JP7079395B2 - A three-dimensional three-dimensional element for promoting heat transfer and a heat exchanger in which the element is inserted inside a heat transfer tube. - Google Patents

A three-dimensional three-dimensional element for promoting heat transfer and a heat exchanger in which the element is inserted inside a heat transfer tube. Download PDF

Info

Publication number
JP7079395B2
JP7079395B2 JP2019017535A JP2019017535A JP7079395B2 JP 7079395 B2 JP7079395 B2 JP 7079395B2 JP 2019017535 A JP2019017535 A JP 2019017535A JP 2019017535 A JP2019017535 A JP 2019017535A JP 7079395 B2 JP7079395 B2 JP 7079395B2
Authority
JP
Japan
Prior art keywords
heat transfer
dimensional
core wire
loop
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019017535A
Other languages
Japanese (ja)
Other versions
JP2020125864A (en
JP2020125864A5 (en
Inventor
昭二 酒井
Original Assignee
昭二 酒井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭二 酒井 filed Critical 昭二 酒井
Priority to JP2019017535A priority Critical patent/JP7079395B2/en
Publication of JP2020125864A publication Critical patent/JP2020125864A/en
Publication of JP2020125864A5 publication Critical patent/JP2020125864A5/ja
Application granted granted Critical
Publication of JP7079395B2 publication Critical patent/JP7079395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は改良された伝熱性能を有する熱交換器の管側伝熱促進3次元立体素子に関する。 The present invention relates to a tube-side heat transfer promoting three-dimensional element of a heat exchanger having improved heat transfer performance.

いわゆるシェルアンドチューブ(胴&管:多管円筒式)型熱交換器は、工業的分野の熱回収に非常に役立っており、その伝熱効率を上げるための工夫が幾つか提案されている。 The so-called shell-and-tube (body & tube: multi-tube cylindrical) type heat exchanger is very useful for heat recovery in the industrial field, and some devices for improving its heat transfer efficiency have been proposed.

熱交換器の総括伝熱係数を大きくする方法は、管側と胴側の境膜伝熱係数を上げるために流速を大きくすることすなわちレイノルズ数を大きくすることが必要で、胴側はバッフルによるクロスパスを大きくする、管側はパス数を大きくするなどの設計の最適化がなされている。 To increase the overall heat transfer coefficient of the heat exchanger, it is necessary to increase the flow velocity in order to increase the boundary film heat transfer coefficient between the tube side and the body side, that is, to increase the Reynolds number, and the body side is based on the baffle. The design has been optimized, such as increasing the cross path and increasing the number of paths on the pipe side.

管側の流速を上げることなく管側伝熱促進を達成する手段のひとつとして、金属ワイヤー製3次元立体素子(商品名:ハイトラン)が提案され、産業用に広く用いられている。 A three-dimensional metal wire three-dimensional element (trade name: Hytran) has been proposed as one of the means for achieving heat transfer promotion on the pipe side without increasing the flow velocity on the pipe side, and is widely used for industrial purposes.

そしてこの金属ワイヤー製3次元立体素子は伝熱管の内径に応じて個別に提供され、最小径は6mmΦであり、かつ伝熱管に挿入するためには、あらかじめ冶具を用いて、該素子の直径の絞り込みをする必要がある。 This metal wire three-dimensional element is provided individually according to the inner diameter of the heat transfer tube, the minimum diameter is 6 mmΦ, and in order to insert it into the heat transfer tube, a jig is used in advance to determine the diameter of the element. It is necessary to narrow down.

3次元立体素子の伝熱促進の原理は、円管内壁に滞留する液体膜を壁面と接するループ金属ワイヤーで破壊し、疑似乱流を形成するためと考えられており、ループ状ワイヤーが、壁面と接触していることが重要である。 It is thought that the principle of heat transfer promotion of the three-dimensional solid element is to break the liquid film staying on the inner wall of the circular tube with the loop metal wire in contact with the wall surface to form a pseudo turbulent flow, and the loop-shaped wire is the wall surface. It is important to be in contact with.

