JP7078653B2 - Display device - Google Patents

Display device Download PDF

Info

Publication number
JP7078653B2
JP7078653B2 JP2020007447A JP2020007447A JP7078653B2 JP 7078653 B2 JP7078653 B2 JP 7078653B2 JP 2020007447 A JP2020007447 A JP 2020007447A JP 2020007447 A JP2020007447 A JP 2020007447A JP 7078653 B2 JP7078653 B2 JP 7078653B2
Authority
JP
Japan
Prior art keywords
transistor
wiring
signal
electrode
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020007447A
Other languages
Japanese (ja)
Other versions
JP2020080541A (en
Inventor
敦司 梅崎
博之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2020007447A priority Critical patent/JP7078653B2/en
Publication of JP2020080541A publication Critical patent/JP2020080541A/en
Priority to JP2021145294A priority patent/JP7201760B2/en
Application granted granted Critical
Publication of JP7078653B2 publication Critical patent/JP7078653B2/en
Priority to JP2022135916A priority patent/JP2022177025A/en
Priority to JP2023111297A priority patent/JP2023139042A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はトランジスタを用いて構成された回路を有する表示装置に関する。特に液晶等の
電気光学素子若しくは発光素子等を表示媒体として用いる表示装置及びその駆動方法に関
する。
The present invention relates to a display device having a circuit configured by using transistors. In particular, the present invention relates to a display device using an electro-optical element such as a liquid crystal or a light emitting element as a display medium and a driving method thereof.

近年、表示装置は、液晶テレビなどの大型表示装置の増加から、活発に開発が進められて
いる。特に、絶縁基板上に非結晶半導体(以下、アモルファスシリコンともいう)によっ
て構成されたトランジスタを用いて、画素回路及びシフトレジスタ等を含む駆動回路(以
下、内部回路ともいう)を一体形成する技術は、低消費電力化、低コスト化に大きく貢献
するため、活発に開発が進められている。絶縁体上に形成された内部回路は、FPC等を
介してコントローラIC等(以下、外部回路ともいう)に接続され、その動作が制御され
る。
In recent years, display devices have been actively developed due to the increase in large display devices such as liquid crystal televisions. In particular, there is a technique for integrally forming a drive circuit (hereinafter, also referred to as an internal circuit) including a pixel circuit and a shift register by using a transistor composed of a non-crystalline semiconductor (hereinafter, also referred to as amorphous silicon) on an insulating substrate. , Is being actively developed in order to greatly contribute to low power consumption and low cost. The internal circuit formed on the insulator is connected to a controller IC or the like (hereinafter, also referred to as an external circuit) via an FPC or the like, and its operation is controlled.

上記示した内部回路の中でも、非結晶半導体によって構成されたトランジスタ(以下、ア
モルファスシリコントランジスタともいう)を用いたシフトレジスタが考案されている。
従来のシフトレジスタが有するフリップフロップの構成を図30(A)に示す(特許文献
1)。図30(A)のフリップフロップは、トランジスタ11、トランジスタ12、トラ
ンジスタ13、トランジスタ14、トランジスタ15及びトランジスタ17を有し、信号
線21、信号線22、配線23、信号線24、電源線25、電源線26に接続されている
。信号線21、信号線22、信号線24、電源線25、電源線26には、それぞれスター
ト信号、リセット信号、クロック信号、電源電位VDD、電源電位VSSが入力される。
図30(A)のフリップフロップの動作期間は、図30(B)のタイミングチャートに示
すように、セット期間、選択期間、リセット期間、非選択期間に分割され、動作期間のう
ちのほとんどが非選択期間となる。
Among the internal circuits shown above, a shift register using a transistor composed of a non-crystalline semiconductor (hereinafter, also referred to as an amorphous silicon transistor) has been devised.
The configuration of the flip-flop of the conventional shift register is shown in FIG. 30 (A) (Patent Document 1). The flip-flop of FIG. 30A has a transistor 11, a transistor 12, a transistor 13, a transistor 14, a transistor 15, and a transistor 17, and has a signal line 21, a signal line 22, a wiring 23, a signal line 24, and a power supply line 25. It is connected to the power line 26. A start signal, a reset signal, a clock signal, a power supply potential VDD, and a power supply potential VSS are input to the signal line 21, the signal line 22, the signal line 24, the power supply line 25, and the power supply line 26, respectively.
As shown in the timing chart of FIG. 30B, the operation period of the flip-flop of FIG. 30A is divided into a set period, a selection period, a reset period, and a non-selection period, and most of the operation periods are non-operational periods. It will be a selection period.

ここで、非選択期間においてトランジスタ12及びトランジスタ16がオンしている。よ
って、トランジスタ12及びトランジスタ16の半導体層にアモルファスシリコンを用い
ているので、劣化等によりしきい値電圧(Vth)に変動が生じる。より具体的には、し
きい値電圧が上昇する。つまり、従来のシフトレジスタは、トランジスタ12及びトラン
ジスタ16のしきい値電圧が上昇してオンできなくなるため、ノード41及び配線23に
VSSを供給することができずに誤動作を起こす。
Here, the transistor 12 and the transistor 16 are turned on during the non-selection period. Therefore, since amorphous silicon is used for the semiconductor layer of the transistor 12 and the transistor 16, the threshold voltage (Vth) fluctuates due to deterioration or the like. More specifically, the threshold voltage rises. That is, the conventional shift register cannot be turned on because the threshold voltage of the transistor 12 and the transistor 16 rises, so that VSS cannot be supplied to the node 41 and the wiring 23, causing a malfunction.

この問題を解決すべく、非特許文献1、非特許文献2及び非特許文献3において、トラン
ジスタ12のしきい値電圧のシフトを抑制できるシフトレジスタが考案されている。非特
許文献1、非特許文献2及び非特許文献3では、新たなトランジスタ(第1のトランジス
タとする)をトランジスタ12(第2のトランジスタとする)と並列に配置し、非選択期
間において、第1のトランジスタのゲート電極及び第2のトランジスタのゲート電極にそ
れぞれ反転した信号を入力することで、第1のトランジスタ及び第2のトランジスタのし
きい値電圧のシフトを抑制している。
In order to solve this problem, non-patent documents 1, non-patent documents 2 and non-patent documents 3 have devised shift registers capable of suppressing the shift of the threshold voltage of the transistor 12. In Non-Patent Document 1, Non-Patent Document 2 and Non-Patent Document 3, a new transistor (referred to as the first transistor) is arranged in parallel with the transistor 12 (referred to as the second transistor), and in the non-selection period, the first transistor is arranged. By inputting inverted signals to the gate electrode of the first transistor and the gate electrode of the second transistor, the shift of the threshold voltage of the first transistor and the second transistor is suppressed.

さらに、非特許文献4では、トランジスタ12だけでなく、トランジスタ16のしきい値
電圧のシフトも抑制できるシフトレジスタが考案されている。非特許文献4では、新たな
トランジスタ(第1のトランジスタとする)をトランジスタ12(第2のトランジスタと
する)と並列に配置し、さらに別の新たなトランジスタ(第3のトランジスタとする)を
トランジスタ16(第4のトランジスタとする)と並列に配置する。そして、非選択期間
において、第1のトランジスタのゲート電極及び第2のトランジスタのゲート電極にそれ
ぞれ反転した信号を入力し、第3のトランジスタのゲート電極及び第4のトランジスタの
ゲート電極にそれぞれ反転した信号を入力することで、第1のトランジスタ、第2のトラ
ンジスタ、第3のトランジスタ及び第4のトランジスタのしきい値電圧のシフトを抑制し
ている。
Further, in Non-Patent Document 4, a shift register that can suppress the shift of the threshold voltage of the transistor 16 as well as the transistor 12 is devised. In Non-Patent Document 4, a new transistor (referred to as a first transistor) is arranged in parallel with a transistor 12 (referred to as a second transistor), and another new transistor (referred to as a third transistor) is a transistor. Arrange in parallel with 16 (referred to as the fourth transistor). Then, during the non-selection period, inverted signals were input to the gate electrode of the first transistor and the gate electrode of the second transistor, respectively, and inverted to the gate electrode of the third transistor and the gate electrode of the fourth transistor, respectively. By inputting a signal, the shift of the threshold voltage of the first transistor, the second transistor, the third transistor, and the fourth transistor is suppressed.

さらに、非特許文献5では、トランジスタ12のゲート電極に交流パルスを印加すること
で、トランジスタ12のしきい値電圧のシフトを抑制している。
Further, in Non-Patent Document 5, the shift of the threshold voltage of the transistor 12 is suppressed by applying an AC pulse to the gate electrode of the transistor 12.

なお、非特許文献6及び非特許文献7の表示装置は、アモルファスシリコントランジスタ
で構成されるシフトレジスタを走査線駆動回路として用いて、さらにR、G、Bのサブ画
素に1つの信号線からビデオ信号を入力することで、信号線の数を1/3に減らしている
。こうして、非特許文献6及び非特許文献7の表示装置は、表示パネルとドライバICと
の接続数を減らしている。
The display devices of Non-Patent Document 6 and Non-Patent Document 7 use a shift register composed of an amorphous silicon transistor as a scanning line drive circuit, and further video from one signal line to each of the R, G, and B sub-pixels. By inputting a signal, the number of signal lines is reduced to 1/3. In this way, the display devices of Non-Patent Document 6 and Non-Patent Document 7 reduce the number of connections between the display panel and the driver IC.

特開2004-157508号公報Japanese Unexamined Patent Publication No. 2004-157508

Soo Young Yoon, et al., ”Highly Stable Integrated Gate Driver Circuit using a-Si TFT with Dual Pull-down Structure”, SOCIETY FOR INFORMATION DISPLAY 2005 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, Volume XXXVI, p.348-351Soo Young Yoon, et al. , "Highly Double Integrated Gate Drive Circuit using a-Si TFT with Dual Pull-down Structure", SOCIETY FOR INFORMATION DISPLAY 200 348-351 Binn Kim, et al., ”a-Si Gate Driver Integration with Time Shared Data Driving”, Proceedings of The 12th International Display Workshops in conjunction with Asia Display 2005, p.1073-1076Binn Kim, et al. , "A-Si Gate Drive Integration with Time Shared Data Driving", Proceedings of The 12th International DISPLAY Workshops in conjunction, 1073-1076 Mindoo Chun, et al., ”Integrated Gate Driver Using Highly Stable a-Si TFT’s”, Proceedings of The 12th International Display Workshops in conjunction with Asia Display 2005, p.1077-1080Mindoo Chun, et al. , "Integrated Gate Drive Using Highly Table a-Si TFT's", Proceedings of The 12th International Display Display Works in conjunction 200thA. 1077-1080 Chun-Ching, et al., ”Integrated Gate Driver Circuit Using a-Si TFT”, Proceedings of The 12th International Display Workshops in conjunction with Asia Display 2005, p.1023-1026Chun-Ching, et al. , "Integrated Gate Drive Circuit Using a-Si TFT", Proceedings of The 12th International Display Works in conjunction with 200th Asia Display. 1023-1026 Yong Ho Jang, et al., ”A-Si TFT lntegrated Gate Driver with AC-Driven Single Pull-down Structure”, SOCIETY FOR INFORMATION DISPLAY 2006 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, Volume XXXVII, p.208-211Young Ho Jang, et al. , "A-Si TFT Lntegrated Gate Drive with AC-Driven Single Pull-down Structure", SOCIETY FOR INFORMATION DISPLAY IIIX IVEN 208-211 Jin Young Choi, et al., ”A Compact and Cost-efficient TFT-LCD through the Triple-Gate Pixcel Structure”, SOCIETY FOR INFORMATION DISPLAY 2006 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, Volume XXXVII, p.274-276Jin Young Choi, et al. , "A Compact and Cost-efficient TFT-LCD throttle-Gate Pixel Structure", SOCIETY FOR INFORMATION DISPLAY 274-276 Yong Soon Lee, et al., ”Advanced TFT-LCD Data Line Reduction Method”, SOCIETY FOR INFORMATION DISPLAY 2006 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, Volume XXXVII, p.1083-1086Young Soon Lee, et al. , "Advanced TFT-LCD Data Line Relaytion Method", SOCIETY FOR INFOMATION DISPLAY 2006 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAX, V.M. 1083-1086

従来の技術によれば、劣化しやすいトランジスタのゲートに交流パルスを印加することで
、当該トランジスタのしきい値電圧のシフトを抑制している。しかしながら、トランジス
タの半導体層としてアモルファスシリコンを用いた場合、当然、交流パルスを生成する回
路を構成するトランジスタも、しきい値電圧のシフトを生じてしまうことが問題となる。
According to the prior art, the shift of the threshold voltage of the transistor is suppressed by applying an AC pulse to the gate of the transistor which is easily deteriorated. However, when amorphous silicon is used as the semiconductor layer of the transistor, naturally, the transistor constituting the circuit that generates the AC pulse also has a problem that the threshold voltage shift occurs.

また、信号線の数を1/3に減らして表示パネルとドライバICとの接点の数を削減する
ことが提案されているが(非特許文献6及び非特許文献7)、実用的にはドライバICの
接点の数をより削減することが求められている。
Further, it has been proposed to reduce the number of signal lines to 1/3 to reduce the number of contacts between the display panel and the driver IC (Non-Patent Document 6 and Non-Patent Document 7), but the driver is practically used. It is required to further reduce the number of IC contacts.

すなわち従来の技術で解決されないものとして、トランジスタのしきい値電圧の変動を抑
制する回路技術が課題として残されている。表示パネルに実装するドライバICの接点数
を削減する技術が課題として残されている。表示装置の低消費電力化が課題として残され
ている。表示装置の大型化又は高精細化が課題として残されている。
That is, as a problem that cannot be solved by the conventional technique, a circuit technique for suppressing the fluctuation of the threshold voltage of the transistor remains as an issue. A technique for reducing the number of contacts of the driver IC mounted on the display panel remains an issue. Reducing the power consumption of display devices remains an issue. Larger or higher definition display devices remain an issue.

本明細書で開示する発明は、このような課題の一又は複数を解決することにより産業上有
益な技術を提供することを目的としている。
The invention disclosed herein is intended to provide an industrially useful technique by solving one or more of these problems.

本発明に係わる表示装置は、劣化しやすいトランジスタのゲート電極に、正電源、及び負
電源を交互に印加することによって、当該トランジスタのしきい値電圧のシフトを抑制で
きる。
The display device according to the present invention can suppress the shift of the threshold voltage of the transistor by alternately applying a positive power supply and a negative power supply to the gate electrode of the transistor which is easily deteriorated.

さらに、本発明に係わる表示装置は、劣化しやすいトランジスタのゲート電極に、スイッ
チを介して高電位(VDD)、またはスイッチを介して低電位(VSS)を、交互に供給
することで、当該トランジスタのしきい値電圧のシフトを抑制できる。
Further, the display device according to the present invention alternately supplies a high potential (whether) or a low potential (VSS) via a switch to the gate electrode of a transistor which is easily deteriorated, thereby supplying the transistor to the gate electrode. It is possible to suppress the shift of the threshold voltage of.

具体的には、劣化しやすいトランジスタのゲート電極を、第1のスイッチングトランジス
タを介して高電位が供給される配線、及び第2のスイッチングトランジスタを介して低電
位が供給される配線に接続し、第1のスイッチングトランジスタのゲート電極にクロック
信号を入力し、第2のスイッチングトランジスタのゲート電極に反転クロック信号を入力
することで、劣化しやすいトランジスタのゲート電極に高電位、又は低電位を交互に供給
する。
Specifically, the gate electrode of the easily deteriorated transistor is connected to a wiring to which a high potential is supplied via the first switching transistor and a wiring to which a low potential is supplied via the second switching transistor. By inputting a clock signal to the gate electrode of the first switching transistor and inputting an inverted clock signal to the gate electrode of the second switching transistor, high potential or low potential is alternately applied to the gate electrode of the transistor which is easily deteriorated. Supply.

なお、本書類(明細書、特許請求の範囲又は図面など)に示すスイッチは、様々な形態の
ものを用いることができる。例としては、電気的スイッチや機械的なスイッチなどがある
。つまり、電流の流れを制御できるものであればよく、特定のものに限定されない。例え
ば、スイッチとして、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジ
スタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダ
イオード、MIM(MetalInsulatorMetal)ダイオード、MIS(M
etalInsulatorSemiconductor)ダイオード、ダイオード接続
のトランジスタなど)、サイリスタなどを用いることが出来る。または、これらを組み合
わせた論理回路をスイッチとして用いることが出来る。
The switches shown in this document (specification, claims, drawings, etc.) can be of various forms. Examples include electrical switches and mechanical switches. That is, it is not limited to a specific one as long as it can control the flow of electric current. For example, as a switch, a transistor (for example, a bipolar transistor, a MOS transistor, etc.), a diode (for example, a PN diode, a PIN diode, a Schottky diode, a MIM (MetalInsulatorMetal) diode, a MIS (M).
etalInsulatorSemiconductor) diode, diode-connected transistor, etc.), thyristor, etc. can be used. Alternatively, a logic circuit combining these can be used as a switch.

スイッチとしてトランジスタを用いる場合、そのトランジスタは、単なるスイッチとして
動作するため、トランジスタの極性(導電型)は特に限定されない。ただし、オフ電流を
抑えたい場合、オフ電流が少ない方の極性のトランジスタを用いることが望ましい。オフ
電流が少ないトランジスタとしては、LDD領域を有するトランジスタやマルチゲート構
造を有するトランジスタ等がある。または、スイッチとして動作させるトランジスタのソ
ース端子の電位が、低電位側電源(Vss、GND、0Vなど)に近い状態で動作する場
合はNチャネル型トランジスタを用いることが望ましい。反対に、ソース端子の電位が、
高電位側電源(Vddなど)に近い状態で動作する場合はPチャネル型トランジスタを用
いることが望ましい。なぜなら、Nチャネル型トランジスタではソース端子が低電位側電
源に近い状態で動作するとき、Pチャネル型トランジスタではソース端子が高電位側電源
に近い状態で動作するとき、ゲートソース間電圧の絶対値を大きくできるため、スイッチ
として、より確実に動作するからである。また、ソースフォロワ動作をしてしまうことが
少ないため、出力電圧の大きさが小さくなってしまうことが少ないからである。
When a transistor is used as a switch, the polarity (conductive type) of the transistor is not particularly limited because the transistor operates as a mere switch. However, when it is desired to suppress the off-current, it is desirable to use a transistor having the polarity with the smaller off-current. Examples of the transistor having a small off-current include a transistor having an LDD region, a transistor having a multi-gate structure, and the like. Alternatively, when the potential of the source terminal of the transistor operated as a switch operates in a state close to the low potential side power supply (Vss, GND, 0V, etc.), it is desirable to use an N-channel transistor. On the contrary, the potential of the source terminal is
It is desirable to use a P-channel transistor when operating in a state close to a high potential side power supply (Vdd, etc.). This is because, in the N-channel transistor, when the source terminal operates near the low potential side power supply, and in the P-channel transistor, when the source terminal operates near the high potential side power supply, the absolute value of the gate-source voltage is set. Because it can be made larger, it operates more reliably as a switch. Further, since the source follower operation is rarely performed, the magnitude of the output voltage is unlikely to be small.

なお、Nチャネル型トランジスタとPチャネル型トランジスタの両方を用いて、CMOS
型のスイッチをスイッチとして用いてもよい。CMOS型のスイッチにすると、Pチャネ
ル型トランジスタまたはNチャネル型トランジスタのどちらか一方のトランジスタが導通
すれば電流が流れるため、スイッチとして機能しやすくなる。例えば、スイッチへの入力
信号の電圧が高い場合でも、低い場合でも、適切に電圧を出力させることが出来る。さら
に、スイッチをオン・オフさせるための信号の電圧振幅値を小さくすることが出来るので
、消費電力を小さくすることも出来る。
In addition, CMOS using both N-channel type transistor and P-channel type transistor.
A type switch may be used as a switch. In a CMOS type switch, if either a P-channel transistor or an N-channel transistor conducts, a current flows, so that the switch can easily function as a switch. For example, the voltage can be appropriately output regardless of whether the voltage of the input signal to the switch is high or low. Further, since the voltage amplitude value of the signal for turning the switch on and off can be reduced, the power consumption can be reduced.

なお、スイッチとしてトランジスタを用いる場合、スイッチは、入力端子(ソース端子ま
たはドレイン端子の一方)と、出力端子(ソース端子またはドレイン端子の他方)と、導
通を制御する端子(ゲート端子)とを有している。一方、スイッチとしてダイオードを用
いる場合、スイッチは、導通を制御する端子を有していない場合がある。そのため、トラ
ンジスタよりもダイオードをスイッチとして用いた方が、端子を制御するための配線を少
なくすることが出来る。
When a transistor is used as a switch, the switch has an input terminal (one of the source terminal or the drain terminal), an output terminal (the other of the source terminal or the drain terminal), and a terminal (gate terminal) for controlling conduction. is doing. On the other hand, when a diode is used as the switch, the switch may not have a terminal for controlling conduction. Therefore, using a diode as a switch rather than a transistor can reduce the wiring for controlling the terminals.

なお、本明細書において、AとBとが接続されている、と明示的に記載する場合は、Aと
Bとが電気的に接続されている場合と、AとBとが機能的に接続されている場合と、Aと
Bとが直接接続されている場合とを含むものとする。ここで、A、Bは、対象物(例えば
、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。したがって
、本明細書が開示する構成において、所定の接続関係、例えば、図または文章に示された
接続関係に限定されず、図または文章に示された接続関係以外のものも含むものとする。
In the present specification, when it is explicitly stated that A and B are connected, the case where A and B are electrically connected and the case where A and B are functionally connected are functionally connected. It is assumed that the case where A and B are directly connected is included. Here, it is assumed that A and B are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.). Therefore, in the configuration disclosed herein, it is not limited to the predetermined connection relationship, for example, the connection relationship shown in the figure or text, but also includes the connection relationship other than the connection relationship shown in the figure or text.

例えば、AとBとが電気的に接続されている場合として、AとBとの電気的な接続を可能
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オードなど)が、AとBとの間に1個以上配置されていてもよい。あるいは、AとBとが
機能的に接続されている場合として、AとBとの機能的な接続を可能とする回路(例えば
、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回
路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、
降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、
切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、
差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制
御回路など)が、AとBとの間に1個以上配置されていてもよい。あるいは、AとBとが
直接接続されている場合として、AとBとの間に他の素子や他の回路を挟まずに、AとB
とが直接接続されていてもよい。
For example, when A and B are electrically connected, an element (for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, etc.) that enables an electrical connection between A and B may be used. , One or more may be arranged between A and B. Alternatively, when A and B are functionally connected, a circuit (for example, a logic circuit (inverter, NAND circuit, NOR circuit, etc.)) or a signal conversion circuit that enables functional connection between A and B. (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, booster circuit, etc.)
Step-down circuit, etc.), level shifter circuit that changes the potential level of the signal, etc.), voltage source, current source,
Switching circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier,
A differential amplifier circuit, a source follower circuit, a buffer circuit, etc.), a signal generation circuit, a storage circuit, a control circuit, etc.) may be arranged one or more between A and B. Alternatively, assuming that A and B are directly connected, A and B are not sandwiched between A and B with another element or another circuit.
And may be directly connected.

なお、AとBとが直接接続されている、と明示的に記載する場合は、AとBとが直接接続
されている場合(つまり、AとBとの間に他の素子や他の回路を間に介さずに接続されて
いる場合)と、AとBとが電気的に接続されている場合(つまり、AとBとの間に別の素
子や別の回路を挟んで接続されている場合)とを含むものとする。
When it is explicitly stated that A and B are directly connected, it means that A and B are directly connected (that is, another element or another circuit between A and B). When A and B are electrically connected (that is, when they are connected without intervening) and when A and B are connected by sandwiching another element or another circuit between A and B. If there is) and.

なお、AとBとが電気的に接続されている、と明示的に記載する場合は、AとBとが電気
的に接続されている場合(つまり、AとBとの間に別の素子や別の回路を挟んで接続され
ている場合)と、AとBとが機能的に接続されている場合(つまり、AとBとの間に別の
回路を挟んで機能的に接続されている場合)と、AとBとが直接接続されている場合(つ
まり、AとBとの間に別の素子や別の回路を挟まずに接続されている場合)とを含むもの
とする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続され
ている、とのみ明示的に記載されている場合と同じであるとする。
When it is explicitly stated that A and B are electrically connected, it means that A and B are electrically connected (that is, another element between A and B). When A and B are functionally connected (that is, when they are connected by sandwiching another circuit between A and B) and when they are functionally connected by sandwiching another circuit between A and B. (When) and the case where A and B are directly connected (that is, the case where another element or another circuit is not sandwiched between A and B) is included. In other words, the case where it is explicitly stated that it is electrically connected is the same as the case where it is simply stated that it is simply connected.

なお、表示素子、表示素子を有する装置である表示装置、発光素子、発光素子を有する装
置である発光装置は、様々な形態を用いたり、様々な素子を有することが出来る。例えば
、表示素子、表示装置、発光素子または発光装置としては、EL素子(有機EL素子、無
機EL素子又は有機物及び無機物を含むEL素子)、電子放出素子、液晶素子、電子イン
ク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイ(P
DP)、デジタルマイクロミラーデバイス(DMD)、圧電セラミックディスプレイ、カ
ーボンナノチューブ、など、電気磁気的作用により、コントラスト、輝度、反射率、透過
率などが変化する表示媒体を用いることができる。なお、EL素子を用いた表示装置とし
てはELディスプレイ、電子放出素子を用いた表示装置としてはフィールドエミッション
ディスプレイ(FED)やSED方式平面型ディスプレイ(SED:Surface-c
onductionElectron-emitterDisply)など、液晶素子を
用いた表示装置としては液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディ
スプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ
)、電子インクや電気泳動素子を用いた表示装置としては電子ペーパーがある。
The display element, the display device which is a device having a display element, the light emitting element, and the light emitting device which is a device having a light emitting element can use various forms or have various elements. For example, as a display element, a display device, a light emitting element or a light emitting device, an EL element (organic EL element, an inorganic EL element or an EL element containing an organic substance and an inorganic substance), an electron emitting element, a liquid crystal element, an electronic ink, an electrophoretic element, etc. Grating light valve (GLV), plasma display (P)
A display medium such as a DP), a digital micromirror device (DMD), a piezoelectric ceramic display, a carbon nanotube, or the like, whose contrast, brightness, reflectance, transmittance, and the like are changed by an electromagnetic action can be used. The display device using the EL element is an EL display, and the display device using an electron emitting element is a field emission display (FED) or an SED type flat display (SED: Surface-c).
Liquid crystal displays (transmissive liquid crystal display, semi-transmissive liquid crystal display, reflective liquid crystal display, direct-view liquid crystal display, projection type liquid crystal display), electronic ink and electrophoretic As a display device using an element, there is an electronic paper.

なお、本書類(明細書、特許請求の範囲又は図面など)に記載されたトランジスタとして
、様々な形態のトランジスタを用いることが出来る。よって、用いるトランジスタの種類
に限定はない。例えば、非晶質シリコン、多結晶シリコン、微結晶(マイクロクリスタル
、セミアモルファスとも言う)シリコンなどに代表される非単結晶半導体膜を有する薄膜
トランジスタ(TFT)などを用いることが出来る。TFTを用いる場合、様々なメリッ
トがある。例えば、単結晶シリコンの場合よりも低い温度で製造できるため、製造コスト
の削減、又は製造装置の大型化を図ることができる。製造装置を大きくできるため、大型
基板上に製造できる。そのため、同時に多くの個数の表示装置を製造できるため、低コス
トで製造できる。さらに、製造温度が低いため、耐熱性の弱い基板を用いることができる
。そのため、透明基板上にトランジスタを製造できる。そして、透明な基板上のトランジ
スタを用いて表示素子での光の透過を制御することが出来る。あるいは、トランジスタの
膜厚が薄いため、トランジスタを構成する膜の一部は、光を透過させることが出来る。そ
のため、開口率が向上させることができる。
Various forms of transistors can be used as the transistors described in this document (specification, claims, drawings, etc.). Therefore, the type of transistor used is not limited. For example, a thin film transistor (TFT) having a non-single crystal semiconductor film represented by amorphous silicon, polycrystalline silicon, microcrystal (also referred to as microcrystal or semi-amorphous) silicon, or the like can be used. When using a TFT, there are various merits. For example, since it can be manufactured at a lower temperature than that of single crystal silicon, it is possible to reduce the manufacturing cost or increase the size of the manufacturing apparatus. Since the manufacturing equipment can be made large, it can be manufactured on a large substrate. Therefore, since a large number of display devices can be manufactured at the same time, it can be manufactured at low cost. Further, since the production temperature is low, a substrate having weak heat resistance can be used. Therefore, a transistor can be manufactured on a transparent substrate. Then, the transmission of light in the display element can be controlled by using the transistor on the transparent substrate. Alternatively, since the film thickness of the transistor is thin, a part of the film constituting the transistor can transmit light. Therefore, the aperture ratio can be improved.

なお、多結晶シリコンを製造するときに、触媒(ニッケルなど)を用いることにより、結
晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。その
結果、ゲートドライバ回路(走査線駆動回路)やソースドライバ回路(信号線駆動回路)
、信号処理回路(信号生成回路、ガンマ補正回路、DA変換回路など)を基板上に一体形
成することが出来る。
By using a catalyst (nickel or the like) when producing polycrystalline silicon, it becomes possible to further improve the crystallinity and produce a transistor having good electrical characteristics. As a result, the gate driver circuit (scanning line drive circuit) and source driver circuit (signal line drive circuit)
, A signal processing circuit (signal generation circuit, gamma correction circuit, DA conversion circuit, etc.) can be integrally formed on the substrate.

なお、微結晶シリコンを製造するときに、触媒(ニッケルなど)を用いることにより、結
晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。この
とき、レーザーを用いず、熱処理を加えるだけで、結晶性を向上させることができる。そ
の結果、ゲートドライバ回路(走査線駆動回路)やソースドライバ回路の一部(アナログ
スイッチなど)を基板上に一体形成することが出来る。さらに、結晶化のためにレーザー
を用いない場合は、シリコンの結晶性のムラを抑えることができる。そのため、綺麗な画
像を表示することが出来る。
By using a catalyst (nickel or the like) when producing microcrystalline silicon, it is possible to further improve the crystallinity and produce a transistor having good electrical characteristics. At this time, the crystallinity can be improved only by applying a heat treatment without using a laser. As a result, a part of the gate driver circuit (scanning line drive circuit) and the source driver circuit (analog switch, etc.) can be integrally formed on the substrate. Furthermore, when a laser is not used for crystallization, unevenness in the crystallinity of silicon can be suppressed. Therefore, a beautiful image can be displayed.

ただし、触媒(ニッケルなど)を用いずに、多結晶シリコンや微結晶シリコンを製造する
ことは可能である。
However, it is possible to produce polycrystalline silicon or microcrystalline silicon without using a catalyst (nickel or the like).

または、半導体基板やSOI基板などを用いてトランジスタを形成することが出来る。そ
の場合、MOS型トランジスタ、接合型トランジスタ、バイポーラトランジスタなどを本
明細書に記載されたトランジスタとして用いることが出来る。これらにより、特性やサイ
ズや形状などのバラツキが少なく、電流供給能力が高く、サイズの小さいトランジスタを
製造することができる。これらのトランジスタを用いると、回路の低消費電力化、又は回
路の高集積化を図ることができる。
Alternatively, a transistor can be formed by using a semiconductor substrate, an SOI substrate, or the like. In that case, a MOS transistor, a junction transistor, a bipolar transistor, or the like can be used as the transistor described in the present specification. As a result, it is possible to manufacture a transistor having a small variation in characteristics, size, shape, etc., a high current supply capacity, and a small size. By using these transistors, it is possible to reduce the power consumption of the circuit or to increase the integration of the circuit.

または、ZnO、a-InGaZnO、SiGe、GaAs、IZO、ITO、SnOな
どの化合物半導体または酸化物半導体を有するトランジスタや、さらに、これらの化合物
半導体または酸化物半導体を薄膜化した薄膜トランジスタなどを用いることが出来る。こ
れらにより、製造温度を低くでき、例えば、室温でトランジスタを製造することが可能と
なる。その結果、耐熱性の低い基板、例えばプラスチック基板やフィルム基板に直接トラ
ンジスタを形成することが出来る。なお、これらの化合物半導体または酸化物半導体を、
トランジスタのチャネル部分に用いるだけでなく、それ以外の用途で用いることも出来る
。例えば、これらの化合物半導体または酸化物半導体を抵抗素子、画素電極、透明電極と
して用いることができる。さらに、それらをトランジスタと同時に成膜又は形成できるた
め、コストを低減できる。
Alternatively, a transistor having a compound semiconductor or an oxide semiconductor such as ZnO, a-InGaZnO, SiGe, GaAs, IZO, ITO, SnO, or a thin film obtained by thinning these compound semiconductors or oxide semiconductors can be used. I can. As a result, the manufacturing temperature can be lowered, and for example, a transistor can be manufactured at room temperature. As a result, the transistor can be directly formed on a substrate having low heat resistance, for example, a plastic substrate or a film substrate. In addition, these compound semiconductors or oxide semiconductors are used.
Not only can it be used for the channel portion of a transistor, but it can also be used for other purposes. For example, these compound semiconductors or oxide semiconductors can be used as resistance elements, pixel electrodes, and transparent electrodes. Further, since they can be formed or formed at the same time as the transistor, the cost can be reduced.

または、インクジェットや印刷法を用いて形成したトランジスタなどを用いることが出来
る。これらにより、室温で製造、低真空度で製造、又は大型基板上に製造することができ
る。また、マスク(レチクル)を用いなくても製造することが可能となるため、トランジ
スタのレイアウトを容易に変更することが出来る。さらに、レジストを用いる必要がない
ので、材料費が安くなり、工程数を削減できる。さらに、必要な部分にのみ膜を付けるた
め、全面に成膜した後でエッチングする、という製法よりも、材料が無駄にならず、低コ
ストにできる。
Alternatively, a transistor formed by inkjet or a printing method can be used. These allow it to be manufactured at room temperature, at a low degree of vacuum, or on a large substrate. Further, since it can be manufactured without using a mask (reticle), the layout of the transistor can be easily changed. Further, since it is not necessary to use a resist, the material cost can be reduced and the number of processes can be reduced. Further, since the film is attached only to the necessary part, the material is not wasted and the cost can be reduced as compared with the manufacturing method in which the film is formed on the entire surface and then etched.

または、有機半導体やカーボンナノチューブを有するトランジスタ等を用いることができ
る。これらにより、曲げることが可能な基板上にトランジスタを形成することが出来る。
そのため、衝撃に強くできる。
Alternatively, an organic semiconductor, a transistor having carbon nanotubes, or the like can be used. These make it possible to form a transistor on a bendable substrate.
Therefore, it can be strong against impact.

その他、様々なトランジスタを用いることができる。 In addition, various transistors can be used.

なお、トランジスタが形成されている基板の種類は、様々なものを用いることができ、特
定のものに限定されることはない。トランジスタが形成される基板としては、例えば、単
結晶基板、SOI基板、ガラス基板、石英基板、プラスチック基板、紙基板、セロファン
基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポ
リウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生
ポリエステル)などを含む)、皮革基板、ゴム基板、ステンレス・スチル基板、ステンレ
ス・スチル・ホイルを有する基板などを用いることが出来る。あるいは、人などの動物の
皮膚(皮表、真皮)又は皮下組織を基板として用いてもよい。または、ある基板でトラン
ジスタを形成し、その後、別の基板にトランジスタを転置し、別の基板上にトランジスタ
を配置してもよい。トランジスタが転置される基板としては、単結晶基板、SOI基板、
ガラス基板、石英基板、プラスチック基板、紙基板、セロファン基板、石材基板、、木材
基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエス
テル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを
含む)、皮革基板、ゴム基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを
有する基板などを用いることができる。あるいは、人などの動物の皮膚(皮表、真皮)又
は皮下組織を基板として用いてもよい。これらの基板を用いることにより、特性のよいト
ランジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱
性の付与、又は軽量化を図ることができる。
Various types of substrates on which the transistor is formed can be used, and the type is not limited to a specific one. Examples of the substrate on which the transistor is formed include a single crystal substrate, an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a paper substrate, a cellophane substrate, a stone substrate, a wood substrate, and a cloth substrate (natural fibers (silk, cotton, linen). ), Synthetic fiber (nylon, polyurethane, polyester) or recycled fiber (including acetate, cupra, rayon, recycled polyester), leather substrate, rubber substrate, stainless steel substrate, substrate with stainless steel foil, etc. Can be used. Alternatively, the skin (skin surface, dermis) or subcutaneous tissue of an animal such as a human may be used as a substrate. Alternatively, a transistor may be formed on one substrate, then the transistor may be transposed on another substrate, and the transistor may be arranged on another substrate. The substrate on which the transistor is transposed includes a single crystal substrate, an SOI substrate, and the like.
Glass substrate, quartz substrate, plastic substrate, paper substrate, cellophane substrate, stone substrate, wood substrate, cloth substrate (natural fiber (silk, cotton, linen), synthetic fiber (nylon, polyurethane, polyester) or recycled fiber (acetate, acetate, (Including cupra, rayon, recycled polyester), etc.), leather substrate, rubber substrate, stainless steel substrate, substrate having stainless steel still foil, etc. can be used. Alternatively, the skin (skin surface, dermis) or subcutaneous tissue of an animal such as a human may be used as a substrate. By using these substrates, it is possible to form a transistor having good characteristics, to form a transistor having low power consumption, to manufacture a device that is hard to break, to impart heat resistance, or to reduce the weight.

なお、トランジスタの構成は、様々な形態をとることができる。特定の構成に限定されな
い。例えば、ゲート電極が2個以上のマルチゲート構造を用いてもよい。マルチゲート構
造にすると、チャネル領域が直列に接続されるため、複数のトランジスタが直列に接続さ
れた構成となる。マルチゲート構造により、オフ電流の低減、トランジスタの耐圧向上に
よる信頼性の向上を図ることができる。あるいは、マルチゲート構造により、飽和領域で
動作する時に、ドレイン・ソース間電圧が変化しても、ドレイン・ソース間電流があまり
変化せず、電圧・電流特性の傾きがフラットな特性にすることができる。電圧・電流特性
の傾きがフラットである特性を利用すると、理想的な電流源回路や、非常に高い抵抗値を
もつ能動負荷を実現することが出来る。その結果、特性のよい差動回路やカレントミラー
回路を実現することが出来る。また、チャネルの上下にゲート電極が配置されている構造
でもよい。チャネルの上下にゲート電極が配置されている構造にすることにより、チャネ
ル領域が増えるため、電流値の増加、、又は空乏層ができやすくなることによるS値の低
減を図ることができる。チャネルの上下にゲート電極が配置されると、複数のトランジス
タが並列に接続されたような構成となる。
The transistor configuration can take various forms. Not limited to a particular configuration. For example, a multi-gate structure having two or more gate electrodes may be used. In the multi-gate structure, since the channel regions are connected in series, a plurality of transistors are connected in series. The multi-gate structure can reduce off-current and improve reliability by improving the withstand voltage of the transistor. Alternatively, due to the multi-gate structure, even if the drain-source voltage changes when operating in the saturation region, the drain-source current does not change much, and the slope of the voltage / current characteristics can be made flat. can. By utilizing the characteristic that the slope of the voltage / current characteristic is flat, it is possible to realize an ideal current source circuit and an active load having a very high resistance value. As a result, it is possible to realize a differential circuit or a current mirror circuit having good characteristics. Further, the structure may be such that the gate electrodes are arranged above and below the channel. By forming the structure in which the gate electrodes are arranged above and below the channel, the channel region is increased, so that the current value can be increased or the S value can be reduced by easily forming the depletion layer. When the gate electrodes are arranged above and below the channel, the configuration is such that a plurality of transistors are connected in parallel.

あるいは、チャネル領域の上にゲート電極が配置されている構造でもよいし、チャネル領
域の下にゲート電極が配置されている構造でもよい。あるいは、正スタガ構造または逆ス
タガ構造でもよいし、チャネル領域が複数の領域に分かれていてもよいし、チャネル領域
が並列に接続されていてもよいし、チャネル領域が直列に接続されていてもよい。また、
チャネル領域(もしくはその一部)にソース電極やドレイン電極が重なっていてもよい。
チャネル領域(もしくはその一部)にソース電極やドレイン電極が重なる構造にすること
により、チャネル領域の一部に電荷がたまって、動作が不安定になることを防ぐことがで
きる。また、LDD領域を設けても良い。LDD領域を設けることにより、オフ電流の低
減、又はトランジスタの耐圧向上による信頼性の向上を図ることができる。あるいは、L
DD領域を設けることにより、、飽和領域で動作する時に、ドレイン・ソース間電圧が変
化しても、ドレイン・ソース間電流があまり変化せず、電圧・電流特性の傾きがフラット
な特性にすることができる。
Alternatively, the structure may be such that the gate electrode is arranged above the channel region, or the gate electrode may be arranged below the channel region. Alternatively, it may have a normal stagger structure or a reverse stagger structure, the channel region may be divided into a plurality of regions, the channel regions may be connected in parallel, or the channel regions may be connected in series. good. again,
The source electrode and the drain electrode may overlap the channel region (or a part thereof).
By forming the structure in which the source electrode and the drain electrode overlap the channel region (or a part thereof), it is possible to prevent the operation from becoming unstable due to the accumulation of electric charges in a part of the channel region. Further, an LDD region may be provided. By providing the LDD region, it is possible to reduce the off-current or improve the reliability by improving the withstand voltage of the transistor. Alternatively, L
By providing the DD region, even if the drain-source voltage changes when operating in the saturation region, the drain-source current does not change much, and the slope of the voltage / current characteristics is flat. Can be done.

なお、本明細書におけるトランジスタは、様々なタイプを用いることができ、様々な基板
上に形成させることができる。したがって、所定の機能を実現させるために必要な回路の
全てが、同一の基板に形成されていてもよい。例えば、所定の機能を実現させるために必
要な回路の全てが、ガラス基板、プラスチック基板、単結晶基板、またはSOI基板上に
形成されていてもよく、さまざまな基板上に形成されていてもよい。所定の機能を実現さ
せるために必要な回路の全てが同じ基板上に形成されていることにより、部品点数を減ら
してコストを低減し、回路部品との接続点数を減らして信頼性を向上させたりすることが
できる。あるいは、所定の機能を実現させるために必要な回路の一部が、ある基板に形成
されており、所定の機能を実現させるために必要な回路の別の一部が、別の基板に形成さ
れていてもよい。つまり、所定の機能を実現させるために必要な回路の全てが同じ基板上
に形成されていなくてもよい。例えば、所定の機能を実現させるために必要な回路の一部
は、ガラス基板上にトランジスタを用いて形成され、所定の機能を実現させるために必要
な回路の別の一部は、単結晶基板上に形成され、単結晶基板上のトランジスタで構成され
たICチップをCOG(ChipOnGlass)でガラス基板に接続して、ガラス基板
上にそのICチップを配置してもよい。あるいは、そのICチップをTAB(TapeA
utomatedBonding)やプリント基板を用いてガラス基板と接続してもよい
。このように、回路の一部が同じ基板に形成されていることにより、部品点数を減らして
コストを低減し、回路部品との接続点数を減らして信頼性を向上させたりすることができ
る。また、駆動電圧が高い部分や駆動周波数が高い部分の回路は、消費電力が大きくなっ
てしまうので、そのような部分の回路は同じ基板に形成せず、そのかわりに、例えば、単
結晶基板上にその部分の回路を形成して、その回路で構成されたICチップを用いるよう
にすれば、消費電力の増加を防ぐことができる。
Various types of transistors can be used in the present specification, and they can be formed on various substrates. Therefore, all of the circuits necessary for realizing a predetermined function may be formed on the same substrate. For example, all of the circuits required to realize a predetermined function may be formed on a glass substrate, a plastic substrate, a single crystal substrate, or an SOI substrate, or may be formed on various substrates. .. By forming all the circuits necessary to realize a given function on the same board, the number of parts can be reduced to reduce costs, and the number of connection points with circuit parts can be reduced to improve reliability. can do. Alternatively, a part of the circuit necessary to realize a predetermined function is formed on one board, and another part of the circuit necessary to realize a predetermined function is formed on another board. May be. That is, not all of the circuits required to realize a predetermined function need to be formed on the same substrate. For example, a part of the circuit necessary to realize a predetermined function is formed by using a transistor on a glass substrate, and another part of the circuit necessary to realize a predetermined function is a single crystal substrate. An IC chip formed above and composed of transistors on a single crystal substrate may be connected to a glass substrate by COG (ChipOnGlass), and the IC chip may be arranged on the glass substrate. Alternatively, the IC chip is TAB (TapeA).
It may be connected to the glass substrate by using an inverted Bonding) or a printed circuit board. As described above, since a part of the circuit is formed on the same substrate, the number of parts can be reduced to reduce the cost, and the number of connection points with the circuit parts can be reduced to improve the reliability. Further, since the circuit of the portion having a high drive voltage or the portion having a high drive frequency consumes a large amount of power, the circuit of such a portion is not formed on the same substrate, and instead, for example, on a single crystal substrate. If a circuit of that portion is formed and an IC chip composed of the circuit is used, an increase in power consumption can be prevented.

なお、本明細書においては、一画素とは、明るさを制御できる要素一つ分を示すものとす
る。よって、一例としては、一画素とは、一つの色要素を示すものとし、その色要素一つ
で明るさを表現する。従って、そのときは、R(赤)G(緑)B(青)の色要素からなる
カラー表示装置の場合には、画像の最小単位は、Rの画素とGの画素とBの画素との三画
素から構成されるものとする。なお、色要素は、三色に限定されず、三色以上を用いても
良いし、RGB以外の色を用いても良い。例えば、白色を加えて、RGBW(Wは白)と
してもよい。また、RGBに、例えば、イエロー、シアン、マゼンタ、エメラルドグリー
ン、朱色などを一色以上追加してもよい。また、例えば、RGBの中の少なくとも一色に
類似した色を、RGBに追加してもよい。例えば、R、G、B1、B2としてもよい。B
1とB2とは、どちらも青色であるが、少し周波数が異なっている。同様に、R1、R2
、G、Bとしてもよい。このような色要素を用いることにより、より実物に近い表示を行
うことができたり、消費電力を低減することが出来る。また、別の例としては、1つの色
要素について、複数の領域を用いて明るさを制御する場合は、その領域一つ分を一画素と
してもよい。よって、一例として、面積階調を行う場合または副画素(サブ画素)を有し
ている場合、一つの色要素につき、明るさを制御する領域が複数あり、その全体で階調を
表現するわけであるが、明るさを制御する領域の一つ分を一画素としてもよい。よって、
その場合は、一つの色要素は、複数の画素で構成されることとなる。あるいは、明るさを
制御する領域が1つの色要素の中に複数あっても、それらをまとめて、1つの色要素を1
画素としてもよい。よって、その場合は、一つの色要素は、一つの画素で構成されること
となる。また、1つの色要素について、複数の領域を用いて明るさを制御する場合、画素
によって、表示に寄与する領域の大きさが異なっている場合がある。また、一つの色要素
につき複数ある、明るさを制御する領域において、各々に供給する信号を僅かに異ならせ
るようにして、視野角を広げるようにしてもよい。つまり、1つの色要素について、複数
個ある領域が各々有する画素電極の電位が、各々異なっていてもよい。その結果、液晶分
子に加わる電圧が各画素電極によって各々異なる。よって、視野角を広くすることが出来
る。
In addition, in this specification, one pixel means one element which can control brightness. Therefore, as an example, one pixel indicates one color element, and the brightness is expressed by one of the color elements. Therefore, at that time, in the case of a color display device composed of R (red) G (green) B (blue) color elements, the minimum unit of the image is the R pixel, the G pixel, and the B pixel. It shall consist of three pixels. The color element is not limited to three colors, and three or more colors may be used, or a color other than RGB may be used. For example, white may be added to make RGBW (W is white). Further, for example, one or more colors such as yellow, cyan, magenta, emerald green, and vermilion may be added to RGB. Further, for example, a color similar to at least one color in RGB may be added to RGB. For example, it may be R, G, B1 or B2. B
Both 1 and B2 are blue, but their frequencies are slightly different. Similarly, R1 and R2
, G, B may be used. By using such a color element, it is possible to display a display closer to the real thing and reduce power consumption. Further, as another example, when the brightness of one color element is controlled by using a plurality of regions, one region may be used as one pixel. Therefore, as an example, when area gradation is performed or when sub-pixels (sub-pixels) are provided, there are a plurality of areas for controlling brightness for one color element, and the gradation is expressed as a whole. However, one pixel may be used as one area for controlling the brightness. Therefore,
In that case, one color element is composed of a plurality of pixels. Alternatively, even if there are multiple areas for controlling brightness in one color element, they are grouped together to form one color element.
It may be a pixel. Therefore, in that case, one color element is composed of one pixel. Further, when the brightness of one color element is controlled by using a plurality of areas, the size of the area contributing to the display may differ depending on the pixel. Further, in a plurality of areas for controlling brightness, which are present for one color element, the signals supplied to each may be slightly different to widen the viewing angle. That is, the potentials of the pixel electrodes of each of the plurality of regions may be different for one color element. As a result, the voltage applied to the liquid crystal molecules differs depending on each pixel electrode. Therefore, the viewing angle can be widened.

なお、一画素(三色分)と明示的に記載する場合は、RとGとBの三画素分を一画素と考
える場合であるとする。一画素(一色分)と明示的に記載する場合は、一つの色要素につ
き、複数の領域がある場合、それらをまとめて一画素と考える場合であるとする。
In addition, when it is explicitly described as one pixel (three colors), it is assumed that the three pixels of R, G, and B are considered as one pixel. When explicitly describing one pixel (one color), when there are a plurality of areas for one color element, it is assumed that they are collectively regarded as one pixel.

なお、本書類(明細書、特許請求の範囲又は図面など)において、画素は、マトリクス状
に配置(配列)されている場合がある。ここで、画素がマトリクスに配置(配列)されて
いるとは、縦方向もしくは横方向において、画素が直線上に並んで配置されている場合や
、ギザギザな線上に配置されている場合を含む。よって、例えば三色の色要素(例えばR
GB)でフルカラー表示を行う場合に、ストライプ配置されている場合や、三つの色要素
のドットがデルタ配置されている場合も含む。さらに、ベイヤー配置されている場合も含
む。なお、色要素は、三色に限定されず、それ以上でもよく、例えば、RGBW(Wは白
)や、RGBに、イエロー、シアン、マゼンタなどを一色以上追加したものなどがある。
また、色要素のドット毎にその表示領域の大きさが異なっていてもよい。これにより、低
消費電力化、又は表示素子の長寿命化を図ることができる。
In this document (specification, claims, drawings, etc.), the pixels may be arranged (arranged) in a matrix. Here, the fact that the pixels are arranged (arranged) in the matrix includes the case where the pixels are arranged side by side on a straight line in the vertical direction or the horizontal direction, and the case where the pixels are arranged on a jagged line. Therefore, for example, three color elements (for example, R).
In the case of full-color display in GB), the case where the stripes are arranged and the case where the dots of the three color elements are arranged in a delta are also included. In addition, it also includes cases where Bayer is placed. The color element is not limited to three colors, and may be more than three colors. For example, RGBW (W is white) and RGB with one or more colors such as yellow, cyan, and magenta added.
Further, the size of the display area may be different for each dot of the color element. As a result, it is possible to reduce the power consumption or extend the life of the display element.

なお、本書類(明細書、特許請求の範囲又は図面など)において、画素に能動素子を有す
るアクティブマトリクス方式、または、画素に能動素子を有しないパッシブマトリクス方
式を用いることが出来る。
In this document (specification, claims, drawings, etc.), an active matrix method having an active element in a pixel or a passive matrix method having no active element in a pixel can be used.

アクティブマトリクス方式では、能動素子(アクティブ素子、非線形素子)として、トラ
ンジスタだけでなく、さまざまな能動素子(アクティブ素子、非線形素子)を用いること
が出来る。例えば、MIM(MetalInsulatorMetal)やTFD(Th
inFilmDiode)などを用いることも可能である。これらの素子は、製造工程が
少ないため、製造コストの低減、又は歩留まりの向上を図ることができる。さらに、素子
のサイズが小さいため、開口率を向上させることができ、低消費電力化や高輝度化をはか
ることが出来る。
In the active matrix method, not only a transistor but also various active elements (active element, non-linear element) can be used as the active element (active element, non-linear element). For example, MIM (MetalInsulatorMetal) and TFD (Th)
It is also possible to use inFilmDeode) or the like. Since these elements have few manufacturing processes, it is possible to reduce the manufacturing cost or improve the yield. Further, since the size of the element is small, the aperture ratio can be improved, and low power consumption and high brightness can be achieved.

なお、アクティブマトリクス方式以外のものとして、能動素子(アクティブ素子、非線形
素子)を用いないパッシブマトリクス型を用いることも可能である。能動素子(アクティ
ブ素子、非線形素子)を用いないため、製造工程が少なく、製造コストの低減、又は歩留
まりの向上を図ることができる。また、能動素子(アクティブ素子、非線形素子)を用い
ないため、開口率を向上させることができ、低消費電力化や高輝度化をはかることが出来
る。
In addition to the active matrix method, it is also possible to use a passive matrix type that does not use an active element (active element, non-linear element). Since no active element (active element, non-linear element) is used, the number of manufacturing processes is small, and the manufacturing cost can be reduced or the yield can be improved. Further, since an active element (active element, non-linear element) is not used, the aperture ratio can be improved, and low power consumption and high brightness can be achieved.

なお、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子
を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、ドレ
イン領域とチャネル領域とソース領域とを介して電流を流すことが出来る。ここで、ソー
スとドレインとは、トランジスタの構造や動作条件等によって変わるため、いずれがソー
スまたはドレインであるかを限定することが困難である。そこで、本明細書においては、
ソース及びドレインとして機能する領域を、ソースもしくはドレインと呼ばない場合があ
る。その場合、一例としては、それぞれを第1端子、第2端子と表記する場合がある。あ
るいは、それぞれを第1の電極、第2の電極と表記する場合がある。あるいは、ソース領
域、ドレイン領域と表記する場合がある。
The transistor is an element having at least three terminals including a gate, a drain, and a source, and has a channel region between the drain region and the source region, and has a drain region, a channel region, and a source region. A current can be passed through and. Here, since the source and the drain change depending on the structure of the transistor, operating conditions, and the like, it is difficult to limit which is the source or the drain. Therefore, in this specification,
Areas that function as sources and drains may not be referred to as sources or drains. In that case, as an example, they may be referred to as a first terminal and a second terminal, respectively. Alternatively, they may be referred to as a first electrode and a second electrode, respectively. Alternatively, it may be referred to as a source area or a drain area.

なお、トランジスタは、ベースとエミッタとコレクタとを含む少なくとも三つの端子を有
する素子であってもよい。この場合も同様に、エミッタとコレクタとを、第1端子、第2
端子と表記する場合がある。
The transistor may be an element having at least three terminals including a base, an emitter, and a collector. In this case as well, the emitter and collector are connected to the first terminal and the second.
It may be referred to as a terminal.

なお、ゲートとは、ゲート電極とゲート配線(ゲート線、ゲート信号線、走査線、走査信
号線等とも言う)とを含んだ全体、もしくは、それらの一部のことを言う。ゲート電極と
は、チャネル領域を形成する半導体と、ゲート絶縁膜を介してオーバーラップしている部
分の導電膜のことを言う。なお、ゲート電極の一部は、LDD(LightlyDope
dDrain)領域またはソース領域とドレイン領域と、ゲート絶縁膜を介してオーバー
ラップしている場合もある。ゲート配線とは、各トランジスタのゲート電極の間を接続す
るための配線、各画素の有するゲート電極の間を接続するための配線、又はゲート電極と
別の配線とを接続するための配線のことを言う。
The gate refers to the whole including the gate electrode and the gate wiring (also referred to as a gate line, a gate signal line, a scanning line, a scanning signal line, etc.) or a part thereof. The gate electrode refers to a conductive film of a portion that overlaps with a semiconductor forming a channel region via a gate insulating film. A part of the gate electrode is LDD (Lightly Dope).
In some cases, the dDrain) region or the source region and the drain region overlap with each other via the gate insulating film. The gate wiring is a wiring for connecting between the gate electrodes of each transistor, a wiring for connecting between the gate electrodes of each pixel, or a wiring for connecting the gate electrode and another wiring. Say.

ただし、ゲート電極としても機能し、ゲート配線としても機能するような部分(領域、導
電膜、配線など)も存在する。そのような部分(領域、導電膜、配線など)は、ゲート電
極と呼んでも良いし、ゲート配線と呼んでも良い。つまり、ゲート電極とゲート配線とが
、明確に区別できないような領域も存在する。例えば、延伸して配置されているゲート配
線の一部とチャネル領域がオーバーラップしている場合、その部分(領域、導電膜、配線
など)はゲート配線として機能しているが、ゲート電極としても機能していることになる
。よって、そのような部分(領域、導電膜、配線など)は、ゲート電極と呼んでも良いし
、ゲート配線と呼んでも良い。
However, there are parts (regions, conductive films, wirings, etc.) that also function as gate electrodes and also function as gate wiring. Such a portion (region, conductive film, wiring, etc.) may be referred to as a gate electrode or a gate wiring. That is, there is a region where the gate electrode and the gate wiring cannot be clearly distinguished. For example, when a part of the gate wiring arranged in an extended manner and a channel region overlap, that portion (region, conductive film, wiring, etc.) functions as a gate wiring, but also as a gate electrode. It will be working. Therefore, such a portion (region, conductive film, wiring, etc.) may be referred to as a gate electrode or a gate wiring.

なお、ゲート電極と同じ材料で形成され、ゲート電極と同じ島(アイランド)を形成して
つながっている部分(領域、導電膜、配線など)も、ゲート電極と呼んでも良い。同様に
、ゲート配線と同じ材料で形成され、ゲート配線と同じ島(アイランド)を形成してつな
がっている部分(領域、導電膜、配線など)も、ゲート配線と呼んでも良い。このような
部分(領域、導電膜、配線など)は、厳密な意味では、チャネル領域とオーバーラップし
ていない場合、又は別のゲート電極と接続させる機能を有していない場合がある。しかし
、製造工程における条件などの関係で、ゲート電極またはゲート配線と同じ材料で形成さ
れ、ゲート電極またはゲート配線と同じ島(アイランド)を形成してつながっている部分
(領域、導電膜、配線など)がある。よって、そのような部分(領域、導電膜、配線など
)もゲート電極またはゲート配線と呼んでも良い。
A portion (region, conductive film, wiring, etc.) formed of the same material as the gate electrode and formed and connected to the same island as the gate electrode may also be referred to as a gate electrode. Similarly, a portion (region, conductive film, wiring, etc.) formed of the same material as the gate wiring and formed and connected to the same island as the gate wiring may also be referred to as a gate wiring. In a strict sense, such a portion (region, conductive film, wiring, etc.) may not overlap with the channel region or may not have a function of connecting to another gate electrode. However, due to conditions in the manufacturing process, the parts (regions, conductive films, wiring, etc.) that are formed of the same material as the gate electrode or gate wiring and form the same island as the gate electrode or gate wiring are connected. ). Therefore, such a portion (region, conductive film, wiring, etc.) may also be referred to as a gate electrode or gate wiring.

なお、例えば、マルチゲートのトランジスタにおいて、1つのゲート電極と、別のゲート
電極とは、ゲート電極と同じ材料で形成された導電膜で接続される場合が多い。そのよう
な部分(領域、導電膜、配線など)は、ゲート電極とゲート電極とを接続させるための部
分(領域、導電膜、配線など)であるため、ゲート配線と呼んでも良いが、マルチゲート
のトランジスタを1つのトランジスタと見なすことも出来るため、ゲート電極と呼んでも
良い。つまり、ゲート電極またはゲート配線と同じ材料で形成され、ゲート電極またはゲ
ート配線と同じ島(アイランド)を形成してつながっている部分(領域、導電膜、配線な
ど)は、ゲート電極やゲート配線と呼んでも良い。さらに、例えば、ゲート電極とゲート
配線とを接続させている部分の導電膜であって、ゲート電極またはゲート配線とは異なる
材料で形成された導電膜も、ゲート電極と呼んでも良いし、ゲート配線と呼んでも良い。
For example, in a multi-gate transistor, one gate electrode and another gate electrode are often connected by a conductive film made of the same material as the gate electrode. Since such a portion (region, conductive film, wiring, etc.) is a portion (region, conductive film, wiring, etc.) for connecting the gate electrode and the gate electrode, it may be called a gate wiring, but it may be called a multi-gate. Since the transistor of can be regarded as one transistor, it may be called a gate electrode. In other words, the part (region, conductive film, wiring, etc.) that is formed of the same material as the gate electrode or gate wiring and forms the same island as the gate electrode or gate wiring is connected to the gate electrode or gate wiring. You may call it. Further, for example, a conductive film formed of a material different from the gate electrode or the gate wiring, which is a conductive film of a portion connecting the gate electrode and the gate wiring, may also be called a gate electrode or a gate wiring. You may call it.

なお、ゲート端子とは、ゲート電極の部分(領域、導電膜、配線など)または、ゲート電
極と電気的に接続されている部分(領域、導電膜、配線など)について、その一部分のこ
とを言う。
The gate terminal refers to a part of the gate electrode (region, conductive film, wiring, etc.) or a portion electrically connected to the gate electrode (region, conductive film, wiring, etc.). ..

なお、ゲート配線、ゲート線、ゲート信号線、走査線、走査信号線などと呼ぶ場合、配線
にトランジスタのゲートが接続されていない場合もある。この場合、ゲート配線、ゲート
線、ゲート信号線、走査線、走査信号線は、トランジスタのゲートと同じ層で形成された
配線、トランジスタのゲートと同じ材料で形成された配線またはトランジスタのゲートと
同時に成膜された配線を意味している場合がある。例としては、保持容量用配線、電源線
、基準電位供給配線などがある。
When referred to as a gate wiring, a gate line, a gate signal line, a scanning line, a scanning signal line, or the like, the gate of the transistor may not be connected to the wiring. In this case, the gate wiring, gate line, gate signal line, scanning line, scanning signal line are simultaneously the wiring formed in the same layer as the gate of the transistor, the wiring formed of the same material as the gate of the transistor, or the gate of the transistor. It may mean a film-formed wiring. Examples include wiring for holding capacity, power line, and reference potential supply wiring.

なお、ソースとは、ソース領域とソース電極とソース配線(ソース線、ソース信号線、デ
ータ線、データ信号線等とも言う)とを含んだ全体、もしくは、それらの一部のことを言
う。ソース領域とは、P型不純物(ボロンやガリウムなど)やN型不純物(リンやヒ素な
ど)が多く含まれる半導体領域のことを言う。従って、少しだけP型不純物やN型不純物
が含まれる領域、いわゆる、LDD(LightlyDopedDrain)領域は、ソ
ース領域には含まれない。ソース電極とは、ソース領域とは別の材料で形成され、ソース
領域と電気的に接続されて配置されている部分の導電層のことを言う。ただし、ソース電
極は、ソース領域も含んでソース電極と呼ぶこともある。ソース配線とは、各トランジス
タのソース電極の間を接続するための配線、各画素の有するソース電極の間を接続するた
めの配線、又はソース電極と別の配線とを接続するための配線のことを言う。
The source refers to the whole including the source region, the source electrode, and the source wiring (also referred to as a source line, a source signal line, a data line, a data signal line, etc.), or a part thereof. The source region refers to a semiconductor region containing a large amount of P-type impurities (boron, gallium, etc.) and N-type impurities (phosphorus, arsenic, etc.). Therefore, the region containing a small amount of P-type impurities and N-type impurities, that is, the so-called LDD (Lightly Dropped Drain) region is not included in the source region. The source electrode refers to a conductive layer in a portion formed of a material different from the source region and electrically connected to the source region. However, the source electrode may also be referred to as a source electrode including the source region. The source wiring is a wiring for connecting between the source electrodes of each transistor, a wiring for connecting between the source electrodes of each pixel, or a wiring for connecting the source electrode and another wiring. Say.

しかしながら、ソース電極としても機能し、ソース配線としても機能するような部分(領
域、導電膜、配線など)も存在する。そのような部分(領域、導電膜、配線など)は、ソ
ース電極と呼んでも良いし、ソース配線と呼んでも良い。つまり、ソース電極とソース配
線とが、明確に区別できないような領域も存在する。例えば、延伸して配置されているソ
ース配線の一部とソース領域とがオーバーラップしている場合、その部分(領域、導電膜
、配線など)はソース配線として機能しているが、ソース電極としても機能していること
になる。よって、そのような部分(領域、導電膜、配線など)は、ソース電極と呼んでも
良いし、ソース配線と呼んでも良い。
However, there are parts (regions, conductive films, wirings, etc.) that also function as source electrodes and also as source wiring. Such a portion (region, conductive film, wiring, etc.) may be referred to as a source electrode or a source wiring. That is, there is a region where the source electrode and the source wiring cannot be clearly distinguished. For example, when a part of the stretched source wiring and the source region overlap, that portion (region, conductive film, wiring, etc.) functions as the source wiring, but as a source electrode. Will also be working. Therefore, such a portion (region, conductive film, wiring, etc.) may be referred to as a source electrode or a source wiring.

なお、ソース電極と同じ材料で形成され、ソース電極と同じ島(アイランド)を形成して
つながっている部分(領域、導電膜、配線など)や、ソース電極とソース電極とを接続す
る部分(領域、導電膜、配線など)も、ソース電極と呼んでも良い。さらに、ソース領域
とオーバーラップしている部分も、ソース電極と呼んでも良い。同様に、ソース配線と同
じ材料で形成され、ソース配線と同じ島(アイランド)を形成してつながっている領域も
、ソース配線と呼んでも良い。このような部分(領域、導電膜、配線など)は、厳密な意
味では、別のソース電極と接続させる機能を有していない場合がある。しかし、製造工程
における条件などの関係で、ソース電極またはソース配線と同じ材料で形成され、ソース
電極またはソース配線とつながっている部分(領域、導電膜、配線など)がある。よって
、そのような部分(領域、導電膜、配線など)もソース電極またはソース配線と呼んでも
良い。
In addition, a part (region, conductive film, wiring, etc.) formed of the same material as the source electrode and formed and connected to the same island as the source electrode, and a portion (region) connecting the source electrode and the source electrode. , Conductor, wiring, etc.) may also be referred to as a source electrode. Further, the portion that overlaps with the source region may also be referred to as a source electrode. Similarly, a region formed of the same material as the source wiring and formed and connected to the same island as the source wiring may also be referred to as a source wiring. Such a portion (region, conductive film, wiring, etc.) may not have a function of connecting to another source electrode in a strict sense. However, there are portions (regions, conductive films, wirings, etc.) that are formed of the same material as the source electrode or source wiring and are connected to the source electrode or source wiring due to conditions in the manufacturing process. Therefore, such a portion (region, conductive film, wiring, etc.) may also be referred to as a source electrode or source wiring.

なお、例えば、ソース電極とソース配線とを接続させている部分の導電膜であって、ソー
ス電極またはソース配線とは異なる材料で形成された導電膜も、ソース電極と呼んでも良
いし、ソース配線と呼んでも良い。
Note that, for example, a conductive film of a portion connecting the source electrode and the source wiring and formed of a material different from the source electrode or the source wiring may also be referred to as a source electrode or the source wiring. You may call it.

なお、ソース端子とは、ソース領域の領域や、ソース電極や、ソース電極と電気的に接続
されている部分(領域、導電膜、配線など)について、その一部分のことを言う。
The source terminal refers to a region of the source region, a source electrode, and a portion electrically connected to the source electrode (region, conductive film, wiring, etc.).

なお、ソース配線、ソース線、ソース信号線、データ線、データ信号線などと呼ぶ場合、
配線にトランジスタのソース(ドレイン)が接続されていない場合もある。この場合、ソ
ース配線、ソース線、ソース信号線、データ線、データ信号線は、トランジスタのソース
(ドレイン)と同じ層で形成された配線、トランジスタのソース(ドレイン)と同じ材料
で形成された配線またはトランジスタのソース(ドレイン)と同時に成膜された配線を意
味している場合がある。例としては、保持容量用配線、電源線、基準電位供給配線などが
ある。
When called source wiring, source line, source signal line, data line, data signal line, etc.
The source (drain) of the transistor may not be connected to the wiring. In this case, the source wiring, source line, source signal line, data line, and data signal line are wiring formed in the same layer as the source (drain) of the transistor, and wiring formed of the same material as the source (drain) of the transistor. Alternatively, it may mean wiring that is formed at the same time as the source (drain) of the transistor. Examples include wiring for holding capacity, power line, and reference potential supply wiring.

なお、ドレインについては、ソースと同様である。 The drain is the same as the source.

なお、半導体装置とは半導体素子(トランジスタ、ダイオード、サイリスタなど)を含む
回路を有する装置のことをいう。さらに、半導体特性を利用することで機能しうる装置全
般を半導体装置と呼んでもよい。
The semiconductor device refers to a device having a circuit including a semiconductor element (transistor, diode, thyristor, etc.). Further, a device that can function by utilizing semiconductor characteristics may be referred to as a semiconductor device.

なお、表示素子とは、光学変調素子、液晶素子、発光素子、EL素子(有機EL素子、無
機EL素子又は有機物及び無機物を含むEL素子)、電子放出素子、電気泳動素子、放電
素子、光反射素子、光回折素子、デジタルマイクロミラーデバイス(DMD)、などのこ
とを言う。ただし、これに限定されない。
The display element includes an optical modulation element, a liquid crystal element, a light emitting element, an EL element (organic EL element, an inorganic EL element or an EL element containing an organic substance and an inorganic substance), an electron emitting element, an electrophoresis element, a discharge element, and a light reflection. It refers to an element, an optical diffusing element, a digital micromirror device (DMD), and the like. However, it is not limited to this.

なお、表示装置とは、表示素子を有する装置のことを言う。なお、表示装置とは、表示素
子を含む複数の画素またはそれらの画素を駆動させる周辺駆動回路が同一基板上に形成さ
れた表示パネル本体のことでもよい。なお、表示装置は、ワイヤボンディングやバンプな
どによって基板上に配置された周辺駆動回路、いわゆる、チップオングラス(COG)で
接続されたICチップ、または、TABなどで接続されたICチップを含んでいても良い
。なお、表示装置は、ICチップ、抵抗素子、容量素子、インダクタ、トランジスタなど
が取り付けられたフレキシブルプリントサーキット(FPC)を含んでもよい。なお、表
示装置は、フレキシブルプリントサーキット(FPC)などを介して接続され、ICチッ
プ、抵抗素子、容量素子、インダクタ、トランジスタなどが取り付けられたプリント配線
基盤(PWB)を含んでいても良い。なお、表示装置は、偏光板または位相差板などの光
学シートを含んでいても良い。なお、表示装置は、照明装置、筐体、音声入出力装置、光
センサなどを含んでいても良い。ここで、バックライトユニットのような照明装置は、導
光板、プリズムシート、拡散シート、反射シート、光源(LED、冷陰極管など)、冷却
装置(水冷式、空冷式)などを含んでいても良い。
The display device means a device having a display element. The display device may be a display panel main body in which a plurality of pixels including display elements or peripheral drive circuits for driving those pixels are formed on the same substrate. The display device includes peripheral drive circuits arranged on the substrate by wire bonding, bumps, etc., so-called chip-on-glass (COG) connected IC chips, or TAB-connected IC chips. You may stay. The display device may include a flexible printed circuit (FPC) to which an IC chip, a resistance element, a capacitive element, an inductor, a transistor, or the like is attached. The display device may include a printed wiring board (PWB) connected via a flexible printed circuit (FPC) or the like and to which an IC chip, a resistance element, a capacitive element, an inductor, a transistor, or the like is attached. The display device may include an optical sheet such as a polarizing plate or a retardation plate. The display device may include a lighting device, a housing, an audio input / output device, an optical sensor, and the like. Here, even if the lighting device such as the backlight unit includes a light guide plate, a prism sheet, a diffusion sheet, a reflection sheet, a light source (LED, a cold cathode tube, etc.), a cooling device (water-cooled type, air-cooled type, etc.), etc. good.

なお、照明装置は、バックライトユニット、導光板、プリズムシート、拡散シート、反射
シート、光源(LED、冷陰極管、熱陰極管など)、冷却装置などを有している装置のこ
とをいう。
The lighting device refers to a device having a backlight unit, a light guide plate, a prism sheet, a diffusion sheet, a reflective sheet, a light source (LED, a cold cathode tube, a hot cathode tube, etc.), a cooling device, and the like.

なお、発光装置とは、発光素子などを有している装置のことをいう。 The light emitting device means a device having a light emitting element or the like.

なお、反射装置とは、光反射素子、光回折素子、光反射電極などを有している装置のこと
をいう。
The reflecting device means a device having a light reflecting element, a light diffracting element, a light reflecting electrode, and the like.

なお、液晶表示装置とは、液晶素子を有している表示装置をいう。液晶表示装置には、直
視型、投写型、透過型、反射型、半透過型などがある。
The liquid crystal display device means a display device having a liquid crystal element. Liquid crystal display devices include a direct-view type, a projection type, a transmissive type, a reflective type, and a semi-transmissive type.

なお、駆動装置とは、半導体素子、電気回路、電子回路を有する装置のことを言う。例え
ば、ソース信号線から画素内への信号の入力を制御するトランジスタ(選択用トランジス
タ、スイッチング用トランジスタなどと呼ぶことがある)、画素電極に電圧または電流を
供給するトランジスタ、発光素子に電圧または電流を供給するトランジスタなどは、駆動
装置の一例である。さらに、ゲート信号線に信号を供給する回路(ゲートドライバ、ゲー
ト線駆動回路などと呼ぶことがある)、ソース信号線に信号を供給する回路(ソースドラ
イバ、ソース線駆動回路などと呼ぶことがある)などは、駆動装置の一例である。
The drive device refers to a device having a semiconductor element, an electric circuit, and an electronic circuit. For example, a transistor that controls the input of a signal from a source signal line into a pixel (sometimes called a selection transistor, a switching transistor, etc.), a transistor that supplies voltage or current to a pixel electrode, and a voltage or current to a light emitting element. The transistor and the like that supply the voltage are an example of a drive device. Furthermore, it may be called a circuit that supplies a signal to the gate signal line (sometimes called a gate driver, a gate line drive circuit, etc.) and a circuit that supplies a signal to the source signal line (a source driver, a source line drive circuit, etc.). ) Is an example of a drive device.

なお、表示装置、半導体装置、照明装置、冷却装置、発光装置、反射装置、駆動装置など
は、互いに重複して有している場合がある。例えば、表示装置が、半導体装置および発光
装置を有している場合がある。あるいは、半導体装置が、表示装置および駆動装置を有し
ている場合がある。
The display device, the semiconductor device, the lighting device, the cooling device, the light emitting device, the reflecting device, the driving device, and the like may overlap with each other. For example, the display device may include a semiconductor device and a light emitting device. Alternatively, the semiconductor device may have a display device and a drive device.

なお、本書類(明細書、特許請求の範囲又は図面など)において、Aの上にBが形成され
ている、あるいは、A上にBが形成されている、と明示的に記載する場合は、Aの上にB
が直接接して形成されていることに限定されない。直接接してはいない場合、つまり、A
とBと間に別の対象物が介在する場合も含むものとする。ここで、A、Bは、対象物(例
えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
When it is explicitly stated in this document (specification, claims, drawings, etc.) that B is formed on A or B is formed on A, B on top of A
Is not limited to being formed in direct contact with each other. If you are not in direct contact, that is, A
It also includes the case where another object intervenes between B and B. Here, it is assumed that A and B are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).

従って例えば、層Aの上に(もしくは層A上に)、層Bが形成されている、と明示的に記
載されている場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直
接接して別の層(例えば層Cや層Dなど)が形成されていて、その上に直接接して層Bが
形成されている場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、単
層でもよいし、複層でもよい。
Therefore, for example, when it is explicitly stated that the layer B is formed on the layer A (or on the layer A), the layer B is formed in direct contact with the layer A. It includes the case where another layer (for example, layer C or layer D) is formed in direct contact with the layer A and the layer B is formed in direct contact with the layer A. The other layer (for example, layer C or layer D) may be a single layer or a plurality of layers.

さらに、Aの上方にBが形成されている、と明示的に記載されている場合についても同様
であり、Aの上にBが直接接していることに限定されず、AとBとの間に別の対象物が介
在する場合も含むものとする。従って例えば、層Aの上方に、層Bが形成されている、と
いう場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直接接して
別の層(例えば層Cや層Dなど)が形成されていて、その上に直接接して層Bが形成され
ている場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、単層でもよ
いし、複層でもよい。
Further, the same applies to the case where it is explicitly stated that B is formed above A, and the case is not limited to the case where B is in direct contact with A, and between A and B. It also includes the case where another object intervenes. Therefore, for example, when the layer B is formed above the layer A, the case where the layer B is formed directly on the layer A and the case where the layer B is directly contacted on the layer A are different layers. It includes the case where (for example, layer C, layer D, etc.) is formed and the layer B is formed in direct contact with the layer C. The other layer (for example, layer C or layer D) may be a single layer or a plurality of layers.

なお、Aの上にBが直接接して形成されている、と明示的に記載する場合は、Aの上に直
接接してBが形成されている場合を含み、AとBと間に別の対象物が介在する場合は含ま
ないものとする。
In addition, when it is explicitly stated that B is formed in direct contact with A, it includes the case where B is formed in direct contact with A, and is different between A and B. If an object intervenes, it shall not be included.

なお、Aの下にBが、あるいは、Aの下方にBが、の場合についても、同様である。 The same applies to the case where B is below A or B is below A.

本明細書によって、シフトレジスタが有する全てのトランジスタの特性劣化を抑制するこ
とができる。そのため、液晶表示装置をはじめとする当該シフトレジスタを適用した半導
体装置の誤動作を抑制することができる。
According to the present specification, it is possible to suppress the deterioration of the characteristics of all the transistors of the shift register. Therefore, it is possible to suppress a malfunction of a semiconductor device to which the shift register is applied, such as a liquid crystal display device.

実施の形態1に示すフリップフロップの構造を説明する図。The figure explaining the structure of the flip-flop shown in Embodiment 1. 図1で示したフリップフロップの動作を説明するタイミングチャート。A timing chart illustrating the operation of the flip-flop shown in FIG. 図1で示したフリップフロップの動作を説明する図。The figure explaining the operation of the flip-flop shown in FIG. 図1で示したフリップフロップの動作を説明する図。The figure explaining the operation of the flip-flop shown in FIG. 実施の形態1に示すフリップフロップの構造を説明する図。The figure explaining the structure of the flip-flop shown in Embodiment 1. 実施の形態1に示すフリップフロップの動作を説明するタイミングチャート。A timing chart illustrating the operation of the flip-flop shown in the first embodiment. 実施の形態1に示すフリップフロップの構造を説明する図。The figure explaining the structure of the flip-flop shown in Embodiment 1. 実施の形態1に示すフリップフロップの構造を説明する図。The figure explaining the structure of the flip-flop shown in Embodiment 1. 実施の形態1に示すフリップフロップの構造を説明する図。The figure explaining the structure of the flip-flop shown in Embodiment 1. 実施の形態1に示すフリップフロップの構造を説明する図。The figure explaining the structure of the flip-flop shown in Embodiment 1. 実施の形態1に示すシフトレジスタの構造を説明する図。The figure explaining the structure of the shift register shown in Embodiment 1. 図11で示したシフトレジスタの動作を説明するタイミングチャート。A timing chart illustrating the operation of the shift register shown in FIG. 図11で示したシフトレジスタの動作を説明するタイミングチャート。A timing chart illustrating the operation of the shift register shown in FIG. 実施の形態1に示すシフトレジスタの構造を説明する図。The figure explaining the structure of the shift register shown in Embodiment 1. 図14で示したバッファの構成を説明する図。The figure explaining the structure of the buffer shown in FIG. 図14で示したバッファの構成を説明する図。The figure explaining the structure of the buffer shown in FIG. 実施の形態1に示す表示装置の構造を説明する図。The figure explaining the structure of the display device shown in Embodiment 1. 図17で示した表示装置の書き込み動作を説明するタイミングチャート。A timing chart illustrating a writing operation of the display device shown in FIG. 実施の形態1に示す表示装置の構造を説明する図。The figure explaining the structure of the display device shown in Embodiment 1. 実施の形態1に示す表示装置の構造を説明する図。The figure explaining the structure of the display device shown in Embodiment 1. 図20で示した表示装置の書き込み動作を説明するタイミングチャート。A timing chart illustrating a writing operation of the display device shown in FIG. 20. 実施の形態2に示すフリップフロップの動作を説明するタイミングチャート。A timing chart illustrating the operation of the flip-flop shown in the second embodiment. 実施の形態2に示すフリップフロップの動作を説明するタイミングチャート。A timing chart illustrating the operation of the flip-flop shown in the second embodiment. 実施の形態2に示すシフトレジスタの構造を説明する図。The figure explaining the structure of the shift register shown in Embodiment 2. 図24で示したシフトレジスタの動作を説明するタイミングチャート。A timing chart illustrating the operation of the shift register shown in FIG. 24. 図24で示したシフトレジスタの動作を説明するタイミングチャート。A timing chart illustrating the operation of the shift register shown in FIG. 24. 実施の形態2に示す表示装置の構造を説明する図。The figure explaining the structure of the display device shown in Embodiment 2. 実施の形態2に示す表示装置の構造を説明する図。The figure explaining the structure of the display device shown in Embodiment 2. 図7(A)のフリップフロップの上面図。Top view of the flip-flop of FIG. 7 (A). 従来のフリップフロップの構造を示す図。The figure which shows the structure of the conventional flip-flop. 実施の形態5に示す信号線駆動回路の構成を説明する図。The figure explaining the structure of the signal line drive circuit shown in Embodiment 5. 図31で示した信号線駆動回路の動作を説明するタイミングチャート。A timing chart illustrating the operation of the signal line drive circuit shown in FIG. 31. 実施の形態5に示す信号線駆動回路の構成を説明する図。The figure explaining the structure of the signal line drive circuit shown in Embodiment 5. 図33で示した信号線駆動回路の動作を説明するタイミングチャート。A timing chart illustrating the operation of the signal line drive circuit shown in FIG. 33. 実施の形態5に示す信号線駆動回路の構成を説明する図。The figure explaining the structure of the signal line drive circuit shown in Embodiment 5. 実施の形態6に示す保護ダイオードの構成を説明する図。The figure explaining the structure of the protection diode shown in Embodiment 6. 実施の形態6に示す保護ダイオードの構成を説明する図。The figure explaining the structure of the protection diode shown in Embodiment 6. 実施の形態6に示す保護ダイオードの構成を説明する図。The figure explaining the structure of the protection diode shown in Embodiment 6. 実施の形態7に示す表示装置の構成を説明する図。The figure explaining the structure of the display device shown in Embodiment 7. 実施の形態3に示すフリップフロップの構造を説明する図。The figure explaining the structure of the flip-flop shown in Embodiment 3. 図40で示したフリップフロップの動作を説明するタイミングチャート。A timing chart illustrating the operation of the flip-flop shown in FIG. 40. 実施の形態3に示すシフトレジスタの構造を説明する図。The figure explaining the structure of the shift register shown in Embodiment 3. 図42で示したシフトレジスタの動作を説明するタイミングチャート。A timing chart illustrating the operation of the shift register shown in FIG. 42. 実施の形態4に示すフリップフロップの構造を説明する図。The figure explaining the structure of the flip-flop shown in Embodiment 4. 図44で示したフリップフロップの動作を説明するタイミングチャート。A timing chart illustrating the operation of the flip-flop shown in FIG. 44. 本発明に係る半導体装置の画素レイアウト例と断面図。An example of a pixel layout and a cross-sectional view of the semiconductor device according to the present invention. 本発明に係る半導体装置の画素レイアウト例と断面図。An example of a pixel layout and a cross-sectional view of the semiconductor device according to the present invention. 本発明に係る半導体装置の画素レイアウト例と断面図。An example of a pixel layout and a cross-sectional view of the semiconductor device according to the present invention. 本発明に係る半導体装置の画素レイアウト例と断面図。An example of a pixel layout and a cross-sectional view of the semiconductor device according to the present invention. 本発明に係る半導体装置の画素レイアウト例と断面図。An example of a pixel layout and a cross-sectional view of the semiconductor device according to the present invention. 本発明に係る半導体装置の表示素子の断面図。Sectional drawing of the display element of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の表示素子の断面図。Sectional drawing of the display element of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の表示素子の断面図。Sectional drawing of the display element of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の表示素子の上面図。Top view of the display element of the semiconductor device according to the present invention. 本発明に係る半導体装置の表示素子の上面図。Top view of the display element of the semiconductor device according to the present invention. 本発明に係る半導体装置の表示素子の上面図。Top view of the display element of the semiconductor device according to the present invention. 本発明に係る半導体装置の周辺回路構成を説明する図。The figure explaining the peripheral circuit composition of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の周辺回路構成を説明する図。The figure explaining the peripheral circuit composition of the semiconductor device which concerns on this invention. 本発明に係る半導体装置のパネル回路構成を説明する図。The figure explaining the panel circuit structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置のパネル回路構成を説明する図。The figure explaining the panel circuit structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の周辺回路構成を説明する図。The figure explaining the peripheral circuit composition of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の周辺構成部材を説明する図。The figure explaining the peripheral component of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の周辺回路構成を説明する図。The figure explaining the peripheral circuit composition of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の周辺構成部材を説明する図。The figure explaining the peripheral component of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の周辺構成部材を説明する図。The figure explaining the peripheral component of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の周辺構成部材を説明する図。The figure explaining the peripheral component of the semiconductor device which concerns on this invention. 本発明に係る半導体装置を説明する図。The figure explaining the semiconductor device which concerns on this invention. 本発明に係る半導体装置の駆動方法の一を説明する図。The figure explaining one of the driving method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の駆動方法の一を説明する図。The figure explaining one of the driving method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の駆動方法の一を説明する図。The figure explaining one of the driving method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の駆動方法の一を説明する図。The figure explaining one of the driving method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の画素レイアウト例と断面図。An example of a pixel layout and a cross-sectional view of the semiconductor device according to the present invention. 本発明に係る半導体装置の画素レイアウト例と断面図。An example of a pixel layout and a cross-sectional view of the semiconductor device according to the present invention. 本発明に係る半導体装置の画素レイアウト例と断面図。An example of a pixel layout and a cross-sectional view of the semiconductor device according to the present invention. 本発明に係る半導体装置の表示素子の断面図。Sectional drawing of the display element of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の表示素子を形成する装置を説明する図。The figure explaining the apparatus which forms the display element of the semiconductor apparatus which concerns on this invention. 本発明に係る半導体装置の表示素子を形成する装置を説明する図。The figure explaining the apparatus which forms the display element of the semiconductor apparatus which concerns on this invention. 本発明に係る半導体装置の駆動方法の一を説明する図。The figure explaining one of the driving method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の駆動方法の一を説明する図。The figure explaining one of the driving method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の画素回路の一を説明する図。The figure explaining one of the pixel circuits of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の画素回路の一を説明する図。The figure explaining one of the pixel circuits of the semiconductor device which concerns on this invention. 本発明に係る半導体装置を製造するプロセスを説明する図。The figure explaining the process of manufacturing the semiconductor device which concerns on this invention. 本発明に係る半導体装置の表示素子を説明する図。The figure explaining the display element of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の表示素子を説明する図。The figure explaining the display element of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の構造を説明する図。The figure explaining the structure of the semiconductor device which concerns on this invention. 本発明に係る半導体装置を用いた電子機器を説明する図。The figure explaining the electronic device using the semiconductor device which concerns on this invention. 本発明に係る半導体装置を用いた電子機器を説明する図。The figure explaining the electronic device using the semiconductor device which concerns on this invention. 本発明に係る半導体装置を用いた電子機器を説明する図。The figure explaining the electronic device using the semiconductor device which concerns on this invention. 本発明に係る半導体装置を用いた電子機器を説明する図。The figure explaining the electronic device using the semiconductor device which concerns on this invention. 本発明に係る半導体装置を用いた電子機器を説明する図。The figure explaining the electronic device using the semiconductor device which concerns on this invention. 本発明に係る半導体装置を用いた電子機器を説明する図。The figure explaining the electronic device using the semiconductor device which concerns on this invention. 本発明に係る半導体装置を用いた電子機器を説明する図。The figure explaining the electronic device using the semiconductor device which concerns on this invention.

以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多くの
異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することな
くその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って
本実施の形態の記載内容に限定して解釈されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, it is easily understood by those skilled in the art that the present invention can be carried out in many different embodiments, and the embodiments and details can be variously changed without departing from the spirit and scope of the present invention. Will be done. Therefore, the interpretation is not limited to the description of the present embodiment.

(実施の形態1)
本実施の形態では、フリップフロップ、当該フリップフロップを有する駆動回路、及び当
該駆動回路を有する表示装置の構成並びに駆動方法について説明する。
(Embodiment 1)
In the present embodiment, the configuration and driving method of the flip-flop, the drive circuit having the flip-flop, and the display device having the drive circuit will be described.

本実施の形態のフリップフロップの基本構成について、図1(A)を参照して説明する。
図1(A)に示すフリップフロップは、第1のトランジスタ101、第2のトランジスタ
102、第3のトランジスタ103、第4のトランジスタ104、第5のトランジスタ1
05、第6のトランジスタ106、第7のトランジスタ107及び第8のトランジスタ1
08を有する。本実施の形態において、第1のトランジスタ101~第8のトランジスタ
108は、Nチャネル型トランジスタとし、ゲートとソース間電圧(Vgs)がしきい値
電圧(Vth)を上回ったとき導通状態になるものとする。
The basic configuration of the flip-flop of the present embodiment will be described with reference to FIG. 1 (A).
The flip-flop shown in FIG. 1A is a first transistor 101, a second transistor 102, a third transistor 103, a fourth transistor 104, and a fifth transistor 1.
05, 6th transistor 106, 7th transistor 107 and 8th transistor 1
Has 08. In the present embodiment, the first transistor 101 to the eighth transistor 108 are N-channel transistors, and are in a conductive state when the gate-source voltage (Vgs) exceeds the threshold voltage (Vth). And.

なお、本実施の形態のフリップフロップは、第1のトランジスタ101~第8のトランジ
スタ108が全てNチャネル型トランジスタで構成されていることを特徴とする。したが
って、本実施の形態のフリップフロップは、トランジスタの半導体層として、アモルファ
スシリコンを用いることができるため、製造工程の簡略化を図ることができ、製造コスト
の削減や歩留まりの向上を図ることができる。ただし、トランジスタの半導体層として、
ポリシリコンや多結晶シリコンを用いても製造工程の簡略化を図ることができる。
The flip-flop of the present embodiment is characterized in that the first transistor 101 to the eighth transistor 108 are all composed of N-channel type transistors. Therefore, in the flip-flop of the present embodiment, amorphous silicon can be used as the semiconductor layer of the transistor, so that the manufacturing process can be simplified, the manufacturing cost can be reduced, and the yield can be improved. .. However, as a semiconductor layer of a transistor,
The manufacturing process can also be simplified by using polysilicon or polycrystalline silicon.

