limit level is set in the first time zone in which the generated power of the first power generation device becomes relatively large during the day. In the second time zone in which the power generated by the first power generation device is relatively small during the day, the charging by the charge / discharge unit is controlled by setting the upper limit charge level, and the charge is higher than the first upper limit level. A small predetermined second upper limit level is set to the upper limit charge level to control charging by the charge / discharge unit.
Here, at least one of the first power generation device and the second power generation device may be a device that uses natural energy to generate power.

上記特徴構成によれば、充放電装置は、余剰電力が発生した場合には余剰電力対処モードによってその余剰電力をできるだけ充電し、不足電力が発生した場合には不足電力対処モードによってその不足電力を賄うようにできるだけ放電する。このように、充放電装置が充電及び放電を行うことで、電力系統との間で売買される電力が少なくなり、分散型電源システム自身の第1発電装置及び第2発電装置で発電した電力が自身の電力消費装置で有効に活用される。 According to the above-mentioned feature configuration, when the surplus power is generated, the charge / discharge device charges the surplus power as much as possible by the surplus power coping mode, and when the shortage power is generated, the shortage power is charged by the shortage power coping mode. Discharge as much as possible to cover it. By charging and discharging the charging / discharging device in this way, the amount of power exchanged with the power system is reduced, and the power generated by the first power generation device and the second power generation device of the distributed power generation system itself is reduced. It is effectively used in its own power consumption device.

加えて、充放電制御部は、余剰電力対処モードで充放電部の動作を制御する場合、1日の中の、第1発電装置の発電電力が相対的に大きくなる第1時間帯では所定の第1上限レベルを上限充電レベルに設定して充放電部による充電を制御し、1日の中の、第1発電装置の発電電力が相対的に小さくなる第2時間帯では、第1上限レベルよりも小さい所定の第2上限レベルを上限充電レベルに設定して充放電部による充電を制御する。つまり、第2時間帯では上限充電レベルが相対的に低く設定されているため、その後、上限充電レベルが相対的に高く設定される第1時間帯では、大きな電力量を充電できるだけの余裕が存在する。また、第1時間帯では、電力系統への売電単価が低い余剰電力が大きくなる可能性が高くなる。そのため、大きな電力量を充電できるだけの余裕が存在する第1時間帯において、売電単価の低い第1発電装置の発電電力が充放電装置で充電され易くなる。言い換えると、売電単価が低い電力を余剰電力として電力系統に売らざるを得なくなる状況をできるだけ回避できる。
従って、電力系統との間での電力の売買を少なくしつつ、電力系統への売電を行う場合には経済的なメリットが大きくなるような分散型電源システムを提供できる。
In addition, when the charge / discharge control unit controls the operation of the charge / discharge unit in the surplus power coping mode, it is predetermined in the first time zone during the day when the generated power of the first power generation device is relatively large. The first upper limit level is set to the upper limit charge level to control charging by the charge / discharge unit, and in the second time zone in which the generated power of the first power generation device becomes relatively small during the day, the first upper limit level is set. A predetermined second upper limit level smaller than is set as the upper limit charge level to control charging by the charging / discharging unit. That is, since the upper limit charge level is set relatively low in the second time zone, there is a margin for charging a large amount of electric power in the first time zone in which the upper limit charge level is set relatively high thereafter. do. Further, in the first time zone, there is a high possibility that the surplus power, which has a low unit price for selling power to the power system, will increase. Therefore, in the first time zone in which there is a margin for charging a large amount of electric power, the generated power of the first power generation device having a low unit selling price is easily charged by the charging / discharging device. In other words, it is possible to avoid the situation where the electric power having a low unit selling price has to be sold to the electric power system as surplus electric power as much as possible.
Therefore, it is possible to provide a distributed power supply system that has a great economic merit when selling power to the power system while reducing the buying and selling of power with the power system.

本発明に係る分散型電源システムの更に別の特徴構成は、前記第1発電装置は太陽光発電装置であり、前記第1時間帯及び前記第2時間帯は日の出時刻及び日の入り時刻に応じて設定される点にある。 Yet another characteristic configuration of the distributed power generation system according to the present invention is that the first power generation device is a solar power generation device, and the first time zone and the second time zone are set according to the sunrise time and the sunset time. It is in the point of being done.

上記特徴構成によれば、太陽光発電装置の発電電力が相対的に大きくなる第1時間帯と、太陽光発電装置の発電電力が相対的に小さくなる第2時間帯とを、日の出時刻及び日の入時刻に応じて適切に設定できる。 According to the above characteristic configuration, the first time zone in which the generated power of the photovoltaic power generation device is relatively large and the second time zone in which the generated power of the photovoltaic power generation device is relatively small are set as the sunrise time and the day. It can be set appropriately according to the input time of.

本発明に係る分散型電源システムの更に別の特徴構成は、前記第1時間帯は、前記第1発電装置の発電電力が設定発電電力以上になる又は前記設定発電電力以上になると予測される時間帯を含み、前記第2時間帯は、前記第1発電装置の発電電力が前記設定発電電力より小さくなる又は前記設定発電電力より小さくなると予測される時間帯を含む点にある。 Yet another characteristic configuration of the distributed power supply system according to the present invention is the time during which the generated power of the first power generation device is predicted to be equal to or higher than the set generated power or equal to or higher than the set generated power in the first time zone. The second time zone includes a band, and the second time zone includes a time zone in which the generated power of the first power generation device is predicted to be smaller than the set power generation power or smaller than the set power generation power.

上記特徴構成によれば、第1発電装置の発電電力が実際に設定発電電力以上になる時間帯又は設定発電電力以上になると予測される時間帯を、第1発電装置の発電電力が相対的に大きくなる第1時間帯として適切に設定できる。また、第1発電装置の発電電力が実際に設定発電電力より小さくなる又は設定発電電力より小さくなると予測される時間帯を、第1発電装置の発電電力が相対的に小さくなる第2時間帯として適切に設定できる。 According to the above characteristic configuration, the generated power of the first power generation device is relatively relative to the time zone in which the generated power of the first power generation device actually exceeds the set generated power or is predicted to exceed the set generated power. It can be appropriately set as the first time zone when it becomes large. Further, the time zone in which the generated power of the first power generation device is actually smaller than the set generated power or predicted to be smaller than the set generated power is defined as the second time zone in which the generated power of the first power generation device is relatively small. Can be set appropriately.

本発明に係る分散型電源システムの更に別の特徴構成は、前記充放電装置の前記充放電制御部は、次に到来する前記第2時間帯で設定する前記第2上限レベルを、所定の判定期間での電力コストが最も小さくなる値に決定する上限レベル決定処理を事前に行うように構成され、
前記上限レベル決定処理では、
前記判定期間での前記第1発電装置の発電電力と前記第2発電装置の発電電力との和である前記合計発電電力の時間的変化が分かる基準発電電力データ及び前記電力消費装置の前記消費電力の時間的変化が分かる基準消費電力データを参照して前記不足電力発生状態になる期間と前記余剰電力発生状態になる期間とを特定し、
前記判定期間での前記電力コストを、前記不足電力発生状態になるのに応じて前記不足電力対処モードで前記充放電部の動作を制御しながら前記電力系統から電力を買う場合の前記買電料金と、前記余剰電力発生状態になるのに応じて前記余剰電力対処モードで前記充放電部の動作を制御しながら前記電力系統へ電力を売る場合の前記売電料金とに基づいて導出する点にある。
ここで、前記基準発電電力データは、過去の前記第1発電装置の発電電力と前記第2発電装置の発電電力との和である前記合計発電電力の時間的変化が分かるデータを用いて作成され、前記基準消費電力データは、過去の前記電力消費装置の前記消費電力の時間的変化が分かるデータを用いて作成されてもよい。
Yet another characteristic configuration of the distributed power supply system according to the present invention is that the charge / discharge control unit of the charge / discharge device determines the second upper limit level to be set in the second time zone that arrives next. It is configured to perform the upper limit level determination process in advance to determine the value that minimizes the power cost in the period.
In the upper limit level determination process,
The reference power generation power data showing the temporal change of the total power generation power, which is the sum of the power generation power of the first power generation device and the power generation power of the second power generation device in the determination period, and the power consumption of the power consumption device. By referring to the reference power consumption data that shows the change over time, specify the period during which the shortage power generation state occurs and the period during which the surplus power generation state occurs.
The power purchase charge in the case of purchasing power from the power system while controlling the operation of the charge / discharge unit in the shortage power coping mode according to the power cost in the determination period in the shortage power generation state. And, in response to the surplus power generation state, the power is derived based on the power selling charge when the power is sold to the power system while controlling the operation of the charge / discharge unit in the surplus power coping mode. be.
Here, the reference power generation power data is created using data that shows the temporal change of the total power generation power, which is the sum of the power generation power of the first power generation device and the power generation power of the second power generation device in the past. , The reference power consumption data may be created by using data that shows the temporal change of the power consumption of the power consuming device in the past.

上記特徴構成によれば、判定期間での第1発電装置の発電電力と第2発電装置の発電電力との和である合計発電電力の基準発電電力データ及び電力消費装置の消費電力の基準消費電力データを参照して、電力コストが小さくなるような第2上限レベルを設定できる。 According to the above characteristic configuration, the standard power generation data of the total power generation, which is the sum of the power generated by the first power generation device and the power generated by the second power generation device in the determination period, and the standard power consumption of the power consumption device. With reference to the data, a second upper limit level can be set so that the power cost is reduced.

本発明に係る分散型電源システムの更に別の特徴構成は、前記充放電装置の前記充放電制御部は、前記上限レベル決定処理において、前記判定期間の終了時点での前記充放電部の充電レベルが、前記判定期間の開始時点での前記充放電部の充電レベルよりも所定の増加分だけ大きくなる場合、前記増加分に相当する電力を前記電力系統へ売ると仮定した場合の料金を前記売電料金に含め、前記判定期間の終了時点での前記充放電部の充電レベルが、前記判定期間の開始時点での前記充放電部の充電レベルよりも所定の減少分だけ小さくなる場合、前記減少分に相当する電力を前記電力系統から買うと仮定した場合の料金を前記買電料金に含める点にある。 Yet another characteristic configuration of the distributed power supply system according to the present invention is that the charge / discharge control unit of the charge / discharge device determines the charge level of the charge / discharge unit at the end of the determination period in the upper limit level determination process. However, when the charge level of the charge / discharge unit becomes larger than the charge level of the charge / discharge unit at the start of the determination period by a predetermined increase, the charge when it is assumed that the power corresponding to the increase is sold to the power system is sold. When the charge level of the charge / discharge unit at the end of the determination period is smaller than the charge level of the charge / discharge unit at the start of the determination period by a predetermined decrease, the decrease is included in the electricity charge. The point is that the charge when it is assumed that the electric power corresponding to the minute is purchased from the electric power system is included in the electric discharge charge.