そのために、3次元立体素子のループワイヤーの外径は、使用される伝熱管の内径よりも若干大きめに製造され、挿入時に絞り込まれたのち、金属ワイヤーの復元力によって伝熱管内壁に密着している。 Therefore, the outer diameter of the loop wire of the three-dimensional solid element is manufactured to be slightly larger than the inner diameter of the heat transfer tube used, and after being narrowed down at the time of insertion, it adheres to the inner wall of the heat transfer tube by the restoring force of the metal wire. There is.

実際のハイトランのループワイヤーは一方向に絞り込まれるように芯ワイヤーに傾斜して固定されており、伝熱管に挿入された3次元立体素子は、この傾斜を絞り込むような方向には比較的容易に引き抜けるが、逆方向にはその構造を破壊することなく、引き抜くことが出来ない。 The actual high-tran loop wire is tilted and fixed to the core wire so that it is narrowed down in one direction, and the three-dimensional element inserted in the heat transfer tube is relatively easy in the direction to narrow down this tilt. It can be pulled out, but in the opposite direction it cannot be pulled out without destroying its structure.

すなわち金属製3次元立体素子が伝熱促進効果を発揮するためには、伝熱管の内径より数パーセント大き目の外径を持つループワイヤーである必要があり、そのパーセントは伝熱管の内径が小さい程、少なくしないと、挿入時の摩擦抵抗が大きくなるため、挿入の作業性が悪くなる。 That is, in order for the metal three-dimensional element to exert the heat transfer promoting effect, it is necessary to use a loop wire having an outer diameter several percent larger than the inner diameter of the heat transfer tube, and the smaller the percentage is, the smaller the inner diameter of the heat transfer tube is. If it is not reduced, the frictional resistance at the time of insertion will increase, and the workability of insertion will deteriorate.

たとえば、呼び径25Aの伝熱管に用いる金属製3次元立体素子のループ外径は、内径より10%程度大きいループワイヤーを持たせ、挿入時にあらかじめ伝熱管内径以下の冶具を用いてループワイヤーの外径を絞り込み、挿入後の該ワイヤーの復元力によって管壁に密着できる。 For example, the loop outer diameter of a metal three-dimensional solid element used for a heat transfer tube with a nominal diameter of 25 A should have a loop wire that is about 10% larger than the inner diameter, and at the time of insertion, use a jig below the inner diameter of the heat transfer tube to remove the loop wire. The diameter can be narrowed down and the wire can be brought into close contact with the tube wall by the restoring force of the wire after insertion.

しかし伝熱管のサイズが小さくなるにしたがって、ループ外径の加工精度は高いことが要求され、実際に供給されている最小の金属製3次元立体素子は、内径6mmΦの伝熱管用までであり、これ以下のものは入手できない。 However, as the size of the heat transfer tube becomes smaller, the processing accuracy of the loop outer diameter is required to be higher, and the smallest metal three-dimensional element actually supplied is for a heat transfer tube with an inner diameter of 6 mmΦ. Nothing less than this is available.

さらに、金属製のループワイヤーの復元力には限度があるため、内径に応じた金属製3次元立体素子を作成する必要があり、たとえば内径6mmφ用の素子を内径8mmφの伝熱管に挿入したとしても、管内壁の接触が無いため、その伝熱促進効果は限定的となる。 Furthermore, since the restoring force of the metal loop wire is limited, it is necessary to create a metal three-dimensional element according to the inner diameter.For example, assuming that an element for an inner diameter of 6 mmφ is inserted into a heat transfer tube with an inner diameter of 8 mmφ. However, since there is no contact with the inner wall of the pipe, its heat transfer promoting effect is limited.