図1(A)のフリップフリップフロップの接続関係について説明する。第1のトランジス
タ101の第1の電極(ソース電極及びドレイン電極の一方)が第5の配線125に接続
され、第1のトランジスタ101の第2の電極(ソース電極及びドレイン電極の他方)が
第3の配線123に接続される。第2のトランジスタ102の第1の電極が第4の配線1
24に接続され、第2のトランジスタ102第2の電極が第3の配線123に接続され、
第2のトランジスタ102のゲート電極が第8の配線128に接続される。第3のトラン
ジスタ103の第1の電極が第6の配線126に接続され、第3のトランジスタ103の
第2の電極が第6のトランジスタ106のゲート電極に接続され、第3のトランジスタ1
03のゲート電極が第7の配線127に接続される。第4のトランジスタ104の第1の
電極が第10の配線130に接続され、第4のトランジスタ104の第2の電極が第6の
トランジスタ106のゲート電極に接続され、第4のトランジスタ104のゲート電極が
第8の配線128に接続される。第5のトランジスタ105の第1の電極が第9の配線1
29に接続され、第5のトランジスタ105の第2の電極が第1のトランジスタ101の
ゲート電極に接続され、第5のトランジスタ105のゲート電極が第1の配線121に接
続される。第6のトランジスタ106の第1の電極が第12の配線132に接続され、第
6のトランジスタ106の第2の電極が第1のトランジスタ101のゲート電極に接続さ
れる。第7のトランジスタ107の第1の電極が第13の配線133に接続され、第7の
トランジスタ107の第2の電極が第1のトランジスタ101のゲート電極に接続され、
第7のトランジスタ107のゲート電極が第2の配線122に接続される。第8のトラン
ジスタ108の第1の電極が第11の配線131に接続され、第8のトランジスタ108
の第2の電極が第6のトランジスタ106のゲート電極に接続され、第8のトランジスタ
108のゲート電極が第1のトランジスタ101のゲート電極に接続される。
The connection relationship of the flip-flops of FIG. 1A will be described. The first electrode of the first transistor 101 (one of the source electrode and the drain electrode) is connected to the fifth wiring 125, and the second electrode of the first transistor 101 (the other of the source electrode and the drain electrode) is the second. It is connected to the wiring 123 of 3. The first electrode of the second transistor 102 is the fourth wiring 1
24 connected, the second transistor 102 second electrode connected to the third wiring 123,
The gate electrode of the second transistor 102 is connected to the eighth wire 128. The first electrode of the third transistor 103 is connected to the sixth wiring 126, the second electrode of the third transistor 103 is connected to the gate electrode of the sixth transistor 106, and the third transistor 1
The gate electrode of 03 is connected to the seventh wiring 127. The first electrode of the fourth transistor 104 is connected to the tenth wiring 130, the second electrode of the fourth transistor 104 is connected to the gate electrode of the sixth transistor 106, and the gate of the fourth transistor 104 is connected. The electrode is connected to the eighth wire 128. The first electrode of the fifth transistor 105 is the ninth wiring 1
It is connected to 29, the second electrode of the fifth transistor 105 is connected to the gate electrode of the first transistor 101, and the gate electrode of the fifth transistor 105 is connected to the first wiring 121. The first electrode of the sixth transistor 106 is connected to the twelfth wiring 132, and the second electrode of the sixth transistor 106 is connected to the gate electrode of the first transistor 101. The first electrode of the seventh transistor 107 is connected to the thirteenth wiring 133, the second electrode of the seventh transistor 107 is connected to the gate electrode of the first transistor 101, and so on.
The gate electrode of the seventh transistor 107 is connected to the second wiring 122. The first electrode of the eighth transistor 108 is connected to the eleventh wiring 131, and the eighth transistor 108
The second electrode is connected to the gate electrode of the sixth transistor 106, and the gate electrode of the eighth transistor 108 is connected to the gate electrode of the first transistor 101.

なお、第1のトランジスタ101のゲート電極、第6のトランジスタ106の第2の電極
、第7のトランジスタ107の第2の電極及び第8のトランジスタ108のゲート電極の
接続箇所をノード141とする。さらに、第3のトランジスタ103の第2の電極、第4
のトランジスタ104の第2の電極、第6のトランジスタ106のゲート電極及び第8の
トランジスタ108の第2の電極の接続箇所をノード142とする。
A node 141 is a connection point between the gate electrode of the first transistor 101, the second electrode of the sixth transistor 106, the second electrode of the seventh transistor 107, and the gate electrode of the eighth transistor 108. Further, the second electrode of the third transistor 103, the fourth
A node 142 is a connection point between the second electrode of the transistor 104, the gate electrode of the sixth transistor 106, and the second electrode of the eighth transistor 108.

なお、第1の配線121、第2の配線122、第3の配線123、第5の配線125、第
7の配線127及び第8の配線128を、それぞれ第1の信号線、第2の信号線、第3の
信号線、第4の信号線、第5の信号線、第6の信号線と呼んでもよい。さらに、第4の配
線124、第6の配線126、第9の配線129、第10の配線130、第11の配線1
31、第12の配線132及び第13の配線133を、それぞれ第1の電源線、第2の電
源線、第3の電源線、第4の電源線、第5の電源線、第6の電源線、第7の電源線と呼ん
でもよい。
The first wiring 121, the second wiring 122, the third wiring 123, the fifth wiring 125, the seventh wiring 127, and the eighth wiring 128 are the first signal line and the second signal, respectively. It may be referred to as a line, a third signal line, a fourth signal line, a fifth signal line, or a sixth signal line. Further, the fourth wiring 124, the sixth wiring 126, the ninth wiring 129, the tenth wiring 130, and the eleventh wiring 1
31, the twelfth wiring 132 and the thirteenth wiring 133 are the first power line, the second power line, the third power line, the fourth power line, the fifth power line, and the sixth power supply, respectively. It may be called a wire, a seventh power line.

次に、図1(A)に示したフリップフロップの動作について、図2のタイミングチャート
、図3及び図4を参照して説明する。さらに、図2のタイミングチャートをセット期間、
選択期間、リセット期間、第1の非選択期間、第2の非選択期間に分割して説明する。た
だし、セット期間、リセット期間、第1の非選択期間及び第2の非選択期間を合わせて非
選択期間と呼ぶこともある。
Next, the operation of the flip-flop shown in FIG. 1A will be described with reference to the timing chart of FIG. 2, FIGS. 3 and 4. Furthermore, the timing chart of FIG. 2 is set during the set period.
The description will be divided into a selection period, a reset period, a first non-selection period, and a second non-selection period. However, the set period, the reset period, the first non-selection period, and the second non-selection period may be collectively referred to as a non-selection period.

なお、第6の配線126及び第9の配線129にはV1の電位が供給され、第4の配線1
24、第10の配線130、第11の配線131、第12の配線132及び第13の配線
133にはV2の電位が供給される。ここで、V1>V2である。
The potential of V1 is supplied to the sixth wiring 126 and the ninth wiring 129, and the fourth wiring 1
24, the tenth wiring 130, the eleventh wiring 131, the twelfth wiring 132, and the thirteenth wiring 133 are supplied with the potential of V2. Here, V1> V2.

なお、第1の配線121、第5の配線125、第8の配線128、第7の配線127及び
第2の配線122には、それぞれ図2に示す信号221、信号225、信号228、信号
227、信号222が入力される。そして、第3の配線123からは、図2に示す信号2
23が出力される。ここで、信号221、信号225、信号228、信号227、信号2
22及び信号223は、H信号の電位がV1(以下、Hレベルともいう)、L信号の電位
がV2(以下、Lレベルともいう)のデジタル信号である。さらに、信号221、信号2
25、信号228、信号227、信号222及び信号223を、それぞれスタート信号、
パワークロック信号(PCK)、第1の制御クロック信号(CCK1)、第2の制御クロ
ック信号(CCK2)、リセット信号、出力信号と呼んでもよい。
The first wiring 121, the fifth wiring 125, the eighth wiring 128, the seventh wiring 127, and the second wiring 122 have signals 221, 225, signal 228, and signal 227 shown in FIG. 2, respectively. , Signal 222 is input. Then, from the third wiring 123, the signal 2 shown in FIG. 2 is used.
23 is output. Here, signal 221, signal 225, signal 228, signal 227, signal 2
22 and the signal 223 are digital signals having an H signal potential of V1 (hereinafter, also referred to as H level) and an L signal potential of V2 (hereinafter, also referred to as L level). Further, signal 221 and signal 2
25, signal 228, signal 227, signal 222 and signal 223, respectively, start signal,
It may be referred to as a power clock signal (PCK), a first control clock signal (CCK1), a second control clock signal (CCK2), a reset signal, and an output signal.

ただし、第1の配線121、第2の配線122、第4の配線124~第13の配線133
には、それぞれ様々な信号、電位及び電流が入力されてもよい。
However, the first wiring 121, the second wiring 122, the fourth wiring 124 to the thirteenth wiring 133
Various signals, potentials and currents may be input to each.

まず、図2(A)及び図3(A)に示すセット期間において、信号221がHレベルとな
り第5のトランジスタ105がオンし、信号222がLレベルなので第7のトランジスタ
107がオフし、信号228がHレベルとなり第2のトランジスタ102及び第4のトラ
ンジスタ104がオンし、信号227がLレベルとなり第3のトランジスタ103がオフ
する。このときのノード141の電位(電位241)は、第5のトランジスタ105の第
2の電極がソース電極となって、第9の配線129の電位から第5のトランジスタ105
のしきい値電圧を引いた値となるためV1-Vth105(Vth105:第5のトラン
ジスタ105のしきい値電圧)となる。よって、第1のトランジスタ101及び第8のト
ランジスタ108がオンし、第5のトランジスタ105がオフする。このときのノード1
42の電位(電位242)は、V2となって、第6のトランジスタ106がオフする。こ
のように、セット期間では、第3の配線123はL信号が入力される第5の配線125及
びV2が供給される第4の配線124と導通するため、第3の配線123の電位がV2と
なる。したがって、L信号が第3の配線123から出力される。さらに、ノード141は
、電位をV1-Vth105に維持したまま浮遊状態となる。
First, in the set period shown in FIGS. 2 (A) and 3 (A), the signal 221 becomes the H level and the fifth transistor 105 turns on, and since the signal 222 is the L level, the seventh transistor 107 turns off and the signal is signaled. 228 becomes the H level, the second transistor 102 and the fourth transistor 104 turn on, the signal 227 becomes the L level, and the third transistor 103 turns off. At this time, the potential (potential 241) of the node 141 is such that the second electrode of the fifth transistor 105 serves as the source electrode, and the potential of the ninth wiring 129 to the fifth transistor 105.
Since the value is obtained by subtracting the threshold voltage of Vth 105 (Vth 105: the threshold voltage of the fifth transistor 105). Therefore, the first transistor 101 and the eighth transistor 108 are turned on, and the fifth transistor 105 is turned off. Node 1 at this time
The potential of 42 (potential 242) becomes V2, and the sixth transistor 106 is turned off. As described above, during the set period, the third wiring 123 conducts with the fifth wiring 125 to which the L signal is input and the fourth wiring 124 to which V2 is supplied, so that the potential of the third wiring 123 is V2. Will be. Therefore, the L signal is output from the third wiring 123. Further, the node 141 is in a floating state while maintaining the potential at V1-Vth105.

なお、本実施の形態のフリップフロップは、図5(A)に示すように、第5のトランジス
タ105の第1の電極が第1の配線121に接続されても、上記説明したセット期間と同
様な動作を行うことができる。図5(A)のフリップフロップは、第9の配線129が不
要となるため、歩留まりの向上を図ることができる。さらに、図5(A)のフリップフロ
ップは、レイアウト面積の縮小を図ることができる。
As shown in FIG. 5A, the flip-flop of the present embodiment is the same as the set period described above even if the first electrode of the fifth transistor 105 is connected to the first wiring 121. Can perform various operations. Since the flip-flop of FIG. 5A does not require the ninth wiring 129, the yield can be improved. Further, the flip-flop of FIG. 5A can reduce the layout area.

なお、本実施の形態のフリップフロップは、図5(C)に示すように、トランジスタ50
1を新たに配置してもよい。トランジスタ501は第1の電極がV2が供給されている配
線511に接続され、第2の電極がノード141に接続され、ゲート電極が第1の配線1
21に接続される。図5(C)のフリップフロップは、トランジスタ501によって、ノ
ード142の電位が下がる時間を短くできるので、第6のトランジスタ106を早くオフ
できる。したがって、図5(C)のフリップフロップは、ノード141の電位がV1-V
th105となるまでの時間を短くできるため、高速動作が可能となり、より大型の表示
装置又はより高精細な表示装置に適用できる。
As shown in FIG. 5C, the flip-flop of the present embodiment is the transistor 50.
1 may be newly arranged. In the transistor 501, the first electrode is connected to the wiring 511 to which V2 is supplied, the second electrode is connected to the node 141, and the gate electrode is the first wiring 1.
Connected to 21. In the flip-flop of FIG. 5C, the transistor 501 can shorten the time during which the potential of the node 142 drops, so that the sixth transistor 106 can be turned off quickly. Therefore, in the flip-flop of FIG. 5C, the potential of the node 141 is V1-V.
Since the time until th105 can be shortened, high-speed operation becomes possible, and it can be applied to a larger display device or a higher-definition display device.

図2(B)及び図3(B)に示す選択期間では、信号221がLレベルとなり第5のトラ
ンジスタ105がオフし、信号222がLレベルのままなので第7のトランジスタ107
がオフのままであり、信号228がLレベルとなり第2のトランジスタ102及び第4の
トランジスタ104がオフし、信号227がHレベルとなり第3のトランジスタ103が
オンする。このときのノード141は電位をV1-Vth105に維持している。よって
、第1のトランジスタ101及び第8のトランジスタ108はオンのままである。このと
きのノード142の電位は、第11の配線131の電位(V2)と第6の配線126の電
位(V1)との電位差(V1-V2)が第3のトランジスタ103及び第8のトランジス
タ108によって分圧され、V2+β(β:任意の正の数)となる。さらに、β<Vth
106(第6のトランジスタ106のしきい値電圧)とする。よって第6のトランジスタ
106がオフのままである。ここで、第5の配線125にH信号が入力されるので、第3
の配線123の電位が上昇し始める。すると、ノード141の電位は、ブートストラップ
動作によってV1-Vth105から上昇し、V1+Vth101+α(Vth101:
第1のトランジスタ101のしきい値電圧、α:任意の正の数)となる。したがって、第
3の配線123の電位は、第5の配線125と等しい電位となるのでV1となる。このよ
うに、選択期間では、第3の配線123はH信号が入力されている第5の配線125と導
通するため、第3の配線123の電位がV1となる。したがって、H信号が第3の配線1
23から出力される。
In the selection period shown in FIGS. 2B and 3B, the signal 221 becomes the L level, the fifth transistor 105 is turned off, and the signal 222 remains at the L level, so that the seventh transistor 107
Remains off, the signal 228 becomes the L level, the second transistor 102 and the fourth transistor 104 turn off, the signal 227 becomes the H level, and the third transistor 103 turns on. At this time, the node 141 maintains the potential at V1-Vth105. Therefore, the first transistor 101 and the eighth transistor 108 remain on. At this time, the potential of the node 142 is such that the potential difference (V1-V2) between the potential (V2) of the eleventh wiring 131 and the potential (V1) of the sixth wiring 126 is the third transistor 103 and the eighth transistor 108. It is divided by and becomes V2 + β (β: any positive number). Furthermore, β <Vth
It is set to 106 (threshold voltage of the sixth transistor 106). Therefore, the sixth transistor 106 remains off. Here, since the H signal is input to the fifth wiring 125, the third wiring 125
The potential of the wiring 123 of the above begins to rise. Then, the potential of the node 141 rises from V1-Vth105 by the bootstrap operation, and V1 + Vth101 + α (Vth101:
The threshold voltage of the first transistor 101, α: an arbitrary positive number). Therefore, the potential of the third wiring 123 becomes V1 because it has the same potential as the fifth wiring 125. As described above, during the selection period, the third wiring 123 conducts with the fifth wiring 125 to which the H signal is input, so that the potential of the third wiring 123 becomes V1. Therefore, the H signal is the third wiring 1
It is output from 23.

なお、このブートストラップ動作は、第1のトランジスタ101のゲート電極と第2の電
極との間の寄生容量の容量結合によって行われる。ただし、図1(B)に示すように、第
1のトランジスタ101のゲート電極と第2の電極との間に容量素子151を配置するこ
とで、安定してブートストラップ動作を行うことができ、第1のトランジスタ101の寄
生容量を小さくできる。ここで、容量素子151は、絶縁層としてゲート絶縁膜を用いて
導電層としてゲート電極層及び配線層を用いてもよいし、絶縁層としてゲート絶縁膜を用
いて導電層としてゲート電極層及び不純物が添加された半導体層を用いてもよいし、絶縁
層として層間膜(絶縁膜)を用いて導電層として配線層及び透明電極層を用いてもよい。
ただし、容量素子151は、導電膜としてゲート電極層及び配線層を用いる場合、ゲート
電極層を第1のトランジスタ101のゲート電極と接続し、配線層を第1のトランジスタ
101の第2の電極と接続するとよい。より望ましくは、導電膜としてゲート電極層及び
配線層を用いる場合、ゲート電極層を第1のトランジスタ101のゲート電極と直接接続
し、配線層を第1のトランジスタ101の第2の電極と直接接続するとよい。なぜなら、
容量素子151の配置によるフリップフロップのレイアウト面積の増加が小さくなるから
である。
This bootstrap operation is performed by capacitive coupling of parasitic capacitance between the gate electrode of the first transistor 101 and the second electrode. However, as shown in FIG. 1 (B), by arranging the capacitive element 151 between the gate electrode of the first transistor 101 and the second electrode, the bootstrap operation can be stably performed. The parasitic capacitance of the first transistor 101 can be reduced. Here, the capacitive element 151 may use a gate insulating film as the insulating layer and the gate electrode layer and the wiring layer as the conductive layer, or may use the gate insulating film as the insulating layer and use the gate electrode layer and impurities as the conductive layer. A semiconductor layer to which is added may be used, an interlayer film (insulating film) may be used as the insulating layer, and a wiring layer and a transparent electrode layer may be used as the conductive layer.
However, when the capacitive element 151 uses the gate electrode layer and the wiring layer as the conductive film, the gate electrode layer is connected to the gate electrode of the first transistor 101, and the wiring layer is connected to the second electrode of the first transistor 101. You should connect. More preferably, when the gate electrode layer and the wiring layer are used as the conductive film, the gate electrode layer is directly connected to the gate electrode of the first transistor 101, and the wiring layer is directly connected to the second electrode of the first transistor 101. It is good to do. because,
This is because the increase in the layout area of the flip-flop due to the arrangement of the capacitive element 151 becomes small.

さらに、図1(C)に示すように、容量素子151としてトランジスタ152を用いても
よい。トランジスタ152は、ゲート電極がノード141に接続され、第1の電極及び第
2の電極が第3の配線123に接続されることで、大きな容量成分を持つ容量素子として
機能することができる。ただし、トランジスタ152は、第1の電極及び第2の電極のう
ちどちらか一方を浮遊としても容量素子として機能できる。
Further, as shown in FIG. 1C, the transistor 152 may be used as the capacitive element 151. The transistor 152 can function as a capacitive element having a large capacitive component by connecting the gate electrode to the node 141 and connecting the first electrode and the second electrode to the third wiring 123. However, the transistor 152 can function as a capacitive element even if either the first electrode or the second electrode is suspended.

なお、第1のトランジスタ101は、第3の配線123にH信号を供給しなければならな
い。したがって、信号223の立ち下がり時間及び立ち上がり時間を短くするために、第
1のトランジスタ101のW/Lの値は、第1のトランジスタ101~第8のトランジス
タ108のそれぞれのW/Lの値の中で最大とすることが望ましい。
The first transistor 101 must supply the H signal to the third wiring 123. Therefore, in order to shorten the fall time and rise time of the signal 223, the W / L value of the first transistor 101 is the value of the W / L of each of the first transistor 101 to the eighth transistor 108. It is desirable to maximize it.

さらに、第5のトランジスタ105は、セット期間において、ノード142(第1のトラ
ンジスタ101のゲート電極)の電位をV1-Vth105としなれければならないため
、第5のトランジスタ105のW/Lの値は第1のトランジスタ101のW/Lの値より
も1/2倍~1/5倍、より望ましくは1/3倍~1/4倍とする。
Further, since the fifth transistor 105 must have the potential of the node 142 (gate electrode of the first transistor 101) V1-Vth105 during the set period, the value of W / L of the fifth transistor 105 is set. It is 1/2 to 1/5 times, more preferably 1/3 to 1/4 times the value of W / L of the first transistor 101.

なお、ノード142の電位をV2+βとするために、第8のトランジスタ108のチャネ
ル幅Wとチャネル長Lとの比W/Lの値は、第3のトランジスタ103のW/Lの値より
も、少なくとも10倍以上にすることが好ましい。したがって、第8のトランジスタ10
8のトランジスタサイズ(W×L)が大きくなってしまう。ここで、第3のトランジスタ
103のチャネル長Lの値を第8のトランジスタ108のチャネル長Lの値よりも大きく
、より好ましくは2倍~3倍とすることで、第8のトランジスタ108のトランジスタサ
イズを小さくできるため、レイアウト面積の縮小を図ることができる。
Since the potential of the node 142 is V2 + β, the value of the ratio W / L of the channel width W and the channel length L of the eighth transistor 108 is higher than the value of W / L of the third transistor 103. It is preferably at least 10 times or more. Therefore, the eighth transistor 10
The transistor size (W × L) of 8 becomes large. Here, the value of the channel length L of the third transistor 103 is larger than the value of the channel length L of the eighth transistor 108, and more preferably two to three times, so that the transistor of the eighth transistor 108 is used. Since the size can be reduced, the layout area can be reduced.

図2(C)及び図3(C)に示すリセット期間では、信号221がLレベルのままなので
第5のトランジスタ105がオフのままであり、信号222がHレベルとなり第7のトラ
ンジスタ107がオンし、信号228がHレベルとなり第2のトランジスタ102及び第
4のトランジスタ104がオンし、信号227がLレベルとなり第3のトランジスタ10
3がオフする。このときのノード141の電位は、第13の配線133の電位(V2)が
第7のトランジスタ107を介して供給されるためV2となる。よって、第1のトランジ
スタ101及び第8のトランジスタ108がオフする。このときのノード142の電位は
、第4のトランジスタ104がオンするので、V2となる。よって、第6のトランジスタ
106がオフする。このように、リセット期間では、第3の配線123はV2が供給され
ている第4の配線124と導通するため、第3の配線123の電位がV2となる。したが
って、L信号が第3の配線123から出力される。
During the reset period shown in FIGS. 2C and 3C, the signal 221 remains at the L level, so the fifth transistor 105 remains off, the signal 222 becomes the H level, and the seventh transistor 107 turns on. Then, the signal 228 becomes the H level, the second transistor 102 and the fourth transistor 104 turn on, the signal 227 becomes the L level, and the third transistor 10
3 turns off. The potential of the node 141 at this time is V2 because the potential (V2) of the thirteenth wiring 133 is supplied via the seventh transistor 107. Therefore, the first transistor 101 and the eighth transistor 108 are turned off. The potential of the node 142 at this time is V2 because the fourth transistor 104 is turned on. Therefore, the sixth transistor 106 is turned off. As described above, during the reset period, the third wiring 123 conducts with the fourth wiring 124 to which V2 is supplied, so that the potential of the third wiring 123 becomes V2. Therefore, the L signal is output from the third wiring 123.

なお、第7のトランジスタ107がオンするタイミングを遅延させることで、信号223
の立ち下がり時間を短くできる。なぜなら、第5の配線125に入力されるL信号が、W
/Lの値が大きい第1のトランジスタ101を介して第3の配線123に供給できるから
である。
By delaying the timing at which the seventh transistor 107 is turned on, the signal 223
The fall time can be shortened. This is because the L signal input to the fifth wiring 125 is W.
This is because it can be supplied to the third wiring 123 via the first transistor 101 having a large value of / L.

あるいは、第7のトランジスタ107のW/Lの値を小さくして、ノード141の電位が
V2となるまでの立ち下がり時間を長くしても、信号223の立ち下がり時間を短くでき
る。この場合は、第7のトランジスタW/Lの値を第1のトランジスタ101のW/Lの
値よりも1/10~1/40倍、より好ましくは1/20~1/30倍とする。
Alternatively, the fall time of the signal 223 can be shortened by reducing the W / L value of the seventh transistor 107 and lengthening the fall time until the potential of the node 141 becomes V2. In this case, the value of the 7th transistor W / L is set to 1/10 to 1/40 times, more preferably 1/20 to 1/30 times the W / L value of the first transistor 101.

なお、図5(B)に示すように、第7のトランジスタ107をなくても、上記説明したセ
ット期間と同様な動作を行うことができる。図5(B)のフリップフロップは、トランジ
スタ及び配線を少なくできるため、レイアウト面積の縮小を図ることができる。
As shown in FIG. 5B, the same operation as the set period described above can be performed without the seventh transistor 107. Since the flip-flop of FIG. 5B can reduce the number of transistors and wiring, the layout area can be reduced.

図2(D)及び図4(D)に示す第1の非選択期間において、信号221がLレベルのま
まなので第5のトランジスタ105がオフのままであり、信号222がLレベルとなり第
7のトランジスタ107がオフし、信号228がLレベルとなり第2のトランジスタ10
2及び第4のトランジスタ104がオフし、信号227がHレベルとなり第3のトランジ
スタ103がオンする。このときのノード142の電位は、第3のトランジスタ103の
第2の電極がソース電極となって、第7の配線127の電位(V1)から第3のトランジ
スタ103のしきい値電圧を引いた値となるためV1-Vth103(Vth103:第
3のトランジスタ103のしきい値電圧)となる。よって、第6のトランジスタ106が
オンする。このときのノード141の電位は第6のトランジスタ106がオンするので、
V2となる。よって、第1のトランジスタ101及び第8のトランジスタ108はオフの
ままである。このように、第1の非選択期間では、第3の配線123は浮遊状態となって
、電位をV2に維持する。
In the first non-selection period shown in FIGS. 2 (D) and 4 (D), since the signal 221 remains at the L level, the fifth transistor 105 remains off, the signal 222 becomes the L level, and the seventh Transistor 107 is turned off, signal 228 becomes L level, and second transistor 10
The second and fourth transistors 104 are turned off, the signal 227 becomes H level, and the third transistor 103 is turned on. At this time, the potential of the node 142 is obtained by subtracting the threshold voltage of the third transistor 103 from the potential (V1) of the seventh wiring 127 with the second electrode of the third transistor 103 as the source electrode. Since it is a value, it becomes V1-Vth103 (Vth103: threshold voltage of the third transistor 103). Therefore, the sixth transistor 106 is turned on. Since the sixth transistor 106 turns on the potential of the node 141 at this time,
It becomes V2. Therefore, the first transistor 101 and the eighth transistor 108 remain off. As described above, in the first non-selection period, the third wiring 123 is in a floating state and the potential is maintained at V2.

なお、本実施の形態のフリップフロップは、第2のトランジスタ102をオフすることに
よって、第2のトランジスタ102のしきい値電圧のシフトを抑制できる。
The flip-flop of the present embodiment can suppress the shift of the threshold voltage of the second transistor 102 by turning off the second transistor 102.

なお、信号227の電位をV1以下にして、第3のトランジスタ103のゲート電極の電
位を下げることで、第3のトランジスタ103のしきい値電圧のシフトを抑制できる。さ
らに、信号228の電位をV2以下にして、第4のトランジスタ104及び第2のトラン
ジスタ102に逆バイアスを印加することで、第4のトランジスタ104及び第2のトラ
ンジスタ102のしきい値電圧のシフトを抑制できる。
By setting the potential of the signal 227 to V1 or less and lowering the potential of the gate electrode of the third transistor 103, the shift of the threshold voltage of the third transistor 103 can be suppressed. Further, by setting the potential of the signal 228 to V2 or less and applying a reverse bias to the fourth transistor 104 and the second transistor 102, the threshold voltage of the fourth transistor 104 and the second transistor 102 is shifted. Can be suppressed.

なお、図9(A)に示すように、トランジスタ901を新たに配置することで、第3の配
線123にV2を供給できる。トランジスタ901は、第1の電極が第4の配線124に
接続され、トランジスタ901の第2の電極が第3の配線123に接続され、ゲート電極
がノード142に接続されるため、第6のトランジスタ106と同じタイミングでオン・
オフが制御される。したがって、図9(A)のフリップフロップは、第3の配線123が
浮遊状態にならないため、ノイズに強くできる。さらに、図9(B)に示すように、第2
のトランジスタ102の代わりに、トランジスタ901を配置することもできる。
As shown in FIG. 9A, V2 can be supplied to the third wiring 123 by newly arranging the transistor 901. Transistor 901 is a sixth transistor because the first electrode is connected to the fourth wire 124, the second electrode of the transistor 901 is connected to the third wire 123, and the gate electrode is connected to the node 142. On at the same timing as 106
Off is controlled. Therefore, the flip-flop of FIG. 9A can be made resistant to noise because the third wiring 123 does not float. Further, as shown in FIG. 9B, the second
Transistor 901 can also be arranged instead of the transistor 102 of.

図2(E)及び図4(E)に示す第2の非選択期間において、信号221がLレベルのま
まなので第5のトランジスタ105がオフのままであり、信号222がLレベルのままな
ので第7のトランジスタ107がオフのままであり、信号228がHレベルとなり第2の
トランジスタ102及び第4のトランジスタ104がオンし、信号227がLレベルとな
り第3のトランジスタ103がオフする。このときノード142の電位が第4のトランジ
スタ104がオンするのでV2となる。よって、第6のトランジスタ106がオフする。
このときのノード141は浮遊状態となるため電位をV2に維持する。よって、第1のト
ランジスタ101及び第8のトランジスタ108はオフのままである。このように、第2
の非選択期間では、第3の配線123はV2が供給されている第4の配線124と導通す
るため、第3の配線123の電位がV2となる。したがって、L信号が第3の配線123
から出力される。
In the second non-selection period shown in FIGS. 2 (E) and 4 (E), the fifth transistor 105 remains off because the signal 221 remains at the L level, and the signal 222 remains at the L level. The transistor 107 of 7 remains off, the signal 228 becomes H level, the second transistor 102 and the fourth transistor 104 turn on, the signal 227 becomes L level, and the third transistor 103 turns off. At this time, the potential of the node 142 becomes V2 because the fourth transistor 104 is turned on. Therefore, the sixth transistor 106 is turned off.
At this time, the node 141 is in a floating state, so the potential is maintained at V2. Therefore, the first transistor 101 and the eighth transistor 108 remain off. Thus, the second
During the non-selection period, the third wiring 123 conducts with the fourth wiring 124 to which V2 is supplied, so that the potential of the third wiring 123 becomes V2. Therefore, the L signal is the third wiring 123.
Is output from.

なお、本実施の形態のフリップフロップは、第6のトランジスタ106をオフすることに
よって、第6のトランジスタ106のしきい値電圧のシフトを抑制できる。
The flip-flop of the present embodiment can suppress the shift of the threshold voltage of the sixth transistor 106 by turning off the sixth transistor 106.

なお、本実施の形態のフリップフロップは、第2の非選択期間において、第3の配線12
3の電位がノイズによって変動しても、第3の配線123の電位をV2とすることができ
る。さらに、本実施の形態のフリップフロップは、ノード141の電位がノイズによって
変動しても、第1の非選択期間においてノード141の電位をV2とすることができる。
The flip-flop of the present embodiment has a third wiring 12 in the second non-selection period.
Even if the potential of 3 fluctuates due to noise, the potential of the third wiring 123 can be set to V2. Further, in the flip-flop of the present embodiment, even if the potential of the node 141 fluctuates due to noise, the potential of the node 141 can be set to V2 in the first non-selection period.

なお、信号227の電位をV2以下にして、第3のトランジスタ103に逆バイアスを印
加することで、第3のトランジスタ103のしきい値電圧のシフトを抑制できる。さらに
、信号228の電位をV1以下にして、第4のトランジスタ104のゲート電極及び第2
のトランジスタ102の電極の電位を下げることで、第4のトランジスタ104及び第2
のトランジスタ102のしきい値電圧のシフトを抑制できる。
By setting the potential of the signal 227 to V2 or less and applying a reverse bias to the third transistor 103, the shift of the threshold voltage of the third transistor 103 can be suppressed. Further, the potential of the signal 228 is set to V1 or less, and the gate electrode of the fourth transistor 104 and the second
By lowering the potential of the electrode of the transistor 102 of the fourth transistor 104 and the second
It is possible to suppress the shift of the threshold voltage of the transistor 102 of the above.

以上のことから、本実施の形態のフリップフロップは、第2のトランジスタ102及び第
6のトランジスタ106のしきい値シフトを抑制できるため、長寿命化を図ることができ
る。さらに、本実施の形態のフリップフロップは、全てのトランジスタのしきい値電圧の
シフトを抑制できるため、長寿命化を図ることができる。さらに、本実施の形態のフリッ
プフロップは、ノイズに強いため、信頼性の向上を図ることができる。
From the above, the flip-flop of the present embodiment can suppress the threshold shift of the second transistor 102 and the sixth transistor 106, so that the life of the flip-flop can be extended. Further, the flip-flop of the present embodiment can suppress the shift of the threshold voltage of all the transistors, so that the life can be extended. Further, since the flip-flop of the present embodiment is resistant to noise, reliability can be improved.

ここで、第1のトランジスタ101乃至第8のトランジスタ108が有する機能を説明す
る。第1のトランジスタ101は、第5の配線125の電位を第3の配線123に供給す
るタイミングを選択し、ノード141の電位をブートストラップ動作によって上昇させる
機能を有し、ブートストラップ用トランジスタとして機能する。第2のトランジスタ10
2は、第4の配線124の電位を第3の配線123に供給するタイミングを選択する機能
を有し、スイッチングトランジスタとして機能する。第3のトランジスタ103は、第6
の配線126の電位をノード142に供給するタイミングを選択する機能を有し、スイッ
チングトランジスタとして機能する。第4のトランジスタ104は、第10の配線130
の電位をノード124に供給するタイミングを選択する機能を有し、スイッチングトラン
ジスタとして機能する。第5のトランジスタ105は、第9の配線129の電位をノード
141に供給するタイミングを選択する機能を有し、入力用トランジスタとして機能する
。第6のトランジスタ106は、第12の配線132の電位をノード141に供給するタ
イミングを選択する機能を有し、スイッチングトランジスタとして機能する。第7のトラ
ンジスタ107は、第13の配線133の電位をノード141に供給するタイミングを選
択する機能を有し、スイッチングトランジスタとして機能する。第8のトランジスタ10
8は、第11の配線131の電位をノード142に供給するタイミングを選択する機能を
有し、スイッチングトランジスタとして機能する。
Here, the functions of the first transistor 101 to the eighth transistor 108 will be described. The first transistor 101 has a function of selecting the timing of supplying the potential of the fifth wiring 125 to the third wiring 123 and raising the potential of the node 141 by the bootstrap operation, and functions as a transistor for bootstrap. do. Second transistor 10
Reference numeral 2 has a function of selecting a timing for supplying the potential of the fourth wiring 124 to the third wiring 123, and functions as a switching transistor. The third transistor 103 is the sixth transistor.
It has a function of selecting the timing of supplying the potential of the wiring 126 to the node 142, and functions as a switching transistor. The fourth transistor 104 is the tenth wiring 130.
It has a function of selecting the timing of supplying the potential of the above to the node 124, and functions as a switching transistor. The fifth transistor 105 has a function of selecting a timing for supplying the potential of the ninth wiring 129 to the node 141, and functions as an input transistor. The sixth transistor 106 has a function of selecting a timing for supplying the potential of the twelfth wiring 132 to the node 141, and functions as a switching transistor. The seventh transistor 107 has a function of selecting a timing for supplying the potential of the thirteenth wiring 133 to the node 141, and functions as a switching transistor. Eighth transistor 10
Reference numeral 8 has a function of selecting a timing for supplying the potential of the eleventh wiring 131 to the node 142, and functions as a switching transistor.

ただし、第1のトランジスタ101乃至第8のトランジスタ108は上記説明した機能を
有していれば、トランジスタとは限定されない。例えば、スイッチングトランジスタとし
て機能する第2のトランジスタ102、第4のトランジスタ104、第3のトランジスタ
103、第4のトランジスタ104、第6のトランジスタ106、第7のトランジスタ1
07及び第8のトランジスタ108は、スイッチング機能を有する素子であれば、ダイオ
ード、CMOSアナログスイッチ又は様々な論理回路などを適用してもよい。さらに、入
力用トランジスタとして機能する第5のトランジスタ105は、ノード141の電位を上
昇させてオフするタイミングを選択する機能有していればよく、PN接合ダイオード又は
ダイオード接続したトランジスタなどを適用してもよい。
However, the first transistor 101 to the eighth transistor 108 are not limited to the transistors as long as they have the functions described above. For example, a second transistor 102, a fourth transistor 104, a third transistor 103, a fourth transistor 104, a sixth transistor 106, and a seventh transistor 1 functioning as switching transistors.
A diode, a CMOS analog switch, various logic circuits, or the like may be applied to the 07 and the eighth transistor 108 as long as they are elements having a switching function. Further, the fifth transistor 105 that functions as an input transistor may have a function of increasing the potential of the node 141 and selecting a timing to turn it off, and a PN junction diode or a diode-connected transistor may be applied. It is also good.

なお、図1と同様の動作を行うものであれば、各トランジスタの配置及び数などは図1に
限定されない。図1のフリップフロップの動作を説明した図3及び図4から分かるように
、本実施の形態では、セット期間、選択期間、リセット期間、第1の非選択期間、第2の
非選択期間は、それぞれ図3(A)乃至(C)、図4(D)、図4(E)に示す実線のよ
うに導通がとれていればよい。よって、これを満たすようにトランジスタ等を配置し、動
作させうる構成であれば、トランジスタ、その他の素子(抵抗素子、容量素子など)、ダ
イオード、スイッチ、様々な論理回路などを新たに配置してもよい。
The arrangement and number of each transistor are not limited to FIG. 1 as long as they operate in the same manner as in FIG. As can be seen from FIGS. 3 and 4 explaining the operation of the flip-flop of FIG. 1, in the present embodiment, the set period, the selection period, the reset period, the first non-selection period, and the second non-selection period are set. It suffices if conduction is established as shown by the solid lines shown in FIGS. 3 (A) to 3 (C), 4 (D), and 4 (E), respectively. Therefore, if a transistor or the like can be arranged and operated so as to satisfy this, a transistor, other elements (resistor element, capacitive element, etc.), diode, switch, various logic circuits, etc. are newly arranged. May be good.

例えば、ノード142の電位は、第3のトランジスタ103をオンするか、第4のトラン
ジスタ104をオンするかによって、決定される。しかし、図10(A)に示すように、
第7の配線127と第8の配線128との間に、抵抗素子1011及び抵抗素子1012
を接続しても、図1(A)と同様の動作が可能である。図10(A)のフリップフロップ
は、トランジスタ数及び配線数を減らすことができるため、レイアウト面積の縮小、歩留
まりの向上などを図ることができる。
For example, the potential of the node 142 is determined by whether the third transistor 103 is turned on or the fourth transistor 104 is turned on. However, as shown in FIG. 10 (A),
Between the 7th wiring 127 and the 8th wiring 128, the resistance element 1011 and the resistance element 1012
The same operation as in FIG. 1 (A) is possible even if the above is connected. Since the flip-flop of FIG. 10A can reduce the number of transistors and the number of wirings, it is possible to reduce the layout area and improve the yield.

さらに、図10(B)に示すように、第7の配線127とノード142との間に抵抗素子
1011の代わりにダイオード接続のトランジスタ1021及びダイオード接続のトラン
ジスタ1022を配置し、第8の配線128とノード142との間に抵抗素子1012の
代わりにダイオード接続のトランジスタ1023及びダイオード接続のトランジスタ10
24を配置してもよい。第7の配線127には、トランジスタ1021の第1の電極、ト
ランジスタ1021のゲート電極及びトランジスタ1022の第1の電極が接続され、第
8の配線128にはトランジスタ1023の第1の電極、トランジスタ1024の第1の
電極及びトランジスタ1024のゲート電極が接続され、ノード142にはトランジスタ
1021の第2の電極、トランジスタ1022の第2の電極、トランジスタ1022のゲ
ート電極、トランジスタ1023の第2の電極、トランジスタ1023のゲート電極及び
トランジスタ1024の第2の電極が接続される。つまり、第7の配線127とノード1
42との間、及び第8の配線128とノード142との間に、それぞれ2つのダイオード
が逆向きに、かつ、並列に接続される。
Further, as shown in FIG. 10B, a diode-connected transistor 1021 and a diode-connected transistor 1022 are arranged between the seventh wiring 127 and the node 142 in place of the resistance element 1011, and the eighth wiring 128 is provided. And the diode-connected transistor 1023 and the diode-connected transistor 10 instead of the resistance element 1012 between the and the node 142.
24 may be arranged. The first electrode of the transistor 1021, the gate electrode of the transistor 1021, and the first electrode of the transistor 1022 are connected to the seventh wiring 127, and the first electrode of the transistor 1023 and the transistor 1024 are connected to the eighth wiring 128. The first electrode of the transistor and the gate electrode of the transistor 1024 are connected, and the second electrode of the transistor 1021, the second electrode of the transistor 1022, the gate electrode of the transistor 1022, the second electrode of the transistor 1023, and the transistor are connected to the node 142. The gate electrode of 1023 and the second electrode of the transistor 1024 are connected. That is, the seventh wiring 127 and the node 1
Two diodes are connected in reverse and in parallel, respectively, between the 42 and the eighth wire 128 and the node 142.

なお、図1と同様の動作を行うものであれば、本実施の形態のフリップフロップの駆動タ
イミングは、図2のタイミングチャートに限定されない。
The flip-flop drive timing of the present embodiment is not limited to the timing chart of FIG. 2 as long as the operation is the same as that of FIG.

例えば、図6のタイミングチャートに示すように、第1の配線121、第2の配線122
、第5の配線125、第7の配線127、第8の配線128にH信号を入力する期間を短
くしてもよい。図6は、図2のタイミングチャートと比較して、信号がLレベルからHレ
ベルに切り替わるタイミングが期間Ta1だけ遅延し、信号がHレベルからLレベルに切
り替わるタイミングが期間Ta2だけ早くなっている。したがって、図6のタイミングチ
ャートを適用したフリップフロップは、各配線の瞬間電流が小さくなるため、省電力化、
誤動作の抑制、動作する条件の範囲の向上などを図ることができる。さらに、図6のタイ
ミングチャートを適用したフリップフロップは、リセット期間において、第3の配線12
3から出力される信号の立ち下がり時間を短くできる。なぜなら、ノード141の電位が
Lレベルとなるタイミングが期間Ta1+期間Ta2だけ遅延するので、第5の配線12
5に入力されているL信号が電流能力の大きい(チャネル幅が大きい)第1のトランジス
タ101を介して第3の配線123に供給されるからである。なお、図2のタイミングチ
ャートと共通するところは共通の符号を用いてその説明を省略する。
For example, as shown in the timing chart of FIG. 6, the first wiring 121 and the second wiring 122
, The period for inputting the H signal to the fifth wiring 125, the seventh wiring 127, and the eighth wiring 128 may be shortened. In FIG. 6, as compared with the timing chart of FIG. 2, the timing at which the signal switches from the L level to the H level is delayed by the period Ta1, and the timing at which the signal switches from the H level to the L level is earlier by the period Ta2. Therefore, in the flip-flop to which the timing chart of FIG. 6 is applied, the instantaneous current of each wiring becomes small, so that the power can be saved.
It is possible to suppress malfunctions and improve the range of operating conditions. Further, the flip-flop to which the timing chart of FIG. 6 is applied has a third wiring 12 during the reset period.
The fall time of the signal output from 3 can be shortened. This is because the timing at which the potential of the node 141 reaches the L level is delayed by the period Ta1 + the period Ta2, so that the fifth wiring 12
This is because the L signal input to No. 5 is supplied to the third wiring 123 via the first transistor 101 having a large current capacity (large channel width). It should be noted that the common reference numerals are used for the parts common to the timing chart of FIG. 2, and the description thereof will be omitted.

なお、期間Ta1、期間Ta2及び期間Tbの関係は、((Ta1+Tb)/(Ta1+
Ta2+Tb))×100<10[%]とすることが望ましい。より望ましくは、((T
a1+Tb)/(Ta1+Ta2+Tb))×100<5[%]とすることが望ましい。
さらに、期間Ta1≒期間Ta2とすることが望ましい。
The relationship between the period Ta1, the period Ta2, and the period Tb is ((Ta1 + Tb) / (Ta1 +).
Ta2 + Tb))) × 100 <10 [%] is desirable. More preferably, ((T
It is desirable that a1 + Tb) / (Ta1 + Ta2 + Tb)) × 100 <5 [%].
Further, it is desirable that the period Ta1 ≈ the period Ta2.

なお、図1と同様の動作を行うものであれば、第1の配線121~第13の配線131は
自由に接続することができる。例えば、図7(A)に示すように、第2のトランジスタ1
02の第1の電極、第4のトランジスタ104の第1の電極、第6のトランジスタ106
の第1の電極、第7のトランジスタ107の第1の電極及び第8のトランジスタ108の
第1の電極が第7の配線707に接続されてもよい。さらに、第5のトランジスタ105
の第1の電極及び第3のトランジスタ103の第1の電極が第6の配線706に接続され
てもよい。さらに、第1のトランジスタ101の第1の電極及び第3のトランジスタ10
3のゲート電極が第4の配線704に接続されてもよい。ただし、図7(B)に示すよう
に、第1のトランジスタ101の第1の電極が第8の配線708に接続されてもよい。さ
らに、図8(A)に示すように、第3のトランジスタ103の第1の電極が第9の配線7
09に接続されてもよい。さらに、図8(B)に示すように、第4のトランジスタ104
の第1の電極が第10の配線710に接続されてもよい。なお、図1の構成と共通すると
ころは共通の符号を用いてその説明を省略する。
The first wiring 121 to the thirteenth wiring 131 can be freely connected as long as the same operation as in FIG. 1 is performed. For example, as shown in FIG. 7A, the second transistor 1
The first electrode of 02, the first electrode of the fourth transistor 104, the sixth transistor 106
The first electrode of the seventh transistor 107, the first electrode of the seventh transistor 107, and the first electrode of the eighth transistor 108 may be connected to the seventh wiring 707. Further, the fifth transistor 105
The first electrode of the third transistor 103 and the first electrode of the third transistor 103 may be connected to the sixth wiring 706. Further, the first electrode of the first transistor 101 and the third transistor 10
The gate electrode of 3 may be connected to the 4th wiring 704. However, as shown in FIG. 7B, the first electrode of the first transistor 101 may be connected to the eighth wiring 708. Further, as shown in FIG. 8A, the first electrode of the third transistor 103 is the ninth wiring 7.
It may be connected to 09. Further, as shown in FIG. 8B, the fourth transistor 104
The first electrode of the above may be connected to the tenth wiring 710. It should be noted that the common reference numerals are used for the parts common to the configuration of FIG. 1, and the description thereof will be omitted.

図7(A)のフリップフロップは、配線数を削減できるため、歩留まりの向上、レイアウ
ト面積の縮小、信頼性の向上、又は動作する条件の範囲の向上を図ることができる。さら
に、図7(B)のフリップフロップは、第3のトランジスタ103に印加する電位を小さ
くし、逆バイアスを印加できるので第3のトランジスタ103のしきい値電圧のシフトを
さらに抑制できる。さらに、図8(A)のフリップフロップは、第9の配線709に供給
する電位を小さくできるため、第7のトランジスタ107のしきい値電圧のシフトをさら
に抑制できる。さらに、図8(B)のフリップフロップは、第3のトランジスタ103及
び第4のトランジスタ104に流れる電流が他のトランジスタの動作にしないようにでき
るため、動作する条件の範囲の向上を図ることができる。
Since the flip-flop of FIG. 7A can reduce the number of wirings, it is possible to improve the yield, reduce the layout area, improve the reliability, or improve the range of operating conditions. Further, the flip-flop of FIG. 7B can reduce the potential applied to the third transistor 103 and apply a reverse bias, so that the shift of the threshold voltage of the third transistor 103 can be further suppressed. Further, since the flip-flop of FIG. 8A can reduce the potential supplied to the ninth wiring 709, the shift of the threshold voltage of the seventh transistor 107 can be further suppressed. Further, since the flip-flop of FIG. 8B can prevent the current flowing through the third transistor 103 and the fourth transistor 104 from operating the other transistors, it is possible to improve the range of operating conditions. can.

図7(A)に示したフリップフロップの上面図の一例を図29に示す。導電層2901は
、第1のトランジスタ101の第1の電極として機能する部分を含み、配線2951を介
して第4の配線704に接続される。導電層2902は、第1のトランジスタ101の第
2の電極としての機能を含み、配線2952を介して第3の配線703に接続される。導
電層2903は、第1のトランジスタ101のゲート電極、及び第8のトランジスタ10
8のゲート電極としての機能を含む。導電層2904は、第2のトランジスタ102の第
2の電極として機能する部分を含み、配線2952を介して第3の配線703に接続され
る。導電層2905は、第2のトランジスタ102の第1の電極、第4のトランジスタ1
04の第1の電極、及び第8のトランジスタ108の第1の電極としての機能を含み、第
7の配線707と接続される。導電層2906は第2のトランジスタ102のゲート電極
、及び第4のトランジスタ104のゲート電極としての機能を含み、配線2953を介し
て第5の配線705と接続される。導電層2907は、第3のトランジスタ103の第1
の電極としての機能を含み、配線2954を介して第6の配線706と接続される。導電
層2908は、第3のトランジスタ103の第2の電極、第4のトランジスタ104の第
2の電極、及び第8のトランジスタ108の第2の電極としての機能を含む。導電層29
09は、第3のトランジスタ103のゲート電極としての機能を含み、配線2955を介
して第4の配線704と接続される。導電層2910は、第5のトランジスタ105の第
1の電極としての機能を含み、配線2956を介して第6の配線706と接続される。導
電層2911は、第5のトランジスタ105の第2の電極、第7のトランジスタ107の
第2の電極としての機能を含み、配線2957を介して導電層2903と接続される。導
電層2912は、第5のトランジスタ105のゲート電極としての機能を含み、配線29
58を介して第1の配線701に接続される。導電層2913は、第6のトランジスタ1
06の第2の電極としての機能を含み、配線2595を介して導電層2903と接続され
る。導電層2914は、第6のトランジスタ106のゲート電極としての機能を含み、配
線2954を介して導電層2908と接続される。導電層2915は、第7のトランジス
タ107の第2の電極としての機能を含み、配線707と接続される。導電層2916は
、第7のトランジスタ107のゲート電極としての機能を含み、配線2960を介して第
2の配線702と接続される。
FIG. 29 shows an example of a top view of the flip-flop shown in FIG. 7 (A). The conductive layer 2901 includes a portion that functions as a first electrode of the first transistor 101, and is connected to the fourth wiring 704 via the wiring 2951. The conductive layer 2902 includes a function as a second electrode of the first transistor 101, and is connected to the third wiring 703 via the wiring 2952. The conductive layer 2903 includes the gate electrode of the first transistor 101 and the eighth transistor 10.
8 includes a function as a gate electrode. The conductive layer 2904 includes a portion that functions as a second electrode of the second transistor 102, and is connected to the third wiring 703 via the wiring 2952. The conductive layer 2905 is a first electrode of the second transistor 102 and a fourth transistor 1
It includes the function as the first electrode of 04 and the first electrode of the eighth transistor 108, and is connected to the seventh wiring 707. The conductive layer 2906 includes a function as a gate electrode of the second transistor 102 and a gate electrode of the fourth transistor 104, and is connected to the fifth wiring 705 via the wiring 2953. The conductive layer 2907 is the first of the third transistor 103.
Including the function as an electrode of the above, it is connected to the sixth wiring 706 via the wiring 2954. The conductive layer 2908 includes functions as a second electrode of the third transistor 103, a second electrode of the fourth transistor 104, and a second electrode of the eighth transistor 108. Conductive layer 29
09 includes a function as a gate electrode of the third transistor 103, and is connected to the fourth wiring 704 via the wiring 2955. The conductive layer 2910 includes a function as a first electrode of the fifth transistor 105, and is connected to the sixth wiring 706 via the wiring 2956. The conductive layer 2911 includes a function as a second electrode of the fifth transistor 105 and a second electrode of the seventh transistor 107, and is connected to the conductive layer 2903 via the wiring 2957. The conductive layer 2912 includes a function as a gate electrode of the fifth transistor 105, and the wiring 29
It is connected to the first wiring 701 via 58. The conductive layer 2913 is the sixth transistor 1
It includes a function as a second electrode of 06 and is connected to the conductive layer 2903 via wiring 2595. The conductive layer 2914 includes a function as a gate electrode of the sixth transistor 106, and is connected to the conductive layer 2908 via the wiring 2954. The conductive layer 2915 includes a function as a second electrode of the seventh transistor 107 and is connected to the wiring 707. The conductive layer 2916 includes a function as a gate electrode of the seventh transistor 107, and is connected to the second wiring 702 via the wiring 2960.

なお、第1のトランジスタ101のゲート電極、第1の電極及び第2の電極として機能す
る部分は、それぞれを含む導電層と半導体層2981とが重なって形成される部分である
。第2のトランジスタ102のゲート電極、第1の電極及び第2の電極として機能する部
分は、それぞれを含む導電層と半導体層2982とが重なって形成される部分である。第
3のトランジスタ103のゲート電極、第1の電極及び第2の電極として機能する部分は
、それぞれを含む導電層と半導体層2983とが重なって形成される部分である。第4の
トランジスタ104のゲート電極、第1の電極及び第2の電極として機能する部分は、そ
れぞれを含む導電層と半導体層2984とが重なって形成される部分である。第5のトラ
ンジスタ105のゲート電極、第1の電極及び第2の電極として機能する部分は、それぞ
れを含む導電層と半導体層2985とが重なって形成される部分である。第6のトランジ
スタ106のゲート電極、第1の電極及び第2の電極として機能する部分は、それぞれを
含む導電層と半導体層2986とが重なって形成される部分である。第7のトランジスタ
107のゲート電極、第1の電極及び第2の電極として機能する部分は、それぞれを含む
導電層と半導体層2987とが重なって形成される部分である。第8のトランジスタ10
8のゲート電極、第1の電極及び第2の電極として機能する部分は、それぞれを含む導電
層と半導体層2988とが重なって形成される部分である。
The portion of the first transistor 101 that functions as the gate electrode, the first electrode, and the second electrode is a portion formed by overlapping the conductive layer including each and the semiconductor layer 2981. The portion of the second transistor 102 that functions as the gate electrode, the first electrode, and the second electrode is a portion formed by overlapping the conductive layer including each and the semiconductor layer 2982. The portion of the third transistor 103 that functions as the gate electrode, the first electrode, and the second electrode is a portion formed by overlapping the conductive layer including each and the semiconductor layer 2983. The portion of the fourth transistor 104 that functions as the gate electrode, the first electrode, and the second electrode is a portion formed by overlapping the conductive layer including each and the semiconductor layer 2984. The portion of the fifth transistor 105 that functions as the gate electrode, the first electrode, and the second electrode is a portion formed by overlapping the conductive layer including each and the semiconductor layer 2985. The portion of the sixth transistor 106 that functions as the gate electrode, the first electrode, and the second electrode is a portion formed by overlapping the conductive layer including each and the semiconductor layer 2896. The portion of the seventh transistor 107 that functions as the gate electrode, the first electrode, and the second electrode is a portion formed by overlapping the conductive layer including each and the semiconductor layer 2987. Eighth transistor 10
The portion functioning as the gate electrode, the first electrode, and the second electrode of No. 8 is a portion formed by overlapping the conductive layer including each and the semiconductor layer 2988.

続いて、上述した本実施の形態のフリップフロップを有するシフトレジスタの構成及び駆
動方法について説明する。
Subsequently, the configuration and driving method of the shift register having the flip-flop of the present embodiment described above will be described.

本実施の形態のシフトレジスタの構成について図11を参照して説明する。図11のシフ
トレジスタは、n個のフリップフロップ(フリップフロップ1101_1~フリップフロ
ップ1101_n)を有する。
The configuration of the shift register of this embodiment will be described with reference to FIG. The shift register of FIG. 11 has n flip-flops (flip-flops 1101-1 to 1101_n).

図11のシフトレジスタの接続関係について説明する。図11のシフトレジスタは、i段
目のフリップフロップ1101_i(フリップフロップ1101_1~1101_nのう
ちいずれか一)は、図1(A)に示した第1の配線121が第7の配線1117_i-1
に接続され、図1(A)に示した第2の配線122が第7の配線1117_i+1に接続
され、図1(A)に示した第3の配線123が第7の配線1117_iに接続され、図1
(A)に示した第4の配線124、第10の配線130、第11の配線131、第12の
配線132及び第13の配線133が第5の配線1115に接続され、図1(A)に示し
た第5の配線125及び第7の配線127が奇数段目のフリップフロップでは第2の配線
1112に接続され、偶数段目のフリップフロップでは第3の配線1113に接続され、
図1(A)に示した第8の配線128が奇数段目のフリップフロップでは第3の配線11
13に接続され、偶数段目のフリップフロップでは第2の配線1112に接続され、図1
(A)に示した第6の配線126及び第9の配線129が第4の配線1114に接続され
る。ただし、1段目のフリップフリップ1101_1の図1(A)に示す第1の配線12
1は第1の配線1111に接続され、n段目のフリップフロップ1101_nの図1(A
)に示す第2の配線122は第6の配線1116に接続される。
The connection relationship of the shift register of FIG. 11 will be described. In the shift register of FIG. 11, in the flip-flop 1101_i of the i-th stage (any one of the flip-flops 1101-1_1 to 1101_n), the first wiring 121 shown in FIG. 1A is the seventh wiring 1117_i-1.
The second wiring 122 shown in FIG. 1A is connected to the seventh wiring 1117_i + 1, and the third wiring 123 shown in FIG. 1A is connected to the seventh wiring 1117_i. Figure 1
The fourth wiring 124, the tenth wiring 130, the eleventh wiring 131, the twelfth wiring 132, and the thirteenth wiring 133 shown in (A) are connected to the fifth wiring 1115, and FIG. 1A is shown. The fifth wiring 125 and the seventh wiring 127 shown in the above are connected to the second wiring 1112 in the odd-stage flip flop and to the third wiring 1113 in the even-stage flip flop.
In the flip-flop in which the eighth wiring 128 shown in FIG. 1A is an odd-numbered flip-flop, the third wiring 11
It is connected to 13, and in the even-numbered flip-flop, it is connected to the second wiring 1112, and FIG.
The sixth wiring 126 and the ninth wiring 129 shown in (A) are connected to the fourth wiring 1114. However, the first wiring 12 shown in FIG. 1 (A) of the first-stage flip flip 1101_1
1 is connected to the first wiring 1111 and is shown in FIG. 1 (A) of the nth stage flip-flop 1101_n.
The second wiring 122 shown in) is connected to the sixth wiring 1116.

なお、第1の配線1111、第2の配線1112、第3の配線1113、第6の配線11
16を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでも
よい。さらに、第4の配線1114、第5の配線1115を、それぞれ第1の電源線、第
2の電源線と呼んでもよい。
The first wiring 1111, the second wiring 1112, the third wiring 1113, and the sixth wiring 11
16 may be referred to as a first signal line, a second signal line, a third signal line, and a fourth signal line, respectively. Further, the fourth wiring 1114 and the fifth wiring 1115 may be referred to as a first power line and a second power line, respectively.

次に、図11に示したシフトレジスタの動作について、図12のタイミングチャート及び
図13のタイミングチャートを参照して説明する。ここで、図12のタイミングチャート
は、走査期間と帰線期間とに分割されている。走査期間は、第7の配線1117_1から
の選択信号の出力が開始されて第7の配線1117_nからの選択信号の出力が終了する
までの期間である。帰線期間は、第7の配線1117_nからの選択信号の出力が終了し
て第7の配線1117_1からの選択信号の出力が開始されるまでの期間である。
Next, the operation of the shift register shown in FIG. 11 will be described with reference to the timing chart of FIG. 12 and the timing chart of FIG. Here, the timing chart of FIG. 12 is divided into a scanning period and a return period. The scanning period is a period from the start of the output of the selection signal from the 7th wiring 1117_1 to the end of the output of the selection signal from the 7th wiring 1117_n. The return line period is a period from the end of the output of the selection signal from the 7th wiring 1117_n to the start of the output of the selection signal from the 7th wiring 1117_1.

なお、第4の配線1114にはV1の電位が供給され、第5の配線1115にはV2の電
位が供給される。
The potential of V1 is supplied to the fourth wiring 1114, and the potential of V2 is supplied to the fifth wiring 1115.

なお、第1の配線1111、第2の配線1112、第3の配線1113、第6の配線11
16には、それぞれ図12に示す信号1211、信号1212、信号1213、信号12
16が入力される。ここで、信号1211、信号1212、信号1213、信号1216
は、H信号の電位がV1(以下、Hレベルともいう)、L信号の電位がV2(以下、Lレ
ベルともいう)のデジタル信号である。さらに、信号1211、信号1212、信号12
13、信号1216を、それぞれスタート信号、第1のクロック信号、第2のクロック信
号(反転クロック信号)、リセット信号と呼んでもよい。
The first wiring 1111, the second wiring 1112, the third wiring 1113, and the sixth wiring 11
16 is the signal 1211, the signal 1212, the signal 1213, and the signal 12 shown in FIG. 12, respectively.
16 is input. Here, signal 1211, signal 1212, signal 1213, signal 1216
Is a digital signal in which the potential of the H signal is V1 (hereinafter, also referred to as H level) and the potential of the L signal is V2 (hereinafter, also referred to as L level). Further, signal 1211, signal 1212, signal 12
13. The signal 1216 may be referred to as a start signal, a first clock signal, a second clock signal (inverted clock signal), and a reset signal, respectively.

ただし、第1の配線1111~第6の配線1116にはそれぞれ様々な信号、電位及び電
流が入力されてもよい。
However, various signals, potentials, and currents may be input to the first wiring 1111 to the sixth wiring 1116, respectively.

なお、第7の配線1117_1~第7の配線1117_nからは、それぞれH信号の電位
がV1(以下、Hレベルともいう)、L信号の電位がV2(以下、Lレベルともいう)の
デジタル信号が出力される。ただし、図14に示すように、第7の配線1117_1~第
7の配線1117_nからそれぞれバッファ1401_1~バッファ1401_nを介し
て信号が出力され、シフトレジスタの出力信号と各フリップフロップの転送信号とを分割
できるので、動作する条件の範囲を大きくすることができる。
From the 7th wiring 1117_1 to the 7th wiring 1117_n, a digital signal having an H signal potential of V1 (hereinafter, also referred to as H level) and an L signal potential of V2 (hereinafter, also referred to as L level) is emitted. It is output. However, as shown in FIG. 14, signals are output from the seventh wiring 1117_1 to the seventh wiring 1117_n via the buffers 1401_1 to 1401_n, respectively, and the output signal of the shift register and the transfer signal of each flip-flop are separated. Therefore, the range of operating conditions can be increased.

ここで、図14に示すシフトレジスタが有するバッファ1401_1~バッファ1401
_nの一例について図15(A)及び図15(B)を参照して説明する。図15(A)に
示すバッファ8000は、配線8011と配線8012と間にインバータ8001a、イ
ンバータ8001b、インバータ8001cが接続されることで、配線8011に入力さ
れる信号の反転信号が配線8012から出力される。ただし、配線8011と配線801
2と間に接続されるインバータの数に限定はなく、例えば配線8011と配線8012と
間に偶数個のインバータが接続される場合は、配線8011に入力される信号と同じ極性
の信号が配線8012から出力される。さらに、図15(B)のバッファ8100に示す
ように、直列に接続されたインバータ8002a、インバータ8002b及びインバータ
8002cと、直列に配置されたインバータ8003a、インバータ8003b及びイン
バータ8003cとが並列に接続されてもよい。図15(B)のバッファ8100は、ト
ランジスタの特性のバラツキを平均化できるため、配線8012から出力される信号の遅
延及びなまりを低減できる。さらに、インバータ8002a及びインバータ8002aの
出力、並びにインバータ8002b及びインバータ8002bの出力は、接続されてもよ
い。
Here, the buffer 1401_1 to the buffer 1401 included in the shift register shown in FIG. 14
An example of _n will be described with reference to FIGS. 15 (A) and 15 (B). In the buffer 8000 shown in FIG. 15A, the inverter 8001a, the inverter 8001b, and the inverter 8001c are connected between the wiring 8011 and the wiring 8012, so that the inverting signal of the signal input to the wiring 8011 is output from the wiring 8012. To. However, wiring 8011 and wiring 801
The number of inverters connected between 2 and 2 is not limited. For example, when an even number of inverters are connected between wiring 8011 and wiring 8012, a signal having the same polarity as the signal input to wiring 8011 is wired 8012. Is output from. Further, as shown in the buffer 8100 of FIG. 15B, the inverters 8002a, 8002b and 8002c connected in series and the inverters 8003a, 8003b and 8003c arranged in series are connected in parallel. It is also good. Since the buffer 8100 of FIG. 15B can average the variation in the characteristics of the transistor, the delay and bluntness of the signal output from the wiring 8012 can be reduced. Further, the outputs of the inverter 8002a and the inverter 8002a, and the outputs of the inverter 8002b and the inverter 8002b may be connected.

なお、図15(A)において、インバータ8001aが有するトランジスタのW<インバ
ータ8001bが有するトランジスタのW<インバータ8001cが有するトランジスタ
のWとすることが好ましい。なぜなら、インバータ8001aのWが小さいことで、フリ
ップフロップの駆動能力(具体的には図1のトランジスタ101のW/Lの値)を小さく
できるので、本発明のシフトレジスタは、レイアウト面積を小さくできる。同様に、図1
5(B)において、インバータ8002aが有するトランジスタのW<インバータ800
2bが有するトランジスタのW<インバータ8002cが有するトランジスタのWとする
ことが好ましい。同様に、図15(B)において、インバータ8003aが有するトラン
ジスタのW<インバータ8003bが有するトランジスタのW<インバータ8003cが
有するトランジスタのWとすることが好ましい。さらに、インバータ8002aが有する
トランジスタのW=インバータ8003aが有するトランジスタのW、インバータ800
2bが有するトランジスタのW=インバータ8003bが有するトランジスタのW、イン
バータ8002cが有するトランジスタのW=インバータ8003cが有するトランジス
タのWとすることが好ましい。
In FIG. 15A, it is preferable that the transistor W of the inverter 8001a <W of the transistor of the inverter 8001b <W of the transistor of the inverter 8001c. This is because the W of the inverter 8001a is small, so that the drive capability of the flip-flop (specifically, the value of W / L of the transistor 101 in FIG. 1) can be reduced, so that the shift register of the present invention can reduce the layout area. .. Similarly, FIG.
In 5 (B), the transistor W <inverter 800 of the inverter 8002a has.
It is preferable that W of the transistor possessed by 2b <W of the transistor possessed by the inverter 8002c. Similarly, in FIG. 15B, it is preferable that the transistor W of the inverter 8003a <W of the transistor of the inverter 8003b <W of the transistor of the inverter 8003c. Further, the transistor W of the inverter 8002a = the transistor W of the inverter 8003a, the inverter 800.
It is preferable that W of the transistor included in 2b = W of the transistor possessed by the inverter 8003b, W of the transistor possessed by the inverter 8002c = W of the transistor possessed by the inverter 8003c.

なお、図15(A)及び図15(B)に示すインバータとしては、入力された信号を反転
して出力できるものであれば特に限定されない。例えば、図15(C)に示すように、第
1のトランジスタ8201及び第2のトランジスタ8202によってインバータを構成し
てもよい。さらに、第1の配線には信号が入力され、第2の配線8212からは信号が出
力され、第3の配線8213にはV1が供給され、第4の配線8214にはV2が供給さ
れる。図15(C)のインバータは、第1の配線8211にH信号を入力すると、V1-
V2を第1のトランジスタ8201と第2のトランジスタ8202で分割した電位(第1
のトランジスタ8201のW/L<第2のトランジスタ8202のW/L)を、第2の配
線8212から出力する。さらに、図15(C)のインバータは、第1の配線8211に
L信号を入力すると、V1-Vth8201(Vth8201:第1のトランジスタ82
01のしきい値電圧)を第2の配線8212から出力する。さらに、第1のトランジスタ
8201は抵抗成分を有する素子であればPN接合ダイオードでもよいし、単に抵抗素子
としてもよい。
The inverters shown in FIGS. 15A and 15B are not particularly limited as long as they can invert the input signal and output the inverter. For example, as shown in FIG. 15C, the inverter may be configured by the first transistor 8201 and the second transistor 8202. Further, a signal is input to the first wiring, a signal is output from the second wiring 8212, V1 is supplied to the third wiring 8213, and V2 is supplied to the fourth wiring 8214. In the inverter of FIG. 15C, when an H signal is input to the first wiring 8211, V1-
The potential of V2 divided by the first transistor 8201 and the second transistor 8202 (first)
W / L of the transistor 8201 <W / L of the second transistor 8202) is output from the second wiring 8212. Further, in the inverter of FIG. 15C, when the L signal is input to the first wiring 8211, V1-Vth8201 (Vth8201: first transistor 82)
The threshold voltage of 01) is output from the second wiring 8212. Further, the first transistor 8201 may be a PN junction diode as long as it is an element having a resistance component, or may be simply a resistance element.

さらに、図15(D)に示すように、第1のトランジスタ8301、第2のトランジスタ
8302、第3のトランジスタ8303及び第4のトランジスタ8304によってインバ
ータを構成してもよい。さらに、第1の配線8311には信号が入力され、第2の配線8
312からは信号が出力され、第3の配線8313及び第5の配線8315にはV1が供
給され、第4の配線8314及び第6の配線8316にはV2が供給される。図15(D
)のインバータは、第1の配線8311にH信号を入力すると、V2を第2の配線831
2から出力する。このとき、ノード8341は電位をLレベルとするため第1のトランジ
スタ8301はオフする。さらに、図15(D)のインバータは、第1の配線8311に
L信号を入力すると、V1を第2の配線8312から出力する。このとき、ノード834
1の電位がV1-Vth8303(Vth8303:第3のトランジスタ8303のしき
い値電圧)となると、ノード8341が浮遊状態となり、ノード8341の電位がブート
ストラップ動作によってV1+Vth8301(Vth8301:第1のトランジスタ8
301のしきい値電圧)よりも高くなるので、第1のトランジスタ8301はオンする。
さらに、第1のトランジスタ8301はブートストラップ用トランジスタとして機能する
ため、第2の電極とゲート電極との間に容量素子が配置されてもよい。
Further, as shown in FIG. 15D, the inverter may be configured by the first transistor 8301, the second transistor 8302, the third transistor 8303, and the fourth transistor 8304. Further, a signal is input to the first wiring 8311, and the second wiring 8
A signal is output from 312, V1 is supplied to the third wiring 8313 and the fifth wiring 8315, and V2 is supplied to the fourth wiring 8314 and the sixth wiring 8316. FIG. 15 (D
) Inverter inputs V2 to the second wiring 831 when the H signal is input to the first wiring 8311.
Output from 2. At this time, since the node 8341 sets the potential to the L level, the first transistor 8301 is turned off. Further, when the L signal is input to the first wiring 8311, the inverter of FIG. 15D outputs V1 from the second wiring 8312. At this time, node 834
When the potential of 1 becomes V1-Vth8303 (Vth8303: the threshold voltage of the third transistor 8303), the node 8341 becomes a floating state, and the potential of the node 8341 becomes V1 + Vth8301 (Vth8301: the first transistor 8) by the bootstrap operation.
Since it is higher than the threshold voltage of 301), the first transistor 8301 is turned on.
Further, since the first transistor 8301 functions as a bootstrap transistor, a capacitive element may be arranged between the second electrode and the gate electrode.

さらに、図16(A)に示すように、第1のトランジスタ8401、第2のトランジスタ
8402、第3のトランジスタ8403及び第4のトランジスタ8404によってインバ
ータを構成してもよい。図16(A)のインバータは、2入力型のインバータであり、ブ
ートストラップ動作が可能である。さらに、第1の配線8411には信号が入力され、第
2の配線8412には反転信号が入力され、第3の配線8413からは信号が出力され、
第4の配線8414及び第6の配線8416にはV1が供給され、第5の配線8415及
び第7の配線8417にはV2が供給される。図16(A)のインバータは、第1の配線
8411にL信号、第2の配線8412にH信号を入力すると、V2を第3の配線841
3から出力する。このとき、ノード8441の電位はV2となるため、第1のトランジス
タ8401はオフする。さらに、図16(A)のインバータは、第1の配線8411にH
信号、第2の配線8412にL信号を入力すると、V1を第3の配線8413から出力す
る。このとき、ノード8441の電位がV1-Vth8403(Vth8403:第3の
トランジスタ8403のしきい値電圧)となると、ノード8441が浮遊状態となり、ノ
ード8441の電位がブートストラップ動作によってV1+Vth8401(Vth84
01:第1のトランジスタ8401のしきい値電圧)よりも高くなるので、第1のトラン
ジスタ8401はオンする。さらに、第1のトランジスタ8401はブートストラップ用
トランジスタとして機能するため、第2の電極とゲート電極との間に容量素子が配置され
てもよい。さらに、第1の配線8411及び第2の配線8412のうち一方には、図1(
A)に示す第3の配線123を接続し、他方には図1(A)に示すノード142を接続す
るとよい。
Further, as shown in FIG. 16A, the inverter may be configured by the first transistor 8401, the second transistor 8402, the third transistor 8403 and the fourth transistor 8404. The inverter of FIG. 16A is a two-input type inverter and can operate as a bootstrap. Further, a signal is input to the first wiring 8411, an inverted signal is input to the second wiring 8412, and a signal is output from the third wiring 8413.
V1 is supplied to the fourth wiring 8414 and the sixth wiring 8416, and V2 is supplied to the fifth wiring 8415 and the seventh wiring 8417. In the inverter of FIG. 16A, when an L signal is input to the first wiring 8411 and an H signal is input to the second wiring 8412, V2 is connected to the third wiring 841.
Output from 3. At this time, since the potential of the node 8441 becomes V2, the first transistor 8401 is turned off. Further, in the inverter of FIG. 16A, H is connected to the first wiring 8411.
When the signal and the L signal are input to the second wiring 8412, V1 is output from the third wiring 8413. At this time, when the potential of the node 8441 becomes V1-Vth8403 (Vth8403: the threshold voltage of the third transistor 8403), the node 8441 becomes a floating state, and the potential of the node 8441 becomes V1 + Vth8401 (Vth84) by the bootstrap operation.
01: Since it is higher than the threshold voltage of the first transistor 8401), the first transistor 8401 is turned on. Further, since the first transistor 8401 functions as a bootstrap transistor, a capacitive element may be arranged between the second electrode and the gate electrode. Further, in one of the first wiring 8411 and the second wiring 8412, FIG. 1 (
The third wiring 123 shown in A) may be connected, and the node 142 shown in FIG. 1A may be connected to the other.

さらに、図16(B)に示すように、第1のトランジスタ8501、第2のトランジスタ
8502及び第3のトランジスタ8503によって、インバータを構成してもよい。図1
6(B)のインバータは、2入力型のインバータであり、ブートストラップ動作が可能で
ある。さらに、第1の配線8511には信号が入力され、第2の配線8512には反転信
号が入力され、第3の配線8513からは信号が出力され、第4の配線8514及び第6
の配線8516にはV2が供給され、第5の配線8515にはV2が供給される。図16
(B)のインバータは、第1の配線8511にL信号、第2の配線8512にH信号を入
力すると、V2を第3の配線8513から出力する。このとき、ノード8541の電位は
V2となるため、第1のトランジスタ8501はオフする。さらに、図16(B)のイン
バータは、第1の配線8511にH信号、第2の配線8512にL信号を入力すると、V
1を第3の配線8513から出力する。このとき、ノード8541の電位がV1-Vth
8503(Vth8503:第3のトランジスタ8503のしきい値電圧)となると、ノ
ード8541が浮遊状態となり、ノード8541の電位がブートストラップ動作によって
V1+Vth8501(Vth8501:第1のトランジスタ8501のしきい値電圧)
よりも高くなるので、第1のトランジスタ8501はオンする。さらに、第1のトランジ
スタ8501はブートストラップ用トランジスタとして機能するため、第2の電極とゲー
ト電極との間に容量素子が配置されてもよい。さらに、第1の配線8511及び第2の配
線8512のうち一方には、図1(A)に示す第3の配線123を接続し、他方には図1
(A)に示すノード142を接続するとよい。
Further, as shown in FIG. 16B, the inverter may be configured by the first transistor 8501, the second transistor 8502, and the third transistor 8503. Figure 1
The inverter of 6 (B) is a 2-input type inverter and can operate as a bootstrap. Further, a signal is input to the first wiring 8511, an inverting signal is input to the second wiring 8512, a signal is output from the third wiring 8513, and the fourth wiring 8514 and the sixth wiring are output.
V2 is supplied to the wiring 8516 of the above, and V2 is supplied to the fifth wiring 8515. FIG. 16
When the L signal is input to the first wiring 8511 and the H signal is input to the second wiring 8512, the inverter (B) outputs V2 from the third wiring 8513. At this time, since the potential of the node 8541 becomes V2, the first transistor 8501 is turned off. Further, in the inverter of FIG. 16B, when an H signal is input to the first wiring 8511 and an L signal is input to the second wiring 8512, V
1 is output from the third wiring 8513. At this time, the potential of the node 8541 is V1-Vth.
When it becomes 8503 (Vth8503: threshold voltage of the third transistor 8503), the node 8541 becomes a floating state, and the potential of the node 8541 becomes V1 + Vth8501 (Vth8501: the threshold voltage of the first transistor 8501) due to the bootstrap operation.
The first transistor 8501 is turned on because it is higher than. Further, since the first transistor 8501 functions as a bootstrap transistor, a capacitive element may be arranged between the second electrode and the gate electrode. Further, the third wiring 123 shown in FIG. 1A is connected to one of the first wiring 8511 and the second wiring 8512, and the other is shown in FIG.
The node 142 shown in (A) may be connected.

さらに、図16(C)に示すように、第1のトランジスタ8601、第2のトランジスタ
8602、第3のトランジスタ8603及び第4のトランジスタ8604によってインバ
ータを構成してもよい。図16(C)のインバータは、2入力型のインバータであり、ブ
ートストラップ動作が可能である。さらに、第1の配線8611には信号が入力され、第
2の配線8612には反転信号が入力され、第3の配線8613からは信号が出力され、
第4の配線8614にはV1が供給され、第5の配線8615及び第6の配線8616に
はV2が供給される。図16(A)のインバータは、第1の配線8611にL信号、第2
の配線8612にH信号を入力すると、V2を第3の配線8613から出力する。このと
き、ノード8641の電位はV2となるため、第1のトランジスタ8601はオフする。
さらに、図16(C)のインバータは、第1の配線8611にH信号、第2の配線861
2にL信号を入力すると、V1を第3の配線8613から出力する。このとき、ノード8
641の電位がV1-Vth8603(Vth8603:第3のトランジスタ8603の
しきい値電圧)となると、ノード8641が浮遊状態となり、ノード8641の電位がブ
ートストラップ動作によってV1+Vth8601(Vth8601:第1のトランジス
タ8601のしきい値電圧)よりも高くなるので、第1のトランジスタ8601はオンす
る。さらに、第1のトランジスタ8601はブートストラップ用トランジスタとして機能
するため、第2の電極とゲート電極との間に容量素子が配置されてもよい。さらに、第1
の配線8611及び第2の配線8612のうち一方には、図1(A)に示す第3の配線1
23を接続し、他方には図1(A)に示すノード142を接続するとよい。
Further, as shown in FIG. 16C, the inverter may be configured by the first transistor 8601, the second transistor 8602, the third transistor 8603 and the fourth transistor 8604. The inverter shown in FIG. 16C is a two-input type inverter and can operate as a bootstrap. Further, a signal is input to the first wiring 8611, an inverted signal is input to the second wiring 8612, and a signal is output from the third wiring 8613.
V1 is supplied to the fourth wiring 8614, and V2 is supplied to the fifth wiring 8615 and the sixth wiring 8616. In the inverter of FIG. 16A, the L signal is connected to the first wiring 8611 and the second wiring is used.
When the H signal is input to the wiring 8612 of the above, V2 is output from the third wiring 8613. At this time, since the potential of the node 8641 becomes V2, the first transistor 8601 is turned off.
Further, in the inverter of FIG. 16C, the H signal is connected to the first wiring 8611 and the second wiring 861 is used.
When the L signal is input to 2, V1 is output from the third wiring 8613. At this time, node 8
When the potential of 641 becomes V1-Vth8603 (Vth8603: threshold voltage of the third transistor 8603), the node 8641 becomes a floating state, and the potential of the node 8641 becomes V1 + Vth8601 (Vth8601: the threshold voltage of the first transistor 8601) by the bootstrap operation. Since it is higher than the threshold voltage), the first transistor 8601 is turned on. Further, since the first transistor 8601 functions as a bootstrap transistor, a capacitive element may be arranged between the second electrode and the gate electrode. Furthermore, the first
In one of the wiring 8611 and the second wiring 8612, the third wiring 1 shown in FIG. 1 (A) is used.
23 may be connected, and the node 142 shown in FIG. 1 (A) may be connected to the other.

なお、フリップフロップ1101_iのスタート信号として第7の配線1117_i-1
から出力される信号を用い、リセット信号として第7の配線1117_i+1から出力さ
れる信号を用いる。ここで、フリップフロップ1101_1のスタート信号は第1の配線
1111から入力され、フリップフロップ1101_nのリセット信号は第6の配線11
16から入力される。ただし、フリップフロップ1101_nのリセット信号として、第
7の配線1117_1から出力される信号を用いてもよいし、第7の配線1117_2か
ら出力される信号を用いてもよい。あるいは、ダミーのフリップフロップを新たに配置し
て、ダミーのフリップフロップの出力信号を用いてもよい。こうすることで、配線数及び
信号数を減らすことができる。
The seventh wiring 1117_i-1 is used as a start signal for the flip-flop 1101_i.
The signal output from is used, and the signal output from the seventh wiring 1117_i + 1 is used as the reset signal. Here, the start signal of the flip-flop 1101_1 is input from the first wiring 1111, and the reset signal of the flip-flop 1101_n is the sixth wiring 11.
It is input from 16. However, as the reset signal of the flip-flop 1101_n, the signal output from the seventh wiring 1117_1 may be used, or the signal output from the seventh wiring 1117_2 may be used. Alternatively, a dummy flip-flop may be newly arranged and the output signal of the dummy flip-flop may be used. By doing so, the number of wires and the number of signals can be reduced.

図13に示すように、例えば、フリップフロップ1101_iが選択期間となると、第7
の配線1117_iからH信号(選択信号)が出力される。このとき、フリップフロップ
1101_i+1はセット期間となる。その後、フリップフロップ1101_iがリセッ
ト期間となって、第7の配線1117_iからL信号が出力される。このとき、フリップ
フロップ1101_i+1は選択期間となる。その後、フリップフロップ1101_iが
第1の非選択期間となって、第7の配線1117_iが浮遊となり電位をV2に維持する
。このとき、フリップフロップ1101_i+1はリセット期間となる。その後、フリッ
プフロップ1101_iが第2の非選択期間となって、第7の配線1117_iからL信
号が出力される。このとき、フリップフロップ1101_i+1は第1の非選択期間期間
となる。
As shown in FIG. 13, for example, when the flip-flop 1101_i becomes the selection period, the seventh
The H signal (selection signal) is output from the wiring 1117_i of. At this time, the flip-flop 1101_i + 1 is the set period. After that, the flip-flop 1101_i becomes the reset period, and the L signal is output from the seventh wiring 1117_i. At this time, the flip-flop 1101_i + 1 is the selection period. After that, the flip-flop 1101_i becomes the first non-selection period, the seventh wiring 1117_i becomes floating, and the potential is maintained at V2. At this time, the flip-flop 1101_i + 1 is the reset period. After that, the flip-flop 1101_i becomes the second non-selection period, and the L signal is output from the seventh wiring 1117_i. At this time, the flip-flop 1101_i + 1 becomes the first non-selection period period.

こうして、図11のシフトレジスタは、選択信号を第7の配線1117_1から順に第7
の配線1117_nまで出力できる。つまり、図11のシフトレジスタは、第7の配線1
117_1~第7の配線717_nを走査できる。
In this way, the shift register of FIG. 11 sends the selection signal to the seventh wiring 1117_1 in order from the seventh wiring 1117_1.
Wiring 1117_n can be output. That is, the shift register in FIG. 11 is the seventh wiring 1.
It is possible to scan 117_1 to the seventh wiring 717_n.

さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、トランジスタの
しきい値電圧のシフトを抑制できるので、長寿命化を図ることができる。さらに、本実施
の形態のフリップフロップを適用したシフトレジスタは、信頼性の向上を図ることができ
る。さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、誤動作の抑
制を図ることができる。
Further, the shift register to which the flip-flop of the present embodiment is applied can suppress the shift of the threshold voltage of the transistor, so that the life can be extended. Further, the shift register to which the flip-flop of the present embodiment is applied can improve the reliability. Further, the shift register to which the flip-flop of the present embodiment is applied can suppress malfunction.

さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、高速に動作でき
るので、より高精細な表示装置、又はより大型の表示装置に適用できる。さらに、本実施
の形態のフリップフロップを適用したシフトレジスタは、工程の簡略化を図ることができ
る。さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、製造コスト
の削減を図ることができる。さらに、本実施の形態のフリップフロップを適用したシフト
レジスタは、歩留まりの向上を図ることができる。
Further, since the shift register to which the flip-flop of the present embodiment is applied can operate at high speed, it can be applied to a higher-definition display device or a larger display device. Further, the shift register to which the flip-flop of the present embodiment is applied can simplify the process. Further, the shift register to which the flip-flop of the present embodiment is applied can reduce the manufacturing cost. Further, the shift register to which the flip-flop of the present embodiment is applied can improve the yield.

続いて、上述した本実施の形態のシフトレジスタを有する表示装置の構造及び駆動方法に
ついて説明する。ただし、本実施の形態の表示装置は、少なくとも本実施の形態のフリッ
プフロップを有していればよい。
Subsequently, the structure and driving method of the display device having the shift register of the present embodiment described above will be described. However, the display device of the present embodiment may have at least the flip-flop of the present embodiment.

本実施の形態の表示装置の構成について図17を参照して説明する。図17の表示装置は
、信号線駆動回路1701、走査線駆動回路1702及び画素部1704を有し、画素部
1704には、信号線駆動回路1701から列方向に伸張して配置された複数の信号線S
1~Sm、走査線駆動回路1702から行方向に伸張して配置された複数の走査線G1~
Gn及び信号線S1~Sm並びに走査線G1~Gnに対応してマトリクス状に配置された
複数の画素1703を有する。そして、各画素1703は、信号線Sj(信号線S1~S
mのうちいずれか一)、走査線Gi(走査線G1~Gnのうちいずれか一)と接続される
。さらに、走査線駆動回路1702を駆動回路と呼んでもよい。
The configuration of the display device of this embodiment will be described with reference to FIG. The display device of FIG. 17 has a signal line drive circuit 1701, a scan line drive circuit 1702, and a pixel unit 1704, and the pixel unit 1704 has a plurality of signals extended in the column direction from the signal line drive circuit 1701. Line S
1 to Sm, a plurality of scanning lines G1 to arranged extending in the row direction from the scanning line drive circuit 1702
It has a plurality of pixels 1703 arranged in a matrix corresponding to Gn, signal lines S1 to Sm, and scanning lines G1 to Gn. Then, each pixel 1703 has a signal line Sj (signal lines S1 to S).
It is connected to any one of m) and the scanning line Gi (any one of the scanning lines G1 to Gn). Further, the scanning line drive circuit 1702 may be referred to as a drive circuit.

なお、走査線駆動回路1702として、本実施の形態のシフトレジスタを適用することが
できる。もちろん、信号線駆動回路1701にも本実施の形態のシフトレジスタを用いて
もよい。
The shift register of the present embodiment can be applied as the scanning line drive circuit 1702. Of course, the shift register of the present embodiment may also be used for the signal line drive circuit 1701.

なお、走査線G1~Gnは、図11及び図14に示した第7の配線1117_1~第7の
配線1117_nに接続される。
The scanning lines G1 to Gn are connected to the seventh wiring 1117_1 to the seventh wiring 1117_n shown in FIGS. 11 and 14.

なお、信号線及び走査線は、単に配線と呼んでもよい。さらに、信号線駆動回路1701
及び走査線駆動回路1702は、それぞれを駆動回路と呼んでもよい。
The signal line and the scanning line may be simply referred to as wiring. Furthermore, the signal line drive circuit 1701
And the scanning line drive circuit 1702 may be referred to as a drive circuit, respectively.

なお、画素1703は、少なくとも1つのスイッチング素子、1つの容量素子及び画素電
極を有している。ただし、画素1703は、複数のスイッチング素子又は複数の容量素子
を有していてもよい。さらに、容量素子は必ずしも必要ではない。さらに、画素1703
は、さらに飽和領域で動作するトランジスタを有していてもよい。さらに、画素1703
は、液晶素子又はEL素子などの表示素子を有していてもよい。ここで、スイッチング素
子として、トランジスタ及びPN接合ダイオードを用いることができる。ただし、スイッ
チング素子としてトランジスタを用いる場合は、トランジスタが線形領域で動作すること
が望ましい。さらに、走査線駆動回路1702がNチャネル型のトランジスタのみで構成
される場合は、スイッチング素子としてNチャネル型トランジスタを用いることが望まし
い。さらに、走査線駆動回路1702がPチャネル型のトランジスタのみで構成される場
合は、スイッチング素子としてPチャネル型トランジスタを用いることが望ましい。
The pixel 1703 has at least one switching element, one capacitive element, and a pixel electrode. However, the pixel 1703 may have a plurality of switching elements or a plurality of capacitive elements. Moreover, capacitive elements are not always necessary. In addition, pixel 1703
May further have a transistor operating in the saturation region. In addition, pixel 1703
May have a display element such as a liquid crystal element or an EL element. Here, a transistor and a PN junction diode can be used as the switching element. However, when a transistor is used as the switching element, it is desirable that the transistor operates in a linear region. Further, when the scanning line drive circuit 1702 is composed of only N-channel type transistors, it is desirable to use N-channel type transistors as switching elements. Further, when the scanning line drive circuit 1702 is composed of only P-channel type transistors, it is desirable to use P-channel type transistors as switching elements.