上記特徴構成によれば、上限レベル決定処理において、元から充放電部に蓄えられていた電力が判定期間の開始時点と終了時点との間で変化する場合には、その変化する分の電力の料金が電力コストの計算に含められる。その結果、上限レベル決定処理での電力コストの計算がより詳細に行われるようになる。 According to the above feature configuration, when the power originally stored in the charge / discharge unit changes between the start time and the end time of the judgment period in the upper limit level determination process, the changed amount of power is used. Charges are included in the electricity cost calculation. As a result, the calculation of the power cost in the upper limit level determination process becomes more detailed.

分散型電源システムの構成を示す図である。It is a figure which shows the structure of the distributed power supply system. 充放電装置が余剰電力対処モードで動作している場合の例である。This is an example when the charging / discharging device is operating in the surplus power handling mode. 充放電装置が不足電力対処モードで動作している場合の例である。This is an example when the charging / discharging device is operating in the insufficient power handling mode. 電力及び充電レベルの推移を示すグラフである。It is a graph which shows the transition of electric power and charge level. 上限レベル決定処理の一例を説明する表である。It is a table explaining an example of the upper limit level determination process. 上限レベル決定処理の一例を説明する表である。It is a table explaining an example of the upper limit level determination process.

以下に図面を参照して本発明の実施形態に係る分散型電源システムについて説明する。
図1は、分散型電源システムの構成を示す図である。図示するように、分散型電源システムは、電力系統1に接続される交流線2と、交流線2に接続される第1発電装置としての太陽光発電装置PVと、交流線2に接続される第2発電装置としての燃料電池装置10と、交流線2に接続される充放電装置20とを備え、交流線2に電力消費装置3が接続されている。
The distributed power supply system according to the embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a distributed power supply system. As shown in the figure, the distributed power generation system is connected to the AC line 2 connected to the power system 1, the solar power generation device PV as the first power generation device connected to the AC line 2, and the AC line 2. A fuel cell device 10 as a second power generation device and a charging / discharging device 20 connected to an AC line 2 are provided, and a power consuming device 3 is connected to the AC line 2.

〔太陽光発電装置PV〕
第1発電装置としての太陽光発電装置PVは、入射光(太陽光)が有する光エネルギを電気エネルギに直接変換する素子(図示せず)と、その素子で発生した電力を所望の電圧、周波数、位相の電力に変換して交流線2に出力するための電力変換部(図示せず)とを有して構成される。
[Solar power generation device PV]
The photovoltaic power generation device PV as the first power generation device has an element (not shown) that directly converts the optical energy of the incident light (sunlight) into electrical energy, and the electric power generated by the element at a desired voltage and frequency. It is configured to have a power conversion unit (not shown) for converting to phase power and outputting to the AC line 2.

太陽光発電装置PVの発電電力を電力系統1へと売電できる。太陽光発電装置PVの発電電力を電力系統1に売電する場合の売電単価(第1売電単価)は予め設定されており、例えば充放電装置20の記憶装置(図示せず)などに記憶されている。尚、この売電単価は例えばインターネット通信等によって取得した値に逐次更新されてもよい。 The generated power of the photovoltaic power generation device PV can be sold to the power system 1. The unit selling price (first unit selling price) when selling the generated power of the photovoltaic power generation device PV to the power system 1 is set in advance, for example, in a storage device (not shown) of the charging / discharging device 20. It is remembered. The unit price of electricity sold may be sequentially updated to a value acquired by, for example, Internet communication.

〔燃料電池装置10〕
第2発電装置としての燃料電池装置10は、発電部としての燃料電池部12及び燃料電池部12の動作を制御する発電制御部としての燃料電池制御部11を有する。燃料電池部12は、燃料電池12a及び燃料電池12aで発生した電力を、所望の電圧、周波数、位相の電力に変換して交流線2に出力するための電力変換部12bを有する。
[Fuel cell device 10]
The fuel cell device 10 as the second power generation device has a fuel cell unit 12 as a power generation unit and a fuel cell control unit 11 as a power generation control unit that controls the operation of the fuel cell unit 12. The fuel cell unit 12 has a power conversion unit 12b for converting the electric power generated by the fuel cell 12a and the fuel cell 12a into electric power having a desired voltage, frequency, and phase and outputting the electric power to the AC line 2.

燃料電池12aは、例えば固体酸化物形燃料電池(SOFC)を用いて実現できる。或いは、燃料電池12aを、固体高分子形燃料電池(PEFC)などの他のタイプの燃料電池12aを用いて実現してもよい。尚、図示は省略するが、燃料電池部12が、燃料電池12aのアノードに供給する燃料ガスとしての水素等を改質処理により生成する燃料改質器などを備えていてもよい。そして、燃料電池制御部11は、燃料電池12aの運転開始、運転停止、出力状態などを制御する。また、燃料電池制御部11は、電力変換部12bによる電力変換動作を制御する。 The fuel cell 12a can be realized by using, for example, a solid oxide fuel cell (SOFC). Alternatively, the fuel cell 12a may be realized by using another type of fuel cell 12a such as a polymer electrolyte fuel cell (PEFC). Although not shown, the fuel cell unit 12 may include a fuel reformer or the like that produces hydrogen or the like as a fuel gas supplied to the anode of the fuel cell 12a by a reforming process. Then, the fuel cell control unit 11 controls the operation start, operation stop, output state, and the like of the fuel cell 12a. Further, the fuel cell control unit 11 controls the power conversion operation by the power conversion unit 12b.

燃料電池装置10の燃料電池制御部11は、例えば定格発電電力などの一定の発電電力を交流線2に出力するように燃料電池部12の動作を制御する。
或いは、燃料電池装置10の燃料電池制御部11は、燃料電池部12から交流線2に供給する発電電力を電力消費装置3の消費電力に追従するように(例えば両者が等しくなるように)燃料電池部12の動作を制御してもよい。
The fuel cell control unit 11 of the fuel cell device 10 controls the operation of the fuel cell unit 12 so as to output a constant power generation power such as a rated power generation power to the AC line 2.
Alternatively, the fuel cell control unit 11 of the fuel cell device 10 fuels the generated power supplied from the fuel cell unit 12 to the AC line 2 so as to follow the power consumption of the power consumption device 3 (for example, both are equal). The operation of the battery unit 12 may be controlled.

燃料電池装置10の発電電力を電力系統1へと売電できる。燃料電池装置10の発電電力を電力系統1に売電する場合の売電単価(第2売電単価)は予め設定されており、例えば充放電装置20の記憶装置(図示せず)などに記憶されている。尚、この売電単価は例えばインターネット通信等によって取得した値に逐次更新されてもよい。本実施形態では、太陽光発電装置PVの発電電力を電力系統1に売電するときの第1売電単価が、燃料電池装置10の発電電力を電力系統1に売電するときの第2売電単価よりも低く設定されている。そのため、本実施形態では、太陽光発電装置PVの発電電力を電力系統1へ売電するよりも、燃料電池装置10の発電電力を電力系統1へ売電する方がコスト的に好ましい。 The generated power of the fuel cell device 10 can be sold to the power system 1. The unit selling price (second unit selling price) when selling the generated power of the fuel cell device 10 to the power system 1 is set in advance, and is stored in, for example, a storage device (not shown) of the charging / discharging device 20. Has been done. The unit price of electricity sold may be sequentially updated to a value acquired by, for example, Internet communication. In the present embodiment, the first selling unit price when selling the generated power of the photovoltaic power generation device PV to the power system 1 is the second selling price when selling the generated power of the fuel cell device 10 to the power system 1. It is set lower than the unit price of electricity. Therefore, in the present embodiment, it is more cost-effective to sell the generated power of the fuel cell device 10 to the power system 1 than to sell the generated power of the photovoltaic power generation device PV to the power system 1.

〔充放電装置20〕
充放電装置20は、交流線2との間での電力の充放電を行う蓄電池22aを含む充放電部22及び充放電部22の動作を制御する充放電制御部21を有する。加えて、本実施形態の充放電部22では、蓄電池22aは電力変換部22bを介して交流線2に接続される。その結果、充放電部22では、蓄電池22aに蓄えられている電力を、所望の電圧、周波数、位相の電力に変換して交流線2に出力できる。この場合、充放電制御部21は、所定の上限充電レベルを充放電部22の充電レベルの上限とし且つ所定の下限充電レベルを充放電部22の充電レベルの下限として充放電部22による充放電を制御する。蓄電池22aは、例えばリチウムイオン電池等の二次電池などを用いて構成できる。充放電制御部21は、電力変換部22bの動作を制御して、充放電部22から交流線2への放電電力の制御と、交流線2から充放電部22への充電電力の制御とを行う。
[Charging / discharging device 20]
The charging / discharging device 20 has a charging / discharging unit 22 including a storage battery 22a that charges / discharges electric power to / from the AC line 2, and a charging / discharging control unit 21 that controls the operation of the charging / discharging unit 22. In addition, in the charging / discharging unit 22 of the present embodiment, the storage battery 22a is connected to the AC line 2 via the power conversion unit 22b. As a result, the charging / discharging unit 22 can convert the electric power stored in the storage battery 22a into electric power having a desired voltage, frequency, and phase and output the electric power to the AC line 2. In this case, the charge / discharge control unit 21 charges / discharges the charge / discharge unit 22 with a predetermined upper limit charge level as the upper limit of the charge level of the charge / discharge unit 22 and a predetermined lower limit charge level as the lower limit of the charge level of the charge / discharge unit 22. To control. The storage battery 22a can be configured by using, for example, a secondary battery such as a lithium ion battery. The charge / discharge control unit 21 controls the operation of the power conversion unit 22b to control the discharge power from the charge / discharge unit 22 to the AC line 2 and the charge power from the AC line 2 to the charge / discharge unit 22. conduct.