また同じ胴径の場合、伝熱管の内径は小さい程、伝熱面積が大きくとれるが、頭部の加工が困難となり、発明者は既に管板に変えて、エポキシ樹脂等によって両端を固めて管/胴の流体を分離する小型熱交換器の提案を実施している。 If the body diameter is the same, the smaller the inner diameter of the heat transfer tube, the larger the heat transfer area, but it becomes difficult to process the head. / We are proposing a small heat exchanger that separates the fluid in the cylinder.

特開2018-151104号公報Japanese Unexamined Patent Publication No. 2018-151104

渡部、酒井、「熱交換器の伝達を促進する管側3次元ワイヤー素子“hiTRAN”の活用(その5)」、化学装置、(株)工業通信、2016年6月、第58巻第6号、p64-69。Watanabe, Sakai, "Utilization of tube-side three-dimensional wire element" hiTRAN "that promotes heat exchanger transmission (No. 5)", Chemical Equipment, Kogyo Tsushin Co., Ltd., June 2016, Vol. 58, No. 6 , P64-69.

本発明の課題は、管内壁と接触するループワイヤーにテグスを用いた小口径伝熱管に挿入容易な伝熱促進用3次元立体素子の構造とその製造方法を提供することにより、該素子を装着した高効率小型多管円筒式熱交換器の構成を達成するものである。 An object of the present invention is to provide a structure of a three-dimensional heat transfer promoting three-dimensional element that can be easily inserted into a small-diameter heat transfer tube using Tegs for a loop wire that contacts the inner wall of the tube, and a method for manufacturing the element. This is to achieve the configuration of a high-efficiency compact multi-tube cylindrical heat exchanger.

本発明の3次元立体伝熱促進素子のループワイヤーはしなやかなテグスであるため、内径が10mmφ以下の伝熱管に挿入する場合に、金属ループワイヤーのそれよりも少ない力で挿入が可能であり、ハイトランのように挿入前のループ部分の絞り込みは不要で、且つ挿入の方向に関係なく抜き差しが可能である。 Since the loop wire of the three-dimensional heat transfer promoting element of the present invention has a supple Tegs, when it is inserted into a heat transfer tube having an inner diameter of 10 mmφ or less, it can be inserted with less force than that of a metal loop wire. Unlike the high-tran, it is not necessary to narrow down the loop portion before insertion, and it can be inserted and removed regardless of the insertion direction.

具体的には本発明のループワイヤーの外側直径が8mmである立体素子は、伝熱管の内径7mmφに用いられるが、同時に内径5mmφの伝熱管にも容易に挿入可能であるため、従来の金属ループワイヤーを持つ立体素子よりも適用可能な伝熱管内径の範囲は広いが、これはループワイヤーの変形応力と摩擦抵抗が小さいためと考えられる。 Specifically, the three-dimensional element having an outer diameter of 8 mm for the loop wire of the present invention is used for an inner diameter of 7 mmφ of a heat transfer tube, but at the same time, it can be easily inserted into a heat transfer tube having an inner diameter of 5 mmφ, so that it is a conventional metal loop. The range of the inner diameter of the heat transfer tube that can be applied is wider than that of a three-dimensional element having a wire, which is considered to be due to the small deformation stress and frictional resistance of the loop wire.

本発明に用いるループ状のテグスは1.5号(0.205mmφ)から10号(0.520mmφ)が用いられ、内径4~7mmの伝熱管には、3号(0.285mmφ)または4号(0.330mmφ)が好ましい。テグスの材質はナイロン糸、フロロカーボン糸、ポリエステル糸、ポリプロピレン糸、ポリフェニレンサルファイド糸、フッ素糸であることが好ましい。
The loop-shaped fishing line used in the present invention is No. 1.5 (0.205 mmφ) to No. 10 (0.520 mmφ), and the heat transfer tube with an inner diameter of 4 to 7 mm is No. 3 (0.285 mmφ) or No. 4 (0.330 mmφ). preferable. The material of Tegs is preferably nylon yarn, fluorocarbon yarn, polyester yarn, polypropylene yarn, polyphenylene sulfide yarn, and fluorine yarn.