なお、走査線駆動回路1702及び画素部1704は絶縁基板1705上に形成され、信
号線駆動回路1701は絶縁基板1705上に形成されない。信号線駆動回路1701は
、単結晶基板上、SOI基板上又は絶縁基板1705とは別の絶縁基板上に形成されてい
る。そして、信号線駆動回路1701は、FPCなどのプリント基板を介して、信号線S
1~Smと接続される。ただし、信号線駆動回路1701は絶縁基板1705上に形成さ
れていてもよいし、信号線駆動回路1701の一部の機能を構成する回路が絶縁基板17
05上に形成されてもよい。
なお、配線、電極、導電層、導電膜、端子などは、アルミニウム(Al)、タンタル(T
a)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、ネオジウム(Nd)
、クロム(Cr)、ニッケル(Ni)、白金(Pt)、金(Au)、銀(Ag)、銅(C
u)、マグネシウム(Mg)、スカンジウム(Sc)、コバルト(Co)、亜鉛(Zn)
、ニオブ(Nb)、シリコン(Si)、リン(P)、ボロン(B)、ヒ素(As)、ガリ
ウム(Ga)、インジウム(In)、錫(Sn)、酸素(O)で構成された群から選ばれ
た一つもしくは複数の元素、または、前記群から選ばれた一つもしくは複数の元素を成分
とする化合物、合金材料(例えば、インジウム錫酸化物(ITO)、インジウム亜鉛酸化
物(IZO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、
酸化錫(SnO)、酸化錫カドミウム(CTO)、アルミネオジウム(Al-Nd)、マ
グネシウム銀(Mg-Ag)、モリブデンニオブ(Mo-Nb)など)で形成されること
が望ましい。または、配線、電極、導電層、導電膜、端子などは、これらの化合物を組み
合わせた物質などを有して形成されることが望ましい。もしくは、前記群から選ばれた一
つもしくは複数の元素とシリコンの化合物(シリサイド)(例えば、アルミシリコン、モ
リブデンシリコン、ニッケルシリサイドなど)、前記群から選ばれた一つもしくは複数の
元素と窒素の化合物(例えば、窒化チタン、窒化タンタル、窒化モリブデン等)を有して
形成されることが望ましい。
The scanning line drive circuit 1702 and the pixel portion 1704 are formed on the insulating substrate 1705, and the signal line driving circuit 1701 is not formed on the insulating substrate 1705. The signal line drive circuit 1701 is formed on a single crystal substrate, an SOI substrate, or an insulating substrate different from the insulating substrate 1705. Then, the signal line drive circuit 1701 is connected to the signal line S via a printed circuit board such as an FPC.
It is connected to 1 to Sm. However, the signal line drive circuit 1701 may be formed on the insulating substrate 1705, and the circuit constituting a part of the function of the signal line drive circuit 1701 may be formed on the insulating substrate 17.
It may be formed on 05.
The wiring, electrodes, conductive layer, conductive film, terminals, etc. are made of aluminum (Al) and tantalum (T).
a), Titanium (Ti), Molybdenum (Mo), Tungsten (W), Neodymium (Nd)
, Chromium (Cr), Nickel (Ni), Platinum (Pt), Gold (Au), Silver (Ag), Copper (C)
u), magnesium (Mg), scandium (Sc), cobalt (Co), zinc (Zn)
, Niob (Nb), silicon (Si), phosphorus (P), boron (B), arsenic (As), gallium (Ga), indium (In), tin (Sn), oxygen (O). One or more elements selected from, or compounds, alloy materials (eg, indium tin oxide (ITO), indium zinc oxide (IZO) containing one or more elements selected from the above group. ), Indium tin oxide containing silicon oxide (ITSO), zinc oxide (ZnO),
It is preferably formed of tin oxide (SnO), cadmium oxide (CTO), aluminum neodymium (Al-Nd), silver magnesium (Mg-Ag), molybdenum niobium (Mo-Nb), etc.). Alternatively, it is desirable that the wiring, the electrode, the conductive layer, the conductive film, the terminal, etc. are formed by having a substance or the like in which these compounds are combined. Alternatively, one or more elements selected from the above group and a compound of silicon (SiO) (for example, aluminum silicon, molybdenum silicon, nickel silicide, etc.), one or more elements selected from the above group and nitrogen. It is desirable to have a compound (for example, titanium nitride, tantalum nitride, molybdenum nitride, etc.).

なお、シリコン(Si)には、n型不純物(リンなど)またはp型不純物(ボロンなど)
を含んでいてもよい。シリコンが不純物を含むことにより、導電率が向上し、通常の導体
と同様な振る舞いをすることが可能となる。従って、配線、電極などとして利用しやすく
なる。
For silicon (Si), n-type impurities (phosphorus, etc.) or p-type impurities (boron, etc.)
May include. Since silicon contains impurities, the conductivity is improved and it becomes possible to behave in the same manner as a normal conductor. Therefore, it becomes easy to use as wiring, electrodes, and the like.

なお、シリコンは、単結晶、多結晶(ポリシリコン)、非晶質(アモルファスシリコン)
、微結晶(マイクロクリスタルシリコン)など、様々な結晶性を有するシリコンを用いる
ことが出来る。単結晶シリコンまたは多結晶シリコンを用いることにより、配線、電極、
導電層、導電膜、端子などの抵抗を小さくすることが出来る。非晶質シリコンまたは微結
晶シリコンを用いることにより、簡単な工程で配線などを形成することが出来る。
Silicon is single crystal, polycrystal (polysilicon), amorphous (amorphous silicon).
, Silicon having various crystallinity such as microcrystal (microcrystal silicon) can be used. Wiring, electrodes, by using single crystal silicon or polycrystalline silicon,
The resistance of the conductive layer, the conductive film, the terminal, etc. can be reduced. By using amorphous silicon or microcrystalline silicon, wiring or the like can be formed in a simple process.

なお、アルミニウムまたは銀は、導電率が高いため、信号遅延を低減することができる。
さらに、エッチングしやすいので、パターニングしやすく、微細加工を行うことが出来る
Since aluminum or silver has high conductivity, signal delay can be reduced.
Further, since it is easy to etch, it is easy to pattern and fine processing can be performed.

なお、銅は、導電率が高いため、信号遅延を低減することが出来る。銅を用いる場合は、
密着性を向上させるため、積層構造にすることが望ましい。
Since copper has high conductivity, signal delay can be reduced. When using copper,
In order to improve the adhesion, it is desirable to have a laminated structure.

なお、モリブデンまたはチタンは、酸化物半導体(ITO、IZOなど)またはシリコン
と接触しても、不良を起こさない、エッチングしやすい、耐熱性が高いなどの利点を有す
るため、望ましい。
It should be noted that molybdenum or titanium is desirable because it has advantages such as no defects even when it comes into contact with an oxide semiconductor (ITO, IZO, etc.) or silicon, easy etching, and high heat resistance.

なお、タングステンは、耐熱性が高いなどの利点を有するため、望ましい。 Tungsten is desirable because it has advantages such as high heat resistance.

なお、ネオジウムは、耐熱性が高いなどの利点を有するため、望ましい。特に、ネオジウ
ムとアルミニウムとの合金にすると、耐熱性が向上し、アルミニウムがヒロックをおこし
にくくなる。
Neodymium is desirable because it has advantages such as high heat resistance. In particular, when an alloy of neodymium and aluminum is used, heat resistance is improved and aluminum is less likely to hillock.

なお、シリコンは、トランジスタが有する半導体層と同時に形成できる、耐熱性が高いな
どの利点を有するため、望ましい。
It should be noted that silicon is desirable because it has advantages such as being able to be formed at the same time as the semiconductor layer of the transistor and having high heat resistance.

なお、ITO、IZO、ITSO、酸化亜鉛(ZnO)、シリコン(Si)、酸化錫(S
nO)、酸化錫カドミウム(CTO)は、透光性を有しているため、光を透過させる部分
に用いることができる。たとえば、画素電極や共通電極として用いることができる。
In addition, ITO, IZO, ITSO, zinc oxide (ZnO), silicon (Si), tin oxide (S)
Since nO) and tin oxide cadmium (CTO) have translucency, they can be used for a portion through which light is transmitted. For example, it can be used as a pixel electrode or a common electrode.

なお、IZOは、エッチングしやすく、加工しやすいため、望ましい。IZOは、エッチ
ングしたときに、残渣が残ってしまう、ということも起こりにくい。したがって、画素電
極としてIZOを用いると、液晶素子や発光素子に不具合(ショート、配向乱れなど)を
もたらすことを低減出来る。
IZO is desirable because it is easy to etch and process. It is unlikely that IZO will leave a residue when it is etched. Therefore, when IZO is used as the pixel electrode, it is possible to reduce the occurrence of defects (short circuit, misalignment, etc.) in the liquid crystal element and the light emitting element.

なお、配線、電極、導電層、導電膜、端子などは、単層構造でもよいし、多層構造になっ
ていてもよい。単層構造にすることにより、配線、電極、導電層、導電膜、端子などの製
造工程を簡略化することができ、工程日数を少なくでき、コストを低減することが出来る
。あるいは、多層構造にすることにより、それぞれの材料のメリットを生かしつつ、デメ
リットを低減させ、性能の良い配線、電極などを形成することが出来る。たとえば、低抵
抗材料(アルミニウムなど)を多層構造の中に含むことにより、配線の低抵抗化を図るこ
とができる。また、低耐熱性の材料を、高耐熱性の材料で挟む積層構造にすることにより
、低耐熱性の材料の持つメリットを生かしつつ、配線、電極などの耐熱性を高くすること
が出来る。例えば、アルミニウムを含む層を、モリブデン、チタン、ネオジウムなどを含
む層で挟む積層構造にすると望ましい。
The wiring, electrodes, conductive layer, conductive film, terminals and the like may have a single-layer structure or a multi-layer structure. By adopting a single-layer structure, it is possible to simplify the manufacturing process of wiring, electrodes, conductive layers, conductive films, terminals, etc., reduce the number of process days, and reduce the cost. Alternatively, by forming a multi-layer structure, it is possible to utilize the advantages of each material, reduce the disadvantages, and form wirings, electrodes, etc. with good performance. For example, by including a low resistance material (aluminum or the like) in the multilayer structure, it is possible to reduce the resistance of the wiring. Further, by forming a laminated structure in which a low heat resistant material is sandwiched between high heat resistant materials, it is possible to increase the heat resistance of wiring, electrodes, etc. while taking advantage of the low heat resistant material. For example, it is desirable to have a laminated structure in which a layer containing aluminum is sandwiched between layers containing molybdenum, titanium, neodymium, and the like.

また、配線、電極など同士が直接接する場合、お互いに悪影響を及ぼすことがある。例え
ば、一方の配線、電極などが他方の配線、電極など材料の中に入っていって、性質を変え
てしまい、本来の目的を果たせなくなったり、高抵抗な部分の形成を行ったり、製造する
ときに、問題が生じて、正常に製造できなくなったりすることがある。そのような場合、
積層構造により反応しやすい材料を、反応しにくい材料で挟んだり、覆ったりするとよい
。例えば、ITOとアルミニウムとを接続させる場合は、ITOとアルミニウムとの間に
、チタン、モリブデン、ネオジウム合金を挟むことが望ましい。また、シリコンとアルミ
ニウムとを接続させる場合は、ITOとアルミニウムとの間に、チタン、モリブデン、ネ
オジウム合金を挟むことが望ましい。
In addition, when wiring, electrodes, etc. are in direct contact with each other, they may adversely affect each other. For example, one wiring, electrode, etc. gets into the material such as the other wiring, electrode, etc., and changes the properties, so that the original purpose cannot be achieved, a high resistance part is formed, or it is manufactured. Occasionally, problems may occur that prevent it from being manufactured normally. In such a case
A material that easily reacts due to the laminated structure may be sandwiched or covered with a material that does not easily react. For example, when connecting ITO and aluminum, it is desirable to sandwich a titanium, molybdenum, or neodymium alloy between ITO and aluminum. When connecting silicon and aluminum, it is desirable to sandwich a titanium, molybdenum, or neodymium alloy between ITO and aluminum.

なお、配線とは、導電体が配置されているものを言う。線状に伸びていても良いし、伸び
ずに短く配置されていてもよい。したがって、電極は、配線に含まれている。
The wiring means that the conductor is arranged. It may extend linearly, or it may be arranged short without extending. Therefore, the electrodes are included in the wiring.

なお、上記説明した配線や電極は、他の表示装置、シフトレジスタ及び画素にも適用する
ことができる。
The wiring and electrodes described above can also be applied to other display devices, shift registers, and pixels.

なお、信号線駆動回路1701は、信号線S1~Smにビデオ信号として電圧又は電流を
入力する。ただし、ビデオ信号はデジタル信号でもよいし、アナログ信号でもよい。さら
に、ビデオ信号は、1フレームごとに正極・負極が反転してもよいし(フレーム反転駆動
)、1行毎に正極・負極が反転してもよいし(ゲートライン反転駆動)、1列毎に正極・
負極が反転してもよいし(ソースライン反転駆動)、1行及び1列毎に正極・負極が反転
してもよい(ドットライン反転駆動)。さらに、ビデオ信号は、信号線S1~Smに点順
次駆動で入力されてもよいし、線順次駆動で入力されてもよい。さらに、信号線駆動回路
1701は、ビデオ信号だけでなくプリチャージ電圧などの一定電圧を信号線S1~Sm
に入力してもよい。プリチャージ電圧などの一定電圧は、1ゲート選択期間毎、1フレー
ム毎に入力することが望ましい。
The signal line drive circuit 1701 inputs a voltage or a current as a video signal to the signal lines S1 to Sm. However, the video signal may be a digital signal or an analog signal. Further, in the video signal, the positive electrode and the negative electrode may be inverted for each frame (frame inversion drive), or the positive electrode and the negative electrode may be inverted for each row (gate line inversion drive), and for each column. Positive electrode ・
The negative electrode may be inverted (source line inversion drive), or the positive electrode / negative electrode may be inverted for each row and column (dot line inversion drive). Further, the video signal may be input to the signal lines S1 to Sm by point-sequential drive or may be input by line-sequential drive. Further, the signal line drive circuit 1701 applies not only a video signal but also a constant voltage such as a precharge voltage to the signal lines S1 to Sm.
You may enter in. It is desirable to input a constant voltage such as a precharge voltage every 1 gate selection period and every 1 frame.

なお、走査線駆動回路1702は、走査線G1~Gnに信号を入力し、走査線G1~Gn
を1行目から順に選択(以下、走査するともいう)する。そして、走査線駆動回路170
2は、選択された走査線に接続される複数の画素1703を選択する。ここで、1つの走
査線が選択されている期間を1ゲート選択期間と呼び、当該走査線が選択されていない期
間を非選択期間と呼ぶ。さらに、走査線駆動回路1702が走査線に出力する信号を走査
信号と呼ぶ。さらに、走査信号の最大値はビデオ信号の最大値又は信号線の最大電圧より
も大きく、走査信号の最小値はビデオ信号の最小値又は信号線の最小電圧よりも小さいこ
とを特徴とする。
The scanning line drive circuit 1702 inputs signals to the scanning lines G1 to Gn, and the scanning lines G1 to Gn.
Are selected in order from the first line (hereinafter, also referred to as scanning). Then, the scanning line drive circuit 170
2 selects a plurality of pixels 1703 connected to the selected scan line. Here, the period in which one scanning line is selected is referred to as a one-gate selection period, and the period in which the scanning line is not selected is referred to as a non-selection period. Further, the signal output by the scanning line drive circuit 1702 to the scanning line is called a scanning signal. Further, the maximum value of the scanning signal is larger than the maximum value of the video signal or the maximum voltage of the signal line, and the minimum value of the scanning signal is smaller than the minimum value of the video signal or the minimum voltage of the signal line.

なお、画素1703が選択されている場合には、信号線駆動回路1701から信号線を介
して画素1703にビデオ信号が入力される。さらに、画素1703が選択されない場合
には、画素1703は選択期間に入力されたビデオ信号(ビデオ信号に対応した電位)を
保持している。
When the pixel 1703 is selected, a video signal is input from the signal line drive circuit 1701 to the pixel 1703 via the signal line. Further, when the pixel 1703 is not selected, the pixel 1703 holds the video signal (potential corresponding to the video signal) input during the selection period.

なお、図示はしないが、信号線駆動回路1701及び走査線駆動回路1702には、複数
の電位及び複数の信号が供給されている。
Although not shown, a plurality of potentials and a plurality of signals are supplied to the signal line drive circuit 1701 and the scan line drive circuit 1702.

次に、図17に示した表示装置の動作について、図18のタイミングチャートを参照して
説明する。さらに、図18において、1画面分の画像を表示する期間に相当する1フレー
ム期間を示す。ただし、1フレーム期間は特に限定はしないが、画像を見る人がちらつき
(フリッカー)を感じないように少なくとも1/60秒以下とすることが好ましい。
Next, the operation of the display device shown in FIG. 17 will be described with reference to the timing chart of FIG. Further, in FIG. 18, one frame period corresponding to a period for displaying an image for one screen is shown. However, the period of one frame is not particularly limited, but it is preferably at least 1/60 second or less so that the viewer of the image does not feel flicker.

なお、図18のタイミングチャートでは、1行目の走査線G1、i行目の走査線Gi、i
+1行目の走査線Gi+1及びn行目の走査線Gnがそれぞれ選択されるタイミングを示
している。
In the timing chart of FIG. 18, the scanning lines G1 on the first line and the scanning lines Gi and i on the i-th line are shown.
The timing at which the scanning line Gi + 1 on the +1st line and the scanning line Gn on the nth line are selected is shown.

図18において、例えばi行目の走査線Giが選択され、走査線Giに接続される複数の
画素1703が選択される。そして、走査線Giに接続される複数の画素1703は、そ
れぞれビデオ信号を入力し、ビデオ信号に応じた電位を保持する。その後、i行目の走査
線Giが非選択になって、i+1行目の走査線Gi+1が選択され、走査線Gi+1に接
続される複数の画素1703が選択される。そして、走査線Gi+1に接続される複数の
画素1703は、それぞれビデオ信号を入力し、ビデオ信号に応じた電位を保持する。こ
のように、1フレーム期間において、走査線G1から走査線Gnまで順に選択され、各々
の走査線に接続される画素1703も順に選択される。そして、各々の走査線に接続され
る複数の画素1703は、それぞれビデオ信号を入力し、ビデオ信号に応じた電位を保持
する。
In FIG. 18, for example, the scan line Gi on the i-th line is selected, and a plurality of pixels 1703 connected to the scan line Gi are selected. Then, each of the plurality of pixels 1703 connected to the scanning line Gi inputs a video signal and holds a potential corresponding to the video signal. After that, the scan line Gi on the i-th line is deselected, the scan line Gi + 1 on the i + 1 line is selected, and a plurality of pixels 1703 connected to the scan line Gi + 1 are selected. Then, each of the plurality of pixels 1703 connected to the scanning line Gi + 1 inputs a video signal and holds a potential corresponding to the video signal. In this way, in one frame period, the scanning lines G1 to the scanning lines Gn are sequentially selected, and the pixels 1703 connected to each scanning line are also selected in order. Then, each of the plurality of pixels 1703 connected to each scanning line inputs a video signal and holds a potential corresponding to the video signal.

さらに、本実施の形態のシフトレジスタを走査線駆動回路1702として用いた表示装置
は、高速動作が可能となるので、より高精細、又はより大型化を図ることができる。さら
に、本実施の形態の表示装置は、工程の簡略化を図ることができる。さらに、本実施の形
態の表示装置は、製造コストの削減を図ることができる。さらに、本実施の形態の表示装
置は、歩留まりの向上を図ることができる。
Further, since the display device using the shift register of the present embodiment as the scanning line drive circuit 1702 can operate at high speed, higher definition or larger size can be achieved. Further, the display device of the present embodiment can simplify the process. Further, the display device of the present embodiment can reduce the manufacturing cost. Further, the display device of the present embodiment can improve the yield.

さらに、図17の表示装置は、高速動作が必要な信号線駆動回路1701と、走査線駆動
回路1702及び画素部1703とを別々の基板上に形成するため、走査線駆動回路17
02が有するトランジスタの半導体層及び画素1703が有するトランジスタの半導体層
として、アモルファスシリコンを用いることができる。したがって、図17の表示装置は
、製造工程の簡略化を図ることができる。さらに、図17の表示装置は、製造コストの削
減を図ることができる。さらに、図17の表示装置は、歩留まりの向上を図ることができ
る。さらに、図17の表示装置は、大型化を図ることができる。あるいは、図17の表示
装置は、トランジスタの半導体層として、ポリシリコンや多結晶シリコンを用いても製造
工程の簡略化を図ることができる。
Further, in the display device of FIG. 17, since the signal line drive circuit 1701 that requires high-speed operation and the scan line drive circuit 1702 and the pixel unit 1703 are formed on separate substrates, the scan line drive circuit 17
Amorphous silicon can be used as the semiconductor layer of the transistor included in 02 and the semiconductor layer of the transistor included in the pixel 1703. Therefore, the display device of FIG. 17 can simplify the manufacturing process. Further, the display device of FIG. 17 can reduce the manufacturing cost. Further, the display device of FIG. 17 can improve the yield. Further, the display device of FIG. 17 can be increased in size. Alternatively, the display device of FIG. 17 can simplify the manufacturing process by using polysilicon or polycrystalline silicon as the semiconductor layer of the transistor.

なお、信号線駆動回路1701と、走査線駆動回路1702及び画素1703とを同一基
板上に形成する場合は、走査線駆動回路1702が有するトランジスタの半導体層及び画
素1703が有するトランジスタの半導体層としてポリシリコン又は多結晶シリコンを用
いるとよい。
When the signal line drive circuit 1701 and the scan line drive circuit 1702 and the pixel 1703 are formed on the same substrate, the transistor semiconductor layer of the scan line drive circuit 1702 and the transistor semiconductor layer of the pixel 1703 are poly. Silicon or polysilicon may be used.

なお、図17のように、画素を選択し、画素に独立してビデオ信号を書き込むことができ
れば、各駆動回路の数や配置などは図17に限定されない。
As shown in FIG. 17, if the pixels can be selected and the video signal can be written independently to the pixels, the number and arrangement of the drive circuits are not limited to FIG.

例えば、図19に示すように、走査線G1~走査線Gnが第1の走査線駆動回路1902
a及び第2の走査線駆動回路1902bによって走査されてもよい。第1の走査線駆動回
路1902a及び第2の駆動回路1902bは、図17に示した走査線駆動回路1702
と同様の構成であり、同じタイミングで走査線G1~走査線Gnを走査する。さらに、第
1の走査線駆動回路1902a及び第2の駆動回路1902bを、それぞれ第1の駆動回
路、第2の駆動回路と呼んでもよい。
For example, as shown in FIG. 19, the scanning lines G1 to Gn are the first scanning line drive circuit 1902.
It may be scanned by a and the second scanning line drive circuit 1902b. The first scan line drive circuit 1902a and the second drive circuit 1902b are the scan line drive circuit 1702 shown in FIG.
It has the same configuration as the above, and scans the scanning lines G1 to Gn at the same timing. Further, the first scanning line drive circuit 1902a and the second drive circuit 1902b may be referred to as a first drive circuit and a second drive circuit, respectively.

図19の表示装置は、第1の走査線駆動回路1902a及び第2の走査線駆動回路190
2bのうち一方に不良が生じても、走査線駆動回路1902a及び第2の走査線駆動回路
1902bのうち他方が走査線G1~走査線Gnを走査できるため、冗長性を持つことが
できる。さらに、図19の表示装置は、第1の走査線駆動回路1902aの負荷(走査線
の配線抵抗及び走査線の寄生容量)及び第2の走査線駆動回路1902bの負荷を図17
に比べ半分程度にできるため、走査線G1~走査線Gnに入力される信号(第1の走査線
駆動回路1902a及び第2の駆動回路1902bの出力信号)の遅延及びなまりを低減
できる。さらに、図19の表示装置は、第1の走査線駆動回路1902aの負荷及び第2
の走査線駆動回路1902bの負荷が低減されるので、走査線G1~走査線Gnを高速に
走査することができる。さらに、走査線G1~走査線Gnを高速に走査することができる
ので、パネルの大型化又はパネルの高精細化を可能にできる。なお、図17の構成と共通
するところは共通の符号を用いてその説明を省略する。
The display device of FIG. 19 includes a first scanning line driving circuit 1902a and a second scanning line driving circuit 190.
Even if a defect occurs in one of the 2bs, the other of the scan line drive circuit 1902a and the second scan line drive circuit 1902b can scan the scan lines G1 to Gn, so that redundancy can be obtained. Further, the display device of FIG. 19 shows the load of the first scanning line drive circuit 1902a (wiring resistance of the scanning line and the parasitic capacitance of the scanning line) and the load of the second scanning line drive circuit 1902b.
Since it can be reduced to about half of that of the above, the delay and bluntness of the signals input to the scanning lines G1 to Gn (the output signals of the first scanning line drive circuit 1902a and the second driving circuit 1902b) can be reduced. Further, the display device of FIG. 19 shows the load of the first scanning line drive circuit 1902a and the second scanning line drive circuit 1902a.
Since the load of the scanning line drive circuit 1902b is reduced, the scanning lines G1 to Gn can be scanned at high speed. Further, since the scanning lines G1 to Gn can be scanned at high speed, it is possible to increase the size of the panel or increase the definition of the panel. It should be noted that the common reference numerals are used for the parts common to the configuration of FIG. 17, and the description thereof will be omitted.

別の例として、図20は、画素にビデオ信号を高速に書き込むことができる表示装置であ
る。図20の表示装置は、奇数行目の画素1703には奇数列目の信号線からビデオ信号
を入力し、偶数行目の画素1703には偶数列目の信号線からビデオ信号を入力する。さ
らに、図20の表示装置は、走査線G1~走査線Gnのうち奇数段目の走査線が第1の走
査線駆動回路2002aによって走査され、走査線G1~走査線Gnのうち偶数段目の走
査線が第2の走査線駆動回路2002bによって走査される。さらに、第1の走査線駆動
回路2002bに入力されるスタート信号は、第1の走査線駆動回路2002a入力され
るスタート信号よりもクロック信号の1/4周期分遅延して入力される。
As another example, FIG. 20 is a display device capable of writing a video signal to a pixel at high speed. In the display device of FIG. 20, a video signal is input to the odd-numbered row pixel 1703 from the odd-numbered column signal line, and the video signal is input to the even-numbered row pixel 1703 from the even-numbered column signal line. Further, in the display device of FIG. 20, in the scanning line G1 to the scanning line Gn, the scanning line of the odd-order stage is scanned by the first scanning line drive circuit 2002a, and the scanning line of the scanning line G1 to the scanning line Gn of the even-th stage is scanned. The scan line is scanned by the second scan line drive circuit 2002b. Further, the start signal input to the first scan line drive circuit 2002b is input with a delay of 1/4 cycle of the clock signal from the start signal input to the first scan line drive circuit 2002a.

なお、図20の表示装置は、1フレーム期間において各信号線に1列毎に正極のビデオ信
号と負極のビデオ信号とを入力するだけで、ドット反転駆動をすることができる。さらに
、図20の表示装置は、1フレーム期間毎に、各信号線に入力するビデオ信号の極性を反
転することでフレーム反転駆動をすることができる。
The display device of FIG. 20 can perform dot inversion drive only by inputting a positive electrode video signal and a negative electrode video signal for each row in each signal line in one frame period. Further, the display device of FIG. 20 can drive the frame inversion by inverting the polarity of the video signal input to each signal line for each frame period.

図20の表示装置の動作について、図21のタイミングチャートを参照して説明する。図
21のタイミングチャートでは、1行目の走査線G1、i-1行目の走査線Gi-1、i
行目の走査線Gi、i+1行目の走査線Gi+1及びn行目の走査線Gnがそれぞれ選択
されるタイミングを示している。さらに、図21のタイミングチャートでは、1つの選択
期間を選択期間aと選択期間bとに分割している。さらに、図21のタイミングチャート
では、図20の表示装置がドット反転駆動及びフレーム反転駆動を行う場合について説明
する。
The operation of the display device of FIG. 20 will be described with reference to the timing chart of FIG. In the timing chart of FIG. 21, the scanning lines G1 on the first line and the scanning lines Gi-1 and i on the first line are shown.
The timing at which the scanning line Gi of the line, the scanning line Gi + 1 of the i + 1 line, and the scanning line Gn of the nth line are selected is shown. Further, in the timing chart of FIG. 21, one selection period is divided into a selection period a and a selection period b. Further, in the timing chart of FIG. 21, a case where the display device of FIG. 20 performs dot inversion drive and frame inversion drive will be described.

図21において、例えばi行目の走査線Giの選択期間aは、i-1行目の走査線Gi-
1の選択期間bと重なっており、i行目の走査線Giの選択期間Tbは、i+1行目の走
査線Gi+1の選択期間aと重なっている。したがって、選択期間aにおいて、i-1行
・j+1列目の画素1703に入力されるビデオ信号と同様なものが、i行j列目の画素
1703に入力される。さらに、選択期間bにおいて、i行j列目の画素1703に入力
されるビデオ信号と同様なものが、i+1行・j+1列目の画素1703に入力される。
なお、選択期間bにおいて画素1703に入力されるビデオ信号が本来のビデオ信号であ
り、選択期間aにおいて画素1703に入力されるビデオ信号が画素1703のプリチャ
ージ用のビデオ信号である。したがって、画素1703それぞれは、選択期間aにおいて
i-1行・j+1列目の画素1703に入力されるビデオ信号によってプリチャージした
あとに、選択期間bにおいて本来(i行・j列目)のビデオ信号を入力する。
In FIG. 21, for example, the selection period a of the scanning line Gi on the i-th line is the scanning line Gi- on the i-1th line.
It overlaps with the selection period b of 1, and the selection period Tb of the scan line Gi on the i-th line overlaps with the selection period a of the scan line Gi + 1 on the i + 1 line. Therefore, in the selection period a, the same video signal as the video signal input to the pixel 1703 in the i-1 row and j + 1 column is input to the pixel 1703 in the i row and j column. Further, in the selection period b, the same video signal as the video signal input to the pixel 1703 in the i-th row and j-th column is input to the pixel 1703 in the i + 1 row and j + 1-th column.
The video signal input to the pixel 1703 in the selection period b is the original video signal, and the video signal input to the pixel 1703 in the selection period a is the video signal for precharging the pixel 1703. Therefore, each of the pixels 1703 is precharged by the video signal input to the pixels 1703 in the i-1 row and j + 1 column in the selection period a, and then the original (i row and j column) video in the selection period b. Enter the signal.

以上のことから、図20の表示装置は、画素1703に高速にビデオ信号を書き込むこと
ができるため、大型化、又は高精細化を容易に実現することができる。さらに、図20の
表示装置は、1フレーム期間において信号線各々は同じ極性のビデオ信号が入力されるた
め、各信号線の充放電が少なく、低消費電力化を実現できる。さらに、図20の表示装置
は、ビデオ信号を入力するためのICの負荷が大幅に低減されるため、ICの発熱及びI
Cの消費電力などを低減することができる。さらに、図20の表示装置は、第1の走査線
駆動回路2002a及び第2の走査線駆動回路2002bの駆動周波数を約半分にできる
ため、省電力化を図ることができる。
From the above, since the display device of FIG. 20 can write a video signal to the pixel 1703 at high speed, it is possible to easily realize an increase in size or high definition. Further, in the display device of FIG. 20, since a video signal having the same polarity is input to each signal line in one frame period, charging / discharging of each signal line is small, and low power consumption can be realized. Further, in the display device of FIG. 20, since the load of the IC for inputting the video signal is significantly reduced, the heat generated by the IC and I
The power consumption of C can be reduced. Further, since the display device of FIG. 20 can reduce the drive frequencies of the first scan line drive circuit 2002a and the second scan line drive circuit 2002b to about half, power saving can be achieved.

なお、本実施の形態の表示装置は、画素1703の構成及び駆動方法によって、様々な駆
動方法を行うことができる。例えば、1フレーム期間において、走査線駆動回路は、走査
線を複数回走査してもよい。
The display device of the present embodiment can perform various driving methods depending on the configuration and driving method of the pixels 1703. For example, the scan line drive circuit may scan the scan line a plurality of times in one frame period.

なお、図17、図19及び図20の表示装置は、画素1703の構成によって別の配線な
どを追加してもよい。例えば、一定の電位に保たれている電源線、容量線及び新たな走査
線などを追加してもよい。ただし、新たに走査線を追加する場合には、本実施の形態のシ
フトレジスタを適用した走査線駆動回路を新たに追加してもよい。別の例として、ダミー
の走査線、信号線、電源線又は容量線が画素部に配置されていてもよい。
In addition, the display device of FIGS. 17, 19 and 20 may add another wiring or the like depending on the configuration of the pixel 1703. For example, a power line, a capacitance line, a new scanning line, etc., which are kept at a constant potential, may be added. However, when a scan line is newly added, a scan line drive circuit to which the shift register of the present embodiment is applied may be newly added. As another example, a dummy scanning line, a signal line, a power line, or a capacitance line may be arranged in the pixel portion.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態2)
本実施の形態では、実施の形態1とは別のフリップフロップ、当該フリップフロップを有
する駆動回路、及び当該駆動回路を有する表示装置の構成並びに駆動方法について説明す
る。なお、実施の形態1と同様なものに関しては共通の符号を用いて示し、同一部分又は
同様な機能を有する部分の詳細な説明は省略する。
(Embodiment 2)
In the present embodiment, a flip-flop different from that of the first embodiment, a drive circuit having the flip-flop, and a configuration and a driving method of a display device having the drive circuit will be described. It should be noted that the same parts as those in the first embodiment are shown by using a common reference numeral, and detailed description of the same part or the part having the same function will be omitted.

本実施の形態のフリップフロップの構成は、実施の形態1と同様のフリップフロップの構
成を用いることができる。ただ、フリップフロップを駆動するタイミングが実施の形態1
とは異なる。よって、本実施の形態では、フリップフロップの構成の説明を省略する。
As the flip-flop configuration of the present embodiment, the same flip-flop configuration as that of the first embodiment can be used. However, the timing for driving the flip-flop is the first embodiment.
Is different. Therefore, in the present embodiment, the description of the flip-flop configuration will be omitted.

なお、本実施の形態の駆動タイミングを図1(A)に適用した場合について説明するが、
本実施の形態の駆動タイミングを図1(B)、図1(C)、図5(A)、図5(B)、図
5(C)、図7(A)、図7(B)、図8(A)、図8(B)、図9(A)、図9(B)
、図10(A)及び図10(B)のフリップフロップと自由に組み合わせて実施すること
もできる。さらに、本実施の形態の駆動タイミングは、実施の形態1に記載の駆動タイミ
ングと自由に組み合わせて実施するこもできる。
A case where the drive timing of this embodiment is applied to FIG. 1A will be described.
The drive timings of this embodiment are shown in FIGS. 1 (B), 1 (C), 5 (A), 5 (B), 5 (C), 7 (A), 7 (B), and FIG. 8 (A), 8 (B), 9 (A), 9 (B)
, Can be freely combined with the flip-flops of FIGS. 10 (A) and 10 (B). Further, the drive timing of the present embodiment can be freely combined with the drive timing described in the first embodiment.

本実施の形態のフリップフロップの動作について、図1(A)のフリップフロップ及び図
22のタイミングチャートを参照して説明する。さらに、図22のタイミングチャートを
セット期間、選択期間、リセット期間、第1の非選択期間、第2の非選択期間に分割して
説明する。ただし、セット期間は、第1のセット期間及び第2のセット期間に分割され、
選択期間は第1の選択期間及び第2の選択期間に分割される。
The operation of the flip-flop of the present embodiment will be described with reference to the flip-flop of FIG. 1A and the timing chart of FIG. 22. Further, the timing chart of FIG. 22 will be described by dividing it into a set period, a selection period, a reset period, a first non-selection period, and a second non-selection period. However, the set period is divided into a first set period and a second set period.
The selection period is divided into a first selection period and a second selection period.

なお、第1の配線121、第5の配線125、第8の配線128、第7の配線127及び
第2の配線122には、それぞれ図22に示す信号2221、信号2225、信号222
8、信号2227、信号2222が入力される。そして、第3の配線123からは、図2
2に示す信号2223が出力される。ここで、信号2221、信号2225、信号222
8、信号2227、信号2222及び信号2223は、H信号の電位がV1(以下、Hレ
ベルともいう)、L信号の電位がV2(以下、Lレベルともいう)のデジタル信号である
。さらに、信号2221、信号2225、信号2228、信号2227、信号2222及
び信号2223を、それぞれスタート信号、パワークロック信号(PCK)、第1の制御
クロック信号(CCK1)、第2の制御クロック信号(CCK2)、リセット信号、出力
信号と呼んでもよい。
The first wiring 121, the fifth wiring 125, the eighth wiring 128, the seventh wiring 127, and the second wiring 122 have signals 2221, signal 2225, and signal 222 shown in FIG. 22, respectively.
8. Signal 2227 and signal 2222 are input. Then, from the third wiring 123, FIG. 2
The signal 2223 shown in 2 is output. Here, signal 2221, signal 2225, signal 222
8. The signal 2227, the signal 2222, and the signal 2223 are digital signals having an H signal potential of V1 (hereinafter, also referred to as H level) and an L signal potential of V2 (hereinafter, also referred to as L level). Further, the signal 2221, the signal 2225, the signal 2228, the signal 2227, the signal 2222, and the signal 2223 are combined with the start signal, the power clock signal (PCK), the first control clock signal (CCK1), and the second control clock signal (CCK2), respectively. ), Reset signal, output signal.

なお、本実施の形態のフリップフロップは、基本的には実施の形態1で説明したフリップ
フロップと同様の動作を行う。ただし、本実施の形態のフリップフロップは、第1の配線
121にH信号が入力されるタイミングがクロック信号の1/4周期分遅延しているとこ
ろが、実施の形態1のフリップフロップと異なる。
The flip-flop of the present embodiment basically operates in the same manner as the flip-flop described in the first embodiment. However, the flip-flop of the present embodiment is different from the flip-flop of the first embodiment in that the timing at which the H signal is input to the first wiring 121 is delayed by 1/4 cycle of the clock signal.

なお、本実施の形態のフリップフロップは、図22に示す第1のセット期間(A1)、第
2のセット期間(A2)、リセット期間(C)、第1の非選択期間(D)、第2の非選択
期間では、それぞれ図2に示した第2の非選択期間(E)、セット期間(A)、リセット
期間(C)、第1の非選択期間(D)、第2の非選択期間と同様の動作を行うので説明を
省略する。
The flip-flop of the present embodiment has a first set period (A1), a second set period (A2), a reset period (C), a first non-selection period (D), and a first set period (D) shown in FIG. In the second non-selection period, the second non-selection period (E), the set period (A), the reset period (C), the first non-selection period (D), and the second non-selection period (D) shown in FIG. 2, respectively. Since the operation is the same as that of the period, the description thereof will be omitted.

本実施の形態のフリップフロップは、図22(B1)に示す第1の選択期間において、第
1の配線121にH信号が入力されたまま、ブートストラップ動作によってノード141
の電位がV1+Vth101+αとなって、H信号が第3の配線123から出力される。
そして、本実施の形態のフリップフロップは、図22(B2)に示す第2の選択期間にお
いて、第1の配線121に入力される信号がLレベルとなるが、ノード141は電位をV
1+Vth101+αに維持し、H信号が第3の配線123から出力されたままである。
In the flip-flop of the present embodiment, in the first selection period shown in FIG. 22 (B1), the node 141 is operated by the bootstrap operation while the H signal is input to the first wiring 121.
The potential of is V1 + Vth101 + α, and the H signal is output from the third wiring 123.
In the flip-flop of the present embodiment, the signal input to the first wiring 121 becomes the L level in the second selection period shown in FIG. 22 (B2), but the node 141 has a potential of V.
It is maintained at 1 + Vth101 + α, and the H signal is still output from the third wiring 123.

なお、図23に示すように、本実施の形態のフリップフロップは、第2の配線122にH
信号を入力するタイミングがクロック信号の1/4周期分遅延させることで、出力信号の
立ち下がり時間を大幅に短くすることができる。つまり、図22を適用した本実施の形態
のフリップフロップは、図22(C1)に示す第1のリセット期間において、第5の配線
125にL信号が入力され、ノード141の電位がおおむねV1+Vth101まで下が
る。したがって、第1のトランジスタ101はオンのままであり、L信号が第3の配線1
23から出力される。第3の123にはW/Lの値が大きい第1のトランジスタ101を
介してL信号が入力されるため、第3の配線123の電位がHレベルからLレベルになる
までの時間を大幅に短くできる。その後、図22を適用した本実施の形態のフリップフロ
ップは、図22(C2)に示す第2のリセット期間において、第7のトランジスタ107
がオンして、ノード141の電位がV2となる。このときのノード142の電位はV1-
Vth103となって第3のトランジスタ103がオンするため、L信号が第3の配線1
03から出力される。
As shown in FIG. 23, the flip-flop of the present embodiment has H in the second wiring 122.
By delaying the signal input timing by 1/4 cycle of the clock signal, the fall time of the output signal can be significantly shortened. That is, in the flip-flop of the present embodiment to which FIG. 22 is applied, an L signal is input to the fifth wiring 125 in the first reset period shown in FIG. 22 (C1), and the potential of the node 141 is approximately up to V1 + Vth101. Go down. Therefore, the first transistor 101 remains on and the L signal is the third wiring 1.
It is output from 23. Since the L signal is input to the third 123 via the first transistor 101 having a large W / L value, the time required for the potential of the third wiring 123 to change from the H level to the L level is significantly increased. Can be shortened. After that, the flip-flop of the present embodiment to which FIG. 22 is applied is the seventh transistor 107 in the second reset period shown in FIG. 22 (C2).
Turns on and the potential of node 141 becomes V2. The potential of the node 142 at this time is V1-
Since the third transistor 103 is turned on as Vth 103, the L signal is the third wiring 1.
It is output from 03.

なお、本実施の形態のフリップフロップは、実施の形態1に示したフリップフロップと同
様に、トランジスタのしきい値電圧のシフトを抑制できるので、長寿命化を図ることがで
きる。さらに、本実施の形態のフリップフロップは、ノイズに強いため、信頼性の向上、
又は誤動作の抑制を図ることができる。
As with the flip-flop shown in the first embodiment, the flip-flop of the present embodiment can suppress the shift of the threshold voltage of the transistor, so that the life of the flip-flop can be extended. Further, since the flip-flop of the present embodiment is resistant to noise, the reliability is improved.
Alternatively, it is possible to suppress malfunction.

さらに、本実施の形態のフリップフロップは、高速に動作できるので、より高精細な表示
装置、又はより大型の表示装置に適用できる。さらに、本実施の形態のフリップフロップ
は、工程の簡略化を図ることができる。さらに、本実施の形態のフリップフロップは、製
造コストの削減を図ることができる。さらに、本実施の形態のフリップフロップは、歩留
まりの向上を図ることができる。
Further, since the flip-flop of the present embodiment can operate at high speed, it can be applied to a higher-definition display device or a larger display device. Further, the flip-flop of the present embodiment can simplify the process. Further, the flip-flop of the present embodiment can reduce the manufacturing cost. Further, the flip-flop of the present embodiment can improve the yield.

続いて、上述した本実施の形態のフリップフロップを有するシフトレジスタの構成及び駆
動方法について説明する。
Subsequently, the configuration and driving method of the shift register having the flip-flop of the present embodiment described above will be described.

本実施の形態のシフトレジスタの構成について図24を参照して説明する。図24のシフ
トレジスタは、n個のフリップフロップ(フリップフロップ2401_1~フリップフロ
ップ2401_n)を有する。
The configuration of the shift register of this embodiment will be described with reference to FIG. 24. The shift register of FIG. 24 has n flip-flops (flip-flops 2401_1 to 2401_n).

図24のシフトレジスタの接続関係について説明する。図24のシフトレジスタは、i段
目のフリップフロップ2401_i(フリップフロップ2401_1~2401_nのう
ちいずれか一)は、図1(A)に示した第1の配線121が第10の配線2420_i-
1に接続され、図1(A)に示した第2の配線122が第10の配線2420_i+2に
接続され、図1(A)に示した第3の配線123が第10の配線2420_iに接続され
、図1(A)に示した第4の配線124、第10の配線130、第11の配線131、第
12の配線132及び第13の配線133が第7の配線2417に接続され、図1(A)
に示した第5の配線125及び第7の配線127が4N-3(Nは1以上の自然数)段目
のフリップフロップでは第2の配線2412に接続され、4N-2段目のフリップフロッ
プでは第3の配線2413に接続され、4N-1段目のフリップフロップでは第4の配線
2414に接続され、4N段目のフリップフロップでは第5の配線2415に接続され、
図1(A)に示した第8の配線128が4N-3段目のフリップフロップでは第4の配線
2414に接続され、4N-2段目のフリップフロップでは第5の配線2415に接続さ
れ、4N-1段目のフリップフロップでは第2の配線2412に接続され、4N段目のフ
リップフロップでは第3の配線2413に接続され、図1(A)に示す第6の配線126
及び第9の配線129が第6の配線2416に接続される。ただし、1段目のフリップフ
ロップ2401_1の図1(A)に示す第1の配線121が第1の配線2411に接続さ
れ、n-1段目のフリップフロップ2401_n-1の図1(A)に示す第2の配線12
2が第9の配線2419に接続され、n段目のフリップフロップ2401_nの図1(A
)に示す第2の配線122が第8の配線2418に接続される。
The connection relationship of the shift register of FIG. 24 will be described. In the shift register of FIG. 24, in the flip-flop 2401_i of the i-th stage (any one of the flip-flops 2401_1 to 2401_n), the first wiring 121 shown in FIG. 1A is the tenth wiring 2420_i-.
The second wiring 122 shown in FIG. 1A is connected to the tenth wiring 2420_i + 2, and the third wiring 123 shown in FIG. 1A is connected to the tenth wiring 2420_i. The fourth wiring 124, the tenth wiring 130, the eleventh wiring 131, the twelfth wiring 132, and the thirteenth wiring 133 shown in FIG. 1A are connected to the seventh wiring 2417, and FIG. (A)
The fifth wiring 125 and the seventh wiring 127 shown in the above are connected to the second wiring 2412 in the flip-flop of the 4N-3 (N is a natural number of 1 or more) stage, and are connected to the second wiring 2412 in the flip-flop of the 4N-2 stage. It is connected to the third wiring 2413, connected to the fourth wiring 2414 in the 4N-1st stage flip-flop, and connected to the fifth wiring 2415 in the 4Nth stage flip-flop.
The eighth wiring 128 shown in FIG. 1A is connected to the fourth wiring 2414 in the 4N-3rd stage flip-flop, and is connected to the fifth wiring 2415 in the 4N-2nd stage flip-flop. The 4N-1st stage flip-flop is connected to the second wiring 2412, and the 4Nth stage flip-flop is connected to the third wiring 2413, and the sixth wiring 126 shown in FIG. 1 (A).
And the ninth wire 129 is connected to the sixth wire 2416. However, the first wiring 121 shown in FIG. 1 (A) of the first-stage flip-flop 2401_1 is connected to the first wiring 2411, and in FIG. 1 (A) of the n-1th-stage flip-flop 2401_n-1. Second wiring shown 12
2 is connected to the ninth wiring 2419, and FIG. 1 (A) of the nth stage flip-flop 2401_n.
The second wiring 122 shown in) is connected to the eighth wiring 2418.

ただし、本実施の形態のフリップフロップに図23のタイミングチャートを適用した場合
は、i段目のフリップフロップ2401_iの図1(A)に示す第2の配線122は、第
10の配線2420_i+3と接続される。したがって、n-3段目のフリップフロップ
1801_n-3の図1(A)に示す第2の配線122には、新たに追加した配線と接続
される。
However, when the timing chart of FIG. 23 is applied to the flip-flop of the present embodiment, the second wiring 122 shown in FIG. 1 (A) of the flip-flop 2401_i of the i-th stage is connected to the tenth wiring 2420_i + 3. Will be done. Therefore, the second wiring 122 shown in FIG. 1 (A) of the flip-flop 1801_n-3 in the n-3rd stage is connected to the newly added wiring.

なお、第1の配線2411、第2の配線2412、第3の配線2413、第4の配線19
14、第5の配線2415、第8の配線2424、第9の配線2419を、それぞれ第1
の信号線、第2の信号線、第3の信号線、第4の信号線、第5の信号線、第6の信号線、
第7の配線と呼んでもよい。さらに、第6の配線2416、第7の配線2417を、それ
ぞれ第1の電源線、第2の電源線と呼んでもよい。
The first wiring 2411, the second wiring 2412, the third wiring 2413, and the fourth wiring 19
14, the fifth wiring 2415, the eighth wiring 2424, and the ninth wiring 2419 are each the first.
Signal line, second signal line, third signal line, fourth signal line, fifth signal line, sixth signal line,
It may be called the seventh wiring. Further, the sixth wiring 2416 and the seventh wiring 2417 may be referred to as a first power line and a second power line, respectively.

次に、図18に示したシフトレジスタの動作について、図25のタイミングチャート及び
図26のタイミングチャートを参照して説明する。ここで、図25のタイミングチャート
は、走査期間と帰線期間とに分割されている。
Next, the operation of the shift register shown in FIG. 18 will be described with reference to the timing chart of FIG. 25 and the timing chart of FIG. 26. Here, the timing chart of FIG. 25 is divided into a scanning period and a return period.

なお、第4の配線2416にはV1の電位が供給され、第5の配線2417にはV2の電
位が供給される。
The potential of V1 is supplied to the fourth wiring 2416, and the potential of V2 is supplied to the fifth wiring 2417.

なお、第1の配線2411、第2の配線2412、第3の配線2413、第4の配線25
14、第5の配線2415、第8の配線2418、第9の配線2419には、それぞれ図
25に示す信号2511、信号2512、信号2513、信号2514、信号2515、
信号2518、信号2519が入力される。ここで、信号2511、信号2512、信号
2513、信号2514、信号2515、信号2518、信号2519は、H信号の電位
がV1(以下、Hレベルともいう)、L信号の電位がV2(以下、Lレベルともいう)の
デジタル信号である。さらに、信号2511、信号2512、信号2513、信号251
4、信号2515、信号2518、信号2519を、それぞれスタート信号、第1のクロ
ック信号、第2のクロック信号、第3のクロック信号、第4のクロック信号、第1のリセ
ット信号、第2のリセット信号と呼んでもよい。
The first wiring 2411, the second wiring 2412, the third wiring 2413, and the fourth wiring 25
14, the fifth wiring 2415, the eighth wiring 2418, and the ninth wiring 2419 have the signal 2511, the signal 2512, the signal 2513, the signal 2514, and the signal 2515 shown in FIG. 25, respectively.
The signal 2518 and the signal 2519 are input. Here, in the signal 2511, the signal 2512, the signal 2513, the signal 2514, the signal 2515, the signal 2518, and the signal 2519, the potential of the H signal is V1 (hereinafter, also referred to as H level), and the potential of the L signal is V2 (hereinafter, L). It is a digital signal (also called a level). Further, signal 2511, signal 2512, signal 2513, signal 251
4. Signal 2515, signal 2518, signal 2519 are the start signal, the first clock signal, the second clock signal, the third clock signal, the fourth clock signal, the first reset signal, and the second reset, respectively. It may be called a signal.

ただし、第1の配線2411~第9の配線2419にはそれぞれ様々な信号、電位及び電
流が入力されてもよい。
However, various signals, potentials and currents may be input to the first wiring 2411 to the ninth wiring 2419, respectively.

なお、第10の配線2420_1~第10の配線2420_nからは、それぞれH信号の
電位がV1(以下、Hレベルともいう)、L信号の電位がV2(以下、Lレベルともいう
)のデジタル信号が出力される。さらに、実施の形態1と同様に、第10の配線2420
_1~第10の配線2420_nにそれぞれバッファ接続することで、動作する条件の範
囲を大きくすることができる。
From the tenth wiring 2420_1 to the tenth wiring 2420_n, a digital signal having an H signal potential of V1 (hereinafter, also referred to as H level) and an L signal potential of V2 (hereinafter, also referred to as L level) is emitted. It is output. Further, as in the first embodiment, the tenth wiring 2420
By connecting buffers to the _1 to 10th wirings 2420_n, the range of operating conditions can be increased.

なお、フリップフロップ2401_iのスタート信号として第10の配線2420_i-
1から出力される信号を用い、リセット信号として第10の配線2420_i+2から出
力される信号を用いる。ここで、フリップフロップ2401_1のスタート信号は第1の
配線2411から入力され、フリップフロップ2401_n-1の第2のリセット信号は
第9の配線2419から入力され、フリップフロップ2401_nの第1のリセット信号
は第8の配線2418から入力される。ただし、フリップフロップ2401_n-1の第
2のリセット信号として、第10の配線2420_1から出力される信号を用い、フリッ
プフロップ2401_nの第1のリセット信号として、第10の配線2420_2から出
力される信号を用いてもよい。あるいは、フリップフロップ2401_n-1の第2のリ
セット信号として、第10の配線2420_2から出力される信号を用い、フリップフロ
ップ2401_nの第1のリセット信号として、第10の配線2420_3から出力され
る信号を用いてもよい。あるいは、第1のダミーのフリップフロップ及び第2のダミーの
フリップフロップを新たに配置して、第1のダミーのフリップフロップの出力信号及び第
2のダミーのフリップフロップの出力信号を、それぞれ第1のリセット信号、第2のリセ
ット信号として用いてもよい。こうすることで、配線数及び信号数を減らすことができる
The tenth wiring 2420_i- is used as a start signal for the flip-flop 2401_i.
The signal output from 1 is used, and the signal output from the tenth wiring 2420_i + 2 is used as the reset signal. Here, the start signal of the flip-flop 2401_1 is input from the first wiring 2411, the second reset signal of the flip-flop 2401_n-1 is input from the ninth wiring 2419, and the first reset signal of the flip-flop 2401_n is. It is input from the eighth wiring 2418. However, the signal output from the tenth wiring 2420_1 is used as the second reset signal of the flip-flop 2401_n-1, and the signal output from the tenth wiring 2420_1 is used as the first reset signal of the flip-flop 2401_n. You may use it. Alternatively, the signal output from the tenth wiring 2420_2 is used as the second reset signal of the flip-flop 2401_n-1, and the signal output from the tenth wiring 2420_3 is used as the first reset signal of the flip-flop 2401_n. You may use it. Alternatively, a first dummy flip-flop and a second dummy flip-flop are newly arranged, and the output signal of the first dummy flip-flop and the output signal of the second dummy flip-flop are each first. It may be used as a reset signal of the above and a second reset signal. By doing so, the number of wires and the number of signals can be reduced.

図26に示すように、例えば、フリップフロップ2401_iが第1の選択期間となると
、第10の配線2420_iからH信号(選択信号)が出力される。このとき、フリップ
フロップ2401_i+1は第2のセット期間となる。その後、フリップフロップ240
1_iが第2の選択期間となると、配線10の配線2420_iからH信号が出力された
ままである。このとき、フリップフロップ2401_i+1は第1の選択期間となる。そ
の後、フリップフロップ2401_iがリセット期間となると、第10の配線2420_
iからL信号が出力される。このとき、フリップフロップ2401_i+1は第2の選択
期間となる。その後、フリップフロップ2401_iが第1の非選択期間となると、第1
0の配線2420_iは浮遊状態となり電位をV2に維持する。このとき、フリップフロ
ップ2401_i+1はリセット期間となる。その後、フリップフロップ2401_iが
第2の非選択期間となると、第10の配線2420_iからL信号が出力される。このと
き、フリップフロップ2401_i+1は第2の非選択期間となる。
As shown in FIG. 26, for example, when the flip-flop 2401_i is in the first selection period, an H signal (selection signal) is output from the tenth wiring 2420_i. At this time, the flip-flop 2401_i + 1 becomes the second set period. Then flip-flop 240
When 1_i becomes the second selection period, the H signal is still output from the wiring 2420_i of the wiring 10. At this time, the flip-flop 2401_i + 1 becomes the first selection period. After that, when the flip-flop 2401_i reaches the reset period, the tenth wiring 2420_
The L signal is output from i. At this time, the flip-flop 2401_i + 1 becomes the second selection period. After that, when the flip-flop 2401_i becomes the first non-selection period, the first
The wiring 2420_i of 0 is in a floating state and the potential is maintained at V2. At this time, the flip-flop 2401_i + 1 is the reset period. After that, when the flip-flop 2401_i becomes the second non-selection period, the L signal is output from the tenth wiring 2420_i. At this time, the flip-flop 2401_i + 1 becomes the second non-selection period.

こうして、図24のシフトレジスタは、選択信号を第10の配線2420_1から順に第
10の配線2420_nまで出力できる。さらに、図24のシフトレジスタは、フリップ
フロップ2401_iの第2の選択期間と、フリップフリップ2402_i+1の第1の
選択期間とが同一の期間となるため、同じ期間に第10の配線2420_iと第10の配
線2420_i+1から選択信号を出力できる。
In this way, the shift register of FIG. 24 can output the selection signal from the tenth wiring 2420_1 to the tenth wiring 2420_n in order. Further, in the shift register of FIG. 24, since the second selection period of the flip-flop 2401_i and the first selection period of the flip-flop 2402_i + 1 are the same period, the tenth wiring 2420_i and the tenth wiring 2420_i have the same period. The selection signal can be output from the wiring 2420_i + 1.

さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、トランジスタの
しきい値電圧のシフトを抑制できるので、長寿命化を図ることができる。さらに、本実施
の形態のフリップフロップを適用したシフトレジスタは、ノイズに強いため、信頼性の向
上をを図ることができる。さらに、本実施の形態のフリップフロップを適用したシフトレ
ジスタは、誤動作の抑制を図ることができる。
Further, the shift register to which the flip-flop of the present embodiment is applied can suppress the shift of the threshold voltage of the transistor, so that the life can be extended. Further, since the shift register to which the flip-flop of the present embodiment is applied is resistant to noise, reliability can be improved. Further, the shift register to which the flip-flop of the present embodiment is applied can suppress malfunction.

さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、高速に動作でき
るので、より高精細な表示装置、又はより大型の表示装置に適用できる。さらに、本実施
の形態のフリップフロップを工程の簡略化を図ることができる。さらに、本実施の形態の
フリップフロップを適用したシフトレジスタは、製造コストの削減を図ることができる。
さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、歩留まりの向上
を図ることができる。
Further, since the shift register to which the flip-flop of the present embodiment is applied can operate at high speed, it can be applied to a higher-definition display device or a larger display device. Further, the flip-flop of the present embodiment can be simplified in the process. Further, the shift register to which the flip-flop of the present embodiment is applied can reduce the manufacturing cost.
Further, the shift register to which the flip-flop of the present embodiment is applied can improve the yield.

続いて、上述した本実施の形態のシフトレジスタを有する表示装置の構成及び駆動方法に
ついて説明する。ただし、本実施の形態の表示装置は、少なくとも本実施の形態のフリッ
プフロップを有していればよい。
Subsequently, the configuration and driving method of the display device having the shift register of the present embodiment described above will be described. However, the display device of the present embodiment may have at least the flip-flop of the present embodiment.

本実施の形態の表示装置の構成について図27を参照して説明する。図27の表示装置は
、走査線G1~走査線Gnが走査線駆動回路2702によって走査される。さらに、図2
7の表示装置は、奇数行目の画素1703には奇数行目の信号線からビデオ信号を入力し
、偶数行目の画素1703には偶数行目の信号線からビデオ信号を入力する。なお、図1
7の構成と共通するところは共通の符号を用いてその説明を省略する。
The configuration of the display device of this embodiment will be described with reference to FIG. 27. In the display device of FIG. 27, the scanning lines G1 to Gn are scanned by the scanning line driving circuit 2702. Furthermore, FIG.
In the display device 7, the video signal is input from the signal line of the odd-numbered line to the pixel 1703 of the odd-numbered line, and the video signal is input from the signal line of the even-numbered line to the pixel 1703 of the even-numbered line. In addition, FIG.
The points common to the configuration of No. 7 are the same, and the description thereof will be omitted.

なお、図27の表示装置は、走査線駆動回路2702に本実施の形態のシフトレジスタを
適用することによって、図20の表示装置と同様の動作を1つの走査線駆動回路によって
行うことができる。したがって、図27の表示装置は、画素にビデオ信号を高速に書き込
むことができる。さらに、図27の表示装置は、長寿命化を図ることができる。さらに、
図27の表示装置は、大型化を図ることができる。さらに、図27の表示装置は、高精細
化を図ることができる。さらに、図27の表示装置は、省電力化を図ることができる。さ
らに、図27の表示装置は、ICの発熱の抑制を図ることができる。さらに、図27の表
示装置は、ICの省電力化を図ることができる。
By applying the shift register of the present embodiment to the scan line drive circuit 2702, the display device of FIG. 27 can perform the same operation as the display device of FIG. 20 by one scan line drive circuit. Therefore, the display device of FIG. 27 can write a video signal to the pixels at high speed. Further, the display device of FIG. 27 can have a long life. moreover,
The display device of FIG. 27 can be increased in size. Further, the display device of FIG. 27 can be improved in definition. Further, the display device of FIG. 27 can save power. Further, the display device of FIG. 27 can suppress heat generation of the IC. Further, the display device of FIG. 27 can save power of the IC.

なお、図28に示すように、走査線G1~走査線Gnが第1の走査線駆動回路2802a
及び第2の走査線駆動回路2802bによって走査されてもよい。第1の走査線駆動回路
2802a及び第2の駆動回路2802bは、図27に示した走査線駆動回路2702と
同様の構成であり、同じタイミングで走査線G1~走査線Gnを走査する。さらに、第1
の走査線駆動回路2802a及び第2の駆動回路2802bを、それぞれ第1の駆動回路
、第2の駆動回路と呼んでもよい。
As shown in FIG. 28, the scanning lines G1 to Gn are the first scanning line drive circuit 2802a.
And may be scanned by the second scan line drive circuit 2802b. The first scanning line driving circuit 2802a and the second driving circuit 2802b have the same configuration as the scanning line driving circuit 2702 shown in FIG. 27, and scan the scanning lines G1 to Gn at the same timing. Furthermore, the first
The scanning line drive circuit 2802a and the second drive circuit 2802b may be referred to as a first drive circuit and a second drive circuit, respectively.

図28の表示装置は、第1の走査線駆動回路2802a及び第2の走査線駆動回路280
2bのうち一方に不良が生じても、走査線駆動回路2802a及び第2の走査線駆動回路
2802bのうち他方が走査線G1~走査線Gnを走査できるため、冗長性を持つことが
できる。さらに、図28の表示装置は、第1の走査線駆動回路2802a及び第2の走査
線駆動回路2802bが走査線G1~走査線Gnを走査するため、第1の走査線駆動回路
2802aの負荷(走査線の配線抵抗及び走査線の寄生容量)及び第2の走査線駆動回路
2802bの負荷を図27に比べ半分にすることができる。したがって、図28の表示装
置は、第1の走査線駆動回路2802aの負荷及び第2の走査線駆動回路2802bの負
荷が低減されるので、走査線G1~走査線Gnに入力される信号(第1の走査線駆動回路
2802a及び第2の駆動回路2802bの出力信号)の遅延及びなまりを低減すること
ができる。さらに、図28の表示装置は、第1の走査線駆動回路2802aの負荷及び第
2の走査線駆動回路2802bの負荷が低減されるので、走査線G1~走査線Gnを高速
に走査することができる。さらに、走査線G1~走査線Gnを高速に走査することができ
るので、パネルの大型化又はパネルの高精細化を可能にできる。なお、図17の構成と共
通するところは共通の符号を用いてその説明を省略する。
The display device of FIG. 28 includes a first scanning line driving circuit 2802a and a second scanning line driving circuit 280.
Even if a defect occurs in one of the 2bs, the other of the scan line drive circuit 2802a and the second scan line drive circuit 2802b can scan the scan lines G1 to Gn, so that redundancy can be obtained. Further, in the display device of FIG. 28, since the first scanning line driving circuit 2802a and the second scanning line driving circuit 2802b scan the scanning lines G1 to Gn, the load of the first scanning line driving circuit 2802a ( The wiring resistance of the scanning line and the parasitic capacitance of the scanning line) and the load of the second scanning line drive circuit 2802b can be halved as compared with FIG. 27. Therefore, in the display device of FIG. 28, the load of the first scanning line drive circuit 2802a and the load of the second scanning line driving circuit 2802b are reduced, so that the signals input to the scanning lines G1 to Gn (the first). It is possible to reduce the delay and bluntness of the scan line drive circuit 2802a of 1 and the output signal of the second drive circuit 2802b). Further, the display device of FIG. 28 reduces the load of the first scanning line drive circuit 2802a and the load of the second scanning line driving circuit 2802b, so that the scanning lines G1 to Gn can be scanned at high speed. can. Further, since the scanning lines G1 to Gn can be scanned at high speed, it is possible to increase the size of the panel or increase the definition of the panel. It should be noted that the common reference numerals are used for the parts common to the configuration of FIG. 17, and the description thereof will be omitted.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態3)
本実施の形態では、実施の形態1及び実施の形態2とは別のフリップフロップ、当該フリ
ップフロップを有する駆動回路、及び当該駆動回路を有する表示装置の構成並びに駆動方
法について説明する。本実施の形態のフリップフロップは、フリップフロップの出力信号
と、フリップフロップの転送信号とを、別々のトランジスタによって別々の配線から出力
することを特徴とする。なお、実施の形態1及び実施の形態2と同様なものに関しては共
通の符号を用いて示し、同一部分又は同様な機能を有する部分の詳細な説明は省略する。
(Embodiment 3)
In the present embodiment, a flip-flop different from the first and second embodiments, a drive circuit having the flip-flop, and a configuration and a driving method of a display device having the drive circuit will be described. The flip-flop of the present embodiment is characterized in that the output signal of the flip-flop and the transfer signal of the flip-flop are output from different wirings by different transistors. The same parts as those of the first embodiment and the second embodiment are shown by using common reference numerals, and detailed description of the same parts or parts having the same functions will be omitted.

本実施の形態のフリップフロップの基本構成について、図40を参照して説明する。図4
0に示すフリップフロップは、第1のトランジスタ101、第2のトランジスタ102、
第3のトランジスタ103、第4のトランジスタ104、第5のトランジスタ105、第
6のトランジスタ106、第7のトランジスタ107、第8のトランジスタ108、第9
のトランジスタ109及び第10のトランジスタ110を有する。本実施の形態において
、第9のトランジスタ109及び第10のトランジスタ110は、Nチャネル型トランジ
スタとし、ゲート・ソース間電圧(Vgs)がしきい値電圧(Vth)を上回ったとき導
通状態になるものとする。
The basic configuration of the flip-flop of the present embodiment will be described with reference to FIG. 40. Figure 4
The flip-flops shown in 0 are the first transistor 101, the second transistor 102, and the like.
Third transistor 103, fourth transistor 104, fifth transistor 105, sixth transistor 106, seventh transistor 107, eighth transistor 108, ninth transistor
It has a transistor 109 and a tenth transistor 110. In the present embodiment, the ninth transistor 109 and the tenth transistor 110 are N-channel transistors, and are in a conductive state when the gate-source voltage (Vgs) exceeds the threshold voltage (Vth). And.

なお、図40のフリップフロップは、図1(A)のフリップフロップに第9のトランジス
タ109及び第10のトランジスタ110を追加したものと同様である。したがって、第
1のトランジスタ101、第2のトランジスタ102、第3のトランジスタ103、第4
のトランジスタ104、第5のトランジスタ105、第6のトランジスタ106、7のト
ランジスタ107及び第8のトランジスタ108は、図1と同様のものを用いることがで
きる。
The flip-flop of FIG. 40 is the same as the flip-flop of FIG. 1A with the ninth transistor 109 and the tenth transistor 110 added. Therefore, the first transistor 101, the second transistor 102, the third transistor 103, and the fourth transistor
As the transistor 104, the fifth transistor 105, the sixth transistor 106, the transistor 107 of the sixth transistor 107, and the eighth transistor 108, the same ones as in FIG. 1 can be used.

図40のフリップフリップフロップの接続関係について説明する。第1のトランジスタ1
01の第1の電極(ソース電極およびドレイン電極の一方)が第5の配線125に接続さ
れ、第1のトランジスタ101の第2の電極(ソース電極およびドレイン電極の他方)が
第3の配線123に接続される。第2のトランジスタ102の第1の電極が第4の配線1
24に接続され、第2のトランジスタ102の第2の電極が第3の配線123に接続され
、第2のトランジスタ102のゲート電極が第8の配線128に接続される。第3のトラ
ンジスタ103の第1の電極が第6の配線126に接続され、第3のトランジスタ103
の第2の電極が第6のトランジスタ106のゲート電極に接続され、第3のトランジスタ
103のゲート電極が第7の配線127に接続される。第4のトランジスタ104の第1
の電極が第10の配線130に接続され、第4のトランジスタ104の第2の電極が第6
のトランジスタ106のゲート電極に接続され、第4のトランジスタ104のゲート電極
が第8の配線128に接続される。第5のトランジスタ105の第1の電極が第9の配線
129に接続され、第5のトランジスタ105の第2の電極が第1のトランジスタ101
のゲート電極に接続され、第5のトランジスタ105のゲート電極が第1の配線121に
接続される。第6のトランジスタ106の第1の電極が第12の配線132に接続され、
第6のトランジスタ106の第2の電極が第1のトランジスタ101のゲート電極に接続
される。第7のトランジスタ107の第1の電極が第13の配線133に接続され、第7
のトランジスタ107の第2の電極が第1のトランジスタ101のゲート電極に接続され
、第7のトランジスタ107のゲート電極が第2の配線122に接続される。第8のトラ
ンジスタ108の第1の電極が第11の配線131に接続され、第8のトランジスタ10
8の第2の電極が第6のトランジスタ106のゲート電極に接続され、第8のトランジス
タ108のゲート電極が第1のトランジスタ101のゲート電極に接続される。第9のト
ランジスタ109の第1の電極が第15の配線135に接続され、第9のトランジスタ1
09の第2の電極が第14の配線134に接続され、第9のトランジスタ109のゲート
電極が第1のトランジスタ101のゲート電極に接続される。第10のトランジスタ11
0の第1の電極が第16の配線136に接続され、第10のトランジスタ110の第2の
電極が第14の配線134に接続され、第10のトランジスタ110のゲート電極が第8
の配線128に接続される。
The connection relationship of the flip-flops of FIG. 40 will be described. First transistor 1
The first electrode of 01 (one of the source electrode and the drain electrode) is connected to the fifth wire 125, and the second electrode of the first transistor 101 (the other of the source electrode and the drain electrode) is the third wire 123. Connected to. The first electrode of the second transistor 102 is the fourth wiring 1
Connected to 24, the second electrode of the second transistor 102 is connected to the third wire 123, and the gate electrode of the second transistor 102 is connected to the eighth wire 128. The first electrode of the third transistor 103 is connected to the sixth wiring 126, and the third transistor 103
The second electrode is connected to the gate electrode of the sixth transistor 106, and the gate electrode of the third transistor 103 is connected to the seventh wiring 127. The first of the fourth transistor 104
Electrode is connected to the tenth wiring 130, and the second electrode of the fourth transistor 104 is the sixth.
The gate electrode of the fourth transistor 104 is connected to the gate electrode of the transistor 106, and the gate electrode of the fourth transistor 104 is connected to the eighth wiring 128. The first electrode of the fifth transistor 105 is connected to the ninth wiring 129, and the second electrode of the fifth transistor 105 is the first transistor 101.
It is connected to the gate electrode of the fifth transistor 105, and the gate electrode of the fifth transistor 105 is connected to the first wiring 121. The first electrode of the sixth transistor 106 is connected to the twelfth wiring 132, and the first electrode is connected to the twelfth wiring 132.
The second electrode of the sixth transistor 106 is connected to the gate electrode of the first transistor 101. The first electrode of the seventh transistor 107 is connected to the thirteenth wiring 133, and the seventh is
The second electrode of the transistor 107 is connected to the gate electrode of the first transistor 101, and the gate electrode of the seventh transistor 107 is connected to the second wiring 122. The first electrode of the eighth transistor 108 is connected to the eleventh wiring 131, and the eighth transistor 10
The second electrode of 8 is connected to the gate electrode of the sixth transistor 106, and the gate electrode of the eighth transistor 108 is connected to the gate electrode of the first transistor 101. The first electrode of the ninth transistor 109 is connected to the fifteenth wiring 135, and the ninth transistor 1
The second electrode of 09 is connected to the 14th wiring 134, and the gate electrode of the ninth transistor 109 is connected to the gate electrode of the first transistor 101. Tenth transistor 11
The first electrode of 0 is connected to the sixteenth wire 136, the second electrode of the tenth transistor 110 is connected to the fourteenth wire 134, and the gate electrode of the tenth transistor 110 is the eighth.
It is connected to the wiring 128 of.

なお、第1の配線121、第2の配線122、第3の配線123、第5の配線125、第
7の配線127、第8の配線128、第14の配線134及び第15の配線135を、そ
れぞれ第1の信号線、第2の信号、第3の信号線、第4の信号線、第5の信号線、第6の
信号線、第7の信号線、第8の信号線と呼んでもよい。さらに、第4の配線124、第6
の配線126、第9の配線129、第10の配線130、11の配線131、第12の配
線132、第13の配線133及び第16の配線136を、それぞれ第1の電源線、第2
の電源線、第3の電源線、第4の電源線、第5の電源線、第6の電源線、第7の電源線、
第8の電源線と呼んでもよい。
The first wiring 121, the second wiring 122, the third wiring 123, the fifth wiring 125, the seventh wiring 127, the eighth wiring 128, the fourteenth wiring 134, and the fifteenth wiring 135. , Called the first signal line, the second signal, the third signal line, the fourth signal line, the fifth signal line, the sixth signal line, the seventh signal line, and the eighth signal line, respectively. But it may be. Further, the fourth wiring 124 and the sixth wiring
Wiring 126, 9th wiring 129, 10th wiring 130, 11th wiring 131, 12th wiring 132, 13th wiring 133 and 16th wiring 136, respectively, the first power line and the second.
Power line, 3rd power line, 4th power line, 5th power line, 6th power line, 7th power line,
It may be called the eighth power line.

次に、図40に示したフリップフロップの動作について、図41のタイミングチャートを
参照して説明する。さらに、図41のタイミングチャートをセット期間、選択期間、リセ
ット期間、第1の非選択期間、第2の非選択期間に分割して説明する。ただし、セット期
間、リセット期間、第1の非選択期間及び第2の非選択期間を合わせて非選択期間と呼ぶ
こともある。
Next, the operation of the flip-flop shown in FIG. 40 will be described with reference to the timing chart of FIG. 41. Further, the timing chart of FIG. 41 will be described by dividing it into a set period, a selection period, a reset period, a first non-selection period, and a second non-selection period. However, the set period, the reset period, the first non-selection period, and the second non-selection period may be collectively referred to as a non-selection period.

なお、第6の配線126及び第9の配線129にはV1の電位が供給され、第4の配線1
24、第10の配線130、第11の配線131、第12の配線132、第13の配線1
33及び第16の配線136にはV2の電位が供給される。ここで、V1>V2である。
The potential of V1 is supplied to the sixth wiring 126 and the ninth wiring 129, and the fourth wiring 1
24, 10th wiring 130, 11th wiring 131, 12th wiring 132, 13th wiring 1
The potential of V2 is supplied to the 33rd and the 16th wiring 136. Here, V1> V2.

なお、第1の配線121、第5の配線125、第8の配線128、第7の配線127及び
第2の配線122には、それぞれ図24に示す信号221、信号225、信号228、信
号227、信号222が入力される。さらに、第15の配線135には図24に示す信号
225が入力される。ここで、信号221、信号225、信号228、信号227、信号
222は、図2又は図6と同様なものを用いることができる。
The first wiring 121, the fifth wiring 125, the eighth wiring 128, the seventh wiring 127, and the second wiring 122 have signals 221, 225, signal 228, and signal 227 shown in FIG. 24, respectively. , Signal 222 is input. Further, the signal 225 shown in FIG. 24 is input to the fifteenth wiring 135. Here, as the signal 221 and the signal 225, the signal 228, the signal 227, and the signal 222, the same ones as those in FIG. 2 or FIG. 6 can be used.

ただし、第1の配線121、第2の配線122、第4の配線124~第13の配線133
、第15の配線135、第16の配線136には、それぞれ様々な信号、電位及び電流が
入力されてもよい。
However, the first wiring 121, the second wiring 122, the fourth wiring 124 to the thirteenth wiring 133
, Fifteenth wiring 135 and sixteenth wiring 136 may be input with various signals, potentials and currents, respectively.

なお、第3の配線123及び第14の配線134からは、それぞれ信号223、信号23
4が出力される。信号234はフリップフロップの出力信号であり、信号223はフリッ
プフロップの転送信号である。ただし、信号223をフリップフロップの出力信号、信号
234をフリップフロップの転送信号としてもよい。
From the third wiring 123 and the 14th wiring 134, the signal 223 and the signal 23, respectively.
4 is output. The signal 234 is a flip-flop output signal, and the signal 223 is a flip-flop transfer signal. However, the signal 223 may be used as the output signal of the flip-flop, and the signal 234 may be used as the transfer signal of the flip-flop.

したがって、信号234をフリップフロップの出力信号、信号223をフリップフロップ
の転送信号として用いる場合は、第9のトランジスタ109のW/Lの値を第1のトラン
ジスタ101~第10のトランジスタ110のW/Lの中で最大とするとよい。ただし、
信号223をフリップフロップの出力信号、信号234をフリップフロップの転送信号と
して用いる場合は、第1のトランジスタ101のW/Lの値を第1のトランジスタ101
~第10のトランジスタ110のW/Lの中で最大とする。
Therefore, when the signal 234 is used as the output signal of the flip-flop and the signal 223 is used as the transfer signal of the flip-flop, the W / L value of the ninth transistor 109 is used as the W / L of the first transistor 101 to the tenth transistor 110. It should be the largest in L. however,
When the signal 223 is used as the output signal of the flip-flop and the signal 234 is used as the transfer signal of the flip-flop, the W / L value of the first transistor 101 is used as the value of the W / L of the first transistor 101.
It is set to the maximum among the W / L of the tenth transistor 110.

本実施の形態では、すでに述べたように、フリップフロップの出力信号と、フリップフロ
ップの転送信号とを、別々のトランジスタによって別々の配線から出力することを特徴と
する。つまり、図40のフリップフロップは、第1のトランジスタ101及び第2のトラ
ンジスタ102によって第3の配線123から信号を出力し、第9のトランジスタ109
及び第10のトランジスタ110によって第14の配線134から信号を出力する。さら
に、第9のトランジスタ109及び第10のトランジスタ110は第1のトランジスタ1
01及び第2のトランジスタ102と同じように接続されるため、図41に示すように第
14の配線134から出力される信号(信号234)は第3の配線123から出力される
信号(信号223)とおおむね同じ波形である。
As described above, the present embodiment is characterized in that the output signal of the flip-flop and the transfer signal of the flip-flop are output from different wirings by different transistors. That is, the flip-flop of FIG. 40 outputs a signal from the third wiring 123 by the first transistor 101 and the second transistor 102, and the ninth transistor 109.
And the signal is output from the 14th wiring 134 by the 10th transistor 110. Further, the ninth transistor 109 and the tenth transistor 110 are the first transistor 1.
Since it is connected in the same manner as the 01 and the second transistor 102, the signal (signal 234) output from the 14th wiring 134 is the signal (signal 223) output from the third wiring 123 as shown in FIG. 41. ) And the waveform is almost the same.

なお、第1のトランジスタ101は、次の段の第5のトランジスタ105のゲート電極に
電荷を供給できればよいので、第1のトランジスタ101のW/Lの値は、第5のトラン
ジスタ105のW/Lの値の2倍以下とすることが好ましく、より好ましくは第5のトラ
ンジスタ105のW/Lの値以下とする。
Since the first transistor 101 only needs to be able to supply an electric charge to the gate electrode of the fifth transistor 105 in the next stage, the W / L value of the first transistor 101 is the W / L of the fifth transistor 105. It is preferably 2 times or less of the value of L, and more preferably the value of W / L or less of the fifth transistor 105.

なお、第9のトランジスタ109及び第10のトランジスタ110は、それぞれ第1のト
ランジスタ101、第2のトランジスタ102と同様の機能を有する。さらに、第9のト
ランジスタ109及び第10のトランジスタ110をバッファ部と呼んでもよい。
The ninth transistor 109 and the tenth transistor 110 have the same functions as the first transistor 101 and the second transistor 102, respectively. Further, the ninth transistor 109 and the tenth transistor 110 may be referred to as a buffer unit.

以上のことから、図40のフリップフロップは、第14の配線134に大きな負荷が接続
され、信号234に遅延、なまりなどが生じても、誤動作を防止することができる。なぜ
なら、図40のフリップフロップは、フリップフロップの出力信号と、フリップフロップ
の転送信号とを、別々のトランジスタによって別々の配線から出力することによって、出
力信号の遅延、なまりなどの影響を受けないからである。
From the above, the flip-flop of FIG. 40 can prevent malfunction even if a large load is connected to the 14th wiring 134 and a delay or blunting occurs in the signal 234. This is because the flip-flop of FIG. 40 is not affected by the delay or blunting of the output signal by outputting the flip-flop output signal and the flip-flop transfer signal from different wirings by different transistors. Is.

さらに、本実施の形態のフリップフロップは、高速に動作できるので、より高精細な表示
装置、又はより大型の表示装置に適用できる。さらに、本実施の形態のフリップフロップ
は、工程の簡略化を図ることができる。さらに、本実施の形態のフリップフロップは、製
造コストの削減を図ることができる。さらに、本実施の形態のフリップフロップは、歩留
まりの向上を図ることができる。
Further, since the flip-flop of the present embodiment can operate at high speed, it can be applied to a higher-definition display device or a larger display device. Further, the flip-flop of the present embodiment can simplify the process. Further, the flip-flop of the present embodiment can reduce the manufacturing cost. Further, the flip-flop of the present embodiment can improve the yield.

なお、本実施の形態のフリップフロップは、図1(B)、図1(C)、図5(A)、図5
(B)、図5(C)、図7(A)、図7(B)、図8(A)、図8(B)、図9(A)、
図9(B)、図10(A)及び図10(B)と自由に組み合わせて実施することができる
。さらに、本実施の形態のフリップフロップは、実施の形態1に記載の駆動タイミング及
び実施の形態2に記載の駆動タイミングと自由に組み合わせて実施することができる。
The flip-flops of the present embodiment are FIG. 1 (B), FIG. 1 (C), FIG. 5 (A), and FIG.
(B), FIG. 5 (C), FIG. 7 (A), FIG. 7 (B), FIG. 8 (A), FIG. 8 (B), FIG. 9 (A),
It can be carried out in any combination with FIGS. 9 (B), 10 (A) and 10 (B). Further, the flip-flop of the present embodiment can be freely combined with the drive timing described in the first embodiment and the drive timing described in the second embodiment.

続いて、上述した本実施の形態のフリップフロップを有するシフトレジスタの構成及び駆
動方法について説明する。
Subsequently, the configuration and driving method of the shift register having the flip-flop of the present embodiment described above will be described.

本実施の形態のシフトレジスタの構成について図42を参照して説明する。図42のシフ
トレジスタは、n個のフリップフロップ(フリップフロップ4201_1~フリップフロ
ップ4201_n)を有する。
The configuration of the shift register of the present embodiment will be described with reference to FIG. 42. The shift register of FIG. 42 has n flip-flops (flip-flops 4201-1 to 4201_n).

図42のシフトレジスタの接続関係について説明する。図42のシフトレジスタは、i段
目のフリップフロップ4201_i(フリップフロップ4201_1~4201_nのう
ちいずれか一)は、図40に示した第1の配線121が第7の配線4217_i-1に接
続され、図40に示した第2の配線122が第7の配線4217_i+1に接続され、図
40に示した第3の配線123が第7の配線4217_iに接続され、図40に示した第
4の配線124、第10の配線130、第11の配線131、第12の配線132、第1
3の配線133及び第16の配線136が第5の配線4215に接続され、図40に示し
た第5の配線125、第7の配線127及び第15の配線135が奇数段目のフリップフ
ロップでは第2の配線4212に接続され、偶数段目のフリップフロップでは第3の配線
4213に接続され、図40に示した第8の配線128が奇数段目のフリップフロップで
は第3の配線4213に接続され、偶数段目のフリップフロップでは第2の配線4212
に接続され、図40に示した第6の配線126及び第9の配線129が第4の配線421
4に接続され、図40に示した第14の配線134が第8の配線4218_iに接続され
る。ただし、1段目のフリップフリップ4201_1の図40に示す第1の配線121は
第1の配線4211に接続され、n段目のフリップフロップ4201_nの図40に示す
第2の配線122は第6の配線4216に接続される。
The connection relationship of the shift register of FIG. 42 will be described. In the shift register of FIG. 42, in the flip flop 4201_i of the i-th stage (any one of the flip flops 4201_1 to 4201_n), the first wiring 121 shown in FIG. 40 is connected to the seventh wiring 4217_i-1. The second wiring 122 shown in FIG. 40 is connected to the seventh wiring 4217_i + 1, the third wiring 123 shown in FIG. 40 is connected to the seventh wiring 4217_i, and the fourth wiring 124 shown in FIG. 40 is connected. , 10th wiring 130, 11th wiring 131, 12th wiring 132, 1st
The wiring 133 and the sixth wiring 136 are connected to the fifth wiring 4215, and the fifth wiring 125, the seventh wiring 127, and the fifteenth wiring 135 shown in FIG. 40 are in an odd-stage flip flop. It is connected to the second wiring 4212, connected to the third wiring 4213 in the even-stage flip flop, and the eighth wiring 128 shown in FIG. 40 is connected to the third wiring 4213 in the odd-stage flip flop. And in the even-stage flip flop, the second wiring 4212
The sixth wiring 126 and the ninth wiring 129 shown in FIG. 40 are connected to the fourth wiring 421.
The 14th wiring 134 shown in FIG. 40 is connected to the 8th wiring 4218_i. However, the first wiring 121 shown in FIG. 40 of the first-stage flip-flop 4201_1 is connected to the first wiring 4211, and the second wiring 122 shown in FIG. 40 of the nth-stage flip-flop 4201_n is the sixth wiring. It is connected to the wiring 4216.

なお、第1の配線4211、第2の配線4212、第3の配線4213、第6の配線42
16を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでも
よい。さらに、第4の配線4214、第5の配線4215を、それぞれ第1の電源線、第
2の電源線と呼んでもよい。
The first wiring 4211, the second wiring 4212, the third wiring 4213, and the sixth wiring 42
16 may be referred to as a first signal line, a second signal line, a third signal line, and a fourth signal line, respectively. Further, the fourth wiring 4214 and the fifth wiring 4215 may be referred to as a first power line and a second power line, respectively.

次に、図42に示したシフトレジスタの動作について、図43のタイミングチャートを参
照して説明する。
Next, the operation of the shift register shown in FIG. 42 will be described with reference to the timing chart of FIG. 43.

なお、第1の配線4211、第2の配線4212、第3の配線4213、第4の配線42
14、第5の配線4215、第6の配線4216には、信号4311、信号4312、信
号4313、信号4314、信号4315、信号4216が入力される。信号4311、
信号4312、信号4313、信号4314、信号4315及び信号4216は、それぞ
れ信号211、信号212、信号213、信号214、信号215、信号216に相当す
る。
The first wiring 4211, the second wiring 4212, the third wiring 4213, and the fourth wiring 42
Signal 4311, signal 4312, signal 4313, signal 4314, signal 4315, and signal 4216 are input to the 14, fifth wiring 4215, and sixth wiring 4216. Signal 4311,
The signal 4312, the signal 4313, the signal 4314, the signal 4315 and the signal 4216 correspond to the signal 211, the signal 212, the signal 213, the signal 214, the signal 215 and the signal 216, respectively.

なお、第7の配線4217_1~第7の配線4217_n、及び第8の配線4218_1
~第8の配線4218_nからはそれぞれH信号の電位がV1(以下、Hレベルともいう
)、L信号の電位がV2(以下、Lレベルともいう)のデジタル信号が出力される。
The 7th wiring 4217_1 to the 7th wiring 4217_n and the 8th wiring 4218_1
A digital signal having an H signal potential of V1 (hereinafter, also referred to as H level) and an L signal potential of V2 (hereinafter, also referred to as L level) is output from the eighth wiring 4218_n, respectively.

図43に示すように、例えば、フリップフロップ4201_iが選択期間となると、第7
の配線4217_i及び第8の配線4218_iからH信号(選択信号)が出力される。
このとき、フリップフロップ4201_i+1はセット期間となる。その後、フリップフ
ロップ4201_iがリセット期間となって、第7の配線4217_i及び第8の配線4
218_iからL信号が出力される。このとき、フリップフロップ4201_i+1は選
択期間となる。その後、フリップフロップ4201_iが第1の非選択期間となって、第
7の配線4217_i及び第8の配線4218_iは浮遊状態となり電位をV2に維持す
る。このとき、フリップフロップ4201_i+1はリセット期間となる。その後、フリ
ップフロップ4201_iが第2の非選択期間となって、第7の配線4217_i及び第
8の配線4218_iからL信号が出力される。このとき、フリップフロップ4201_
i+1は第1の非選択期間となる。
As shown in FIG. 43, for example, when the flip-flop 4201_i becomes the selection period, the seventh
The H signal (selection signal) is output from the wiring 4217_i and the eighth wiring 4218_i.
At this time, the flip-flop 4201_i + 1 is the set period. After that, the flip-flop 4201_i becomes the reset period, and the seventh wiring 4217_i and the eighth wiring 4
The L signal is output from 218_i. At this time, the flip-flop 4201_i + 1 is the selection period. After that, the flip-flop 4201_i becomes the first non-selection period, and the seventh wiring 4217_i and the eighth wiring 4218_i are in a floating state and the potential is maintained at V2. At this time, the flip-flop 4201_i + 1 is the reset period. After that, the flip-flop 4201_i becomes the second non-selection period, and the L signal is output from the seventh wiring 4217_i and the eighth wiring 4218_i. At this time, the flip-flop 4201_
i + 1 is the first non-selection period.

こうして、図42のシフトレジスタは、転送信号を第7の配線4217_1から順に第7
の配線4217_nまで出力できる。さらに、図42のシフトレジスタは、選択信号を第
8の配線4218_1から順に第8の配線4218_nまで出力できる。つまり、図42
のシフトレジスタは、第8の配線4218_1~第8の配線4218_nを走査すること
ができる。したがって、図42のシフトレジスタは、シフトレジスタとしての機能を十分
得ることができる。
In this way, the shift register of FIG. 42 transfers the transfer signal to the seventh wiring 4217_1 in order from the seventh wiring 4217_1.
Wiring 4217_n can be output. Further, the shift register of FIG. 42 can output the selection signal from the eighth wiring 4218_1 to the eighth wiring 4218_n in order. That is, FIG. 42.
The shift register of can scan the eighth wiring 4218_1 to the eighth wiring 4218_n. Therefore, the shift register of FIG. 42 can sufficiently obtain a function as a shift register.