充放電制御部21には、電力計測器5で計測される電力についての情報が伝達される。本実施形態では、電力計測器5は、太陽光発電装置PVが接続されている箇所よりも上流側(電力系統1側)に設けられ、電力系統1から交流線2へと供給される電力を計測する。電力計測器5で計測される電力が正の値の場合、分散型電源システムは電力系統1から電力を買っていることになり、電力計測器5で計測される電力が負の値の場合、分散型電源システムは電力系統1へ電力を売っていることになる。電力計測器5は、例えば交流線2における電力の電流値を検出するために用いられるカレントトランス(計器用変流器)を用いて構成され、所定の電圧値(例えば100V、200V等)との積から、交流線2での電力値を導出できる。尚、電力計測器5は交流線2での電力の電流値のみを充放電制御部21に伝達し、充放電制御部21が電力値の導出を行ってもよい。そして、充放電制御部21は、電力計測器5の計測結果を参照して、充放電制御部21が充放電部22の充放電を制御する。 Information about the electric power measured by the electric power measuring instrument 5 is transmitted to the charge / discharge control unit 21. In the present embodiment, the power measuring instrument 5 is provided on the upstream side (power system 1 side) of the location to which the photovoltaic power generation device PV is connected, and receives the power supplied from the power system 1 to the AC line 2. measure. If the power measured by the power measuring instrument 5 is a positive value, the distributed power supply system is buying power from the power system 1, and if the power measured by the power measuring instrument 5 is a negative value, it means that the distributed power supply system is buying power. The distributed power supply system sells power to the power system 1. The power measuring instrument 5 is configured by using, for example, a current transformer (current transformer for an instrument) used for detecting the current value of electric power in the AC line 2, and has a predetermined voltage value (for example, 100V, 200V, etc.). From the product, the power value on the AC line 2 can be derived. The power measuring instrument 5 may transmit only the current value of the power on the AC line 2 to the charge / discharge control unit 21, and the charge / discharge control unit 21 may derive the power value. Then, in the charge / discharge control unit 21, the charge / discharge control unit 21 controls the charge / discharge of the charge / discharge unit 22 with reference to the measurement result of the power measuring instrument 5.

充放電装置20が交流線2に電力を放電している場合、電力計測器5が計測する電力は、電力消費装置3が交流線2から受け取る消費電力から、太陽光発電装置PVが交流線2に供給する発電電力と燃料電池装置10が交流線2に供給する発電電力と充放電装置20が交流線2に供給する放電電力との和の電力を減算した値になる。それに対して、充放電装置20が交流線2の電力を充電している場合、電力計測器5が計測する電力は、電力消費装置3が交流線2から受け取る消費電力と充放電装置20が交流線2から充電している充電電力との和の電力から、太陽光発電装置PVが交流線2に供給する発電電力と燃料電池装置10が交流線2に供給する発電電力との和の電力を減算した値になる。 When the charging / discharging device 20 discharges power to the AC line 2, the power measured by the power measuring instrument 5 is the power consumed by the power consuming device 3 from the AC line 2, and the solar power generation device PV receives the power from the AC line 2. It is a value obtained by subtracting the sum of the generated power supplied to the AC line 2, the generated power supplied by the fuel cell device 10 to the AC line 2, and the discharge power supplied by the charging / discharging device 20 to the AC line 2. On the other hand, when the charging / discharging device 20 is charging the power of the AC line 2, the power measured by the power measuring device 5 is the power consumed by the power consuming device 3 from the AC line 2 and the AC of the charging / discharging device 20. From the sum of the charging power charged from the line 2, the sum of the power generated by the solar power generation device PV to the AC line 2 and the power generated by the fuel cell device 10 to the AC line 2 is calculated. It becomes the subtracted value.

本実施形態では、充放電装置20の充放電制御部21は、分散型電源システムと電力系統1との間での電力の売買ができるだけ少なくなるような制御を行う。具体的には、充放電装置20の充放電制御部21は、太陽光発電装置PV(第1発電装置)の発電電力と燃料電池装置10(第2発電装置)の発電電力との和である合計発電電力が電力消費装置3の消費電力以上である余剰電力発生状態の場合、充放電部22の充電レベルが上限充電レベルになるまで、合計発電電力から消費電力を減算して導出できる余剰電力に相当する電力を交流線2から充放電部22に充電することを目標とする余剰電力対処モードで充放電部22の動作を制御する。この余剰電力対処モードにより、上記余剰電力ができるだけ充放電部22に充電される。 In the present embodiment, the charge / discharge control unit 21 of the charge / discharge device 20 controls so that the buying and selling of electric power between the distributed power supply system and the power system 1 is minimized. Specifically, the charge / discharge control unit 21 of the charge / discharge device 20 is the sum of the power generated by the solar power generation device PV (first power generation device) and the power generated by the fuel cell device 10 (second power generation device). When the total generated power is equal to or higher than the power consumed by the power consuming device 3, the surplus power that can be derived by subtracting the power consumption from the total generated power until the charging level of the charging / discharging unit 22 reaches the upper limit charging level. The operation of the charge / discharge unit 22 is controlled in the surplus power coping mode in which the charge / discharge unit 22 is charged with the electric power corresponding to the above. In this surplus power coping mode, the surplus power is charged to the charging / discharging unit 22 as much as possible.

それに対して、合計発電電力が消費電力より小さい不足電力発生状態の場合、充放電部22の充電レベルが下限充電レベルになるまで、消費電力から合計発電電力を減算して導出できる不足電力に相当する電力を充放電部22から交流線2に放電することを目標とする不足電力対処モードで充放電部22の動作を制御する。この不足電力対処モードにより、充放電部22が上記不足電力をできるだけ賄うように放電する。 On the other hand, when the total generated power is smaller than the power consumption, it corresponds to the shortage power that can be derived by subtracting the total generated power from the power consumption until the charge level of the charge / discharge unit 22 reaches the lower limit charge level. The operation of the charge / discharge unit 22 is controlled in the insufficient power coping mode, which aims to discharge the power to be generated from the charge / discharge unit 22 to the AC line 2. In this shortage power coping mode, the charging / discharging unit 22 discharges so as to cover the shortage power as much as possible.

図2は、充放電装置20が余剰電力対処モードで動作している場合の例である。尚、図中に記載する電力値は例示目的で記載した値である。図示するように、太陽光発電装置PVの発電電力(1kW)と燃料電池装置10の発電電力(0.7kW)との和である合計発電電力(1.7kW)は、電力消費装置3の消費電力(0.5kW)以上である余剰電力発生状態になっている。仮に充放電装置20が充電も放電も行っていなければ、1.2kWの電力が電力系統1へと売電されるが、図2に示す例では、充放電装置20が1.1kWの電力を充電している。このように、充放電装置20の充放電制御部21は、電力計測器5の計測される電力(売電電力)ができるだけ小さくなるように、充放電部22の充電レベルが上限充電レベルになるまで、余剰電力に相当する電力を交流線2から充放電部22に充電する。尚、その余剰電力に相当する電力を充放電部22に充電することを目標とした場合であっても、充放電部22の充電レベルが上限充電レベルに到達するとそれ以上は充電できず、充電する電力が充放電部22の充電電力の上限値(例えば、電力変換部22bの容量など)に達するとそれ以上の電力は充電できない。充放電部22への充電が行われることで、図2に示す例では、充放電部22で充電できなかった分の未処理余剰電力(0.1kW)のみが電力系統1へ売電される。 FIG. 2 is an example of the case where the charging / discharging device 20 is operating in the surplus power coping mode. The electric power value shown in the figure is a value described for the purpose of illustration. As shown in the figure, the total generated power (1.7 kW), which is the sum of the generated power (1 kW) of the photovoltaic power generation device PV and the generated power (0.7 kW) of the fuel cell device 10, is the consumption of the power consumption device 3. The surplus power generation state is such that the power (0.5 kW) or more is generated. If the charging / discharging device 20 is neither charging nor discharging, 1.2 kW of electric power is sold to the power system 1, but in the example shown in FIG. 2, the charging / discharging device 20 transfers 1.1 kW of electric power. It is charging. In this way, in the charge / discharge control unit 21 of the charge / discharge device 20, the charge level of the charge / discharge unit 22 becomes the upper limit charge level so that the measured power (power selling power) of the power measuring instrument 5 becomes as small as possible. Up to, the power corresponding to the surplus power is charged from the AC line 2 to the charging / discharging unit 22. Even if the goal is to charge the charging / discharging unit 22 with the power corresponding to the surplus power, when the charging level of the charging / discharging unit 22 reaches the upper limit charging level, the charging / discharging unit 22 cannot be charged any more and is charged. When the power to be charged reaches the upper limit of the charging power of the charging / discharging unit 22 (for example, the capacity of the power conversion unit 22b), no more power can be charged. By charging the charging / discharging unit 22, in the example shown in FIG. 2, only the unprocessed surplus power (0.1 kW) that could not be charged by the charging / discharging unit 22 is sold to the power system 1. ..