ループ状のテグスを捩じって固定するための金属製芯ワイヤーは、例えばSUS304の#20~#22(0.9~.66mmφ)が適当である。 For the metal core wire for twisting and fixing the loop-shaped fishing line, for example, SUS304 # 20 to # 22 (0.9 to .66 mmφ) is suitable.

スパイラルループ状テグスを金属芯ワイヤーに固定する前に、テグスをスパイラルループ状に固定しなければならないが、本発明のその方法は、作りたいスパイラル直径以下のロッドにテグスを巻き付けたのち、テグスの軟化温度より低い温度でアニーリングして、スパイラルループを形成するものである。 Before fixing the spiral loop-shaped fishing line to the metal core wire, the fishing line must be fixed in a spiral loop shape. It is annealed at a temperature lower than the softening temperature to form a spiral loop.

このテグスのスパイラルループに金属芯ワイヤーを通して、2つ折りにしたのち、芯ワイヤーを捩って本発明の伝熱促進3次元立体素子を製造する。 A metal core wire is passed through this Tegs spiral loop, folded in half, and then twisted to manufacture the heat transfer promoting three-dimensional element of the present invention.

該素子を伝熱管に挿入した熱交換器を試作し、熱交換能力を比較した結果、伝熱促進効果はハイトランと同等であった。 As a result of making a prototype of a heat exchanger in which the element was inserted into a heat transfer tube and comparing the heat exchange capacities, the heat transfer promoting effect was equivalent to that of Hytran.

スパイラルループ状に固定されたテグスと金属芯ワイヤーが通されて、捩られる前の模式図。Schematic diagram before twisting through a Tegs fixed in a spiral loop and a metal core wire. 芯ワイヤーの捩り回数と形態の変化の写真。A photograph of the number of twists and changes in the shape of the core wire. 伝熱促進性能を評価した熱交換器の胴部分の写真。A photograph of the body of the heat exchanger that evaluated the heat transfer promotion performance.

以下本発明の形態を示し、実施例によってその効果を説明する。 Hereinafter, embodiments of the present invention will be shown, and the effects thereof will be described with reference to Examples.

直径3mmΦのアルミ管の周囲にナイロン製3号(0.285mmφ)テグスの両端を固定して、一重に巻き付けた30cmのスパイラルループテグス作成用ロッドを作成した。 Nylon No. 3 (0.285mmφ) Tegs was fixed around an aluminum tube with a diameter of 3mmΦ, and a single-wound 30cm spiral loop Tegs rod was created.

この時巻き付けたテグスの全長は8mで、巻き数は850回巻きで、理論最密巻き数の80%であった。 At this time, the total length of the wound line was 8 m, and the number of turns was 850, which was 80% of the theoretical close-packed number.

このロッドに巻きついたテグスのアニーリングのため、沸騰水に5分間浸漬した。 It was soaked in boiling water for 5 minutes for annealing the Tegs wrapped around this rod.

冷却したのち、捩るための#20SUSの芯ワイヤーを端部に取り付けたのち、ロッドに巻かれたテグスの両端を開放すると、スパイラル直径が約5mmとなって図1に示したような芯ワイヤーが通されたテグスのスパイラルループが得られた。 After cooling, attach the # 20SUS core wire for twisting to the end, and then open both ends of the Tegs wound around the rod, the spiral diameter will be about 5 mm and the core wire as shown in Fig. 1 will be formed. A spiral loop of passed Tegus was obtained.

SUSの芯ワイヤーは2つ折りしたのち開放末端を固定し、その反対側の折り曲げ部を回転紐より機のフックに引っかけ、捩じることによって、スパイラルループテグスを芯ワイヤーに固定した。 After folding the SUS core wire in half, the open end was fixed, and the bent part on the opposite side was hooked on the hook of the machine from the rotating string and twisted to fix the spiral loop tegs to the core wire.