さらに、図42のシフトレジスタは、第8の配線4218_1~第8の配線4218_n
に大きな負荷(抵抗及び容量など)が接続されも、負荷の影響を受けずに動作することが
できる。さらに、図42のシフトレジスタは、第8の配線4218_1~第8の配線42
18_nのいずれかが電源線又は信号線とショートしても、正常動作を続けることができ
る。したがって、図42のシフトレジスタは、動作する条件の範囲の向上を図ることがで
きる。さらに、図42のシフトレジスタは、信頼性の向上を図ることができる。さらに、
図42のシフトレジスタは、歩留まりの向上を図ることができる。なぜなら、図42のシ
フトレジスタは、各フリップフロップの転送信号と、各フリップフロップの出力信号とを
分割しているからである。
Further, the shift register of FIG. 42 has the eighth wiring 4218_1 to the eighth wiring 4218_n.
Even if a large load (resistance, capacitance, etc.) is connected to, it can operate without being affected by the load. Further, the shift register of FIG. 42 has the eighth wiring 4218_1 to the eighth wiring 42.
Even if any of 18_n is short-circuited with the power line or the signal line, normal operation can be continued. Therefore, the shift register of FIG. 42 can improve the range of operating conditions. Further, the shift register of FIG. 42 can improve reliability. moreover,
The shift register of FIG. 42 can improve the yield. This is because the shift register of FIG. 42 divides the transfer signal of each flip-flop and the output signal of each flip-flop.

さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、トランジスタの
しきい値電圧のシフトを抑制できる。さらに、本実施の形態のフリップフロップを適用し
たシフトレジスタは、長寿命化を図ることができる。さらに、本実施の形態のフリップフ
ロップを適用したシフトレジスタは、信頼性の向上を図ることができる。さらに、本実施
の形態のフリップフロップを適用したシフトレジスタは、誤動作の抑制を図ることができ
る。さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、より高精細
な表示装置、又はより大型の表示装置に適用できる。さらに、本実施の形態のフリップフ
ロップを適用したシフトレジスタは、工程の簡略化を図ることができる。さらに、本実施
の形態のフリップフロップを適用したシフトレジスタは、製造コストの削減を図ることが
できる。さらに、本実施の形態のフリップフロップを適用したシフトレジスタは、歩留ま
りの向上を図ることができる。
Further, the shift register to which the flip-flop of the present embodiment is applied can suppress the shift of the threshold voltage of the transistor. Further, the shift register to which the flip-flop of the present embodiment is applied can have a long life. Further, the shift register to which the flip-flop of the present embodiment is applied can improve the reliability. Further, the shift register to which the flip-flop of the present embodiment is applied can suppress malfunction. Further, the shift register to which the flip-flop of the present embodiment is applied can be applied to a higher-definition display device or a larger display device. Further, the shift register to which the flip-flop of the present embodiment is applied can simplify the process. Further, the shift register to which the flip-flop of the present embodiment is applied can reduce the manufacturing cost. Further, the shift register to which the flip-flop of the present embodiment is applied can improve the yield.

本実施の形態の表示装置として、図17、図19、図20、図27、図28の表示装置を
用いることができる。したがって、走査線駆動回路として本実施の形態のシフトレジスタ
用いた表示装置は、トランジスタのしきい値電圧のシフトを抑制できる。さらに、本実施
の形態の表示装置は、長寿命化を図ることができる。さらに、本実施の形態の表示装置は
、信頼性の向上を図ることができる。さらに、本実施の形態の表示装置は、誤動作の抑制
を図ることができる。さらに、本実施の形態の表示装置は、より高精細、又はより大型化
を図ることができる。さらに、本実施の形態の表示装置は、工程の簡略化を図ることがで
きる。さらに、本実施の形態の表示装置は、製造コストの削減を図ることができる。さら
に、本実施の形態の表示装置は、歩留まりの向上を図ることができる。さらに、本実施の
形態の表示装置は、ドライバICの省電力化を図ることができる。さらに、本実施の形態
の表示装置は、ドライバICの発熱の抑制を図ることができる。
As the display device of the present embodiment, the display devices of FIGS. 17, 19, 20, 27, and 28 can be used. Therefore, the display device using the shift register of the present embodiment as the scanning line drive circuit can suppress the shift of the threshold voltage of the transistor. Further, the display device of the present embodiment can have a long life. Further, the display device of the present embodiment can improve the reliability. Further, the display device of the present embodiment can suppress malfunction. Further, the display device of the present embodiment can be made higher in definition or larger in size. Further, the display device of the present embodiment can simplify the process. Further, the display device of the present embodiment can reduce the manufacturing cost. Further, the display device of the present embodiment can improve the yield. Further, the display device of the present embodiment can save power of the driver IC. Further, the display device of the present embodiment can suppress heat generation of the driver IC.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態4)
本実施の形態では、本明細書のフリップフロップが有するトランジスタにPチャネル型ト
ランジスタを適用した場合について説明する。さらに、当該フリップフロップを有する駆
動回路、及び当該駆動回路を有する表示装置の構成並びに駆動方法について説明する。
(Embodiment 4)
In this embodiment, a case where a P-channel transistor is applied to the transistor included in the flip-flop of the present specification will be described. Further, the configuration and driving method of the drive circuit having the flip-flop and the display device having the drive circuit will be described.

本実施の形態のフリップフロップは、図1(A)のフリップフロップが有するトランジス
タの極性をPチャネル型とした場合について説明する。ただし、図1(B)、図1(C)
、図5(A)、図5(B)、図5(C)、図7(A)、図7(B)、図8(A)、図8(
B)、図9(A)、図9(B)、図10(A)、図10(B)又は図40に示したフリッ
プフロップが有すトランジスタの極性をPチャネル型とすることもできる。さらに、本実
施の形態のフリップフロップは、実施の形態1乃至実施の形態3の記載と自由に組み合わ
せて実施することもできる。
The flip-flop of the present embodiment will be described in the case where the polarity of the transistor included in the flip-flop of FIG. 1A is a P-channel type. However, FIG. 1 (B) and FIG. 1 (C)
, FIG. 5 (A), FIG. 5 (B), FIG. 5 (C), FIG. 7 (A), FIG. 7 (B), FIG. 8 (A), FIG. 8 (
The polarity of the transistor having the flip-flop shown in B), FIG. 9A, FIG. 9B, FIG. 10A, FIG. 10B, or FIG. 40 may be P-channel type. Further, the flip-flop of the present embodiment can be freely combined with the description of the first to third embodiments.

本実施の形態のフリップフロップの基本構成について、図44を参照して説明する。図4
4に示すフリップフロップは、第1のトランジスタ4401、第2のトランジスタ440
2、第3のトランジスタ4403、第4のトランジスタ4404、第5のトランジスタ4
405、第6のトランジスタ4406、第7のトランジスタ4407及び第8のトランジ
スタ4408を有する。本実施の形態において、第1のトランジスタ4401、第2のト
ランジスタ4402、第3のトランジスタ4403、第4のトランジスタ4404、第5
のトランジスタ4405、第6のトランジスタ4406、第7のトランジスタ4407及
びトランジスタ4408は、Pチャネル型トランジスタとし、ゲート・ソース間電圧の絶
対値(|Vgs|)がしきい値電圧の絶対値(|Vth|)を上回ったとき(VgsがV
thを下回ったとき)導通状態になるものとする。
The basic configuration of the flip-flop of the present embodiment will be described with reference to FIG. 44. Figure 4
The flip-flops shown in 4 are the first transistor 4401 and the second transistor 440.
2. Third transistor 4403, fourth transistor 4404, fifth transistor 4
It has 405, a sixth transistor 4406, a seventh transistor 4407 and an eighth transistor 4408. In the present embodiment, the first transistor 4401, the second transistor 4402, the third transistor 4403, the fourth transistor 4404, and the fifth transistor.
Transistor 4405, 6th transistor 4406, 7th transistor 4407 and transistor 4408 are P-channel transistors, and the absolute value of the gate-source voltage (| Vgs |) is the absolute value of the threshold voltage (| Vth). When it exceeds (|) (Vgs is V)
It shall be in a conductive state (when it falls below th).

なお、本実施の形態のフリップフロップは、第1のトランジスタ4401~第8のトラン
ジスタ4408が全てPチャネル型トランジスタで構成されていることを特徴とする。し
たがって、本実施の形態のフリップフロップは、製造工程の簡略化を図ることができる。
さらに、本実施の形態のフリップフロップは、製造コストの削減を図ることができる。さ
らに、本実施の形態のフリップフロップは、歩留まりの向上を図ることができる。
The flip-flop of the present embodiment is characterized in that the first transistor 4401 to the eighth transistor 4408 are all composed of P-channel type transistors. Therefore, the flip-flop of the present embodiment can simplify the manufacturing process.
Further, the flip-flop of the present embodiment can reduce the manufacturing cost. Further, the flip-flop of the present embodiment can improve the yield.

図44のフリップフリップフロップの接続関係について説明する。第1のトランジスタ4
401の第1の電極(ソース電極およびドレイン電極の一方)が第5の配線4425に接
続され、第1のトランジスタ4401の第2の電極(ソース電極およびドレイン電極の他
方)が第3の配線4423に接続される。第2のトランジスタ4402の第1の電極が第
4の配線4424に接続され、第2のトランジスタ4402第2の電極が第3の配線44
23に接続され、第2のトランジスタ4402のゲート電極が第8の配線4428に接続
される。第3のトランジスタ4403の第1の電極が第6の配線4426に接続され、第
3のトランジスタ4403の第2の電極が第6のトランジスタ4406のゲート電極に接
続され、第3のトランジスタ4403のゲート電極が第7の配線4427に接続される。
第4のトランジスタ4404の第1の電極が第10の配線4430に接続され、第4のト
ランジスタ4404の第2の電極が第6のトランジスタ4406のゲート電極に接続され
、第4のトランジスタ4404のゲート電極が第8の配線4428に接続される。第5の
トランジスタ4405の第1の電極が第9の配線4429に接続され、第5のトランジス
タ4405の第2の電極が第1のトランジスタ4401のゲート電極に接続され、第5の
トランジスタ4405のゲート電極が第1の配線4421に接続される。第6のトランジ
スタ4406の第1の電極が第12の配線4432に接続され、第6のトランジスタ44
06の第2の電極が第1のトランジスタ4401のゲート電極に接続される。第7のトラ
ンジスタ4407の第1の電極が第13の配線4433に接続され、第7のトランジスタ
4407の第2の電極が第1のトランジスタ4401のゲート電極に接続され、第7のト
ランジスタ4407のゲート電極が第2の配線4422に接続される。第8のトランジス
タ4408の第1の電極が第11の配線4431に接続され、第8のトランジスタ440
8の第2の電極が第6のトランジスタ4406のゲート電極に接続され、第8のトランジ
スタ4408のゲート電極が第1のトランジスタ4401のゲート電極に接続される。
The connection relationship of the flip-flops of FIG. 44 will be described. First transistor 4
The first electrode of 401 (one of the source and drain electrodes) is connected to the fifth wire 4425, and the second electrode of the first transistor 4401 (the other of the source and drain electrodes) is the third wire 4423. Connected to. The first electrode of the second transistor 4402 is connected to the fourth wire 4424, and the second electrode of the second transistor 4402 is the third wire 44.
Connected to 23, the gate electrode of the second transistor 4402 is connected to the eighth wire 4428. The first electrode of the third transistor 4403 is connected to the sixth wire 4426, the second electrode of the third transistor 4403 is connected to the gate electrode of the sixth transistor 4406, and the gate of the third transistor 4403 is connected. The electrodes are connected to the seventh wire 4427.
The first electrode of the fourth transistor 4404 is connected to the tenth wire 4430, the second electrode of the fourth transistor 4404 is connected to the gate electrode of the sixth transistor 4406, and the gate of the fourth transistor 4404 is connected. The electrodes are connected to the eighth wire 4428. The first electrode of the fifth transistor 4405 is connected to the ninth wire 4429, the second electrode of the fifth transistor 4405 is connected to the gate electrode of the first transistor 4401, and the gate of the fifth transistor 4405. The electrodes are connected to the first wire 4421. The first electrode of the sixth transistor 4406 is connected to the twelfth wiring 4432, and the sixth transistor 44
The second electrode of 06 is connected to the gate electrode of the first transistor 4401. The first electrode of the seventh transistor 4407 is connected to the thirteenth wire 4433, the second electrode of the seventh transistor 4407 is connected to the gate electrode of the first transistor 4401, and the gate of the seventh transistor 4407. The electrodes are connected to the second wire 4422. The first electrode of the eighth transistor 4408 is connected to the eleventh wiring 4431, and the eighth transistor 440 is connected.
The second electrode of 8 is connected to the gate electrode of the sixth transistor 4406, and the gate electrode of the eighth transistor 4408 is connected to the gate electrode of the first transistor 4401.

なお、第1のトランジスタ4401のゲート電極、第5のトランジスタ4405の第2の
電極、第6のトランジスタ4406の第2の電極、第7のトランジスタ4407の第2の
電極及び第8のトランジスタ4408のゲート電極の接続箇所をノード4441とする。
さらに、第3のトランジスタ4403の第2の電極、第4のトランジスタ4404の第2
の電極、第6のトランジスタ4406のゲート電極及び第8のトランジスタ4408の第
2の電極の接続箇所をノード4442とする。
The gate electrode of the first transistor 4401, the second electrode of the fifth transistor 4405, the second electrode of the sixth transistor 4406, the second electrode of the seventh transistor 4407, and the eighth transistor 4408. The connection point of the gate electrode is a node 4441.
Further, the second electrode of the third transistor 4403 and the second electrode of the fourth transistor 4404
The connection point of the electrode, the gate electrode of the sixth transistor 4406, and the second electrode of the eighth transistor 4408 is referred to as a node 4442.

なお、第1の配線4421、第2の配線4422、第3の配線4423、第5の配線44
25、第7の配線4427及び第8の配線4428を、それぞれ第1の信号線、第2の信
号、第3の信号線、第4の信号線、第5の信号線、第6の信号線と呼んでもよい。さらに
、第4の配線4424、第6の配線4426、第9の配線4429、第10の配線443
0、11の配線4431、第12の配線4432及び第13の配線4433を、それぞれ
第1の電源線、第2の電源線、第3の電源線、第4の電源線、第5の電源線、第6の電源
線、第7の電源線と呼んでもよい。
The first wiring 4421, the second wiring 4422, the third wiring 4423, and the fifth wiring 44
25, the seventh wiring 4427 and the eighth wiring 4428 are the first signal line, the second signal, the third signal line, the fourth signal line, the fifth signal line, and the sixth signal line, respectively. You may call it. Further, the fourth wiring 4424, the sixth wiring 4426, the ninth wiring 4429, and the tenth wiring 443.
0, 11 wiring 4431, 12th wiring 4432 and 13th wiring 4433 are the first power line, the second power line, the third power line, the fourth power line, and the fifth power line, respectively. , 6th power line, 7th power line may be called.

次に、図44に示したフリップフロップの動作について、図45のタイミングチャートを
参照して説明する。さらに、図45のタイミングチャートをセット期間、選択期間、リセ
ット期間、第1の非選択期間、第2の非選択期間に分割して説明する。ただし、セット期
間、リセット期間、第1の非選択期間及び第2の非選択期間を合わせて非選択期間と呼ぶ
こともある。
Next, the operation of the flip-flop shown in FIG. 44 will be described with reference to the timing chart of FIG. 45. Further, the timing chart of FIG. 45 will be described by dividing it into a set period, a selection period, a reset period, a first non-selection period, and a second non-selection period. However, the set period, the reset period, the first non-selection period, and the second non-selection period may be collectively referred to as a non-selection period.

なお、図45のタイミングチャートは、図2のタイミングチャートのHレベル・Lレベル
を反転したものと同様である。
The timing chart of FIG. 45 is the same as that of the timing chart of FIG. 2 in which the H level and the L level are inverted.

なお、第6の配線4426及び第9の配線4429にはV2の電位が供給され、第4の配
線4424、第10の配線4430、第11の配線4431、第12の配線4432及び
第13の配線4433にはV1の電位が供給される。ここで、V1>V2である。
The potential of V2 is supplied to the sixth wiring 4426 and the ninth wiring 4429, and the fourth wiring 4424, the tenth wiring 4430, the eleventh wiring 4431, the twelfth wiring 4432, and the thirteenth wiring The potential of V1 is supplied to 4433. Here, V1> V2.

なお、第1の配線4421、第5の配線4425、第8の配線4428、第7の配線44
27及び第2の配線4422には、それぞれ図45に示す信号4521、信号4525、
信号4528、信号4527、信号4522が入力される。そして、第3の配線4423
からは、図45に示す信号4423が出力される。ここで、信号4421、信号4425
、信号4428、信号4427、信号4422及び信号4423は、H信号の電位がV1
(以下、Hレベルともいう)、L信号の電位がV2(以下、Lレベルともいう)のデジタ
ル信号である。さらに、信号4421、信号4425、信号4428、信号4427、信
号4422及び信号4423を、それぞれスタート信号、パワークロック信号(PCK)
、第1の制御クロック信号(CCK1)、第2の制御クロック信号(CCK2)、リセッ
ト信号、出力信号と呼んでもよい。
The first wiring 4421, the fifth wiring 4425, the eighth wiring 4428, and the seventh wiring 44.
The signal 4521 and the signal 4525 shown in FIG. 45 are connected to the 27 and the second wiring 4422, respectively.
The signal 4528, the signal 4527, and the signal 4522 are input. And the third wiring 4423
Outputs the signal 4423 shown in FIG. 45. Here, signal 4421, signal 4425
, Signal 4428, Signal 4427, Signal 4422 and Signal 4423 have an H signal potential of V1.
(Hereinafter, also referred to as H level), the potential of the L signal is a digital signal of V2 (hereinafter, also referred to as L level). Further, the signal 4421, the signal 4425, the signal 4428, the signal 4427, the signal 4422 and the signal 4423 are added to the start signal and the power clock signal (PCK), respectively.
, The first control clock signal (CCK1), the second control clock signal (CCK2), the reset signal, and the output signal may be referred to.

ただし、第1の配線4421、第2の配線4422、第4の配線4424~第13の配線
4433には、それぞれ様々な信号、電位及び電流が入力されてもよい。
However, various signals, potentials, and currents may be input to the first wiring 4421, the second wiring 4422, and the fourth wiring 4424 to the thirteenth wiring 4433, respectively.

まず、図45(A)に示すセット期間において、信号4521がLレベルとなり第5のト
ランジスタ4405がオンし、信号4422がHレベルなので第7のトランジスタ440
7がオフし、信号4528がLレベルとなり第2のトランジスタ4402及び第4のトラ
ンジスタ4404がオンし、信号4527がHレベルとなり第3のトランジスタ4403
がオフする。このときのノード4441の電位(電位4541)は、第5のトランジスタ
4405の第2の電極がソース電極となって、第9の配線4429の電位と第5のトラン
ジスタ4405のしきい値電圧の絶対値との和となるためV2+|Vth4405|(V
th4405:第5のトランジスタ4405のしきい値電圧)となる。よって、第1のト
ランジスタ4401及び第8のトランジスタ4408がオンし、第5のトランジスタ44
05がオフする。このときのノード4442の電位(電位4542)は、V1となって、
第6のトランジスタ4406がオフする。このように、セット期間では、第3の配線44
23はH信号が入力されている第5の配線4425及び第4の配線4424と導通するた
め、第3の配線4423の電位がV1となる。したがって、H信号が第3の配線4423
から出力される。さらに、ノード4441は、電位をV2+|Vth4405|に維持し
たまま浮遊状態となる。
First, in the set period shown in FIG. 45 (A), the signal 4521 becomes the L level, the fifth transistor 4405 is turned on, and the signal 4422 is the H level, so that the seventh transistor 440
7 is turned off, signal 4528 becomes L level, second transistor 4402 and fourth transistor 4404 are turned on, signal 4527 becomes H level, and third transistor 4403.
Turns off. At this time, the potential of the node 4441 (potential 4541) is such that the second electrode of the fifth transistor 4405 serves as the source electrode, and the potential of the ninth wiring 4429 and the threshold voltage of the fifth transistor 4405 are absolute. V2 + | Vth4405 | (V) because it is the sum of the values
th4405: Threshold voltage of the fifth transistor 4405). Therefore, the first transistor 4401 and the eighth transistor 4408 are turned on, and the fifth transistor 44 is turned on.
05 turns off. At this time, the potential of the node 4442 (potential 4542) becomes V1.
The sixth transistor 4406 is turned off. Thus, during the set period, the third wiring 44
Since 23 is electrically connected to the fifth wiring 4425 and the fourth wiring 4424 to which the H signal is input, the potential of the third wiring 4423 becomes V1. Therefore, the H signal is the third wiring 4423.
Is output from. Further, the node 4441 is in a floating state while maintaining the potential at V2 + | Vth4405 |.

図45(B)に示す選択期間では、信号4521がHレベルとなり第5のトランジスタ4
405がオフし、信号4522がHレベルのままなので第7のトランジスタ4407がオ
フのままであり、信号4528がHレベルとなり第2のトランジスタ4402及び第4の
トランジスタ4404がオフし、信号4527がLレベルとなり第3のトランジスタ45
03がオンする。このときのノード4441は電位をV1+|Vth4405|に維持し
ている。よって、第1のトランジスタ4401及び第8のトランジスタ4408はオンの
ままである。このときのノード4442の電位は、第11の配線4431の電位(V1)
と第6の配線4426の電位(V2)との電位差(V1-V2)が第3のトランジスタ4
403及び第8のトランジスタ4408によって分圧され、V1-θ(θ:任意の正の数
)となる。さらに、θ<|Vth4406|(第6のトランジスタ4406のしきい値電
圧)とする。よって、第6のトランジスタ4406がオフのままである。ここで、第5の
配線4425にL信号が入力されるので、第3の配線4423の電位が下がり始める。す
ると、ノード4441の電位は、ブートストラップ動作によってV2+|Vth4405
|から下がり、V2-|Vth4401|-γ(Vth4401:第1のトランジスタ4
401のしきい値電圧、γ:任意の正の数)となる。したがって、第3の配線4423の
電位は、第5の配線4425と等しい電位となるのでV2となる。このように、選択期間
では、第3の配線4423はL信号が入力されている第5の配線4425と導通するため
、第3の配線4423の電位がV2となる。したがって、L信号が第3の配線4423か
ら出力される。
In the selection period shown in FIG. 45 (B), the signal 4521 becomes the H level and the fifth transistor 4
Since 405 is off and signal 4522 remains at H level, the seventh transistor 4407 remains off, signal 4528 becomes H level, second transistor 4402 and fourth transistor 4404 are off, and signal 4527 is L. It becomes a level and the third transistor 45
03 turns on. At this time, the node 4441 maintains the potential at V1 + | Vth4405 |. Therefore, the first transistor 4401 and the eighth transistor 4408 remain on. The potential of the node 4442 at this time is the potential (V1) of the eleventh wiring 4431.
The potential difference (V1-V2) between and the potential (V2) of the sixth wiring 4426 is the third transistor 4.
The pressure is divided by the 403 and the eighth transistor 4408 to obtain V1-θ (θ: an arbitrary positive number). Further, θ << Vth4406 | (threshold voltage of the sixth transistor 4406). Therefore, the sixth transistor 4406 remains off. Here, since the L signal is input to the fifth wiring 4425, the potential of the third wiring 4423 begins to drop. Then, the potential of the node 4441 is changed to V2 + | Vth4405 by the bootstrap operation.
V2- | Vth4401 | -γ (Vth4401: 1st transistor 4)
The threshold voltage of 401, γ: an arbitrary positive number). Therefore, the potential of the third wiring 4423 becomes V2 because it has the same potential as the fifth wiring 4425. As described above, during the selection period, the third wiring 4423 is electrically connected to the fifth wiring 4425 to which the L signal is input, so that the potential of the third wiring 4423 becomes V2. Therefore, the L signal is output from the third wiring 4423.

図45(C)に示すリセット期間では、信号4521がHレベルのままなので第5のトラ
ンジスタ4405がオフのままであり、信号4522がLレベルとなり第7のトランジス
タ4407がオンし、信号4528がLレベルとなり第2のトランジスタ4402及び第
4のトランジスタ4404がオンし、信号4527がHレベルとなり第3のトランジスタ
4403がオフする。このときのノード4441の電位は、第13の配線4433の電位
(V1)が第7のトランジスタ4407を介して供給されるためV1となる。よって、第
1のトランジスタ4401及び第8のトランジスタ4408がオフする。このときのノー
ド4442の電位は、第4のトランジスタ4404がオンするのでV1となる。よって、
第6のトランジスタ4406がオフする。このように、リセット期間では、第3の配線4
423はV1が供給されている第4の配線4424と導通するため、第3の配線4423
の電位がV1となる。したがって、H信号が第3の配線4423から出力される。
In the reset period shown in FIG. 45 (C), since the signal 4521 remains at the H level, the fifth transistor 4405 remains off, the signal 4522 becomes the L level, the seventh transistor 4407 turns on, and the signal 4528 becomes L. At the level, the second transistor 4402 and the fourth transistor 4404 are turned on, the signal 4527 becomes the H level, and the third transistor 4403 is turned off. The potential of the node 4441 at this time is V1 because the potential (V1) of the thirteenth wiring 4433 is supplied via the seventh transistor 4407. Therefore, the first transistor 4401 and the eighth transistor 4408 are turned off. The potential of the node 4442 at this time becomes V1 because the fourth transistor 4404 is turned on. Therefore,
The sixth transistor 4406 is turned off. Thus, during the reset period, the third wiring 4
Since 423 conducts with the fourth wiring 4424 to which V1 is supplied, the third wiring 4423
The potential of is V1. Therefore, the H signal is output from the third wiring 4423.

図45(D)に示す第1の非選択期間において、信号4521がHレベルのままなので第
5のトランジスタ4405がオフのままであり、信号4522がHレベルとなり第7のト
ランジスタ4407がオフし、信号4528がHレベルとなり第2のトランジスタ440
2及び第4のトランジスタ4404がオフし、信号4527がLレベルとなり第3のトラ
ンジスタ4403がオンする。このときのノード4442の電位は、第3のトランジスタ
4403の第2の電極がソース電極となって、第7の配線4427の電位(V2)と第3
のトランジスタ4403のしきい値電圧の絶対値との和となるためV2+|Vth440
3|(Vth4403:第3のトランジスタ4403のしきい値電圧)となる。よって、
第6のトランジスタ4406がオンする。このときのノード4441の電位は第6のトラ
ンジスタ4406がオンするのでV1となる。よって、第1のトランジスタ4401及び
第8のトランジスタ4408はオフのままである。このように、第1の非選択期間では、
第3の配線4423は浮遊状態となって、電位をV1に維持する。
In the first non-selection period shown in FIG. 45 (D), since the signal 4521 remains at the H level, the fifth transistor 4405 remains off, the signal 4522 becomes the H level, and the seventh transistor 4407 turns off. The signal 4528 becomes H level and the second transistor 440
The second and fourth transistors 4404 are turned off, the signal 4527 becomes L level, and the third transistor 4403 is turned on. At this time, the potential of the node 4442 is the potential (V2) of the seventh wiring 4427 and the third potential of the seventh wiring 4427, with the second electrode of the third transistor 4403 serving as the source electrode.
V2 + | Vth440 because it is the sum of the absolute value of the threshold voltage of the transistor 4403 of
3 | (Vth4403: threshold voltage of the third transistor 4403). Therefore,
The sixth transistor 4406 is turned on. At this time, the potential of the node 4441 becomes V1 because the sixth transistor 4406 is turned on. Therefore, the first transistor 4401 and the eighth transistor 4408 remain off. Thus, in the first non-selection period,
The third wiring 4423 is in a floating state and maintains the potential at V1.

なお、本実施の形態のフリップフロップは、第2のトランジスタ4402をオフすること
によって、第2のトランジスタ4402のしきい値電圧のシフトを抑制できる。
The flip-flop of the present embodiment can suppress the shift of the threshold voltage of the second transistor 4402 by turning off the second transistor 4402.

図45(E)に示す第2の非選択期間において、信号4521がHレベルのままなので第
5のトランジスタ4405がオフのままであり、信号4522がHレベルのままなので第
7のトランジスタ4407がオフのままであり、信号4528がLレベルとなり第2のト
ランジスタ4402及び第4のトランジスタ4404がオンし、信号4527がHレベル
となり第3のトランジスタ4403がオフする。このときノード4442の電位がV1と
なって第6のトランジスタ4406がオフする。このときのノード4441は浮遊状態と
なるため電位をV1に維持する。よって、第1のトランジスタ4401及び第8のトラン
ジスタ4408はオフのままである。このように、第2の非選択期間では、第3の配線4
423はV1が供給されている第4の配線4424と導通するため、第3の配線4423
の電位がV1となる。したがって、H信号が第3の配線4423から出力される。
In the second non-selection period shown in FIG. 45 (E), the fifth transistor 4405 remains off because the signal 4521 remains at the H level, and the seventh transistor 4407 is off because the signal 4522 remains at the H level. The signal 4528 becomes the L level, the second transistor 4402 and the fourth transistor 4404 turn on, the signal 4527 becomes the H level, and the third transistor 4403 turns off. At this time, the potential of the node 4442 becomes V1 and the sixth transistor 4406 is turned off. At this time, the node 4441 is in a floating state, so the potential is maintained at V1. Therefore, the first transistor 4401 and the eighth transistor 4408 remain off. Thus, in the second non-selection period, the third wiring 4
Since 423 conducts with the fourth wiring 4424 to which V1 is supplied, the third wiring 4423
The potential of is V1. Therefore, the H signal is output from the third wiring 4423.

なお、本実施の形態のフリップフロップは、第6のトランジスタ4406をオフすること
によって、第6のトランジスタ4406のしきい値電圧のシフトを抑制できる。
The flip-flop of the present embodiment can suppress the shift of the threshold voltage of the sixth transistor 4406 by turning off the sixth transistor 4406.

以上のことから、本実施の形態のフリップフロップは、第2のトランジスタ4402及び
第6のトランジスタ4406のしきい値電圧のシフトを抑制できるため、長寿命化を図る
ことができる。さらに、本実施の形態のフリップフロップは、全てのトランジスタのしき
い値電圧のシフトを抑制できるため、長寿命化を図ることができる。さらに、本実施の形
態のフリップフロップは、信頼性を向上するこができる。さらに、本実施の形態のフリッ
プフロップは誤動作の抑制を図ることができる。
From the above, the flip-flop of the present embodiment can suppress the shift of the threshold voltage of the second transistor 4402 and the sixth transistor 4406, so that the life can be extended. Further, the flip-flop of the present embodiment can suppress the shift of the threshold voltage of all the transistors, so that the life can be extended. Further, the flip-flop of the present embodiment can improve the reliability. Further, the flip-flop of the present embodiment can suppress malfunction.

なお、本実施の形態のシフトレジスタは、本実施の形態のフリップフロップを実施の形態
1乃至実施の形態3に記載のシフトレジスタと自由に組み合わせて実施することができる
。例えば、本実施の形態のシフトレジスタは、本実施の形態のフリップフロップを図11
、図14、図24及び図42のシフトレジスタと自由に組み合わせて実施することができ
る。ただし、本実施の形態のシフトレジスタは、実施の形態1乃至実施の形態3に記載の
シフトレジスタと比較して、Hレベル・Lレベルが反転している。
The shift register of the present embodiment can be implemented by freely combining the flip-flop of the present embodiment with the shift register according to the first to third embodiments. For example, the shift register of the present embodiment shows the flip-flop of the present embodiment in FIG. 11.
, Can be freely combined with the shift registers of FIGS. 14, 24 and 42. However, the shift register of the present embodiment has the H level and the L level inverted as compared with the shift register according to the first to third embodiments.

なお、本実施の形態の表示装置は、本実施の形態のシフトレジスタを実施の形態1乃至実
施の形態3に記載の表示装置と自由に組み合わせて実施することができる。例えば、本実
施の形態の表示装置は、図17、図19、図20、図27、図28の表示装置と自由に組
み合わせて実施することができる。ただし、本実施の形態の表示装置は、実施の形態1乃
至実施の形態3に記載の表示装置と比較して、Hレベル・Lレベルが反転している。
The display device of the present embodiment can be implemented by freely combining the shift register of the present embodiment with the display device according to the first to third embodiments. For example, the display device of the present embodiment can be freely combined with the display devices of FIGS. 17, 19, 20, 27, and 28. However, the display device of the present embodiment has the H level and the L level reversed as compared with the display device according to the first to third embodiments.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態5)
本実施の形態では、実施の形態1乃至実施の形態4に示した表示装置が有する信号線駆動
回路について説明する。
(Embodiment 5)
In this embodiment, the signal line drive circuit included in the display device shown in the first to fourth embodiments will be described.

図31の信号線駆動回路について説明する。図31に示す信号線駆動回路は、ドライバI
C5601、スイッチ群5602_1~5602_M、第1の配線5611、第2の配線
5612、第3の配線5613及び配線5621_1~5621_Mを有する。スイッチ
群5602_1~5602_Mそれぞれは、第1のスイッチ5603a、第2のスイッチ
5603b及び第3のスイッチ5603cを有する。
The signal line drive circuit of FIG. 31 will be described. The signal line drive circuit shown in FIG. 31 is the driver I.
It has C5601, switch groups 5602_1 to 5602_M, first wiring 5611, second wiring 5612, third wiring 5613 and wiring 5621_1 to 5621_M. Each of the switch groups 5602_1 to 5602_M has a first switch 5603a, a second switch 5603b and a third switch 5603c.

ドライバIC5601は第1の配線5611、第2の配線5612、第3の配線5613
及び配線5621_1~5621_Mに接続される。そして、スイッチ群5602_1~
5602_Mそれぞれは、第1の配線5611、第2の配線5612、第3の配線561
3及びスイッチ群5602_1~5602_Mそれぞれに対応した配線5621_1~5
621_Mのうちいずれかに接続される。そして、配線5621_1~5621_Mそれ
ぞれは、第1のスイッチ5603a、第2のスイッチ5603b及び第3のスイッチ56
03cを介して、3つの信号線に接続される。例えば、J列目の配線5621_J(配線
5621_1~配線5621_Mのうちいずれか一)は、スイッチ群5602_Jが有す
る第1のスイッチ5603a、第2のスイッチ5603b及び第3のスイッチ5603c
を介して、信号線Sj-1、信号線Sj、信号線Sj+1に接続される。
The driver IC 5601 has a first wiring 5611, a second wiring 5612, and a third wiring 5613.
And wiring 5621_1 to 5621_M. And switch group 5602_1 ~
5602_M Each is the first wiring 5611, the second wiring 5612, and the third wiring 561.
Wiring 5621_1 to 5 corresponding to 3 and switch groups 5602_1 to 5602_M, respectively.
Connected to one of 621_M. The wirings 5621_1 to 5621_M are the first switch 5603a, the second switch 5603b, and the third switch 56, respectively.
It is connected to three signal lines via 03c. For example, the wiring 5621_J in the Jth row (any one of the wiring 5621_1 to the wiring 5621_M) has the first switch 5603a, the second switch 5603b, and the third switch 5603c of the switch group 5602_J.
It is connected to the signal line Sj-1, the signal line Sj, and the signal line Sj + 1 via the above.

なお、第1の配線5611、第2の配線5612、第3の配線5613には、それぞれ信
号が入力される。
Signals are input to the first wiring 5611, the second wiring 5612, and the third wiring 5613, respectively.

なお、ドライバIC5601は、単結晶基板若しくは多結晶半導体を用いたガラス基板上
に形成されていることが望ましい。さらに、スイッチ群5602は、実施の形態1乃至実
施の形態4に示した画素部と同一基板上に形成されていることが望ましい。したがって、
ドライバIC5601とスイッチ群5602とはFPCなどを介して接続するとよい。
The driver IC5601 is preferably formed on a glass substrate using a single crystal substrate or a polycrystalline semiconductor. Further, it is desirable that the switch group 5602 is formed on the same substrate as the pixel portion shown in the first to fourth embodiments. therefore,
The driver IC5601 and the switch group 5602 may be connected via an FPC or the like.

次に、図31に示した信号線駆動回路の動作について、図32のタイミングチャートを参
照して説明する。なお、図32のタイミングチャートは、i行目の走査線Giが選択され
ている場合のタイミングチャートを示している。さらに、i行目の走査線Giの選択期間
は、第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3に分
割されている。さらに、図31の信号線駆動回路は、他の行の走査線が選択されている場
合でも図32と同様の動作をする。
Next, the operation of the signal line drive circuit shown in FIG. 31 will be described with reference to the timing chart of FIG. 32. The timing chart of FIG. 32 shows a timing chart when the scanning line Gi on the i-th row is selected. Further, the selection period of the scan line Gi on the i-th row is divided into a first sub-selection period T1, a second sub-selection period T2, and a third sub-selection period T3. Further, the signal line drive circuit of FIG. 31 operates in the same manner as in FIG. 32 even when the scanning lines of other lines are selected.

なお、図32のタイミングチャートは、J列目の配線5621_Jが第1のスイッチ56
03a、第2のスイッチ5603b及び第3のスイッチ5603cを介して、信号線Sj
-1、信号線Sj、信号線Sj+1に接続される場合について示している。
In the timing chart of FIG. 32, the wiring 5621_J in the Jth column is the first switch 56.
03a, the signal line Sj via the second switch 5603b and the third switch 5603c.
-1, The case where it is connected to the signal line Sj and the signal line Sj + 1 is shown.

なお、図32のタイミングチャートは、i行目の走査線Giが選択されるタイミング、第
1のスイッチ5603aのオン・オフのタイミング5703a、第2のスイッチ5603
bのオン・オフのタイミング5703b、第3のスイッチ5603cのオン・オフのタイ
ミング5703c及びJ列目の配線5621_Jに入力される信号5721_Jを示して
いる。
In the timing chart of FIG. 32, the timing at which the scanning line Gi on the i-th row is selected, the on / off timing of the first switch 5603a 5703a, and the second switch 5603 are shown.
The on / off timing 5703b of b, the on / off timing 5703c of the third switch 5603c, and the signal 5721_J input to the wiring 5621_J in the Jth row are shown.

なお、配線5621_1~配線5621_Mには第1のサブ選択期間T1、第2のサブ選
択期間T2及び第3のサブ選択期間T3において、それぞれ別のビデオ信号が入力される
。例えば、第1のサブ選択期間T1において配線5621_Jに入力されるビデオ信号は
信号線Sj-1に入力され、第2のサブ選択期間T2において配線5621_Jに入力さ
れるビデオ信号は信号線Sjに入力され、第3のサブ選択期間T3において配線5621
_Jに入力されるビデオ信号は信号線Sj+1に入力される。さらに、選択期間T1、第
2のサブ選択期間T2及び第3のサブ選択期間T3において、配線5621_Jに入力さ
れるビデオ信号をそれぞれDataj-1、Dataj、Dataj+1とする。
Note that different video signals are input to the wiring 5621_1 to the wiring 5621_M in the first subselection period T1, the second subselection period T2, and the third subselection period T3. For example, the video signal input to the wiring 5621_J in the first sub-selection period T1 is input to the signal line Sj-1, and the video signal input to the wiring 5621_J in the second sub-selection period T2 is input to the signal line Sj. And wiring 5621 in the third subselection period T3
The video signal input to _J is input to the signal line Sj + 1. Further, in the selection period T1, the second sub-selection period T2, and the third sub-selection period T3, the video signals input to the wiring 5621_J are designated as Dataj-1, Dataj, and Dataj + 1, respectively.

図32に示すように、第1のサブ選択期間T1において第1のスイッチ5603aがオン
し、第2のスイッチ5603b及び第3のスイッチ5603cがオフする。このとき、配
線5621_Jに入力されるDataj-1が、第1のスイッチ5603aを介して信号
線Sj-1に入力される。第2のサブ選択期間T2では、第2のスイッチ5603bがオ
ンし、第1のスイッチ5603a及び第3のスイッチ5603cがオフする。このとき、
配線5621_Jに入力されるDatajが、第2のスイッチ5603bを介して信号線
Sjに入力される。第3のサブ選択期間T3では、第3のスイッチ5603cがオンし、
第1のスイッチ5603a及び第2のスイッチ5603bがオフする。このとき、配線5
621_Jに入力されるDataj+1が、第3のスイッチ5603cを介して信号線S
j+1に入力される。
As shown in FIG. 32, in the first subselection period T1, the first switch 5603a is turned on, and the second switch 5603b and the third switch 5603c are turned off. At this time, Dataj-1 input to the wiring 5621_J is input to the signal line Sj-1 via the first switch 5603a. In the second subselection period T2, the second switch 5603b is turned on and the first switch 5603a and the third switch 5603c are turned off. At this time,
The Dataj input to the wiring 5621_J is input to the signal line Sj via the second switch 5603b. In the third sub-selection period T3, the third switch 5603c is turned on and
The first switch 5603a and the second switch 5603b are turned off. At this time, wiring 5
Dataj + 1 input to 621_J is signal line S via the third switch 5603c.
It is input to j + 1.

以上のことから、図31の信号線駆動回路は、1ゲート選択期間を3つに分割することで
、1ゲート選択期間中に1つの配線5621から3つの信号線にビデオ信号を入力するこ
とができる。したがって、図31の信号線駆動回路は、ドライバIC5601が形成され
る基盤と、画素部が形成されている基盤との接続数を信号線の数に比べて約1/3にする
ことができる。接続数が約1/3になることによって、図31の信号線駆動回路は、信頼
性、歩留まりなどを向上できる。
From the above, the signal line drive circuit of FIG. 31 can input a video signal from one wiring 5621 to three signal lines during one gate selection period by dividing one gate selection period into three. can. Therefore, in the signal line drive circuit of FIG. 31, the number of connections between the board on which the driver IC5601 is formed and the board on which the pixel portion is formed can be reduced to about 1/3 of the number of signal lines. By reducing the number of connections to about 1/3, the signal line drive circuit of FIG. 31 can improve reliability, yield, and the like.

なお、本実施形態の信号線駆動回路を実施形態1乃至実施形態4に示した表示装置に適用
することによって、さらに画素部が形成されている基盤と外部基盤との接続数を減らすこ
とができる。したがって、本発明の表示装置は、信頼性の向上を図ることができる。さら
に、本発明の表示装置は、歩留まりを高くすることができる。
By applying the signal line drive circuit of the present embodiment to the display devices shown in the first to fourth embodiments, the number of connections between the board on which the pixel portion is formed and the external board can be further reduced. .. Therefore, the display device of the present invention can improve the reliability. Further, the display device of the present invention can increase the yield.

次に、第1のスイッチ5603a、第2のスイッチ5603b及び第3のスイッチ560
3cにNチャネル型のトランジスタを適用した場合について図33を参照して説明する。
なお、図31と同様なものに関しては共通の符号を用いて示し、同一部分又は同様な機能
を有する部分の詳細な説明は省略する。
Next, the first switch 5603a, the second switch 5603b, and the third switch 560.
A case where an N-channel transistor is applied to 3c will be described with reference to FIG. 33.
The same parts as those in FIG. 31 are shown by using a common reference numeral, and detailed description of the same part or the part having the same function will be omitted.

第1のトランジスタ5903aが第1のスイッチ5603aに相当し、第2のトランジス
タ5903bが第2のスイッチ5603bに相当し、第3のトランジスタ5903cが第
3のスイッチ5603cに相当する。
The first transistor 5903a corresponds to the first switch 5603a, the second transistor 5903b corresponds to the second switch 5603b, and the third transistor 5903c corresponds to the third switch 5603c.

例えば、スイッチ群5602_Jの場合、第1のトランジスタ5903aは、第1の電極
が配線5621_Jに接続され、第2の電極が信号線Sj-1に接続され、ゲート電極が
第1の配線5611に接続される。第2のトランジスタ5903bは、第1の電極が配線
5621_Jに接続され、第2の電極が信号線Sjに接続され、ゲート電極が第2の配線
5612に接続される。第3のトランジスタ5903cは、第1の電極が配線5621_
Jに接続され、第2の電極が信号線Sj+1に接続され、ゲート電極が第3の配線561
3に接続される。
For example, in the case of the switch group 5602_J, in the first transistor 5903a, the first electrode is connected to the wiring 5621_J, the second electrode is connected to the signal line Sj-1, and the gate electrode is connected to the first wiring 5611. Will be done. In the second transistor 5903b, the first electrode is connected to the wiring 5621_J, the second electrode is connected to the signal line Sj, and the gate electrode is connected to the second wiring 5612. In the third transistor 5903c, the first electrode is wired 5621_.
It is connected to J, the second electrode is connected to the signal line Sj + 1, and the gate electrode is the third wiring 561.
Connected to 3.

なお、第1のトランジスタ5903a、第2のトランジスタ5903b、第3のトランジ
スタ5903cは、それぞれスイッチングトランジスタとして機能する。さらに、第1の
トランジスタ5903a、第2のトランジスタ5903b、第3のトランジスタ5903
cは、それぞれゲート電極に入力される信号がHレベルのときにオンとなり、ゲート電極
に入力される信号がLレベルのときにオフとなる。
The first transistor 5903a, the second transistor 5903b, and the third transistor 5903c each function as a switching transistor. Further, the first transistor 5903a, the second transistor 5903b, and the third transistor 5903.
c is turned on when the signal input to the gate electrode is H level, and turned off when the signal input to the gate electrode is L level.

なお、第1のスイッチ5603a、第2のスイッチ5603b及び第3のスイッチ560
3cとしてNチャネル型のトランジスタを用いることによって、トランジスタの半導体層
として、アモルファスシリコンを用いることができるため、製造工程の簡略化を図ること
ができ、製造コストの削減や歩留まりの向上を図ることができるからである。さらに、大
型の表示パネルなどの半導体装置を作製することも可能となるからである。また、トラン
ジスタの半導体層として、ポリシリコンや多結晶シリコンを用いても製造工程の簡略化を
図ることができる。
The first switch 5603a, the second switch 5603b, and the third switch 560.
By using an N-channel transistor as 3c, amorphous silicon can be used as the semiconductor layer of the transistor, so that the manufacturing process can be simplified, the manufacturing cost can be reduced, and the yield can be improved. Because it can be done. Further, it is possible to manufacture a semiconductor device such as a large display panel. Further, the manufacturing process can be simplified by using polysilicon or polycrystalline silicon as the semiconductor layer of the transistor.

図33の信号線駆動回路では、第1のトランジスタ5903a、第2のトランジスタ59
03b、第3のトランジスタ5903cとしてNチャネル型のトランジスタを用いた場合
について説明したが、第1のトランジスタ5903a、第2のトランジスタ5903b、
第3のトランジスタ5903cとしてPチャネル型のトランジスタを用いてもよい。この
とき、トランジスタはゲート電極に入力される信号がLレベルのときにオンとなり、ゲー
ト電極に入力される信号がHレベルのときにオフとなる。
In the signal line drive circuit of FIG. 33, the first transistor 5903a and the second transistor 59
Although the case where an N-channel type transistor is used as the 03b and the third transistor 5903c has been described, the first transistor 5903a and the second transistor 5903b have been described.
A P-channel type transistor may be used as the third transistor 5903c. At this time, the transistor is turned on when the signal input to the gate electrode is L level, and turned off when the signal input to the gate electrode is H level.

なお、図31のように、1ゲート選択期間を複数のサブ選択期間に分割し、複数のサブ選
択期間それぞれにおいてある1つの配線から複数の信号線それぞれにビデオ信号を入力す
ることができれば、スイッチの配置や数、駆動方法などは限定されない。
As shown in FIG. 31, if one gate selection period can be divided into a plurality of sub-selection periods and a video signal can be input to each of a plurality of signal lines from one wiring in each of the plurality of sub-selection periods, a switch is used. The arrangement, number, driving method, etc. are not limited.

例えば、3つ以上のサブ選択期間それぞれにおいて1つの配線から3つ以上の信号線それ
ぞれにビデオ信号を入力する場合は、スイッチ及びスイッチを制御するための配線を追加
すればよい。ただし、1ゲート選択期間を4つ以上のサブ選択期間に分割すると、1つの
サブ選択期間が短くなる。したがって、1ゲート選択期間は、2つ又は3つのサブ選択期
間に分割されることが望ましい。
For example, when a video signal is input from one wiring to each of three or more signal lines in each of three or more sub-selection periods, a switch and a wiring for controlling the switch may be added. However, if one gate selection period is divided into four or more sub-selection periods, one sub-selection period becomes shorter. Therefore, it is desirable that the one-gate selection period be divided into two or three sub-selection periods.

別の例として、図34のタイミングチャートに示すように、1つの選択期間をプリチャー
ジ期間Tp、第1のサブ選択期間T1、第2のサブ選択期間T2、第3の選択期間T3に
分割してもよい。さらに、図34のタイミングチャートは、i行目の走査線Giが選択さ
れるタイミング、第1のスイッチ5603aのオン・オフのタイミング5803a、第2
のスイッチ5603bのオン・オフのタイミング5803b、第3のスイッチ5603c
のオン・オフのタイミング5803c及びJ列目の配線5621_Jに入力される信号5
821_Jを示している。図34に示すように、プリチャージ期間Tpにおいて第1のス
イッチ5603a、第2のスイッチ5603b及び第3のスイッチ5603cがオンする
。このとき、配線5621_Jに入力されるプリチャージ電圧Vpが第1のスイッチ56
03a、第2のスイッチ5603b及び第3のスイッチ5603cを介してそれぞれ信号
線Sj-1、信号線Sj、信号線Sj+1に入力される。第1のサブ選択期間T1におい
て第1のスイッチ5603aがオンし、第2のスイッチ5603b及び第3のスイッチ5
603cがオフする。このとき、配線5621_Jに入力されるDataj-1が、第1
のスイッチ5603aを介して信号線Sj-1に入力される。第2のサブ選択期間T2で
は、第2のスイッチ5603bがオンし、第1のスイッチ5603a及び第3のスイッチ
5603cがオフする。このとき、配線5621_Jに入力されるDatajが、第2の
スイッチ5603bを介して信号線Sjに入力される。第3のサブ選択期間T3では、第
3のスイッチ5603cがオンし、第1のスイッチ5603a及び第2のスイッチ560
3bがオフする。このとき、配線5621_Jに入力されるDataj+1が、第3のス
イッチ5603cを介して信号線Sj+1に入力される。
As another example, as shown in the timing chart of FIG. 34, one selection period is divided into a precharge period Tp, a first sub-selection period T1, a second sub-selection period T2, and a third selection period T3. You may. Further, in the timing chart of FIG. 34, the timing at which the scanning line Gi on the i-th row is selected, the on / off timing of the first switch 5603a 5803a, and the second
Switch 5603b on / off timing 5803b, 3rd switch 5603c
On / off timing 5803c and the signal 5 input to the wiring 5621_J in the Jth row.
821_J is shown. As shown in FIG. 34, the first switch 5603a, the second switch 5603b, and the third switch 5603c are turned on during the precharge period Tp. At this time, the precharge voltage Vp input to the wiring 5621_J is the first switch 56.
It is input to the signal line Sj-1, the signal line Sj, and the signal line Sj + 1, respectively, via 03a, the second switch 5603b, and the third switch 5603c. In the first sub-selection period T1, the first switch 5603a is turned on, and the second switch 5603b and the third switch 5 are turned on.
603c turns off. At this time, the Dataj-1 input to the wiring 5621_J is the first.
It is input to the signal line Sj-1 via the switch 5603a of. In the second subselection period T2, the second switch 5603b is turned on and the first switch 5603a and the third switch 5603c are turned off. At this time, Dataj input to the wiring 5621_J is input to the signal line Sj via the second switch 5603b. In the third subselection period T3, the third switch 5603c is turned on, and the first switch 5603a and the second switch 560 are turned on.
3b turns off. At this time, Dataj + 1 input to the wiring 5621_J is input to the signal line Sj + 1 via the third switch 5603c.

以上のことから、図34のタイミングチャートを適用した図31の信号線駆動回路は、サ
ブ選択期間の前にプリチャージ選択期間を設けることによって、信号線をプリチャージで
きるため、画素へのビデオ信号の書き込みを高速に行うことができる。なお、図32と同
様なものに関しては共通の符号を用いて示し、同一部分又は同様な機能を有する部分の詳
細な説明は省略する。
From the above, the signal line drive circuit of FIG. 31 to which the timing chart of FIG. 34 is applied can precharge the signal line by providing the precharge selection period before the sub-selection period, so that the video signal to the pixel can be obtained. Can be written at high speed. The same parts as those in FIG. 32 are shown by using a common reference numeral, and detailed description of the same part or the part having the same function will be omitted.

図35においても、図31のように、1ゲート選択期間を複数のサブ選択期間に分割し、
複数のサブ選択期間それぞれにおいてある1つの配線から複数の信号線それぞれにビデオ
信号を入力することができる。なお、図35は、信号線駆動回路のうちJ列目のスイッチ
群6022_Jのみを示している。スイッチ群6022_Jは、第1のトランジスタ60
01、第2のトランジスタ6002、第3のトランジスタ6003、第4のトランジスタ
6004、第5のトランジスタ6005、第6のトランジスタ6006を有している。第
1のトランジスタ6001、第2のトランジスタ6002、第3のトランジスタ6003
、第4のトランジスタ6004、第5のトランジスタ6005、第6のトランジスタ60
06はNチャネル型のトランジスタである。スイッチ群6022_Jは、第1の配線60
11、第2の配線6012、第3の配線6013、第4の配線6014、第5の配線60
15、第6の配線6016、配線5621_J、信号線Sj-1、信号線Sj、信号線S
j+1に接続される。
Also in FIG. 35, as shown in FIG. 31, one gate selection period is divided into a plurality of sub-selection periods.
A video signal can be input to each of a plurality of signal lines from one wiring in each of the plurality of subselection periods. Note that FIG. 35 shows only the switch group 6022_J in the Jth row of the signal line drive circuit. The switch group 6022_J is the first transistor 60.
It has 01, a second transistor 6002, a third transistor 6003, a fourth transistor 6004, a fifth transistor 6005, and a sixth transistor 6006. First transistor 6001, second transistor 6002, third transistor 6003
, 4th transistor 6004, 5th transistor 6005, 6th transistor 60
06 is an N-channel type transistor. The switch group 6022_J is the first wiring 60.
11, 2nd wiring 6012, 3rd wiring 6013, 4th wiring 6014, 5th wiring 60
15, 6th wiring 6016, wiring 5621_J, signal line Sj-1, signal line Sj, signal line S
Connected to j + 1.

第1のトランジスタ6001の第1の電極は配線5621_Jに接続され、第2の電極は
信号線Sj-1に接続され、ゲート電極は第1の配線6011に接続される。第2のトラ
ンジスタ6002の第1の電極は配線5621_Jに接続され、第2の電極は信号線Sj
-1に接続され、ゲート電極は第2の配線6012に接続される。第3のトランジスタ6
003の第1の電極は配線5621_Jに接続され、第2の電極は信号線Sjに接続され
、ゲート電極は第3の配線6013に接続される。第4のトランジスタ6004の第1の
電極は配線5621_Jに接続され、第2の電極は信号線Sjに接続され、ゲート電極は
第4の配線6014に接続される。第5のトランジスタ6005の第1の電極は配線56
21_Jに接続され、第2の電極は信号線Sj+1に接続され、ゲート電極は第5の配線
6015に接続される。第6のトランジスタ6006の第1の電極は配線5621_Jに
接続され、第2の電極は信号線Sj+1に接続され、ゲート電極は第6の配線6016に
接続される。
The first electrode of the first transistor 6001 is connected to the wiring 5621_J, the second electrode is connected to the signal line Sj-1, and the gate electrode is connected to the first wiring 6011. The first electrode of the second transistor 6002 is connected to the wiring 5621_J, and the second electrode is the signal line Sj.
It is connected to -1, and the gate electrode is connected to the second wiring 6012. Third transistor 6
The first electrode of 003 is connected to the wiring 5621_J, the second electrode is connected to the signal line Sj, and the gate electrode is connected to the third wiring 6013. The first electrode of the fourth transistor 6004 is connected to the wiring 5621_J, the second electrode is connected to the signal line Sj, and the gate electrode is connected to the fourth wiring 6014. The first electrode of the fifth transistor 6005 is the wiring 56.
It is connected to 21_J, the second electrode is connected to the signal line Sj + 1, and the gate electrode is connected to the fifth wiring 6015. The first electrode of the sixth transistor 6006 is connected to the wiring 5621_J, the second electrode is connected to the signal line Sj + 1, and the gate electrode is connected to the sixth wiring 6016.

なお、第1のトランジスタ6001、第2のトランジスタ6002、第3のトランジスタ
6003、第4のトランジスタ6004、第5のトランジスタ6005、第6のトランジ
スタ6006は、それぞれスイッチングトランジスタとして機能する。さらに、第1のト
ランジスタ6001、第2のトランジスタ6002、第3のトランジスタ6003、第4
のトランジスタ6004、第5のトランジスタ6005、第6のトランジスタ6006は
、それぞれゲート電極に入力される信号がHレベルのときにオンとなり、ゲート電極に入
力される信号がLレベルのときにオフとなる。
The first transistor 6001, the second transistor 6002, the third transistor 6003, the fourth transistor 6004, the fifth transistor 6005, and the sixth transistor 6006 each function as a switching transistor. Further, the first transistor 6001, the second transistor 6002, the third transistor 6003, and the fourth transistor
Transistor 6004, fifth transistor 6005, and sixth transistor 6006 are turned on when the signal input to the gate electrode is H level, and turned off when the signal input to the gate electrode is L level. ..

なお、第1の配線6011及び第2の配線6012は、図33の第1の配線5911に相
当する。第3の配線6013及び第4の配線6014は、図33の第2の配線5912に
相当する。第5の配線6015及び第6の配線6016は、図33の第3の配線5913
に相当する。なお、第1のトランジスタ6001及び第2のトランジスタ6002は、図
33の第1のトランジスタ5903aに相当する。第3のトランジスタ6003及び第4
のトランジスタ6004は、図33の第2のトランジスタ5903bに相当する。第5の
トランジスタ6005及び第6のトランジスタ6006は、図33の第3のトランジスタ
5903cに相当する。
The first wiring 6011 and the second wiring 6012 correspond to the first wiring 5911 in FIG. 33. The third wiring 6013 and the fourth wiring 6014 correspond to the second wiring 5912 in FIG. 33. The fifth wiring 6015 and the sixth wiring 6016 are the third wiring 5913 of FIG. 33.
Corresponds to. The first transistor 6001 and the second transistor 6002 correspond to the first transistor 5903a in FIG. 33. Third transistor 6003 and fourth
Transistor 6004 corresponds to the second transistor 5903b in FIG. 33. The fifth transistor 6005 and the sixth transistor 6006 correspond to the third transistor 5903c in FIG. 33.

図35では、図32に示した第1のサブ選択期間T1において第1のトランジスタ600
1又は第2のトランジスタ6002のどちらかがオンする。第2のサブ選択期間T2にお
いて第3のトランジスタ6003又は第4のトランジスタ6004のどちらかがオンする
。第3のサブ選択期間T3において第5のトランジスタ6005又は第6のトランジスタ
6006のどちらかがオンする。さらに、図34に示したプリチャージ期間Tpにおいて
第1のトランジスタ6001、第3のトランジスタ6003及び第5のトランジスタ60
05か、第2のトランジスタ6002、第4のトランジスタ6004及び第6のトランジ
スタ6006のどちらかがオンする。
In FIG. 35, the first transistor 600 in the first subselection period T1 shown in FIG. 32.
Either the 1st or the 2nd transistor 6002 is turned on. In the second subselection period T2, either the third transistor 6003 or the fourth transistor 6004 is turned on. In the third subselection period T3, either the fifth transistor 6005 or the sixth transistor 6006 is turned on. Further, in the precharge period Tp shown in FIG. 34, the first transistor 6001, the third transistor 6003, and the fifth transistor 60
Either 05 or the second transistor 6002, the fourth transistor 6004 and the sixth transistor 6006 are turned on.

したがって、図35では、各トランジスタのオン時間を短くすることができるため、各ト
ランジスタの特性劣化を抑制することができる。なぜなら、例えば図32に示した第1の
サブ選択期間T1においては、第1のトランジスタ6001又は第2のトランジスタ60
02のどちらかがオンしていればビデオ信号を信号線Sj-1に入力することができるか
らである。なお、例えば図32に示した第1のサブ選択期間T1において、第1のトラン
ジスタ6001及び第2のトランジスタ6002を同時にオンすることによって、高速に
ビデオ信号を信号線Sj-1に入力することもできる。
Therefore, in FIG. 35, since the on-time of each transistor can be shortened, deterioration of the characteristics of each transistor can be suppressed. This is because, for example, in the first subselection period T1 shown in FIG. 32, the first transistor 6001 or the second transistor 60
This is because if either of 02 is turned on, the video signal can be input to the signal line Sj-1. For example, in the first subselection period T1 shown in FIG. 32, the video signal can be input to the signal line Sj-1 at high speed by turning on the first transistor 6001 and the second transistor 6002 at the same time. can.

なお、図35では、2つのトランジスタを配線5621と信号線との間に並列に接続する
場合について説明した。しかし、これに限定されず、3つ以上のトランジスタを配線56
21と信号線との間に並列に接続してもよい。こうすることで、さらに各トランジスタの
特性劣化を抑制することができる。
In FIG. 35, a case where two transistors are connected in parallel between the wiring 5621 and the signal line has been described. However, the present invention is not limited to this, and three or more transistors are wired 56.
It may be connected in parallel between 21 and the signal line. By doing so, it is possible to further suppress the deterioration of the characteristics of each transistor.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容ま
たは内容の一部を、別の図で述べた内容または内容の一部にも適用できる。あるいは、組
み合わせることが出来る。さらに、これまでに述べた図において、各々の部分に関して、
別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
In addition, although it has been described using various figures in the present embodiment, a part of the content or the content described in each figure can be applied to the content or a part of the content described in another figure. Alternatively, they can be combined. Furthermore, in the figures described so far, with respect to each part,
By combining different parts, more figures can be constructed.

同様に、本実施の形態の各々の図で述べた内容または内容の一部を、別の実施の形態の図
で述べた内容または内容の一部にも適用できる。あるいは、組み合わせることが出来る。
。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態の部分を組
み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, a part of the content or content described in each figure of the present embodiment can be applied to a part of the content or content described in the figure of another embodiment. Alternatively, they can be combined.
.. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容を、具現化した場合の一例、少し変
形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合
の一例、応用した場合の一例、関連がある部分についての一例などを示している。したが
って、他の実施の形態で述べた内容は、本実施の形態にも適用できる。あるいは、組み合
わせることが出来る。。
In this embodiment, the contents described in the other embodiments are embodied as an example, a slightly modified example, a partially modified example, and an improved example. An example of the case described, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be applied to the present embodiment. Alternatively, they can be combined. ..

(実施の形態6)
本実施の形態では、実施の形態1乃至実施の形態4に示した表示装置の静電破壊による不
良を防止するための構成について説明する。
(Embodiment 6)
In this embodiment, a configuration for preventing defects due to electrostatic breakdown of the display device shown in the first to fourth embodiments will be described.

なお、静電破壊とは、人体又は物体に蓄積された、正又は負の電荷が半導体デバイスに触
れた時にデバイスの入出力端子を介して瞬時に放電されることで、デバイス内部に大電流
が流れて発生する破壊のことである。
In addition, electrostatic breakdown means that when positive or negative charges accumulated in the human body or an object come into contact with a semiconductor device, they are instantly discharged via the input / output terminals of the device, and a large current is generated inside the device. It is the destruction that occurs when it flows.

図36(A)は、保護ダイオードによって走査線に発生する静電破壊を防止するための構
成を示す。図36(A)は、保護ダイオードを配線6111と走査線との間に配置した構
成である。なお、図示はしないが、i行目の走査線Giには複数の画素が接続される。な
お、保護ダイオードとしては、トランジスタ6101を用いる。なお、トランジスタ61
01はNチャネル型のトランジスタである。ただし、Pチャネル型のトランジスタを用い
てもよく、トランジスタ6101の極性は走査線駆動回路や画素が有するトランジスタの
極性と同様なものを用いればよい。
FIG. 36A shows a configuration for preventing electrostatic breakdown generated in the scanning line by the protection diode. FIG. 36A shows a configuration in which the protection diode is arranged between the wiring 6111 and the scanning line. Although not shown, a plurality of pixels are connected to the scanning line Gi on the i-th row. A transistor 6101 is used as the protection diode. The transistor 61
01 is an N-channel type transistor. However, a P-channel type transistor may be used, and the polarity of the transistor 6101 may be the same as that of the transistor of the scanning line drive circuit or the pixel.

なお、保護ダイオードは1つだけ配置されているが、複数個の保護ダイオードが直列に配
置されていてもよいし、並列に配置されていてもよいし、直並列に配置されていてもよい
Although only one protection diode is arranged, a plurality of protection diodes may be arranged in series, in parallel, or in series-parallel.

トランジスタ6101は第1の電極がi行目の走査線Giに接続され、第2の電極が配線
6111に接続され、ゲート電極がi行目の走査線Giに接続される。
In the transistor 6101, the first electrode is connected to the scanning line Gi in the i-th row, the second electrode is connected to the wiring 6111, and the gate electrode is connected to the scanning line Gi in the i-th row.

図36(A)の動作について説明する。配線6111にはある電位が入力されており、そ
の電位は、i行目の走査線Giに入力される信号のLレベルよりも低い電位である。正又
は負の電荷がi行目の走査線Giに放電されていない場合、i行目の走査線Giの電位は
Hレベル若しくはLレベルであるため、トランジスタ6101はオフしている。一方、負
の電荷がi行目の走査線Giに放電された場合、i行目の走査線Giの電位は瞬間的に下
がる。このとき、i行目の走査線Giの電位が配線6111の電位からトランジスタ61
01のしきい値電圧を引いた値よりも低くなると、トランジスタ6101がオンして、電
流がトランジスタ6101を介して配線6111に流れる。したがって、図36(A)に
示した構成によって、大電流が画素に流れ込むことを防ぐことができるため、画素の静電
破壊を防止することができる。
The operation of FIG. 36 (A) will be described. A certain potential is input to the wiring 6111, and the potential is lower than the L level of the signal input to the scanning line Gi on the i-th row. When the positive or negative charge is not discharged to the scanning line Gi in the i-th row, the potential of the scanning line Gi in the i-th row is H level or L level, so that the transistor 6101 is turned off. On the other hand, when the negative charge is discharged to the scanning line Gi on the i-th row, the potential of the scanning line Gi on the i-th row drops momentarily. At this time, the potential of the scanning line Gi on the i-th line is from the potential of the wiring 6111 to the transistor 61.
When it becomes lower than the value obtained by subtracting the threshold voltage of 01, the transistor 6101 is turned on and a current flows through the transistor 6101 to the wiring 6111. Therefore, according to the configuration shown in FIG. 36 (A), it is possible to prevent a large current from flowing into the pixel, and thus it is possible to prevent electrostatic destruction of the pixel.

なお、図36(B)は、正の電荷がi行目の走査線Giに放電された場合に静電破壊を防
止するための構成である。保護ダイオードとして機能するトランジスタ6102が走査線
と配線6112との間に配置されている。なお、保護ダイオードは1つだけ配置されてい
るが、複数個の保護ダイオードが直列に配置されていてもよいし、並列に配置されていて
もよいし、直並列に配置されていてもよい。なお、トランジスタ6102はNチャネル型
のトランジスタである。ただし、Pチャネル型のトランジスタを用いてもよく、トランジ
スタ6102の極性は走査線駆動回路や画素が有するトランジスタの極性と同様なものを
用いればよい。トランジスタ6102は第1の電極がi行目の走査線Giに接続され、第
2の電極が配線6112に接続され、ゲート電極が配線6112に接続される。なお、配
線6112には、i行目の走査線Giに入力される信号のHレベルよりも高い電位が入力
されている。したがって、トランジスタ6102は、電荷がi行目の走査線Giに放電さ
れていない場合ときには、オフしている。一方、正の電荷がi行目の走査線Giに放電さ
れた場合、i行目の走査線Giの電位は瞬間的に上昇する。このとき、i行目の走査線G
iの電位が配線6112の電位とトランジスタ6102のしきい値電圧との和よりも高く
なると、トランジスタ6102がオンして、電流がトランジスタ6102を介して配線6
112に流れる。したがって、図36(B)に示した構成によって、大電流が画素に流れ
込むことを防ぐことができるため、画素の静電破壊を防止することができる。
Note that FIG. 36B is a configuration for preventing electrostatic breakdown when a positive charge is discharged to the scanning line Gi on the i-th row. A transistor 6102 that functions as a protection diode is arranged between the scanning line and the wiring 6112. Although only one protection diode is arranged, a plurality of protection diodes may be arranged in series, in parallel, or in series-parallel. The transistor 6102 is an N-channel type transistor. However, a P-channel type transistor may be used, and the polarity of the transistor 6102 may be the same as that of the transistor of the scanning line drive circuit or the pixel. In the transistor 6102, the first electrode is connected to the scanning line Gi on the i-th row, the second electrode is connected to the wiring 6112, and the gate electrode is connected to the wiring 6112. A potential higher than the H level of the signal input to the scanning line Gi on the i-th line is input to the wiring 6112. Therefore, the transistor 6102 is turned off when the charge is not discharged to the scan line Gi on the i-th row. On the other hand, when the positive charge is discharged to the scanning line Gi on the i-th row, the potential of the scanning line Gi on the i-th row rises instantaneously. At this time, the scanning line G on the i-th line
When the potential of i becomes higher than the sum of the potential of the wiring 6112 and the threshold voltage of the transistor 6102, the transistor 6102 is turned on and the current is wired through the transistor 6102.
Flow to 112. Therefore, according to the configuration shown in FIG. 36 (B), it is possible to prevent a large current from flowing into the pixel, and thus it is possible to prevent electrostatic destruction of the pixel.

なお、図36(C)に示すように、図36(A)と図36(B)とを組み合わせた構成に
することで、正の電荷がi行目の走査線Giに放電された場合でも、負の電荷がi行目の
走査線Giに放電された場合でも、画素の静電破壊を防止することができる。なお、図3
6(A)、(B)と同様なものに関しては共通の符号を用いて示し、同一部分又は同様な
機能を有する部分の詳細な説明は省略する。
As shown in FIG. 36 (C), by combining FIGS. 36 (A) and 36 (B), even when a positive charge is discharged to the scanning line Gi on the i-th row. Even when a negative charge is discharged to the scanning line Gi on the i-th row, electrostatic destruction of the pixel can be prevented. In addition, FIG.
6 (A) and (B) are shown using a common reference numeral, and detailed description of the same portion or a portion having the same function will be omitted.

図37(A)は、保護ダイオードとして機能するトランジスタ6201を走査線と保持容
量線との間に接続した場合の構成を示す。なお、保護ダイオードは1つだけ配置されいる
が、複数個の保護ダイオードが直列に配置されていてもよいし、並列に配置されていても
よいし、直並列に配置されていてもよい。なお、トランジスタ6201はNチャネル型の
トランジスタである。ただし、Pチャネル型のトランジスタを用いてもよく、トランジス
タ6201の極性は走査線駆動回路や画素が有するトランジスタの極性と同様なものを用
いればよい。なお、配線6211は、保持容量線として機能する。トランジスタ6201
の第1の電極はi行目の走査線Giに接続され、第2の電極は配線6211に接続され、
ゲート電極はi行目の走査線Giに接続される。なお、配線6211には、i行目の走査
線Giに入力される信号のLレベルよりも低い電位が入力されている。したがって、トラ
ンジスタ6201は、電荷がi行目の走査線Giに放電されていない場合ときには、オフ
している。一方、負の電荷がi行目の走査線Giに放電された場合、i行目の走査線Gi
の電位は瞬間的に下がる。このとき、i行目の走査線Giの電位が配線6211の電位か
らトランジスタ6201のしきい値電圧を引いた値よりも低くなると、トランジスタ62
01がオンして、電流がトランジスタ6201を介して配線6211に流れる。したがっ
て、図37(A)に示した構成によって、大電流が画素に流れ込むことを防ぐことができ
るため、画素の静電破壊を防止することができる。さらに、図37(A)に示した構成で
は、保持容量線を電荷を逃がす配線として利用しているので、新たに配線を追加する必要
がない。
FIG. 37A shows a configuration in which a transistor 6201 functioning as a protection diode is connected between a scanning line and a holding capacitance line. Although only one protection diode is arranged, a plurality of protection diodes may be arranged in series, in parallel, or in series-parallel. The transistor 6201 is an N-channel type transistor. However, a P-channel type transistor may be used, and the polarity of the transistor 6201 may be the same as the polarity of the transistor of the scanning line drive circuit or the pixel. The wiring 6211 functions as a holding capacity line. Transistor 6201
The first electrode is connected to the scanning line Gi on the i-th line, and the second electrode is connected to the wiring 6211.
The gate electrode is connected to the scanning line Gi on the i-th row. A potential lower than the L level of the signal input to the scanning line Gi on the i-th line is input to the wiring 6211. Therefore, the transistor 6201 is turned off when the charge is not discharged to the scan line Gi on the i-th row. On the other hand, when the negative charge is discharged to the scanning line Gi on the i-th row, the scanning line Gi on the i-th row
The potential of is dropped momentarily. At this time, when the potential of the scanning line Gi on the i-th row becomes lower than the value obtained by subtracting the threshold voltage of the transistor 6201 from the potential of the wiring 6211, the transistor 62
01 is turned on and current flows through the transistor 6201 to the wiring 6211. Therefore, according to the configuration shown in FIG. 37 (A), it is possible to prevent a large current from flowing into the pixel, and thus it is possible to prevent electrostatic destruction of the pixel. Further, in the configuration shown in FIG. 37 (A), since the holding capacitance wire is used as the wiring for releasing the electric charge, it is not necessary to newly add the wiring.

なお、図37(B)は、正の電荷がi行目の走査線Giに放電された場合に静電破壊を防
止するための構成である。ここでは、配線6211には、i行目の走査線Giに入力され
る信号のHレベルよりも高い電位が入力されている。したがって、トランジスタ6201
は、電荷がi行目の走査線Giに放電されていない場合ときには、オフしている。一方、
正の電荷がi行目の走査線Giに放電された場合、i行目の走査線Giの電位は瞬間的に
上昇する。このとき、i行目の走査線Giの電位が配線6211の電位とトランジスタ6
201のしきい値電圧との和よりも高くなると、トランジスタ6201がオンして、電流
がトランジスタ6201を介して配線6211に流れる。したがって、図37(B)に示
した構成によって、大電流が画素に流れ込むことを防ぐことができるため、画素の静電破
壊を防止することができる。さらに、図37(B)に示した構成では、保持容量線を電荷
を逃がす配線として利用しているので、新たに配線を追加する必要がない。なお、図37
(B)と同様なものに関しては共通の符号を用いて示し、同一部分又は同様な機能を有す
る部分の詳細な説明は省略する。
Note that FIG. 37B is a configuration for preventing electrostatic breakdown when a positive charge is discharged to the scanning line Gi on the i-th row. Here, a potential higher than the H level of the signal input to the scanning line Gi on the i-th line is input to the wiring 6211. Therefore, the transistor 6201
Is off when the charge is not discharged to the scan line Gi on the i-th row. on the other hand,
When the positive charge is discharged to the scanning line Gi in the i-th row, the potential of the scanning line Gi in the i-th row rises instantaneously. At this time, the potential of the scanning line Gi on the i-th line is the potential of the wiring 6211 and the transistor 6
When it becomes higher than the sum of the threshold voltage of 201, the transistor 6201 is turned on and a current flows through the transistor 6201 to the wiring 6211. Therefore, according to the configuration shown in FIG. 37 (B), it is possible to prevent a large current from flowing into the pixel, and thus it is possible to prevent electrostatic destruction of the pixel. Further, in the configuration shown in FIG. 37B, since the holding capacitance line is used as the wiring for releasing the electric charge, it is not necessary to add a new wiring. In addition, FIG. 37
The same parts as in (B) are shown by using a common reference numeral, and detailed description of the same part or the part having the same function is omitted.

次に、保護ダイオードによって信号線に発生する静電破壊を防止するための構成を図38
(A)に示す。図38(A)は、保護ダイオードを配線6411と信号線との間に配置し
た場合の構成である。なお、図示はしないがj列目の信号線Sjには複数の画素が接続さ
れる。なお、保護ダイオードとしては、トランジスタ6401を用いる。なお、なお、ト
ランジスタ6401はNチャネル型のトランジスタである。ただし、Pチャネル型のトラ
ンジスタを用いてもよく、トランジスタ6401の極性は信号線駆動回路や画素が有する
トランジスタの極性と同様なものを用いればよい。
Next, FIG. 38 shows a configuration for preventing electrostatic breakdown generated in the signal line by the protection diode.
Shown in (A). FIG. 38A shows a configuration in which the protection diode is arranged between the wiring 6411 and the signal line. Although not shown, a plurality of pixels are connected to the signal line Sj in the jth column. A transistor 6401 is used as the protection diode. The transistor 6401 is an N-channel type transistor. However, a P-channel type transistor may be used, and the polarity of the transistor 6401 may be the same as the polarity of the transistor of the signal line drive circuit or the pixel.

なお、保護ダイオードは1つだけ配置されているが、複数個の保護ダイオードが直列に配
置されていてもよいし、並列に配置されていてもよいし、直並列に配置されていてもよい
Although only one protection diode is arranged, a plurality of protection diodes may be arranged in series, in parallel, or in series-parallel.

トランジスタ6401は第1の電極がj行目の信号線Sjに接続され、第2の電極が配線
6411に接続され、ゲート電極がj行目の信号線Sjに接続される。
In the transistor 6401, the first electrode is connected to the signal line Sj on the jth line, the second electrode is connected to the wiring 6411, and the gate electrode is connected to the signal line Sj on the jth line.

図38(A)の動作について説明する。配線6411にはある電位が入力されており、そ
の電位は、j行目の信号線Sjに入力されるビデオ信号の最小値も低い電位である。正又
は負の電荷がj行目の信号線Sjに放電されていない場合、j行目の信号線Sjの電位は
ビデオ信号と同電位であるため、トランジスタ6401はオフしている。一方、負の電荷
がj行目の信号線Sjに放電された場合、j行目の信号線Sjの電位は瞬間的に下がる。
このとき、j行目の信号線Sjの電位が配線6411の電位からトランジスタ6401の
しきい値電圧を引いた値よりも低くなると、トランジスタ6401がオンして、電流がト
ランジスタ6401を介して配線6411に流れる。したがって、図38(A)に示した
構成によって、大電流が画素に流れ込むことを防ぐことができるため、画素の静電破壊を
防止することができる。
The operation of FIG. 38 (A) will be described. A certain potential is input to the wiring 6411, and the potential is a potential at which the minimum value of the video signal input to the signal line Sj on the jth line is also low. When the positive or negative charge is not discharged to the signal line Sj on the jth line, the potential of the signal line Sj on the jth line is the same potential as the video signal, so that the transistor 6401 is turned off. On the other hand, when the negative charge is discharged to the signal line Sj on the jth line, the potential of the signal line Sj on the jth line drops momentarily.
At this time, when the potential of the signal line Sj on the jth line becomes lower than the value obtained by subtracting the threshold voltage of the transistor 6401 from the potential of the wiring 6411, the transistor 6401 is turned on and the current is wired 6411 via the transistor 6401. Flow to. Therefore, according to the configuration shown in FIG. 38 (A), it is possible to prevent a large current from flowing into the pixel, and thus it is possible to prevent electrostatic destruction of the pixel.

なお、図38(B)は、正の電荷がj行目の信号線Sjに放電された場合に静電破壊を防
止するための構成である。保護ダイオードとして機能するトランジスタ6402が走査線
と配線6412との間に配置されている。なお、保護ダイオードは1つだけ配置されてい
るが、複数個の保護ダイオードが直列に配置されていてもよいし、並列に配置されていて
もよいし、直並列に配置されていてもよい。なお、トランジスタ6402はNチャネル型
のトランジスタである。ただし、Pチャネル型のトランジスタを用いてもよく、トランジ
スタ6402の極性は走査線駆動回路や画素が有するトランジスタの極性と同様なものを
用いればよい。トランジスタ6402は第1の電極がj行目の信号線Sjに接続され、第
2の電極が配線6412に接続され、ゲート電極が配線6412に接続される。なお、配
線6412には、j行目の信号線Sjに入力されるビデオ信号の最大値よりも高い電位が
入力されている。したがって、トランジスタ6402は、電荷がj行目の信号線Sjに放
電されていない場合ときには、オフしている。一方、正の電荷がj行目の信号線Sjに放
電された場合、j行目の信号線Sjの電位は瞬間的に上昇する。このとき、j行目の信号
線Sjの電位が配線6412の電位とトランジスタ6402のしきい値電圧との和よりも
高くなると、トランジスタ6402がオンして、電流がトランジスタ6402を介して配
線6412に流れる。したがって、図38(B)に示した構成によって、大電流が画素に
流れ込むことを防ぐことができるため、画素の静電破壊を防止することができる。
Note that FIG. 38B is a configuration for preventing electrostatic breakdown when a positive charge is discharged to the signal line Sj on the jth line. A transistor 6402 functioning as a protection diode is arranged between the scan line and the wiring 6412. Although only one protection diode is arranged, a plurality of protection diodes may be arranged in series, in parallel, or in series-parallel. The transistor 6402 is an N-channel type transistor. However, a P-channel type transistor may be used, and the polarity of the transistor 6402 may be the same as that of the transistor of the scanning line drive circuit or the pixel. In the transistor 6402, the first electrode is connected to the signal line Sj on the jth line, the second electrode is connected to the wiring 6412, and the gate electrode is connected to the wiring 6412. A potential higher than the maximum value of the video signal input to the signal line Sj on the jth line is input to the wiring 6412. Therefore, the transistor 6402 is turned off when the electric charge is not discharged to the signal line Sj on the jth line. On the other hand, when the positive charge is discharged to the signal line Sj on the jth line, the potential of the signal line Sj on the jth line rises instantaneously. At this time, when the potential of the signal line Sj on the jth line becomes higher than the sum of the potential of the wiring 6412 and the threshold voltage of the transistor 6402, the transistor 6402 is turned on and the current is connected to the wiring 6412 via the transistor 6402. It flows. Therefore, according to the configuration shown in FIG. 38 (B), it is possible to prevent a large current from flowing into the pixel, and thus it is possible to prevent electrostatic destruction of the pixel.

なお、図38(C)に示すように、図38(A)と図38(B)とを組み合わせた構成に
することで、正の電荷がj行目の信号線Sjに放電された場合でも、負の電荷がj行目の
信号線Sjに放電された場合でも、画素の静電破壊を防止することができる。なお、図3
8(A)、(B)と同様なものに関しては共通の符号を用いて示し、同一部分又は同様な
機能を有する部分の詳細な説明は省略する。
As shown in FIG. 38 (C), by combining FIGS. 38 (A) and 38 (B), even when a positive charge is discharged to the signal line Sj on the jth line. Even when a negative charge is discharged to the signal line Sj on the jth line, electrostatic destruction of the pixel can be prevented. In addition, FIG.
8 (A) and (B) are shown using a common reference numeral, and detailed description of the same portion or a portion having the same function will be omitted.

本実施の形態では、走査線及び信号線に接続された画素の静電破壊を防止するための構成
を説明した。しかし、本実施の形態の構成は、走査線及び信号線に接続された画素の静電
破壊の防止だけに適用されるものではない。例えば、実施の形態1乃至実施の形態4に示
した走査線駆動回路及び信号線駆動回路に接続される信号又は電位が入力された配線に本
実施の形態を適用する場合は、走査線駆動回路及び信号線駆動回路の静電破壊を防止する
ことができる。
In the present embodiment, a configuration for preventing electrostatic destruction of pixels connected to the scanning line and the signal line has been described. However, the configuration of this embodiment is not applied only to prevent electrostatic destruction of pixels connected to scanning lines and signal lines. For example, when the present embodiment is applied to the wiring to which the signal or potential connected to the scan line drive circuit and the signal line drive circuit shown in the first to fourth embodiments is input, the scan line drive circuit And electrostatic destruction of the signal line drive circuit can be prevented.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容ま
たは内容の一部を、別の図で述べた内容または内容の一部にも適用できる。あるいは、組
み合わせることが出来る。さらに、これまでに述べた図において、各々の部分に関して、
別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
In addition, although it has been described using various figures in the present embodiment, a part of the content or the content described in each figure can be applied to the content or a part of the content described in another figure. Alternatively, they can be combined. Furthermore, in the figures described so far, with respect to each part,
By combining different parts, more figures can be constructed.

同様に、本実施の形態の各々の図で述べた内容または内容の一部を、別の実施の形態の図
で述べた内容または内容の一部にも適用できる。あるいは、組み合わせることが出来る。
さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態の部分を組み
合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, a part of the content or content described in each figure of the present embodiment can be applied to a part of the content or content described in the figure of another embodiment. Alternatively, they can be combined.
Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容を、具現化した場合の一例、少し変
形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合
の一例、応用した場合の一例、関連がある部分についての一例などを示している。したが
って、他の実施の形態で述べた内容は、本実施の形態にも適用できる。あるいは、組み合
わせることが出来る。
In this embodiment, the contents described in the other embodiments are embodied as an example, a slightly modified example, a partially modified example, and an improved example. An example of the case described, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be applied to the present embodiment. Alternatively, they can be combined.

(実施の形態7)
本実施の形態では、実施の形態1乃至実施の形態4に示した表示装置に適用できる表示装
置の新たな構成について説明する。
(Embodiment 7)
In the present embodiment, a new configuration of the display device applicable to the display devices shown in the first to fourth embodiments will be described.

図39(A)は、ダイオード接続されたトランジスタをある走査線と別の走査線との間に
配置した場合の構成である。図39(A)では、i-1行目の走査線Gi-1とi行目の
走査線Giとの間にダイオード接続されたトランジスタ6301aを配置し、i行目の走
査線Giとi+1行目の走査線Gi+1との間にダイオード接続されたトランジスタ63
01bを配置した場合の構成を示している。なお、トランジスタ6301a及びトランジ
スタ6301bはNチャネル型のトランジスタである。ただし、Pチャネル型のトランジ
スタを用いてもよく、トランジスタ6301a及びトランジスタ6301bの極性は走査
線駆動回路や画素が有するトランジスタの極性と同様なものを用いればよい。
FIG. 39A is a configuration in which a diode-connected transistor is arranged between one scanning line and another scanning line. In FIG. 39 (A), a transistor 6301a connected by a diode is arranged between the scanning line Gi-1 on the i-1st line and the scanning line Gi on the i-th row, and the scanning line Gi and the i + 1 row on the i-th row are arranged. Transistor 63 diode-connected to the eye scanning line Gi + 1.
The configuration when 01b is arranged is shown. The transistor 6301a and the transistor 6301b are N-channel type transistors. However, a P-channel type transistor may be used, and the polarity of the transistor 6301a and the transistor 6301b may be the same as the polarity of the transistor of the scanning line drive circuit or the pixel.

なお、図39(A)では、代表してi-1行目の走査線Gi-1、i行目の走査線Gi及
びi+1行目の走査線Gi+1を示しているが、他の走査線も同様にダイオード接続され
たトランジスタが配置されている。
In FIG. 39 (A), the scanning line Gi-1 on the i-1st line, the scanning line Gi on the i-th line, and the scanning line Gi + 1 on the i + 1th line are shown as representatives, but other scanning lines are also shown. Similarly, a diode-connected transistor is arranged.

トランジスタ6301aの第1の電極はi行目の走査線Giに接続され、第2の電極はi
-1行目の走査線Gi-1に接続され、ゲート電極はGi-1行目の走査線Gi-1に接
続される。トランジスタ6301bの第1の電極はi+1行目の走査線Gi+1に接続さ
れ、第2の電極はi行目の走査線Giに接続され、ゲート電極はi行目の走査線Giに接
続される。
The first electrode of the transistor 6301a is connected to the scanning line Gi on the i-th row, and the second electrode is i.
It is connected to the scanning line Gi-1 on the first line, and the gate electrode is connected to the scanning line Gi-1 on the Gi-1 line. The first electrode of the transistor 6301b is connected to the scan line Gi + 1 in the i + 1 row, the second electrode is connected to the scan line Gi in the i row, and the gate electrode is connected to the scan line Gi in the i row.

図39(A)の動作について説明する。実施の形態1乃至実施の形態4に示した走査線駆
動回路では、非選択期間において、i-1行目の走査線Gi-1、i行目の走査線Gi及
びi+1行目の走査線Gi+1はLレベルを維持していてる。したがって、トランジスタ
6301a及びトランジスタ6301bはオフしている。しかしながら、例えばノイズな
どによってi行目の走査線Giの電位が上昇した場合、i行目の走査線Giが画素を選択
しまい、画素に不正なビデオ信号が書き込まれてしまう。そこで、図39(A)のように
ダイオード接続したトランジスタを走査線間に配置しておくことで、画素に不正なビデオ
信号が書き込まれることを防止することができる。なぜなら、i行目の走査線Giの電位
がi-1行目の走査線Gi-1の電位とトランジスタ6301aのしきい値電圧との和以
上に上昇すると、トランジスタ6301aがオンして、i行目の走査線Giの電位が下が
る。したがって、i行目の走査線Giによって画素が選択されることはないからである。
The operation of FIG. 39 (A) will be described. In the scan line drive circuit shown in the first to fourth embodiments, the scan line Gi-1 on the i-1 line, the scan line Gi on the i line, and the scan line Gi + 1 on the i + 1 line during the non-selection period. Maintains the L level. Therefore, the transistor 6301a and the transistor 6301b are turned off. However, when the potential of the scanning line Gi on the i-th row rises due to noise or the like, the scanning line Gi on the i-th row selects a pixel, and an invalid video signal is written to the pixel. Therefore, by arranging a diode-connected transistor between the scanning lines as shown in FIG. 39 (A), it is possible to prevent an invalid video signal from being written to the pixel. This is because when the potential of the scanning line Gi in the i-th row rises above the sum of the potential of the scanning line Gi-1 in the i-1th row and the threshold voltage of the transistor 6301a, the transistor 6301a is turned on and the i-row is turned on. The potential of the scanning line Gi of the eye drops. Therefore, the pixel is not selected by the scanning line Gi on the i-th row.

なお、図39(A)の構成は、特に走査線駆動回路と画素部とを同一基板上に一体形成し
た場合に有利である。なぜなら、Nチャネル型のトランジスタ、又はPチャネル型のトラ
ンジスタだけで構成されている走査線駆動回路では、走査線が浮遊状態になることがあり
、走査線にノイズが発生しやすいからである。
The configuration of FIG. 39A is particularly advantageous when the scanning line drive circuit and the pixel portion are integrally formed on the same substrate. This is because, in a scanning line drive circuit composed of only N-channel type transistors or P-channel type transistors, the scanning lines may be in a floating state, and noise is likely to occur in the scanning lines.