図3は、充放電装置20が不足電力対処モードで動作している場合の例である。尚、図中に記載する電力値は例示目的で記載した値である。図示するように、太陽光発電装置PVの発電電力(0kW)と燃料電池装置10の発電電力(0.7kW)との和である合計発電電力(0.7kW)は、電力消費装置3の消費電力(2kW)より小さい不足電力発生状態になっている。仮に充放電装置20が充電も放電も行っていなければ、1.3kWの電力が電力系統1から買電されるが、図3に示す例では、充放電装置20が1.3kWの電力を放電している。このように、充放電装置20の充放電制御部21は、電力計測器5の計測される電力(買電電力)ができるだけ小さくなるように、充放電部22の充電レベルが下限充電レベルになるまで、不足電力に相当する電力を充放電部22から交流線2に放電する。尚、その不足電力に相当する電力を充放電部22から放電することを目標とした場合であっても、充放電部22の充電レベルが下限充電レベルに到達するとそれ以上は放電できず、放電する電力が充放電部22の放電電力の上限値(例えば、電力変換部22bの容量など)に達するとそれ以上の電力は放電できない。充放電部22からの放電が行われることで、図3に示す例では、電力系統1から買電される電力はゼロになっている。電力系統1から電力を購入する場合の買電単価は予め設定されており、例えば充放電装置20の記憶装置(図示せず)などに記憶されている。尚、この買電単価は例えばインターネット通信等によって取得した値に逐次更新されてもよい。 FIG. 3 is an example of the case where the charging / discharging device 20 is operating in the insufficient power coping mode. The electric power value shown in the figure is a value described for the purpose of illustration. As shown in the figure, the total generated power (0.7 kW), which is the sum of the generated power (0 kW) of the photovoltaic power generation device PV and the generated power (0.7 kW) of the fuel cell device 10, is the consumption of the power consumption device 3. It is in a state of insufficient power generation smaller than the power consumption (2 kW). If the charging / discharging device 20 is neither charging nor discharging, 1.3 kW of electric power is purchased from the power system 1, but in the example shown in FIG. 3, the charging / discharging device 20 discharges 1.3 kW of electric power. is doing. In this way, in the charge / discharge control unit 21 of the charge / discharge device 20, the charge level of the charge / discharge unit 22 becomes the lower limit charge level so that the measured power (power purchase power) of the power measuring device 5 becomes as small as possible. Up to, the power corresponding to the insufficient power is discharged from the charge / discharge unit 22 to the AC line 2. Even when the goal is to discharge the power corresponding to the insufficient power from the charge / discharge unit 22, when the charge level of the charge / discharge unit 22 reaches the lower limit charge level, no further discharge can be performed and discharge is performed. When the power to be discharged reaches the upper limit value of the discharge power of the charge / discharge unit 22 (for example, the capacity of the power conversion unit 22b), no more power can be discharged. By discharging from the charging / discharging unit 22, the power purchased from the power system 1 is zero in the example shown in FIG. The unit price for purchasing electric power when purchasing electric power from the electric power system 1 is set in advance, and is stored in, for example, a storage device (not shown) of the charging / discharging device 20. It should be noted that this power purchase unit price may be sequentially updated to a value acquired by, for example, Internet communication or the like.

本実施形態の充放電装置20において、充放電制御部21は、所定の上限充電レベルを充放電部22の充電レベルの上限として充放電部22による充電を制御するが、その上限充電レベルは1日の中の複数の時間帯でそれぞれ設定される可変値である。具体的には、充放電制御部21は、余剰電力対処モードで充放電部22の動作を制御する場合、1日の中の、太陽光発電装置PV(第1発電装置)の発電電力が相対的に大きくなる第1時間帯では所定の第1上限レベルを上限充電レベルに設定して充放電部22による充電を制御し、1日の中の、太陽光発電装置PVの発電電力が相対的に小さくなる第2時間帯では、第1上限レベルよりも小さい所定の第2上限レベルを上限充電レベルに設定して充放電部22による充電を制御する。 In the charge / discharge device 20 of the present embodiment, the charge / discharge control unit 21 controls charging by the charge / discharge unit 22 with a predetermined upper limit charge level as the upper limit of the charge level of the charge / discharge unit 22, but the upper limit charge level is 1. It is a variable value set for each of multiple time zones in the day. Specifically, when the charge / discharge control unit 21 controls the operation of the charge / discharge unit 22 in the surplus power coping mode, the power generated by the solar power generation device PV (first power generation device) during the day is relative. In the first time zone when the target becomes large, the predetermined first upper limit level is set to the upper limit charge level to control the charging by the charging / discharging unit 22, and the power generated by the solar power generation device PV during the day is relative. In the second time zone, which is smaller than the first upper limit level, a predetermined second upper limit level smaller than the first upper limit level is set as the upper limit charge level to control charging by the charging / discharging unit 22.

図4は、電力及び充電レベルの推移を示すグラフである。具体的には、図4(a)は電力消費装置3の消費電力のグラフである。図4(b)は太陽光発電装置PVの発電電力及び燃料電池装置10の発電電力及びそれらの合計の発電電力のグラフである。図4(c)は余剰電力及び不足電力のグラフである。これらのグラフでは、1時間の平均電力の推移を折れ線グラフで示している。例えば、図4(a)であれば、時刻7時台の平均消費電力を時刻7時での消費電力として示している。また、図4(d)は充電レベルのグラフである。このグラフでは、1時間の終了時点での蓄電池22aの充電レベルの推移を折れ線グラフで示している。例えば、時刻7時台の終了時点での充電レベルを、図4(d)では時刻7時での充電レベルとして示している。 FIG. 4 is a graph showing changes in electric power and charge level. Specifically, FIG. 4A is a graph of the power consumption of the power consuming device 3. FIG. 4B is a graph of the power generated by the photovoltaic power generation device PV, the power generated by the fuel cell device 10, and the total power generated by them. FIG. 4C is a graph of surplus power and insufficient power. In these graphs, the transition of the average power for one hour is shown as a line graph. For example, in FIG. 4A, the average power consumption in the 7 o'clock time range is shown as the power consumption at 7 o'clock time. Further, FIG. 4 (d) is a graph of the charge level. In this graph, the transition of the charge level of the storage battery 22a at the end of one hour is shown as a line graph. For example, the charge level at the end of the time 7 o'clock is shown as the charge level at the time 7 o'clock in FIG. 4D.

図4(b)に示すように、燃料電池装置10の発電電力は0.7kWで一定に制御されている。太陽光発電装置PVの発電電力は時刻6時台から時刻17時台までの間で発生する。このように太陽光発電装置PVは自然エネルギを利用して発電する装置であるため、発電電力の大きさはその自然エネルギ(太陽光の照射光強度)に応じて変化し、即ち、発電電力の大きさを自在に制御することはできず、発電電力が相対的に大きくなる時間帯と、発電電力が相対的に小さくなる時間帯とが存在する。本実施形態では、太陽光発電装置PVの発電電力が相対的に大きくなる時間帯を第1時間帯とし、その発電電力が相対的に小さくなる時間帯を第2時間帯とする。図4に示す例では、時刻6時から時刻18時までの間が第1時間帯であり、時刻18時から翌日の時刻6時までの間が第2時間帯である。 As shown in FIG. 4B, the generated power of the fuel cell device 10 is constantly controlled at 0.7 kW. The generated power of the photovoltaic power generation device PV is generated between 6 o'clock and 17 o'clock. In this way, since the photovoltaic power generation device PV is a device that generates power by using natural energy, the magnitude of the generated power changes according to the natural energy (irradiation light intensity of sunlight), that is, the generated power. The size cannot be freely controlled, and there are times when the generated power is relatively large and times when the generated power is relatively small. In the present embodiment, the time zone in which the generated power of the photovoltaic power generation device PV is relatively large is set as the first time zone, and the time zone in which the generated power is relatively small is set as the second time zone. In the example shown in FIG. 4, the period from time 6:00 to time 18:00 is the first time zone, and the period from time 18:00 to time 6:00 on the next day is the second time zone.

太陽光発電装置PVの場合、発電電力は受光した太陽光エネルギに応じて変化するため、第1時間帯及び第2時間帯は日の出時刻及び日の入り時刻に応じて設定できる。例えば、充放電装置20の充放電制御部21は、暦情報を参照して、日の出時刻から日の入り時刻までの間を第1時間帯に設定し、日の入り時刻から日の出時刻までの間を第2時間帯に設定できる。つまり、日の入り時刻から日の出時刻は1年の中で変化するため、1日の中で太陽光発電装置PVの発電電力が相対的に大きくなる時間帯及び相対的に小さくなる時間帯は1年の中で変化するが、暦情報を参照することで、第1時間帯及び第2時間帯を適切に設定できる。 In the case of the photovoltaic power generation device PV, since the generated power changes according to the received solar energy, the first time zone and the second time zone can be set according to the sunrise time and the sunset time. For example, the charge / discharge control unit 21 of the charge / discharge device 20 sets the period from the sunrise time to the sunset time as the first time zone with reference to the calendar information, and sets the period from the sunset time to the sunrise time as the second time. Can be set as a band. In other words, since the sunset time and the sunrise time change throughout the year, the time zone in which the generated power of the solar power generation device PV is relatively large and the time zone in which the power generated by the solar power generation device PV is relatively small is one year. Although it changes within, the first time zone and the second time zone can be appropriately set by referring to the calendar information.

或いは、充放電装置20の充放電制御部21は、第1時間帯が、太陽光発電装置PVの発電電力が設定発電電力以上になる又は設定発電電力以上になると予測される時間帯を含むように設定し、第2時間帯が、太陽光発電装置PVの発電電力が設定発電電力より小さくなる又は設定発電電力より小さくなると予測される時間帯を含むように設定してもよい。 Alternatively, the charge / discharge control unit 21 of the charge / discharge device 20 includes a time zone in which the first time zone is predicted to be equal to or higher than the set power generation power or higher than the set power generation power of the photovoltaic power generation device PV. The second time zone may be set to include a time zone in which the generated power of the photovoltaic power generation device PV is predicted to be smaller than the set generated power or smaller than the set generated power.

例えば、充放電装置20の充放電制御部21は、太陽光発電装置PVの発電電力についての情報を入手できる場合、太陽光発電装置PVの発電電力についての過去の時間的な変化が分かるデータ等(例えば、直近数日間の太陽光発電装置PVの発電電力データ等)を参照すれば、太陽光発電装置PVの発電電力が設定発電電力以上になると予測される時間帯(第1時間帯)及び設定発電電力より小さくなると予測される時間帯(第2時間帯)を予め特定できる。 For example, when the charge / discharge control unit 21 of the charge / discharge device 20 can obtain information on the generated power of the photovoltaic power generation device PV, data or the like that shows past changes in the generated power of the photovoltaic power generation device PV, etc. (For example, the power generation data of the PV of the photovoltaic power generation device for the last few days, etc.), the time zone (first time zone) in which the power generation power of the PV of the photovoltaic power generation device is predicted to be equal to or higher than the set power generation power, and A time zone (second time zone) that is predicted to be smaller than the set power generation can be specified in advance.