図2は芯ワイヤーの都有段階の捩り回数とスパイラルループテグスの固定状態を示した写真であって、本発明では最終的にスパイラルループテグスが、しっかりと芯ワイヤーに固定されるまで捩ることである。 FIG. 2 is a photograph showing the number of twists of the core wire at the metropolitan stage and the fixed state of the spiral loop teg. In the present invention, the spiral loop teg is finally twisted until it is firmly fixed to the core wire. be.

また図1のスパイラルループテグスは芯ワイヤーの片側に装着されているが、折り返した側にテグスが配置され、捩られても差し支えない。 The spiral loop fishing line in Fig. 1 is attached to one side of the core wire, but the fishing line is placed on the folded side and can be twisted.

このようにして製作した本発明の伝熱促進用3次元立体素子の伝熱性能を確認するため、小型の熱交換器2種を製作し、伝熱促進性能を測定した。 In order to confirm the heat transfer performance of the three-dimensional heat transfer promoting three-dimensional element of the present invention manufactured in this way, two types of small heat exchangers were manufactured and the heat transfer promotion performance was measured.

小型熱交換器は胴内径が52mmφの塩ビ製パイプに、内径5mmφ厚み0.5mmのアルミパイプ30本を装着した全長320mmの熱交換器で、胴側の対向ノズル間長さは25mm、管および胴の流体パス数は向流1パスである。 The small heat exchanger is a 320 mm long heat exchanger with 30 aluminum pipes with an inner diameter of 5 mmφ and a thickness of 0.5 mm mounted on a PVC pipe with an inner diameter of 52 mmφ. The number of fluid paths in is one countercurrent path.

アルミ伝熱管の外側はバッフルとなるものが何も存在しないプレーン、そして胴側の旋回流を期待して、2本撚りした1mmアルミワイヤーをらせん状に10回巻き付けたツイストワイヤーの2種を用意した。 The outside of the aluminum heat transfer tube is a plain with nothing to be a baffle, and two types of twisted wires are prepared, in which two twisted 1 mm aluminum wires are spirally wound 10 times in anticipation of a swirling flow on the body side. did.

図3は両端を封止し伝熱促進体を挿入した写真であり、左側はプレーン、右側はツイストワイヤーで、これに管用頭部を装着して、熱交換器を完成した。 Figure 3 is a photograph in which both ends are sealed and a heat transfer promoter is inserted. The left side is a plain, the right side is a twisted wire, and the head for a pipe is attached to this to complete the heat exchanger.

本発明の伝熱促進用3次元立体素子の効果を確認するために、該素子を挿入した熱交換器と挿入していない場合(エンプティ)の熱交換性能を測定した。 In order to confirm the effect of the three-dimensional heat transfer promoting three-dimensional element of the present invention, the heat exchange performance was measured between the heat exchanger in which the element was inserted and the case where the element was not inserted (empty).

熱交換する流体は20℃と38℃の水で、その流量は低温側6L/min、高温側10L/minの条件で、出入口温度を測定して、出入口温度差と流量から熱交換能力を求めた。 The fluids that exchange heat are water at 20 ° C and 38 ° C, and the flow rate is 6 L / min on the low temperature side and 10 L / min on the high temperature side. rice field.

その結果、胴側がプレーンの場合は、エンプティが2.1kWであるのに対して、本発明の素子を挿入した場合は3.3kWと160%の熱交換性能の増加が観察された。 As a result, when the body side was plain, the emptyness was 2.1 kW, whereas when the element of the present invention was inserted, the heat exchange performance was observed to be 3.3 kW, which is a 160% increase in heat exchange performance.

また胴側にツイストワイヤーを装着した熱交換器の場合は、エンプティが3.0kWであるのに対し、本発明の素子を挿入した場合は4.3kWと143%の増加が観察された。 In the case of a heat exchanger equipped with a twisted wire on the body side, the emptyness was 3.0 kW, whereas when the element of the present invention was inserted, it was 4.3 kW, an increase of 143% was observed.