なお、図39(B)は、走査線間に配置するダイオード接続されたトランジスタの向きを
逆にした場合の構成である。なお、トランジスタ6302a及びトランジスタ6302b
はNチャネル型のトランジスタである。ただし、Pチャネル型のトランジスタを用いても
よく、トランジスタ6302a及びトランジスタ6302bの極性は走査線駆動回路や画
素が有するトランジスタの極性と同様なものを用いればよい。図39(B)では、トラン
ジスタ6302aの第1の電極がi行目の走査線Giに接続され、第2の電極がi-1行
目の走査線Gi-1に接続され、ゲート電極がi行目の走査線Giに接続される。トラン
ジスタ6302bの第1の電極がi+1行目の走査線Gi+1に接続され、第2の電極が
i行目の走査線Giに接続され、ゲート電極がi+1行目の走査線Gi+1に接続される
。図39(B)は、図38(A)と同様に、i行目の走査線Giの電位がi-1行目の走
査線Gi+1の電位とトランジスタ6302bのしきい値電圧との和以上に上昇すると、
トランジスタ6302bがオンして、i行目の走査線Giの電位が下がる。したがって、
i行目の走査線Giによって画素が選択されることはなく、画素に不正なビデオ信号が書
き込まれることを防止することができる。
Note that FIG. 39B is a configuration in which the directions of the diode-connected transistors arranged between the scanning lines are reversed. The transistor 6302a and the transistor 6302b
Is an N-channel type transistor. However, a P-channel type transistor may be used, and the polarity of the transistor 6302a and the transistor 6302b may be the same as the polarity of the transistor of the scanning line drive circuit or the pixel. In FIG. 39B, the first electrode of the transistor 6302a is connected to the scanning line Gi of the i-th row, the second electrode is connected to the scanning line Gi-1 of the i-1st row, and the gate electrode is i. It is connected to the scanning line Gi on the line. The first electrode of the transistor 6302b is connected to the scan line Gi + 1 in the i + 1 row, the second electrode is connected to the scan line Gi + 1 in the i row, and the gate electrode is connected to the scan line Gi + 1 in the i + 1 row. In FIG. 39 (B), similarly to FIG. 38 (A), the potential of the scanning line Gi on the i-th row is equal to or higher than the sum of the potential of the scanning line Gi + 1 on the i-1th row and the threshold voltage of the transistor 6302b. When it rises,
The transistor 6302b is turned on, and the potential of the scanning line Gi on the i-th row is lowered. therefore,
The pixel is not selected by the scanning line Gi on the i-th line, and it is possible to prevent an invalid video signal from being written to the pixel.

なお、図39(C)に示すように、図39(A)と図39(B)とを組み合わせた構成に
することで、i行目の走査線Giの電位が上昇しても、トランジスタ6301a及びトラ
ンジスタ6302bがオンするので、i行目の走査線Giの電位が下がる。なお、図39
(C)では、電流が2つのトランジスタを介して流れるので、より大きいノイズを除去す
ることが可能である。なお、図39(A)、(B)と同様なものに関しては共通の符号を
用いて示し、同一部分又は同様な機能を有する部分の詳細な説明は省略する。
As shown in FIG. 39 (C), by combining FIGS. 39 (A) and 39 (B), even if the potential of the scanning line Gi on the i-th row rises, the transistor 6301a And since the transistor 6302b is turned on, the potential of the scanning line Gi on the i-th row is lowered. In addition, FIG. 39
In (C), since the current flows through the two transistors, it is possible to remove larger noise. The same parts as those in FIGS. 39 (A) and 39 (B) are shown by using a common reference numeral, and detailed description of the same part or the part having the same function will be omitted.

なお、図37(A)及び(B)に示すように、走査線と保持容量線との間にダイオード接
続したトランジスタを配置しても図39(A)、(B)、(C)と同様の効果を得ること
ができる。
As shown in FIGS. 37 (A) and 37 (B), even if a diode-connected transistor is arranged between the scanning line and the holding capacitance line, it is the same as in FIGS. 39 (A), (B), and (C). The effect of can be obtained.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容ま
たは内容の一部を、別の図で述べた内容または内容の一部にも適用できる。あるいは、組
み合わせることが出来る。さらに、これまでに述べた図において、各々の部分に関して、
別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
In addition, although it has been described using various figures in the present embodiment, a part of the content or the content described in each figure can be applied to the content or a part of the content described in another figure. Alternatively, they can be combined. Furthermore, in the figures described so far, for each part,
By combining different parts, more figures can be constructed.

同様に、本実施の形態の各々の図で述べた内容または内容の一部を、別の実施の形態の図
で述べた内容または内容の一部にも適用できる。あるいは、組み合わせることが出来る。
さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態の部分を組み
合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, a part of the content or content described in each figure of the present embodiment can be applied to a part of the content or content described in the figure of another embodiment. Alternatively, they can be combined.
Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容を、具現化した場合の一例、少し変
形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合
の一例、応用した場合の一例、関連がある部分についての一例などを示している。したが
って、他の実施の形態で述べた内容は、本実施の形態にも適用できる。あるいは、組み合
わせることが出来る。
In this embodiment, the contents described in the other embodiments are embodied as an example, a slightly modified example, a partially modified example, and an improved example. An example of the case described, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be applied to the present embodiment. Alternatively, they can be combined.

(実施の形態8)
本実施形態においては、表示装置の画素構造について説明する。特に、液晶表示装置の画
素構造について説明する。
(Embodiment 8)
In this embodiment, the pixel structure of the display device will be described. In particular, the pixel structure of the liquid crystal display device will be described.

図46は、液晶表示装置の画素構造のうち、TN方式と呼ばれるものに、薄膜トランジス
タ(TFT)を組み合わせた場合の画素の断面図と上面図である。図46の(A)は、画
素の断面図であり、図46の(B)は、画素の上面図である。また、図46の(A)に示
す画素の断面図は、図46の(B)に示す画素の上面図における線分a-a’に対応して
いる。図46に示す画素構造の液晶表示装置に本実施の形態の表示装置を適用することに
よって、安価に液晶表示装置を製造することができる。
FIG. 46 is a cross-sectional view and a top view of pixels when a thin film transistor (TFT) is combined with a pixel structure of a liquid crystal display device, which is called a TN method. FIG. 46 (A) is a cross-sectional view of a pixel, and FIG. 46 (B) is a top view of the pixel. Further, the cross-sectional view of the pixel shown in FIG. 46A corresponds to the line segment aa'in the top view of the pixel shown in FIG. 46B. By applying the display device of the present embodiment to the liquid crystal display device having a pixel structure shown in FIG. 46, the liquid crystal display device can be manufactured at low cost.

図46の(A)を参照して、TN方式の液晶表示装置の画素構造について説明する。液晶
表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは、
加工を施した2枚の基板を、数μmのギャップを持たせて貼り合わせ、2枚の基板間に液
晶材料を注入することで作製される。図46の(A)において、2枚の基板は、第1の基
板10101および第2の基板10116である。第1の基板には、TFTおよび画素電
極を作製し、第2の基板には、遮光膜10114、カラーフィルタ10115、第4の導
電層10113、スペーサ10117、および第2の配向膜10112を作製してもよい
The pixel structure of the TN type liquid crystal display device will be described with reference to FIG. 46 (A). The liquid crystal display device has a core portion for displaying an image, which is called a liquid crystal panel. The LCD panel is
It is produced by laminating two processed substrates with a gap of several μm and injecting a liquid crystal material between the two substrates. In FIG. 46 (A), the two substrates are the first substrate 10101 and the second substrate 10116. A TFT and a pixel electrode are formed on the first substrate, and a light-shielding film 10114, a color filter 10115, a fourth conductive layer 10113, a spacer 10117, and a second alignment film 10112 are formed on the second substrate. You may.

なお、本実施の形態の表示装置は、第1の基板10101にTFTを作製しなくとも実施
可能である。TFTを作製しない場合は、工程数が減少するため、製造コストを低減する
ことができる。さらに、構造が簡単であるので、歩留まりを向上させることができる。一
方、TFTを作製する場合は、より大型の表示装置を得ることができる。
The display device of this embodiment can be implemented without forming a TFT on the first substrate 10101. When the TFT is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Furthermore, since the structure is simple, the yield can be improved. On the other hand, when manufacturing a TFT, a larger display device can be obtained.

なお、図46に示すTFTは、非晶質半導体を用いたボトムゲート型のTFTである。非
結晶半導体を用いたTFTを適応した液晶パネルは、大面積の基板を用いて、安価に作製
できるという利点がある。しかし、本実施の形態の表示装置はこれに限定されるものでは
ない。使用できるTFTの構造は、ボトムゲート型のTFTではチャネルエッチ型、チャ
ネル保護型などがある。また、トップゲート型でもよい。さらに、非晶質半導体だけでは
なく、多結晶半導体も用いることができる。
The TFT shown in FIG. 46 is a bottom gate type TFT using an amorphous semiconductor. A liquid crystal panel to which a TFT using an amorphous semiconductor is applied has an advantage that it can be manufactured at low cost by using a large-area substrate. However, the display device of the present embodiment is not limited to this. The structure of the TFT that can be used includes a channel etch type and a channel protection type for the bottom gate type TFT. Moreover, the top gate type may be used. Further, not only amorphous semiconductors but also polycrystalline semiconductors can be used.

なお、本実施の形態の表示装置は、第2の基板10116に遮光膜10114を作製しな
くとも実施可能である。遮光膜10114を作製しない場合は、工程数が減少するため、
製造コストを低減することができる。また、構造が簡単であるので、歩留まりを向上させ
ることができる。一方、遮光膜10114を作製する場合は、黒表示時に光漏れの少ない
表示装置を得ることができる。
The display device of this embodiment can be implemented without forming a light-shielding film 10114 on the second substrate 10116. If the light-shielding film 10114 is not manufactured, the number of steps is reduced, so that
The manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the light-shielding film 10114 is manufactured, it is possible to obtain a display device having less light leakage when displaying black.

なお、本実施の形態の表示装置は、第2の基板10116にカラーフィルタ10115を
作製しなくとも実施可能である。カラーフィルタ10115を作製しない場合は、工程数
が減少するため、製造コストを低減することができる。また、構造が簡単であるので、歩
留まりを向上させることができる。ただし、カラーフィルタ10115を作製しない場合
でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ることが
できる。一方、カラーフィルタ10115を作製する場合は、カラー表示ができる表示装
置を得ることができる。
The display device of the present embodiment can be implemented without manufacturing the color filter 10115 on the second substrate 10116. When the color filter 10115 is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. However, even if the color filter 10115 is not manufactured, it is possible to obtain a display device capable of color display by field sequential drive. On the other hand, when the color filter 10115 is manufactured, it is possible to obtain a display device capable of displaying colors.

なお、本実施の形態の表示装置は、第2の基板10116にスペーサ10117を作製せ
ず、球状のスペーサを散布することでも実施可能である。球状のスペーサを散布する場合
は、工程数が減少するため、製造コストを低減することができる。また、構造が簡単であ
るので、歩留まりを向上させることができる。一方、スペーサ10117を作製する場合
は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、
表示ムラの少ない表示装置を得ることができる。
The display device of the present embodiment can also be implemented by spraying a spherical spacer without forming the spacer 10117 on the second substrate 10116. When the spherical spacer is sprayed, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the spacer 10117 is manufactured, the position of the spacer does not vary, so that the distance between the two substrates can be made uniform.
A display device with less display unevenness can be obtained.

次に、第1の基板10101に施す加工について説明する。第1の基板10101は透光
性を有する基板が好適であり、例えば石英基板、ガラス基板またはプラスチック基板でも
よい。なお、第1の基板10101は遮光性の基板でもよく、半導体基板又はSOI(S
ilicon on Insulator)基板でもよい。
Next, the processing performed on the first substrate 10101 will be described. The first substrate 10101 is preferably a transparent substrate, and may be, for example, a quartz substrate, a glass substrate, or a plastic substrate. The first substrate 10101 may be a light-shielding substrate, and may be a semiconductor substrate or SOI (S).
It may be an insulator) substrate.

まず、第1の基板10101に第1の絶縁膜10102を成膜してもよい。第1の絶縁膜
10102は、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜(SiOxN
y)等の絶縁膜であってもよい。あるいは、第1の絶縁膜10102は、酸化シリコン膜
、窒化シリコン膜または酸化窒化シリコン膜(SiOxNy)等のうちの2つ以上の膜を
組み合わせた積層構造の絶縁膜を用いてもよい。第1の絶縁膜10102を成膜する場合
は、基板からの不純物が半導体層に影響を及ぼし、TFTの性質が変化してしまうのを防
ぐことができる。また、TFTの性質の変化を抑制できるので、信頼性の高い表示装置を
得ることができる。なお、第1の絶縁膜10102を成膜しない場合は、工程数が減少す
るため、製造コストを低減することができる。また、構造が簡単であるので、歩留まりを
向上させることができる。
First, the first insulating film 10102 may be formed on the first substrate 10101. The first insulating film 10102 is a silicon oxide film, a silicon nitride film or a silicon nitride film (SiOxN).
It may be an insulating film such as y). Alternatively, as the first insulating film 10102, an insulating film having a laminated structure in which two or more films such as a silicon oxide film, a silicon nitride film, and a silicon oxide film (SiOxNy) are combined may be used. When the first insulating film 10102 is formed, it is possible to prevent impurities from the substrate from affecting the semiconductor layer and changing the properties of the TFT. Further, since the change in the properties of the TFT can be suppressed, a highly reliable display device can be obtained. If the first insulating film 10102 is not formed, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved.

次に、第1の基板10101または第1の絶縁膜10102上に、第1の導電層1010
3を形成する。なお、第1の導電層10103は、形状を加工して形成してもよい。形状
を加工する工程は、次のようなものであることが好適である。まず、第1の導電層101
03を全面に成膜する。このとき、第1の導電層10103は、スパッタ装置、またはC
VD装置などの成膜装置を用いて成膜されてもよい。次に、全面に成膜した第1の導電層
上に、感光性のレジスト材料を全面に形成する。次に、フォトリソグラフィ法やレーザー
直描法などによって、形成したい形状に従ってレジスト材料を感光させる。次に、感光さ
せたレジスト材料、または感光させなかったレジスト材料のうち、どちらか一方を、エッ
チングによって除去することで、第1の導電層10103を形状加工するためのマスクを
得ることができる。その後、形成したマスクパターンに従って、第1の導電層10103
をエッチングにより除去することで、所望のパターンに第1の導電層10103を形状加
工することができる。なお、第1の導電層10103をエッチングする方法には、化学的
な方法(ウェットエッチング)と、物理的な方法(ドライエッチング)があるが、第1の
導電層10103の材料や、第1の導電層10103の下層にある材料の性質などを勘案
し、適宜選択する。なお、第1の導電層10103に使用する材料は、Mo、Ti、Al
、Nd、Crなどが好適である。あるいは、Mo、Ti、Al、Nd、Crなどのうちの
2つ以上を組み合わせた積層構造であってもよい。
Next, on the first substrate 10101 or the first insulating film 10102, the first conductive layer 1010
Form 3. The first conductive layer 10103 may be formed by processing its shape. The process of processing the shape is preferably as follows. First, the first conductive layer 101
03 is formed on the entire surface. At this time, the first conductive layer 10103 is a sputtering device or C.
The film may be formed using a film forming apparatus such as a VD apparatus. Next, a photosensitive resist material is formed on the entire surface of the first conductive layer formed on the entire surface. Next, the resist material is exposed to light according to the shape to be formed by a photolithography method, a laser direct drawing method, or the like. Next, by removing either the exposed resist material or the non-exposed resist material by etching, a mask for shaping the first conductive layer 10103 can be obtained. Then, according to the formed mask pattern, the first conductive layer 10103
Is removed by etching, so that the first conductive layer 10103 can be shaped into a desired pattern. There are two methods for etching the first conductive layer 10103: a chemical method (wet etching) and a physical method (dry etching). The material of the first conductive layer 10103 and the first method are used. It is appropriately selected in consideration of the properties of the material under the conductive layer 10103. The materials used for the first conductive layer 10103 are Mo, Ti, and Al.
, Nd, Cr and the like are suitable. Alternatively, it may have a laminated structure in which two or more of Mo, Ti, Al, Nd, Cr and the like are combined.

次に、第2の絶縁膜10104を形成する。このとき、第2の絶縁膜10104は、スパ
ッタ装置またはCVD装置などの成膜装置を用いて成膜されてもよい。なお、第2の絶縁
膜10104に使用する材料は、熱酸化膜、酸化シリコン膜、窒化シリコン膜または酸化
窒化シリコン膜などが好適である。あるいは、熱酸化膜、酸化シリコン膜、窒化シリコン
膜または酸化窒化シリコン膜などのうち2以上を組み合わせた積層構造であってもよい。
なお、第1の半導体層10105に接する部分の第2の絶縁膜10104は、酸化シリコ
ン膜であることが、特に好適である。なぜならば、酸化シリコン膜にすると半導体層10
105との界面におけるトラップ準位が少なくなるからである。なお、第1の導電層10
103をMoで形成するときは、第1の導電層10103と接する部分の第2の絶縁膜1
0104は窒化シリコン膜が好ましい。なぜならば、窒化シリコン膜はMoを酸化させな
いからである。
Next, the second insulating film 10104 is formed. At this time, the second insulating film 10104 may be formed by using a film forming apparatus such as a sputtering apparatus or a CVD apparatus. The material used for the second insulating film 10104 is preferably a thermal oxide film, a silicon oxide film, a silicon nitride film, a silicon nitride film, or the like. Alternatively, it may have a laminated structure in which two or more of a thermal oxide film, a silicon oxide film, a silicon nitride film, a silicon nitride film, and the like are combined.
It is particularly preferable that the second insulating film 10104 in the portion in contact with the first semiconductor layer 10105 is a silicon oxide film. This is because the semiconductor layer 10 is made of a silicon oxide film.
This is because the trap level at the interface with 105 is reduced. The first conductive layer 10
When the 103 is formed of Mo, the second insulating film 1 in the portion in contact with the first conductive layer 10103 is formed.
0104 is preferably a silicon nitride film. This is because the silicon nitride film does not oxidize Mo.

次に、第1の半導体層10105を形成する。その後、第2の半導体層10106を連続
して形成するのが好適である。なお、第1の半導体層10105および第2の半導体層1
0106は、形状を加工して形成してもよい。形状を加工する工程は、前述したフォトリ
ソグラフィ法等の方法であることが好適である。なお、第1の半導体層10105に使用
する材料は、シリコンまたはシリコンゲルマニウム(SiGe)などが好適である。また
、第2の半導体層10106に使用する材料は、リン等を含んだシリコン等が好適である
Next, the first semiconductor layer 10105 is formed. After that, it is preferable to continuously form the second semiconductor layer 10106. The first semiconductor layer 10105 and the second semiconductor layer 1
0106 may be formed by processing the shape. It is preferable that the step of processing the shape is a method such as the above-mentioned photolithography method. The material used for the first semiconductor layer 10105 is preferably silicon or silicon germanium (SiGe). Further, as the material used for the second semiconductor layer 10106, silicon or the like containing phosphorus or the like is suitable.

次に、第2の導電層10107を形成する。このとき、第2の導電層10107の形成方
法としては、スパッタ法または印刷法を用いるのが好適である。なお、第2の導電層10
107に使用する材料は、透明性を有していても、反射性を有していてもよい。透明性を
有する場合は、例えば、酸化インジウムに酸化スズを混ぜたインジウムスズ酸化物(IT
O)膜、インジウムスズ酸化物(ITO)に酸化珪素を混ぜたインジウムスズ珪素酸化物
(ITSO)膜、酸化インジウムに酸化亜鉛を混ぜたインジウム亜鉛酸化物(IZO)膜
、酸化亜鉛膜または酸化スズ膜を用いることができる。なお、IZOとは、ITOに2~
20wt%の酸化亜鉛(ZnO)を混合させたターゲットを用いてスパッタリングにより
形成される透明導電材料である。一方、反射性を有する場合は、Ti、Mo、Ta、Cr
、W、Alなどを用いることができる。また、Ti、Mo、Ta、Cr、WとAlを積層
させた2層構造、AlをTi、Mo、Ta、Cr、Wなどの金属で挟んだ3層積層構造と
してもよい。なお、第2の導電層10107は、形状を加工して形成されてもよい。形状
を加工する方法は、前述したフォトリソグラフィ法等の方法であることが好適である。な
お、エッチング方法は、ドライエッチングで行なうのが好適である。ドライエッチングは
ECR(Electron Cycrotron Resonance)やICP(In
ductive Coupled Plazma)などの高密度プラズマ源を用いたドラ
イエッチング装置によって行われてもよい。
Next, the second conductive layer 10107 is formed. At this time, it is preferable to use a sputtering method or a printing method as a method for forming the second conductive layer 10107. The second conductive layer 10
The material used in 107 may be transparent or reflective. If it has transparency, for example, indium tin oxide (IT), which is a mixture of indium oxide and tin oxide.
O) film, indium tin oxide (ITSO) film in which silicon oxide is mixed with indium tin oxide (ITO), indium zinc oxide (IZO) film in which zinc oxide is mixed with indium oxide, zinc oxide film or tin oxide. A membrane can be used. In addition, IZO is 2 to ITO.
A transparent conductive material formed by sputtering using a target mixed with 20 wt% zinc oxide (ZnO). On the other hand, if it has reflectivity, Ti, Mo, Ta, Cr
, W, Al and the like can be used. Further, a two-layer structure in which Ti, Mo, Ta, Cr, W and Al are laminated, or a three-layer laminated structure in which Al is sandwiched between metals such as Ti, Mo, Ta, Cr and W may be used. The second conductive layer 10107 may be formed by processing the shape. It is preferable that the method for processing the shape is a method such as the above-mentioned photolithography method. The etching method is preferably dry etching. Dry etching is performed by ECR (Electron Cyclotron Response) or ICP (In).
It may be performed by a dry etching apparatus using a high-density plasma source such as ductive Coupled Plasma).

次に、TFTのチャネル領域を形成する。このとき、第2の半導体層10106をエッチ
ングするためのマスクとしては、第2の導電層10107を用いてもよいし、第2の導電
層10107をエッチングするためのマスク(レジスト)を用いてもよい。こうすること
で、マスク枚数を減らすことができるので、製造コストを低減することができる。導電性
をもつ第2の半導体層10106のエッチングを行なうことで、除去された部分がTFT
のチャネル領域となる。なお、第1の半導体層10105と第2の半導体層10106を
連続で形成せずに、第1の半導体層10105の形成のあと、TFTのチャネル領域とな
る部分にストッパーとなる膜を成膜およびパターン加工し、その後、第2の半導体層10
106を形成してもよい。なお、第1の半導体層10105と第2の半導体層10106
は、第2の導電層10107を前述したフォトリソグラフィ法等の方法で形状を加工する
ときに、同じマスクを用いてエッチングされる。こうすることで、第2の導電層1010
7をマスクとして用いないで、TFTのチャネル領域を形成することができるので、レイ
アウトパターンの自由度が大きくなる利点がある。また、第2の半導体層10106のエ
ッチング時に第1の半導体層10105までエッチングしてしまわないため、エッチング
不良を起こすことなく、確実にTFTのチャネル領域が形成できる利点がある。
Next, the channel region of the TFT is formed. At this time, as the mask for etching the second semiconductor layer 10106, the second conductive layer 10107 may be used, or the mask (resist) for etching the second conductive layer 10107 may be used. good. By doing so, the number of masks can be reduced, so that the manufacturing cost can be reduced. By etching the second semiconductor layer 10106 having conductivity, the removed portion is a TFT.
It becomes the channel area of. In addition, after forming the first semiconductor layer 10105 without forming the first semiconductor layer 10105 and the second semiconductor layer 10106 continuously, a film serving as a stopper is formed on the portion to be the channel region of the TFT. After pattern processing, the second semiconductor layer 10
106 may be formed. The first semiconductor layer 10105 and the second semiconductor layer 10106
Is etched using the same mask when the shape of the second conductive layer 10107 is processed by a method such as the photolithography method described above. By doing so, the second conductive layer 1010
Since the channel region of the TFT can be formed without using 7 as a mask, there is an advantage that the degree of freedom of the layout pattern is increased. Further, since the first semiconductor layer 10105 is not etched at the time of etching the second semiconductor layer 10106, there is an advantage that the channel region of the TFT can be reliably formed without causing an etching defect.

次に、第3の絶縁膜10108を形成する。第3の絶縁膜は、透明性を有していることが
好適である。なお、第3の絶縁膜10108に用いる材料は、無機材料(酸化シリコン、
窒化シリコン、酸化窒化シリコンなど)または、低誘電率の有機化合物材料(感光性又は
非感光性の有機樹脂材料)などが好適である。また、シロキサンを含む材料を用いてもよ
い。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される材料
である。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水
素)が用いられる。あるいは、置換基としてフルオロ基を用いてもよい。あるいは、置換
基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。なお、第3の
絶縁膜10108には、をエッチングによって、選択的にコンタクトホールが形成される
。また、コンタクトホールは少なくとも第2の導電層10107上に形成される。なお、
第3の絶縁膜10108をエッチングすると同時に第2の絶縁膜10104もエッチング
することで、第2の導電層10107だけではなく、第1の導電層10103とのコンタ
クトホールを形成することができる。なお、第3の絶縁膜10108の表面は、できるだ
け平坦であることが好適である。なぜならば、液晶が接する面の凹凸により、液晶分子の
配向が影響を受けてしまうからである。
Next, the third insulating film 10108 is formed. It is preferable that the third insulating film has transparency. The material used for the third insulating film 10108 is an inorganic material (silicon oxide,
Silicon nitride, silicon oxide, etc.) or organic compound materials with low dielectric constant (photosensitive or non-photosensitive organic resin materials) are suitable. Further, a material containing siloxane may be used. Siloxane is a material whose skeletal structure is composed of bonds between silicon (Si) and oxygen (O). As the substituent, an organic group containing at least hydrogen (for example, an alkyl group or an aromatic hydrocarbon) is used. Alternatively, a fluoro group may be used as the substituent. Alternatively, an organic group containing at least hydrogen and a fluoro group may be used as the substituent. A contact hole is selectively formed in the third insulating film 10108 by etching. Further, the contact hole is formed on at least the second conductive layer 10107. note that,
By etching the third insulating film 10108 and the second insulating film 10104 at the same time, it is possible to form a contact hole not only with the second conductive layer 10107 but also with the first conductive layer 10103. The surface of the third insulating film 10108 is preferably as flat as possible. This is because the orientation of the liquid crystal molecules is affected by the unevenness of the surface in contact with the liquid crystal.

次に、第3の導電層10109を形成する。このとき、第3の導電層10109の形成方
法としては、スパッタ法または印刷法を用いるのが好適である。なお、第3の導電層10
109に使用する材料は、第2の導電層10107と同じく、透明性を有していても、反
射性を有していてもよい。なお、第3の導電層10109として使用できる材料は、第2
の導電層10107と同様でもよい。また、第3の導電層10109は、形状を加工して
形成してもよい。形状を加工する方法は、第2の導電層10107と同様でもよい。
Next, the third conductive layer 10109 is formed. At this time, it is preferable to use a sputtering method or a printing method as a method for forming the third conductive layer 10109. The third conductive layer 10
The material used for 109 may have transparency or reflectivity as in the second conductive layer 10107. The material that can be used as the third conductive layer 10109 is the second.
It may be the same as the conductive layer 10107 of. Further, the third conductive layer 10109 may be formed by processing the shape. The method of processing the shape may be the same as that of the second conductive layer 10107.

次に、第1の配向膜10110を形成する。配向膜10110には、ポリイミドなどの高
分子膜を用いることができる。なお、第1の配向膜10110を形成後、液晶分子の配向
を制御するために、ラビングを行なってもよい。ラビングは、布で配向膜をこすることに
よって、配向膜にスジをつける工程である。ラビングを行なうことによって、配向膜に配
向性を持たせることができる。
Next, the first alignment film 10110 is formed. A polymer film such as polyimide can be used for the alignment film 10110. After forming the first alignment film 10110, rubbing may be performed in order to control the orientation of the liquid crystal molecules. Rubbing is a process of forming streaks on the alignment film by rubbing the alignment film with a cloth. By performing rubbing, the alignment film can be made oriented.

以上のように作製した第1の基板10101と、遮光膜10114、カラーフィルタ10
115、第4の導電層10113、スペーサ10117および第2の配向膜10112を
作製した第2の基板10116とは、シール材によって数μmのギャップを持たせて貼り
合わせられる。そして、2枚の基板間に液晶材料を注入することで、液晶パネルが作製で
きる。なお、図46に示すようなTN方式の液晶パネルにおいては、第4の導電層101
13は、第2の基板10116の全面に作製されていてもよい。
The first substrate 10101 manufactured as described above, the light-shielding film 10114, and the color filter 10
115, the fourth conductive layer 10113, the spacer 10117, and the second substrate 10116 on which the second alignment film 10112 is formed are bonded to each other with a gap of several μm by a sealing material. Then, a liquid crystal panel can be manufactured by injecting a liquid crystal material between the two substrates. In the TN type liquid crystal panel as shown in FIG. 46, the fourth conductive layer 101
13 may be manufactured on the entire surface of the second substrate 10116.

次に、図46に示す、TN方式の液晶パネルの画素構造の特徴について説明する。図46
の(A)に示した液晶分子10118は、長軸と短軸を持った細長い分子である。液晶分
子10118の向きを示すため、図46の(A)においては、その長さによって表現して
いる。すなわち、長く表現された液晶分子10118は、その長軸の向きが紙面に平行で
あり、短く表現された液晶分子10118ほど、その長軸の向きが紙面の法線方向に近く
なっているとする。つまり、図46の(A)に示した液晶分子10118は、第1の基板
10101に近いものと、第2の基板10116に近いものとでは、その長軸の向きが9
0度異なっており、これらの中間に位置する液晶分子10118の長軸の向きは、これら
を滑らかにつなぐような向きとなる。すなわち、図46の(A)に示した液晶分子101
18は、第1の基板10101と第2の基板10116の間で、90度ねじれているよう
な配向状態となっている。
Next, the characteristics of the pixel structure of the TN type liquid crystal panel shown in FIG. 46 will be described. FIG. 46
The liquid crystal molecule 10118 shown in (A) is an elongated molecule having a major axis and a minor axis. In order to show the direction of the liquid crystal molecule 10118, in FIG. 46 (A), it is expressed by its length. That is, it is assumed that the orientation of the long axis of the long-expressed liquid crystal molecule 10118 is parallel to the paper surface, and the shorter the expressed liquid crystal molecule 10118 is, the closer the orientation of the long axis is to the normal direction of the paper surface. .. That is, the liquid crystal molecule 10118 shown in FIG. 46 (A) has a major axis orientation of 9 between the one close to the first substrate 10101 and the one close to the second substrate 10116.
They differ by 0 degrees, and the orientation of the long axis of the liquid crystal molecules 10118 located in the middle of these is such that they are smoothly connected. That is, the liquid crystal molecule 101 shown in FIG. 46 (A).
Reference numeral 18 is oriented so as to be twisted by 90 degrees between the first substrate 10101 and the second substrate 10116.

次に、図46の(B)を参照して、TN方式の液晶表示装置に本実施の形態の表示装置を
適用した場合の、画素のレイアウトの一例について説明する。本実施の形態の表示装置を
適用したTN方式の液晶表示装置の画素は、走査線10121と、映像信号線10122
と、容量線10123と、TFT10124と、画素電極10125と、画素容量101
26と、を備えていてもよい。
Next, an example of the pixel layout when the display device of the present embodiment is applied to the TN type liquid crystal display device will be described with reference to FIG. 46 (B). The pixels of the TN type liquid crystal display device to which the display device of the present embodiment is applied are the scanning line 10121 and the video signal line 10122.
, Capacity line 10123, TFT 10124, pixel electrode 10125, and pixel capacity 101.
26 and may be provided.

走査線10121は、TFT10124のゲート電極と電気的に接続されるため、第1の
導電層10103で構成されているのが好適である。
Since the scanning line 10121 is electrically connected to the gate electrode of the TFT 10124, it is preferably composed of the first conductive layer 10103.

映像信号線10122は、TFT10124のソース電極またはドレイン電極と電気的に
接続されるため、第2の導電層10107で構成されているのが好適である。また、走査
線10121と映像信号線10122はマトリックス状に配置されるため、少なくとも、
異なる層の導電層で形成されるのが好適である。
Since the video signal line 10122 is electrically connected to the source electrode or drain electrode of the TFT 10124, it is preferably composed of the second conductive layer 10107. Further, since the scanning lines 10121 and the video signal lines 10122 are arranged in a matrix, at least,
It is preferably formed of different conductive layers.

容量線10123は、画素電極10125と平行に配置されることで、画素容量1012
6を形成するための配線であり、第1の導電層10103で構成されているのが好適であ
る。なお、図46の(B)に示すように、容量線10123は、映像信号線10122に
沿って、映像信号線10122を囲むように延設されていてもよい。こうすることで、映
像信号線10122の電位変化に伴って、電位を保持するべき電極の電位が変化してしま
う現象、いわゆるクロストークを低減することができる。なお、映像信号線10122と
の交差容量を低減させるため、図46の(B)に示すように、第1の半導体層10105
を容量線10123と映像信号線10122の交差領域に設けてもよい。
The capacitance line 10123 is arranged in parallel with the pixel electrode 10125 to have a pixel capacitance of 1012.
6 is a wiring for forming, and it is preferable that the wiring is composed of the first conductive layer 10103. As shown in FIG. 46B, the capacitance line 10123 may be extended along the video signal line 10122 so as to surround the video signal line 10122. By doing so, it is possible to reduce the phenomenon that the potential of the electrode that should hold the potential changes with the potential change of the video signal line 10122, that is, so-called crosstalk. In addition, in order to reduce the cross capacitance with the video signal line 10122, as shown in FIG. 46 (B), the first semiconductor layer 10105
May be provided in the intersection region of the capacitance line 10123 and the video signal line 10122.

TFT10124は、映像信号線10122と画素電極10125を導通させるスイッチ
として動作する。なお、図46の(B)に示すように、TFT10124のソース領域ま
たはドレイン領域のどちらか一方を、ソース領域またはドレイン領域の他方を囲むように
配置してもよい。こうすることで、小さい面積で大きなチャネル幅を得ることができ、ス
イッチング能力を大きくすることができる。なお、図46の(B)に示すように、TFT
10124のゲート電極は、第1の半導体層10105を囲むように配置してもよい。
The TFT 10124 operates as a switch for conducting the video signal line 10122 and the pixel electrode 10125. As shown in FIG. 46B, either the source region or the drain region of the TFT 10124 may be arranged so as to surround the other of the source region and the drain region. By doing so, a large channel width can be obtained in a small area, and the switching capacity can be increased. As shown in FIG. 46 (B), the TFT
The gate electrode of 10124 may be arranged so as to surround the first semiconductor layer 10105.

画素電極10125は、TFT10124のソース電極またはドレイン電極の一方に電気
的に接続される。画素電極10125は、映像信号線10122によって伝達された信号
電圧を液晶素子に与えるための電極である。また、容量線10123を配置することで、
画素容量10126を形成してもよい。こうすることで、画素電極10125は、映像信
号線10122によって伝達された信号電圧を保持しやすくなる。なお、画素電極101
25は、図46の(B)に示すように、矩形であってもよい。こうすることで、画素の開
口率を大きくすることができるので、液晶表示装置の効率が向上する。また、画素電極1
0125を、透明性をもつ材料で作製した場合は、透過型の液晶表示装置を得ることがで
きる。透過型の液晶表示装置は、色の再現性が高く、高い画質を持った映像を表示するこ
とができる。また、画素電極10125を、反射性をもつ材料で作製した場合は、反射型
の液晶表示装置を得ることができる。反射型の液晶表示装置は、屋外などの明るい環境下
における視認性が高く、また、バックライトが不要なので、消費電力を非常に小さくする
ことができる。なお、画素電極10125を、透明性をもつ材料および反射性をもつ材料
の両方を用いて作成した場合は、両者の利点を併せ持つ、半透過型の液晶表示装置を得る
ことができる。なお、画素電極10125を、反射性をもつ材料で作製した場合は、画素
電極10125の表面に凹凸を持たせてもよい。あるいは、第3の絶縁膜10108の表
面に凹凸を持たせることで、画素電極10125を凹凸にすることもできる。こうするこ
とで、反射光が乱反射するので、反射光の強度分布の角度依存性が小さくなる利点がある
。つまり、どの角度で見ても、一定の明るさを持った反射型の液晶表示装置を得ることが
できる。
The pixel electrode 10125 is electrically connected to either the source electrode or the drain electrode of the TFT 10124. The pixel electrode 10125 is an electrode for applying a signal voltage transmitted by the video signal line 10122 to the liquid crystal element. In addition, by arranging the capacity line 10123,
The pixel capacity 10126 may be formed. By doing so, the pixel electrode 10125 can easily hold the signal voltage transmitted by the video signal line 10122. The pixel electrode 101
25 may be rectangular, as shown in FIG. 46 (B). By doing so, the aperture ratio of the pixels can be increased, so that the efficiency of the liquid crystal display device is improved. Also, the pixel electrode 1
When 0125 is made of a transparent material, a transmissive liquid crystal display device can be obtained. The transmissive liquid crystal display device has high color reproducibility and can display an image with high image quality. Further, when the pixel electrode 10125 is made of a reflective material, a reflective liquid crystal display device can be obtained. The reflective liquid crystal display device has high visibility in a bright environment such as outdoors, and does not require a backlight, so that power consumption can be extremely reduced. When the pixel electrode 10125 is made of both a transparent material and a reflective material, a semi-transmissive liquid crystal display device having the advantages of both can be obtained. When the pixel electrode 10125 is made of a reflective material, the surface of the pixel electrode 10125 may have irregularities. Alternatively, the pixel electrode 10125 can be made uneven by making the surface of the third insulating film 10108 uneven. By doing so, since the reflected light is diffusely reflected, there is an advantage that the angle dependence of the intensity distribution of the reflected light becomes small. That is, it is possible to obtain a reflective liquid crystal display device having a constant brightness regardless of the angle.

次に、図47を参照して、VA(Vertical Alignment)モードの液晶
表示装置に、本実施の形態の表示装置を適用した場合を説明する。図47は、VAモード
の液晶表示装置の画素構造のうち、配向制御用突起を用いることで、液晶分子が様々な向
きを持つように制御し、視野角を大きくした、いわゆるMVA(Multi-domai
n Vertical Alignment)方式に、本実施の形態の表示装置を適用し
た場合の、画素の断面図と上面図である。図47の(A)は、画素の断面図であり、図4
7の(B)は、画素の上面図である。また、図47の(A)に示す画素の断面図は、図4
7の(B)に示す画素の上面図における線分a-a’に対応している。図47に示す画素
構造の液晶表示装置に本実施の形態の表示装置を適用することによって、視野角が大きく
、応答速度が速く、コントラストの大きい液晶表示装置を得ることができる。
Next, a case where the display device of the present embodiment is applied to the liquid crystal display device in the VA (Vertical Alignment) mode will be described with reference to FIG. 47. FIG. 47 shows a so-called MVA (Multi-domai) in which the liquid crystal molecules are controlled to have various orientations and the viewing angle is increased by using the alignment control protrusions in the pixel structure of the liquid crystal display device in the VA mode.
It is a cross-sectional view and a top view of a pixel when the display device of this embodiment is applied to the n (Vertical Alignment) method. FIG. 47 (A) is a cross-sectional view of a pixel, which is FIG.
(B) of 7 is a top view of a pixel. Further, the cross-sectional view of the pixel shown in FIG. 47 (A) is shown in FIG.
It corresponds to the line segment aa'in the top view of the pixel shown in (B) of 7. By applying the display device of the present embodiment to the liquid crystal display device having a pixel structure shown in FIG. 47, it is possible to obtain a liquid crystal display device having a large viewing angle, a high response speed, and a high contrast.

図47の(A)を参照して、MVA方式の液晶表示装置の画素構造について説明する。液
晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは
、加工を施した2枚の基板を、数μmのギャップを持たせて貼り合わせ、2枚の基板間に
液晶材料を注入することで作製される。図47の(A)において、2枚の基板は、第1の
基板10201および第2の基板10216である。第1の基板には、TFTおよび画素
電極を作製し、第2の基板には、遮光膜10214、カラーフィルタ10215、第4の
導電層10213、スペーサ10217、第2の配向膜10212、および配向制御用突
起10219を作製してもよい。
The pixel structure of the MVA type liquid crystal display device will be described with reference to FIG. 47 (A). The liquid crystal display device has a core portion for displaying an image, which is called a liquid crystal panel. The liquid crystal panel is manufactured by laminating two processed substrates with a gap of several μm and injecting a liquid crystal material between the two substrates. In FIG. 47 (A), the two substrates are the first substrate 10201 and the second substrate 10216. A TFT and a pixel electrode are formed on the first substrate, and a light-shielding film 10214, a color filter 10215, a fourth conductive layer 10213, a spacer 10217, a second alignment film 10212, and an orientation control are formed on the second substrate. The projection 10219 may be manufactured.

なお、本実施の形態の表示装置は、第1の基板10201にTFTを作製しなくとも実施
可能である。TFTを作製しない場合は、工程数が減少するため、製造コストを低減する
ことができる。さらに、構造が簡単であるので、歩留まりを向上させることができる。一
方、TFTを作製する場合は、より大型の表示装置を得ることができる。
The display device of this embodiment can be implemented without forming a TFT on the first substrate 10201. When the TFT is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Furthermore, since the structure is simple, the yield can be improved. On the other hand, when manufacturing a TFT, a larger display device can be obtained.

なお、図47に示すTFTは、非晶質半導体を用いたボトムゲート型のTFTである。非
結晶半導体を用いたTFTを適応した液晶パネルは、大面積の基板を用いて、安価に作製
できるという利点がある。しかし、本実施の形態の表示装置はこれに限定されるものでは
ない。使用できるTFTの構造は、ボトムゲート型のTFTではチャネルエッチ型、チャ
ネル保護型などがある。また、トップゲート型でもよい。さらに、非晶質半導体だけでは
なく、多結晶半導体も用いることができる。
The TFT shown in FIG. 47 is a bottom gate type TFT using an amorphous semiconductor. A liquid crystal panel to which a TFT using an amorphous semiconductor is applied has an advantage that it can be manufactured at low cost by using a large-area substrate. However, the display device of the present embodiment is not limited to this. The structure of the TFT that can be used includes a channel etch type and a channel protection type for the bottom gate type TFT. Moreover, the top gate type may be used. Further, not only amorphous semiconductors but also polycrystalline semiconductors can be used.

なお、本実施の形態の表示装置は、第2の基板10216に遮光膜10214を作製しな
くとも実施可能である。遮光膜10214を作製しない場合は、工程数が減少するため、
製造コストを低減することができる。また、構造が簡単であるので、歩留まりを向上させ
ることができる。一方、遮光膜10214を作製する場合は、黒表示時に光漏れの少ない
表示装置を得ることができる。
The display device of this embodiment can be implemented without forming a light-shielding film 10214 on the second substrate 10216. If the light-shielding film 10214 is not manufactured, the number of steps is reduced, so that
The manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the light-shielding film 10214 is manufactured, it is possible to obtain a display device having less light leakage when displaying black.

なお、本実施の形態の表示装置は、第2の基板10216にカラーフィルタ10215を
作製しなくとも実施可能である。カラーフィルタ10215を作製しない場合は、工程数
が減少するため、製造コストを低減することができる。また、構造が簡単であるので、歩
留まりを向上させることができる。ただし、カラーフィルタ10215を作製しない場合
でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ることが
できる。一方、カラーフィルタ10215を作製する場合は、カラー表示ができる表示装
置を得ることができる。
The display device of the present embodiment can be implemented without forming the color filter 10215 on the second substrate 10216. When the color filter 10215 is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. However, even if the color filter 10215 is not manufactured, it is possible to obtain a display device capable of color display by field sequential drive. On the other hand, when the color filter 10215 is manufactured, it is possible to obtain a display device capable of displaying colors.

なお、本実施の形態の表示装置は、第2の基板10216にスペーサ10217を作製せ
ず、球状のスペーサを散布することでも実施可能である。球状のスペーサを散布する場合
は、工程数が減少するため、製造コストを低減することができる。また、構造が簡単であ
るので、歩留まりを向上させることができる。一方、スペーサ10217を作製する場合
は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、
表示ムラの少ない表示装置を得ることができる。
The display device of the present embodiment can also be implemented by spraying a spherical spacer without forming the spacer 10217 on the second substrate 10216. When the spherical spacer is sprayed, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the spacer 10217 is manufactured, the position of the spacer does not vary, so that the distance between the two substrates can be made uniform.
A display device with less display unevenness can be obtained.

次に、第1の基板10201に施す加工については、図46で説明した方法を用いてもよ
いため、省略する。ここで、第1の基板10201、第1の絶縁膜10202、第1の導
電層10203、第2の絶縁膜10204、第1の半導体層10205、第2の半導体層
10206、第2の導電層10207、第3の絶縁膜10208、第3の導電層1020
9、第1の配向膜10210が、それぞれ、図46における第1の基板10101、第1
の絶縁膜10102、第1の導電層10103、第2の絶縁膜10104、第1の半導体
層10105、第2の半導体層10106、第2の導電層10107、第3の絶縁膜10
108、第3の導電層10109、第1の配向膜10110、と対応する。なお、図示は
しないが、第1の基板側にも、配向制御用突起を設けてもよい。こうすることで、より確
実に液晶分子の配向を制御することができる。また、第1の配向膜10210および第2
の配向膜10212は、垂直配向膜でもよい。こうすることで、液晶分子10218を垂
直に配向することができる。
Next, the processing performed on the first substrate 10201 may be omitted because the method described with reference to FIG. 46 may be used. Here, the first substrate 10201, the first insulating film 10202, the first conductive layer 10203, the second insulating film 10204, the first semiconductor layer 10205, the second semiconductor layer 10206, and the second conductive layer 10207. , Third insulating film 10208, third conductive layer 1020
9. The first alignment film 10210 is the first substrate 10101 and the first in FIG. 46, respectively.
Insulating film 10102, first conductive layer 10103, second insulating film 10104, first semiconductor layer 10105, second semiconductor layer 10106, second conductive layer 10107, third insulating film 10
It corresponds to 108, the third conductive layer 10109, and the first alignment film 10110. Although not shown, an orientation control protrusion may be provided on the first substrate side as well. By doing so, the orientation of the liquid crystal molecules can be controlled more reliably. In addition, the first alignment film 10210 and the second alignment film 10210.
The alignment film 10212 may be a vertical alignment film. By doing so, the liquid crystal molecule 10218 can be vertically oriented.

以上のように作製した第1の基板10201と、遮光膜10214、カラーフィルタ10
215、第4の導電層10213、スペーサ10217、および第2の配向膜10212
を作製した第2の基板10216を、シール材によって数μmのギャップを持たせて貼り
合わせ、2枚の基板間に液晶材料を注入することで、液晶パネルが作製できる。なお、図
47に示すようなMVA方式の液晶パネルにおいては、第4の導電層10213は、第2
の基板10216の全面に作製されていてもよい。また、第4の導電層10213に接し
て、配向制御用突起10219を作製してもよい。なお、配向制御用突起10219の形
状に限定はないが、滑らかな曲面を持った形状であるのが好適である。こうすることで、
近接する液晶分子10218の配向が極近いものとなるため、配向不良が低減する。また
、第2の配向膜10212が、配向制御用突起10219によって段切れを起こしてしま
うことによる、配向膜の不良も低減することができる。
The first substrate 10201 manufactured as described above, the light-shielding film 10214, and the color filter 10
215, 4th conductive layer 10213, spacer 10217, and 2nd alignment film 10212
A liquid crystal panel can be manufactured by laminating the second substrate 10216 on which the above is prepared with a gap of several μm by a sealing material and injecting a liquid crystal material between the two substrates. In the MVA type liquid crystal panel as shown in FIG. 47, the fourth conductive layer 10213 is the second.
It may be manufactured on the entire surface of the substrate 10216 of the above. Further, the orientation control protrusion 10219 may be formed in contact with the fourth conductive layer 10213. The shape of the orientation control protrusion 10219 is not limited, but it is preferably a shape having a smooth curved surface. By doing this,
Since the orientations of the adjacent liquid crystal molecules 10218 are very close to each other, poor orientation is reduced. Further, it is possible to reduce the defect of the alignment film due to the second alignment film 10212 being cut off by the alignment control projection 10219.

次に、図47に示す、MVA方式の液晶パネルの画素構造の特徴について説明する。図4
7の(A)に示した液晶分子10218は、長軸と短軸を持った細長い分子である。液晶
分子10218の向きを示すため、図47の(A)においては、その長さによって表現し
ている。すなわち、長く表現された液晶分子10218は、その長軸の向きが紙面に平行
であり、短く表現された液晶分子10218ほど、その長軸の向きが紙面の法線方向に近
くなっているとする。つまり、図47の(A)に示した液晶分子10218は、その長軸
の向きが配向膜の法線方向を向くように配向している。よって、配向制御用突起1021
9のある部分の液晶分子10218は、配向制御用突起10219を中心として放射状に
配向する。この状態となることによって、視野角の大きい液晶表示装置を得ることができ
る。
Next, the characteristics of the pixel structure of the MVA type liquid crystal panel shown in FIG. 47 will be described. Figure 4
The liquid crystal molecule 10218 shown in (A) of No. 7 is an elongated molecule having a major axis and a minor axis. In order to show the direction of the liquid crystal molecule 10218, in FIG. 47 (A), it is expressed by its length. That is, it is assumed that the orientation of the long axis of the long-expressed liquid crystal molecule 10218 is parallel to the paper surface, and the shorter the expressed liquid crystal molecule 10218 is, the closer the orientation of the long axis is to the normal direction of the paper surface. .. That is, the liquid crystal molecule 10218 shown in FIG. 47 (A) is oriented so that the direction of the long axis thereof faces the normal direction of the alignment film. Therefore, the protrusion 1021 for orientation control
The liquid crystal molecule 10218 in a certain portion of 9 is oriented radially around the orientation control protrusion 10219. In this state, a liquid crystal display device having a large viewing angle can be obtained.

次に、図47の(B)を参照して、MVA方式の液晶表示装置に本実施の形態の表示装置
を適用した場合の、画素のレイアウトの一例について説明する。本実施の形態の表示装置
を適用したMVA方式の液晶表示装置の画素は、走査線10221と、映像信号線102
22と、容量線10223と、TFT10224と、画素電極10225と、画素容量1
0226と、配向制御用突起10219と、を備えていてもよい。
Next, an example of the pixel layout when the display device of the present embodiment is applied to the MVA type liquid crystal display device will be described with reference to FIG. 47 (B). The pixels of the MVA type liquid crystal display device to which the display device of the present embodiment is applied are the scanning line 10221 and the video signal line 102.
22, the capacitance line 10223, the TFT 10224, the pixel electrode 10225, and the pixel capacitance 1.
0226 and an orientation control protrusion 10219 may be provided.

走査線10221は、TFT10224のゲート電極と電気的に接続されるため、第1の
導電層10203で構成されているのが好適である。
Since the scanning line 10221 is electrically connected to the gate electrode of the TFT 10224, it is preferably composed of the first conductive layer 10203.

映像信号線10222は、TFT10224のソース電極またはドレイン電極と電気的に
接続されるため、第2の導電層10207で構成されているのが好適である。また、走査
線10221と映像信号線10222はマトリックス状に配置されるため、少なくとも、
異なる層の導電層で形成されるのが好適である。
Since the video signal line 10222 is electrically connected to the source electrode or drain electrode of the TFT 10224, it is preferably composed of the second conductive layer 10207. Further, since the scanning lines 10221 and the video signal lines 10222 are arranged in a matrix, at least,
It is preferably formed of different conductive layers.

容量線10223は、画素電極10225と平行に配置されることで、画素容量1022
6を形成するための配線であり、第1の導電層10203で構成されているのが好適であ
る。なお、図47の(B)に示すように、容量線10223は、映像信号線10222に
沿って、映像信号線10222を囲むように延設されていてもよい。こうすることで、映
像信号線10222の電位変化に伴って、電位を保持するべき電極の電位が変化してしま
う現象、いわゆるクロストークを低減することができる。なお、映像信号線10222と
の交差容量を低減させるため、図47の(B)に示すように、第1の半導体層10205
を容量線10223と映像信号線10222の交差領域に設けてもよい。
By arranging the capacitance line 10223 in parallel with the pixel electrode 10225, the pixel capacitance 1022
6 is a wiring for forming, and it is preferable that the wiring is composed of the first conductive layer 10203. As shown in FIG. 47 (B), the capacitance line 10223 may be extended along the video signal line 10222 so as to surround the video signal line 10222. By doing so, it is possible to reduce the phenomenon that the potential of the electrode that should hold the potential changes with the potential change of the video signal line 10222, that is, so-called crosstalk. In addition, in order to reduce the cross capacitance with the video signal line 10222, as shown in FIG. 47 (B), the first semiconductor layer 10205
May be provided in the intersection region of the capacitance line 10223 and the video signal line 10222.

TFT10224は、映像信号線10222と画素電極10225を導通させるスイッチ
として動作する。なお、図47の(B)に示すように、TFT10224のソース領域ま
たはドレイン領域のどちらか一方を、ソース領域またはドレイン領域の他方を囲むように
配置してもよい。こうすることで、小さい面積で大きなチャネル幅を得ることができ、ス
イッチング能力を大きくすることができる。なお、図47の(B)に示すように、TFT
10224のゲート電極は、第1の半導体層10205を囲むように配置してもよい。
The TFT 10224 operates as a switch for conducting the video signal line 10222 and the pixel electrode 10225. As shown in FIG. 47 (B), either the source region or the drain region of the TFT 10224 may be arranged so as to surround the other of the source region and the drain region. By doing so, a large channel width can be obtained in a small area, and the switching capacity can be increased. As shown in FIG. 47 (B), the TFT is
The gate electrode of 10224 may be arranged so as to surround the first semiconductor layer 10205.

画素電極10225は、TFT10224のソース電極またはドレイン電極の一方に電気
的に接続される。画素電極10225は、映像信号線10222によって伝達された信号
電圧を液晶素子に与えるための電極である。また、容量線10223を配置することで、
画素容量10226を形成してもよい。こうすることで、画素電極10225は、映像信
号線10222によって伝達された信号電圧を保持しやすくなる。なお、画素電極102
25は、図47の(B)に示すように、矩形であってもよい。こうすることで、画素の開
口率を大きくすることができるので、液晶表示装置の効率が向上する。また、画素電極1
0225を、透明性をもつ材料で作製した場合は、透過型の液晶表示装置を得ることがで
きる。透過型の液晶表示装置は、色の再現性が高く、高い画質を持った映像を表示するこ
とができる。また、画素電極10225を、反射性をもつ材料で作製した場合は、反射型
の液晶表示装置を得ることができる。反射型の液晶表示装置は、屋外などの明るい環境下
における視認性が高く、また、バックライトが不要なので、消費電力を非常に小さくする
ことができる。なお、画素電極10225を、透明性をもつ材料および反射性をもつ材料
の両方を用いて作成した場合は、両者の利点を併せ持つ、半透過型の液晶表示装置を得る
ことができる。なお、画素電極10225を、反射性をもつ材料で作製した場合は、画素
電極10225の表面に凹凸を持たせてもよい。あるいは、第3の絶縁膜10208の表
面に凹凸を持たせることで、画素電極10225を凹凸にすることもできる。こうするこ
とで、反射光が乱反射するので、反射光の強度分布の角度依存性が小さくなる利点がある
。つまり、どの角度で見ても、一定の明るさを持った反射型の液晶表示装置を得ることが
できる。
The pixel electrode 10225 is electrically connected to either the source electrode or the drain electrode of the TFT 10224. The pixel electrode 10225 is an electrode for applying a signal voltage transmitted by the video signal line 10222 to the liquid crystal element. In addition, by arranging the capacitance line 10223,
The pixel capacity 10226 may be formed. By doing so, the pixel electrode 10225 can easily hold the signal voltage transmitted by the video signal line 10222. The pixel electrode 102
25 may be rectangular, as shown in FIG. 47 (B). By doing so, the aperture ratio of the pixels can be increased, so that the efficiency of the liquid crystal display device is improved. Also, the pixel electrode 1
When 0225 is made of a transparent material, a transmissive liquid crystal display device can be obtained. The transmissive liquid crystal display device has high color reproducibility and can display an image with high image quality. Further, when the pixel electrode 10225 is made of a reflective material, a reflective liquid crystal display device can be obtained. The reflective liquid crystal display device has high visibility in a bright environment such as outdoors, and does not require a backlight, so that power consumption can be extremely reduced. When the pixel electrode 10225 is made of both a transparent material and a reflective material, a semi-transmissive liquid crystal display device having the advantages of both can be obtained. When the pixel electrode 10225 is made of a reflective material, the surface of the pixel electrode 10225 may have irregularities. Alternatively, the pixel electrode 10225 can be made uneven by making the surface of the third insulating film 10208 uneven. By doing so, since the reflected light is diffusely reflected, there is an advantage that the angle dependence of the intensity distribution of the reflected light becomes small. That is, it is possible to obtain a reflective liquid crystal display device having a constant brightness regardless of the angle.

次に、図48を参照して、VA(Vertical Alignment)モードの液晶
表示装置に、本実施の形態の表示装置を適用した場合の、別の例を説明する。図48は、
VAモードの液晶表示装置の画素構造のうち、第4の導電層10313にパターン加工を
施すことで、液晶分子が様々な向きを持つように制御し、視野角を大きくした、いわゆる
PVA(Paterned Vertical Alignment)方式に、本実施の
形態の表示装置を適用した場合の、画素の断面図と上面図である。図48の(A)は、画
素の断面図であり、図48の(B)は、画素の上面図である。また、図48の(A)に示
す画素の断面図は、図48の(B)に示す画素の上面図における線分a-a’に対応して
いる。図48に示す画素構造の液晶表示装置に本実施の形態の表示装置を適用することに
よって、視野角が大きく、応答速度が速く、コントラストの大きい液晶表示装置を得るこ
とができる。
Next, another example will be described when the display device of the present embodiment is applied to the liquid crystal display device in the VA (Vertical Alignment) mode with reference to FIG. 48. FIG. 48 shows
Of the pixel structure of the VA mode liquid crystal display device, the fourth conductive layer 10313 is patterned to control the liquid crystal molecules to have various orientations and increase the viewing angle, so-called PVA (Paterned Vertical). It is a cross-sectional view and a top view of a pixel when the display device of this embodiment is applied to the (Asignment) method. (A) of FIG. 48 is a cross-sectional view of a pixel, and (B) of FIG. 48 is a top view of the pixel. Further, the cross-sectional view of the pixel shown in FIG. 48A corresponds to the line segment aa'in the top view of the pixel shown in FIG. 48B. By applying the display device of the present embodiment to the liquid crystal display device having a pixel structure shown in FIG. 48, it is possible to obtain a liquid crystal display device having a large viewing angle, a high response speed, and a high contrast.

図48の(A)を参照して、PVA方式の液晶表示装置の画素構造について説明する。液
晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは
、加工を施した2枚の基板を、数μmのギャップを持たせて貼り合わせ、2枚の基板間に
液晶材料を注入することで作製される。図48の(A)において、2枚の基板は、第1の
基板10301、および第2の基板10316である。第1の基板には、TFTおよび画
素電極を作製し、また、第2の基板には、遮光膜10314、カラーフィルタ10315
、第4の導電層10313、スペーサ10317、および第2の配向膜10312を作製
してもよい。
The pixel structure of the PVA type liquid crystal display device will be described with reference to FIG. 48 (A). The liquid crystal display device has a core portion for displaying an image, which is called a liquid crystal panel. The liquid crystal panel is manufactured by laminating two processed substrates with a gap of several μm and injecting a liquid crystal material between the two substrates. In FIG. 48A, the two substrates are the first substrate 10301 and the second substrate 10316. A TFT and pixel electrodes are manufactured on the first substrate, and a light-shielding film 10314 and a color filter 10315 are formed on the second substrate.
, The fourth conductive layer 10313, the spacer 10317, and the second alignment film 10312 may be produced.

なお、本実施の形態の表示装置は、第1の基板10301にTFTを作製しなくとも実施
可能である。TFTを作製しない場合は、工程数が減少するため、製造コストを低減する
ことができる。さらに、構造が簡単であるので、歩留まりを向上させることができる。一
方、TFTを作製する場合は、より大型の表示装置を得ることができる。
The display device of this embodiment can be implemented without forming a TFT on the first substrate 10301. When the TFT is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Furthermore, since the structure is simple, the yield can be improved. On the other hand, when manufacturing a TFT, a larger display device can be obtained.

なお、図48に示すTFTは、非晶質半導体を用いたボトムゲート型のTFTである。非
結晶半導体を用いたTFTを適応した液晶パネルは、大面積の基板を用いて、安価に作製
できるという利点がある。しかし、本実施の形態の表示装置はこれに限定されるものでは
ない。使用できるTFTの構造は、ボトムゲート型のTFTではチャネルエッチ型、チャ
ネル保護型などがある。また、トップゲート型でもよい。さらに、非晶質半導体だけでは
なく、多結晶半導体も用いることができる。
The TFT shown in FIG. 48 is a bottom gate type TFT using an amorphous semiconductor. A liquid crystal panel to which a TFT using an amorphous semiconductor is applied has an advantage that it can be manufactured at low cost by using a large-area substrate. However, the display device of the present embodiment is not limited to this. The structure of the TFT that can be used includes a channel etch type and a channel protection type for the bottom gate type TFT. Moreover, the top gate type may be used. Further, not only amorphous semiconductors but also polycrystalline semiconductors can be used.

なお、本実施の形態の表示装置は、第2の基板10316に遮光膜10314を作製しな
くとも実施可能である。遮光膜10314を作製しない場合は、工程数が減少するため、
製造コストを低減することができる。また、構造が簡単であるので、歩留まりを向上させ
ることができる。一方、遮光膜10314を作製する場合は、黒表示時に光漏れの少ない
表示装置を得ることができる。
The display device of the present embodiment can be implemented without forming a light-shielding film 10314 on the second substrate 10316. If the light-shielding film 10314 is not manufactured, the number of steps is reduced, so that
The manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the light-shielding film 10314 is manufactured, it is possible to obtain a display device having less light leakage when displaying black.

なお、本実施の形態の表示装置は、第2の基板10316にカラーフィルタ10315を
作製しなくとも実施可能である。カラーフィルタ10315を作製せしない場合は、工程
数が減少するため、製造コストを低減することができる。また、構造が簡単であるので、
歩留まりを向上させることができる。ただし、カラーフィルタ10315を作製しない場
合でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ること
ができる。一方、カラーフィルタ10315を作製する場合は、カラー表示ができる表示
装置を得ることができる。
The display device of the present embodiment can be implemented without manufacturing the color filter 10315 on the second substrate 10316. If the color filter 10315 is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Also, because the structure is simple,
Yield can be improved. However, even if the color filter 10315 is not manufactured, it is possible to obtain a display device capable of color display by field sequential drive. On the other hand, when the color filter 10315 is manufactured, a display device capable of displaying colors can be obtained.

なお、本実施の形態の表示装置は、第2の基板10316にスペーサ10317を作製せ
ず、球状のスペーサを散布することでも実施可能である。球状のスペーサを散布する場合
は、工程数が減少するため、製造コストを低減することができる。また、構造が簡単であ
るので、歩留まりを向上させることができる。一方、スペーサ10317を作製する場合
は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、
表示ムラの少ない表示装置を得ることができる。
The display device of the present embodiment can also be implemented by spraying a spherical spacer without forming the spacer 10317 on the second substrate 10316. When the spherical spacer is sprayed, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the spacer 10317 is manufactured, the positions of the spacers do not vary, so that the distance between the two substrates can be made uniform.
A display device with less display unevenness can be obtained.

次に、第1の基板10301に施す加工については、図46で説明した方法を用いてもよ
いため、省略する。ここで、第1の基板10301、第1の絶縁膜10302、第1の導
電層10303、第2の絶縁膜10304、第1の半導体層10305、第2の半導体層
10306、第2の導電層10307、第3の絶縁膜10308、第3の導電層1030
9、第1の配向膜10310が、それぞれ、図46における第1の基板10101、第1
の絶縁膜10102、第1の導電層10103、第2の絶縁膜10104、第1の半導体
層10105、第2の半導体層10106、第2の導電層10107、第3の絶縁膜10
108、第3の導電層10109、第1の配向膜10110、と対応する。なお、第1の
基板10301側の第3の導電層10309に、電極切り欠き部を設けてもよい。こうす
ることで、より確実に液晶分子の配向を制御することができる。また、第1の配向膜10
310および第2の配向膜10312は、垂直配向膜でもよい。こうすることで、液晶分
子10318を垂直に配向することができる。
Next, the processing performed on the first substrate 10301 may be omitted because the method described with reference to FIG. 46 may be used. Here, the first substrate 10301, the first insulating film 10302, the first conductive layer 10303, the second insulating film 10304, the first semiconductor layer 10305, the second semiconductor layer 10306, and the second conductive layer 10307. , Third insulating film 10308, third conductive layer 1030
9. The first alignment film 10310 is the first substrate 10101 and the first in FIG. 46, respectively.
Insulating film 10102, first conductive layer 10103, second insulating film 10104, first semiconductor layer 10105, second semiconductor layer 10106, second conductive layer 10107, third insulating film 10
It corresponds to 108, the third conductive layer 10109, and the first alignment film 10110. The electrode notch may be provided in the third conductive layer 10309 on the first substrate 10301 side. By doing so, the orientation of the liquid crystal molecules can be controlled more reliably. Further, the first alignment film 10
The 310 and the second alignment film 10312 may be a vertical alignment film. By doing so, the liquid crystal molecule 10318 can be vertically oriented.

以上のように作製した第1の基板10301と、遮光膜10314、カラーフィルタ10
315、第4の導電層10313、スペーサ10317、および第2の配向膜10312
を作製した第2の基板10316を、シール材によって数μmのギャップを持たせて貼り
合わせ、2枚の基板間に液晶材料を注入することで、液晶パネルが作製できる。なお、図
48に示すようなPVA方式の液晶パネルにおいては、第4の導電層10313は、パタ
ーン加工を施して、電極切り欠き部10319を作製してもよい。なお、電極切り欠き部
10319の形状に限定はないが、異なる向きを持った複数の矩形を組み合わせた形状で
あるのが好適である。こうすることで、配向の異なる複数の領域が形成できるので、視野
角の大きな液晶表示装置を得ることができる。また、電極切り欠き部10319と第4の
導電層10313の境界における第4の導電層10313の形状は、滑らかな曲線である
ことが好適である。こうすることで、近接する液晶分子10318の配向が極近いものと
なるため、配向不良が低減する。また、第2の配向膜10312が、電極切り欠き部10
319によって段切れを起こしてしまうことによる、配向膜の不良も低減することができ
る。
The first substrate 10301 produced as described above, the light-shielding film 10314, and the color filter 10
315, 4th conductive layer 10313, spacer 10317, and 2nd alignment film 10312
A liquid crystal panel can be manufactured by laminating the second substrate 10316 on which the above is prepared with a gap of several μm by a sealing material and injecting a liquid crystal material between the two substrates. In the PVA type liquid crystal panel as shown in FIG. 48, the fourth conductive layer 10313 may be patterned to form an electrode cutout portion 10319. The shape of the electrode cutout portion 10319 is not limited, but a shape in which a plurality of rectangles having different orientations are combined is preferable. By doing so, since a plurality of regions having different orientations can be formed, a liquid crystal display device having a large viewing angle can be obtained. Further, it is preferable that the shape of the fourth conductive layer 10313 at the boundary between the electrode cutout portion 10319 and the fourth conductive layer 10313 is a smooth curve. By doing so, the orientation of the adjacent liquid crystal molecules 10318 becomes very close, so that the orientation defect is reduced. Further, the second alignment film 10312 has an electrode notch portion 10.
It is also possible to reduce the defect of the alignment film due to the step break caused by 319.

次に、図48に示す、PVA方式の液晶パネルの画素構造の特徴について説明する。図4
8の(A)に示した液晶分子10318は、長軸と短軸を持った細長い分子である。液晶
分子10318の向きを示すため、図48の(A)においては、その長さによって表現し
ている。すなわち、長く表現された液晶分子10318は、その長軸の向きが紙面に平行
であり、短く表現された液晶分子10318ほど、その長軸の向きが紙面の法線方向に近
くなっているとする。つまり、図48の(A)に示した液晶分子10318は、その長軸
の向きが配向膜の法線方向を向くように配向している。よって、電極切り欠き部1031
9のある部分の液晶分子10318は、電極切り欠き部10319と第4の導電層103
13の境界を中心として放射状に配向する。この状態となることによって、視野角の大き
い液晶表示装置を得ることができる。
Next, the characteristics of the pixel structure of the PVA type liquid crystal panel shown in FIG. 48 will be described. Figure 4
The liquid crystal molecule 10318 shown in (A) of No. 8 is an elongated molecule having a major axis and a minor axis. In order to show the direction of the liquid crystal molecule 10318, in FIG. 48 (A), it is expressed by its length. That is, it is assumed that the orientation of the long axis of the long-represented liquid crystal molecule 10318 is parallel to the paper surface, and the shorter the representation of the liquid crystal molecule 10318, the closer the orientation of the long axis is to the normal direction of the paper surface. .. That is, the liquid crystal molecule 10318 shown in FIG. 48 (A) is oriented so that the direction of its long axis faces the normal direction of the alignment film. Therefore, the electrode notch portion 1031
The liquid crystal molecule 10318 in a portion of 9 has an electrode notch 10319 and a fourth conductive layer 103.
It is oriented radially around the boundary of 13. In this state, a liquid crystal display device having a large viewing angle can be obtained.

次に、図48の(B)を参照して、PVA方式の液晶表示装置に本実施の形態の表示装置
を適用した場合の、画素のレイアウトの一例について説明する。本実施の形態の表示装置
を適用したPVA方式の液晶表示装置の画素は、走査線10321と、映像信号線103
22と、容量線10323と、TFT10324と、画素電極10325と、画素容量1
0326と、電極切り欠き部10319と、を備えていてもよい。
Next, an example of the pixel layout when the display device of the present embodiment is applied to the PVA type liquid crystal display device will be described with reference to FIG. 48 (B). The pixels of the PVA type liquid crystal display device to which the display device of the present embodiment is applied are the scanning line 10321 and the video signal line 103.
22, the capacitance line 10323, the TFT 10324, the pixel electrode 10325, and the pixel capacitance 1.
0326 and an electrode notch 10319 may be provided.

走査線10321は、TFT10324のゲート電極と電気的に接続されるため、第1の
導電層10303で構成されているのが好適である。
Since the scanning line 10321 is electrically connected to the gate electrode of the TFT 10324, it is preferably composed of the first conductive layer 10303.

映像信号線10322は、TFT10324のソース電極またはドレイン電極と電気的に
接続されるため、第2の導電層10307で構成されているのが好適である。また、走査
線10321と映像信号線10322はマトリックス状に配置されるため、少なくとも、
異なる層の導電層で形成されるのが好適である。
Since the video signal line 10322 is electrically connected to the source electrode or drain electrode of the TFT 10324, it is preferably composed of the second conductive layer 10307. Further, since the scanning lines 10321 and the video signal lines 10322 are arranged in a matrix, at least,
It is preferably formed of different conductive layers.

容量線10323は、画素電極10325と平行に配置されることで、画素容量1032
6を形成するための配線であり、第1の導電層10303で構成されているのが好適であ
る。なお、図48の(B)に示すように、容量線10323は、映像信号線10322に
沿って、映像信号線10322を囲むように延設されていてもよい。こうすることで、映
像信号線10322の電位変化に伴って、電位を保持するべき電極の電位が変化してしま
う現象、いわゆるクロストークを低減することができる。なお、映像信号線10322と
の交差容量を低減させるため、図48の(B)に示すように、第1の半導体層10305
を容量線10323と映像信号線10322の交差領域に設けてもよい。
The capacitance line 10323 is arranged in parallel with the pixel electrode 10325 to have a pixel capacitance of 1032.
6 is a wiring for forming, and it is preferable that the wiring is composed of the first conductive layer 10303. As shown in FIG. 48 (B), the capacitance line 10323 may be extended along the video signal line 10322 so as to surround the video signal line 10322. By doing so, it is possible to reduce the phenomenon that the potential of the electrode that should hold the potential changes with the potential change of the video signal line 10322, that is, so-called crosstalk. In addition, in order to reduce the cross capacitance with the video signal line 10322, as shown in FIG. 48 (B), the first semiconductor layer 10305
May be provided in the intersection region of the capacitance line 10323 and the video signal line 10322.

TFT10324は、映像信号線10322と画素電極10325を導通させるスイッチ
として動作する。なお、図48の(B)に示すように、TFT10324のソース領域ま
たはドレイン領域のどちらか一方を、ソース領域またはドレイン領域の他方を囲むように
配置してもよい。こうすることで、小さい面積で大きなチャネル幅を得ることができ、ス
イッチング能力を大きくすることができる。なお、図48の(B)に示すように、TFT
10324のゲート電極は、第1の半導体層10305を囲むように配置してもよい。
The TFT 10324 operates as a switch for conducting the video signal line 10322 and the pixel electrode 10325. As shown in FIG. 48 (B), either the source region or the drain region of the TFT 10324 may be arranged so as to surround the other of the source region and the drain region. By doing so, a large channel width can be obtained in a small area, and the switching capacity can be increased. As shown in FIG. 48 (B), the TFT is
The gate electrode of 10324 may be arranged so as to surround the first semiconductor layer 10305.

画素電極10325は、TFT10324のソース電極またはドレイン電極の一方に電気
的に接続される。画素電極10325は、映像信号線10322によって伝達された信号
電圧を液晶素子に与えるための電極である。また、容量線10323を配置することで、
画素容量10326を形成してもよい。こうすることで、画素電極10325は、映像信
号線10322によって伝達された信号電圧を保持しやすくなる。なお、画素電極103
25は、図48の(B)に示すように、第4の導電層10313に設けた電極切り欠き部
10319の形状に合わせて、電極切り欠き部10319のない部分に、画素電極103
25を切り欠いた部分を形成するのが好適である。こうすることで、液晶分子10318
の配向が異なる複数の領域を形成することができるので、視野角の大きな液晶表示装置を
得ることができる。また、画素電極10325を、透明性をもつ材料で作製した場合は、
透過型の液晶表示装置を得ることができる。透過型の液晶表示装置は、色の再現性が高く
、高い画質を持った映像を表示することができる。また、画素電極10325を、反射性
をもつ材料で作製した場合は、反射型の液晶表示装置を得ることができる。反射型の液晶
表示装置は、屋外などの明るい環境下における視認性が高く、また、バックライトが不要
なので、消費電力を非常に小さくすることができる。なお、画素電極10325を、透明
性をもつ材料および反射性をもつ材料の両方を用いて作成した場合は、両者の利点を併せ
持つ、半透過型の液晶表示装置を得ることができる。なお、画素電極10325を、反射
性をもつ材料で作製した場合は、画素電極10325の表面に凹凸を持たせてもよい。あ
るいは、第3の絶縁膜10308の表面に凹凸を持たせることで、画素電極10325を
凹凸にすることもできる。こうすることで、反射光が乱反射するので、反射光の強度分布
の角度依存性が小さくなる利点がある。つまり、どの角度で見ても、一定の明るさを持っ
た反射型の液晶表示装置を得ることができる。
The pixel electrode 10325 is electrically connected to either the source electrode or the drain electrode of the TFT 10324. The pixel electrode 10325 is an electrode for applying a signal voltage transmitted by the video signal line 10322 to the liquid crystal element. In addition, by arranging the capacity line 10323,
The pixel capacity 10326 may be formed. By doing so, the pixel electrode 10325 can easily hold the signal voltage transmitted by the video signal line 10322. The pixel electrode 103
As shown in FIG. 48B, 25 is a pixel electrode 103 in a portion without the electrode cutout portion 10319 according to the shape of the electrode cutout portion 10319 provided in the fourth conductive layer 10313.
It is preferable to form a notched portion of 25. By doing this, the liquid crystal molecule 10318
Since it is possible to form a plurality of regions having different orientations, it is possible to obtain a liquid crystal display device having a large viewing angle. When the pixel electrode 10325 is made of a transparent material,
A transmissive liquid crystal display device can be obtained. The transmissive liquid crystal display device has high color reproducibility and can display an image with high image quality. Further, when the pixel electrode 10325 is made of a reflective material, a reflective liquid crystal display device can be obtained. The reflective liquid crystal display device has high visibility in a bright environment such as outdoors, and does not require a backlight, so that power consumption can be extremely reduced. When the pixel electrode 10325 is made of both a transparent material and a reflective material, a semi-transmissive liquid crystal display device having the advantages of both can be obtained. When the pixel electrode 10325 is made of a reflective material, the surface of the pixel electrode 10325 may have irregularities. Alternatively, the pixel electrode 10325 can be made uneven by making the surface of the third insulating film 10308 uneven. By doing so, since the reflected light is diffusely reflected, there is an advantage that the angle dependence of the intensity distribution of the reflected light becomes small. That is, it is possible to obtain a reflective liquid crystal display device having a constant brightness regardless of the angle.

次に、図49を参照して、横電界方式の液晶表示装置に、本実施の形態の表示装置を適用
した場合を説明する。図49は、液晶分子の配向が基板に対して常に水平であるようにス
イッチングを行なうために、横方向に電界をかける方式の液晶表示装置の画素構造のうち
、画素電極10425と共通電極10423に櫛歯状のパターン加工を施すことで、横方
向に電界をかける方式、いわゆるIPS(In-Plane-Switching)方式
に、本実施の形態の表示装置を適用した場合の、画素の断面図と上面図である。図49の
(A)は、画素の断面図であり、図49の(B)は、画素の上面図である。また、図49
の(A)に示す画素の断面図は、図49の(B)に示す画素の上面図における線分a-a
’に対応している。図49に示す画素構造の液晶表示装置に本実施の形態の表示装置を適
用することによって、原理的に視野角が大きく、応答速度の階調依存性の小さい液晶表示
装置を得ることができる。
Next, a case where the display device of the present embodiment is applied to the horizontal electric field type liquid crystal display device will be described with reference to FIG. 49. FIG. 49 shows the pixel electrode 10425 and the common electrode 10423 in the pixel structure of the liquid crystal display device in which an electric field is applied in the lateral direction in order to perform switching so that the orientation of the liquid crystal molecules is always horizontal to the substrate. Cross-sectional view and top surface of pixels when the display device of this embodiment is applied to the so-called IPS (In-Plane-Switching) method, which applies an electric field in the lateral direction by applying a comb-shaped pattern. It is a figure. (A) of FIG. 49 is a cross-sectional view of a pixel, and (B) of FIG. 49 is a top view of the pixel. In addition, FIG. 49
The cross-sectional view of the pixel shown in (A) of FIG. 49 is a line segment aa in the top view of the pixel shown in (B) of FIG.
It corresponds to'. By applying the display device of the present embodiment to the liquid crystal display device having a pixel structure shown in FIG. 49, it is possible to obtain a liquid crystal display device having a large viewing angle and a small gradation dependence of the response speed in principle.

図49の(A)を参照して、IPS方式の液晶表示装置の画素構造について説明する。液
晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは
、加工を施した2枚の基板を、数μmのギャップを持たせて貼り合わせ、2枚の基板間に
液晶材料を注入することで作製される。図49の(A)において、2枚の基板は、第1の
基板10401、および第2の基板10416である。第1の基板には、TFTおよび画
素電極を作製し、また、第2の基板には、遮光膜10414、カラーフィルタ10415
、スペーサ10417、および第2の配向膜10412を作製してもよい。
The pixel structure of the IPS type liquid crystal display device will be described with reference to FIG. 49 (A). The liquid crystal display device has a core portion for displaying an image, which is called a liquid crystal panel. The liquid crystal panel is manufactured by laminating two processed substrates with a gap of several μm and injecting a liquid crystal material between the two substrates. In (A) of FIG. 49, the two substrates are the first substrate 10401 and the second substrate 10416. A TFT and pixel electrodes are manufactured on the first substrate, and a light-shielding film 10414 and a color filter 10415 are formed on the second substrate.
, Spacer 10417, and second alignment film 10412 may be made.

なお、本実施の形態の表示装置は、第1の基板10401にTFTを作製しなくとも実施
可能である。TFTを作製しない場合は、工程数が減少するため、製造コストを低減する
ことができる。さらに、構造が簡単であるので、歩留まりを向上させることができる。一
方、TFTを作製する場合は、より大型の表示装置を得ることができる。
The display device of this embodiment can be implemented without forming a TFT on the first substrate 10401. When the TFT is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Furthermore, since the structure is simple, the yield can be improved. On the other hand, when manufacturing a TFT, a larger display device can be obtained.

なお、図49に示すTFTは、非晶質半導体を用いたボトムゲート型のTFTである。非
結晶半導体を用いたTFTを適応した液晶パネルは、大面積の基板を用いて、安価に作製
できるという利点がある。しかし、本実施の形態の表示装置はこれに限定されるものでは
ない。使用できるTFTの構造は、ボトムゲート型のTFTではチャネルエッチ型、チャ
ネル保護型などがある。また、トップゲート型でもよい。さらに、非晶質半導体だけでは
なく、多結晶半導体も用いることができる。
The TFT shown in FIG. 49 is a bottom gate type TFT using an amorphous semiconductor. A liquid crystal panel to which a TFT using an amorphous semiconductor is applied has an advantage that it can be manufactured at low cost by using a large-area substrate. However, the display device of the present embodiment is not limited to this. The structure of the TFT that can be used includes a channel etch type and a channel protection type for the bottom gate type TFT. Moreover, the top gate type may be used. Further, not only amorphous semiconductors but also polycrystalline semiconductors can be used.

なお、本実施の形態の表示装置は、第2の基板10416に遮光膜10414を作製しな
くとも実施可能である。遮光膜10414を作製しない場合は、工程数が減少するため、
製造コストを低減することができる。また、構造が簡単であるので、歩留まりを向上させ
ることができる。一方、遮光膜10414を作製する場合は、黒表示時に光漏れの少ない
表示装置を得ることができる。
The display device of the present embodiment can be implemented without forming a light-shielding film 10414 on the second substrate 10416. If the light-shielding film 10414 is not manufactured, the number of steps is reduced, so that
The manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the light-shielding film 10414 is manufactured, it is possible to obtain a display device having less light leakage when displaying black.

なお、本実施の形態の表示装置は、第2の基板10416にカラーフィルタ10415を
作製しなくとも実施可能である。カラーフィルタ10415を作製しない場合は、工程数
が減少するため、製造コストを低減することができる。ただし、カラーフィルタ1041
5を作製しない場合でも、フィールドシーケンシャル駆動によってカラー表示ができる表
示装置を得ることができる。また、構造が簡単であるので、歩留まりを向上させることが
できる。一方、カラーフィルタ10415を作製する場合は、カラー表示ができる表示装
置を得ることができる。
The display device of the present embodiment can be implemented without forming the color filter 10415 on the second substrate 10416. When the color filter 10415 is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. However, the color filter 1041
Even when 5 is not manufactured, it is possible to obtain a display device capable of color display by field sequential drive. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the color filter 10415 is manufactured, a display device capable of displaying colors can be obtained.

なお、本実施の形態の表示装置は、第2の基板10416にスペーサ10417を作製せ
ず、球状のスペーサを散布することでも実施可能である。球状のスペーサを散布する場合
は、工程数が減少するため、製造コストを低減することができる。また、構造が簡単であ
るので、歩留まりを向上させることができる。一方、スペーサ10417を作製する場合
は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、
表示ムラの少ない表示装置を得ることができる。
The display device of the present embodiment can also be implemented by spraying a spherical spacer without forming the spacer 10417 on the second substrate 10416. When the spherical spacer is sprayed, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the spacer 10417 is manufactured, the positions of the spacers do not vary, so that the distance between the two substrates can be made uniform.
A display device with less display unevenness can be obtained.

次に、第1の基板10401に施す加工については、図46で説明した方法を用いてもよ
いため、省略する。ここで、第1の基板10401、第1の絶縁膜10402、第1の導
電層10403、第2の絶縁膜10404、第1の半導体層10405、第2の半導体層
10406、第2の導電層10407、第3の絶縁膜10408、第3の導電層1040
9、第1の配向膜10410が、それぞれ、図46における第1の基板10101、第1
の絶縁膜10102、第1の導電層10103、第2の絶縁膜10104、第1の半導体
層10105、第2の半導体層10106、第2の導電層10107、第3の絶縁膜10
108、第3の導電層10109、第1の配向膜10110、と対応する。なお、第1の
基板10401側の第3の導電層10409にパターン加工を施し、互いにかみ合った2
つの櫛歯状の形状に形成してもよい。また、一方の櫛歯状の電極は、TFT10424の
ソース電極またはドレイン電極の一方と電気的に接続され、他方の櫛歯状の電極は、共通
電極10423と電気的に接続されていてもよい。こうすることで、液晶分子10418
に効果的に横方向の電界をかけることができる。
Next, the processing performed on the first substrate 10401 may be omitted because the method described with reference to FIG. 46 may be used. Here, the first substrate 10401, the first insulating film 10402, the first conductive layer 10403, the second insulating film 10404, the first semiconductor layer 10405, the second semiconductor layer 10406, and the second conductive layer 10407. , Third insulating film 10408, third conductive layer 1040
9. The first alignment film 10410 is the first substrate 10101 and the first in FIG. 46, respectively.
Insulating film 10102, first conductive layer 10103, second insulating film 10104, first semiconductor layer 10105, second semiconductor layer 10106, second conductive layer 10107, third insulating film 10
It corresponds to 108, the third conductive layer 10109, and the first alignment film 10110. The third conductive layer 10409 on the side of the first substrate 10401 was patterned and meshed with each other.
It may be formed in the shape of two comb teeth. Further, one comb-shaped electrode may be electrically connected to one of the source electrode or the drain electrode of the TFT 10424, and the other comb-shaped electrode may be electrically connected to the common electrode 10423. By doing this, the liquid crystal molecule 10418
A lateral electric field can be effectively applied to.

以上のように作製した第1の基板10401と、遮光膜10414、カラーフィルタ10
415、スペーサ10417、および第2の配向膜10412を作製した第2の基板10
416を、シール材によって数μmのギャップを持たせて貼り合わせ、2枚の基板間に液
晶材料を注入することで、液晶パネルが作製できる。なお、図示しないが、第2の基板1
0416側に、導電層を形成してもよい。第2の基板10416側に導電層を形成するこ
とで、外部からの電磁波ノイズの影響を受けにくくすることができる。
The first substrate 10401, the light-shielding film 10414, and the color filter 10 produced as described above.
The second substrate 10 on which the 415, the spacer 10417, and the second alignment film 10412 were prepared.
A liquid crystal panel can be manufactured by laminating 416 with a gap of several μm by a sealing material and injecting a liquid crystal material between two substrates. Although not shown, the second substrate 1
A conductive layer may be formed on the 0416 side. By forming the conductive layer on the side of the second substrate 10416, it is possible to reduce the influence of electromagnetic wave noise from the outside.

次に、図49に示す、IPS方式の液晶パネルの画素構造の特徴について説明する。図4
9の(A)に示した液晶分子10418は、長軸と短軸を持った細長い分子である。液晶
分子10418の向きを示すため、図49の(A)においては、その長さによって表現し
ている。すなわち、長く表現された液晶分子10418は、その長軸の向きが紙面に平行
であり、短く表現された液晶分子10418ほど、その長軸の向きが紙面の法線方向に近
くなっているとする。つまり、図49の(A)に示した液晶分子10418は、その長軸
の向きが常に基板と水平の方向を向くように配向している。図49の(A)においては、
電界のない状態における配向を表しているが、液晶分子10418に電界がかかったとき
は、その長軸の向きが常に基板と水平の方向を保ったまま、水平面内で回転する。この状
態となることによって、視野角の大きい液晶表示装置を得ることができる。
Next, the characteristics of the pixel structure of the IPS liquid crystal panel shown in FIG. 49 will be described. Figure 4
The liquid crystal molecule 10418 shown in (A) of 9 is an elongated molecule having a major axis and a minor axis. In order to show the direction of the liquid crystal molecule 10418, in FIG. 49 (A), it is expressed by its length. That is, it is assumed that the orientation of the long axis of the long-expressed liquid crystal molecule 10418 is parallel to the paper surface, and the shorter the expressed liquid crystal molecule 10418 is, the closer the orientation of the long axis is to the normal direction of the paper surface. .. That is, the liquid crystal molecule 10418 shown in FIG. 49 (A) is oriented so that its long axis always faces the horizontal direction with respect to the substrate. In (A) of FIG. 49,
It represents the orientation in the absence of an electric field, but when an electric field is applied to the liquid crystal molecule 10418, it rotates in a horizontal plane while always maintaining the direction of its major axis horizontal to the substrate. In this state, a liquid crystal display device having a large viewing angle can be obtained.

次に、図49の(B)を参照して、IPS方式の液晶表示装置に本実施の形態の表示装置
を適用した場合の、画素のレイアウトの一例について説明する。本実施の形態の表示装置
を適用したIPS方式の液晶表示装置の画素は、走査線10421と、映像信号線104
22と、共通電極10423と、TFT10424と、画素電極10425と、を備えて
いてもよい。
Next, an example of the pixel layout when the display device of the present embodiment is applied to the IPS type liquid crystal display device will be described with reference to FIG. 49 (B). The pixels of the IPS type liquid crystal display device to which the display device of the present embodiment is applied are the scanning line 10421 and the video signal line 104.
22, a common electrode 10423, a TFT 10424, and a pixel electrode 10425 may be provided.

走査線10421は、TFT10424のゲート電極と電気的に接続されるため、第1の
導電層10403で構成されているのが好適である。
Since the scanning line 10421 is electrically connected to the gate electrode of the TFT 10424, it is preferably composed of the first conductive layer 10403.

映像信号線10422は、TFT10424のソース電極またはドレイン電極と電気的に
接続されるため、第2の導電層10407で構成されているのが好適である。また、走査
線10421と映像信号線10422はマトリックス状に配置されるため、少なくとも、
異なる層の導電層で形成されるのが好適である。なお、図49の(B)に示すように、映
像信号線10422は、画素電極10425および共通電極10423の形状に合わせる
ように、画素内で屈曲して形成されていてもよい。こうすることで、画素の開口率を大き
くすることができるため、液晶表示装置の効率を向上させることができる。
Since the video signal line 10422 is electrically connected to the source electrode or drain electrode of the TFT 10424, it is preferably composed of the second conductive layer 10407. Further, since the scanning lines 10421 and the video signal lines 10422 are arranged in a matrix, at least,
It is preferably formed of different conductive layers. As shown in FIG. 49B, the video signal line 10422 may be formed so as to be bent in the pixel so as to match the shapes of the pixel electrode 10425 and the common electrode 10423. By doing so, the aperture ratio of the pixels can be increased, so that the efficiency of the liquid crystal display device can be improved.