他にも、充放電装置20の充放電制御部21は、太陽光発電装置PVの発電電力についての情報を入手できる場合、現在の太陽光発電装置PVの発電電力を参照すれば、太陽光発電装置PVの発電電力が設定発電電力以上になっているか否かを判定できる。そこで、充放電装置20の充放電制御部21は、現在の太陽光発電装置PVの発電電力を参照して、その発電電力が設定発電電力以上になっていれば現在は第1時間帯であると判定し、その発電電力が設定発電電力よりも小さければ現在は第2時間帯であると判定できる。 In addition, if the charge / discharge control unit 21 of the charge / discharge device 20 can obtain information about the generated power of the photovoltaic power generation device PV, the photovoltaic power generation can be performed by referring to the generated power of the current photovoltaic power generation device PV. It is possible to determine whether or not the generated power of the device PV is equal to or higher than the set generated power. Therefore, the charge / discharge control unit 21 of the charge / discharge device 20 refers to the generated power of the current photovoltaic power generation device PV, and if the generated power is equal to or higher than the set generated power, it is currently in the first time zone. If the generated power is smaller than the set generated power, it can be determined that it is currently in the second time zone.

図4(c)に示すように、時刻18時から時刻0時までの6時間で不足電力が発生している。つまり、その6時間が、太陽光発電装置PVの発電電力と燃料電池装置10の発電電力との和である合計発電電力が電力消費装置3の消費電力より小さい不足電力発生状態になっている。それに対して、時刻0時から時刻18時までの18時間で余剰電力が発生している。つまり、その18時間が、太陽光発電装置PVの発電電力と燃料電池装置10の発電電力との和である合計発電電力が電力消費装置3の消費電力以上である余剰電力発生状態になっている。 As shown in FIG. 4C, insufficient power is generated in 6 hours from 18:00 to 0:00. That is, during those 6 hours, the total generated power, which is the sum of the generated power of the photovoltaic power generation device PV and the generated power of the fuel cell device 10, is in a state of insufficient power generation smaller than the power consumption of the power consumption device 3. On the other hand, surplus power is generated in 18 hours from 0:00 to 18:00. That is, the 18 hours are in a surplus power generation state in which the total generated power, which is the sum of the generated power of the photovoltaic power generation device PV and the generated power of the fuel cell device 10, is equal to or higher than the power consumption of the power consumption device 3. ..

尚、図4(c)に示したような余剰電力が発生しても、その全てを充放電装置20で充電できるとは限らない。例えば、充放電装置20の充放電部22の充電レベルが上限充電レベルに到達すれば、それ以上は充電できない。或いは、充電する電力が充放電部22の充電電力の上限値(例えば、電力変換部22bの容量など)に達すれば、それ以上の電力を充電できない。その場合、余剰電力発生状態の場合に充放電部22で充電できなかった分の未処理余剰電力は電力系統1へ、第1売電単価及び第2売電単価に基づいて決定される所定の売電料金(単価×電力量)で売電される。 Even if surplus power as shown in FIG. 4C is generated, not all of it can be charged by the charging / discharging device 20. For example, if the charging level of the charging / discharging unit 22 of the charging / discharging device 20 reaches the upper limit charging level, no further charging is possible. Alternatively, if the power to be charged reaches the upper limit of the charging power of the charging / discharging unit 22 (for example, the capacity of the power conversion unit 22b), no more power can be charged. In that case, the unprocessed surplus power that could not be charged by the charging / discharging unit 22 in the surplus power generation state is determined to the power system 1 based on the first power selling unit price and the second power selling unit price. Electricity is sold at the electricity selling fee (unit price x electric energy).

同様に、図4(c)に示したような不足電力が発生しても、その全てを充放電装置20の放電電力で賄うことができるとは限らない。例えば、充放電装置20の充放電部22の充電レベルが下限充電レベルに到達すれば、それ以上は放電できない。或いは、放電する電力が充放電部22の放電電力の上限値(例えば、電力変換部22bの容量など)に達すれば、それ以上の電力を放電できない。その場合、不足電力発生状態の場合に充放電部22の放電により賄うことができなかった分の未処理不足電力は電力系統1から所定の買電料金(単価×電力量)で買電される。 Similarly, even if the shortage power as shown in FIG. 4C occurs, it is not always possible to cover all of the shortage power with the discharge power of the charging / discharging device 20. For example, if the charge level of the charge / discharge unit 22 of the charge / discharge device 20 reaches the lower limit charge level, further discharge cannot be performed. Alternatively, if the power to be discharged reaches the upper limit of the discharge power of the charge / discharge unit 22 (for example, the capacity of the power conversion unit 22b), no more power can be discharged. In that case, the unprocessed insufficient power that could not be covered by the discharge of the charging / discharging unit 22 in the case of the insufficient power generation state is purchased from the power system 1 at a predetermined power purchase charge (unit price x electric energy). ..

以上のように、充放電装置20の充放電部22の充電レベルが上限充電レベルに到達すればそれ以後に発生した未処理余剰電力は電力系統1へ売電しなければならず、充放電装置20の充放電部22の充電レベルが下限充電レベルに到達すればそれ以後に発生した未処理不足電力は電力系統1から買電しなければならないことを考慮すると、電力系統1へ売電する場合には売電単価の高い電力を売ることができれば好ましい。例えば、売電単価の低い電力ができるだけ充放電装置20で充電されるように、売電単価の低い発電装置の発電電力が大きくなる時点よりも前には、充放電装置20の充放電部22に充分な充電余裕が確保されていることが好ましい。 As described above, when the charge level of the charge / discharge unit 22 of the charge / discharge device 20 reaches the upper limit charge level, the unprocessed surplus power generated thereafter must be sold to the power system 1, and the charge / discharge device must be sold. Considering that if the charge level of the charge / discharge unit 22 of 20 reaches the lower limit charge level, the unprocessed insufficient power generated after that must be purchased from the power system 1, when selling the power to the power system 1. It is preferable to be able to sell electricity with a high unit price. For example, the charging / discharging unit 22 of the charging / discharging device 20 is charged before the time when the generated power of the power generation device having a low selling price becomes large so that the power having a low unit selling price is charged by the charging / discharging device 20 as much as possible. It is preferable that a sufficient charge margin is secured.

本実施形態では、太陽光発電装置PVの売電単価が燃料電池装置10の売電単価よりも低いという設定であるため、太陽光発電装置PVの発電電力が相対的に小さくなる第2時間帯では充放電部22への充電を抑制しておき、太陽光発電装置PVの発電電力が相対的に大きくなる第1時間帯では充放電部22へその売電単価の低い電力をできるだけ充電できるようにすることが好ましい。つまり、充放電装置20の充放電制御部21は、余剰電力対処モードで充放電部22の動作を制御する場合、1日の中の、太陽光発電装置PV(第1発電装置)の発電電力が相対的に大きくなる第1時間帯では所定の第1上限レベルを上限充電レベルに設定して充放電部22による充電を制御し、1日の中の、太陽光発電装置PVの発電電力が相対的に小さくなる第2時間帯では、第1上限レベルよりも小さい所定の第2上限レベルを上限充電レベルに設定して充放電部22による充電を制御する。そのため、充放電装置20の充放電制御部21は、次に到来する第2時間帯で設定する第2上限レベルを、所定の判定期間での電力コストが最も小さくなる値に決定する上限レベル決定処理を事前に行う。 In the present embodiment, since the unit price of the photovoltaic power generation device PV is set to be lower than the unit price of the photovoltaic power generation device 10, the second time zone in which the generated power of the photovoltaic power generation device PV becomes relatively small. Then, the charging to the charging / discharging unit 22 is suppressed so that the charging / discharging unit 22 can be charged as much as possible with the power having a low unit selling price in the first time zone when the generated power of the photovoltaic power generation device PV becomes relatively large. Is preferable. That is, when the charge / discharge control unit 21 of the charge / discharge device 20 controls the operation of the charge / discharge unit 22 in the surplus power coping mode, the power generated by the solar power generation device PV (first power generation device) during the day. In the first time zone when In the second time zone, which is relatively small, a predetermined second upper limit level smaller than the first upper limit level is set as the upper limit charge level to control charging by the charging / discharging unit 22. Therefore, the charge / discharge control unit 21 of the charge / discharge device 20 determines the upper limit level for determining the second upper limit level to be set in the next second time zone to be the value at which the power cost in the predetermined determination period is the smallest. Perform processing in advance.

図4(d)に示す例では、第1時間帯では第1上限レベルを5kWhに設定し、第2時間帯では第2上限レベルを2kWhに設定している。つまり、第2時間帯では上限充電レベルが相対的に低く設定されているため、その後、上限充電レベルが相対的に高く設定される第1時間帯では、大きな電力量を充電できるだけの余裕が存在する。また、第1時間帯では、電力系統1への売電単価が低い余剰電力が大きくなる可能性が高くなる。そのため、大きな電力量を充電できるだけの余裕が存在する第1時間帯において、売電単価の低い太陽光発電装置PVの発電電力が充放電装置20で充電され易くなる。言い換えると、売電単価が低い電力を余剰電力として電力系統1に売らざるを得なくなる状況をできるだけ回避できる。 In the example shown in FIG. 4D, the first upper limit level is set to 5 kWh in the first time zone, and the second upper limit level is set to 2 kWh in the second time zone. That is, since the upper limit charge level is set relatively low in the second time zone, there is a margin for charging a large amount of electric power in the first time zone in which the upper limit charge level is set relatively high thereafter. do. Further, in the first time zone, there is a high possibility that the surplus power having a low unit price for selling power to the power system 1 will increase. Therefore, in the first time zone in which there is a margin for charging a large amount of electric power, the generated power of the photovoltaic power generation device PV having a low unit selling price is easily charged by the charging / discharging device 20. In other words, it is possible to avoid a situation in which the electric power having a low unit selling price has to be sold to the electric power system 1 as surplus electric power as much as possible.