以上のように本発明のテグスをループワイヤーとする伝熱促進用3次元立体素子は、管側の伝熱抵抗を小さくし、伝熱性能を50%程度向上させることが確認できた。 As described above, it was confirmed that the three-dimensional heat transfer promoting three-dimensional element using the Tegs of the present invention as a loop wire reduces the heat transfer resistance on the tube side and improves the heat transfer performance by about 50%.

地球温暖化防止に向けて省エネルギー技術の開発が望まれているが、低温排水からの高効率熱回収技術が望まれており、本発明の伝熱促進用3次元立体素子を装着した熱交換器は、多大の寄与をするものと期待される。 Development of energy-saving technology is desired to prevent global warming, but high-efficiency heat recovery technology from low-temperature wastewater is desired, and a heat exchanger equipped with the three-dimensional three-dimensional element for heat transfer promotion of the present invention is desired. Is expected to make a great contribution.

Claims (4)

内径が26mmφ以下の伝熱管の内部に配置される伝熱促進用3次元立体素子であって、直径が0.1~1.0mmで、ループ直径が3~15mmに成型されたテグスからなるプラスチック製スパイラルループの内部に通された金属製芯ワイヤーが2つ折りにされ、さらに捩じられることによって、前記プラスチック製スパイラルループが前記芯ワイヤーに固定されていることを特徴とする伝熱促進用3次元立体素子。
A three-dimensional heat transfer promoting three-dimensional element placed inside a heat transfer tube with an inner diameter of 26 mmφ or less. A plastic spiral loop made of Tegs with a diameter of 0.1 to 1.0 mm and a loop diameter of 3 to 15 mm. A three-dimensional element for heat transfer , characterized in that the plastic spiral loop is fixed to the core wire by folding the metal core wire passed through the inside of the core wire in half and further twisting the metal core wire. ..
前記テグスの材質がナイロン糸、フロロカーボン糸、ポリエステル糸、ポリプロピレン糸、ポリフェニレンサルファイド糸である請求項1に記載の伝熱促進用3次元立体素子。 The three-dimensional element for heat transfer according to claim 1, wherein the material of the Tegs is a nylon thread, a fluorocarbon thread, a polyester thread, a polypropylene thread, or a polyphenylene sulfide yarn. 請求項1または2に記載の前記伝熱促進用3次元立体素子が、前記伝熱管内に挿入されている熱交換器。 A heat exchanger in which the heat transfer promoting three-dimensional element according to claim 1 or 2 is inserted in the heat transfer tube. 直径が0.1~1.0mmで、ループ直径が3~15mmに成型したテグスから作成したプラスチック製スパイラルループの内部に金属製芯ワイヤーを通し、該金属製ワイヤーを2つ折りにし、さらに捩じることにより、前記プラスチック製スパイラルループを前記金属芯ワイヤーに固定することを特徴とする伝熱促進用3次元立体素子の製造方法。
Pass the metal core wire through the inside of the plastic spiral loop made from Tegs molded with a diameter of 0.1 to 1.0 mm and a loop diameter of 3 to 15 mm, fold the metal core wire in half, and twist it further. A method for manufacturing a three-dimensional three-dimensional element for promoting heat transfer, which comprises fixing the plastic spiral loop to the metal core wire.
JP2019017535A 2019-02-02 2019-02-02 A three-dimensional three-dimensional element for promoting heat transfer and a heat exchanger in which the element is inserted inside a heat transfer tube. Active JP7079395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019017535A JP7079395B2 (en) 2019-02-02 2019-02-02 A three-dimensional three-dimensional element for promoting heat transfer and a heat exchanger in which the element is inserted inside a heat transfer tube.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017535A JP7079395B2 (en) 2019-02-02 2019-02-02 A three-dimensional three-dimensional element for promoting heat transfer and a heat exchanger in which the element is inserted inside a heat transfer tube.