共通電極10423は、画素電極10425と平行に配置されることで、横方向の電界を
発生させるための電極であり、第1の導電層10403および第3の導電層10409で
構成されているのが好適である。なお、図49の(B)に示すように、共通電極1042
3は、映像信号線10422に沿って、映像信号線10422を囲むように延設されてい
てもよい。こうすることで、映像信号線10422の電位変化に伴って、電位を保持する
べき電極の電位が変化してしまう現象、いわゆるクロストークを低減することができる。
なお、映像信号線10422との交差容量を低減させるため、図49の(B)に示すよう
に、第1の半導体層10405を共通電極10423と映像信号線10422の交差領域
に設けてもよい。
The common electrode 10423 is an electrode for generating an electric field in the lateral direction by being arranged in parallel with the pixel electrode 10425, and is composed of a first conductive layer 10403 and a third conductive layer 10409. Suitable. As shown in FIG. 49 (B), the common electrode 1042
3 may be extended along the video signal line 10422 so as to surround the video signal line 10422. By doing so, it is possible to reduce the phenomenon that the potential of the electrode that should hold the potential changes with the potential change of the video signal line 10422, that is, so-called crosstalk.
In order to reduce the cross capacitance with the video signal line 10422, the first semiconductor layer 10405 may be provided in the crossing region between the common electrode 10423 and the video signal line 10422, as shown in FIG. 49 (B).

TFT10424は、映像信号線10422と画素電極10425を導通させるスイッチ
として動作する。なお、図49の(B)に示すように、TFT10424のソース領域ま
たはドレイン領域のどちらか一方を、ソース領域またはドレイン領域の他方を囲むように
配置してもよい。こうすることで、小さい面積で大きなチャネル幅を得ることができ、ス
イッチング能力を大きくすることができる。なお、図49の(B)に示すように、TFT
10424のゲート電極は、第1の半導体層10405を囲むように配置してもよい。
The TFT 10424 operates as a switch for conducting the video signal line 10422 and the pixel electrode 10425. As shown in FIG. 49 (B), either the source region or the drain region of the TFT 10424 may be arranged so as to surround the other of the source region and the drain region. By doing so, a large channel width can be obtained in a small area, and the switching capacity can be increased. As shown in FIG. 49 (B), the TFT
The gate electrode of 10424 may be arranged so as to surround the first semiconductor layer 10405.

画素電極10425は、TFT10424のソース電極またはドレイン電極の一方に電気
的に接続される。画素電極10425は、映像信号線10422によって伝達された信号
電圧を液晶素子に与えるための電極である。また、共通電極10423を配置することで
、画素容量を形成してもよい。こうすることで、画素電極10325は、映像信号線10
422によって伝達された信号電圧を保持しやすくなる。なお、画素電極10425およ
び櫛歯状の共通電極10423は、図49の(B)に示すように、屈曲した櫛歯状の形状
として形成するのが好適である。こうすることで、液晶分子10418の配向が異なる複
数の領域を形成することができるので、視野角の大きな液晶表示装置を得ることができる
。また、画素電極10425および櫛歯状の共通電極10423を、透明性をもつ材料で
作製した場合は、透過型の液晶表示装置を得ることができる。透過型の液晶表示装置は、
色の再現性が高く、高い画質を持った映像を表示することができる。さらに、透過型の液
晶表示装置は、画素が高開口率となって、光効率を向上することができる。ただし、画素
電極10425および櫛歯状の共通電極10423を透明性をもたず、かつ、反射性をも
たいない材料で作製した場合でも、透過型の液晶表示装置を得ることができる。当該透過
型の液晶表示装置は、横電界が存在する部分の液晶分子10418のみを光が透過するた
め、色の再現性が高く、高い画質を持った映像を表示することができる。また、画素電極
10425および櫛歯状の共通電極10423を、反射性をもつ材料で作製した場合は、
半透過型の液晶表示装置を得ることができる。半透過型の液晶表示装置は、屋外などの明
るい環境下における視認性が高く、消費電力を非常に小さくすることができる。さらに、
半透過型の液晶表示装置は、色の再現性が高く、高い画質を持った映像を表示することが
できる。ただし、画素電極10425および櫛歯状の共通電極10423を、透明性をも
つ材料および反射性をもつ材料の両方を用いて作成した場合でもは半透過型の液晶表示装
置を得ることができる。なお、画素電極10425および櫛歯状の共通電極10423を
、反射性をもつ材料で作製した場合は、画素電極10425および櫛歯状の共通電極10
423の表面に凹凸を持たせてもよい。あるいは、第3の絶縁膜10408の表面に凹凸
を持たせることで、画素電極10425および櫛歯状の共通電極10423を凹凸にする
こともできる。こうすることで、反射光が乱反射するので、反射光の強度分布の角度依存
性が小さくなる利点がある。つまり、どの角度で見ても、一定の明るさを持った反射型の
液晶表示装置を得ることができる。
The pixel electrode 10425 is electrically connected to either the source electrode or the drain electrode of the TFT 10424. The pixel electrode 10425 is an electrode for applying a signal voltage transmitted by the video signal line 10422 to the liquid crystal element. Further, the pixel capacitance may be formed by arranging the common electrode 10423. By doing so, the pixel electrode 10325 becomes the video signal line 10.
It becomes easy to hold the signal voltage transmitted by 422. The pixel electrode 10425 and the comb-shaped common electrode 10423 are preferably formed in a bent comb-shaped shape as shown in FIG. 49 (B). By doing so, it is possible to form a plurality of regions in which the orientations of the liquid crystal molecules 10418 are different, so that a liquid crystal display device having a large viewing angle can be obtained. Further, when the pixel electrode 10425 and the comb-shaped common electrode 10423 are made of a transparent material, a transmissive liquid crystal display device can be obtained. The transmissive liquid crystal display device is
It has high color reproducibility and can display images with high image quality. Further, in the transmissive liquid crystal display device, the pixels have a high aperture ratio, and the light efficiency can be improved. However, even when the pixel electrode 10425 and the comb-shaped common electrode 10423 are made of a material that does not have transparency and does not have reflection, a transmissive liquid crystal display device can be obtained. Since the transmissive liquid crystal display device transmits light only through the liquid crystal molecules 10418 in the portion where the lateral electric field exists, it is possible to display an image having high color reproducibility and high image quality. When the pixel electrode 10425 and the comb-shaped common electrode 10423 are made of a reflective material,
A semi-transmissive liquid crystal display device can be obtained. The semi-transmissive liquid crystal display device has high visibility in a bright environment such as outdoors, and can greatly reduce power consumption. moreover,
The semi-transmissive liquid crystal display device has high color reproducibility and can display an image with high image quality. However, even when the pixel electrode 10425 and the comb-shaped common electrode 10423 are made of both a transparent material and a reflective material, a transflective liquid crystal display device can be obtained. When the pixel electrode 10425 and the comb-shaped common electrode 10423 are made of a reflective material, the pixel electrode 10425 and the comb-shaped common electrode 10 are used.
The surface of the 423 may be uneven. Alternatively, the pixel electrode 10425 and the comb-shaped common electrode 10423 can be made uneven by making the surface of the third insulating film 10408 uneven. By doing so, since the reflected light is diffusely reflected, there is an advantage that the angle dependence of the intensity distribution of the reflected light becomes small. That is, it is possible to obtain a reflective liquid crystal display device having a constant brightness regardless of the angle.

なお、櫛歯状の画素電極10425と、櫛歯状の共通電極10423は、ともに第3の導
電層10409で形成されるとしたが、本実施の形態の表示装置が適用できる画素構成は
、これに限定されず、適宜選択することができる。たとえば、櫛歯状の画素電極1042
5と、櫛歯状の共通電極10423を、ともに第2の導電層10407で形成してもよい
し、ともに第1の導電層10403で形成してもよいし、どちらか一方を第3の導電層1
0409で形成し、他方を第2の導電層10407で形成してもよいし、どちらか一方を
第3の導電層10409で形成し、他方を第1の導電層10407で形成してもよいし、
どちらか一方を第2の導電層10409で形成し、他方を第1の導電層10407で形成
してもよい。
It is said that the comb-shaped pixel electrode 10425 and the comb-shaped common electrode 10423 are both formed of the third conductive layer 10409, but the pixel configuration to which the display device of the present embodiment can be applied is this. It is not limited to, and can be appropriately selected. For example, comb-shaped pixel electrode 1042
5 and the comb-shaped common electrode 10423 may both be formed by the second conductive layer 10407, both may be formed by the first conductive layer 10403, or either one may be formed by the third conductive layer. Layer 1
It may be formed of 0409 and the other may be formed of a second conductive layer 10407, or one may be formed of a third conductive layer 10409 and the other may be formed of a first conductive layer 10407. ,
Either one may be formed of the second conductive layer 10409 and the other may be formed of the first conductive layer 10407.

次に、図50を参照して、別の横電界方式の液晶表示装置に、本実施の形態の表示装置を
適用した場合を説明する。図50は、液晶分子の配向が基板に対して常に水平であるよう
にスイッチングを行なうために、横方向に電界をかける方式の液晶表示装置の別の画素構
造を示す図である。より詳細には、画素電極10525と共通電極10523のうち、ど
ちらか一方に櫛歯状のパターン加工を施し、他方は櫛歯状の形状に重なる領域に一様に電
極を形成することで、横方向に電界をかける方式、いわゆるFFS(Fringe Fi
eld Switching)方式に、本実施の形態の表示装置を適用した場合の、画素
の断面図と上面図である。図50の(A)は、画素の断面図であり、図50の(B)は、
画素の上面図である。また、図50の(A)に示す画素の断面図は、図50の(B)に示
す画素の上面図における線分a-a’に対応している。図50に示す画素構造の液晶表示
装置に本実施の形態の表示装置を適用することによって、原理的に視野角が大きく、応答
速度の階調依存性の小さい液晶表示装置を得ることができる。
Next, a case where the display device of the present embodiment is applied to another horizontal electric field type liquid crystal display device will be described with reference to FIG. 50. FIG. 50 is a diagram showing another pixel structure of a liquid crystal display device of a type in which an electric field is applied in the lateral direction in order to perform switching so that the orientation of the liquid crystal molecules is always horizontal with respect to the substrate. More specifically, one of the pixel electrode 10525 and the common electrode 10523 is subjected to comb-shaped pattern processing, and the other is formed by uniformly forming an electrode in a region overlapping the comb-shaped shape. A method of applying an electric field in the direction, so-called FFS (Fringe Fi)
It is a cross-sectional view and a top view of a pixel when the display device of this embodiment is applied to the eld switching) method. (A) of FIG. 50 is a cross-sectional view of a pixel, and (B) of FIG. 50 is a sectional view of a pixel.
It is a top view of a pixel. Further, the cross-sectional view of the pixel shown in FIG. 50A corresponds to the line segment aa'in the top view of the pixel shown in FIG. 50B. By applying the display device of the present embodiment to the liquid crystal display device having a pixel structure shown in FIG. 50, it is possible to obtain a liquid crystal display device having a large viewing angle and a small gradation dependence of the response speed in principle.

図50の(A)を参照して、FFS方式の液晶表示装置の画素構造について説明する。液
晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは
、加工を施した2枚の基板を、数μmのギャップを持たせて貼り合わせ、2枚の基板間に
液晶材料を注入することで作製される。図50の(A)において、2枚の基板は、第1の
基板10501および第2の基板10516である。第1の基板には、TFTおよび画素
電極を作製し、第2の基板には、遮光膜10514、カラーフィルタ10515、スペー
サ10517、および第2の配向膜10512を作製してもよい。
The pixel structure of the FFS type liquid crystal display device will be described with reference to FIG. 50 (A). The liquid crystal display device has a core portion for displaying an image, which is called a liquid crystal panel. The liquid crystal panel is manufactured by laminating two processed substrates with a gap of several μm and injecting a liquid crystal material between the two substrates. In FIG. 50A, the two substrates are the first substrate 10501 and the second substrate 10516. A TFT and a pixel electrode may be formed on the first substrate, and a light-shielding film 10514, a color filter 10515, a spacer 10517, and a second alignment film 10512 may be formed on the second substrate.

なお、本実施の形態の表示装置は、第1の基板10501にTFTを作製しなくとも実施
可能である。TFTを作製しない場合は、工程数が減少するため、製造コストを低減する
ことができる。また、構造が簡単であるので、歩留まりを向上させることができる。一方
、TFTを作製する場合は、より大型の表示装置を得ることができる。
The display device of this embodiment can be implemented without manufacturing a TFT on the first substrate 10501. When the TFT is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when manufacturing a TFT, a larger display device can be obtained.

なお、図50に示すTFTは、非晶質半導体を用いたボトムゲート型のTFTである。非
結晶半導体を用いたTFTを適応した液晶パネルは、大面積の基板を用いて、安価に作製
できるという利点がある。しかし、本実施の形態の表示装置はこれに限定されるものでは
ない。使用できるTFTの構造は、ボトムゲート型のTFTではチャネルエッチ型、チャ
ネル保護型などがある。また、トップゲート型でもよい。さらに、非晶質半導体だけでは
なく、多結晶半導体も用いることができる。
The TFT shown in FIG. 50 is a bottom gate type TFT using an amorphous semiconductor. A liquid crystal panel to which a TFT using an amorphous semiconductor is applied has an advantage that it can be manufactured at low cost by using a large-area substrate. However, the display device of the present embodiment is not limited to this. The structure of the TFT that can be used includes a channel etch type and a channel protection type for the bottom gate type TFT. Moreover, the top gate type may be used. Further, not only amorphous semiconductors but also polycrystalline semiconductors can be used.

なお、本実施の形態の表示装置は、第2の基板10516に遮光膜10514を作製しな
くとも実施可能である。遮光膜10514を作製しない場合は、工程数が減少するため、
製造コストを低減することができる。また、構造が簡単であるので、歩留まりを向上させ
ることができる。一方、遮光膜10514を作製する場合は、黒表示時に光漏れの少ない
表示装置を得ることができる。
The display device of the present embodiment can be implemented without forming a light-shielding film 10514 on the second substrate 10516. If the light-shielding film 10514 is not manufactured, the number of steps is reduced, so that
The manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the light-shielding film 10514 is manufactured, it is possible to obtain a display device having less light leakage when displaying black.

なお、本実施の形態の表示装置は、第2の基板10516にカラーフィルタ10515を
作製しなくとも実施可能である。カラーフィルタ10515を作製しない場合は、工程数
が減少するため、製造コストを低減することができる。また、構造が簡単であるので、歩
留まりを向上させることができる。ただし、カラーフィルタ10515を作製しない場合
でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ることが
できる。一方、カラーフィルタ10515を作製する場合は、カラー表示ができる表示装
置を得ることができる。
The display device of the present embodiment can be implemented without manufacturing the color filter 10515 on the second substrate 10516. When the color filter 10515 is not manufactured, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. However, even if the color filter 10515 is not manufactured, it is possible to obtain a display device capable of color display by field sequential drive. On the other hand, when the color filter 10515 is manufactured, it is possible to obtain a display device capable of displaying colors.

なお、本実施の形態の表示装置は、第2の基板10516にスペーサ10517を作製せ
ず、球状のスペーサを散布することでも実施可能である。球状のスペーサを散布する場合
は、工程数が減少するため、製造コストを低減することができる。また、構造が簡単であ
るので、歩留まりを向上させることができる。一方、スペーサ10517を作製本実施の
形態の表示装置する場合は、スペーサの位置がばらつかないため、2枚の基板間の距離を
一様にすることができ、表示ムラの少ない表示装置を得ることができる。
The display device of the present embodiment can also be implemented by spraying a spherical spacer without forming the spacer 10517 on the second substrate 10516. When the spherical spacer is sprayed, the number of steps is reduced, so that the manufacturing cost can be reduced. Moreover, since the structure is simple, the yield can be improved. On the other hand, when the spacer 10517 is manufactured and used as the display device of the present embodiment, the position of the spacer does not vary, so that the distance between the two substrates can be made uniform, and a display device with less display unevenness can be obtained. be able to.

次に、第1の基板10501に施す加工については、図46で説明した方法を用いてもよ
いため、省略する。ここで、第1の基板10501、第1の絶縁膜10502、第1の導
電層10503、第2の絶縁膜10504、第1の半導体層10505、第2の半導体層
10506、第2の導電層10507、第3の絶縁膜10508、第3の導電層1050
9、第1の配向膜10510が、それぞれ、図46における第1の基板10101、第1
の絶縁膜10102、第1の導電層10103、第2の絶縁膜10104、第1の半導体
層10105、第2の半導体層10106、第2の導電層10107、第3の絶縁膜10
108、第3の導電層10109、第1の配向膜10110、と対応する。
Next, the processing performed on the first substrate 10501 may be omitted because the method described with reference to FIG. 46 may be used. Here, the first substrate 10501, the first insulating film 10502, the first conductive layer 10503, the second insulating film 10504, the first semiconductor layer 10505, the second semiconductor layer 10506, and the second conductive layer 10507. , Third insulating film 10508, third conductive layer 1050
9. The first alignment film 10510 is the first substrate 10101 and the first in FIG. 46, respectively.
Insulating film 10102, first conductive layer 10103, second insulating film 10104, first semiconductor layer 10105, second semiconductor layer 10106, second conductive layer 10107, third insulating film 10
It corresponds to 108, the third conductive layer 10109, and the first alignment film 10110.

ただし、図46と異なる点は、第1の基板10501側に、第4の絶縁膜10519およ
び第4の導電層10513を形成してもよいという点である。より詳細には、第3の導電
層10509にパターン加工を施したあと、第4の絶縁膜10519を成膜し、パターン
加工を施してコンタクトホールを形成した後、第4の導電層10513を成膜し、同様に
パターン加工を施した後、第1の配向膜10510を形成してもよい。なお、第4の絶縁
膜10519および第4の導電層10513に使用できる材料および加工方法は、第3の
絶縁膜10508および第3の導電層10509に用いるものと同様のものを用いること
ができる。また、一方の櫛歯状の電極は、TFT10524のソース電極またはドレイン
電極の一方と電気的に接続され、他方の一様な電極は、共通電極10523と電気的に接
続されていてもよい。こうすることで、液晶分子10518に効果的に横方向の電界をか
けることができる。
However, the difference from FIG. 46 is that the fourth insulating film 10519 and the fourth conductive layer 10513 may be formed on the first substrate 10501 side. More specifically, after pattern processing is applied to the third conductive layer 10509, a fourth insulating film 10519 is formed, and after pattern processing is performed to form a contact hole, a fourth conductive layer 10513 is formed. The first alignment film 10510 may be formed after the film is formed and the pattern is processed in the same manner. As the materials and processing methods that can be used for the fourth insulating film 10519 and the fourth conductive layer 10513, the same materials and processing methods as those used for the third insulating film 10508 and the third conductive layer 10509 can be used. Further, one comb-shaped electrode may be electrically connected to one of the source electrode or the drain electrode of the TFT 10524, and the other uniform electrode may be electrically connected to the common electrode 10523. By doing so, a lateral electric field can be effectively applied to the liquid crystal molecule 10518.

以上のように作製した第1の基板10501と、遮光膜10514、カラーフィルタ10
515、スペーサ10517、および第2の配向膜10512を作製した第2の基板10
516を、シール材によって数μmのギャップを持たせて貼り合わせ、2枚の基板間に液
晶材料を注入することで、液晶パネルが作製できる。なお、図示しないが、第2の基板1
0516側に、導電層を形成してもよい。第2の基板10516側に導電層を形成するこ
とで、外部からの電磁波ノイズの影響を受けにくくすることができる。
The first substrate 10501 manufactured as described above, the light-shielding film 10514, and the color filter 10
The second substrate 10 on which the 515, the spacer 10517, and the second alignment film 10512 were prepared.
A liquid crystal panel can be manufactured by laminating 516 with a sealing material having a gap of several μm and injecting a liquid crystal material between two substrates. Although not shown, the second substrate 1
A conductive layer may be formed on the 0516 side. By forming the conductive layer on the side of the second substrate 10516, it is possible to reduce the influence of electromagnetic wave noise from the outside.

次に、図50に示す、FFS方式の液晶パネルの画素構造の特徴について説明する。図5
0の(A)に示した液晶分子10518は、長軸と短軸を持った細長い分子である。液晶
分子10518の向きを示すため、図50の(A)においては、その長さによって表現し
ている。すなわち、長く表現された液晶分子10518は、その長軸の向きが紙面に平行
であり、短く表現された液晶分子10518ほど、その長軸の向きが紙面の法線方向に近
くなっているとする。つまり、図50の(A)に示した液晶分子10518は、その長軸
の向きが常に基板と水平の方向を向くように配向している。図50の(A)においては、
電界のない状態における配向を表しているが、液晶分子10518に電界がかかったとき
は、その長軸の向きが常に基板と水平の方向を保ったまま、水平面内で回転する。この状
態となることによって、視野角の大きい液晶表示装置を得ることができる。
Next, the characteristics of the pixel structure of the FFS type liquid crystal panel shown in FIG. 50 will be described. Figure 5
The liquid crystal molecule 10518 shown in (A) of 0 is an elongated molecule having a major axis and a minor axis. In order to show the direction of the liquid crystal molecule 10518, in FIG. 50 (A), it is expressed by its length. That is, it is assumed that the orientation of the long axis of the long-represented liquid crystal molecule 10518 is parallel to the paper surface, and the shorter the representation of the liquid crystal molecule 10518, the closer the orientation of the long axis is to the normal direction of the paper surface. .. That is, the liquid crystal molecule 10518 shown in FIG. 50 (A) is oriented so that its long axis always faces the horizontal direction with respect to the substrate. In (A) of FIG. 50,
Although it represents the orientation in the absence of an electric field, when an electric field is applied to the liquid crystal molecules 10518, the liquid crystal molecules rotate in a horizontal plane while always maintaining the horizontal direction with the substrate. In this state, a liquid crystal display device having a large viewing angle can be obtained.

次に、図50の(B)を参照して、FFS方式の液晶表示装置に本実施の形態の表示装置
を適用した場合の、画素のレイアウトの一例について説明する。本実施の形態の表示装置
を適用したFFS方式の液晶表示装置の画素は、走査線10521と、映像信号線105
22と、共通電極10523と、TFT10524と、画素電極10525と、を備えて
いてもよい。
Next, an example of the pixel layout when the display device of the present embodiment is applied to the FFS type liquid crystal display device will be described with reference to FIG. 50 (B). The pixels of the FFS type liquid crystal display device to which the display device of the present embodiment is applied are the scanning line 10521 and the video signal line 105.
22, a common electrode 10523, a TFT 10524, and a pixel electrode 10525 may be provided.

走査線10521は、TFT10524のゲート電極と電気的に接続されるため、第1の
導電層10503で構成されているのが好適である。
Since the scanning line 10521 is electrically connected to the gate electrode of the TFT 10524, it is preferably composed of the first conductive layer 10503.

映像信号線10522は、TFT10524のソース電極またはドレイン電極と電気的に
接続されるため、第2の導電層10507で構成されているのが好適である。また、走査
線10521と映像信号線10522はマトリックス状に配置されるため、少なくとも、
異なる層の導電層で形成されるのが好適である。なお、図50の(B)に示すように、映
像信号線10522は、画素電極10525の形状に合わせるように、画素内で屈曲して
形成されていてもよい。こうすることで、画素の開口率を大きくすることができるため、
液晶表示装置の効率を向上させることができる。
Since the video signal line 10522 is electrically connected to the source electrode or drain electrode of the TFT 10524, it is preferably composed of the second conductive layer 10507. Further, since the scanning lines 10521 and the video signal lines 10522 are arranged in a matrix, at least,
It is preferably formed of different conductive layers. As shown in FIG. 50B, the video signal line 10522 may be formed so as to be bent in the pixel so as to match the shape of the pixel electrode 10525. By doing this, the aperture ratio of the pixels can be increased, so
The efficiency of the liquid crystal display device can be improved.

共通電極10523は、第1の導電層10503および第3の導電層10509で構成さ
れているのが好適である。なお、映像信号線10522との交差容量を低減させるため、
図50の(B)に示すように、第1の半導体層10505を共通電極10523と映像信
号線10522の交差領域に設けてもよい。
The common electrode 10523 is preferably composed of a first conductive layer 10503 and a third conductive layer 10509. In addition, in order to reduce the cross capacitance with the video signal line 10522,
As shown in FIG. 50B, the first semiconductor layer 10505 may be provided at the intersection region of the common electrode 10523 and the video signal line 10522.

TFT10524は、映像信号線10522と画素電極10525を導通させるスイッチ
として動作する。なお、図50の(B)に示すように、TFT10524のソース領域ま
たはドレイン領域のどちらか一方を、ソース領域またはドレイン領域の他方を囲むように
配置してもよい。こうすることで、小さい面積で大きなチャネル幅を得ることができ、ス
イッチング能力を大きくすることができる。なお、図50の(B)に示すように、TFT
10524のゲート電極は、第1の半導体層10505を囲むように配置してもよい。
The TFT 10524 operates as a switch for conducting the video signal line 10522 and the pixel electrode 10525. As shown in FIG. 50B, either the source region or the drain region of the TFT 10524 may be arranged so as to surround the other of the source region and the drain region. By doing so, a large channel width can be obtained in a small area, and the switching capacity can be increased. As shown in FIG. 50 (B), the TFT is
The gate electrode of 10524 may be arranged so as to surround the first semiconductor layer 10505.

画素電極10525は、TFT10524のソース電極またはドレイン電極の一方に電気
的に接続される。画素電極10525は、映像信号線10522によって伝達された信号
電圧を液晶素子に与えるための電極である。また、共通電極10523を配置することで
、画素容量を形成してもよい。こうすることで、画素電極10525は、映像信号線10
522によって伝達された信号電圧を保持しやすくなる。なお、画素電極10525は、
図50の(B)に示すように、屈曲した櫛歯状の形状として形成するのが好適である。こ
うすることで、液晶分子10518の配向が異なる複数の領域を形成することができるの
で、視野角の大きな液晶表示装置を得ることができる。また、櫛歯状の画素電極1052
5および共通電極10523を、透明性をもつ材料で作製した場合は、透過型の液晶表示
装置を得ることができる。ただし、櫛歯状の画素電極10525を反射性をもたない材料
で作製し、かつ、共通電極10523を透明性をもつ材料で作製した場合でも、透過型の
液晶表示装置を得ることができる。透過型の液晶表示装置は、色の再現性が高く、高い画
質を持った映像を表示することができる。また、櫛歯状の画素電極10525および共通
電極10523を、反射性をもつ材料で作製した場合は、反射型の液晶表示装置を得るこ
とができる。ただし、すくなくとも共通電極10523を反射性をもつ材料で作製すれば
、反射型の液晶表示装置を得ることができる。反射型の液晶表示装置は、屋外などの明る
い環境下における視認性が高く、また、バックライトが不要なので、消費電力を非常に小
さくすることができる。なお、櫛歯状の画素電極10525および共通電極10523を
、透明性をもつ材料および反射性をもつ材料の両方を用いて作成した場合は、両者の利点
を併せ持つ、半透過型の液晶表示装置を得ることができる。ただし、櫛歯状の画素電極1
0525を反射性をもつ材料で作製し、画素電極10525を透過性を持つ材料で作製し
た場合でも、半透過型の液晶表示装置を得ることができる。なお、画素電極10525お
よび櫛歯状の共通電極10523を、反射性をもつ材料で作製した場合は、櫛歯状の画素
電極10525および共通電極10523の表面に凹凸を持たせてもよい。あるいは、第
3の絶縁膜10508の表面に凹凸を持たせることで、櫛歯状の画素電極10525およ
び共通電極10523を凹凸にすることもできる。こうすることで、反射光が乱反射する
ので、反射光の強度分布の角度依存性が小さくなる利点がある。つまり、どの角度で見て
も、一定の明るさを持った反射型の液晶表示装置を得ることができる。
The pixel electrode 10525 is electrically connected to either the source electrode or the drain electrode of the TFT 10524. The pixel electrode 10525 is an electrode for applying a signal voltage transmitted by the video signal line 10522 to the liquid crystal element. Further, the pixel capacitance may be formed by arranging the common electrode 10523. By doing so, the pixel electrode 10525 becomes the video signal line 10.
It becomes easy to hold the signal voltage transmitted by 522. The pixel electrode 10525 is
As shown in FIG. 50 (B), it is preferable to form it as a bent comb-shaped shape. By doing so, it is possible to form a plurality of regions in which the orientations of the liquid crystal molecules 10518 are different, so that a liquid crystal display device having a large viewing angle can be obtained. In addition, the comb-shaped pixel electrode 1052
When the 5 and the common electrode 10523 are made of a transparent material, a transmissive liquid crystal display device can be obtained. However, even when the comb-shaped pixel electrode 10525 is made of a non-reflective material and the common electrode 10523 is made of a transparent material, a transmissive liquid crystal display device can be obtained. The transmissive liquid crystal display device has high color reproducibility and can display an image with high image quality. Further, when the comb-shaped pixel electrode 10525 and the common electrode 10523 are made of a reflective material, a reflective liquid crystal display device can be obtained. However, if at least the common electrode 10523 is made of a reflective material, a reflective liquid crystal display device can be obtained. The reflective liquid crystal display device has high visibility in a bright environment such as outdoors, and does not require a backlight, so that power consumption can be extremely reduced. When the comb-shaped pixel electrode 10525 and the common electrode 10523 are made of both a transparent material and a reflective material, a semi-transmissive liquid crystal display device having the advantages of both is provided. Obtainable. However, the comb-shaped pixel electrode 1
Even when the 0525 is made of a reflective material and the pixel electrode 10525 is made of a transparent material, a semi-transmissive liquid crystal display device can be obtained. When the pixel electrode 10525 and the comb-shaped common electrode 10523 are made of a reflective material, the surfaces of the comb-shaped pixel electrode 10525 and the common electrode 10523 may have irregularities. Alternatively, the comb-shaped pixel electrode 10525 and the common electrode 10523 can be made uneven by making the surface of the third insulating film 10508 uneven. By doing so, since the reflected light is diffusely reflected, there is an advantage that the angle dependence of the intensity distribution of the reflected light becomes small. That is, it is possible to obtain a reflective liquid crystal display device having a constant brightness regardless of the angle.

なお、櫛歯状の画素電極10525は、第4の導電層10513で形成され、一様な共通
電極10523は、第3の導電層10509で形成されるとしたが、本実施の形態の表示
装置が適用できる画素構成は、これに限定されず、ある条件を満たしていれば、適宜選択
することができる。より詳細には、第1の基板10501から見て、櫛歯状の電極が、一
様な電極より液晶に近いほうに位置していればよい。なぜならば、横方向の電界は、櫛歯
状の電極から見た場合、常に、一様な電極とは逆方向に発生するからである。つまり、液
晶に横電界をかけるためには、櫛歯状の電極は、一様な電極よりも液晶よりに位置してい
なければならないからである。
Although the comb-shaped pixel electrode 10525 is formed by the fourth conductive layer 10513 and the uniform common electrode 10523 is formed by the third conductive layer 10509, the display device of the present embodiment is described. The pixel configuration to which is applicable is not limited to this, and can be appropriately selected as long as certain conditions are satisfied. More specifically, the comb-shaped electrode may be located closer to the liquid crystal display than the uniform electrode when viewed from the first substrate 10501. This is because the lateral electric field is always generated in the opposite direction to the uniform electrode when viewed from the comb-shaped electrode. That is, in order to apply a lateral electric field to the liquid crystal, the comb-shaped electrode must be located closer to the liquid crystal than the uniform electrode.

この条件を満たすには、たとえば、櫛歯状の電極を第4の導電層10513で形成し、一
様な電極を第3の導電層10509で形成してもよいし、櫛歯状の電極を第4の導電層1
0513で形成し、一様な電極を第2の導電層10507で形成してもよいし、櫛歯状の
電極を第4の導電層10513で形成し、一様な電極を第1の導電層10503で形成し
てもよいし、櫛歯状の電極を第3の導電層10509で形成し、一様な電極を第2の導電
層10507で形成してもよいし、櫛歯状の電極を第3の導電層10509で形成し、一
様な電極を第1の導電層10503で形成してもよいし、櫛歯状の電極を第2の導電層1
0507で形成し、一様な電極を第1の導電層10503で形成してもよい。なお、櫛歯
状の電極は、TFT10524のソース領域またはドレイン領域の一方と電気的に接続さ
れ、一様な電極は、共通電極10523と電気的に接続されるとしたが、この接続は、逆
でもよい。その場合は、一様な電極が画素ごとに独立して形成されていてもよい。
To satisfy this condition, for example, a comb-shaped electrode may be formed by a fourth conductive layer 10513, a uniform electrode may be formed by a third conductive layer 10509, or a comb-shaped electrode may be formed. Fourth conductive layer 1
The uniform electrode may be formed by the second conductive layer 10507, or the comb-shaped electrode may be formed by the fourth conductive layer 10513, and the uniform electrode may be formed by the first conductive layer. The comb-shaped electrode may be formed of 10503, the comb-shaped electrode may be formed of the third conductive layer 10509, and the uniform electrode may be formed of the second conductive layer 10507, or the comb-shaped electrode may be formed of the second conductive layer 10507. The third conductive layer 10509 may be formed and a uniform electrode may be formed by the first conductive layer 10503, or the comb-shaped electrode may be formed by the second conductive layer 1.
It may be formed of 0507 and a uniform electrode may be formed of the first conductive layer 10503. The comb-shaped electrode is electrically connected to either the source region or the drain region of the TFT 10524, and the uniform electrode is electrically connected to the common electrode 10523, but this connection is reversed. But it may be. In that case, uniform electrodes may be formed independently for each pixel.

続いて、本実施形態の液晶表示装置に適応しうる各種液晶モードについて、説明する。 Subsequently, various liquid crystal modes applicable to the liquid crystal display device of the present embodiment will be described.

まず図51(A1)(A2)にはTNモードの液晶表示装置の模式図を示す。 First, FIGS. 51 (A1) and 51 (A2) show a schematic diagram of a TN mode liquid crystal display device.

上記実施の形態と同様に、互いに対向するように配置された第1の基板10601及び第
2の基板10602に、液晶層10600が挟持されている。そして、第1の基板106
01側には、第1の偏光子を含む層10603が積層され、第2の基板10602側には
、第2の偏光子を含む層10604が配置されている。なお、第1の偏光子を含む層10
603と、第2の偏光子を含む層10604とは、クロスニコルになるように配置されて
いる。
Similar to the above embodiment, the liquid crystal layer 10600 is sandwiched between the first substrate 10601 and the second substrate 10602 arranged so as to face each other. And the first substrate 106
A layer 10603 containing a first polarizing element is laminated on the 01 side, and a layer 10604 containing a second polarizing element is arranged on the second substrate 10602 side. The layer 10 containing the first polarizing element
The 603 and the layer 10604 containing the second polarizing element are arranged so as to form a cross Nicol.

なお、図示しないが、バックライト等は、第2の偏光子を含む層の外側に配置される。第
1の基板10601、及び第2の基板10602上には、それぞれ第1の電極10605
、第2の電極10606が設けられている。そして、バックライトと反対側、つまり視認
側の電極である第1の電極10605は、少なくとも透光性を有するように形成する。
Although not shown, the backlight or the like is arranged outside the layer containing the second polarizing element. The first electrode 10605 is placed on the first substrate 10601 and the second substrate 10602, respectively.
, A second electrode 10606 is provided. The first electrode 10605, which is an electrode on the opposite side of the backlight, that is, on the visual recognition side, is formed so as to have at least translucency.

図51(A1)(A2)のような構成を有する液晶表示装置において、ノーマリホワイト
モードの場合、第1の電極10605及び第2の電極10606に電圧が印加(縦電界方
式と呼ぶ)されると、図51(A1)に示すように黒色表示が行われる。このとき液晶分
子は縦に並んだ状態となる。すると、バックライトからの光は、基板を通過することがで
きず黒色表示となる。
In the liquid crystal display device having the configuration as shown in FIGS. 51 (A1) and 51 (A2), in the normal white mode, a voltage is applied to the first electrode 10605 and the second electrode 10606 (referred to as a longitudinal electric field method). As shown in FIG. 51 (A1), a black display is performed. At this time, the liquid crystal molecules are arranged vertically. Then, the light from the backlight cannot pass through the substrate and is displayed in black.

そして、図51(A2)に示すように、第1の電極10605及び第2の電極10606
の間に電圧が印加されていないときは白色表示となる。このとき、液晶分子は横に並び、
平面内で回転している状態となる。その結果、バックライトからの光は、クロスニコルに
なるように配置された一対の偏光子を含む層(第1の偏光子を含む層10603、及び第
2の偏光子を含む層10604)を通過することができ、所定の映像表示が行われる。
Then, as shown in FIG. 51 (A2), the first electrode 10605 and the second electrode 10606
When no voltage is applied between, the display is white. At this time, the liquid crystal molecules are lined up side by side,
It will be in a state of rotating in a plane. As a result, the light from the backlight passes through a layer containing a pair of polarizing elements arranged so as to form a cross Nicol (layer 10603 containing the first polarizing element and layer 10604 containing the second polarizing element). And the predetermined video display is performed.

図51(A1)(A2)のような構成を有する液晶表示装置は、カラーフィルタを設ける
ことによって、フルカラー表示を行うことができる。カラーフィルタは、第1の基板10
601側、又は第2の基板10602側のいずれかに設けることができる。ただし、図5
1(A1)(A2)のような構成を有する液晶表示装置は、カラーフィルタを設けなくて
もバックライトからの光が経時的に変化すれば、フィールドシーケンシャル駆動によって
フルカラー表示を行うことができる。
The liquid crystal display device having the configuration as shown in FIGS. 51 (A1) and 51 (A2) can perform full-color display by providing a color filter. The color filter is the first substrate 10
It can be provided on either the 601 side or the second substrate 10602 side. However, FIG. 5
A liquid crystal display device having a configuration as shown in 1 (A1) and (A2) can perform full-color display by field sequential drive if the light from the backlight changes with time without providing a color filter.

TNモードに使用される液晶材料は、公知のものを使用すればよい。 As the liquid crystal material used in the TN mode, a known one may be used.

図51(B1)にはVAモードの液晶表示装置の模式図を示す。VAモードは、無電界の
時に液晶分子が基板に垂直となるように配向されているモードである。
FIG. 51 (B1) shows a schematic diagram of a liquid crystal display device in VA mode. The VA mode is a mode in which the liquid crystal molecules are oriented so as to be perpendicular to the substrate when there is no electric field.

図51(A1)(A2)と同様に、第1の基板10601、及び第2の基板10602上
には、それぞれ第1の電極10605、第2の電極10606が設けられている。そして
、バックライトと反対側、つまり視認側の電極である第1の電極10605は、少なくと
も透光性を有するように形成する。そして、第1の基板10601側には、第1の偏光子
を含む層10603が積層され、第2の基板10602側には、第2の偏光子を含む層1
0604が配置されている。なお、第1の偏光子を含む層10603と、第2の偏光子を
含む層10604とは、クロスニコルになるように配置されている。
Similar to FIGS. 51 (A1) and 51 (A2), a first electrode 10605 and a second electrode 10606 are provided on the first substrate 10601 and the second substrate 10602, respectively. The first electrode 10605, which is an electrode on the opposite side of the backlight, that is, on the visual recognition side, is formed so as to have at least translucency. Then, a layer 10603 containing a first polarizing element is laminated on the first substrate 10601 side, and a layer 1 containing a second polarizing element is laminated on the second substrate 10602 side.
0604 is arranged. The layer 10603 containing the first polarizing element and the layer 10604 containing the second polarizing element are arranged so as to form a cross Nicol.

図51(A1)(A2)のような構成を有する液晶表示装置において、第1の電極106
05、及び第2の電極10606に電圧が印加される(縦電界方式)と、図51(B1)
に示すように白色表示が行われるオン状態となる。このとき液晶分子は横に並んだ状態と
なる。すると、バックライトからの光は、クロスニコルになるように配置された一対の偏
光子を含む層(第1の偏光子を含む層10603、及び第2の偏光子を含む層10604
)を通過することができ、所定の映像表示が行われる。このとき、カラーフィルタを設け
ることにより、フルカラー表示を行うことができる。カラーフィルタは、第1の基板10
601側、又は第2の基板10602側のいずれかに設けることができる。
In the liquid crystal display device having the configuration as shown in FIGS. 51 (A1) and 51 (A2), the first electrode 106
When a voltage is applied to 05 and the second electrode 10606 (longitudinal electric field method), FIG. 51 (B1).
As shown in, the white display is performed and the on state is set. At this time, the liquid crystal molecules are arranged side by side. Then, the light from the backlight is a layer containing a pair of substituents arranged so as to form a cross Nicol (a layer 10603 containing a first polarizing element and a layer 10604 containing a second polarizing element).
) Can be passed, and a predetermined video display is performed. At this time, by providing a color filter, full-color display can be performed. The color filter is the first substrate 10
It can be provided on either the 601 side or the second substrate 10602 side.

そして、図51(B2)に示すように、第1の電極10605及び第2の電極10606
の間に電圧が印加されていないときは黒色表示、つまりオフ状態とする。このとき、液晶
分子は縦に並んだ状態となる。その結果、バックライトからの光は基板を通過することが
できず、黒色表示となる。
Then, as shown in FIG. 51 (B2), the first electrode 10605 and the second electrode 10606
When no voltage is applied during, it is displayed in black, that is, it is turned off. At this time, the liquid crystal molecules are arranged vertically. As a result, the light from the backlight cannot pass through the substrate, resulting in a black display.

オフ状態では、液晶分子が基板に対して垂直に立ち上がって、黒表示となり、オン状態で
は液晶分子が基板に対して水平に倒れて白表示となる。オフ状態では液晶分子が立ち上が
っているため、偏光されたバックライトからの光は、液晶分子の複屈折の影響を受けるこ
となくセル内を通過し、対向基板側の偏光子を含む層で遮断することができる。
In the off state, the liquid crystal molecules stand up perpendicular to the substrate and display in black, and in the on state, the liquid crystal molecules fall horizontally with respect to the substrate and display in white. Since the liquid crystal molecules stand up in the off state, the light from the polarized backlight passes through the cell without being affected by the birefringence of the liquid crystal molecules and is blocked by the layer containing the polarizing element on the opposite substrate side. be able to.

ここで、液晶の配向が分割されたMVAモードに、本実施の形態の表示装置の積層された
偏光子を含む層を適用する例を図51(C1)(C2)に示す。MVAモードは、それぞ
れの部分の視野角依存性を互いに補償する方法である。図51(C1)に示すように、M
VAモードでは、第1の電極10605、及び第2の電極10606上に配向制御用に断
面が三角の突起物10607、及び10608が設けられている。第1の電極10605
、及び第2の電極10606に電圧が印加される(縦電界方式)と、図51(C1)に示
すように白色表示が行われるオン状態となる。このとき液晶分子は突起物10607、及
び10608に対して倒れて並んだ状態となる。すると、バックライトからの光は、クロ
スニコルになるように配置された一対の偏光子を含む層(第1の偏光子を含む層1060
3、及び第2の偏光子を含む層10604)を通過することができ、所定の映像表示が行
われる。なお、図51(C1)(C2)のような構成を有する液晶表示装置は、カラーフ
ィルタを設けることによって、フルカラー表示を行うことができる。カラーフィルタは、
第1の基板10601側、又は第2の基板10602側のいずれかに設けることができる
。もちろん、図51(C1)(C2)のような構成を有する液晶表示装置は、カラーフィ
ルタを設けなくても、フィールドシーケンシャル駆動によってフルカラー表示を行うこと
ができる。
Here, FIGS. 51 (C1) and 51 (C2) show an example of applying a layer containing a laminated polarizing element of the display device of the present embodiment to the MVA mode in which the orientation of the liquid crystal is divided. The MVA mode is a method of compensating each other for the viewing angle dependence of each part. As shown in FIG. 51 (C1), M
In the VA mode, protrusions 10607 and 10608 having a triangular cross section are provided on the first electrode 10605 and the second electrode 10606 for orientation control. First electrode 10605
When a voltage is applied to the second electrode 10606 (longitudinal electric field method), a white display is performed as shown in FIG. 51 (C1), and the on state is set. At this time, the liquid crystal molecules are in a state of being tilted and lined up with respect to the protrusions 10607 and 10608. Then, the light from the backlight is a layer containing a pair of polarizing elements arranged so as to form a cross Nicol (layer 1060 containing a first polarizing element).
It can pass through the layer 10604) containing the third and the second polarizing element, and a predetermined image display is performed. The liquid crystal display device having the configuration shown in FIGS. 51 (C1) and 51 (C2) can perform full-color display by providing a color filter. The color filter is
It can be provided on either the first substrate 10601 side or the second substrate 10602 side. Of course, the liquid crystal display device having the configuration shown in FIGS. 51 (C1) and 51 (C2) can perform full-color display by field sequential drive without providing a color filter.

そして、図51(C2)に示すように、第1の電極10605、及び第2の電極1060
6の間に電圧が印加されていないときは黒色表示、つまりオフ状態とする。このとき、液
晶分子は縦に並んだ状態となる。その結果、バックライトからの光は基板を通過すること
ができず、黒色表示となる。
Then, as shown in FIG. 51 (C2), the first electrode 10605 and the second electrode 1060
When no voltage is applied during 6, the black display, that is, the off state is set. At this time, the liquid crystal molecules are arranged vertically. As a result, the light from the backlight cannot pass through the substrate, resulting in a black display.

MVAモードの他の例を上面図、及び断面図を図54に示す。図54(A)のように、第
2の電極10606a、10606b、10606cは、くの字型のように屈曲したパタ
ーンに形成されていてもよい。また、液晶層10600に近接して、絶縁層10901お
よび10902が形成されている。なお、絶縁層10901および10902は、配向膜
であってもよい。図54(B)で示すように第1の電極10605に近接して、突起物1
0607が第2の電極10606a、10606b、10606cと対応して形成されて
いてもよい。突起物10607を第2の電極10606a、10606b、10606c
と対応して形成することによって、第2の電極10606a、10606b、10606
cの開口部が、突起物のように機能し、液晶分子を効果的に配向させることができる。な
お、第1の電極10605と突起物10607が形成される順番は、図54(B)と逆で
あってもよい。
A top view and a cross-sectional view of another example of the MVA mode are shown in FIG. 54. As shown in FIG. 54 (A), the second electrodes 10606a, 10606b, and 10606c may be formed in a bent pattern like a dogleg. Further, the insulating layers 10901 and 10902 are formed in the vicinity of the liquid crystal layer 10600. The insulating layers 10901 and 10902 may be alignment films. As shown in FIG. 54 (B), the protrusion 1 is located close to the first electrode 10605.
0607 may be formed corresponding to the second electrode 10606a, 10606b, 10606c. The protrusion 10607 is attached to the second electrode 10606a, 10606b, 10606c.
By forming in correspondence with, the second electrode 10606a, 10606b, 10606
The opening of c functions like a protrusion and can effectively orient the liquid crystal molecules. The order in which the first electrode 10605 and the protrusion 10607 are formed may be reversed from that in FIG. 54 (B).

図52(A1)(A2)にはOCBモードの液晶表示装置の模式図を示す。OCBモード
は、液晶層内で液晶分子の配列が光学的に補償状態を形成しており、これはベンド配向と
呼ばれる。
FIGS. 52 (A1) and 52 (A2) show a schematic diagram of an OCB mode liquid crystal display device. In the OCB mode, the arrangement of liquid crystal molecules in the liquid crystal layer optically forms a compensating state, which is called bend orientation.

図51と同様に、第1の基板10601、及び第2の基板10602上には、それぞれ第
1の電極10605、第2の電極10606が設けられている。また、図示しないが、バ
ックライト等は第2の偏光子を含む層10604の外側に配置される。そして、バックラ
イトと反対側、つまり視認側の電極である第1の電極10605は、少なくとも透光性を
有するように形成する。そして、第1の基板10601側には、第1の偏光子を含む層1
0603が積層され、第2の基板10602側には、第2の偏光子を含む層10604が
配置されている。なお、第1の偏光子を含む層10603と、第2の偏光子を含む層10
604とは、クロスニコルになるように配置されている。
Similar to FIG. 51, a first electrode 10605 and a second electrode 10606 are provided on the first substrate 10601 and the second substrate 10602, respectively. Further, although not shown, the backlight or the like is arranged outside the layer 10604 containing the second polarizing element. The first electrode 10605, which is an electrode on the opposite side of the backlight, that is, on the visual recognition side, is formed so as to have at least translucency. Then, on the side of the first substrate 10601, the layer 1 containing the first polarizing element 1 is formed.
0603 is laminated, and a layer 10604 containing a second polarizing element is arranged on the second substrate 10602 side. The layer 10603 containing the first polarizing element and the layer 10 containing the second polarizing element.
604 is arranged so as to be a cross Nicol.

図52(A1)(A2)のような構成を有する液晶表示装置において、第1の電極106
05、及び第2の電極10606に一定のオン電圧が印加される(縦電界方式)と、図5
2(A1)に示すように黒色表示が行われる。このとき液晶分子は縦に並んだ状態となる
。すると、バックライトからの光は、基板を通過することができず、黒色表示となる。
In the liquid crystal display device having the configuration as shown in FIGS. 52 (A1) and 52 (A2), the first electrode 106
When a constant on-voltage is applied to 05 and the second electrode 10606 (longitudinal electric field method), FIG. 5
As shown in 2 (A1), black display is performed. At this time, the liquid crystal molecules are arranged vertically. Then, the light from the backlight cannot pass through the substrate and is displayed in black.

そして、図52(A2)に示すように、第1の電極10605、及び第2の電極1060
6の間に一定のオフ電圧が印加されるときは白色表示となる。このとき、液晶分子はベン
ド配向の状態となる。その結果、バックライトからの光は、クロスニコルになるように配
置された一対の偏光子を含む層(第1の偏光子を含む層10603、及び第2の偏光子を
含む層10604)を通過することができ、所定の映像表示が行われる。なお、図52(
A1)(A2)のような構成を有する液晶表示装置は、カラーフィルタを設けることによ
って、フルカラー表示を行うことができる。カラーフィルタは、第1の基板10601側
、又は第2の基板10602側のいずれかに設けることができる。もちろん、図52(A
1)(A2)のような構成を有する液晶表示装置は、カラーフィルタを設けなくても、フ
ィールドシーケンシャル駆動によってフルカラー表示を行うことができる。
Then, as shown in FIG. 52 (A2), the first electrode 10605 and the second electrode 1060
When a constant off voltage is applied during 6, the display is white. At this time, the liquid crystal molecules are in a bend-oriented state. As a result, the light from the backlight passes through a layer containing a pair of polarizing elements arranged so as to form a cross Nicol (layer 10603 containing the first polarizing element and layer 10604 containing the second polarizing element). And the predetermined video display is performed. In addition, FIG. 52 (
A liquid crystal display device having a configuration as described in A1) and (A2) can perform full-color display by providing a color filter. The color filter can be provided on either the first substrate 10601 side or the second substrate 10602 side. Of course, FIG. 52 (A)
1) The liquid crystal display device having the configuration as shown in (A2) can perform full-color display by field sequential drive without providing a color filter.

図52(A1)(A2)のようなOCBモードでは、液晶層内で液晶分子の配列が光学的
に補償できるため視野角依存が少なく、さらに、一対の積層された偏光子を含む層により
コントラスト比を高めることができる。
In the OCB mode as shown in FIGS. 52 (A1) and 52 (A2), the arrangement of the liquid crystal molecules can be optically compensated in the liquid crystal layer, so that the viewing angle is less dependent on the viewing angle. The ratio can be increased.

図52(B1)(B2)には、FLCモード及びAFLCモードの液晶の模式図を示す。 FIGS. 52 (B1) and 52 (B2) show schematic views of the liquid crystal display in the FLC mode and the AFLC mode.

図51と同様に、第1の基板10601、及び第2の基板10602上には、それぞれ第
1の電極10605、第2の電極10606が設けられている。そして、バックライトと
反対側、つまり視認側の電極である第1の電極10605は、少なくとも透光性を有する
ように形成する。そして第1の基板10601側には、第1の偏光子を含む層10603
が積層され、第2の基板10602側には、第2の偏光子を含む層10604が配置され
ている。なお、第1の偏光子を含む層10603と、第2の偏光子を含む層10604と
は、クロスニコルになるように配置されている。
Similar to FIG. 51, a first electrode 10605 and a second electrode 10606 are provided on the first substrate 10601 and the second substrate 10602, respectively. The first electrode 10605, which is an electrode on the opposite side of the backlight, that is, on the visual recognition side, is formed so as to have at least translucency. Then, on the side of the first substrate 10601, a layer 10603 containing the first polarizing element is formed.
Is laminated, and a layer 10604 containing a second polarizing element is arranged on the side of the second substrate 10602. The layer 10603 containing the first polarizing element and the layer 10604 containing the second polarizing element are arranged so as to form a cross Nicol.

図52(B1)(B2)のような構成を有する液晶表示装置において、第1の電極106
05及び第2の電極10606に電圧が印加(縦電界方式と呼ぶ)されると、図52(B
1)に示すように、白色表示となる。このときの液晶分子はラビング方向からずれた方向
で横に並んでいる状態となる。よって、バックライトからの光は、クロスニコルになるよ
うに配置された一対の偏光子を含む層(第1の偏光子を含む層10603、及び第2の偏
光子を含む層10604)を通過することができ、所定の映像表示が行われる。
In the liquid crystal display device having the configuration as shown in FIGS. 52 (B1) and 52 (B2), the first electrode 106
When a voltage is applied to 05 and the second electrode 10606 (referred to as a longitudinal electric field method), FIG. 52 (B)
As shown in 1), the display is white. At this time, the liquid crystal molecules are arranged side by side in a direction deviated from the rubbing direction. Thus, the light from the backlight passes through a layer containing a pair of polarizing elements arranged so as to form a cross Nicol (layer 10603 containing the first polarizing element and layer 10604 containing the second polarizing element). It is possible to display a predetermined image.

そして、図52(B2)に示すように、第1の電極10605、及び第2の電極1060
6の間に電圧が印加されていないときは、黒色表示が行われる。このときの液晶分子はラ
ビング方向に沿って横に並んだ状態となる。すると、バックライトからの光は、基板を通
過することができず黒色表示となる。
Then, as shown in FIG. 52 (B2), the first electrode 10605 and the second electrode 1060
When no voltage is applied during 6, black display is performed. At this time, the liquid crystal molecules are arranged side by side along the rubbing direction. Then, the light from the backlight cannot pass through the substrate and is displayed in black.

なお、図52(B1)(B2)のような構成を有する液晶表示装置は、カラーフィルタを
設けることによって、フルカラー表示を行うことができる。カラーフィルタは、第1の基
板10601側、又は第2の基板10602側のいずれかに設けることができる。もちろ
ん、図52(B1)(B2)のような構成を有する液晶表示装置は、カラーフィルタを設
けなくても、フィールドシーケンシャル駆動によってフルカラー表示を行うことができる
The liquid crystal display device having the configuration shown in FIGS. 52 (B1) and 52 (B2) can perform full-color display by providing a color filter. The color filter can be provided on either the first substrate 10601 side or the second substrate 10602 side. Of course, the liquid crystal display device having the configuration shown in FIGS. 52 (B1) and 52 (B2) can perform full-color display by field sequential drive without providing a color filter.

FLCモード及びAFLCモードに使用される液晶材料は、公知のものを使用すればよい
As the liquid crystal material used in the FLC mode and the AFLC mode, known ones may be used.

図53(A1)(A2)にはIPSモードの液晶表示装置の模式図を示す。IPSモード
は、液晶分子を基板に対して常に平面内で回転させるモードであり、電極は一方の基板側
のみに設けた横電界方式をとる。
FIGS. 53 (A1) and 53 (A2) show a schematic diagram of an IPS mode liquid crystal display device. The IPS mode is a mode in which the liquid crystal molecules are always rotated in a plane with respect to the substrate, and the electrodes adopt a transverse electric field method provided only on one substrate side.

IPSモードは一方の基板に設けられた対となる電極により液晶を制御することを特徴と
する。そのため、第2の基板10602上に対となる電極10801、10802が設け
られている。対となる電極10801、10802は、それぞれ遮光性を有していてもよ
い。そして、第1の基板10601側には、第1の偏光子を含む層10603が積層され
、第2の基板10602側には、第2の偏光子を含む層10604が配置されている。な
お、第1の偏光子を含む層10603と、第2の偏光子を含む層10604とは、クロス
ニコルになるように配置されていてもよい。
The IPS mode is characterized in that the liquid crystal is controlled by a pair of electrodes provided on one of the substrates. Therefore, paired electrodes 10801 and 10802 are provided on the second substrate 10602. The paired electrodes 10801 and 10802 may have light-shielding properties, respectively. A layer 10603 containing a first polarizing element is laminated on the first substrate 10601 side, and a layer 10604 containing a second polarizing element is arranged on the second substrate 10602 side. The layer 10603 containing the first polarizing element and the layer 10604 containing the second polarizing element may be arranged so as to form a cross Nicol.

図53(A1)(A2)のような構成を有する液晶表示装置において、対となる電極10
801、10802に電圧が印加されると、図53(A1)に示すように液晶分子はラビ
ング方向からずれた電気力線に沿って配向し白色表示が行われるオン状態となる。すると
、バックライトからの光は、クロスニコルになるように配置された一対の偏光子を含む層
(第1の偏光子を含む層10603、及び第2の偏光子を含む層10604)を通過する
ことができ、所定の映像表示が行われる。
In a liquid crystal display device having a configuration as shown in FIGS. 53 (A1) and 53 (A2), a pair of electrodes 10
When a voltage is applied to 801 and 10802, as shown in FIG. 53 (A1), the liquid crystal molecules are oriented along the electric lines of force deviated from the rubbing direction, and a white display is performed. Then, the light from the backlight passes through a layer containing a pair of substituents arranged so as to form a cross Nicol (a layer 10603 containing the first polarizing element and a layer 10604 containing the second polarizing element). It is possible to display a predetermined image.

なお、図53(A1)(A2)のような構成を有する液晶表示装置は、カラーフィルタを
設けることにより、フルカラー表示を行うことができる。カラーフィルタは、第1の基板
10601側、又は第2の基板10602側のいずれかに設けることができる。もちろん
、図53(A1)(A2)のような構成を有する液晶表示装置は、カラーフィルタを設け
なくても、フィールドシーケンシャル駆動によってフルカラー表示を行うことができる。
The liquid crystal display device having the configuration shown in FIGS. 53 (A1) and 53 (A2) can perform full-color display by providing a color filter. The color filter can be provided on either the first substrate 10601 side or the second substrate 10602 side. Of course, the liquid crystal display device having the configuration shown in FIGS. 53 (A1) and 53 (A2) can perform full-color display by field sequential drive without providing a color filter.

そして、図53(A2)に示すように、一対の電極10604、10602の間に電圧が
印加されていないとき黒表示、つまりオフ状態とする。このとき、液晶分子は、ラビング
方向に沿って横に並んだ状態となる。その結果、バックライトからの光は基板を通過する
ことができず、黒色表示となる。
Then, as shown in FIG. 53 (A2), when no voltage is applied between the pair of electrodes 10604 and 10602, the display is black, that is, the state is turned off. At this time, the liquid crystal molecules are arranged side by side along the rubbing direction. As a result, the light from the backlight cannot pass through the substrate, resulting in a black display.

IPSモードで用いることできる対となる電極10801、10802の例を図55に示
す。図55(A)乃至(D)においては、電極10801は電極10801a、電極10
801b、電極10801cおよび電極10801dと対応する。また、電極10802
は電極10802a、電極10802b、電極10802cおよび電極10802dと対
応する。図55(A)では電極10801a、及び電極10802aはうねりを有する波
状形状であり、図55(B)では電極10801b、及び電極10802bは同心円状の
開口部を有する形状であり、図55(C)では電極10801c、及び電極10802c
は櫛場状であり一部重なっている形状であり、図55(D)では電極10801d、及び
電極10802dは櫛場状であり電極同士がかみ合うような形状である。
FIG. 55 shows an example of a pair of electrodes 10801 and 10802 that can be used in the IPS mode. In FIGS. 55 (A) to 55 (D), the electrode 10801 is the electrode 10801a and the electrode 10.
Corresponds to 801b, electrode 10801c and electrode 10801d. Also, the electrode 10802
Corresponds to the electrode 10802a, the electrode 10802b, the electrode 10802c and the electrode 10802d. In FIG. 55 (A), the electrode 10801a and the electrode 10802a have a wavy shape having undulations, and in FIG. 55 (B), the electrode 10801b and the electrode 10802b have a shape having concentric openings, and FIG. 55 (C) shows. Then, the electrode 10801c and the electrode 10802c
Is a comb field shape and has a partially overlapping shape. In FIG. 55 (D), the electrodes 10801d and 10802d have a comb field shape and are shaped so that the electrodes mesh with each other.

IPSモードのほかにFFSモードも用いることができる。IPSモードは、対となる電
極が同一の絶縁膜上に形成されているのに対し、FFSモードは、図53(B1)、(B
2)に示すように、対となる電極10803、10804が、それぞれ異なる層の絶縁膜
上に形成されていてもよい。
In addition to the IPS mode, the FFS mode can also be used. In the IPS mode, the paired electrodes are formed on the same insulating film, whereas in the FFS mode, FIGS. 53 (B1) and (B).
As shown in 2), the paired electrodes 10803 and 10804 may be formed on different layers of insulating films.

図53(B1)、(B2)に示すような構成を有する液晶表示装置において、対となる電
極10803、10804に電圧が印加されると、図53(B1)に示すように白色表示
が行われるオン状態となる。すると、バックライトからの光は、クロスニコルになるよう
に配置された一対の偏光子を含む層(第1の偏光子を含む層10603、及び第2の偏光
子を含む層10604)を通過することができ、所定の映像表示が行われる。
In a liquid crystal display device having a configuration as shown in FIGS. 53 (B1) and 53 (B2), when a voltage is applied to the paired electrodes 10803 and 10804, white display is performed as shown in FIG. 53 (B1). Turns on. Then, the light from the backlight passes through a layer containing a pair of substituents arranged so as to form a cross Nicol (a layer 10603 containing the first polarizing element and a layer 10604 containing the second polarizing element). It is possible to display a predetermined image.

なお、図53(B1)、(B2)のような構成を有する液晶表示装置は、カラーフィルタ
を設けることにより、フルカラー表示を行うことができる。カラーフィルタは、第1の基
板10601側、又は第2の基板10602側のいずれかに設けることができる。もちろ
ん、図53(B1)、(B2)のような構成を有する液晶表示装置は、カラーフィルタを
設けなくても、フィールドシーケンシャル駆動によってフルカラー表示を行うことができ
る。
The liquid crystal display device having the configurations shown in FIGS. 53 (B1) and 53 (B2) can perform full-color display by providing a color filter. The color filter can be provided on either the first substrate 10601 side or the second substrate 10602 side. Of course, the liquid crystal display device having the configurations shown in FIGS. 53 (B1) and 53 (B2) can perform full-color display by field sequential drive without providing a color filter.

そして、図53(B2)に示すように、対となる電極10803、10804の間に電圧
が印加されていないとき黒表示、つまりオフ状態とする。このとき、液晶分子は、横に並
び、且つ平面内で回転した状態となる。その結果、バックライトからの光は基板を通過す
ることができず、黒色表示となる。
Then, as shown in FIG. 53 (B2), when no voltage is applied between the paired electrodes 10803 and 10804, a black display, that is, an off state is set. At this time, the liquid crystal molecules are arranged side by side and are in a state of being rotated in a plane. As a result, the light from the backlight cannot pass through the substrate, resulting in a black display.

FFSモードで用いることできる対となる電極10803、10804の例を図56に示
す。図56(A)乃至(D)においては、電極10803は電極10803a、電極10
803b、電極10803cおよび電極10803dと対応する。また、電極10804
は電極10804a、電極10804b、電極10804cおよび電極10804dと対
応する。図56(A)では電極10803aは屈曲したくの字形状であり、電極1080
4aは画素領域内ではパターン形成されていなくてもよい。図56(B)では電極108
03bは同心円状の形状であり、電極10804bは画素領域内ではパターン形成されて
いなくてもよい。図56(C)では電極10803cは櫛場状で電極同士がかみ合うよう
な形状であり、電極10804cは画素領域内ではパターン形成されていなくてもよい。
図56(D)では電極10803dは櫛場状の形状であり、電極10804dは画素領域
内ではパターン形成されていなくてもよい。
FIG. 56 shows an example of a pair of electrodes 10803 and 10804 that can be used in the FFS mode. In FIGS. 56A to 56D, the electrode 10803 has an electrode 10803a and an electrode 10
Corresponds to 803b, electrode 10803c and electrode 10803d. Also, the electrode 10804
Corresponds to the electrode 10804a, the electrode 10804b, the electrode 10804c and the electrode 10804d. In FIG. 56 (A), the electrode 10803a has a bent dogleg shape, and the electrode 1080.
4a does not have to be patterned in the pixel region. In FIG. 56B, the electrode 108
03b has a concentric shape, and the electrode 10804b does not have to be patterned in the pixel region. In FIG. 56 (C), the electrode 10803c has a comb-like shape so that the electrodes mesh with each other, and the electrode 10804c does not have to be patterned in the pixel region.
In FIG. 56D, the electrode 10803d has a comb-like shape, and the electrode 10804d does not have to be patterned in the pixel region.

なお、電極10803(10803a、10803b、10803c、10803d)お
よび電極10804(10804a、10804b、10804c、10804d)は、
透光性を有していてもよい。透光性を有することで、開口率の大きい透過型の表示装置を
得ることができる。
The electrodes 10803 (10803a, 10803b, 10803c, 10803d) and the electrodes 10804 (10804a, 10804b, 10804c, 10804d) are
It may have translucency. By having translucency, it is possible to obtain a transmissive display device having a large aperture ratio.

なお、電極10803(10803a、10803b、10803c、10803d)お
よび電極10804(10804a、10804b、10804c、10804d)は、
遮光性または反射性を有していてもよい。遮光性または反射性を有することで、バックラ
イトが不要で消費電力の小さい反射型の表示装置を得ることができる。
The electrodes 10803 (10803a, 10803b, 10803c, 10803d) and the electrodes 10804 (10804a, 10804b, 10804c, 10804d) are
It may have light-shielding property or reflective property. By having a light-shielding property or a reflective property, it is possible to obtain a reflective display device that does not require a backlight and consumes less power.

なお、電極10803(10803a、10803b、10803c、10803d)お
よび電極10804(10804a、10804b、10804c、10804d)は、
透光性を有する領域と、遮光性または反射性を有する領域と、双方の領域を有していても
よい。双方の領域を有することで、屋内のような暗い環境下では表示品質の高い透過型の
表示を行い、屋外のような明るい環境下ではバックライトが不要で消費電力の小さい反射
型の表示を行う、半透過型の表示装置を得ることができる。
The electrodes 10803 (10803a, 10803b, 10803c, 10803d) and the electrodes 10804 (10804a, 10804b, 10804c, 10804d) are
It may have both a light-transmitting region and a light-shielding or reflective region. By having both areas, a transmissive display with high display quality is performed in a dark environment such as indoors, and a reflective display with low power consumption is performed in a bright environment such as outdoors without a backlight. , A translucent display device can be obtained.

IPSモード及びFFSモードに使用される液晶材料は、公知のものを使用すればよい。 As the liquid crystal material used in the IPS mode and the FFS mode, known ones may be used.

なお、本実施の形態の液晶表示装置に適応しうる液晶モードとして、上述した液晶モード
の他に、ASM(Axially Symmetric aligned Micro-
cell)モード、PDLC(Polymer Dispersed Liquid C
rystal)モードなどがある。
As a liquid crystal mode applicable to the liquid crystal display device of the present embodiment, in addition to the liquid crystal mode described above, ASM (Axially Symmetrically named Micro-
cell) mode, PDLC (Polymer Dispersed Liquid C)
There is a rystal) mode and so on.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態9)
本実施形態においては、表示装置の表示パネル構成、および周辺構成について説明する。
特に、液晶表示装置の表示パネル(液晶パネルとも記す)構成、および周辺構成について
説明する。
(Embodiment 9)
In this embodiment, a display panel configuration and a peripheral configuration of the display device will be described.
In particular, a display panel (also referred to as a liquid crystal panel) configuration and a peripheral configuration of the liquid crystal display device will be described.

まず、液晶パネルの簡単な構成について、図57(A)を参照して説明する。また、図5
7(A)は、液晶パネルの上面図である。
First, a simple configuration of the liquid crystal panel will be described with reference to FIG. 57 (A). In addition, FIG.
7 (A) is a top view of the liquid crystal panel.

図57(A)に示す液晶パネルは、基板20100上に、画素部20101、走査線側入
力端子20103及び信号線側入力端子20104が形成されている。走査線側入力端子
20103から走査線が行方向に延在して基板20100上に形成され、信号線入力端子
20104から信号線が列方向に延在して基板20100上に形成されている。また、画
素部20101には、画素20102が走査線と、信号線とが交差するところで、マトリ
クス上に配置されている。また、画素20102には、スイッチング素子と画素電極層と
が配置されている。
In the liquid crystal panel shown in FIG. 57A, a pixel portion 20101, a scanning line side input terminal 20103, and a signal line side input terminal 20104 are formed on the substrate 20100. A scanning line extends in the row direction from the scanning line side input terminal 20103 and is formed on the substrate 20100, and a signal line extends in the column direction from the signal line input terminal 20104 and is formed on the substrate 20100. Further, in the pixel unit 20101, the pixel 20102 is arranged on the matrix at the intersection of the scanning line and the signal line. Further, a switching element and a pixel electrode layer are arranged in the pixel 20102.

図57(A)の液晶パネルに示すように、走査線側入力端子20103は、基板2010
0の行方向の両側に形成されている。信号線入力端子20103は、基板20100の列
方向のうち一方に形成されている。また、一方の走査線側入力端子20103から延在す
る走査線と、他方の走査線側入力端子20103から延在する走査線とは、交互に形成さ
れている。
As shown in the liquid crystal panel of FIG. 57 (A), the scanning line side input terminal 20103 is the substrate 2010.
It is formed on both sides in the row direction of 0. The signal line input terminal 20103 is formed in one of the row directions of the substrate 20100. Further, the scanning lines extending from one scanning line side input terminal 20103 and the scanning lines extending from the other scanning line side input terminal 20103 are alternately formed.

また、画素部20101の画素20102それぞれでは、スイッチング素子の第1端子が
信号線に接続され、第2端子が画素電極層に接続されることによって、個々の画素201
02を外部から入力する信号によって独立して制御することができる。なお、スイッチン
グ素子のオン・オフは走査線に供給されている信号によって制御されている。
Further, in each of the pixels 20102 of the pixel unit 20101, the first terminal of the switching element is connected to the signal line, and the second terminal is connected to the pixel electrode layer, whereby the individual pixels 201 are connected.
02 can be controlled independently by a signal input from the outside. The on / off of the switching element is controlled by the signal supplied to the scanning line.

なお、走査線側入力端子20103を基板20100の行方向のうち両方に配置すること
で、画素20102を高密度に配置することができる。また、信号線側入力端子2010
3を基板20100の列方向のうち一方に配置することで、液晶パネルの狭額縁化、又は
画素20101の領域の拡大を図ることができる。
By arranging the scan line side input terminals 20103 in both of the row directions of the substrate 20100, the pixels 20102 can be arranged at a high density. In addition, the signal line side input terminal 2010
By arranging the 3 in one of the row directions of the substrate 20100, it is possible to narrow the frame of the liquid crystal panel or expand the area of the pixel 20101.

なお、基板20100には、すでに述べたように、単結晶基板、SOI基板、ガラス基板
、石英基板、プラスチック基板、紙基板、セロファン基板、石材基板、ステンレス・スチ
ル基板、ステンレス・スチル・ホイルを有する基板などを用いることができる。
As described above, the substrate 20100 includes a single crystal substrate, an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a paper substrate, a cellophane substrate, a stone substrate, a stainless steel substrate, and a stainless steel still foil. A substrate or the like can be used.

なお、スイッチング素子には、すでに述べたように、トランジスタ、ダイオード(例えば
、PNダイオード、PINダイオード、ショットキーダイオード、ダイオード接続のトラ
ンジスタなど)、サイリスタ、それらを組み合わせた論理回路などを用いることができる
As already described, a transistor, a diode (for example, a PN diode, a PIN diode, a shotkey diode, a diode-connected transistor, etc.), a thyristor, a logic circuit combining them, or the like can be used as the switching element. ..

なお、スイッチング素子として、TFTを用いた場合、TFTのゲートが走査線に接続さ
れ、第1端子が信号線に接続され、第2端子が画素電極層に接続されることにより、個々
の画素20102を外部から入力する信号によって独立して制御することができる。
When a TFT is used as the switching element, the gate of the TFT is connected to the scanning line, the first terminal is connected to the signal line, and the second terminal is connected to the pixel electrode layer, so that each pixel 20102 is connected. Can be controlled independently by a signal input from the outside.

なお、走査線側入力端子20103を基板20100の行方向のうち一方に配置してもよ
い。走査線側入力端子20103を基板20100の行方向のうち一方に配置することで
、液晶パネルの狭額縁化、画素20101の領域の拡大を図ることができる。
The scanning line side input terminal 20103 may be arranged in one of the row directions of the substrate 20100. By arranging the scanning line side input terminal 20103 in one of the row directions of the substrate 20100, it is possible to narrow the frame of the liquid crystal panel and expand the area of the pixel 20101.

なお、一方の走査線側入力端子20103から延在する走査線と、他方の走査線側入力端
子20103から延在する走査線とは、共通にしてもよい。
The scanning line extending from one scanning line side input terminal 20103 and the scanning line extending from the other scanning line side input terminal 20103 may be common.

なお、信号線側入力端子20103を基板20100の列方向のうち両方に配置してもよ
い。信号線側入力端子20103を基板20100の列方向のうち両方に配置することで
、画素20102を高密度に配置できる。
The signal line side input terminals 20103 may be arranged in both of the row directions of the substrate 20100. By arranging the signal line side input terminals 20103 in both of the column directions of the substrate 20100, the pixels 20102 can be arranged at a high density.

なお、画素20102には、さらに容量素子を形成してもよい。画素20102に容量素
子を設ける場合、基板20100上に、容量線を形成してもよい。基板20100上に容
量線を形成する場合、容量素子の第1電極が容量線に接続され、第2端子が画素電極層に
接続されるようにする。また、基板20100上に容量線を形成しない場合、容量素子の
第1電極がこの容量素子が配置されている画素20102とは別の走査線に接続され、第
2端子が画素電極層に接続されているようにする。
A capacitive element may be further formed in the pixel 20102. When the capacitive element is provided in the pixel 20102, the capacitive line may be formed on the substrate 20100. When forming a capacitance line on the substrate 20100, the first electrode of the capacitance element is connected to the capacitance line, and the second terminal is connected to the pixel electrode layer. When the capacitance line is not formed on the substrate 20100, the first electrode of the capacitance element is connected to a scanning line different from the pixel 20102 in which the capacitance element is arranged, and the second terminal is connected to the pixel electrode layer. To do.

ここで、図57(A)に示した液晶パネルは、走査線及び信号線に供給する信号を外付け
の駆動回路によって制御する構成を示しているが、図58(A)に示すように、COG(
Chip on Glass)方式によりドライバIC20201を基板20100上に
実装してもよい。また、別の構成として、図58(B)に示すように、TAB(Tape
Automated Bonding)方式によりドライバIC20201をFPC(
Flexible Printed Circuit)20200上に実装してもよい。
また、図58において、ドライバIC20201は、FPC20200と接続されている
Here, the liquid crystal panel shown in FIG. 57 (A) shows a configuration in which the signals supplied to the scanning line and the signal line are controlled by an external drive circuit, but as shown in FIG. 58 (A), COG (
The driver IC 20101 may be mounted on the substrate 20100 by the Chip on Glass) method. Further, as another configuration, as shown in FIG. 58 (B), TAB (Tape)
The driver IC20201 is FPC (FPC) by the Automated Bonding method.
It may be implemented on a Flexible Printed Circuit) 20200.
Further, in FIG. 58, the driver IC20201 is connected to the FPC20200.

なお、ドライバIC20201は単結晶半導体基板上に形成されたものでもよいし、ガラ
ス基板上にTFTで回路を形成したものでもよい。
The driver IC20201 may be formed on a single crystal semiconductor substrate or may have a circuit formed by a TFT on a glass substrate.

なお、図57(A)に示した液晶パネルは、図57(B)に示すように、走査線駆動回路
20105を基板20100上に形成してもよい。また、図57(C)に示すように、走
査線駆動回路20105及び信号線駆動回路20106を基板20100上に形成しても
よい。
In the liquid crystal panel shown in FIG. 57 (A), the scanning line drive circuit 20105 may be formed on the substrate 20100 as shown in FIG. 57 (B). Further, as shown in FIG. 57 (C), the scanning line driving circuit 20105 and the signal line driving circuit 20106 may be formed on the substrate 20100.

なお、走査線駆動回路20105及び走査線駆動回路20106は、多数のNチャネル型
及び多数のPチャネル型のトランジスタから構成されている。ただし、多数のNチャネル
型のトランジスタのみで構成されていてもよいし、多数のPチャネル型のトランジスタの
みで構成されていてもよい。
The scanning line driving circuit 20105 and the scanning line driving circuit 20106 are composed of a large number of N-channel type transistors and a large number of P-channel type transistors. However, it may be composed of only a large number of N-channel type transistors, or may be composed of only a large number of P-channel type transistors.

続いて、画素20102の詳細について、図59及び図60の回路図を参照して説明する
Subsequently, the details of the pixel 20102 will be described with reference to the circuit diagrams of FIGS. 59 and 60.

図59(A)の画素20102は、トランジスタ20301、液晶素子20302及び容
量素子20303を有している。トランジスタ20301のゲートが配線20305に接
続され、第1端子が配線20304に接続されている。液晶素子20302の第1電極が
対向電極20307に接続され、第2電極がトランジスタ20301の第2端子に接続さ
れている。容量素子20303の第1電極が配線20306に接続され、第2電極がトラ
ンジスタ20301の第2端子に接続されている。
The pixel 20102 in FIG. 59 (A) has a transistor 20131, a liquid crystal element 20302, and a capacitive element 20303. The gate of the transistor 20301 is connected to the wiring 20305, and the first terminal is connected to the wiring 20304. The first electrode of the liquid crystal element 20302 is connected to the counter electrode 20307, and the second electrode is connected to the second terminal of the transistor 20131. The first electrode of the capacitive element 20303 is connected to the wiring 20306, and the second electrode is connected to the second terminal of the transistor 20301.

なお、配線20304は信号線であり、配線20305は走査線であり、配線20306
は容量線である。また、トランジスタ20301は、スイッチングトランジスタであり、
Pチャネル型トランジスタでもNチャネル型トランジスタでもよい。また、液晶素子20
307は、動作モードとしてTN(Twisted Nematic)モード、IPS(
In-Plane-Switching)モード、FFS(Fringe Field
Switching)モード、MVA(Multi-domain Vertical
Alignment)モード、PVA(Patterned Vertical Ali
gnment)、ASM(Axially Symmetric aligned Mi
cro-cell)モード、OCB(Optical Compensated Bir
efringence)モード、FLC(Ferroelectric Liquid
Crystal)モード、AFLC(AntiFerroelectric Liqui
d Crystal)などを用いることができる。
The wiring 20304 is a signal line, the wiring 20305 is a scanning line, and the wiring 20306.
Is a capacitance line. Further, the transistor 20131 is a switching transistor and is a switching transistor.
It may be a P-channel type transistor or an N-channel type transistor. Further, the liquid crystal element 20
307 is an operation mode such as TN (Twisted Nematic) mode and IPS (IPS).
In-Plane-Switching mode, FFS (Fringe Field)
Switching) mode, MVA (Multi-domain Vertical)
Alginment) mode, PVA (Patterned Vertical Ali)
gnment), ASM (Axially Symmetrically named Mi)
Cro-cell) mode, OCB (Optical Contracted Bir)
Efringence) mode, FLC (Ferroelectric Liquid)
Crystal) mode, AFLC (AntiFerolectric Liquii)
d Crystal) and the like can be used.

配線20304及び配線20305には、それぞれビデオ信号、走査信号が入力されてい
る。ビデオ信号はアナログの電圧信号であり、走査信号はHレベル又はLレベルのデジタ
ルの電圧信号である。ただし、ビデオ信号は電流信号でもよいし、デジタル信号でもよい
。また、走査信号のHレベル及びLレベルは、トランジスタ20301のオン・オフを制
御できる電位であればよい。
A video signal and a scanning signal are input to the wiring 20304 and the wiring 20305, respectively. The video signal is an analog voltage signal and the scanning signal is an H-level or L-level digital voltage signal. However, the video signal may be a current signal or a digital signal. Further, the H level and the L level of the scanning signal may be any potential as long as they can control the on / off of the transistor 20131.

容量線20306には、一定の電源電圧が供給されている。ただし、パルス状の信号が供
給されていてもよい。
A constant power supply voltage is supplied to the capacitance line 20306. However, a pulsed signal may be supplied.

図59(A)の画素20102の動作について説明する。まず、配線20305がHレベ
ルになると、トランジスタ20301がオンし、ビデオ信号が配線20304からオンし
たトランジスタ20301を介して液晶素子20302の第2電極及び容量素子2030
3の第2電極に供給される。そして、容量素子20303は配線203076の電位とビ
デオ信号の電位との電位差を保持する。
The operation of the pixel 20102 in FIG. 59 (A) will be described. First, when the wiring 20305 reaches the H level, the transistor 20301 is turned on, and the video signal is turned on from the wiring 20304 via the transistor 20301, and the second electrode and the capacitive element 2030 of the liquid crystal element 20302 are turned on.
It is supplied to the second electrode of 3. Then, the capacitive element 20303 holds the potential difference between the potential of the wiring 203076 and the potential of the video signal.

次に、配線20305がLレベルになると、トランジスタ20301がオフし、配線20
304と、液晶素子20302の第2電極及び容量素子20303の第2電極とは、電気
的に遮断される。しかし、容量素子20303が配線203076の電位とビデオ信号の
電位との電位差を保持しているため、容量素子20302の第2電極の電位はビデオ信号
と同様な電位を維持することができる。
Next, when the wiring 20305 reaches the L level, the transistor 20301 is turned off and the wiring 20 is turned off.
The 304 and the second electrode of the liquid crystal element 20302 and the second electrode of the capacitive element 20303 are electrically cut off. However, since the capacitive element 20303 holds the potential difference between the potential of the wiring 203076 and the potential of the video signal, the potential of the second electrode of the capacitive element 20302 can maintain the same potential as the video signal.

こうして、図59(A)の画素20102は、液晶素子20302の第2電極の電位をビ
デオ信号と同電位に維持でき、液晶素子20302をビデオ信号に応じた透過率に維持で
きる。
In this way, the pixel 20102 in FIG. 59A can maintain the potential of the second electrode of the liquid crystal element 20302 at the same potential as the video signal, and can maintain the liquid crystal element 20302 at the transmittance corresponding to the video signal.

なお、図示はしないが、液晶素子20302がビデオ信号を保持できるたけの容量成分を
有していれば、容量素子20303は必ずしも必要ではない。
Although not shown, the capacitive element 20303 is not always necessary as long as the liquid crystal element 20302 has a capacitive component capable of holding a video signal.

なお、図59(B)のように、液晶素子20302の第1電極は、配線20306と接続
されていてもよい。例えば、液晶素子20302の液晶モードがFFSモードのときなど
に、液晶素子20302は図59(B)の構成を用いる。
As shown in FIG. 59B, the first electrode of the liquid crystal element 20302 may be connected to the wiring 20306. For example, when the liquid crystal mode of the liquid crystal element 20132 is the FFS mode, the liquid crystal element 20302 uses the configuration shown in FIG. 59 (B).

なお、図60のように、容量素子20303の第1電極は前行の配線20305aに接続
されていてもよい。なお、配線20305aをn行目(nは正の整数)の走査線としたと
き、配線20305bはn+1行目の走査線である。同様に、トランジスタ20301a
、画素20102a、容量素子20303aをn行目の素子としたとき、トランジスタ2
0301b、画素20102b、容量素子20303bはn+1行目の素子である。この
ように、容量素子20303bの第1電極が前列の配線20305aに接続されることで
、配線を少なくすることができる。よって、図60の画素20102aおよび20102
bは、開口率を大きくすることができる。
As shown in FIG. 60, the first electrode of the capacitive element 20303 may be connected to the wiring 20305a in the previous row. When the wiring 20305a is the scanning line of the nth line (n is a positive integer), the wiring 20305b is the scanning line of the n + 1th line. Similarly, the transistor 20131a
, When the pixel 20102a and the capacitive element 20303a are the elements on the nth row, the transistor 2
0301b, pixel 20102b, and capacitive element 20303b are elements on the n + 1th line. In this way, by connecting the first electrode of the capacitive element 20303b to the wiring 20305a in the front row, the wiring can be reduced. Therefore, the pixels 20102a and 20102 in FIG. 60
b can increase the aperture ratio.

次に、図57及び図58を参照して説明した液晶パネルの構成よりも、詳細な液晶パネル
の構成について、図61を参照して説明する。具体的には、TFT基板と、対向基板と、
対向基板とTFT基板との間に挟持された液晶層とを有する液晶パネルの構成について説
明する。また、図61(A)は、液晶パネルの上面図である。図61(B)は、図61(
A)の線C-Dにおける断面図である。なお、図61(B)は、基板20100上に、半
導体膜として結晶性半導体膜(ポリシリコン膜)を用いた場合のトップゲート型のトラン
ジスタを形成した場合の断面図である。
Next, a more detailed configuration of the liquid crystal panel than the configuration of the liquid crystal panel described with reference to FIGS. 57 and 58 will be described with reference to FIG. 61. Specifically, the TFT substrate, the facing substrate, and
A configuration of a liquid crystal panel having a liquid crystal layer sandwiched between the facing substrate and the TFT substrate will be described. Further, FIG. 61A is a top view of the liquid crystal panel. FIG. 61 (B) is shown in FIG. 61 (B).
It is sectional drawing in line CD of A). Note that FIG. 61B is a cross-sectional view when a top gate type transistor is formed on the substrate 20100 when a crystalline semiconductor film (polysilicon film) is used as the semiconductor film.

図61(A)に示す液晶パネルは、基板20100上に、画素部20101、走査線駆動
回路20105a、走査線駆動回路20105b及び信号線駆動回路20106が形成さ
れている。画素部20101、走査線駆動回路20105a、走査線駆動回路20105
b及び信号線駆動回路20106は、シール材20516によって、基板20100と対
向基板20515との間に封止されている。また、TAB方式によって、FPC2051
8及びICチップ20530が基板20100上に配置されている。
In the liquid crystal panel shown in FIG. 61A, a pixel portion 20101, a scanning line driving circuit 20105a, a scanning line driving circuit 20105b, and a signal line driving circuit 20106 are formed on a substrate 20100. Pixel unit 20101, scanning line drive circuit 20105a, scanning line drive circuit 20105
b and the signal line drive circuit 20106 are sealed between the substrate 20100 and the facing substrate 20515 by the sealing material 20516. Also, by the TAB method, FPC2051
8 and the IC chip 20530 are arranged on the substrate 20100.

図61(A)の線C-Dにおける断面構造について、図61(B)を参照して説明する。
基板20100上に、画素部20101と、その周辺駆動回路部(走査線回路20105
a及び走査線回路20105b及び信号線駆動回路20106)が形成されているが、こ
こでは、駆動回路領域20525(走査線駆動回路20105a及び走査線駆動回路20
105b)と、画素領域20526(画素部20101)とが示されている。
The cross-sectional structure in line CD of FIG. 61 (A) will be described with reference to FIG. 61 (B).
On the substrate 20100, the pixel unit 20101 and its peripheral drive circuit unit (scanning line circuit 20105).
a and the scanning line circuit 20105b and the signal line driving circuit 20106) are formed, but here, the driving circuit region 20525 (scanning line driving circuit 20105a and the scanning line driving circuit 20) are formed.
105b) and the pixel area 20526 (pixel unit 20101) are shown.

まず、基板20100上に、下地膜として、絶縁膜20501が成膜されている。絶縁膜
20501としては、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜(Si
OxNy)等の絶縁膜の単層、或いはこれらの膜の少なくとも2つの膜を有する積層構造
を用いてもよい。
First, an insulating film 20501 is formed on the substrate 20100 as a base film. The insulating film 20501 is a silicon oxide film, a silicon nitride film, or a silicon oxide film (Si).
A single layer of an insulating film such as OxNy) or a laminated structure having at least two films of these films may be used.

なお、半導体と接する部分では、酸化シリコン膜を用いる方がよい。その結果、下地膜に
おける電子のトラップやトランジスタ特性のヒステリシスを抑えることが出来る。また、
下地膜として、窒素を多く含む膜を少なくとも1つ配置することが望ましい。それにより
、ガラスからの不純物を低減することが出来る。
It is better to use a silicon oxide film in the portion in contact with the semiconductor. As a result, it is possible to suppress electron traps in the base film and hysteresis of transistor characteristics. again,
It is desirable to arrange at least one film containing a large amount of nitrogen as the base film. Thereby, impurities from the glass can be reduced.

次に、絶縁膜20501上に、フォトリソグラフィ法、インクジェット法又は印刷法など
により、半導体膜20502が形成されている。
Next, the semiconductor film 20502 is formed on the insulating film 20501 by a photolithography method, an inkjet method, a printing method, or the like.

次に、絶縁膜20501上及び半導体膜20502上に、ゲート絶縁膜として、絶縁膜2
0503が形成されている。
Next, the insulating film 2 is used as a gate insulating film on the insulating film 20501 and the semiconductor film 20502.
0503 is formed.

なお、絶縁膜20503としては、熱酸化膜、酸化シリコン膜、窒化シリコン膜または酸
化窒化シリコン膜などの単層または積層構造を用いることができる。半導体膜20503
と接する絶縁膜20503は酸化珪素膜が好ましい。それは、酸化珪素膜にすると半導体
膜20503との界面におけるトラップ準位が少なくなるからである。また、ゲート電極
をMoで形成するときは、ゲート電極と接するゲート絶縁膜は窒化シリコン膜が好ましい
。それは、窒化シリコン膜はMoを酸化させないからである。ここでは絶縁膜20503
として、プラズマCVD法により厚さ115nmの酸化窒化シリコン膜(組成比Si=3
2%、O=59%、N=7%、H=2%)を形成する。
As the insulating film 20503, a single-layer or laminated structure such as a thermal oxide film, a silicon oxide film, a silicon nitride film, or a silicon oxide film can be used. Semiconductor film 20503
The insulating film 20503 in contact with the insulating film 20503 is preferably a silicon oxide film. This is because the silicon oxide film reduces the trap level at the interface with the semiconductor film 20503. When the gate electrode is formed of Mo, a silicon nitride film is preferable as the gate insulating film in contact with the gate electrode. This is because the silicon nitride film does not oxidize Mo. Here, the insulating film 20503
As a result, a silicon oxide film having a thickness of 115 nm by the plasma CVD method (composition ratio Si = 3).
2%, O = 59%, N = 7%, H = 2%).