具体例を挙げると、充放電装置20の充放電制御部21は、上限レベル決定処理では、所定の判定期間での太陽光発電装置PV(第1発電装置)の発電電力と燃料電池装置10(第2発電装置)の発電電力との和である合計発電電力の時間的変化が分かる基準発電電力データ及び電力消費装置3の消費電力の時間的変化が分かる基準消費電力データを参照して不足電力発生状態になる期間と余剰電力発生状態になる期間とを特定する。例えば、基準発電電力データは、過去の太陽光発電装置PVの発電電力と燃料電池装置10の発電電力との和である合計発電電力の時間的変化が分かるデータを用いて作成され、基準消費電力データは、過去の電力消費装置3の消費電力の時間的変化が分かるデータを用いて作成される。そして、充放電制御部21は、判定期間での電力コストを、不足電力発生状態になるのに応じて不足電力対処モードで充放電部22の動作を制御しながら電力系統1から電力を買う場合の買電料金と、余剰電力発生状態になるのに応じて余剰電力対処モードで充放電部22の動作を制御しながら電力系統1へ電力を売る場合の売電料金とに基づいて導出する。 To give a specific example, in the charge / discharge control unit 21 of the charge / discharge device 20, in the upper limit level determination process, the power generated by the solar power generation device PV (first power generation device) and the fuel cell device 10 ( Insufficient power by referring to the standard power generation data that shows the temporal change of the total generated power, which is the sum of the generated power of the second power generation device), and the standard power consumption data that shows the time change of the power consumption of the power consumption device 3. Specify the period during which the power is generated and the period during which the surplus power is generated. For example, the standard power generation data is created using data that shows the temporal change of the total power generation, which is the sum of the power generated by the PV of the photovoltaic power generation device in the past and the power generated by the fuel cell device 10, and the standard power consumption. The data is created using data that shows the temporal changes in the power consumption of the power consumption device 3 in the past. Then, the charge / discharge control unit 21 purchases power from the power system 1 while controlling the operation of the charge / discharge unit 22 in the shortage power coping mode according to the power cost in the determination period. It is derived based on the power purchase charge of the above and the power sale charge when the power is sold to the power system 1 while controlling the operation of the charge / discharge unit 22 in the surplus power coping mode according to the surplus power generation state.

図5及び図6は、上限レベル決定処理の一例を説明する表である。この表では、判定期間を2日間とし、時刻18時~時刻6時の間で設定される上限充電レベルである第2上限レベルを仮に2(kWh)とした場合での電力コストを導出する例を示す。この場合、現在時刻を18時としているため、2日前の18時から当日の18時までの合計2日間(合計48時間)の判定期間での電力コストを導出している。つまり、この例での基準発電電力データは、2日前から当日までの過去の2日間での太陽光発電装置PVの発電電力と燃料電池装置10の発電電力との和である合計発電電力の時間的変化が分かるデータを用いて作成され、基準消費電力データは、2日前から当日までの過去の2日間での電力消費装置3の消費電力の時間的変化が分かるデータを用いて作成される。また、この例では、太陽光発電装置PVの発電電力が相対的に大きくなる第1時間帯を6時から18時の間に設定し、太陽光発電装置PVの発電電力が相対的に小さくなる第2時間帯を18時から6時の間に設定している。また、この例では、太陽光発電装置PVの発電電力を電力系統1に売電する場合の売電単価を3円/kWhとし、燃料電池装置10の発電電力を電力系統1に売電する場合の売電単価を9.3円/kWhとし、電力系統1から電力を購入する場合の買電単価を22円/kWhとしている。 5 and 6 are tables for explaining an example of the upper limit level determination process. This table shows an example of deriving the power cost when the determination period is 2 days and the second upper limit level, which is the upper limit charge level set between 18:00 and 6:00, is assumed to be 2 (kWh). .. In this case, since the current time is 18:00, the power cost for the determination period of a total of 2 days (48 hours in total) from 18:00 two days ago to 18:00 on the current day is derived. That is, the reference power generation data in this example is the time of the total power generation, which is the sum of the power generated by the solar power generation device PV and the power generated by the fuel cell device 10 in the past two days from two days ago to the current day. It is created using data that shows the change in target, and the reference power consumption data is created using data that shows the temporal change in the power consumption of the power consuming device 3 in the past two days from two days ago to the current day. Further, in this example, the first time zone in which the generated power of the photovoltaic power generation device PV is relatively large is set between 6:00 and 18:00, and the second time zone in which the generated power of the photovoltaic power generation device PV is relatively small is set. The time zone is set between 18:00 and 6:00. Further, in this example, the unit price for selling the generated power of the photovoltaic power generation device PV to the power system 1 is set to 3 yen / kWh, and the generated power of the fuel cell device 10 is sold to the power system 1. The unit price of power sold is 9.3 yen / kWh, and the unit price of power purchased when power is purchased from the power system 1 is 22 yen / kWh.

図5及び図6に示すような太陽光発電装置PVの発電電力と燃料電池装置10の発電電力との和である合計発電電力の時間的変化が分かる基準発電電力データ及び電力消費装置3の消費電力の時間的変化が分かる基準消費電力データを参照することで、不足電力発生状態になる期間と余剰電力発生状態になる期間とを特定できる。そして、この2日間という判定期間での電力コストを、不足電力発生状態になるのに応じて不足電力対処モードで充放電部22の動作を制御しながら電力系統1から電力を買う場合の買電料金と、余剰電力発生状態になるのに応じて余剰電力対処モードで充放電部22の動作を制御しながら電力系統1へ電力を売る場合の売電料金とに基づいて導出できる。 Reference power generation data that shows the temporal change of the total power generation power, which is the sum of the power generation power of the solar power generation device PV and the power generation power of the fuel cell device 10 as shown in FIGS. 5 and 6, and the consumption of the power consumption device 3. By referring to the standard power consumption data that shows the change over time of power, it is possible to specify the period during which the shortage power generation occurs and the period during which the surplus power generation occurs. Then, the power cost in the determination period of these two days is the power purchase when the power is purchased from the power system 1 while controlling the operation of the charge / discharge unit 22 in the shortage power coping mode according to the shortage power generation state. It can be derived based on the charge and the power selling charge when the power is sold to the power system 1 while controlling the operation of the charge / discharge unit 22 in the surplus power coping mode according to the surplus power generation state.

図5及び図6に示した例では、1日前の時刻11時台から時刻17時台の間に発生した余剰電力のうち、充放電装置20で充電できなかった分の電力が電力系統1へと売電される。この例では、売電単価が低い太陽光発電装置PVの発電電力の余剰分を、3円/kWhで電力系統1に売電したと仮定している。また、図5及び図6では、売電の場合の電力コストをマイナスの数値で示している。その結果、2日前の18時から当日の18時までの合計2日間(合計48時間)の判定期間での電力コストの合計は、「-14.1円」になる。このような電力コストの計算を、第2時間帯(時刻18時~時刻6時)で設定される第2上限レベルの値を変えて行うことで、最も電力コストが小さくなる場合の第2上限レベルの値を特定できる。 In the examples shown in FIGS. 5 and 6, of the surplus power generated between the time 11:00 and the time 17:00 one day before, the power that could not be charged by the charging / discharging device 20 is transferred to the power system 1. Is sold. In this example, it is assumed that the surplus power generated by the photovoltaic power generation device PV having a low unit selling price is sold to the power system 1 at 3 yen / kWh. Further, in FIGS. 5 and 6, the power cost in the case of selling power is shown by a negative numerical value. As a result, the total power cost in the judgment period for a total of 2 days (48 hours in total) from 18:00 two days ago to 18:00 on the current day is "-14.1 yen". By performing such calculation of the power cost by changing the value of the second upper limit level set in the second time zone (time 18:00 to time 6:00), the second upper limit when the power cost becomes the smallest is performed. You can specify the value of the level.

以下の表1は、時刻18時から時刻6時の間の第2時間帯において設定される第2上限レベルを、0(kWh)、1(kWh)、2(kWh)、3(kWh)、4(kWh)、5(kWh)に設定した場合での、判定期間での電力コストの計算値の結果である。 In Table 1 below, the second upper limit level set in the second time zone between 18:00 and 6:00 is set to 0 (kWh), 1 (kWh), 2 (kWh), 3 (kWh), 4 ( It is the result of the calculated value of the power cost in the determination period when it is set to (kWh) and 5 (kWh).

Figure 0007080165000001
Figure 0007080165000001

表1に示すように、判定期間での電力コストの計算値は、第2上限レベルを0(kWh)に設定した場合が最も小さくなる。従って、充放電装置20の充放電制御部21は、上限レベル設定処理において、次に到来する第2時間帯で設定する第2上限レベルを0(kWh)に設定する。 As shown in Table 1, the calculated value of the power cost in the determination period is the smallest when the second upper limit level is set to 0 (kWh). Therefore, the charge / discharge control unit 21 of the charge / discharge device 20 sets the second upper limit level to be set in the next coming second time zone to 0 (kWh) in the upper limit level setting process.

<別実施形態>
<1>
上記実施形態では、本発明の分散型電源システムの構成について具体例を挙げて説明したが、その構成は適宜変更可能である。
例えば、本発明の第2発電装置の例として燃料電池装置10を挙げたが、例えば、エンジンとそのエンジンによって駆動される発電機とを備えて構成されるタイプの発電装置など、様々なタイプの発電装置を用いることできる。
また、燃料電池装置10や充放電装置20の構成は図示したものに限定されず適宜変更可能である。
また更に、上記実施形態では、第1発電装置が太陽光発電装置PVであり、第2発電装置が燃料電池装置10である場合を説明したが、第1発電装置及び第2発電装置の種類は適宜設定可能である。自然エネルギを利用して発電する装置として太陽光発電装置を例示したが、潮汐力や風力などの他の自然エネルギを利用して発電する装置を採用することもできる。
<Another Embodiment>
<1>
In the above embodiment, the configuration of the distributed power supply system of the present invention has been described with reference to specific examples, but the configuration can be changed as appropriate.
For example, the fuel cell device 10 has been mentioned as an example of the second power generation device of the present invention, but there are various types of power generation devices such as a type of power generation device including an engine and a generator driven by the engine. A power generator can be used.
Further, the configurations of the fuel cell device 10 and the charging / discharging device 20 are not limited to those shown in the drawings and can be appropriately changed.
Further, in the above embodiment, the case where the first power generation device is the photovoltaic power generation device PV and the second power generation device is the fuel cell device 10 has been described, but the types of the first power generation device and the second power generation device are different. It can be set as appropriate. Although a photovoltaic power generation device is exemplified as a device that generates power using natural energy, a device that generates power using other natural energy such as tidal force and wind power can also be adopted.