Publications (3)

Publication Number Publication Date
JP2020125864A JP2020125864A (en) 2020-08-20
JP2020125864A5 JP2020125864A5 (en) 2021-09-02
JP7079395B2 true JP7079395B2 (en) 2022-06-02

Family

ID=72084843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017535A Active JP7079395B2 (en) 2019-02-02 2019-02-02 A three-dimensional three-dimensional element for promoting heat transfer and a heat exchanger in which the element is inserted inside a heat transfer tube.

Country Status (1)

Country Link
JP (1) JP7079395B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130975A (en) 2000-10-30 2002-05-09 Japan Atom Energy Res Inst Method for heat-transfer augmentation by using metal thin-wire porous body
JP2007064514A (en) 2005-08-29 2007-03-15 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube
CN203719506U (en) 2014-02-19 2014-07-16 杨承清 Turbulence finned tube exchanger
CN203824400U (en) 2014-05-16 2014-09-10 北京京诚凤凰工业炉工程技术有限公司 Heat exchange tube and insert
JP2016217540A (en) 2015-05-14 2016-12-22 昭二 酒井 Double pipe type heat exchanger excellent in heat transfer performance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135855U (en) * 1975-04-24 1976-11-02
US4798241A (en) * 1983-04-04 1989-01-17 Modine Manufacturing Mixed helix turbulator for heat exchangers
DE4345045A1 (en) * 1993-12-31 1995-07-06 Hoechst Ag Heat exchange tube with built-in element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130975A (en) 2000-10-30 2002-05-09 Japan Atom Energy Res Inst Method for heat-transfer augmentation by using metal thin-wire porous body
JP2007064514A (en) 2005-08-29 2007-03-15 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube
CN203719506U (en) 2014-02-19 2014-07-16 杨承清 Turbulence finned tube exchanger
CN203824400U (en) 2014-05-16 2014-09-10 北京京诚凤凰工业炉工程技术有限公司 Heat exchange tube and insert
JP2016217540A (en) 2015-05-14 2016-12-22 昭二 酒井 Double pipe type heat exchanger excellent in heat transfer performance

Also Published As

Publication number Publication date
JP2020125864A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
US20070187067A1 (en) Heat transfer tube and heat exchanger using same
ES2645743T3 (en) Method for permanently forming, inserting and joining nerves in boiler tubes
JP2003156294A5 (en)
JP2009041880A (en) Water heat exchanger for water heater
JP7079395B2 (en) A three-dimensional three-dimensional element for promoting heat transfer and a heat exchanger in which the element is inserted inside a heat transfer tube.
JP2016102643A (en) Heat exchanger
JP2008121908A (en) Heat exchanger
JP2005083667A (en) Heat exchanger
JP2005221172A (en) Heat exchanger for supplying hot water
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2009241145A (en) Method of manufacturing double pipe having bent part and double pipe having bent part
JP2005061771A (en) Heat exchanger
JP2006162165A (en) Heat exchanger
JP2007218461A (en) Double tube type heat exchanger
JP2019219079A (en) Water heat exchanger and gas cooler
JP2008249163A (en) Heat exchanger for supplying hot water
JP2007218523A (en) Heat exchanger
JPS6114032A (en) Manufacture of heat transfer tube for heat exchanger
JP2008082600A (en) Water-refrigerant heat exchanger and heat pump hot water supply device using the same
JP2009198043A (en) Heat exchanger
US822372A (en) Tube for radiating, cooling, and condensing apparatus.
RU64750U1 (en) HEAT EXCHANGE ELEMENT
KR20080099195A (en) Pipe in pipe type heat exchanger with high heat transfer
JP2009024969A (en) Heat exchanger
JP6682017B2 (en) Twist tube heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211229

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7079395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150