次に、絶縁膜20503上に、ゲート電極として、フォトリソグラフィ法、インクジェッ
ト法又は印刷法などにより、導電膜20504が形成されている。
Next, a conductive film 20504 is formed on the insulating film 20503 as a gate electrode by a photolithography method, an inkjet method, a printing method, or the like.

なお、導電膜20504としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、A
g、Au、Pt、Nb、Si、Zn、Fe、Ba、Geなどや、これら元素の合金等があ
る。もしくは、これら元素またはこれら元素の合金の積層により構成してもよい。ここで
はMoによりゲート電極を形成する。Moは、エッチングしやすく、熱に強いので好適で
ある。
The conductive film 20504 includes Ti, Mo, Ta, Cr, W, Al, Nd, Cu, and A.
There are g, Au, Pt, Nb, Si, Zn, Fe, Ba, Ge and the like, alloys of these elements and the like. Alternatively, it may be composed of a laminate of these elements or alloys of these elements. Here, the gate electrode is formed by Mo. Mo is suitable because it is easy to etch and is resistant to heat.

なお、半導体膜20502には、導電膜20504又はレジストをマスクとして半導体膜
20502に不純物元素がドーピングされており、チャネル形成領域と、ソース領域及び
ドレイン領域となる不純物領域とが形成されている。
In the semiconductor film 20502, an impurity element is doped in the semiconductor film 20502 with the conductive film 20504 or a resist as a mask, and a channel forming region and an impurity region serving as a source region and a drain region are formed.

なお、不純物領域は、不純物濃度を制御して高濃度領域と低濃度領域とを形成されていて
もよい。
The impurity region may be formed into a high concentration region and a low concentration region by controlling the impurity concentration.

なお、トランジスタ20521の導電膜20504は、デュアルゲート構造としている。
トランジスタ20531は、デュアルゲート構造にすることで、トランジスタ20531
のオフ電流を小さくすることができる。なお、デュアルゲート構造とは、2つのゲート電
極を有している構造である。ただし、トランジスタのチャネル領域上に、複数のゲート電
極を有していてもよい。
The conductive film 20504 of the transistor 20521 has a dual gate structure.
Transistor 20531 has a dual gate structure so that transistor 20531 can be used.
Off current can be reduced. The dual gate structure is a structure having two gate electrodes. However, a plurality of gate electrodes may be provided on the channel region of the transistor.

次に、絶縁膜20503上及び導電膜20504上に、層間膜として、絶縁膜20505
が形成されている。
Next, the insulating film 20505 is used as an interlayer film on the insulating film 20503 and the conductive film 20504.
Is formed.

なお、絶縁膜20505としては、有機材料又は無機材料、若しくはそれらの積層構造を
用いることができる。例えば酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素、窒化ア
ルミニウム、酸化窒化アルミニウム、窒素含有量が酸素含有量よりも多い窒化酸化アルミ
ニウムまたは酸化アルミニウム、ダイアモンドライクカーボン(DLC)、ポリシラザン
、窒素含有炭素(CN)、PSG(リンガラス)、BPSG(リンボロンガラス)、アル
ミナ、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。ま
た、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非感光性どちらでも良
く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロ
ブテン、シロキサン樹脂などを用いることができる。なお、シロキサン樹脂とは、Si-
O-Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との
結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアル
キル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。ま
たは置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。
As the insulating film 20505, an organic material, an inorganic material, or a laminated structure thereof can be used. For example, silicon oxide, silicon nitride, silicon oxide, silicon oxide, aluminum nitride, aluminum oxide, aluminum oxide or aluminum oxide having a nitrogen content higher than the oxygen content, diamond dry carbon (DLC), polysilazane, nitrogen content. It can be formed of a material selected from materials including carbon (CN), PSG (phosphorus glass), BPSG (phosphorus glass), alumina and other inorganic insulating materials. Further, an organic insulating material may be used, and the organic material may be either photosensitive or non-photosensitive, and polyimide, acrylic, polyamide, polyimideamide, resist or benzocyclobutene, siloxane resin and the like can be used. .. The siloxane resin is Si-
Corresponds to a resin containing an O—Si bond. The skeleton structure of siloxane is composed of the bonds between silicon (Si) and oxygen (O). As the substituent, an organic group containing at least hydrogen (for example, an alkyl group or an aromatic hydrocarbon) is used. A fluoro group may be used as the substituent. Alternatively, an organic group containing at least hydrogen and a fluoro group may be used as the substituent.

なお、絶縁膜20503及び絶縁膜20505には、コンタクトホールが選択的に形成さ
れている。例えば、コンタクトホールは、各トランジスタの不純物領域の上面に形成され
ている。
Contact holes are selectively formed in the insulating film 20503 and the insulating film 20505. For example, the contact hole is formed on the upper surface of the impurity region of each transistor.

次に、絶縁膜20505上に、ドレイン電極、ソース電極及び配線として、フォトリソグ
ラフィ法、インクジェット法又は印刷法などにより、導電膜20506が形成されている
Next, a conductive film 20506 is formed on the insulating film 20505 as a drain electrode, a source electrode, and wiring by a photolithography method, an inkjet method, a printing method, or the like.

なお、導電膜20506としては、材料としてはTi、Mo、Ta、Cr、W、Al、N
d、Cu、Ag、Au、Pt、Nb、Si、Zn、Fe、Ba、Geなどや、これら元素
の合金等がある。もしくは、これら元素またはこれら元素の合金の積層構造を用いること
ができる。
The conductive film 20506 is made of Ti, Mo, Ta, Cr, W, Al, N as a material.
There are d, Cu, Ag, Au, Pt, Nb, Si, Zn, Fe, Ba, Ge and the like, alloys of these elements and the like. Alternatively, a laminated structure of these elements or alloys of these elements can be used.

なお、絶縁膜20503及び絶縁膜20504のコンタクトホールが形成されている部分
では、導電膜20506とトランジスタの半導体膜20502の不純物領域とが接続され
ている。
In the portion where the contact holes of the insulating film 20503 and the insulating film 20504 are formed, the conductive film 20506 and the impurity region of the semiconductor film 20502 of the transistor are connected.

次に、絶縁膜20505及び絶縁膜20505上に形成された導電膜20506上に、平
坦化膜として、絶縁膜20507が形成されている。
Next, an insulating film 20507 is formed as a flattening film on the insulating film 20505 and the conductive film 20506 formed on the insulating film 20505.

なお、絶縁膜20507としては、平坦性や被覆性がよいことが望ましいため、有機材料
を用いて形成されることが多い。なお、絶縁膜20507としては多層構造になっていて
もよく、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコン)の上に有機材料が
形成されていてもよい。
Since it is desirable that the insulating film 20507 has good flatness and covering property, it is often formed by using an organic material. The insulating film 20507 may have a multi-layer structure, or an organic material may be formed on an inorganic material (silicon oxide, silicon nitride, silicon oxide).

なお、絶縁膜20507には、コンタクトホールが選択的に形成されている。例えば、コ
ンタクトホールは、トランジスタ20521のドレイン電極の上面に形成されている。
A contact hole is selectively formed in the insulating film 20507. For example, the contact hole is formed on the upper surface of the drain electrode of the transistor 20521.

次に、絶縁膜20507上に、画素電極として、フォトリソグラフィ法、インクジェット
法又は印刷法などにより、導電膜20508が形成されている。
Next, a conductive film 20508 is formed on the insulating film 20507 as a pixel electrode by a photolithography method, an inkjet method, a printing method, or the like.

なお、導電膜20508としては、光を透過する透明電極及び光を反射する反射電極を用
いることができる。
As the conductive film 20508, a transparent electrode that transmits light and a reflective electrode that reflects light can be used.

透明電極の場合は、例えば、酸化インジウムに酸化スズを混ぜたインジウムスズ酸化物(
ITO)膜、インジウムスズ酸化物(ITO)に酸化珪素を混ぜたインジウムスズ珪素酸
化物(ITSO)膜、酸化インジウムに酸化亜鉛を混ぜたインジウム亜鉛酸化物(IZO
)膜、酸化亜鉛膜、または酸化スズ膜などを用いることができる。なお、IZOとは、I
TOに2~20wt%の酸化亜鉛(ZnO)を混合させたターゲットを用いてスパッタリ
ングにより形成される透明導電材料であるが、これに限定されない。
In the case of transparent electrodes, for example, indium tin oxide, which is a mixture of indium oxide and tin oxide (
ITO) film, indium tin oxide (ITSO) film made by mixing indium tin oxide (ITO) with silicon oxide, indium zinc oxide (IZO) made by mixing indium oxide with zinc oxide.
) Membrane, zinc oxide film, tin oxide film and the like can be used. IZO is I
It is a transparent conductive material formed by sputtering using a target in which 2 to 20 wt% zinc oxide (ZnO) is mixed with TO, but is not limited thereto.

反射電極の場合は、例えば、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、A
u、Pt、Nb、Si、Zn、Fe、Ba、Geなどやそれらの合金などを用いることが
できる。また、Ti、Mo、Ta、Cr、WとAlを積層させた2層構造、AlをTi、
Mo、Ta、Cr、Wなどの金属で挟んだ3層積層構造としてもよい。
In the case of a reflective electrode, for example, Ti, Mo, Ta, Cr, W, Al, Nd, Cu, Ag, A
u, Pt, Nb, Si, Zn, Fe, Ba, Ge and the like, alloys thereof and the like can be used. Further, a two-layer structure in which Ti, Mo, Ta, Cr, W and Al are laminated, and Al is Ti,
It may be a three-layer laminated structure sandwiched between metals such as Mo, Ta, Cr, and W.

次に、絶縁膜20507上及び絶縁膜20507上に形成された導電膜20508上に、
配向膜として、絶縁膜20509が形成されている。
Next, on the insulating film 20507 and the conductive film 20508 formed on the insulating film 20507,
An insulating film 20509 is formed as the alignment film.

次に、画素部20101の周辺部、若しくは画素部20101の周辺部とその周辺駆動回
路部の周辺部に、インクジェット法などにより、シール材20516が形成される。
Next, the sealing material 20516 is formed on the peripheral portion of the pixel portion 20101 or the peripheral portion of the peripheral portion of the pixel portion 20101 and the peripheral portion of the peripheral drive circuit portion thereof by an inkjet method or the like.

次に、絶縁膜20514、絶縁膜20513、導電膜20512及び絶縁膜20511な
どが形成された基板20515と、基板20100とがスペーサ20531を介して貼り
合わされており、その隙間に、液晶層20510が配置されている。
Next, the substrate 20515 on which the insulating film 20514, the insulating film 20513, the conductive film 20512, the insulating film 20511, etc. are formed and the substrate 20100 are bonded to each other via the spacer 20531, and the liquid crystal layer 20510 is arranged in the gap. Has been done.

なお、基板20115は、対向基板として機能してもよい。また、絶縁膜20514は、
ブラックマトリックス(遮光膜)として機能してもよい。また、絶縁膜20513は、カ
ラーフィルターとして機能してもよい。また、スペーサ20531は、数μmの粒子を散
布して設ける方法でもよいし、基板全面に樹脂膜を形成した後に、樹脂膜をエッチング加
工して形成する方法でもよい。また、導電膜20512は、対向電極として機能してもよ
い。導電膜20512としては、導電膜20508と同様なものを用いることができる。
また、絶縁膜20511は、配向膜として機能してもよい。
The substrate 2015 may function as a facing substrate. Further, the insulating film 20514 is provided with the insulating film 20514.
It may function as a black matrix (light-shielding film). Further, the insulating film 20513 may function as a color filter. Further, the spacer 20531 may be provided by spraying particles of several μm, or may be formed by forming a resin film on the entire surface of the substrate and then etching the resin film. Further, the conductive film 20512 may function as a counter electrode. As the conductive film 20512, the same one as that of the conductive film 20508 can be used.
Further, the insulating film 20511 may function as an alignment film.

なお、絶縁膜20513及び絶縁膜20514と導電膜20512との間には、平坦化膜
として絶縁膜20532を形成してもよい。ただし、図61では、絶縁膜20532を図
示していない。
An insulating film 20532 may be formed as a flattening film between the insulating film 20513 and the insulating film 20514 and the conductive film 20512. However, in FIG. 61, the insulating film 20532 is not shown.

なお、液晶層20510としては公知の液晶を自由に用いることができる。例えば、液晶
20510として強誘電性の液晶を用いてもよいし、反強誘電性の液晶を用いてもよい。
また、液晶の駆動方式は、TN(Twisted Nematic)モード、IPS(I
n-Plane-Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi-domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)、ASM(Axially Symmetric aligned Mic
ro-cell)モード、OCB(Optical Compensated Bire
fringence)モード、FLC(Ferroelectric Liquid C
rystal)モード、AFLC(AntiFerroelectric Liquid
Crystal)等を自由に用いることができる。
A known liquid crystal can be freely used as the liquid crystal layer 20510. For example, a ferroelectric liquid crystal may be used as the liquid crystal 20510, or an antiferroelectric liquid crystal may be used.
The liquid crystal drive system is TN (Twisted Nematic) mode, IPS (I).
n-Plane-Switching) mode, FFS (Fringe Field S)
(witching) mode, MVA (Multi-domain Vertical A)
lignment) mode, PVA (Patterned Vertical Alig)
nment), ASM (Axially Symmetrically aligned Mic)
ro-cell) mode, OCB (Optical Compensated Bire)
fringence) mode, FLC (Ferroelectric Liquid C)
rystal) mode, AFLC (AntiFerolectric Liquid)
Crystal) and the like can be freely used.

次に、画素部20101と、その周辺駆動回路部と電気的に接続されている導電膜205
31上に、異方性導電体層20517を介して、FPC20200が配置されている。ま
た、FPC20200上に、異方性導電体層20517を介して、ICチップが配置され
ている。つまり、FPC20200、導電膜20531及びICチップ20530は、電
気的に接続されている。
Next, the conductive film 205 electrically connected to the pixel unit 20101 and its peripheral drive circuit unit.
The FPC 20200 is arranged on the 31 via the anisotropic conductor layer 20517. Further, an IC chip is arranged on the FPC20200 via the anisotropic conductor layer 20517. That is, the FPC 20200, the conductive film 20531, and the IC chip 20530 are electrically connected.

なお、導電膜20531は、FPC20200から入力される信号及び電位を、画素や周
辺回路に伝達する機能を有している。導電膜20531としては、導電膜20506と同
様なものを用いてもよいし、導電膜20504と同様なものを用いてもよいし、半導体膜
20502の不純物領域と同様なものを用いてもよいし、これらを少なくとも2層以上組
み合わせたものを用いてもよい。
The conductive film 20531 has a function of transmitting signals and potentials input from the FPC 20200 to pixels and peripheral circuits. As the conductive film 20531, the same one as the conductive film 20506 may be used, the same one as the conductive film 20504 may be used, or the same one as the impurity region of the semiconductor film 20502 may be used. , A combination of at least two or more layers may be used.

なお、ICチップ20530は、機能回路(メモリやバッファ)を形成することで、基板
面積を有効利用することができる。
The IC chip 20530 can effectively utilize the board area by forming a functional circuit (memory or buffer).

図61(A)、(B)の液晶パネルは、走査線駆動回路20105a、走査線駆動回路2
0105b及び信号線駆動回路20106を基板20100上に形成した場合の構成につ
いて説明したが、図62(A)の液晶パネルに示すように、信号線駆動回路20106に
相当する駆動回路をドライバIC20601に形成して、COG方式などで液晶パネルに
実装した構成としてもよい。信号線駆動回路20106をドライバIC20601に形成
することで、省電力化を図ることができる。また、ドライバIC20601はシリコンウ
エハ等の半導体チップとすることで、図62(A)の液晶パネルはより高速、且つ低消費
電力化を図ることができる。
The liquid crystal panels of FIGS. 61A and 61B have a scanning line drive circuit 20105a and a scanning line drive circuit 2
The configuration when 0105b and the signal line drive circuit 20106 are formed on the substrate 20100 has been described. However, as shown in the liquid crystal panel of FIG. 62 (A), a drive circuit corresponding to the signal line drive circuit 20106 is formed on the driver IC 20601. Then, it may be mounted on the liquid crystal panel by the COG method or the like. By forming the signal line drive circuit 20106 in the driver IC 20601, power saving can be achieved. Further, by using the driver IC 20601 as a semiconductor chip such as a silicon wafer, the liquid crystal panel of FIG. 62 (A) can achieve higher speed and lower power consumption.

同様に、図62(B)の液晶パネルに示すように、走査線駆動回路20105a、走査線
駆動回路20105b及び信号線駆動回路20106に相当する駆動回路を、それぞれド
ライバIC20602a、ドライバIC20602b及びドライバIC20601に形成
して、COG方式などで液晶パネルに実装した構成としてもよい。また、走査線駆動回路
20105a、走査線駆動回路20105b及び信号線駆動回路20106に相当する駆
動回路を、それぞれドライバIC20602a、ドライバIC20602b及びドライバ
IC20601に形成することで、低コスト化が図れる。
Similarly, as shown in the liquid crystal panel of FIG. 62 (B), the drive circuits corresponding to the scan line drive circuit 20105a, the scan line drive circuit 20105b, and the signal line drive circuit 20106 are provided in the driver IC 20602a, the driver IC 20602b, and the driver IC 20601, respectively. It may be formed and mounted on a liquid crystal panel by a COG method or the like. Further, by forming the drive circuits corresponding to the scan line drive circuit 20105a, the scan line drive circuit 20105b, and the signal line drive circuit 20106 in the driver IC 20602a, the driver IC 20602b, and the driver IC 20601, respectively, cost reduction can be achieved.

なお、トランジスタ20521はデュアルゲート構造としたが、図63の画素部2052
6に示すように、トランジスタ20521はシングルゲート構造としてもよい。ただし、
図63は、画素部20526のみを示している。
Although the transistor 20521 has a dual gate structure, the pixel portion 2052 in FIG. 63
As shown in 6, the transistor 20521 may have a single gate structure. however,
FIG. 63 shows only the pixel portion 20526.

次に、基板20100上にボトムゲート型トランジスタを形成した場合の断面図について
、図64を参照して説明する。ただし、図64は、画素領域20526のみを示している
Next, a cross-sectional view when a bottom gate type transistor is formed on the substrate 20100 will be described with reference to FIG. 64. However, FIG. 64 shows only the pixel region 20526.

まず、基板20100上に、下地膜として、絶縁膜20501が成膜されている。次に、
絶縁膜20501上に、ゲート電極として、フォトリソグラフィ法、インクジェット法又
は印刷法などにより、導電膜20504が形成されている。なお、トランジスタ2052
1の導電膜20504は、デュアルゲート構造としている。なぜなら、すでに述べたよう
に、トランジスタ20521はデュアルゲート構造にすることで、トランジスタ2052
1のオフ電流を小さくできる。次に、絶縁膜20501上及び導電膜20504上に、ゲ
ート絶縁膜として、絶縁膜20503が形成されている。次に、絶縁膜20503上に、
フォトリソグラフィ法、インクジェット法又は印刷法などにより、半導体膜20502が
形成されている。なお、半導体膜20502には、レジストをマスクとして半導体膜20
502に不純物元素がドーピングされており、チャネル形成領域と、ソース領域及びドレ
イン領域となる不純物領域とが形成されている。なお、不純物領域は、不純物濃度を制御
して高濃度領域と低濃度領域とを形成されていてもよい。次に、絶縁膜20503上及び
半導体層20502上に、層間膜として、絶縁膜20505が形成されている。なお、絶
縁膜20505には、コンタクトホールが選択的に形成されている。例えば、コンタクト
ホールは、各トランジスタの不純物領域の上面に形成されている。次に、絶縁膜2050
5上に、ドレイン電極、ソース電極及び配線として、フォトリソグラフィ法、インクジェ
ット法又は印刷法などにより、導電膜20506が形成されている。なお、絶縁膜205
05のコンタクトホールが形成されている部分では、導電膜20506とトランジスタの
半導体膜20502の不純物領域とが接続されている。次に、絶縁膜20505上及びた
導電膜20506上に、平坦化膜として、絶縁膜20507が形成されている。なお、絶
縁膜20507には、コンタクトホールが選択的に形成されている。例えば、コンタクト
ホールは、トランジスタ20521のドレイン電極の上面に形成されている。次に、絶縁
膜20507上に、画素電極として、フォトリソグラフィ法、インクジェット法又は印刷
法などにより、導電膜20508が形成されている。次に、絶縁膜20507上及び導電
膜20508上に、配向膜として、絶縁膜20509が形成されている。次に、絶縁膜2
0514、絶縁膜20513、導電膜20512及び絶縁膜20511などが形成された
基板20515と、基板20100との隙間に、液晶層20510が配置されている。
First, an insulating film 20501 is formed on the substrate 20100 as a base film. next,
A conductive film 20504 is formed on the insulating film 20501 as a gate electrode by a photolithography method, an inkjet method, a printing method, or the like. The transistor 2052
The conductive film 20504 of No. 1 has a dual gate structure. This is because, as already mentioned, the transistor 20521 has a dual gate structure so that the transistor 2052 can be used.
The off current of 1 can be reduced. Next, an insulating film 20503 is formed as a gate insulating film on the insulating film 20501 and the conductive film 20504. Next, on the insulating film 20503,
The semiconductor film 20502 is formed by a photolithography method, an inkjet method, a printing method, or the like. The semiconductor film 20502 has a semiconductor film 20 using a resist as a mask.
Impurity elements are doped in 502, and a channel forming region and an impurity region serving as a source region and a drain region are formed. The impurity region may be formed into a high concentration region and a low concentration region by controlling the impurity concentration. Next, an insulating film 20505 is formed as an interlayer film on the insulating film 20503 and the semiconductor layer 20502. A contact hole is selectively formed in the insulating film 20505. For example, the contact hole is formed on the upper surface of the impurity region of each transistor. Next, the insulating film 2050
A conductive film 20506 is formed on the drain electrode, the source electrode, and the wiring by a photolithography method, an inkjet method, a printing method, or the like. The insulating film 205
In the portion where the contact hole of 05 is formed, the conductive film 20506 and the impurity region of the semiconductor film 20502 of the transistor are connected. Next, an insulating film 20507 is formed as a flattening film on the insulating film 20505 and the conductive film 20506. A contact hole is selectively formed in the insulating film 20507. For example, the contact hole is formed on the upper surface of the drain electrode of the transistor 20521. Next, a conductive film 20508 is formed on the insulating film 20507 as a pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. Next, an insulating film 20509 is formed as an alignment film on the insulating film 20507 and the conductive film 20508. Next, the insulating film 2
The liquid crystal layer 20510 is arranged in the gap between the substrate 20515 on which the 0514, the insulating film 20513, the conductive film 20512, the insulating film 20511, and the like are formed, and the substrate 20100.

なお、図64では、トランジスタ20521をデュアルゲート構造とした。ただし、図6
5の画素部20526に示すように、トランジスタ20521はシングルゲート構造とし
てもよい。
In FIG. 64, the transistor 20521 has a dual gate structure. However, FIG. 6
As shown in the pixel portion 20526 of 5, the transistor 20521 may have a single gate structure.

次に、基板20100上に、ダブルゲート型のトランジスタを形成した場合の断面図につ
いて、図66を参照して説明する。ただし、図66は、画素領域20526のみを示して
いる。
Next, a cross-sectional view when a double-gate type transistor is formed on the substrate 20100 will be described with reference to FIG. 66. However, FIG. 66 shows only the pixel region 20526.

なお、ダブルゲート型のトランジスタとは、半導体膜の上下にゲート電極が、それぞれ配
置されている構造のことをいう。また、ダブルゲート型のトランジスタは、トップゲート
型トランジスタ及びボトムゲート型トランジスタに比べて、同様のサイズ及び同様の印加
電圧であれば流れる電流が2倍になる。つまり、ダブルゲート型のトランジスタは、小さ
いトランジスタサイズでより多くの電流を流すことができる。
The double gate type transistor means a structure in which gate electrodes are arranged above and below the semiconductor film. Further, the double gate type transistor doubles the flowing current if it has the same size and the same applied voltage as the top gate type transistor and the bottom gate type transistor. That is, a double-gate transistor can carry a larger current with a smaller transistor size.

まず、基板20100上に、下地膜として、絶縁膜20501が成膜されている。次に、
絶縁膜20501上に、第1のゲート電極として、フォトリソグラフィ法、インクジェッ
ト法又は印刷法などにより、導電膜20504aが形成されている。なお、導電膜205
04aは、導電膜20504と同様な材料及び構造のものを用いることができる。次に、
絶縁膜20501上及び導電膜20504a上に、第1のゲート絶縁膜として、絶縁膜2
0503aが形成されている。なお、絶縁膜20503aは、絶縁膜20503と同様な
材料及び構造のものを用いることができる。次に、絶縁膜20503a上に、フォトリソ
グラフィ法、インクジェット法又は印刷法などにより、半導体膜20502が形成されて
いる。次に、絶縁膜20503a上及び半導体膜20502上に、第2のゲート絶縁膜と
して、絶縁膜20503bが形成されている。なお、導電膜20503bは、導電膜20
503と同様な材料及び構造のものを用いることができる。次に、絶縁膜20504b上
に、第2のゲート電極として、フォトリソグラフィ法、インクジェット法又は印刷法など
により、導電膜20504bが形成されている。なお、導電膜20504bは、導電膜2
0504と同様な材料及び構造のものを用いることができる。なお、半導体膜20502
には、導電膜20504b又はレジストをマスクとして半導体膜20502に不純物元素
がドーピングされており、チャネル形成領域と、ソース領域及びドレイン領域となる不純
物領域とが形成されている。なお、不純物領域は、不純物濃度を制御して高濃度領域と低
濃度領域とを形成されていてもよい。なお、半導体膜20502には、絶縁膜20503
b及び導電膜20504bが形成される前に、レジストをマスクとして半導体膜2050
2に不純物元素がドーピングされ、チャネル形成領域と、ソース領域及びドレイン領域と
なる不純物領域とが形成されていてもよい。次に、絶縁膜20503b上及び導電膜20
504b上に、層間膜として、絶縁膜20505が形成されている。なお、絶縁膜205
03b及び絶縁膜20505には、コンタクトホールが選択的に形成されている。例えば
、コンタクトホールは、各トランジスタの不純物領域の上面に形成されている。次に、絶
縁膜20505上に、ドレイン電極、ソース電極及び配線として、フォトリソグラフィ法
、インクジェット法又は印刷法などにより、導電膜20506が形成されている。なお、
絶縁膜20503及び絶縁膜20504のコンタクトホールが形成されている部分では、
導電膜20506とトランジスタの半導体膜20502の不純物領域とが接続されている
。次に、絶縁膜20505上及び導電膜20506上に、平坦化膜として、絶縁膜205
07が形成されている。なお、絶縁膜20507には、コンタクトホールが選択的に形成
されている。例えば、コンタクトホールは、トランジスタ20521のドレイン電極の上
面に形成されている。次に、絶縁膜20507上に、画素電極として、フォトリソグラフ
ィ法、インクジェット法又は印刷法などにより、導電膜20508が形成されている。次
に、絶縁膜20507上及び導電膜20508上に、配向膜として、絶縁膜20509が
形成されている。次に、絶縁膜20514、絶縁膜20513、導電膜20512及び絶
縁膜20511などが形成された基板20515と、基板20100との隙間に、液晶層
20510が配置されている。
First, an insulating film 20501 is formed on the substrate 20100 as a base film. next,
A conductive film 20504a is formed on the insulating film 20501 as a first gate electrode by a photolithography method, an inkjet method, a printing method, or the like. The conductive film 205
As 04a, those having the same material and structure as the conductive film 20504 can be used. next,
The insulating film 2 is used as the first gate insulating film on the insulating film 20501 and the conductive film 20504a.
0503a is formed. As the insulating film 20503a, the same material and structure as the insulating film 20503 can be used. Next, the semiconductor film 20502 is formed on the insulating film 20503a by a photolithography method, an inkjet method, a printing method, or the like. Next, an insulating film 20503b is formed on the insulating film 20503a and the semiconductor film 20502 as a second gate insulating film. The conductive film 20503b is the conductive film 20.
Materials and structures similar to those of 503 can be used. Next, a conductive film 20504b is formed on the insulating film 20504b as a second gate electrode by a photolithography method, an inkjet method, a printing method, or the like. The conductive film 20504b is the conductive film 2
Materials and structures similar to 0504 can be used. The semiconductor film 20502
The semiconductor film 20502 is doped with an impurity element using the conductive film 20504b or a resist as a mask, and a channel forming region and an impurity region serving as a source region and a drain region are formed. The impurity region may be formed into a high concentration region and a low concentration region by controlling the impurity concentration. The semiconductor film 20502 has an insulating film 20503.
Before the b and the conductive film 20504b are formed, the semiconductor film 2050 using the resist as a mask is used.
Impurity elements may be doped into 2 to form a channel forming region and an impurity region serving as a source region and a drain region. Next, on the insulating film 20503b and the conductive film 20
An insulating film 20505 is formed on the 504b as an interlayer film. The insulating film 205
Contact holes are selectively formed in the 03b and the insulating film 20505. For example, the contact hole is formed on the upper surface of the impurity region of each transistor. Next, a conductive film 20506 is formed on the insulating film 20505 as a drain electrode, a source electrode, and wiring by a photolithography method, an inkjet method, a printing method, or the like. note that,
In the portion where the contact holes of the insulating film 20503 and the insulating film 20504 are formed,
The conductive film 20506 and the impurity region of the semiconductor film 20502 of the transistor are connected. Next, as a flattening film, the insulating film 205 is placed on the insulating film 20505 and the conductive film 20506.
07 is formed. A contact hole is selectively formed in the insulating film 20507. For example, the contact hole is formed on the upper surface of the drain electrode of the transistor 20521. Next, a conductive film 20508 is formed on the insulating film 20507 as a pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. Next, an insulating film 20509 is formed as an alignment film on the insulating film 20507 and the conductive film 20508. Next, the liquid crystal layer 20510 is arranged in the gap between the substrate 20515 on which the insulating film 20514, the insulating film 20513, the conductive film 20512, the insulating film 20511, and the like are formed, and the substrate 20100.

なお、図61及び図63~図66では、絶縁膜20505上及び絶縁膜20505上に形
成された導電膜20506上に、平坦膜として、絶縁膜20507が形成されている場合
の断面図について説明した。ただし、絶縁膜20507は、図67に示すように、必ずし
も必要ではない。
In addition, in FIG. 61 and FIGS. 63 to 66, the cross-sectional view in the case where the insulating film 20507 is formed as a flat film on the insulating film 20505 and the conductive film 20506 formed on the insulating film 20505 has been described. .. However, the insulating film 20507 is not always necessary, as shown in FIG. 67.

なお、図67に示す断面図は、トップゲート型のトランジスタの場合について示している
が、ボトムゲート型のトランジスタ及びダブルゲート型のトランジスタの場合についても
同様である。
The cross-sectional view shown in FIG. 67 shows the case of a top gate type transistor, but the same applies to the case of a bottom gate type transistor and a double gate type transistor.

次に、基板20100上に、半導体膜として非結晶半導体膜(アモルファスシリコン膜)
を用いたトランジスタを形成した場合の断面図について、図68を参照して説明する。図
68に示す断面図は、逆スタガ型のチャネルエッチ構造のトランジスタの断面図である。
Next, on the substrate 20100, a non-crystalline semiconductor film (amorphous silicon film) is used as a semiconductor film.
A cross-sectional view in the case of forming a transistor using the above will be described with reference to FIG. 68. The cross-sectional view shown in FIG. 68 is a cross-sectional view of a transistor having an inverted stagger type channel etch structure.

まず、基板20100上に、下地膜として、絶縁膜20501が成膜されている。次に、
絶縁膜20501上に、ゲート電極として、フォトリソグラフィ法、インクジェット法又
は印刷法などにより、導電膜20504が形成されている。次に、絶縁膜20501及び
導電膜20504上に、ゲート絶縁膜として、絶縁膜20503が形成されている。次に
、絶縁膜20503上に、フォトリソグラフィ法、インクジェット法又は印刷法などによ
り、半導体膜20502が形成されている。なお、半導体膜20502は第1の半導体膜
及び第2の半導体膜を有しており、第1の半導体膜の上に第2の半導体膜が形成されてい
る。また、第1の半導体膜及び第2の半導体膜は連続して成膜され、同時にフォトリソグ
ラフィ法によってパターニングされてもよい。また、第2の半導体膜は不純物元素を含ん
でいる。次に、絶縁膜20503上及び半導体膜20502上に、フォトリソグラフィ法
、インクジェット法又は印刷法などにより、導電膜20506が形成されている。なお、
半導体膜20502は、導電膜20506をマスクとしてエッチングをすることによって
、チャネル形成領域と、ソース領域及びドレイン領域となる不純物領域とが形成されてい
る。つまり、チャネル領域では、不純物元素を含む第2の半導体膜が除去される。ただし
、半導体膜20502は、導電膜20506をエッチングするためのレジストをマスクに
して、エッチングされてもよい。次に、絶縁膜20503上、半導体膜20502上及び
導電膜20506上に、平坦化膜として、絶縁膜20507が形成されている。なお、絶
縁膜20507には、コンタクトホールが選択的に形成されている。例えば、コンタクト
ホールは、トランジスタ20521のドレイン電極の上面に形成されている。次に、絶縁
膜20507上に、画素電極として、フォトリソグラフィ法、インクジェット法又は印刷
法などにより、導電膜20508が形成されている。次に、絶縁膜20507上及び導電
膜20508上に、配向膜として、絶縁膜20509が形成されている。次に、絶縁膜2
0514、絶縁膜20513、導電膜20512及び絶縁膜20511などが形成された
基板20515と、基板20100との隙間に、液晶層20510が配置されている。
First, an insulating film 20501 is formed on the substrate 20100 as a base film. next,
A conductive film 20504 is formed on the insulating film 20501 as a gate electrode by a photolithography method, an inkjet method, a printing method, or the like. Next, an insulating film 20503 is formed as a gate insulating film on the insulating film 20501 and the conductive film 20504. Next, the semiconductor film 20502 is formed on the insulating film 20503 by a photolithography method, an inkjet method, a printing method, or the like. The semiconductor film 20502 has a first semiconductor film and a second semiconductor film, and a second semiconductor film is formed on the first semiconductor film. Further, the first semiconductor film and the second semiconductor film may be continuously formed and simultaneously patterned by a photolithography method. Further, the second semiconductor film contains an impurity element. Next, the conductive film 20506 is formed on the insulating film 20503 and the semiconductor film 20502 by a photolithography method, an inkjet method, a printing method, or the like. note that,
The semiconductor film 20502 is etched with the conductive film 20506 as a mask to form a channel forming region and an impurity region serving as a source region and a drain region. That is, in the channel region, the second semiconductor film containing the impurity element is removed. However, the semiconductor film 20502 may be etched by using a resist for etching the conductive film 20506 as a mask. Next, the insulating film 20507 is formed as a flattening film on the insulating film 20503, the semiconductor film 20502, and the conductive film 20506. A contact hole is selectively formed in the insulating film 20507. For example, the contact hole is formed on the upper surface of the drain electrode of the transistor 20521. Next, a conductive film 20508 is formed on the insulating film 20507 as a pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. Next, an insulating film 20509 is formed as an alignment film on the insulating film 20507 and the conductive film 20508. Next, the insulating film 2
The liquid crystal layer 20510 is arranged in the gap between the substrate 20515 on which the 0514, the insulating film 20513, the conductive film 20512, the insulating film 20511, and the like are formed, and the substrate 20100.

なお、チャネルエッチ構造のトランジスタについて説明したが、図69に示すように、半
導体膜20502上に絶縁膜21301を設けてもよい。絶縁膜21301は、第1の半
導体膜と第2の半導体膜との間に形成される。また、半導体膜20502は、導電膜20
506を形成するときに、同時にエッチングされる。
Although the transistor having a channel etch structure has been described, the insulating film 21301 may be provided on the semiconductor film 20502 as shown in FIG. 69. The insulating film 21301 is formed between the first semiconductor film and the second semiconductor film. Further, the semiconductor film 20502 is a conductive film 20.
When forming the 506, it is etched at the same time.

なお、図68のトランジスタ20521をチャネルエッチ構造と呼び、図69のトランジ
スタ20521をチャネル保護構造と呼ぶ。
The transistor 20521 in FIG. 68 is referred to as a channel etch structure, and the transistor 20521 in FIG. 69 is referred to as a channel protection structure.

次に、基板20100上に、半導体膜として非結晶半導体膜を用いたトップゲート型のト
ランジスタを形成した場合の断面図について、図70を参照して説明する。
Next, a cross-sectional view of a case where a top gate type transistor using an amorphous semiconductor film as a semiconductor film is formed on the substrate 20100 will be described with reference to FIG. 70.

まず、基板20100上に、下地膜として、絶縁膜20501が成膜されている。次に、
絶縁膜20501上に、フォトリソグラフィ法、インクジェット法又は印刷法などにより
、導電膜20506が形成されている。次に、導電膜20506上に、フォトリソグラフ
ィ法、インクジェット法又は印刷法などにより、半導体膜20502aが形成されている
。なお、半導体膜20502aは、半導体膜20502と同様な材料及び構造のものを用
いることができる。また、半導体膜20502aは、不純物元素を含んでいる。次に、絶
縁膜20501上及び半導体膜20502a上に、フォトリソグラフィ法、インクジェッ
ト法又は印刷法などにより、半導体膜20502bが形成されている。なお、半導体膜2
0502bは、半導体膜20502と同様な材料及び構造のものを用いることができる。
次に、絶縁膜20501上、半導体膜20502b上及び導電膜20506上に、ゲート
絶縁膜として、絶縁膜20503が形成されている。次に、絶縁膜20503上に、ゲー
ト電極として、フォトリソグラフィ法、インクジェット法又は印刷法などにより、導電膜
20504が形成されている。次に、絶縁膜20503上及び絶縁膜20503上に形成
された導電膜20504上に、平坦化膜として、絶縁膜20507が形成されている。な
お、絶縁膜20507には、コンタクトホールが選択的に形成されている。例えば、コン
タクトホールは、トランジスタ20521のドレイン電極の上面に形成されている。次に
、絶縁膜20507上に、画素電極として、フォトリソグラフィ法、インクジェット法又
は印刷法などにより、導電膜20508が形成されている。次に、絶縁膜20507上及
び導電膜20508上に、配向膜として、絶縁膜20509が形成されている。次に、絶
縁膜20514、絶縁膜20513、導電膜20512及び絶縁膜20511などが形成
された基板20515と、基板20100との隙間に、液晶層20510が配置されてい
る。
First, an insulating film 20501 is formed on the substrate 20100 as a base film. next,
A conductive film 20506 is formed on the insulating film 20501 by a photolithography method, an inkjet method, a printing method, or the like. Next, the semiconductor film 20502a is formed on the conductive film 20506 by a photolithography method, an inkjet method, a printing method, or the like. As the semiconductor film 20502a, those having the same material and structure as the semiconductor film 20502 can be used. Further, the semiconductor film 20502a contains an impurity element. Next, the semiconductor film 20502b is formed on the insulating film 20501 and the semiconductor film 20502a by a photolithography method, an inkjet method, a printing method, or the like. The semiconductor film 2
As 0502b, those having the same material and structure as the semiconductor film 20502 can be used.
Next, an insulating film 20503 is formed as a gate insulating film on the insulating film 20501, the semiconductor film 20502b, and the conductive film 20506. Next, a conductive film 20504 is formed on the insulating film 20503 as a gate electrode by a photolithography method, an inkjet method, a printing method, or the like. Next, the insulating film 20507 is formed as a flattening film on the insulating film 20503 and the conductive film 20504 formed on the insulating film 20503. A contact hole is selectively formed in the insulating film 20507. For example, the contact hole is formed on the upper surface of the drain electrode of the transistor 20521. Next, a conductive film 20508 is formed on the insulating film 20507 as a pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. Next, an insulating film 20509 is formed as an alignment film on the insulating film 20507 and the conductive film 20508. Next, the liquid crystal layer 20510 is arranged in the gap between the substrate 20515 on which the insulating film 20514, the insulating film 20513, the conductive film 20512, the insulating film 20511, and the like are formed, and the substrate 20100.

なお、図69及び図70では、絶縁膜20505上及び絶縁膜20505上に形成された
導電膜20506上に、平坦膜として、絶縁膜20507が形成されている場合の断面図
について説明した。ただし、絶縁膜20507は、図71に示すように、必ずしも必要で
はない。
In addition, in FIGS. 69 and 70, the cross-sectional view in the case where the insulating film 20507 is formed as a flat film on the insulating film 20505 and the conductive film 20506 formed on the insulating film 20505 has been described. However, the insulating film 20507 is not always necessary, as shown in FIG. 71.

なお、図71に示す断面図は、逆スタガ型のチャネルエッチ構造のトランジスタの場合に
ついて示しているが、逆スタガ型のチャネル保護構造のトランジスタの場合についても同
様である。また、図71では、逆スタガ型のトランジスタの場合について示しているが、
トップゲート型トランジスタとしてもよい。トップゲート型トランジスタのトランジスタ
の場合の断面図を図72及び図73に示す。
The cross-sectional view shown in FIG. 71 shows the case of a transistor having an inverted stagger type channel etch structure, but the same applies to the case of a transistor having an inverted stagger type channel protection structure. Further, in FIG. 71, the case of an inverted stagger type transistor is shown.
It may be a top gate type transistor. A cross-sectional view of a top gate transistor in the case of a transistor is shown in FIGS. 72 and 73.

なお、図72に示す断面図の場合、絶縁膜20501上及び導電膜20506上に、画素
電極として、フォトリソグラフィ法、インクジェット法又は印刷法などにより、導電膜2
0508が形成されている。また、導電膜20508は、導電膜20506を形成してか
ら絶縁膜20503を形成するまでに、形成される。
In the case of the cross-sectional view shown in FIG. 72, the conductive film 2 is used as a pixel electrode on the insulating film 20501 and the conductive film 20506 by a photolithography method, an inkjet method, a printing method, or the like.
0508 is formed. Further, the conductive film 20508 is formed from the formation of the conductive film 20506 to the formation of the insulating film 20503.

なお、図73に示す断面図の場合、絶縁膜20501上に、画素電極として、フォトリソ
グラフィ法、インクジェット法又は印刷法などにより、導電膜20508が形成されてい
る。また、導電膜20508は、絶縁膜20501の形成後、形成される。
In the case of the cross-sectional view shown in FIG. 73, the conductive film 20508 is formed on the insulating film 20501 as a pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. Further, the conductive film 20508 is formed after the insulating film 20501 is formed.

次に、半透過型の液晶パネルの断面図について、図74を参照して説明する。 Next, a cross-sectional view of the transflective liquid crystal panel will be described with reference to FIG. 74.

なお、図74の断面図は、トランジスタが半導体膜として多結晶半導体を用いた場合の液
晶パネルの断面図である。ただし、トランジスタはボトムゲート型でもよいし、ダブルゲ
ート型でもよい。また、トランジスタのゲート電極は、シングルゲート構造でもよいし、
デュアルゲート構造でもよい。
The cross-sectional view of FIG. 74 is a cross-sectional view of the liquid crystal panel when the transistor uses a polycrystalline semiconductor as the semiconductor film. However, the transistor may be a bottom gate type or a double gate type. Further, the gate electrode of the transistor may have a single gate structure or may be used.
A dual gate structure may be used.

なお、図74は、導電膜20506が形成されるまでは、図63と同様である。したがっ
て、導電膜20506が形成された後の工程及び構造について説明する。
Note that FIG. 74 is the same as in FIG. 63 until the conductive film 20506 is formed. Therefore, the process and structure after the conductive film 20506 is formed will be described.

まず、絶縁膜20505及び絶縁膜20505上に形成された導電膜20506上に、液
晶層20510の厚さ(いわいるセルギャップ)を薄くするための膜として、フォトリソ
グラフィ法、インクジェット法又は印刷法などにより、絶縁膜21801が形成されてい
る。なお、絶縁膜21801としては、平坦性や被覆性がよいことが望ましいため、有機
材料を用いて形成されることが多い。なお、無機材料(酸化シリコン、窒化シリコン、酸
化窒化シリコン)の上に、有機材料が形成され、多層構造になっていてもよい。なお、絶
縁膜21801には、コンタクトホールが選択的に形成されている。例えば、コンタクト
ホールは、トランジスタ20521のドレイン電極の上面に形成されている。次に、絶縁
膜20505上及び絶縁膜20507上に、第1の画素電極として、フォトリソグラフィ
法、インクジェット法又は印刷法などにより、導電膜20508aが形成されている。な
お、導電膜20508aとしては、導電膜20508と同様な光を透過する透明電極を用
いることができる。次に、導電膜20508a上に、第2の画素電極として、フォトリソ
グラフィ法、インクジェット法又は印刷法などにより、導電膜20508bが形成されて
いる。なお、導電膜20508bとしては、導電膜20508と同様な光を反射する反射
電極を用いることができる。なお、導電膜20508bが形成される領域を反射領域とい
う。また、導電膜20508aが形成されている領域のうち、導電膜20508a上に導
電膜20508bが形成されていない領域を透過領域という。次に、絶縁膜21801上
、導電膜20508a及び導電膜20508b上に、配向膜として、絶縁膜20509が
形成されている。次に、絶縁膜20514、絶縁膜20513、導電膜20512及び絶
縁膜20511などが形成された基板20515と、基板20100との隙間に、液晶層
20510が配置されている。
First, as a film for reducing the thickness (so-called cell gap) of the liquid crystal layer 20510 on the insulating film 20505 and the conductive film 20506 formed on the insulating film 20505, a photolithography method, an inkjet method, a printing method, etc. Therefore, the insulating film 21801 is formed. Since it is desirable that the insulating film 21801 has good flatness and covering property, it is often formed by using an organic material. An organic material may be formed on the inorganic material (silicon oxide, silicon nitride, silicon oxide) to form a multi-layer structure. A contact hole is selectively formed in the insulating film 21801. For example, the contact hole is formed on the upper surface of the drain electrode of the transistor 20521. Next, the conductive film 20508a is formed on the insulating film 20505 and the insulating film 20507 as the first pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. As the conductive film 20508a, a transparent electrode that transmits the same light as the conductive film 20508 can be used. Next, the conductive film 20508b is formed on the conductive film 20508a as a second pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. As the conductive film 20508b, a reflective electrode that reflects light similar to that of the conductive film 20508 can be used. The region where the conductive film 20508b is formed is referred to as a reflection region. Further, among the regions where the conductive film 20508a is formed, the region where the conductive film 20508b is not formed on the conductive film 20508a is referred to as a transmission region. Next, an insulating film 20509 is formed as an alignment film on the insulating film 21801, the conductive film 20508a and the conductive film 20508b. Next, the liquid crystal layer 20510 is arranged in the gap between the substrate 20515 on which the insulating film 20514, the insulating film 20513, the conductive film 20512, the insulating film 20511, and the like are formed, and the substrate 20100.

なお、図74では、導電膜20508aが形成された後に導電膜20508bが形成され
ているが、図75に示すように、導電膜20508bが形成された後に導電膜20508
aが形成されていてもよい。
In FIG. 74, the conductive film 20508b is formed after the conductive film 20508a is formed, but as shown in FIG. 75, the conductive film 20508 is formed after the conductive film 20508b is formed.
a may be formed.

なお、図74及び図75では、液晶層20510(セルギャップ)を調整するための絶縁
膜が導電膜20508aの下及び導電膜20508bの下に、形成されている。しかし、
図76のように絶縁膜22001が基板20515側に形成されていてもよい。絶縁膜2
2001は、絶縁膜21801と同様に、液晶層20510(セルギャップ)を調整する
ための絶縁膜である。
In FIGS. 74 and 75, an insulating film for adjusting the liquid crystal layer 20510 (cell gap) is formed under the conductive film 20508a and under the conductive film 20508b. but,
As shown in FIG. 76, the insulating film 22001 may be formed on the substrate 20515 side. Insulating film 2
2001 is an insulating film for adjusting the liquid crystal layer 20510 (cell gap), similarly to the insulating film 21801.

なお、図76では、平坦化膜として絶縁膜20507が形成されている場合について説明
したが、図77に示すように、絶縁膜20507が形成されていなくてもよい。図77の
場合は、反射画素電極として導電膜20506を用いることができる。もちろん、反射画
素電極として、別の導電膜が形成されていてもよい。
Although the case where the insulating film 20507 is formed as the flattening film is described in FIG. 76, the insulating film 20507 may not be formed as shown in FIG. 77. In the case of FIG. 77, the conductive film 20506 can be used as the reflective pixel electrode. Of course, another conductive film may be formed as the reflective pixel electrode.

なお、絶縁膜22001は、導電膜20512と絶縁膜20511との間に形成されてい
てもよいし、絶縁膜20511と液晶層20510との間に形成されていてもよい。
The insulating film 22001 may be formed between the conductive film 20512 and the insulating film 20511, or may be formed between the insulating film 20511 and the liquid crystal layer 20510.

次に、半透過型の液晶パネルにおいて、トランジスタの半導体膜として多結晶半導体を用
いられている場合の液晶パネルの断面図を図78に示す。
Next, FIG. 78 shows a cross-sectional view of the liquid crystal panel in the case where a polycrystalline semiconductor is used as the semiconductor film of the transistor in the transflective liquid crystal panel.

なお、図78の断面図は、逆スタガ型のチャネルエッチ構造を用いたトランジスタを有す
る液晶パネルの断面図である。ただし、トランジスタは、トップゲート型でもよいし、逆
スタガ型のチャネル保護構造を用いてもよい。
The cross-sectional view of FIG. 78 is a cross-sectional view of a liquid crystal panel having a transistor using an inverted stagger type channel etch structure. However, the transistor may be a top gate type or an inverted stagger type channel protection structure.

なお、図78は、導電膜20506が形成されるまでは、図78と同様である。したがっ
て、導電膜20506が形成された後の工程及び構造について説明する。
Note that FIG. 78 is the same as in FIG. 78 until the conductive film 20506 is formed. Therefore, the process and structure after the conductive film 20506 is formed will be described.

まず、半導体膜20502上、絶縁膜20503及び導電膜20506上に、液晶層20
510の厚さ(いわいるセルギャップ)を薄くするための層として、フォトリソグラフィ
法、インクジェット法又は印刷法などにより、絶縁膜22201が形成されている。なお
、絶縁膜22201としては、平坦性や被覆性がよいことが望ましいため、有機材料を用
いて形成されることが多い。なお、無機材料(酸化シリコン、窒化シリコン、酸化窒化シ
リコン)の上に、有機材料が形成され、多層構造になっていてもよい。なお、絶縁膜22
201には、コンタクトホールが選択的に形成されている。例えば、コンタクトホールは
、トランジスタ20521のドレイン電極の上面に形成されている。次に、絶縁膜205
03上及び絶縁膜22201上に、第1の画素電極として、フォトリソグラフィ法、イン
クジェット法又は印刷法などにより、導電膜20508aが形成されている。次に、導電
膜20508a上に、第2の画素電極として、フォトリソグラフィ法、インクジェット法
又は印刷法などにより、導電膜20508bが形成されている。なお、導電膜20508
bが形成される領域を反射領域という。また、導電膜20508aが形成されている領域
のうち、導電膜20508a上に導電膜20508bが形成されていない領域を透過領域
という。次に、絶縁膜22201上、導電膜20508a及び導電膜20508b上に、
配向膜として、絶縁膜20509が形成されている。次に、絶縁膜20514、絶縁膜2
0513、導電膜20512及び絶縁膜20511などが形成された基板20515と、
基板20100との隙間に、液晶層20510が配置されている。
First, the liquid crystal layer 20 is placed on the semiconductor film 20502, the insulating film 20503, and the conductive film 20506.
As a layer for reducing the thickness of 510 (so-called cell gap), an insulating film 22201 is formed by a photolithography method, an inkjet method, a printing method, or the like. Since it is desirable that the insulating film 22201 has good flatness and covering property, it is often formed by using an organic material. An organic material may be formed on the inorganic material (silicon oxide, silicon nitride, silicon nitride) to form a multi-layer structure. The insulating film 22
A contact hole is selectively formed in 201. For example, the contact hole is formed on the upper surface of the drain electrode of the transistor 20521. Next, the insulating film 205
A conductive film 20508a is formed on the 03 and the insulating film 22201 as the first pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. Next, the conductive film 20508b is formed on the conductive film 20508a as a second pixel electrode by a photolithography method, an inkjet method, a printing method, or the like. The conductive film 20508 should be noted.
The region where b is formed is called a reflection region. Further, among the regions where the conductive film 20508a is formed, the region where the conductive film 20508b is not formed on the conductive film 20508a is referred to as a transmission region. Next, on the insulating film 22201, on the conductive film 20508a and the conductive film 20508b,
An insulating film 20509 is formed as the alignment film. Next, the insulating film 20514 and the insulating film 2
A substrate 20515 on which 0513, a conductive film 20512, an insulating film 20511, etc. are formed, and
The liquid crystal layer 20510 is arranged in the gap between the substrate and the substrate 20100.

なお、図78では、導電膜20508aが形成された後に導電膜20508bが形成され
ているが、図79に示すように、導電膜20508bが形成された後に導電膜20508
aが形成されていてもよい。
In FIG. 78, the conductive film 20508b is formed after the conductive film 20508a is formed, but as shown in FIG. 79, the conductive film 20508 is formed after the conductive film 20508b is formed.
a may be formed.

なお、図78及び図79では、液晶層20510(セルギャップ)を調整するための絶縁
膜が導電膜20508aの下及び導電膜20508bの下に、形成されている。しかし、
図80のように絶縁膜22001が基板20515側に形成されていてもよい。絶縁膜2
2001は、絶縁膜22201と同様に、液晶層20510(セルギャップ)を調整する
ための絶縁膜である。
In FIGS. 78 and 79, an insulating film for adjusting the liquid crystal layer 20510 (cell gap) is formed under the conductive film 20508a and under the conductive film 20508b. but,
As shown in FIG. 80, the insulating film 22001 may be formed on the substrate 20515 side. Insulating film 2
2001 is an insulating film for adjusting the liquid crystal layer 20510 (cell gap), similarly to the insulating film 22201.

なお、図79及び図80では、平坦化膜として絶縁膜20507が形成されている場合に
ついて説明したが、図81に示すように、絶縁膜20507が形成されていなくてもよい
。図81の場合は、反射画素電極として導電膜20506を用いることができる。もちろ
ん、反射画素電極として、別の導電膜が形成されていてもよい。
Although the case where the insulating film 20507 is formed as the flattening film is described in FIGS. 79 and 80, the insulating film 20507 may not be formed as shown in FIG. 81. In the case of FIG. 81, the conductive film 20506 can be used as the reflective pixel electrode. Of course, another conductive film may be formed as the reflective pixel electrode.

なお、図61及び図63~図81では、液晶層20510に電圧を印加する一対の電極(
導電膜20508及び導電膜20512)を異なる基板上に形成した例を示した。しかし
、導電膜20512が基板20100上に設けられていてもよい。こうして、液晶の駆動
方式として、IPS(In-Plane-Switching)モードを用いることがで
きる。また、液晶層20510によっては、2つの配向膜(絶縁膜20509及び絶縁膜
20511)の一方又は両方が無い構造としてもよい。
In addition, in FIG. 61 and FIGS. 63 to 81, a pair of electrodes (which apply a voltage to the liquid crystal layer 20510).
An example in which the conductive film 20508 and the conductive film 20512) are formed on different substrates is shown. However, the conductive film 20512 may be provided on the substrate 20100. In this way, the IPS (In-Plane-Switching) mode can be used as the driving method of the liquid crystal display. Further, depending on the liquid crystal layer 20510, the structure may be such that one or both of the two alignment films (insulating film 20509 and insulating film 20511) are not present.

なお、図61及び図63~図81において、反射画素電極として、導電膜20508(導
電膜20508b)が形成されているが、導電膜20508の形状は凹凸となっているこ
とが望ましい。なぜなら、反射画素電極は、外光を反射させて、表示を行うためのもので
ある。反射電極に入ってきた外光を効率的に活用し、表示輝度を高めるために、反射電極
で乱反射させることができるからである。なお、導電膜20508の下の膜(絶縁膜20
505、絶縁膜20507、絶縁膜21801又は絶縁膜22201など)の形状を凹凸
にすることで、導電膜20508の形状が凹凸になる。
In FIGS. 61 and 63 to 81, the conductive film 20508 (conductive film 20508b) is formed as the reflective pixel electrode, but it is desirable that the shape of the conductive film 20508 is uneven. This is because the reflective pixel electrode reflects external light for display. This is because the external light that has entered the reflective electrode can be efficiently utilized and diffusely reflected by the reflective electrode in order to increase the display brightness. The film under the conductive film 20508 (insulating film 20).
By making the shape of the insulating film 20507, the insulating film 21801, the insulating film 22201, etc.) uneven, the shape of the conductive film 20508 becomes uneven.

続いて、図61~図81で説明した液晶パネルを有する液晶表示装置について、図82を
参照して説明する。
Subsequently, the liquid crystal display device having the liquid crystal panel described with reference to FIGS. 61 to 81 will be described with reference to FIG. 82.

まず、図82に示した液晶表示装置には、バックライトユニット22601、液晶パネル
22607、第1の偏光子を含む層22608、第2の偏光子を含む層22609が設け
られている。
First, the liquid crystal display device shown in FIG. 82 is provided with a backlight unit 22601, a liquid crystal panel 22607, a layer 22608 containing a first polarizing element, and a layer 22609 containing a second polarizing element.

なお、液晶パネル22607は、本実施形態で説明したものと同様なものとすることがで
きる。また、本実施形態の液晶パネルは、各画素にスイッチング素子が設けられたアクテ
ィブ型の構造について説明してきたが、図82の液晶パネルはパッシブ型の構造でもよい
The liquid crystal panel 22607 can be the same as that described in this embodiment. Further, although the liquid crystal panel of the present embodiment has described an active type structure in which a switching element is provided for each pixel, the liquid crystal panel of FIG. 82 may have a passive type structure.

バックライトユニット22601の構造について説明する。バックライトユニット226
01は、拡散板22602、導光板22603、反射板22604、ランプリフレクタ2
2605、光源22606を有するように構成されている。光源22606としては冷陰
極管、熱陰極管、発光ダイオード、無機EL又は有機ELなどが用いられ、光源2260
6は必要に応じて発光する機能を有する。ランプリフレクタ22605は、光源2260
6からの蛍光を効率よく導光板22603に導く機能を有する。導光板22603は、蛍
光を全反射させて、全面に光を導く機能を有する。拡散板22602は、明度のムラを低
減する機能を有する。反射板22604は、導光板22603から下方向(液晶パネル2
2607と反対方向)に漏れた光を反射して再利用する機能を有する。
The structure of the backlight unit 22601 will be described. Backlight unit 226
01 is a diffuser plate 22602, a light guide plate 22603, a reflector plate 22604, and a lamp reflector 2.
2605, configured to have a light source 22606. As the light source 22606, a cold cathode tube, a hot cathode tube, a light emitting diode, an inorganic EL, an organic EL, or the like is used, and the light source 2260 is used.
6 has a function of emitting light as needed. The lamp reflector 22605 is a light source 2260.
It has a function of efficiently guiding the fluorescence from 6 to the light guide plate 22603. The light guide plate 22603 has a function of totally reflecting fluorescence and guiding light over the entire surface. The diffuser plate 22602 has a function of reducing unevenness in brightness. The reflector 22604 is downward from the light guide plate 22603 (liquid crystal panel 2).
It has a function of reflecting and reusing the light leaked in the direction opposite to 2607).

なお、拡散板22602と第2の偏光子を含む層22609との間に、プリズムシートを
配置することで、本実施形態の液晶表示装置は液晶パネルの画面の明るさを向上させるこ
とができる。
By arranging a prism sheet between the diffuser plate 22602 and the layer 22609 including the second polarizing element, the liquid crystal display device of the present embodiment can improve the brightness of the screen of the liquid crystal panel.

バックライトユニット22601には、光源22606の輝度を調整するための制御回路
が接続されている。制御回路からの信号供給によって、光源22606の輝度を調整する
ことができる。
A control circuit for adjusting the brightness of the light source 22606 is connected to the backlight unit 22601. The brightness of the light source 22606 can be adjusted by supplying a signal from the control circuit.

液晶パネル22607とバックライトユニット22601との間には第2の偏光子を含む
層22609が設けれ、バックライトユニット22601とは反対方向の液晶パネル22
607にも第1の偏光子を含む層22608が設けられている。
A layer 22609 containing a second polarizing element is provided between the liquid crystal panel 22607 and the backlight unit 22601, and the liquid crystal panel 22 in the direction opposite to the backlight unit 22601 is provided.
607 is also provided with a layer 22608 containing a first substituent.

なお、第1の偏光子を含む層22608と第2の偏光子を含む層22609とは、液晶パ
ネル22607の液晶素子がTNモードで駆動する場合、クロスニコルになるように配置
される。また、第1の偏光子を含む層22608と第2の偏光子を含む層22609とは
、液晶パネル22607の液晶素子がVAモードで駆動する場合、クロスニコルになるよ
うに配置される。また、第1の偏光子を含む層22608と第2の偏光子を含む層226
09とは、液晶パネル22607の液晶素子がIPSモード及びFFSモードで駆動する
場合、クロスニコルになるように配置されていてもよいし、パラレルニコルになるように
配置されていてもよい。
The layer 22608 containing the first polarizing element and the layer 22609 containing the second polarizing element are arranged so as to form a cross Nicole when the liquid crystal element of the liquid crystal panel 22607 is driven in the TN mode. Further, the layer 22608 containing the first polarizing element and the layer 22609 containing the second polarizing element are arranged so as to form a cross Nicole when the liquid crystal element of the liquid crystal panel 22607 is driven in the VA mode. Further, the layer 22608 containing the first polarizing element and the layer 226 containing the second polarizing element.
09 means that when the liquid crystal element of the liquid crystal panel 22607 is driven in the IPS mode and the FFS mode, it may be arranged so as to be a cross Nicole or a parallel Nicole.

第1の偏光子を含む層22608及び第2の偏光子を含む層22609の両方又は一方と
、液晶パネル22607との間に位相差板を有していてもよい。
A retardation plate may be provided between the liquid crystal panel 22607 and both or one of the layer 22608 containing the first polarizing element and the layer 22609 containing the second polarizing element.

なお、図85に示すように、第2の偏光子を含む層22609とバックライトユニット2
2601との間に、スリット(格子)22610を配置することで、本実施形態の液晶表
示装置は3次元表示を行うことができる。
As shown in FIG. 85, the layer 22609 containing the second polarizing element and the backlight unit 2
By arranging the slit (lattice) 22610 between the 2601 and the liquid crystal display device of the present embodiment, the liquid crystal display device of the present embodiment can perform three-dimensional display.

バックライトユニット側に配置された開口部を有するスリット22610は、光源より入
射された光をストライプ状にして透過し、表示装置へ入射させる。このスリット2261
0によって、視認側にいる視認者の両目に視差を作ることができ、視認者は右目では右目
用の画素だけを、左目では左目用の画素だけを同時に見ることになる。よって、視認者は
、3次元表示を見ることができる。つまり、スリット22610によって特定の視野角を
与えられた光が右目用画像及び左目用画像のそれぞれに対応する画素を通過することで、
右目用画像と左目用画像とが異なる視野角に分離され、3次元表示が行われる。
The slit 22610 having an opening arranged on the backlight unit side transmits the light incident from the light source in a striped shape and causes the light to be incident on the display device. This slit 2261
By 0, parallax can be created in both eyes of the viewer on the viewing side, and the viewer sees only the pixel for the right eye with the right eye and only the pixel for the left eye with the left eye at the same time. Therefore, the viewer can see the three-dimensional display. That is, the light given a specific viewing angle by the slit 22610 passes through the pixels corresponding to the right-eye image and the left-eye image, respectively.
The image for the right eye and the image for the left eye are separated into different viewing angles, and three-dimensional display is performed.

図85の液晶表示装置を用いて、テレビジョン装置、携帯電話などの電子機器を作製すれ
ば、3次元表示を行うことができる高機能でかつ高画質の電子機器を提供することができ
る。
If an electronic device such as a television device or a mobile phone is manufactured using the liquid crystal display device of FIG. 85, it is possible to provide a high-performance and high-quality electronic device capable of performing three-dimensional display.

続いて、バックライトの詳細な構成について、図84を参照して説明する。バックライト
は光源を有するバックライトユニットとして液晶表示装置に設けられ、バックライトユニ
ットは効率よく光を散乱させるため、光源は反射板により囲まれている。
Subsequently, a detailed configuration of the backlight will be described with reference to FIG. 84. The backlight is provided in the liquid crystal display device as a backlight unit having a light source, and the light source is surrounded by a reflector in order to efficiently scatter the light.

図84(A)に示すように、バックライトユニット22852は、光源として冷陰極管2
2801を用いることができる。また、冷陰極管22801からの光を効率よく反射させ
るため、ランプリフレクタ22832を設けることができる。冷陰極管22801は、大
型表示装置に用いることが多い。これは冷陰極管からの輝度の強度のためである。そのた
め、冷陰極管を有するバックライトユニットは、パーソナルコンピュータのディスプレイ
に用いることができる。
As shown in FIG. 84 (A), the backlight unit 22852 has a cold cathode tube 2 as a light source.
2801 can be used. Further, in order to efficiently reflect the light from the cold cathode tube 22801, a lamp reflector 22832 can be provided. The cold-cathode tube 22801 is often used for a large display device. This is due to the intensity of the brightness from the cold cathode fluorescent lamp. Therefore, a backlight unit having a cold cathode fluorescent lamp can be used for a display of a personal computer.

図84(B)に示すように、バックライトユニット22852は、光源として発光ダイオ
ード(LED)22802を用いることができる。例えば、白色に発する発光ダイオード
(W)22802を所定の間隔に配置する。また、発光ダイオード(W)22802から
の光を効率よく反射させるため、ランプリフレクタ22832を設けることができる。
As shown in FIG. 84 (B), the backlight unit 22852 can use a light emitting diode (LED) 22802 as a light source. For example, light emitting diodes (W) 22802 that emit white light are arranged at predetermined intervals. Further, in order to efficiently reflect the light from the light emitting diode (W) 22802, a lamp reflector 22832 can be provided.

また図84(C)に示すように、バックライトユニット22852は、光源として各色R
GBの発光ダイオード(LED)22803、22804、22805を用いることがで
きる。各色RGBの発光ダイオード(LED)22803、22804、22805を用
いることにより、白色を発する発光ダイオード(W)22802のみと比較して、色再現
性を高くすることができる。また、発光ダイオードからの光を効率よく反射させるため、
ランプリフレクタ22832を設けることができる。
Further, as shown in FIG. 84 (C), the backlight unit 22852 has each color R as a light source.
GB light emitting diodes (LEDs) 22803, 22804, 22805 can be used. By using the light emitting diodes (LEDs) 22803, 22804, and 22805 of each color RGB, the color reproducibility can be improved as compared with only the light emitting diode (W) 22802 that emits white. Also, in order to efficiently reflect the light from the light emitting diode,
A lamp reflector 22832 can be provided.

またさらに図84(D)に示すように、光源として各色RGBの発光ダイオード(LED
)22803、22804、22805を用いる場合、それらの数や配置を同じとする必
要はない。例えば、発光強度の低い色(例えば緑)を複数配置してもよい。
Further, as shown in FIG. 84 (D), a light emitting diode (LED) of each color RGB is used as a light source.
) 22803, 22804, 22805 need not be the same in number and arrangement. For example, a plurality of colors having low emission intensity (for example, green) may be arranged.

さらに白色を発する発光ダイオード22802と、各色RGBの発光ダイオード(LED
)22803、22804、22805とを組み合わせて用いてもよい。
Furthermore, a light emitting diode 22802 that emits white and a light emitting diode (LED) of each color RGB
) 22803, 22804, 22805 may be used in combination.

なお、RGBの発光ダイオードを有する場合、フィールドシーケンシャルモードを適用す
ると、時間に応じてRGBの発光ダイオードを順次点灯させることによりカラー表示を行
うことができる。
In the case of having an RGB light emitting diode, if the field sequential mode is applied, color display can be performed by sequentially lighting the RGB light emitting diodes according to the time.

発光ダイオードを用いると、輝度が高いため、大型表示装置に適する。また、RGB各色
の色純度が良いため冷陰極管と比べて色再現性に優れており、配置面積を小さくすること
ができるため、小型表示装置に適応すると、狭額縁化を図ることができる。
When a light emitting diode is used, the brightness is high, so that it is suitable for a large display device. Further, since the color purity of each RGB color is good, the color reproducibility is excellent as compared with the cold cathode fluorescent lamp, and the arrangement area can be reduced. Therefore, when adapted to a small display device, the frame can be narrowed.

また、光源を必ずしも図84に示すバックライトユニットとして配置する必要はない。例
えば、大型表示装置に発光ダイオードを有するバックライトを搭載する場合、発光ダイオ
ードは該基板の背面に配置することができる。このとき発光ダイオードは、所定の間隔を
維持し、各色の発光ダイオードを順に配置させることができる。発光ダイオードの配置に
より、色再現性を高めることができる。
Further, the light source does not necessarily have to be arranged as the backlight unit shown in FIG. 84. For example, when a backlight having a light emitting diode is mounted on a large display device, the light emitting diode can be arranged on the back surface of the substrate. At this time, the light emitting diodes can maintain a predetermined interval, and the light emitting diodes of each color can be arranged in order. Color reproducibility can be improved by arranging the light emitting diodes.

続いて、偏光子を含む層(偏光板又は偏光フィルムともいう)の一例について、図86を
参照して説明する。
Subsequently, an example of a layer containing a polarizing element (also referred to as a polarizing plate or a polarizing film) will be described with reference to FIG. 86.

図86の偏光子を含む層23000は、保護フィルム23001、基板フィルム2300
2、PVA偏光フィルム23003、基板フィルム23004、粘着剤層23005及び
離型フィルム23006を有するように構成されている。
The layer 23000 containing the polarizing element in FIG. 86 includes a protective film 23001 and a substrate film 2300.
2. It is configured to have a PVA polarizing film 23003, a substrate film 23004, an adhesive layer 23005, and a release film 23006.

PVA偏光フィルム23003は、ある振動方向だけの光(直線偏光)を作り出す機能を
有する。具体的には、PVA偏光フィルム23003は、電子の密度が縦と横で大きく異
なる分子(偏光子)を含んでいる。PVA偏光フィルム23003は、この電子の密度が
縦と横で大きく異なる分子の方向を揃えることで、直線偏光を作り出すことができる。
The PVA polarizing film 23003 has a function of producing light (linearly polarized light) only in a certain vibration direction. Specifically, the PVA polarizing film 23003 contains molecules (polarizers) whose electron densities differ greatly between the vertical and horizontal directions. The PVA polarizing film 23003 can produce linear polarization by aligning the directions of molecules in which the electron densities differ greatly in the vertical and horizontal directions.

一例として、PVA偏光フィルム23003は、ポリビニールアルコール(Poly V
inyl Alcohol)の高分子フィルムに、ヨウ素化合物をドープし、PVAフィ
ルムをある方向に引っ張ることで、一定方向にヨウ素分子の並んだフィルムを得ることが
できる。そして、ヨウ素分子の長軸と平行な光は、ヨウ素分子に吸収される。また、高耐
久用途及び高耐熱用途として、ヨウ素の代わりに2色性の染料が用いてもよい。なお、染
料は、車載用LCDやプロジェクタ用LCDなどの耐久性、耐熱性が求められる液晶表示
装置に用いられることが望ましい。
As an example, the PVA polarizing film 23003 is a polyvinyl alcohol (Poly V).
By doping a polymer film of inyl Alcohol) with an iodine compound and pulling the PVA film in a certain direction, a film in which iodine molecules are arranged in a certain direction can be obtained. Then, the light parallel to the major axis of the iodine molecule is absorbed by the iodine molecule. Further, for high durability use and high heat resistance use, a dichroic dye may be used instead of iodine. It is desirable that the dye be used in a liquid crystal display device such as an in-vehicle LCD or a projector LCD, which is required to have durability and heat resistance.

PVA偏光フィルム23003は、両側を基材となるフィルム(基板フィルム23002
及び基板フィルム3604)で挟むことで、信頼性を増すことができる。また、PVA偏
光フィルム23003は、高透明性、高耐久性のトリアセチルロース(TAC)フィルム
によって挟まれていてもよい。なお、基板フィルム及びTACフィルムは、PVA偏光フ
ィルム23003が有する偏光子の保護層として機能する。
The PVA polarizing film 23003 is a film whose base material is both sides (substrate film 23002).
And by sandwiching it between the substrate film 3604), the reliability can be increased. Further, the PVA polarizing film 23003 may be sandwiched between highly transparent and highly durable triacetylrose (TAC) films. The substrate film and the TAC film function as a protective layer for the polarizing element of the PVA polarizing film 23003.

一方の基板フィルム(基板フィルム23004)には、液晶パネルのガラス基板に貼るた
めの粘着剤層23005が貼られている。なお、粘着剤層23005は、粘着剤を片側の
基板フィルム(基板フィルム23004)に塗布することで形成される。また、粘着剤層
23005には、離形フィルム23005(セパレートフィルム)が備えられている。
On one of the substrate films (substrate film 23004), an adhesive layer 23005 for attaching to the glass substrate of the liquid crystal panel is attached. The pressure-sensitive adhesive layer 23005 is formed by applying the pressure-sensitive adhesive to the substrate film (substrate film 23004) on one side. Further, the pressure-sensitive adhesive layer 23005 is provided with a release film 23005 (separate film).

他方の基板フィルム(基板フィルム23002)には、保護フィルムが備えられている。 The other substrate film (substrate film 23002) is provided with a protective film.

なお、偏光フィルム23000表面に、ハードコート散乱層(アンチグレア層)が備えら
れていてもよい。ハードコート散乱層は、AG処理によって表面に微細な凹凸が形成され
ており、外光を散乱させる防眩機能を有するため、液晶パネルへの外光の映り込みや表面
反射を防ぐことができる。
A hard-coated scattering layer (anti-glare layer) may be provided on the surface of the polarizing film 23000. Since the hard-coated scattering layer has fine irregularities formed on its surface by the AG treatment and has an antiglare function of scattering external light, it is possible to prevent reflection of external light and surface reflection on the liquid crystal panel.

また、偏光フィルム23000表面に、複数の屈折率の異なる光学薄膜層を多層化(アン
チリフレクション処理、若しくはAR処理ともいう)してもよい。多層化された複数の屈
折率のことなる光学薄膜層は、光の干渉効果によって表面の反射率を低減することができ
る。
Further, a plurality of optical thin film layers having different refractive indexes may be multilayered (also referred to as anti-reflection treatment or AR treatment) on the surface of the polarizing film 23000. The optical thin film layer having a plurality of layers having different refractive indexes can reduce the reflectance of the surface due to the interference effect of light.

続いて、液晶表示装置が有する各回路の動作について、図83を参照して説明する。 Subsequently, the operation of each circuit included in the liquid crystal display device will be described with reference to FIG. 83.

図83には、表示装置の画素部22705及び駆動回路部22708のシステムブロック
図を示す。
FIG. 83 shows a system block diagram of the pixel unit 22705 and the drive circuit unit 22708 of the display device.

画素部22705は、複数の画素を有し、各画素となる信号線22712と、走査線22
710との交差領域には、スイッチング素子が設けられている。スイッチング素子により
液晶分子の傾きを制御するための電圧の印加を制御することができる。このように各交差
領域にスイッチング素子が設けられた構造をアクティブ型と呼ぶ。本実施の形態の表示装
置の画素部は、このようなアクティブ型に限定されず、パッシブ型の構成を有してもよい
。パッシブ型は、各画素にスイッチング素子がないため、工程が簡便である。
The pixel unit 22705 has a plurality of pixels, and the signal line 22712 and the scanning line 22 are each pixel.
A switching element is provided in the intersection region with the 710. The application of a voltage for controlling the inclination of the liquid crystal molecule can be controlled by the switching element. A structure in which a switching element is provided in each intersecting region in this way is called an active type. The pixel portion of the display device of the present embodiment is not limited to such an active type, and may have a passive type configuration. Since the passive type does not have a switching element in each pixel, the process is simple.

駆動回路部22708は、制御回路22702、信号線駆動回路22703、走査線駆動
回路22704を有する。映像信号22701が入力される制御回路22702は、画素
部22705の表示内容に応じて、階調制御を行う機能を有する。そのため、制御回路2
2702は、生成された信号を信号線駆動回路22703及び走査線駆動回路22704
に入力する。そして、走査線駆動回路22704に基づき、走査線22710を介してス
イッチング素子が選択されると、選択された交差領域の画素電極に電圧が印加される。こ
の電圧の値は、信号線駆動回路22703から信号線を介して入力される信号に基づき決
定される。
The drive circuit unit 22708 includes a control circuit 22702, a signal line drive circuit 22703, and a scanning line drive circuit 22704. The control circuit 22702 to which the video signal 22701 is input has a function of performing gradation control according to the display content of the pixel unit 22705. Therefore, the control circuit 2
The 2702 uses the generated signal as a signal line drive circuit 22703 and a scan line drive circuit 22704.
Enter in. Then, when the switching element is selected via the scanning line 22710 based on the scanning line drive circuit 22704, a voltage is applied to the pixel electrodes in the selected intersection region. The value of this voltage is determined based on the signal input from the signal line drive circuit 22703 via the signal line.

さらに、制御回路22702では、照明手段22706へ供給する電力を制御する信号が
生成され、該信号は、照明手段22706の電源22707に入力される。照明手段には
、上記実施の形態で示したバックライトユニットを用いることができる。なお照明手段は
バックライト以外にフロントライトもある。フロントライトとは、画素部の前面側に取り
つけ、全体を照らす発光体および導光体で構成された板状のライトユニットである。この
ような照明手段により、低消費電力で、均等に画素部を照らすことができる。
Further, the control circuit 22702 generates a signal for controlling the electric power supplied to the lighting means 22706, and the signal is input to the power supply 22707 of the lighting means 22706. As the lighting means, the backlight unit shown in the above embodiment can be used. In addition to the backlight, there is also a front light as the lighting means. The front light is a plate-shaped light unit attached to the front side of the pixel portion and composed of a light emitting body and a light guide body that illuminate the whole. With such a lighting means, it is possible to evenly illuminate the pixel portion with low power consumption.

図83(B)に示すように走査線駆動回路22704は、シフトレジスタ22741、レ
ベルシフタ22742、バッファ22743として機能する回路を有する。シフトレジス
タ22741にはゲートスタートパルス(GSP)、ゲートクロック信号(GCK)等の
信号が入力される。なお、本実施の形態の表示装置の走査線駆動回路は、図83(B)に
示す構成に限定されない。
As shown in FIG. 83 (B), the scan line drive circuit 22704 has a circuit that functions as a shift register 22741, a level shifter 22742, and a buffer 22743. Signals such as a gate start pulse (GSP) and a gate clock signal (GCK) are input to the shift register 22741. The scanning line drive circuit of the display device of the present embodiment is not limited to the configuration shown in FIG. 83 (B).

また図83(C)に示すように信号線駆動回路22703は、シフトレジスタ22731
、第1のラッチ22732、第2のラッチ22733、レベルシフタ22734、バッフ
ァ22735として機能する回路を有する。バッファ22735として機能する回路とは
、弱い信号を増幅させる機能を有する回路であり、オペアンプ等を有する。レベルシフタ
22734には、スタートパルス(SSP)等の信号が、第1のラッチ22732にはビ
デオ信号等のデータ(DATA)が入力される。第2のラッチ22733にはラッチ(L
AT)信号を一時保持することができ、一斉に画素部22705へ入力させる。これを線
順次駆動と呼ぶ。そのため、線順次駆動ではなく、点順次駆動を行う画素であれば、第2
のラッチは不要とすることができる。このように、本実施の形態の表示装置の信号線駆動
回路は図83(C)に示す構成に限定されない。
Further, as shown in FIG. 83 (C), the signal line drive circuit 22703 has a shift register 22731.
, A first latch 22732, a second latch 22733, a level shifter 22734, and a circuit that functions as a buffer 22735. The circuit that functions as the buffer 22735 is a circuit that has a function of amplifying a weak signal, and has an operational amplifier or the like. A signal such as a start pulse (SSP) is input to the level shifter 22734, and data (DATA) such as a video signal is input to the first latch 22732. The second latch 22733 has a latch (L).
AT) The signal can be temporarily held and input to the pixel unit 22705 all at once. This is called line sequential drive. Therefore, if it is a pixel that performs point-sequential drive instead of line-sequential drive, the second
Latch can be eliminated. As described above, the signal line drive circuit of the display device of the present embodiment is not limited to the configuration shown in FIG. 83 (C).

このような信号線駆動回路22703、走査線駆動回路22704、画素部22705は
、同一基板状に設けられた半導体素子によって形成することができる。半導体素子は、ガ
ラス基板に設けられた薄膜トランジスタを用いて形成することができる。この場合、半導
体素子には結晶性半導体膜を適用するとよい。結晶性半導体膜は、電気特性、特に移動度
が高いため、駆動回路部が有する回路を構成することができる。また、信号線駆動回路2
2703や走査線駆動回路22704は、IC(Integrated Circuit
)チップを用いて、基板上に実装することもできる。この場合、画素部の半導体素子には
非晶質半導体膜を適用することができる。
Such a signal line drive circuit 22703, a scan line drive circuit 22704, and a pixel unit 22705 can be formed by semiconductor elements provided on the same substrate. The semiconductor element can be formed by using a thin film transistor provided on a glass substrate. In this case, a crystalline semiconductor film may be applied to the semiconductor element. Since the crystalline semiconductor film has high electrical characteristics, particularly high mobility, it is possible to form a circuit included in the drive circuit unit. Further, the signal line drive circuit 2
The 2703 and the scanning line drive circuit 22704 are IC (Integrated Circuit).
) It can also be mounted on a substrate using a chip. In this case, an amorphous semiconductor film can be applied to the semiconductor element of the pixel portion.

ここで、本実施形態の液晶表示モジュールを図87(A)及び図87(B)を用いて説明
する。
Here, the liquid crystal display module of this embodiment will be described with reference to FIGS. 87 (A) and 87 (B).

図87(A)は液晶表示モジュールの一例であり、TFT基板23100と対向基板23
101がシール材23102により固着され、その間にTFT等を含む画素部23103
と液晶層23104が設けられ表示領域を形成している。着色層23105はカラー表示
を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応した着色層が各
画素に対応して設けられている。TFT基板23100と対向基板23101の外側には
第1の偏光子を含む層23106、第2の偏光子を含む層23107、拡散板23113
が配設されている。光源は冷陰極管23110と反射板23111により構成され、回路
基板23112は、フレキシブル配線基板23109によりTFT基板23100と接続
され、コントロール回路や電源回路などの外部回路が組みこまれている。
FIG. 87 (A) is an example of a liquid crystal display module, in which the TFT substrate 23100 and the facing substrate 23 are shown.
101 is fixed by the sealing material 23102, and the pixel portion 23103 including the TFT and the like is in between.
And the liquid crystal layer 23104 is provided to form a display area. The colored layer 23105 is necessary for color display, and in the case of the RGB method, a colored layer corresponding to each of the red, green, and blue colors is provided corresponding to each pixel. On the outside of the TFT substrate 23100 and the facing substrate 23101, a layer 23106 containing a first polarizing element, a layer 23107 containing a second polarizing element, and a diffuser plate 23113
Are arranged. The light source is composed of a cold cathode tube 23110 and a reflector 23111, and the circuit board 23112 is connected to the TFT board 23100 by a flexible wiring board 23109, and an external circuit such as a control circuit and a power supply circuit is incorporated.

TFT基板23100と光源であるバックライトの間には第2の偏光子を含む層2310
7が積層して設けられ、対向基板23101にも第1の偏光子を含む層23106が積層
して設けられている。一方、第2の偏光子を含む層23107の吸収軸と、視認側に設け
られた第1の偏光子を含む層23106の吸収軸とは、クロスニコルになるように配置さ
れる。
Layer 2310 containing a second polarizing element between the TFT substrate 23100 and the backlight which is a light source.
7 is laminated and provided, and the facing substrate 23101 is also provided with a layer 23106 containing a first polarizing element in a laminated manner. On the other hand, the absorption axis of the layer 23107 containing the second polarizing element and the absorption axis of the layer 23106 including the first polarizing element provided on the viewing side are arranged so as to form a cross Nicole.

積層された第2の偏光子を含む層23107や積層された第1の偏光子を含む層2310
6は、TFT基板23100、対向基板23101に接着されている。また積層された偏
光子を含む層と、基板との間に位相差板を有した状態で積層してもよい。また、必要に応
じて、視認側である第1の偏光子を含む層23106には反射防止処理を施してもよい。
Layer 23107 containing the laminated second polarizing element and layer 2310 containing the laminated first polarizing element.
6 is adhered to the TFT substrate 23100 and the facing substrate 23101. Further, the layer containing the laminated polarizing element may be laminated with a retardation plate between the substrate and the layer. Further, if necessary, the layer 23106 containing the first polarizing element on the visual recognition side may be subjected to antireflection treatment.

液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n-Plane-Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi-domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)、ASM(Axially Symmetric aligned Mic
ro-cell)モード、OCB(Optical Compensated Bire
fringence)モード、FLC(Ferroelectric Liquid C
rystal)モード、AFLC(AntiFerroelectric Liquid
Crystal)、PDLC(Polymer Dispersed Liquid
Crystal)モードなどを用いることができる。
The liquid crystal display module has a TN (Twisted Nematic) mode and an IPS (I).
n-Plane-Switching) mode, FFS (Fringe Field S)
(witching) mode, MVA (Multi-domain Vertical A)
lignment) mode, PVA (Patterned Vertical Alig)
nment), ASM (Axially Symmetrically aligned Mic)
ro-cell) mode, OCB (Optical Compensated Bire)
fringence) mode, FLC (Ferroelectric Liquid C)
rystal) mode, AFLC (AntiFerolectric Liquid)
Crystal), PDLC (Polymer Dispersed Liquid)
Crystal) mode and the like can be used.

図87(B)は図87(A)の液晶表示モジュールにOCBモードを適用した一例であり
、FS-LCD(Field sequential-LCD)となっている。FS-L
CDは、1フレーム期間に赤色発光と緑色発光と青色発光をそれぞれ行うものであり、時
間分割を用いて画像を合成しカラー表示を行うことが可能である。また、各発光を発光ダ
イオードまたは冷陰極管等で行うので、カラーフィルターが不要である。よって、3原色
のカラーフィルターを並べ、各色の表示領域を限定する必要がなく、どの領域でも3色全
ての表示を行うことができる。一方、1フレーム期間に3色の発光を行うため、液晶の高
速な応答が求められる。本実施の形態の表示装置に、FS方式を用いたFLCモード及び
OCBモードを適用し、高性能で高画質な表示装置、また液晶テレビジョン装置を完成さ
せることができる。
FIG. 87 (B) is an example in which the OCB mode is applied to the liquid crystal display module of FIG. 87 (A), and is an FS-LCD (Field sequential-LCD). FS-L
The CD emits red light, green light, and blue light in one frame period, respectively, and it is possible to synthesize images and display them in color by using time division. Further, since each light emission is performed by a light emitting diode, a cold cathode tube, or the like, a color filter is not required. Therefore, it is not necessary to arrange the color filters of the three primary colors and limit the display area of each color, and all three colors can be displayed in any area. On the other hand, since three colors are emitted in one frame period, a high-speed response of the liquid crystal display is required. By applying the FLC mode and OCB mode using the FS method to the display device of the present embodiment, it is possible to complete a high-performance, high-quality display device and a liquid crystal television device.

OCBモードの液晶層は、いわゆるπセル構造を有している。πセル構造とは、液晶分子
のプレチルト角がアクティブマトリクス基板と対向基板との基板間の中心面に対して面対
称の関係で配向された構造である。πセル構造の配向状態は、基板間に電圧が印加されて
いない時はスプレイ配向となり、電圧を印加するとベンド配向に移行する。このベンド配
向が白表示となる。さらに電圧を印加するとベンド配向の液晶分子が両基板と垂直に配向
し、光が透過しない状態となる。なお、OCBモードにすると、従来のTNモードより約
10倍速い高速応答性を実現できる。
The liquid crystal layer in OCB mode has a so-called π cell structure. The π-cell structure is a structure in which the pretilt angle of the liquid crystal molecules is oriented in a plane-symmetrical relationship with respect to the central plane between the active matrix substrate and the opposite substrate. The orientation state of the π cell structure is spray orientation when no voltage is applied between the substrates, and shifts to bend orientation when voltage is applied. This bend orientation is displayed in white. When a voltage is further applied, the bend-oriented liquid crystal molecules are oriented perpendicular to both substrates, and light is not transmitted. In the OCB mode, high-speed response that is about 10 times faster than the conventional TN mode can be realized.

また、FS方式に対応するモードとして、高速動作が可能な強誘電性液晶(FLC:Fe
rroelectric Liquid Crystal)を用いたHV(Half V
)-FLC、SS(Surface Stabilized)-FLCなども用いること
ができる。
In addition, as a mode corresponding to the FS method, a ferroelectric liquid crystal display (FLC: Fe) capable of high-speed operation is possible.
HV (Half V) using rotary Liquid Crystal)
) -FLC, SS (Surface Managed) -FLC and the like can also be used.

また、液晶表示モジュールのセルギャップを狭くすることで、液晶表示モジュールの光学
応答速度を高速化することができる。また、液晶材料の粘度を下げることでも高速化でき
る。高速化は、TNモードの液晶表示モジュールの画素領域の画素ピッチが30μm以下
の場合に、より効果的である。また、液晶層にかける印加電圧を本来の電圧よりも一瞬だ
け高く(または低く)するオーバードライブを用いることで、高速化を行なってもよい。
Further, by narrowing the cell gap of the liquid crystal display module, the optical response speed of the liquid crystal display module can be increased. In addition, the speed can be increased by lowering the viscosity of the liquid crystal material. The high speed is more effective when the pixel pitch of the pixel region of the liquid crystal display module in the TN mode is 30 μm or less. Further, the speed may be increased by using an overdrive in which the applied voltage applied to the liquid crystal layer is momentarily higher (or lower) than the original voltage.

図87(B)の液晶表示モジュールは透過型の液晶表示モジュールを示しており、光源と
して赤色光源23190a、緑色光源23190b、青色光源23190cが設けられて
いる。光源は赤色光源23190a、緑色光源23190b、青色光源23190cのそ
れぞれオンオフを制御するために、制御部23199が設置されている。制御部2319
9によって、各色の発光は制御され、液晶に光は入射し、時間分割を用いて画像を合成し
、カラー表示が行われる。
The liquid crystal display module of FIG. 87B shows a transmissive liquid crystal display module, and is provided with a red light source 23190a, a green light source 23190b, and a blue light source 23190c as light sources. As the light source, a control unit 23199 is installed to control the on / off of each of the red light source 23190a, the green light source 23190b, and the blue light source 23190c. Control unit 2319
The emission of each color is controlled by 9, the light is incident on the liquid crystal display, the image is synthesized by using the time division, and the color display is performed.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態10)
本実施形態においては、表示装置の駆動方法について説明する。特に、液晶表示装置の駆
動方法について説明する。
(Embodiment 10)
In this embodiment, a method of driving the display device will be described. In particular, a method of driving the liquid crystal display device will be described.