<2>
上記実施形態では、図5及び図6に示した判定期間の開始時点での充放電部22の充電レベル(5kWh)と、その終了時点での充電レベル(3.6kWh)とが異なっている。この例では、元から充放電部22に蓄えられていた電力のうちの1.4kWhを使用したことで、判定期間の終了時点での充放電部22の充電レベルが開始時点での充電レベルよりも1.4kWhだけ減少したことになる。つまり、電力系統1から1.4kWhの電力を調達して、それを電力コストの計算に含めるべきであったところを、充放電部22からの放電によって賄った(即ち、電力コストの計算に含めなかった)とも言える。よって、上限レベル決定処理において判定期間の開始時点と終了時点との間で充放電部22の充電レベルが変化した場合、その変化した分の電力を料金に換算して、電力コストの計算に含めることが好ましい。
<2>
In the above embodiment, the charging level (5kWh) of the charging / discharging unit 22 at the start of the determination period shown in FIGS. 5 and 6 is different from the charging level (3.6kWh) at the end of the charging / discharging unit 22. In this example, by using 1.4kWh of the electric power originally stored in the charge / discharge unit 22, the charge level of the charge / discharge unit 22 at the end of the determination period is higher than the charge level at the start. Is also reduced by 1.4kWh. That is, the power of 1.4kWh was procured from the power system 1 and should be included in the calculation of the power cost, but it was covered by the discharge from the charging / discharging unit 22 (that is, included in the calculation of the power cost). It can be said that there was no such thing. Therefore, when the charge level of the charge / discharge unit 22 changes between the start time and the end time of the determination period in the upper limit level determination process, the changed power is converted into a charge and included in the power cost calculation. Is preferable.

そこで本別実施形態では、充放電装置20の充放電制御部21は、上限レベル決定処理において、判定期間の終了時点での充放電部22の充電レベルが、判定期間の開始時点での充放電部22の充電レベルよりも所定の増加分だけ大きくなる場合、増加分に相当する電力を電力系統1へ電力を売ると仮定した場合の料金を売電料金に含め、判定期間の終了時点での充放電部22の充電レベルが、判定期間の開始時点での充放電部22の充電レベルよりも所定の減少分だけ小さくなる場合、減少分に相当する電力を電力系統1から買うと仮定した場合の料金を買電料金に含める。この場合、電力系統1から電力を購入する場合の買電単価についての情報は、例えば充放電装置20の記憶装置(図示せず)などに記憶されている。上述したように、電力系統1から1.4kWhの電力を調達することになるのであれば、買電単価を22円/kWhとすると、電力系統1から買うと仮定した場合の料金である30.8円が買電料金として電力コストに含められる。このように、元から充放電部22に蓄えられていた電力が判定期間の開始時点と終了時点との間で変化する場合には、その変化する分の電力の料金が電力コストの計算に含められる。その結果、上限レベル決定処理での電力コストの計算がより詳細に行われるようになる。 Therefore, in the present embodiment, in the charge / discharge control unit 21 of the charge / discharge device 20, in the upper limit level determination process, the charge level of the charge / discharge unit 22 at the end of the determination period is the charge / discharge at the start of the determination period. When the charge level is higher than the charge level of the unit 22 by a predetermined increase, the charge assuming that the power corresponding to the increase is sold to the power system 1 is included in the power sale charge, and at the end of the determination period. When the charge level of the charge / discharge unit 22 is smaller than the charge level of the charge / discharge unit 22 at the start of the determination period by a predetermined decrease, it is assumed that the power corresponding to the decrease is purchased from the power system 1. Include the charge in the power purchase charge. In this case, information about the unit purchase price when purchasing electric power from the electric power system 1 is stored in, for example, a storage device (not shown) of the charging / discharging device 20. As described above, if 1.4kWh of electric power is to be procured from the electric power system 1, assuming that the unit purchase price is 22 yen / kWh, the charge is based on the assumption that the electric power is purchased from the electric power system 1. 8 yen is included in the electricity cost as a power purchase fee. In this way, when the power originally stored in the charge / discharge unit 22 changes between the start time and the end time of the determination period, the charge for the changed power is included in the calculation of the power cost. Will be. As a result, the calculation of the power cost in the upper limit level determination process becomes more detailed.

<3>
上記実施形態では、判定期間が2日間である場合を例示したが、判定期間の長さは適宜設定可能である。
<3>
In the above embodiment, the case where the determination period is 2 days is illustrated, but the length of the determination period can be appropriately set.

<4>
上記実施形態では、電力系統1への売電単価及び電力系統1からの買電単価や、第1上限レベル及び第2上限レベルの数値について具体的な数値を挙げて説明したが、それらの数値は例示目的で記載したものであり適宜変更可能である。
<4>
In the above embodiment, the unit price of selling power to the power system 1, the unit price of buying power from the power system 1, and the numerical values of the first upper limit level and the second upper limit level have been described with specific numerical values. Is described for the purpose of illustration and can be changed as appropriate.

<5>
上記実施形態では、基準発電電力データが過去の合計発電電力の時間的変化が分かるデータを用いて作成され、基準消費電力データが過去の消費電力の時間的変化が分かるデータを用いて作成される例を説明したが、基準発電電力データ及び基準消費電力データが他のデータであってもよい。例えば、基準発電電力データは、上記判定期間での太陽光発電装置PV(第1発電装置)の発電電力と燃料電池装置10(第2発電装置)の発電電力との和である合計発電電力の時間的変化が分かる予測値データであってもよく、基準消費電力データは、上記判定期間での電力消費装置3の消費電力の時間的変化が分かる予測値データであってもよい。
<5>
In the above embodiment, the reference power generation data is created using the data showing the time change of the past total power generation power, and the reference power consumption data is created using the data showing the time change of the past power consumption. Although an example has been described, the reference power generation data and the reference power consumption data may be other data. For example, the reference power generation data is the total power generation power which is the sum of the power generation power of the solar power generation device PV (first power generation device) and the power generation power of the fuel cell device 10 (second power generation device) in the above determination period. The predicted value data may be the predicted value data showing the change over time, and the reference power consumption data may be the predicted value data showing the time change of the power consumption of the power consuming device 3 in the determination period.

<6>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
<6>
The configurations disclosed in the above embodiment (including other embodiments, the same shall apply hereinafter) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and are also disclosed herein. The embodiment is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、電力系統との間での電力の売買を少なくしつつ、電力系統への売電を行う場合には経済的なメリットが大きくなるような分散型電源システムに利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a distributed power supply system in which the economic merit is increased when selling power to the power system while reducing the buying and selling of power with the power system.

1 電力系統
2 交流線
3 電力消費装置
10 燃料電池装置(第2発電装置)
11 燃料電池制御部
12 燃料電池部
12a 燃料電池
12b 電力変換部
20 充放電装置
21 充放電制御部
22 充放電部
22a 蓄電池
22b 電力変換部
5 電力計測器
PV 太陽光発電装置(第1発電装置)
1 Power system 2 AC line 3 Power consumption device 10 Fuel cell device (second power generation device)
11 Fuel cell control unit 12 Fuel cell unit 12a Fuel cell 12b Power conversion unit 20 Charging / discharging device 21 Charging / discharging control unit 22 Charging / discharging unit 22a Storage battery 22b Power conversion unit 5 Power measuring instrument PV photovoltaic power generation device (first power generation device)

Claims (7)

電力系統に接続される交流線と、前記交流線に接続される第1発電装置と、前記交流線に接続される第2発電装置と、前記交流線に接続され、前記交流線との間で電力の充放電を行う蓄電池を含む充放電部、及び、所定の上限充電レベルを前記充放電部の充電レベルの上限とし且つ所定の下限充電レベルを前記充放電部の充電レベルの下限として前記充放電部による充放電を制御する充放電制御部を有する充放電装置とを備え、前記交流線に電力消費装置が接続されている分散型電源システムであって、
前記第1発電装置の発電電力を前記電力系統に売電するときの第1売電単価が、前記第2発電装置の発電電力を前記電力系統に売電するときの第2売電単価よりも低く設定されており、
前記充放電装置の前記充放電制御部は、
前記第1発電装置の発電電力と前記第2発電装置の発電電力との和である合計発電電力が前記電力消費装置の消費電力以上である余剰電力発生状態の場合、前記充放電部の充電レベルが前記上限充電レベルになるまで、前記合計発電電力から前記消費電力を減算して導出できる余剰電力に相当する電力を前記交流線から前記充放電部に充電することを目標とする余剰電力対処モードで前記充放電部の動作を制御し、
前記合計発電電力が前記消費電力より小さい不足電力発生状態の場合、前記充放電部の充電レベルが前記下限充電レベルになるまで、前記消費電力から前記合計発電電力を減算して導出できる不足電力に相当する電力を前記充放電部から前記交流線に放電することを目標とする不足電力対処モードで前記充放電部の動作を制御し、
前記余剰電力発生状態の場合に前記充放電部で充電できなかった分の未処理余剰電力は前記電力系統へ、前記第1売電単価及び前記第2売電単価に基づいて決定される所定の売電料金で売電され、
前記不足電力発生状態の場合に前記充放電部の放電により賄うことができなかった分の未処理不足電力は前記電力系統から所定の買電料金で買電され、
前記余剰電力対処モードで前記充放電部の動作を制御する場合、1日の中の、前記第1発電装置の発電電力が相対的に大きくなる第1時間帯では所定の第1上限レベルを前記上限充電レベルに設定して前記充放電部による充電を制御し、1日の中の、前記第1発電装置の発電電力が相対的に小さくなる第2時間帯では、前記第1上限レベルよりも小さい所定の第2上限レベルを前記上限充電レベルに設定して前記充放電部による充電を制御する分散型電源システム。
Between the AC line connected to the power system, the first power generation device connected to the AC line, the second power generation device connected to the AC line, and the AC line connected to the AC line. The charge / discharge unit including a storage battery for charging / discharging electric power, and the predetermined upper limit charge level is set as the upper limit of the charge level of the charge / discharge unit, and the predetermined lower limit charge level is set as the lower limit of the charge level of the charge / discharge unit. A distributed power supply system including a charge / discharge device having a charge / discharge control unit for controlling charge / discharge by the discharge unit, and a power consuming device connected to the AC line.
The first power selling unit price when selling the generated power of the first power generation device to the power system is higher than the second power selling unit price when selling the generated power of the second power generation device to the power system. It is set low and
The charge / discharge control unit of the charge / discharge device is
When the total generated power, which is the sum of the generated power of the first power generation device and the generated power of the second power generation device, is equal to or greater than the power consumption of the power consuming device, the charging level of the charging / discharging unit is in the surplus power generation state. Is a surplus power coping mode in which the charging / discharging portion is charged with power corresponding to the surplus power that can be derived by subtracting the power consumption from the total power generation until the upper limit charging level is reached. Controls the operation of the charge / discharge unit with
When the total generated power is smaller than the power consumption, the total generated power can be derived by subtracting the total generated power from the power consumption until the charge level of the charge / discharge unit reaches the lower limit charge level. The operation of the charge / discharge unit is controlled in the insufficient power coping mode, which aims to discharge the corresponding power from the charge / discharge unit to the AC line.
In the case of the surplus power generation state, the unprocessed surplus power that could not be charged by the charging / discharging unit is determined to the power system based on the first power selling unit price and the second power selling unit price. Power is sold at the power selling fee,
In the case of the shortage power generation state, the unprocessed shortage power that could not be covered by the discharge of the charge / discharge unit is purchased from the power system at a predetermined power purchase fee.
When the operation of the charge / discharge unit is controlled in the surplus power coping mode, the predetermined first upper limit level is set in the first time zone in which the generated power of the first power generation device becomes relatively large during the day. In the second time zone in which the power generated by the first power generation device is relatively small during the day, the charging by the charge / discharge unit is controlled by setting the upper limit charge level, and the charge is higher than the first upper limit level. A distributed power supply system that controls charging by the charging / discharging unit by setting a small predetermined second upper limit level to the upper limit charging level.
前記第1発電装置及び前記第2発電装置の少なくとも一方は、自然エネルギを利用して発電する装置である請求項1に記載の分散型電源システム。 The distributed power supply system according to claim 1, wherein at least one of the first power generation device and the second power generation device is a device that generates power by utilizing natural energy. 前記第1発電装置は太陽光発電装置であり、
前記第1時間帯及び前記第2時間帯は日の出時刻及び日の入り時刻に応じて設定される請求項2に記載の分散型電源システム。
The first power generation device is a solar power generation device.
The distributed power supply system according to claim 2, wherein the first time zone and the second time zone are set according to the sunrise time and the sunset time.
前記第1時間帯は、前記第1発電装置の発電電力が設定発電電力以上になる又は前記設定発電電力以上になると予測される時間帯を含み、
前記第2時間帯は、前記第1発電装置の発電電力が前記設定発電電力より小さくなる又は前記設定発電電力より小さくなると予測される時間帯を含む請求項1又は2に記載の分散型電源システム。
The first time zone includes a time zone in which the generated power of the first power generation device is expected to be equal to or higher than the set generated power or equal to or higher than the set generated power.
The distributed power source system according to claim 1 or 2, wherein the second time zone includes a time zone in which the generated power of the first power generation device is smaller than the set power generation power or is predicted to be smaller than the set power generation power. ..
前記充放電装置の前記充放電制御部は、次に到来する前記第2時間帯で設定する前記第2上限レベルを、所定の判定期間での電力コストが最も小さくなる値に決定する上限レベル決定処理を事前に行うように構成され、
前記上限レベル決定処理では、
前記判定期間での前記第1発電装置の発電電力と前記第2発電装置の発電電力との和である前記合計発電電力の時間的変化が分かる基準発電電力データ及び前記電力消費装置の前記消費電力の時間的変化が分かる基準消費電力データを参照して前記不足電力発生状態になる期間と前記余剰電力発生状態になる期間とを特定し、
前記判定期間での前記電力コストを、前記不足電力発生状態になるのに応じて前記不足電力対処モードで前記充放電部の動作を制御しながら前記電力系統から電力を買う場合の前記買電料金と、前記余剰電力発生状態になるのに応じて前記余剰電力対処モードで前記充放電部の動作を制御しながら前記電力系統へ電力を売る場合の前記売電料金とに基づいて導出する請求項1~4の何れか一項に記載の分散型電源システム。
The charge / discharge control unit of the charge / discharge device determines the upper limit level for determining the second upper limit level set in the second time zone that arrives next to a value that minimizes the power cost in a predetermined determination period. Configured to do the processing in advance,
In the upper limit level determination process,
The reference power generation power data showing the temporal change of the total power generation power, which is the sum of the power generation power of the first power generation device and the power generation power of the second power generation device in the determination period, and the power consumption of the power consumption device. By referring to the reference power consumption data that shows the change over time, specify the period during which the shortage power generation state occurs and the period during which the surplus power generation state occurs.
The power purchase charge in the case of purchasing power from the power system while controlling the operation of the charge / discharge unit in the shortage power coping mode according to the power cost in the determination period in the shortage power generation state. The claim is derived based on the power selling charge when selling power to the power system while controlling the operation of the charging / discharging unit in the surplus power coping mode according to the surplus power generation state. The distributed power supply system according to any one of 1 to 4.
前記充放電装置の前記充放電制御部は、前記上限レベル決定処理において、
前記判定期間の終了時点での前記充放電部の充電レベルが、前記判定期間の開始時点での前記充放電部の充電レベルよりも所定の増加分だけ大きくなる場合、前記増加分に相当する電力を前記電力系統へ売ると仮定した場合の料金を前記売電料金に含め、
前記判定期間の終了時点での前記充放電部の充電レベルが、前記判定期間の開始時点での前記充放電部の充電レベルよりも所定の減少分だけ小さくなる場合、前記減少分に相当する電力を前記電力系統から買うと仮定した場合の料金を前記買電料金に含める請求項5に記載の分散型電源システム。
The charge / discharge control unit of the charge / discharge device is used in the upper limit level determination process.
When the charge level of the charge / discharge unit at the end of the determination period is larger than the charge level of the charge / discharge unit at the start of the determination period by a predetermined increase, the power corresponding to the increase is achieved. Is included in the power sale charge when it is assumed that the power system is sold to the power system.
When the charge level of the charge / discharge unit at the end of the determination period is smaller than the charge level of the charge / discharge unit at the start of the determination period by a predetermined decrease, the power corresponding to the decrease. The distributed power supply system according to claim 5, wherein the charge when it is assumed that the power system is purchased from the power system is included in the power purchase charge.
前記基準発電電力データは、過去の前記第1発電装置の発電電力と前記第2発電装置の発電電力との和である前記合計発電電力の時間的変化が分かるデータを用いて作成され、
前記基準消費電力データは、過去の前記電力消費装置の前記消費電力の時間的変化が分かるデータを用いて作成される請求項5又は6に記載の分散型電源システム。
The reference power generation power data is created by using data that shows the temporal change of the total power generation power, which is the sum of the power generation power of the first power generation device and the power generation power of the second power generation device in the past.
The distributed power supply system according to claim 5 or 6, wherein the reference power consumption data is created by using data showing a time change of the power consumption of the power consuming device in the past.
JP2018236328A 2018-12-18 2018-12-18 Distributed power system Active JP7080165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018236328A JP7080165B2 (en) 2018-12-18 2018-12-18 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018236328A JP7080165B2 (en) 2018-12-18 2018-12-18 Distributed power system

Publications (2)

Publication Number Publication Date
JP2020099133A JP2020099133A (en) 2020-06-25
JP7080165B2 true JP7080165B2 (en) 2022-06-03

Family

ID=71106178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236328A Active JP7080165B2 (en) 2018-12-18 2018-12-18 Distributed power system

Country Status (1)

Country Link
JP (1) JP7080165B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015225A1 (en) 2011-07-22 2013-01-31 京セラ株式会社 Control device and power control method
JP2013258845A (en) 2012-06-13 2013-12-26 Toshiba Corp Power supply system
JP2017224057A (en) 2016-06-13 2017-12-21 大和ハウス工業株式会社 Estimation device and estimation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038432A (en) * 2015-08-07 2017-02-16 シャープ株式会社 Control device, system, and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015225A1 (en) 2011-07-22 2013-01-31 京セラ株式会社 Control device and power control method
JP2013258845A (en) 2012-06-13 2013-12-26 Toshiba Corp Power supply system
JP2017224057A (en) 2016-06-13 2017-12-21 大和ハウス工業株式会社 Estimation device and estimation method

Also Published As

Publication number Publication date
JP2020099133A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
Wu et al. Optimal switching renewable energy system for demand side management
WO2016063355A1 (en) Charge/discharge management device
EP1912305A1 (en) Control method of sodium-sulfur battery
US10110004B2 (en) Power management system
JP2010259303A (en) Distributed power generation system
JP7203551B2 (en) power supply system
JP6146624B1 (en) Energy management system
KR20150085227A (en) The control device and method for Energy Storage System
JP6363412B2 (en) Power conditioner and power control method
JP7386028B2 (en) power supply system
Jain et al. A Simple Methodology for Sizing of Stand-Alone PV-Battery System
JP6746935B2 (en) Charge/discharge control system, charge/discharge control method and program
JP7080165B2 (en) Distributed power system
JP2019004548A (en) Power selling system of existing utilization type photovoltaic power generation
JP2017175785A (en) Power storage system, charge/discharge controller, control method therefor, and program
WO2016098704A1 (en) Demand power prediction device, demand power prediction method, and program
EP2882021B1 (en) Control device, fuel cell system, and control method
WO2017163747A1 (en) Power storage system, charge/discharge control device, control method therefor, and program
JP6789020B2 (en) Storage battery operation method and storage battery operation device
JP7386029B2 (en) power supply system
CN114725964A (en) Household micro-grid scheduling method, management system and household micro-grid
JP7030585B2 (en) Solar power system
KR101338344B1 (en) Control method for battery module of solar-light power generation system
JP6257388B2 (en) Power supply system
JP2021083267A (en) Power generation system of renewable energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7080165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150