まず、オーバードライブ駆動について、図88を参照して説明する。図88の(A)は、
表示素子の、入力電圧に対する出力輝度の時間変化を表したものである。破線で表した入
力電圧30121に対する表示素子の出力輝度の時間変化は、同じく破線で表した出力輝
度30123のようになる。すなわち、目的の出力輝度Lowを得るための電圧はViで
あるが、入力電圧としてViをそのまま入力した場合は、目的の出力輝度Lowに達する
までに、素子の応答速度に対応した時間を要してしまう。
First, the overdrive drive will be described with reference to FIG. 88. (A) of FIG. 88 is
It represents the time change of the output luminance of the display element with respect to the input voltage. The time change of the output luminance of the display element with respect to the input voltage 30121 represented by the broken line is as shown by the output luminance 30123 also represented by the broken line. That is, the voltage for obtaining the target output luminance Low is Vi, but when Vi is input as it is as the input voltage, it takes time corresponding to the response speed of the element until the target output luminance Low is reached. It ends up.

オーバードライブ駆動は、この応答速度を速めるための技術である。具体的には、まず、
Viよりも大きい電圧であるVoを素子に一定時間与えることで出力輝度の応答速度を高
めて、目的の出力輝度Lowに近づけた後に、入力電圧をViに戻す、という方法である
。このときの入力電圧は入力電圧30122、出力輝度は出力輝度30124に表したよ
うになる。出力輝度30124のグラフは、目的の輝度Lowに至るまでの時間が、出力
輝度30123のグラフよりも短くなっている。
Overdrive drive is a technique for increasing this response speed. Specifically, first,
This is a method in which the response speed of the output luminance is increased by applying Vo, which is a voltage higher than Vi, to the element for a certain period of time, and after approaching the target output luminance Low, the input voltage is returned to Vi. The input voltage at this time is represented by the input voltage 30122, and the output luminance is represented by the output luminance 30124. In the graph of the output luminance 30124, the time required to reach the target luminance Low is shorter than that of the graph of the output luminance 30123.

なお、図88の(A)においては、入力電圧に対し出力輝度が正の変化をする場合につい
て述べたが、入力電圧に対し出力輝度が負の変化をする場合も、本実施の形態は含んでい
る。
In addition, in FIG. 88A, the case where the output luminance changes positively with respect to the input voltage is described, but the present embodiment also includes the case where the output luminance changes negatively with respect to the input voltage. I'm out.

このような駆動を実現するための回路について、図88の(B)および図88の(C)を
参照して説明する。まず、図88の(B)を参照して、入力映像信号30131がアナロ
グ値(離散値でもよい)をとる信号であり、出力映像信号30132もアナログ値をとる
信号である場合について説明する。図88の(B)に示すオーバードライブ回路は、符号
化回路30101、フレームメモリ30102、補正回路30103、DA変換回路30
104、を備える。
A circuit for realizing such a drive will be described with reference to FIG. 88 (B) and FIG. 88 (C). First, with reference to FIG. 88B, a case where the input video signal 30131 is a signal having an analog value (may be a discrete value) and the output video signal 30132 is also a signal having an analog value will be described. The overdrive circuit shown in FIG. 88 (B) includes a coding circuit 30101, a frame memory 30102, a correction circuit 30103, and a DA conversion circuit 30.
104.

入力映像信号30131は、まず、符号化回路30101に入力され、符号化される。つ
まり、アナログ信号から、適切なビット数のデジタル信号に変換される。その後、変換さ
れたデジタル信号は、フレームメモリ30102と、補正回路30103と、にそれぞれ
入力される。補正回路30103には、フレームメモリ30102に保持されていた前フ
レームの映像信号も、同時に入力される。そして、補正回路30103において、当該フ
レームの映像信号と、前フレームの映像信号から、あらかじめ用意された数値テーブルに
したがって、補正された映像信号を出力する。このとき、補正回路30103に出力切替
信号30133を入力し、補正された映像信号と、当該フレームの映像信号を切替えて出
力できるようにしてもよい。次に、補正された映像信号または当該フレームの映像信号は
、DA変換回路30104に入力される。そして、補正された映像信号または当該フレー
ムの映像信号にしたがった値のアナログ信号である出力映像信号30132が出力される
。このようにして、オーバードライブ駆動が実現できる。
The input video signal 30131 is first input to the coding circuit 30101 and encoded. That is, the analog signal is converted into a digital signal having an appropriate number of bits. After that, the converted digital signal is input to the frame memory 30102 and the correction circuit 30103, respectively. The video signal of the previous frame held in the frame memory 30102 is also input to the correction circuit 30103 at the same time. Then, in the correction circuit 30103, the corrected video signal is output from the video signal of the frame and the video signal of the previous frame according to the numerical table prepared in advance. At this time, the output switching signal 30133 may be input to the correction circuit 30103 so that the corrected video signal and the video signal of the frame can be switched and output. Next, the corrected video signal or the video signal of the frame is input to the DA conversion circuit 30104. Then, the output video signal 30132, which is an analog signal having a value according to the corrected video signal or the video signal of the frame, is output. In this way, overdrive drive can be realized.

次に、図88の(C)を参照して、入力映像信号30131がデジタル値をとる信号であ
り、出力映像信号30132もデジタル値をとる信号である場合について説明する。図8
8の(C)に示すオーバードライブ回路は、フレームメモリ30112、補正回路301
13、を備える。
Next, a case where the input video signal 30131 is a signal having a digital value and the output video signal 30132 is also a signal having a digital value will be described with reference to FIG. 88 (C). FIG. 8
The overdrive circuit shown in (C) of 8 is a frame memory 30112 and a correction circuit 301.
13.

入力映像信号30131は、デジタル信号であり、まず、フレームメモリ30112と、
補正回路30113と、にそれぞれ入力される。補正回路30113には、フレームメモ
リ30112に保持されていた前フレームの映像信号も、同時に入力される。そして、補
正回路30113において、当該フレームの映像信号と、前フレームの映像信号から、あ
らかじめ用意された数値テーブルにしたがって、補正された映像信号を出力する。このと
き、補正回路30113に出力切替信号30133を入力し、補正された映像信号と、当
該フレームの映像信号を切替えて出力できるようにしてもよい。このようにして、オーバ
ードライブ駆動が実現できる。
The input video signal 30131 is a digital signal, and first, the frame memory 30112 and
It is input to the correction circuit 30113 and, respectively. The video signal of the previous frame held in the frame memory 30112 is also input to the correction circuit 30113 at the same time. Then, in the correction circuit 30113, the corrected video signal is output from the video signal of the frame and the video signal of the previous frame according to the numerical table prepared in advance. At this time, the output switching signal 30133 may be input to the correction circuit 30113 so that the corrected video signal and the video signal of the frame can be switched and output. In this way, overdrive drive can be realized.

なお、本実施の形態におけるオーバードライブ回路は、入力映像信号30131がアナロ
グ信号であり、出力映像信号30132がデジタル信号である場合も含む。このときは、
図88の(B)に示した回路から、DA変換回路30104を省略すればよい。また、本
実施の形態におけるオーバードライブ回路は、入力映像信号30131がデジタル信号で
あり、出力映像信号30132がアナログ信号である場合も含む。このときは、図88の
(B)に示した回路から、符号化回路30101を省略すればよい。
The overdrive circuit in the present embodiment also includes a case where the input video signal 30131 is an analog signal and the output video signal 30132 is a digital signal. At this time,
The DA conversion circuit 30104 may be omitted from the circuit shown in FIG. 88 (B). Further, the overdrive circuit in the present embodiment includes a case where the input video signal 30131 is a digital signal and the output video signal 30132 is an analog signal. At this time, the coding circuit 30101 may be omitted from the circuit shown in FIG. 88 (B).

次に、コモン線の電位を操作する駆動について、図89を参照して説明する。図89の(
A)は、液晶素子のような容量的な性質を持つ表示素子を用いた表示装置において、走査
線1本に対し、コモン線が1本配置されているときの、複数の画素回路を表した図である
。図89の(A)に示す画素回路は、トランジスタ30201、補助容量30202、表
示素子30203、映像信号線30204、走査線30205、コモン線30206、を
備えている。
Next, the drive for manipulating the potential of the common line will be described with reference to FIG. 89. Of FIG. 89
A) represents a plurality of pixel circuits when one common line is arranged for one scanning line in a display device using a display element having a capacitive property such as a liquid crystal element. It is a figure. The pixel circuit shown in FIG. 89A includes a transistor 30201, an auxiliary capacity 30202, a display element 30203, a video signal line 30204, a scanning line 30205, and a common line 30206.

トランジスタ30201のゲート電極は、走査線30205に電気的に接続され、トラン
ジスタ30201のソース電極またはドレイン電極の一方は、映像信号線30204に電
気的に接続され、トランジスタ30201のソース電極またはドレイン電極の他方は、補
助容量30202の一方の電極、および表示素子30203の一方の電極に電気的に接続
されている。
また、補助容量30202の他方の電極は、コモン線30206に電気的に接続されてい
る。
The gate electrode of the transistor 30201 is electrically connected to the scanning line 30205, one of the source or drain electrodes of the transistor 30201 is electrically connected to the video signal line 30204, and the other of the source or drain electrodes of the transistor 30201. Is electrically connected to one electrode of the auxiliary capacity 30202 and one electrode of the display element 30203.
Further, the other electrode of the auxiliary capacity 30202 is electrically connected to the common wire 30206.

まず、走査線30205によって選択された画素は、トランジスタ30201がオンとな
るため、それぞれ、映像信号線30204を介して、表示素子30203および補助容量
30202に映像信号に対応した電圧がかかる。このとき、その映像信号が、コモン線3
0206に接続された全ての画素に対して最低階調を表示させるものだった場合、または
、コモン線30206に接続された全ての画素に対して最高階調を表示させるものだった
場合は、画素にそれぞれ映像信号線30204を介して映像信号を書き込む必要はない。
映像信号線30204を介して映像信号を書き込む代わりに、コモン線30206の電位
を動かすことで、表示素子30203にかかる電圧を変えることができる。
First, since the transistor 30201 is turned on for the pixel selected by the scanning line 30205, a voltage corresponding to the video signal is applied to the display element 30203 and the auxiliary capacity 30202, respectively, via the video signal line 30204. At this time, the video signal is the common line 3
If the lowest gradation is displayed for all the pixels connected to 0206, or the highest gradation is displayed for all the pixels connected to the common line 30206, the pixel. It is not necessary to write a video signal to each of the video signals via the video signal line 30204.
Instead of writing the video signal via the video signal line 30204, the voltage applied to the display element 30203 can be changed by moving the potential of the common line 30206.

次に、図89の(B)は、液晶素子のような容量的な性質を持つ表示素子を用いた表示装
置において、走査線1本に対し、コモン線が2本配置されているときの、複数の画素回路
を表した図である。図89の(B)に示す画素回路は、トランジスタ30211、補助容
量30212、表示素子30213、映像信号線30214、走査線30215、第1の
コモン線30216、第2のコモン線30217、を備えている。
Next, FIG. 89 (B) shows a display device using a display element having a capacitive property such as a liquid crystal element, in which two common lines are arranged for one scanning line. It is a figure showing a plurality of pixel circuits. The pixel circuit shown in FIG. 89 (B) includes a transistor 30211, an auxiliary capacity 30212, a display element 30213, a video signal line 30214, a scanning line 30215, a first common line 30216, and a second common line 30217. ..

トランジスタ30211のゲート電極は、走査線30215に電気的に接続され、トラン
ジスタ30211のソース電極またはドレイン電極の一方は、映像信号線30214に電
気的に接続され、トランジスタ30211のソース電極またはドレイン電極の他方は、補
助容量30212の一方の電極、および表示素子30213の一方の電極に電気的に接続
されている。
また、補助容量30212の他方の電極は、第1のコモン線30216に電気的に接続さ
れている。
また、当該画素と隣接する画素においては、補助容量30212の他方の電極は、第2の
コモン線30217に電気的に接続されている。
The gate electrode of transistor 30211 is electrically connected to the scanning line 30215, one of the source or drain electrodes of transistor 30211 is electrically connected to the video signal line 30214, and the other of the source or drain electrode of transistor 30211. Is electrically connected to one electrode of the auxiliary capacity 30212 and one electrode of the display element 30213.
Further, the other electrode of the auxiliary capacity 30212 is electrically connected to the first common wire 30216.
Further, in the pixel adjacent to the pixel, the other electrode of the auxiliary capacitance 30212 is electrically connected to the second common wire 30217.

図89の(B)に示す画素回路は、コモン線1本に対し電気的に接続されている画素が少
ないため、映像信号線30214を介して映像信号を書き込む代わりに、第1のコモン線
30216または第2のコモン線30217の電位を動かすことで、表示素子30213
にかかる電圧を変えることができる頻度が、顕著に大きくなる。また、ソース反転駆動ま
たはドット反転駆動が可能になる。ソース反転駆動またはドット反転駆動により、素子の
信頼性を向上させつつ、フリッカを抑えることができる。
Since the pixel circuit shown in FIG. 89 (B) has few pixels electrically connected to one common line, the first common line 30216 is used instead of writing a video signal via the video signal line 30214. Alternatively, by moving the potential of the second common line 30217, the display element 30213
The frequency with which the voltage applied to can be changed is significantly increased. In addition, source inversion drive or dot inversion drive becomes possible. By the source inversion drive or the dot inversion drive, flicker can be suppressed while improving the reliability of the element.

次に、走査型バックライトについて、図90を参照して説明する。図90の(A)は、冷
陰極管を並置した走査型バックライトを示す図である。図90の(A)に示す走査型バッ
クライトは、拡散板30301と、N個の冷陰極管30302―1から30302―Nと
、を備える。N個の冷陰極管30302―1から30302―Nを、拡散板30301の
後ろに並置することで、N個の冷陰極管30302―1から30302―Nは、その輝度
を変化させて走査することができる。
Next, the scanning backlight will be described with reference to FIG. 90. FIG. 90A is a diagram showing a scanning backlight in which cold cathode fluorescent lamps are juxtaposed. The scanning backlight shown in FIG. 90 (A) includes a diffuser plate 30301 and N cold-cathode tubes 30302-1 to 30302-N. By juxtaposing N cold-cathode tubes 30302-1 to 30302-N behind the diffuser plate 30301, the N cold-cathode tubes 30302-1 to 30302-N can be scanned by changing their brightness. Can be done.

走査するときの各冷陰極管の輝度の変化を、図90の(C)を用いて説明する。まず、冷
陰極管30302―1の輝度を、一定時間変化させる。そして、その後に、冷陰極管30
302―1の隣に配置された冷陰極管30302―2の輝度を、同じ時間だけ変化させる
。このように、冷陰極管30302―1から30302―Nまで、輝度を順に変化させる
。なお、図90の(C)においては、一定時間変化させる輝度は、元の輝度より小さいも
のとしたが、元の輝度より大きくてもよい。また、冷陰極管30302―1から3030
2―Nまで走査するとしたが、逆方向に冷陰極管30302―Nから30302―1まで
走査してもよい。
The change in the brightness of each cold-cathode tube during scanning will be described with reference to FIG. 90 (C). First, the brightness of the cold cathode fluorescent lamp 30302-1 is changed for a certain period of time. Then, after that, the cold cathode fluorescent lamp 30
The brightness of the cold cathode fluorescent lamp 30302-2 arranged next to the 302-1 is changed by the same time. In this way, the brightness is sequentially changed from the cold cathode fluorescent lamp 30302-1 to 30302-N. In (C) of FIG. 90, the brightness changed for a certain period of time is smaller than the original brightness, but may be larger than the original brightness. In addition, cold cathode tubes 30302-1 to 3030
Although it is assumed that scanning is performed up to 2-N, the cold-cathode tubes 30302-N to 30302-1 may be scanned in the opposite direction.

図90のように駆動することで、バックライトの平均輝度を小さくすることができる。し
たがって、液晶表示装置の消費電力の大部分を占める、バックライトの消費電力を低減す
ることができる。
By driving as shown in FIG. 90, the average brightness of the backlight can be reduced. Therefore, it is possible to reduce the power consumption of the backlight, which occupies most of the power consumption of the liquid crystal display device.

なお、走査型バックライトの光源として、LEDを用いてもよい。その場合の走査型バッ
クライトは、図90の(B)のようになる。図90の(B)に示す走査型バックライトは
、拡散板30311と、LEDを並置した光源30312―1から30312―Nと、を
備える。走査型バックライトの光源として、LEDを用いた場合、バックライトを薄く、
軽くできる利点がある。また、色再現範囲を広げることができるという利点がある。さら
に、LEDを並置した光源30312―1から30312―Nのそれぞれに並置したLE
Dも、同様に走査することができるので、点走査型のバックライトとすることもできる。
点走査型とすれば、動画像の画質をさらに向上させることができる。
An LED may be used as the light source of the scanning backlight. The scanning backlight in that case is as shown in FIG. 90 (B). The scanning backlight shown in FIG. 90 (B) includes a diffuser plate 30311 and light sources 30312-1 to 30312-N in which LEDs are juxtaposed. When an LED is used as the light source of the scanning backlight, the backlight is made thin.
It has the advantage of being lighter. In addition, there is an advantage that the color reproduction range can be expanded. Further, LEs arranged side by side in each of the light sources 30312-1 to 30312-N in which LEDs are arranged side by side.
Since D can also be scanned in the same manner, it can also be a point scanning type backlight.
If the point scanning type is used, the image quality of the moving image can be further improved.

なお、バックライトの光源としてLEDを用いた場合も、図90の(C)に示すように輝
度を変化させて駆動することができる。
Even when an LED is used as the light source of the backlight, it can be driven by changing the brightness as shown in FIG. 90 (C).

次に、高周波駆動について、図91を参照して説明する。図91の(A)は、1フレーム
期間30400に1つの画像および1つの中間画像を表示するときの図である。3040
1は当該フレームの画像、30402は当該フレームの中間画像、30403は次フレー
ムの画像、30404は次フレームの中間画像である。
Next, the high frequency drive will be described with reference to FIG. 91. FIG. 91 (A) is a diagram when one image and one intermediate image are displayed in one frame period 30400. 3040
1 is an image of the frame, 30402 is an intermediate image of the frame, 30403 is an image of the next frame, and 30404 is an intermediate image of the next frame.

なお、当該フレームの中間画像30402は、当該フレームおよび次フレームの映像信号
を元に作成された画像であってもよい。また、当該フレームの中間画像30402は、当
該フレームの画像30401から作成された画像であってもよい。また、当該フレームの
中間画像30402は、黒画像であってもよい。こうすることで、ホールド型表示装置の
動画像の画質を向上できる。また、1フレーム期間30400に1つの画像および1つの
中間画像を表示する場合は、映像信号のフレームレートと整合性が取り易く、画像処理回
路が複雑にならないという利点がある。
The intermediate image 30402 of the frame may be an image created based on the video signals of the frame and the next frame. Further, the intermediate image 30402 of the frame may be an image created from the image 30401 of the frame. Further, the intermediate image 30402 of the frame may be a black image. By doing so, the image quality of the moving image of the hold type display device can be improved. Further, when displaying one image and one intermediate image in one frame period 30400, there is an advantage that the frame rate of the video signal is easily matched and the image processing circuit is not complicated.

図91の(B)は、1フレーム期間30400が2つ連続する期間(2フレーム期間)に
1つの画像および2つの中間画像を表示するときの図である。30411は当該フレーム
の画像、30412は当該フレームの中間画像、30413は次フレームの中間画像、3
0414は次々フレームの画像である。
FIG. 91 (B) is a diagram when one image and two intermediate images are displayed in a period (two frame periods) in which one frame period 30400 is two consecutive periods. 30411 is the image of the frame, 30412 is the intermediate image of the frame, 30413 is the intermediate image of the next frame, 3.
0414 is an image of frames one after another.

なお、当該フレームの中間画像30412および次フレームの中間画像30413は、当
該フレーム、次フレーム、次々フレームの映像信号を元に作成された画像であってもよい
。また、当該フレームの中間画像30412および次フレームの中間画像30413は、
黒画像であってもよい。2フレーム期間に1つの画像および2つの中間画像を表示する場
合は、周辺駆動回路の動作周波数をそれほど高速化することなく、効果的に動画像の画質
を向上できるという利点がある。
The intermediate image 30412 of the frame and the intermediate image 30413 of the next frame may be images created based on the video signals of the frame, the next frame, and the next frame. Further, the intermediate image 30412 of the frame and the intermediate image 30413 of the next frame are
It may be a black image. When displaying one image and two intermediate images in a two-frame period, there is an advantage that the image quality of the moving image can be effectively improved without increasing the operating frequency of the peripheral drive circuit so much.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態11)
本実施形態においては、表示装置の画素構造について説明する。特に、有機EL素子を用
いた表示装置の画素構造について説明する。
(Embodiment 11)
In this embodiment, the pixel structure of the display device will be described. In particular, the pixel structure of the display device using the organic EL element will be described.

図92(A)に、1つの画素に2つのTFTを有する画素の素子のレイアウト例を示す。
また、図92(A)において、X-X’で示される部分の断面図を図92(B)に示す。
FIG. 92A shows a layout example of a pixel element having two TFTs in one pixel.
Further, in FIG. 92 (A), a cross-sectional view of a portion indicated by XX'is shown in FIG. 92 (B).

図92(A)に示すように、本実施の形態における画素は、第1のTFT60105、
第1の配線60106、第2の配線60107、第2のTFT60108、第3の配線6
0111、対向電極60112、コンデンサ60113、画素電極60115、隔壁60
116、有機導電体膜60117、有機薄膜60118、基板60119を有していても
よい。なお、第1のTFT60105はスイッチング用TFTとして、第1の配線601
06はゲート信号線として、第2の配線60107はソース信号線として、第2のTFT
60108は駆動用TFTとして、第3の配線60111は電流供給線として、それぞれ
用いられるのが好適である。
As shown in FIG. 92 (A), the pixel in this embodiment is the first TFT 60105,
First wiring 60106, second wiring 60107, second TFT 60108, third wiring 6
0111, counter electrode 60112, capacitor 60113, pixel electrode 60115, partition wall 60
It may have 116, an organic conductor film 60117, an organic thin film 60118, and a substrate 60119. The first TFT 60105 is a switching TFT, and the first wiring 601 is used.
06 is a gate signal line, the second wiring 60107 is a source signal line, and a second TFT.
It is preferable that 60108 is used as a driving TFT and the third wiring 60111 is used as a current supply line.

図92(A)に示すように、第1のTFT60105のゲート電極は、第1の配線60
106と電気的に接続され、第1のTFT60105のソース電極またはドレイン電極の
一方は、第2の配線60107と電気的に接続され、第1のTFT60105のソース電
極またはドレイン電極の他方は、第2のTFT60108のゲート電極およびコンデンサ
60113の一方の電極と電気的に接続されているのが好適である。なお、第1のTFT
60105のゲート電極は、図92(A)に示すように、複数のゲート電極によって構成
されていても良い。こうすることで、第1のTFT60105のオフ状態におけるリーク
電流を低減することができる。
As shown in FIG. 92 (A), the gate electrode of the first TFT 60105 is the first wiring 60.
Electrically connected to 106, one of the source or drain electrodes of the first TFT 60105 is electrically connected to the second wiring 60107, and the other of the source or drain electrodes of the first TFT 60105 is the second. It is preferable that the gate electrode of the TFT 60108 and one electrode of the capacitor 60113 are electrically connected. The first TFT
As shown in FIG. 92 (A), the gate electrode of 60105 may be composed of a plurality of gate electrodes. By doing so, the leakage current in the off state of the first TFT 60105 can be reduced.

また、第2のTFT60108のソース電極またはドレイン電極の一方は、第3の配線6
0111と電気的に接続され、第2のTFT60108のソース電極またはドレイン電極
の他方は、画素電極60115と電気的に接続されているのが好適である。こうすること
で、画素電極60115に流れる電流を、第2のTFT60108によって制御すること
ができる。
Further, one of the source electrode and the drain electrode of the second TFT 60108 is a third wiring 6
It is preferably electrically connected to 0111 and the other of the source or drain electrodes of the second TFT 60108 is electrically connected to the pixel electrode 60115. By doing so, the current flowing through the pixel electrode 60115 can be controlled by the second TFT 60108.

画素電極60115上には、有機導電体膜60117が設けられ、さらに有機薄膜(有機
化合物層)60118が設けられていてもよい。有機薄膜(有機化合物層)60118上
には、対向電極60112が設けられていてもよい。なお、対向電極60112は、全て
の画素で共通に接続されるように、ベタ付けの形で形成されていてもよく、シャドーマス
クなどを用いてパターン形成されていてもよい。
An organic conductor film 60117 may be provided on the pixel electrode 60115, and an organic thin film (organic compound layer) 60118 may be further provided. A counter electrode 60112 may be provided on the organic thin film (organic compound layer) 60118. The counter electrode 60112 may be formed in a solid shape so as to be connected in common to all the pixels, or may be patterned by using a shadow mask or the like.

有機薄膜(有機化合物層)60118から発せられた光は、画素電極60115もしく
は対向電極60112のうちいずれかを透過して発せられる。このとき、図92(B)に
おいて、画素電極側、すなわちTFT等が形成されている側に光が発せられる場合を下面
射出、対向電極側に光が発せられる場合を上面射出と呼ぶ。
The light emitted from the organic thin film (organic compound layer) 60118 is emitted through either the pixel electrode 60115 or the counter electrode 60112. At this time, in FIG. 92B, the case where light is emitted to the pixel electrode side, that is, the side where the TFT or the like is formed is referred to as bottom surface emission, and the case where light is emitted to the counter electrode side is referred to as top surface emission.

下面射出の場合、画素電極60115は透明導電膜によって形成されるのが好適である
。逆に、上面射出の場合、対向電極60112は透明導電膜によって形成されるのが好適
である。
In the case of bottom surface injection, it is preferable that the pixel electrode 60115 is formed of a transparent conductive film. On the contrary, in the case of top surface injection, it is preferable that the counter electrode 60112 is formed of a transparent conductive film.

また、カラー表示の発光装置においては、R・G・Bそれぞれの発光色を持つEL素子
を塗り分けても良いし、単色のEL素子をベタ付けの形で塗り、カラーフィルタによって
R・G・Bの発光を得るようにしても良い。
Further, in the color display light emitting device, the EL elements having the respective emission colors of R, G, and B may be painted separately, or the single color EL elements may be painted in a solid form, and the R, G, and B may be painted by a color filter. The light emission of B may be obtained.

なお、図92に示した構成はあくまで一例であり、画素レイアウト、断面構成、EL素
子の電極の積層順等に関して、図92に示した構成以外にも、様々な構成をとることがで
きる。また、発光層は、図示した有機薄膜で構成される素子の他に、LEDのような結晶
性の素子、無機薄膜で構成される素子など、様々な素子を用いることができる。
The configuration shown in FIG. 92 is merely an example, and various configurations other than those shown in FIG. 92 can be taken with respect to the pixel layout, the cross-sectional configuration, the stacking order of the electrodes of the EL element, and the like. Further, as the light emitting layer, in addition to the element composed of the organic thin film shown in the figure, various elements such as a crystalline element such as an LED and an element composed of an inorganic thin film can be used.

次に、図93(A)を参照して、1つの画素に3つのTFTを有する画素の素子のレイア
ウト例について説明する。また、図93(A)において、X-X’で示される部分の断面
図を図93(B)に示す。
Next, with reference to FIG. 93 (A), a layout example of a pixel element having three TFTs in one pixel will be described. Further, in FIG. 93 (A), a cross-sectional view of a portion indicated by XX'is shown in FIG. 93 (B).

図93(A)に示すように、本実施の形態における画素は、基板60200、第1の配
線60201、第2の配線60202、第3の配線60203、第4の配線60204、
第1のTFT60205、第2のTFT60206、第3のTFT60207、画素電極
60208、隔壁60211、有機導電体膜60212、有機薄膜60213、対向電極
60214、を有していてもよい。なお、第1の配線60201はソース信号線として、
第2の配線60202は書込用ゲート信号線として、第3の配線60203は消去用ゲー
ト信号線として、第4の配線60204は電流供給線として、第1のTFT60205は
スイッチング用TFTとして、第2のTFT60206は消去用TFTとして、第3のT
FT60207は駆動用TFTとして、それぞれ用いられるのが好適である。
As shown in FIG. 93 (A), the pixels in the present embodiment include the substrate 60200, the first wiring 60201, the second wiring 60202, the third wiring 60203, and the fourth wiring 60204.
It may have a first TFT 60205, a second TFT 60206, a third TFT 60207, a pixel electrode 60208, a partition wall 60211, an organic conductor film 60212, an organic thin film 60213, and a counter electrode 60214. The first wiring 60201 is used as a source signal line.
The second wiring 60202 is used as a writing gate signal line, the third wiring 60203 is used as an erasing gate signal line, the fourth wiring 60204 is used as a current supply line, and the first TFT 60205 is used as a switching TFT. TFT 60206 is a third T as an erasing TFT.
The FT60207 is preferably used as a driving TFT, respectively.

図93(A)に示すように、第1のTFT60205のゲート電極は、第2の配線60
202と電気的に接続され、第1のTFT60205のソース電極またはドレイン電極の
一方は、第1の配線60201と電気的に接続され、第1のTFT60205のソース電
極またはドレイン電極の他方は、第3のTFT60207のゲート電極と電気的に接続さ
れているのが好適である。なお、第1のTFT60205のゲート電極は、図93(A)
に示すように、複数のゲート電極によって構成されていても良い。こうすることで、第1
のTFT60205のオフ状態におけるリーク電流を低減することができる。
As shown in FIG. 93 (A), the gate electrode of the first TFT 60205 is the second wiring 60.
Electrically connected to 202, one of the source or drain electrodes of the first TFT 60205 is electrically connected to the first wiring 60201, and the other of the source or drain electrodes of the first TFT 60205 is the third. It is preferable that it is electrically connected to the gate electrode of TFT 60207. The gate electrode of the first TFT 60205 is shown in FIG. 93 (A).
As shown in, it may be composed of a plurality of gate electrodes. By doing this, the first
The leakage current in the OFF state of the TFT 60205 can be reduced.

また、第2のTFT60206のゲート電極は、第3の配線60203と電気的に接続
され、第2のTFT60206のソース電極またはドレイン電極の一方は、第4の配線6
0204と電気的に接続され、第2のTFT60206のソース電極またはドレイン電極
の他方は、第3のTFT60207のゲート電極と電気的に接続されているのが好適であ
る。なお、第2のTFT60206のゲート電極は、図93(A)に示すように、複数の
ゲート電極によって構成されていても良い。こうすることで、第2のTFT60206の
オフ状態におけるリーク電流を低減することができる。
Further, the gate electrode of the second TFT 60206 is electrically connected to the third wiring 60203, and one of the source electrode and the drain electrode of the second TFT 60206 is the fourth wiring 6
It is preferred that it is electrically connected to 0204 and the other of the source or drain electrodes of the second TFT 60206 is electrically connected to the gate electrode of the third TFT 60207. As shown in FIG. 93 (A), the gate electrode of the second TFT 60206 may be composed of a plurality of gate electrodes. By doing so, the leakage current in the off state of the second TFT 60206 can be reduced.

また、第3のTFT60207のソース電極またはドレイン電極の一方は、第4の配線6
0204と電気的に接続され、第3のTFT60207のソース電極またはドレイン電極
の他方は、画素電極60208と電気的に接続されているのが好適である。こうすること
で、画素電極60208に流れる電流を、第3のTFT60207によって制御すること
ができる。
Further, one of the source electrode and the drain electrode of the third TFT 60207 is the fourth wiring 6
It is preferred that it is electrically connected to 0204 and the other of the source or drain electrodes of the third TFT 60207 is electrically connected to the pixel electrode 60208. By doing so, the current flowing through the pixel electrode 60208 can be controlled by the third TFT 60207.

画素電極60208上には、有機導電体膜60212が設けられ、さらに有機薄膜(有機
化合物層)60213が設けられていてもよい。有機薄膜(有機化合物層)60213上
には、対向電極60214が設けられていてもよい。なお、対向電極60214は、全て
の画素で共通に接続されるように、ベタ付けの形で形成されていてもよく、シャドーマス
クなどを用いてパターン形成されていてもよい。
An organic conductor film 60212 may be provided on the pixel electrode 60208, and an organic thin film (organic compound layer) 60213 may be further provided. A counter electrode 60214 may be provided on the organic thin film (organic compound layer) 60213. The counter electrode 60214 may be formed in a solid shape so as to be connected in common to all the pixels, or may be patterned by using a shadow mask or the like.

有機薄膜(有機化合物層)60213から発せられた光は、画素電極60208もしく
は対向電極60214のうちいずれかを透過して発せられる。このとき、図93(B)に
おいて、画素電極側、すなわちTFT等が形成されている側に光が発せられる場合を下面
射出、対向電極側に光が発せられる場合を上面射出と呼ぶ。
The light emitted from the organic thin film (organic compound layer) 60213 is emitted through either the pixel electrode 60208 or the counter electrode 60214. At this time, in FIG. 93B, the case where light is emitted to the pixel electrode side, that is, the side where the TFT or the like is formed is referred to as bottom surface emission, and the case where light is emitted to the counter electrode side is referred to as top surface emission.

下面射出の場合、画素電極60208は透明導電膜によって形成されるのが好適である
。逆に、上面射出の場合、対向電極60214は透明導電膜によって形成されるのが好適
である。
In the case of bottom surface injection, the pixel electrode 60208 is preferably formed of a transparent conductive film. On the contrary, in the case of top surface injection, it is preferable that the counter electrode 60214 is formed of a transparent conductive film.

また、カラー表示の発光装置においては、R・G・Bそれぞれの発光色を持つEL素子
を塗り分けても良いし、単色のEL素子をベタ付けの形で塗り、カラーフィルタによって
R・G・Bの発光を得るようにしても良い。
Further, in the color display light emitting device, the EL elements having the respective emission colors of R, G, and B may be painted separately, or the single color EL elements may be painted in a solid form, and the R, G, and B may be painted by a color filter. The light emission of B may be obtained.

なお、図93に示した構成はあくまで一例であり、画素レイアウト、断面構成、EL素
子の電極の積層順等に関して、図93に示した構成以外にも、様々な構成をとることがで
きる。また、発光層は、図示した有機薄膜で構成される素子の他に、LEDのような結晶
性の素子、無機薄膜で構成される素子など、様々な素子を用いることができる。
The configuration shown in FIG. 93 is merely an example, and various configurations other than those shown in FIG. 93 can be taken with respect to the pixel layout, the cross-sectional configuration, the stacking order of the electrodes of the EL element, and the like. Further, as the light emitting layer, in addition to the element composed of the organic thin film shown in the figure, various elements such as a crystalline element such as an LED and an element composed of an inorganic thin film can be used.

次に、図94(A)を参照して、1つの画素に4つのTFTを有する画素の素子のレイア
ウト例について説明する。また、図94(A)において、X-X’で示される部分の断面
図を図94(B)に示す。
Next, with reference to FIG. 94 (A), a layout example of a pixel element having four TFTs in one pixel will be described. Further, in FIG. 94 (A), a cross-sectional view of a portion indicated by XX'is shown in FIG. 94 (B).

図94(A)に示すように、本実施の形態における画素は、基板60300、第1の配
線60301、第2の配線60302、第3の配線60303、第4の配線60304、
第1のTFT60305、第2のTFT60306、第3のTFT60307、第4のT
FT60308、画素電極60309、第5の配線60311、第6の配線60312、
隔壁60321、有機導電体膜60322、有機薄膜60323、対向電極60324、
を有していてもよい。なお、第1の配線60301はソース信号線として、第2の配線6
0302は書込用ゲート信号線として、第3の配線60303は消去用ゲート信号線とし
て、第4の配線60304は逆方向バイアス用信号線として、第1のTFT60305は
スイッチング用TFTとして、第2のTFT60306は消去用TFTとして、第3のT
FT60307は駆動用TFTとして、第4のTFT60308は逆方向バイアス用TF
Tとして、第5の配線60311は電流供給線として、第6の配線60312は逆方向バ
イアス用電源線として、それぞれ用いられるのが好適である。
As shown in FIG. 94 (A), the pixels in the present embodiment include the substrate 60300, the first wiring 60301, the second wiring 60302, the third wiring 60303, and the fourth wiring 60304.
1st TFT60305, 2nd TFT60306, 3rd TFT60307, 4th T
FT60308, pixel electrode 60309, fifth wiring 60311, sixth wiring 60312,
Partition wall 60321, organic conductor film 60322, organic thin film 60323, counter electrode 60324,
May have. The first wiring 60301 is used as a source signal line, and the second wiring 6 is used.
0302 is a writing gate signal line, the third wiring 60303 is an erasing gate signal line, the fourth wiring 60304 is a reverse bias signal line, and the first TFT 60305 is a switching TFT. The TFT 60306 is a third T as an erasing TFT.
The FT60307 is a driving TFT, and the fourth TFT 60308 is a reverse bias TF.
As T, it is preferable that the fifth wiring 60311 is used as a current supply line and the sixth wiring 60312 is used as a power supply line for reverse bias.

図94(A)に示すように、第1のTFT60305のゲート電極は、第2の配線60
302と電気的に接続され、第1のTFT60305のソース電極またはドレイン電極の
一方は、第1の配線60301と電気的に接続され、第1のTFT60305のソース電
極またはドレイン電極の他方は、第3のTFT60307のゲート電極と電気的に接続さ
れているのが好適である。なお、第1のTFT60305のゲート電極は、図94(A)
に示すように、複数のゲート電極によって構成されていても良い。こうすることで、第1
のTFT60305のオフ状態におけるリーク電流を低減することができる。
As shown in FIG. 94 (A), the gate electrode of the first TFT 60305 is the second wiring 60.
Electrically connected to 302, one of the source or drain electrodes of the first TFT 60305 is electrically connected to the first wiring 60301, and the other of the source or drain electrodes of the first TFT 60305 is the third. It is preferable that it is electrically connected to the gate electrode of the TFT 60307. The gate electrode of the first TFT 60305 is shown in FIG. 94 (A).
As shown in, it may be composed of a plurality of gate electrodes. By doing this, the first
The leakage current in the OFF state of the TFT 60305 can be reduced.

また、第2のTFT60306のゲート電極は、第3の配線60303と電気的に接続
され、第2のTFT60306のソース電極またはドレイン電極の一方は、第5の配線6
0311と電気的に接続され、第2のTFT60306のソース電極またはドレイン電極
の他方は、第3のTFT60307のゲート電極と電気的に接続されているのが好適であ
る。なお、第2のTFT60306のゲート電極は、図94(A)に示すように、複数の
ゲート電極によって構成されていても良い。こうすることで、第2のTFT60306の
オフ状態におけるリーク電流を低減することができる。
Further, the gate electrode of the second TFT 60306 is electrically connected to the third wiring 60303, and one of the source electrode and the drain electrode of the second TFT 60306 is the fifth wiring 6
It is preferred that it is electrically connected to 0311 and the other of the source or drain electrodes of the second TFT 60306 is electrically connected to the gate electrode of the third TFT 60307. As shown in FIG. 94A, the gate electrode of the second TFT 60306 may be composed of a plurality of gate electrodes. By doing so, the leakage current in the off state of the second TFT 60306 can be reduced.

また、第3のTFT60307のソース電極またはドレイン電極の一方は、第5の配線6
0311と電気的に接続され、第3のTFT60307のソース電極またはドレイン電極
の他方は、画素電極60309と電気的に接続されているのが好適である。こうすること
で、画素電極60309に流れる電流を、第3のTFT60307によって制御すること
ができる。
Further, one of the source electrode and the drain electrode of the third TFT 60307 is the fifth wiring 6
It is preferable that the other of the source electrode or the drain electrode of the third TFT 60307 is electrically connected to the pixel electrode 60309. By doing so, the current flowing through the pixel electrode 60309 can be controlled by the third TFT 60307.

また、第4のTFT60308のゲート電極は、第4の配線60304と電気的に接続さ
れ、第4のTFT60308のソース電極またはドレイン電極の一方は、第6の配線60
312と電気的に接続され、第4のTFT60308のソース電極またはドレイン電極の
他方は、画素電極60309と電気的に接続されているのが好適である。こうすることで
、画素電極60309の電位を、第4のTFT60308によって制御することができる
ので、有機導電体膜60322および有機薄膜60323に、逆方向のバイアスを印加す
ることができる。有機導電体膜60322および有機薄膜60323などで構成される発
光素子に逆方向のバイアスを印加することによって、発光素子の信頼性を大きく向上させ
ることができる。
Further, the gate electrode of the fourth TFT 60308 is electrically connected to the fourth wiring 60304, and one of the source electrode and the drain electrode of the fourth TFT 60308 is the sixth wiring 60.
It is preferred that it is electrically connected to 312 and the other of the source or drain electrodes of the fourth TFT 60308 is electrically connected to the pixel electrode 60309. By doing so, the potential of the pixel electrode 60309 can be controlled by the fourth TFT 60308, so that the bias in the opposite direction can be applied to the organic conductor film 60322 and the organic thin film 60323. By applying a bias in the opposite direction to the light emitting element composed of the organic conductor film 60322 and the organic thin film 60323, the reliability of the light emitting element can be greatly improved.

たとえば、直流電圧(3.65V)で駆動した場合の輝度半減時間が400時間程度であ
る発光素子を、交流電圧(順方向バイアス:3.7V、逆方向バイアス:1.7V、デュ
ーティ50%、交流周波数60Hz)で駆動すると、輝度半減時間は700時間以上とな
ることがわかっている。
For example, an AC voltage (forward bias: 3.7V, reverse bias: 1.7V, duty 50%,) of a light emitting element having a brightness half time of about 400 hours when driven by a DC voltage (3.65V). It is known that when driven at an AC frequency of 60 Hz), the brightness half-time is 700 hours or more.

次に、画素電極60309上には、有機導電体膜60322が設けられ、さらに有機薄膜
(有機化合物層)60323が設けられていてもよい。有機薄膜(有機化合物層)603
23上には、対向電極60324が設けられていてもよい。なお、対向電極60324は
、全ての画素で共通に接続されるように、ベタ付けの形で形成されていてもよく、シャド
ーマスクなどを用いてパターン形成されていてもよい。
Next, an organic conductor film 60322 may be provided on the pixel electrode 60309, and an organic thin film (organic compound layer) 60323 may be further provided. Organic thin film (organic compound layer) 603
A counter electrode 60324 may be provided on the 23. The counter electrode 60324 may be formed in a solid shape so as to be connected in common to all the pixels, or may be patterned by using a shadow mask or the like.

有機薄膜(有機化合物層)60323から発せられた光は、画素電極60309もしく
は対向電極60324のうちいずれかを透過して発せられる。このとき、図94(B)に
おいて、画素電極側、すなわちTFT等が形成されている側に光が発せられる場合を下面
射出、対向電極側に光が発せられる場合を上面射出と呼ぶ。
The light emitted from the organic thin film (organic compound layer) 60323 is emitted through either the pixel electrode 60309 or the counter electrode 60324. At this time, in FIG. 94B, the case where light is emitted to the pixel electrode side, that is, the side where the TFT or the like is formed is referred to as bottom surface emission, and the case where light is emitted to the counter electrode side is referred to as top surface emission.

下面射出の場合、画素電極60309は透明導電膜によって形成されるのが好適である
。逆に、上面射出の場合、対向電極60324は透明導電膜によって形成されるのが好適
である。
In the case of bottom surface injection, it is preferable that the pixel electrode 60309 is formed of a transparent conductive film. On the contrary, in the case of top surface injection, it is preferable that the counter electrode 60324 is formed of a transparent conductive film.

また、カラー表示の発光装置においては、R・G・Bそれぞれの発光色を持つEL素子
を塗り分けても良いし、単色のEL素子をベタ付けの形で塗り、カラーフィルタによって
R・G・Bの発光を得るようにしても良い。
Further, in the color display light emitting device, the EL elements having the respective emission colors of R, G, and B may be painted separately, or the single color EL elements may be painted in a solid form, and the R, G, and B may be painted by a color filter. The light emission of B may be obtained.

なお、図94に示した構成はあくまで一例であり、画素レイアウト、断面構成、EL素
子の電極の積層順等に関して、図94に示した構成以外にも、様々な構成をとることがで
きる。また、発光層は、図示した有機薄膜で構成される素子の他に、LEDのような結晶
性の素子、無機薄膜で構成される素子など、様々な素子を用いることができる。
The configuration shown in FIG. 94 is merely an example, and various configurations other than those shown in FIG. 94 can be taken with respect to the pixel layout, the cross-sectional configuration, the stacking order of the electrodes of the EL element, and the like. Further, as the light emitting layer, in addition to the element composed of the organic thin film shown in the figure, various elements such as a crystalline element such as an LED and an element composed of an inorganic thin film can be used.

次に、本発明に適用できるEL素子の構造について説明する。 Next, the structure of the EL element applicable to the present invention will be described.

本発明に適用できるEL素子は、正孔注入材料からなる正孔注入層、正孔輸送材料から
なる正孔輸送層、発光材料からなる発光層、電子輸送材料からなる電子輸送層、電子注入
材料からなる電子注入層等が、明確に区別されるような積層構造ではなく、正孔注入材料
、正孔輸送材料、発光材料、電子輸送材料、電子注入材料等の材料のうち、複数の材料が
混合された層(混合層)を有する構成(以下、混合接合型のEL素子と表記する)でもよ
い。
The EL element applicable to the present invention includes a hole injection layer made of a hole injection material, a hole transport layer made of a hole transport material, a light emitting layer made of a light emitting material, an electron transport layer made of an electron transport material, and an electron injection material. The electron injection layer and the like are not a laminated structure that can be clearly distinguished, but a plurality of materials among the materials such as hole injection material, hole transport material, light emitting material, electron transport material, and electron injection material are used. A configuration having a mixed layer (mixed layer) (hereinafter, referred to as a mixed bonding type EL element) may be used.

混合接合型のEL素子の構造を示す模式図を、図95に示す。図95において、604
01はEL素子の陽極である。60402はEL素子の陰極である。陽極60401と陰
極60402の間に挟まれた層が、EL層に相当する。
A schematic diagram showing the structure of the mixed bonding type EL element is shown in FIG. 95. In FIG. 95, 604
01 is the anode of the EL element. Reference numeral 60402 is a cathode of the EL element. The layer sandwiched between the anode 60401 and the cathode 60402 corresponds to the EL layer.

図95(A)において、EL層は、正孔輸送材料からなる正孔輸送領域60403と、
電子輸送材料からなる電子輸送領域60404とを含み、前記正孔輸送領域60403は
前記電子輸送領域60404よりも陽極側に位置し、且つ、前記正孔輸送領域60403
と、前記電子輸送領域60404の間に、前記正孔輸送材料及び前記電子輸送材料の両方
を含む混合領域60405が設けられた構成とすることができる。
In FIG. 95 (A), the EL layer has a hole transport region 60403 made of a hole transport material and a hole transport region 60403.
The hole transport region 60403 includes an electron transport region 60404 made of an electron transport material, the hole transport region 60403 is located on the anode side of the electron transport region 60404, and the hole transport region 60403 is located.
A mixed region 60405 containing both the hole transporting material and the electron transporting material may be provided between the electron transporting region 60404 and the hole transporting material.

なお、このとき、陽極60401から陰極60402の方向に、前記混合領域6040
5内の前記正孔輸送材料の濃度は減少し、前記混合領域60405内の電子輸送材料の濃
度は増加することを特徴としても良い。
At this time, in the direction from the anode 60401 to the cathode 60402, the mixing region 6040
It may be characterized in that the concentration of the hole transporting material in 5 decreases and the concentration of the electron transporting material in the mixed region 60405 increases.

なお、上記構成において、正孔輸送材料のみからなる正孔輸送領域60403が存在せ
ず、正孔輸送材料及び電子輸送材料の両方を含む混合領域60405内部で各機能材料の
濃度の割合が変化する(濃度勾配を有する)構成であってもよい。また、正孔輸送材料の
みからなる正孔輸送領域60403及び電子輸送材料のみからなる電子輸送領域6040
4が存在せず、正孔輸送材料及び電子輸送材料の両方を含む混合領域60405内部で各
機能材料の濃度の割合が変化する(濃度勾配を有する)構成であってもよい。また、前記
濃度の割合は、陽極や陰極からの距離に依存して変化する構成であってもよい。更に、前
記濃度の割合の変化は連続的であってもよい。濃度勾配の設定の仕方は、自由に設定する
ことが可能である。
In the above configuration, the hole transport region 60403 composed only of the hole transport material does not exist, and the concentration ratio of each functional material changes inside the mixed region 60405 containing both the hole transport material and the electron transport material. It may be configured (having a concentration gradient). Further, the hole transport region 60403 composed only of the hole transport material and the electron transport region 6040 composed only of the electron transport material.
4 may be absent and the composition may be such that the ratio of the concentration of each functional material changes (has a concentration gradient) inside the mixed region 60405 containing both the hole transporting material and the electron transporting material. Further, the ratio of the concentration may be configured to change depending on the distance from the anode or the cathode. Furthermore, the change in the proportion of the concentration may be continuous. The method of setting the concentration gradient can be freely set.

前記混合領域60405内に、発光材料が添加された領域60406を有する。発光材
料によって、EL素子の発光色を制御することができる。また、発光材料によって、キャ
リアをトラップすることができる。発光材料としては、キノリン骨格を含む金属錯体、ベ
ンゾオキサドール骨格を含む金属錯体、ベンゾチアゾ-ル骨格を含む金属錯体等の他、各
種蛍光色素を用いることができる。これらの発光材料を添加することによって、EL素子
の発光色を制御することができる。
Within the mixed region 60405, there is a region 60406 to which the light emitting material is added. The emission color of the EL element can be controlled by the light emitting material. In addition, the light emitting material can trap the carrier. As the light emitting material, various fluorescent dyes can be used in addition to a metal complex containing a quinoline skeleton, a metal complex containing a benzoxador skeleton, a metal complex containing a benzothiazol skeleton, and the like. By adding these light emitting materials, the light emitting color of the EL element can be controlled.

陽極60401としては、効率よく正孔を注入するため、仕事関数の大きな電極材料を
用いることが好ましい。例えば、錫ドープ酸化インジウム(ITO)や、亜鉛ドープ酸化
インジウム(IZO)、ZnO、SnO、In等の透明電極を用いることができ
る。また、透光性を有する必要が無いならば、陽極60401は、不透明の金属材料でも
よい。
As the anode 60401, it is preferable to use an electrode material having a large work function in order to efficiently inject holes. For example, transparent electrodes such as tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), ZnO, SnO 2 , and In 2 O 3 can be used. Further, the anode 60401 may be an opaque metal material if it is not necessary to have translucency.

また、正孔輸送材料としては、芳香族アミン系の化合物等を用いることができる。 Further, as the hole transport material, an aromatic amine-based compound or the like can be used.

また、電子輸送材料としては、キノリン誘導体、8-キノリノールまたはその誘導体を
配位子とする金属錯体(特に、トリス(8-キノリノライト)アルミニウム(Alq
)等を用いることができる。
Further, as the electron transport material, a quinoline derivative, 8-quinolinol or a metal complex having a derivative thereof as a ligand (particularly, tris (8-quinolinolite) aluminum (Alq 3 )).
) Etc. can be used.

陰極60402としては、効率よく電子を注入するため、仕事関数の小さな電極材料を
用いることが好ましい。アルミニウム、インジウム、マグネシウム、銀、カルシウム、バ
リウム、リチウム等の金属を単体で用いることができる。また、これらの金属の合金であ
っても良いし、これらの金属と他の金属との合金であっても良い。
As the cathode 60402, it is preferable to use an electrode material having a small work function in order to efficiently inject electrons. Metals such as aluminum, indium, magnesium, silver, calcium, barium and lithium can be used alone. Further, it may be an alloy of these metals, or an alloy of these metals with another metal.

図95(A)とは異なる構成のEL素子の模式図を図95(B)に示す。なお、図95
(A)と同じ部分は同じ符号を用いて示し、説明は省略する。
FIG. 95 (B) shows a schematic diagram of an EL element having a configuration different from that of FIG. 95 (A). In addition, FIG. 95
The same parts as in (A) are shown using the same reference numerals, and the description thereof will be omitted.

図95(B)では、発光材料が添加された領域を有さない。しかし、電子輸送領域60
404に添加する材料として、電子輸送性及び発光性の両方を有する材料(電子輸送発光
材料)、例えば、トリス(8-キノリノライト)アルミニウム(Alq)を用いる構成
とし、発光を行うことができる。
In FIG. 95 (B), there is no region to which the light emitting material is added. However, the electron transport region 60
As the material to be added to 404, a material having both electron transporting property and light emitting property (electron transporting light emitting material), for example, tris (8-quinolinolite) aluminum (Alq 3 ) can be used for light emission.

または、正孔輸送領域60403に添加する材料として、正孔輸送性及び発光性の両方
を有する材料(正孔輸送発光材料)を用いてもよい。
Alternatively, as the material to be added to the hole transport region 60403, a material having both hole transport property and luminescence (hole transport luminescent material) may be used.

図95(A)及び図95(B)とは異なる構成のEL素子の模式図を図95(C)に示
す。なお、図95(A)及び図95(B)と同じ部分は同じ符号を用いて示し、説明は省
略する。
FIG. 95 (C) shows a schematic diagram of an EL element having a configuration different from that of FIGS. 95 (A) and 95 (B). The same parts as those in FIGS. 95 (A) and 95 (B) are shown using the same reference numerals, and the description thereof will be omitted.

図95(C)において、正孔輸送材料に比べて最高被占分子軌道と最低被占分子軌道と
のエネルギー差が大きい正孔ブロッキング性材料が、混合領域60405内に添加された
領域60407を有する。正孔ブロッキング性材料が添加された領域60407を、混合
領域60405内の発光材料が添加された領域60406より陰極60402側に配置す
ることによって、キャリアの再結合率を上げ、発光効率を上げることができる。上記、正
孔ブロッキング性材料が添加された領域60407を設ける構成は、特に、三重光励起子
のよる発光(燐光)を利用するEL素子において有効である。
In FIG. 95 (C), the hole blocking material having a large energy difference between the highest occupied molecular orbital and the lowest occupied molecular orbital as compared with the hole transporting material has a region 60407 added in the mixed region 60405. .. By arranging the region 60407 to which the hole blocking material is added on the cathode 60402 side of the region 60406 to which the light emitting material is added in the mixed region 60405, the carrier recombination rate can be increased and the luminous efficiency can be increased. can. The above-mentioned configuration in which the region 60407 to which the hole blocking material is added is particularly effective in an EL device that utilizes light emission (phosphorescence) by a triple photoexciter.

図95(A)、図95(B)及び図95(C)とは異なる構成のEL素子の模式図を図
95(D)に示す。なお、図95(A)、図95(B)及び図95(C)と同じ部分は同
じ符号を用いて示し、説明は省略する。
FIG. 95 (D) shows a schematic diagram of an EL element having a configuration different from that of FIGS. 95 (A), 95 (B) and 95 (C). The same parts as those in FIGS. 95 (A), 95 (B) and 95 (C) are shown using the same reference numerals, and the description thereof will be omitted.

図95(D)において、電子輸送材料に比べて最高被占分子軌道と最低被占分子軌道と
のエネルギー差が大きい電子ブロッキング性材料が、混合領域60405内に添加された
領域60408を有する。電子ブロッキング性材料が添加された領域60408を、混合
領域60405内の発光材料が添加された領域60406より陽極60401側に配置す
ることによって、キャリアの再結合率を上げ、発光効率を上げることができる。上記、電
子ブロッキング性材料が添加された領域60408を設ける構成は、特に、三重光励起子
のよる発光(燐光)を利用するEL素子において有効である。
In FIG. 95 (D), the electron blocking material having a larger energy difference between the highest occupied molecular orbital and the lowest occupied molecular orbital than the electron transporting material has a region 60408 added in the mixed region 60405. By arranging the region 60408 to which the electron blocking material is added closer to the anode 60401 than the region 60406 to which the light emitting material is added in the mixed region 60405, the carrier recombination rate can be increased and the luminous efficiency can be increased. .. The above-mentioned configuration in which the region 60408 to which the electron blocking material is added is provided is particularly effective in an EL device that utilizes light emission (phosphorescence) by a triple photoexciter.

図95(E)は、図95(A)、図95(B)、図95(C)および図95(D)とは
異なる混合接合型のEL素子の構成を示す模式図である。図95(E)では、EL素子の
電極に接するEL層の部分に、金属材料を添加した領域60409を有する構成の例を示
す。図95(E)において、図95(A)~図95(D)と同じ部分は同じ符号を用いて
示し説明は省略する。図95(E)に示す構成は、たとえば、陰極60401としてMg
Ag(Mg―Ag合金)を用い、電子輸送材料が添加された領域60404の、陰極60
402に接する領域にAl(アルミニウム)合金を添加した領域60409を有する構成
であってもよい。上記構成によって、陰極の酸化を防止し、且つ、陰極からの電子の注入
効率を高めることができる。こうして、混合接合型のEL素子では、その寿命を長くする
ことができる。また、駆動電圧も低くすることができる。
FIG. 95 (E) is a schematic diagram showing the configuration of a mixed-junction type EL element different from FIGS. 95 (A), 95 (B), 95 (C) and 95 (D). FIG. 95 (E) shows an example of a configuration having a region 60409 to which a metal material is added in a portion of the EL layer in contact with the electrode of the EL element. In FIG. 95 (E), the same parts as those in FIGS. 95 (A) to 95 (D) are shown by using the same reference numerals, and the description thereof will be omitted. The configuration shown in FIG. 95 (E) is, for example, Mg as the cathode 60401.
Cathode 60 in region 60404 to which electron transport material was added using Ag (Mg—Ag alloy)
It may be configured to have a region 60409 in which an Al (aluminum) alloy is added to a region in contact with 402. With the above configuration, it is possible to prevent oxidation of the cathode and increase the efficiency of electron injection from the cathode. In this way, the life of the mixed bonding type EL element can be extended. In addition, the drive voltage can be lowered.

上記混合接合型のEL素子を作製する手法としては、共蒸着法等を用いることができる
As a method for producing the mixed bonding type EL element, a co-deposited method or the like can be used.

図95(A)~図95(E)に示したような混合接合型のEL素子では、明確な層の界
面が存在せず、電荷の蓄積を低減することができる。こうして、その寿命を長くすること
ができる。また、駆動電圧も低くすることができる。
In the mixed bonding type EL element as shown in FIGS. 95 (A) to 95 (E), the interface of a clear layer does not exist, and the charge accumulation can be reduced. In this way, the life can be extended. In addition, the drive voltage can be lowered.

なお、図95(A)~図95(E)に示した構成は、自由に組み合わせて実施すること
が可能である。
The configurations shown in FIGS. 95 (A) to 95 (E) can be freely combined and implemented.

なお、混合接合型のEL素子の構成は、これに限定されない。公知の構成を自由に用い
ることができる。
The configuration of the mixed bonding type EL element is not limited to this. A known configuration can be freely used.

なお、EL素子のEL層を構成する有機材料としては、低分子材料でも高分子材料でもよ
い。また、これらの材料を両方用いてもよい。有機化合物材料として低分子材料を用いる
場合は、蒸着法によって成膜することができる。一方、EL層として高分子材料を用いる
場合では、高分子材料を溶媒に溶かし、スピン塗布法やインクジェット方式で成膜するこ
とができる。
The organic material constituting the EL layer of the EL element may be a small molecule material or a polymer material. Moreover, you may use both of these materials. When a small molecule material is used as the organic compound material, a film can be formed by a vapor deposition method. On the other hand, when a polymer material is used as the EL layer, the polymer material can be dissolved in a solvent to form a film by a spin coating method or an inkjet method.

また、EL層は、中分子材料によって構成されていても良い。本明細書中において、中
分子系有機発光材料とは、昇華性を有さず、かつ、重合度が20程度以下の有機発光材料
を示すものとする。EL層として中分子材料を用いる場合では、インクジェット方式等で
成膜することができる。
Further, the EL layer may be made of a medium molecular weight material. In the present specification, the medium-molecular-weight organic light-emitting material means an organic light-emitting material having no sublimation property and having a degree of polymerization of about 20 or less. When a medium molecular weight material is used as the EL layer, a film can be formed by an inkjet method or the like.

なお、低分子材料と、高分子材料と、中分子材料とを組み合わせて用いても良い。 A small molecule material, a polymer material, and a medium molecule material may be used in combination.

また、EL素子は、一重項励起子からの発光(蛍光)を利用するものでも、三重項励起
子からの発光(燐光)を利用するものでも、どちらでも良い。
Further, the EL element may be either one that utilizes light emission (fluorescence) from a singlet exciton or one that utilizes light emission (phosphorescence) from a triplet exciton.

次に、本発明に適用できる表示装置を製造するための蒸着装置について、図面を参照し
て説明する。
Next, a vapor deposition apparatus for manufacturing a display device applicable to the present invention will be described with reference to the drawings.

本発明に適用できる表示装置は、EL層を形成して製造されてもよい。EL層は、エレ
クトロルミネセンスを発現する材料を少なくとも一部に含んで形成される。EL層は機能
の異なる複数の層で構成されても良い。その場合、EL層は、正孔注入輸送層、発光層、
電子注入輸送層などとも呼ばれる機能の異なる層が組み合わさって構成されていてもよい
The display device applicable to the present invention may be manufactured by forming an EL layer. The EL layer is formed by containing at least a part of a material that expresses electroluminescence. The EL layer may be composed of a plurality of layers having different functions. In that case, the EL layer is a hole injection transport layer, a light emitting layer,
Layers having different functions, which are also called electron injection transport layers, may be combined and configured.

トランジスタが形成された素子基板に、EL層を形成するための蒸着装置の構成を図9
6に示す。この蒸着装置は、搬送室60560、60561に複数の処理室を連結してい
る。処理室には、基板を供給するロード室60562、基板を回収するアンロード室60
563、その他、加熱処理室60568、プラズマ処理室60572、EL材料を蒸着す
る成膜処理室60569~60575、EL素子の一方の電極として、アルミニウム若し
くはアルミニウムを主成分とする導電膜を形成する成膜処理室60576を含んでいる。
また、搬送室と各処理室の間にはゲートバルブ60577a~60577mが設けられて
いて、各処理室の圧力は独立して制御可能とされており、処理室間の相互汚染を防いでい
る。
FIG. 9 shows the configuration of a thin-film deposition apparatus for forming an EL layer on an element substrate on which a transistor is formed.
Shown in 6. In this thin-film deposition apparatus, a plurality of processing chambers are connected to the transport chambers 60560 and 60561. The processing chamber includes a load chamber 60562 for supplying the substrate and an unload chamber 60 for collecting the substrate.
563, heat treatment chamber 60568, plasma treatment chamber 60572, film formation treatment chambers 60569 to 60575 for depositing EL material, film formation to form a conductive film containing aluminum or aluminum as a main component as one electrode of the EL element. It includes a processing chamber 60576.
Further, gate valves 60577a to 60577m are provided between the transport chamber and each treatment chamber, and the pressure in each treatment chamber can be controlled independently to prevent mutual contamination between the treatment chambers.

ロード室60562から搬送室60560に導入された基板は、回転自在に設けられた
アーム方式の搬送手段60566により、所定の処理室へ搬入される。また、基板は搬送
手段60566により、ある処理室から他の処理室へ搬送される。搬送室60560と搬
送室60561とは成膜処理室60570で連結され、ここで搬送手段60566と搬送
手段60567により基板の受け渡しが行う。
The substrate introduced from the load chamber 60562 to the transport chamber 60560 is carried into a predetermined processing chamber by the rotatably provided arm-type transport means 60566. Further, the substrate is conveyed from one processing chamber to another by the conveying means 60566. The transport chamber 60560 and the transport chamber 60561 are connected by a film forming processing chamber 60570, where the substrate is delivered by the transport means 60566 and the transport means 60567.

搬送室60560及び搬送室60561に連結する各処理室は減圧状態に保持されてい
る。従って、この蒸着装置では、基板は大気に触れることなく連続してEL層の成膜処理
が行われる。EL層の成膜処理が終わった表示パネルは、水蒸気などにより劣化する場合
があるので、この蒸着装置では、品質を保持するために大気に触れさせる前に封止処理を
行うための封止処理室60565が搬送室60561に連結されている。封止処理室60
565は大気圧若しくはそれに近い減圧下におかれているので、搬送室60561と封止
処理室60565の間にも中間処理室60564が備えられている。中間処理室6056
4は基板の受け渡しと、室間の圧力を緩衝するために設けられている。
Each processing chamber connected to the transport chamber 60560 and the transport chamber 60561 is maintained in a reduced pressure state. Therefore, in this thin-film deposition apparatus, the film formation process of the EL layer is continuously performed without the substrate coming into contact with the atmosphere. Since the display panel after the film formation process of the EL layer may be deteriorated by water vapor or the like, in this vapor deposition apparatus, a sealing process is performed to perform a sealing process before the film is exposed to the atmosphere in order to maintain the quality. The chamber 60565 is connected to the transport chamber 60561. Sealing chamber 60
Since the 565 is placed under atmospheric pressure or a reduced pressure close to that of the atmospheric pressure, an intermediate processing chamber 60564 is also provided between the transport chamber 60561 and the sealing processing chamber 60565. Intermediate processing room 6056
Reference numeral 4 is provided for passing the substrate and cushioning the pressure between the chambers.

ロード室、アンロード室、搬送室及び成膜処理室には室内を減圧に保持するための排気
手段が備えられている。排気手段としては、ドライポンプ、ターボ分子ポンプ、拡散ポン
プなど各種の真空ポンプを用いることができる。
The load chamber, the unload chamber, the transport chamber, and the film forming processing chamber are provided with exhaust means for keeping the chamber under reduced pressure. As the exhaust means, various vacuum pumps such as a dry pump, a turbo molecular pump, and a diffusion pump can be used.

図96の蒸着装置において、搬送室60560及び搬送室60561に連結される処理
室の数やその構成は、EL素子の積層構造に応じて適宜組み合わせることができる。以下
に、その組み合わせの一例を示す。
In the thin-film deposition apparatus of FIG. 96, the number and configurations of the processing chambers connected to the transport chamber 60560 and the transport chamber 60561 can be appropriately combined according to the laminated structure of the EL elements. An example of the combination is shown below.

加熱処理室60568は、最初に下部電極や絶縁隔壁等が形成された基板を加熱して脱
ガス処理を行う。プラズマ処理室60572は、下地電極表面を希ガスや酸素プラズマ処
理を行う。このプラズマ処理は、表面を清浄化、表面状態の安定化、表面の物理的若しく
は化学的状態(例えば、仕事関数など)を安定化させるために行う。
The heat treatment chamber 60568 first heats a substrate on which a lower electrode, an insulating partition wall, and the like are formed to perform degassing treatment. In the plasma processing chamber 60572, the surface of the base electrode is treated with a rare gas or oxygen plasma. This plasma treatment is performed to clean the surface, stabilize the surface state, and stabilize the physical or chemical state of the surface (for example, work function).

成膜処理室60569は、EL素子の一方の電極と接触する電極バッファ層を形成する
処理室である。電極バッファ層はキャリア注入性(正孔注入若しくは電子注入)があり、
EL素子の短絡や暗点欠陥の発生を抑制する層である。代表的には、電極バッファ層は、
有機無機混合材料であって、抵抗率が5×104~1×106Ωcmであり、30~30
0nmの厚さに形成される。また、成膜室60571は正孔輸送層を成膜する処理室であ
る。
The film forming processing chamber 60569 is a processing chamber for forming an electrode buffer layer in contact with one electrode of the EL element. The electrode buffer layer has carrier injection properties (hole injection or electron injection).
This layer suppresses the occurrence of short circuits and dark spot defects in EL elements. Typically, the electrode buffer layer is
It is an organic-inorganic mixed material, has a resistivity of 5 × 104 to 1 × 106 Ωcm, and has a resistance of 30 to 30.
It is formed to a thickness of 0 nm. Further, the film forming chamber 60571 is a processing chamber for forming a hole transport layer.

EL素子における発光層は、単色発光をする場合と白色発光をする場合とで、その構成
が異なる。蒸着装置において成膜処理室もそれに応じて配置することが好ましい。例えば
、表示パネルに発光色が異なる三種類のEL素子を形成する場合には、各発光色に対応し
た発光層を成膜する必要がある。この場合、成膜処理室60570を第1の発光層の成膜
用として、成膜処理室60573を第2の発光層の成膜用として、成膜処理室60574
を第3の発光層の成膜用として用いることができる。発光層ごとに成膜処理室を分けるこ
とで、異なる発光材料による相互汚染を防止することが出来、成膜処理のスループットを
向上させることが出来る。
The light emitting layer in the EL element has a different configuration depending on whether it emits monochromatic light or white light. It is preferable that the film forming processing chamber is also arranged accordingly in the vapor deposition apparatus. For example, when forming three types of EL elements having different emission colors on a display panel, it is necessary to form a light emitting layer corresponding to each emission color. In this case, the film forming processing chamber 60570 is used for forming a film of the first light emitting layer, and the film forming processing chamber 60573 is used for forming a film of the second light emitting layer.
Can be used for film formation of the third light emitting layer. By separating the film forming processing chamber for each light emitting layer, mutual contamination by different light emitting materials can be prevented, and the throughput of the film forming processing can be improved.

また、成膜処理室60570、成膜処理室60573、成膜処理室60574のそれそ
れで、発光色が異なる三種類のEL材料を順次蒸着しても良い。この場合、シャドーマス
クを使い、蒸着する領域に応じて当該マスクをずらして蒸着を行うことになる。
Further, three types of EL materials having different emission colors may be sequentially vapor-deposited in the film-forming processing chamber 60570, the film-forming processing chamber 60573, and the film-forming processing chamber 60574. In this case, a shadow mask is used, and the mask is shifted according to the area to be vapor-deposited to perform the vapor deposition.

白色発光するEL素子を形成する場合には、異なる発光色の発光層を縦積みにして形成
する。その場合にも、素子基板が成膜処理室を順次移動して、発光層ごとに成膜すること
ができる。また、同じ成膜処理室で異なる発光層を連続して成膜することもできる。
When forming an EL element that emits white light, light emitting layers having different emission colors are vertically stacked. Even in that case, the element substrate can sequentially move in the film forming processing chamber to form a film for each light emitting layer. Further, different light emitting layers can be continuously formed in the same film forming processing chamber.

成膜処理室60576では、EL層の上に電極を成膜する。電極の形成は、電子ビーム
蒸着法やスパッタリング法を適用することもできるが、好ましくは抵抗加熱蒸着法を用い
ることが好ましい。
In the film forming processing chamber 60576, an electrode is formed on the EL layer. Although an electron beam vapor deposition method or a sputtering method can be applied to the formation of the electrodes, it is preferable to use a resistance heating vapor deposition method.

電極の形成まで終了した素子基板は、中間処理室60564を経て封止処理室6056
5に搬入される。封止処理室60565は、ヘリウム、アルゴン、ネオン、若しくは窒素
などの不活性な気体が充填されており、その雰囲気下で素子基板のEL層が形成された側
に封止板を貼り付けて封止する。封止された状態において、素子基板と封止板との間には
、不活性気体が充填されていても良いし、樹脂材料を充填しておいても良い。封止処理室
60565には、シール材を描画するディスペンサーや、素子基板に対向して封止板を固
定する固定ステージやアームなどの機械的要素、樹脂材料を充填するディスペンサー若し
くはスピンコーターなどが備えられている。
The element substrate, which has been formed up to the electrode, passes through the intermediate processing chamber 60564 and then the sealing processing chamber 6056.
It is carried in to 5. The sealing processing chamber 60565 is filled with an inert gas such as helium, argon, neon, or nitrogen, and a sealing plate is attached to the side where the EL layer of the element substrate is formed in the atmosphere. Stop. In the sealed state, the element substrate and the sealing plate may be filled with an inert gas or may be filled with a resin material. The sealing processing chamber 60565 is provided with a dispenser for drawing a sealing material, mechanical elements such as a fixed stage and an arm for fixing the sealing plate facing the element substrate, a dispenser for filling a resin material, a spin coater, and the like. Has been done.

図97は、成膜処理室の内部構成を示す。成膜処理室は減圧下に保たれていて、図97
では天板60691と底板60692で挟まれる内側が室内であり、減圧状態に保たれる
室内を示している。
FIG. 97 shows the internal configuration of the film forming processing chamber. The film formation processing chamber is kept under reduced pressure, and FIG. 97
The inside of the room sandwiched between the top plate 60691 and the bottom plate 60692 is the room, which indicates the room kept in a decompressed state.

処理室内には、一つ又は複数個の蒸発源が備えられている。組成の異なる複数の層を成
膜する場合や、異なる材料を共蒸着する場合は、複数個の蒸発源を設けることが好ましい
からである。図97では、蒸発源60681a、60681b、60681cが蒸発源ホ
ルダ60680に装着されている。蒸発源ホルダ60680は多関節アーム60683に
よって保持されている。多関節アーム60683は関節の伸縮によって、蒸発源ホルダ6
0680の位置をその可動範囲内で自在に移動可能としている。また、蒸発源ホルダ60
680に距離センサー60682を設け、蒸発源60681a~60681cと基板60
689との間隔をモニターして、蒸着時における最適な間隔を制御しても良い。その場合
には、多関節アームに上下方向(Z方向)にも変位する多関節アームとしても良い。
The treatment chamber is provided with one or more evaporation sources. This is because it is preferable to provide a plurality of evaporation sources when forming a plurality of layers having different compositions or when co-depositing different materials. In FIG. 97, the evaporation sources 60681a, 60681b, and 60681c are attached to the evaporation source holder 60680. The evaporation source holder 60680 is held by an articulated arm 60683. The articulated arm 60683 has an evaporation source holder 6 due to the expansion and contraction of the joints.
The position of 0680 can be freely moved within the movable range. In addition, the evaporation source holder 60
A distance sensor 60682 is provided on the 680, and the evaporation sources 60681a to 60681c and the substrate 60 are provided.
The interval from 689 may be monitored to control the optimum interval during vapor deposition. In that case, the articulated arm may be displaced in the vertical direction (Z direction) to the articulated arm.

基板ステージ60686と基板チャック60687は一対となって基板60689を固
定する。基板ステージ60686はヒータを内蔵させて基板60689を加熱できるよう
に構成しても良い。基板60689は、基板チャック60687の禁緩により、基板ステ
ージ60686に固定されまた搬出入される。蒸着に際しては、必要に応じて蒸着するパ
ターンに対応して開口部を備えたシャドーマスク60690を用いることもできる。その
場合、シャドーマスク60690は、基板60689と蒸発源60681a~60681
cの間に配置されるようにする。シャドーマスク60690はマスクチャック60688
により、基板60689と密着若しくは一定の間隔を持って固定される。シャドーマスク
60690のアライメントが必要な場合には、処理室内にカメラを配置し、マスクチャッ
ク60688にX-Y-θ方向に微動する位置決め手段を備えることで、その位置合わせ
を行う。
The board stage 60686 and the board chuck 60687 are paired to fix the board 60689. The substrate stage 60686 may be configured to have a built-in heater so that the substrate 60689 can be heated. The substrate 60689 is fixed to the substrate stage 60686 and carried in and out by locking the substrate chuck 60687. At the time of vapor deposition, a shadow mask 60690 having an opening corresponding to the pattern to be vapor-deposited can also be used, if necessary. In that case, the shadow mask 60690 is the substrate 60689 and the evaporation sources 60681a-60681.
It should be placed between c. Shadow mask 60690 is mask chuck 60688
Therefore, it is in close contact with the substrate 60689 or fixed at a certain interval. When alignment of the shadow mask 60690 is required, a camera is placed in the processing chamber, and the mask chuck 60688 is provided with a positioning means for fine movement in the XY-θ direction to perform the alignment.

蒸発源60681には、蒸着材料を蒸発源に連続して供給する蒸着材料供給手段が付加
されている。蒸着材料供給手段は、蒸発源60681と離れた位置に配置される蒸着材料
供給源60685a、60685b、60685cと、その両者の間を繋ぐ材料供給管6
0684を有している。典型的には、材料供給源60685a、60685b、6068
5cは蒸発源60681に対応して設けられている。図97の場合は、材料供給源606
85aと606蒸発源81aが対応している。材料供給源60685bと蒸発源6068
1b、材料供給源60685cと蒸発源60681cについても同様である。
The evaporation source 60681 is provided with a vapor deposition material supply means for continuously supplying the vapor deposition material to the evaporation source. The thin-film deposition material supply means is a thin-film deposition material supply source 60685a, 60685b, 60685c arranged at a position distant from the evaporation source 60681, and a material supply pipe 6 connecting the two.
Has 0684. Typically, material sources 60685a, 60685b, 6068
5c is provided corresponding to the evaporation source 60681. In the case of FIG. 97, the material supply source 606
85a and 606 evaporation source 81a correspond. Material source 60685b and evaporation source 6068
The same applies to 1b, the material supply source 60685c and the evaporation source 60681c.

蒸着材料の供給方式には、気流搬送方式、エアロゾル方式などが適用できる。気流搬送
方式は、蒸着材料の微粉末を気流に乗せて搬送するもので、不活性ガスなどを用いて蒸発
源60681に搬送する。エアロゾル方式は、蒸着材料を溶剤中に溶解または分散させた
原料液を搬送し、噴霧器によりエアロゾル化し、エアロゾル中の溶媒を気化させながら行
う蒸着である。いずれの場合にも、蒸発源60681には加熱手段が設けられ、搬送され
た蒸着材料を蒸発させて基板60689に成膜する。図97の場合、材料供給管6068
4は柔軟に曲げることができ、減圧状態下においても変形しない程度の剛性を持った細管
で構成されている。
An air flow transfer method, an aerosol method, or the like can be applied to the supply method of the vapor-filmed material. In the air flow transfer method, fine powder of the vapor-film deposition material is carried on the air flow, and is carried to the evaporation source 60681 using an inert gas or the like. The aerosol method is a vapor deposition performed while transporting a raw material liquid in which a vapor-deposited material is dissolved or dispersed in a solvent, atomizing it with a sprayer, and vaporizing the solvent in the aerosol. In either case, the evaporation source 60681 is provided with a heating means, and the conveyed vapor deposition material is evaporated to form a film on the substrate 60689. In the case of FIG. 97, the material supply pipe 6068
Reference numeral 4 is composed of a thin tube that can be flexibly bent and has a rigidity that does not deform even under a reduced pressure state.

気流搬送方式やエアロゾル方式を適用する場合には、成膜処理室内を大気圧若しくはそ
れ以下であって、好ましくは133Pa~13300Paの減圧下で成膜を行えば良い。
成膜処理室内にはヘリウム、アルゴン、ネオン、クリプトン、キセノン、若しくは窒素な
どの不活性気体を充填し、または当該気体を供給しながら(同時に排気しながら)、圧力
の調節を行うことができる。また、酸化膜を形成する成膜処理室では、酸素、亜酸化窒素
などの気体を導入して酸化雰囲気としておいても良い。また、有機材料を蒸着する成膜処
理室内には水素などの気体を導入して還元雰囲気にしておいても良い。
When the air flow transfer method or the aerosol method is applied, the film formation may be performed in the film formation processing chamber at atmospheric pressure or lower, preferably under a reduced pressure of 133 Pa to 13300 Pa.
The film forming chamber can be filled with an inert gas such as helium, argon, neon, krypton, xenon, or nitrogen, or the pressure can be adjusted while supplying (simultaneously exhausting) the gas. Further, in the film forming treatment chamber where the oxide film is formed, a gas such as oxygen or nitrous oxide may be introduced to create an oxidizing atmosphere. Further, a gas such as hydrogen may be introduced into the film forming processing chamber where the organic material is vapor-deposited to create a reducing atmosphere.

その他の蒸着材料の供給方法として、材料供給管60684の中にスクリューを設け蒸
着材料を蒸発源に向けて連続的に押し出す構成としても良い。
As another method of supplying the vapor-deposited material, a screw may be provided in the material supply pipe 60684 to continuously extrude the vapor-deposited material toward the evaporation source.

この蒸着装置によれば、大画面の表示パネルであっても、均一性良く、連続して成膜す
ることができる。また、蒸発源に蒸着材料が無くなる度に、その都度蒸着材料を補給する
必要がないので、スループットを向上することができる。
According to this thin-film deposition apparatus, even a large-screen display panel can be continuously formed with good uniformity. Further, since it is not necessary to replenish the vapor-deposited material each time the vapor-deposited material runs out in the evaporation source, the throughput can be improved.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態12)
本実施形態においては、表示装置の画素回路及び駆動方法について説明する。
(Embodiment 12)
In this embodiment, the pixel circuit of the display device and the driving method will be described.

まず、本発明に適応可能なデジタル時間階調駆動について説明する。まず、画素への信号
書き込み期間(アドレス期間)と発光期間(サステイン期間)とが分離されている場合の
駆動方法について、図98(A)を参照して説明する。ここでは、一例として4ビットの
デジタル時間階調の場合について説明する。
First, a digital time gradation drive applicable to the present invention will be described. First, a driving method when the signal writing period (address period) and the light emitting period (sustaining period) to the pixels are separated will be described with reference to FIG. 98 (A). Here, a case of 4-bit digital time gradation will be described as an example.

なお、1表示領域分の画像を完全に表示するための期間を1フレーム期間という。1フレ
ーム期間は複数のサブフレーム期間を有し、1サブフレーム期間はアドレス期間とサステ
イン期間とを有する。アドレス期間Ta1~Ta4は、全行分の画素への信号書き込みに
かかかる時間を示し、期間Tb1~Tb4は一行分の画素(又は一画素分)への信号書き
込みにかかる時間を示している。また、サスティン期間Ts1~Ts4は、画素へ書き込
まれたビデオ信号にしたがって点灯又は非点灯状態を維持する時間を示し、その長さの比
をTs1:Ts2:Ts3:Ts4=23:22:21:20=8:4:2:1としてい
る。どのサスティン期間で発光するかによって階調を表現している。
The period for completely displaying the image for one display area is called one frame period. One frame period has a plurality of subframe periods, and one subframe period has an address period and a sustain period. The address periods Ta1 to Ta4 indicate the time required to write the signal to the pixels for all rows, and the periods Tb1 to Tb4 indicate the time required to write the signal to the pixels (or one pixel) for one row. Further, the sustain periods Ts1 to Ts4 indicate the time for maintaining the lighting or non-lighting state according to the video signal written to the pixel, and the ratio of the lengths is Ts1: Ts2: Ts3: Ts4 = 23: 22: 21 :. 20 = 8: 4: 2: 1. The gradation is expressed by which sustain period the light is emitted.

動作について説明する。まず、アドレス期間Ta1において、1行目から順に走査線に画
素選択信号が入力され、画素が選択される。そして、画素が選択されているときに、信号
線から画素へビデオ信号が入力される。そして、画素にビデオ信号が書き込まれると、画
素は再び信号が入力されるまでその信号を保持する。この書き込まれたビデオ信号によっ
てサスティン期間Ts1における各画素の点灯、非点灯が制御される。同様に、アドレス
期間Ta2、Ta3、Ta4において画素へビデオ信号が入力され、そのビデオ信号によ
ってサスティン期間Ts2、Ts3、Ts4における各画素の点灯、非点灯が制御される
。そして、それぞれのサブフレーム期間において、アドレス期間中は点灯せず、アドレス
期間が終了した後、サスティン期間が始まり、点灯させるための信号が書き込まれている
画素が点灯する。
The operation will be described. First, in the address period Ta1, the pixel selection signal is input to the scanning line in order from the first line, and the pixel is selected. Then, when the pixel is selected, a video signal is input from the signal line to the pixel. Then, when a video signal is written to the pixel, the pixel holds the signal until the signal is input again. The written video signal controls lighting and non-lighting of each pixel during the sustain period Ts1. Similarly, a video signal is input to the pixels in the address periods Ta2, Ta3, and Ta4, and the lighting and non-lighting of each pixel in the sustain periods Ts2, Ts3, and Ts4 are controlled by the video signal. Then, in each subframe period, the pixel is not lit during the address period, the sustain period starts after the address period ends, and the pixel in which the signal for lighting is written is lit.

ここで、図98(B)を参照して、i行目の画素行に着目して説明する。まず、アドレス
期間Ta1において、1行目から順に走査線に画素選択信号が入力され、アドレス期間T
a1のうち期間Tb1(i)においてi行目の画素が選択される。そして、i行目の画素
が選択されているときに、信号線からi行目の画素へビデオ信号が入力される。そして、
i行目の画素にビデオ信号が書き込まれると、i行目の画素は再び信号が入力されるまで
その信号を保持する。この書き込まれたビデオ信号によってサステイン期間Ts1におけ
るi行目の画素の点灯、非点灯が制御される。同様に、アドレス期間Ta2、Ta3、T
a4においてi行目の画素へビデオ信号が入力され、そのビデオ信号によってサスティン
期間Ts2、Ts3、Ts4におけるi行目の画素の点灯、非点灯が制御される。そして
、それぞれのサブフレーム期間において、アドレス期間中は点灯せず、アドレス期間が終
了した後、サスティン期間が始まり、点灯させるための信号が書き込まれている画素が点
灯する。
Here, with reference to FIG. 98 (B), the pixel row on the i-th row will be described. First, in the address period Ta1, pixel selection signals are input to the scanning lines in order from the first line, and the address period T
In the period Tb1 (i) of a1, the pixel in the i-th row is selected. Then, when the pixel on the i-th row is selected, a video signal is input from the signal line to the pixel on the i-th row. and,
When a video signal is written to the pixel on the i-th row, the pixel on the i-th row holds the signal until the signal is input again. The written video signal controls the lighting and non-lighting of the pixel in the i-th row in the sustain period Ts1. Similarly, the address periods Ta2, Ta3, T
In a4, a video signal is input to the pixel in the i-th row, and the video signal controls lighting and non-lighting of the pixel in the i-th row in the sustain periods Ts2, Ts3, and Ts4. Then, in each subframe period, the pixel is not lit during the address period, the sustain period starts after the address period ends, and the pixel in which the signal for lighting is written is lit.

なお、ここでは4ビット階調を表現する場合について説明したが、ビット数及び階調数は
これに限定されない。また、点灯の順番はTs1、Ts2、Ts3、Ts4である必要は
なく、ランダムでもよいし、複数に分割して発光をさせてもよい。また、Ts1、Ts2
、Ts3、Ts4の点灯時間は、2のべき乗にする必要はなく、同じ長さの点灯時間にし
てもよいし、2のべき乗からすこしだけずらしてもよい。
Although the case of expressing the 4-bit gradation has been described here, the number of bits and the number of gradations are not limited to this. Further, the order of lighting does not have to be Ts1, Ts2, Ts3, and Ts4, and may be random or may be divided into a plurality of pieces to emit light. Also, Ts1 and Ts2
, Ts3 and Ts4 need not be set to a power of 2, but may be set to the same length of lighting time, or may be slightly shifted from the power of 2.

続いて、画素への信号書き込み期間(アドレス期間)と発光期間(サスティン期間)とが
分離されていない場合の駆動方法について説明する。つまり、ビデオ信号の書き込み動作
が完了した行の画素は、次に画素へ信号の書き込み(又は消去)が行われるまで、信号を
保持する。書き込み動作から次にこの画素へ信号の書き込みが行われるまでの期間をデー
タ保持時間という。そして、このデータ保持時間中は画素に書き込まれたビデオ信号に従
って、画素が点灯又は非点灯となる。同じ動作が、最終行まで行われ、アドレス期間が終
了する。そして、データ保持時間が終了した行から順に次のサブフレーム期間の信号書き
込み動作へ移る。
Subsequently, a driving method when the signal writing period (address period) and the light emitting period (sustaining period) to the pixels are not separated will be described. That is, the pixel in the row in which the video signal writing operation is completed holds the signal until the next writing (or erasing) of the signal to the pixel. The period from the writing operation to the next writing of the signal to this pixel is called the data retention time. Then, during this data holding time, the pixels are turned on or off according to the video signal written to the pixels. The same operation is performed until the last line, and the address period ends. Then, the signal writing operation for the next subframe period is started in order from the line at which the data retention time ends.

このように、信号書き込み動作が完了しデータ保持時間となると、直ちに画素へ書き込ま
れたビデオ信号に従って画素が点灯又は非点灯となる駆動方法の場合には、データ保持時
間をアドレス期間より短くしようとしても、同時に2行に信号を入力できないため、アド
レス期間を重ならないようにしなければならないので、データ保持時間を短くすることが
できない。よって、その結果、高階調表示を行うことが困難になる。
In this way, in the case of a driving method in which the pixel is turned on or off according to the video signal written to the pixel immediately after the signal writing operation is completed and the data holding time is reached, the data holding time is attempted to be shorter than the address period. However, since signals cannot be input to two lines at the same time, the address periods must not overlap, so that the data retention time cannot be shortened. Therefore, as a result, it becomes difficult to perform high gradation display.

よって、消去期間を設けることによって、アドレス期間より短いデータ保持時間を設定す
る。消去期間を設けアドレス期間より短いデータ保持時間を設定する場合の駆動方法につ
いて図99(A)を用いて説明する。
Therefore, by providing an erasure period, a data retention time shorter than the address period is set. A driving method in the case of setting an erasure period and setting a data retention time shorter than the address period will be described with reference to FIG. 99 (A).

まず、アドレス期間Ta1において、1行目から順に走査線に画素走査信号が入力され、
画素が選択される。そして、画素が選択されているときに、信号線から画素へビデオ信号
が入力される。そして、画素にビデオ信号が書き込まれると、画素は再び信号が入力され
るまでその信号を保持する。この書き込まれたビデオ信号によってサスティン期間Ts1
における各画素の点灯、非点灯が制御される。ビデオ信号の書き込み動作が完了した行に
おいては、直ちに書き込まれたビデオ信号にしたがって、画素が点灯又は非点灯の状態と
なる。同じ動作が、最終行まで行われ、アドレス期間Ta1が終了する。そして、データ
保持時間が終了した行から順に次のサブフレーム期間の信号書き込み動作へ移る。同様に
、アドレス期間Ta2、Ta3、Ta4において画素へビデオ信号が入力され、そのビデ
オ信号によってサスティン期間Ts2、Ts3、Ts4における各画素の点灯、非点灯が
制御される。そして、サスティン期間TS4はその終期を消去動作の開始によって設定さ
れる。なぜなら、各行の消去時間Teに画素に書き込まれた信号の消去が行われると、次
の画素への信号の書き込みが行われるまでは、アドレス期間に画素に書き込まれたビデオ
信号に関わらず、強制的に非点灯となるからである。つまり、消去時間Teが始まった行
の画素からデータ保持時間が終了する。
First, in the address period Ta1, pixel scanning signals are input to the scanning lines in order from the first line.
Pixels are selected. Then, when the pixel is selected, a video signal is input from the signal line to the pixel. Then, when a video signal is written to the pixel, the pixel holds the signal until the signal is input again. Sustain period Ts1 by this written video signal
The lighting and non-lighting of each pixel in the above are controlled. In the line where the video signal writing operation is completed, the pixels are turned on or off according to the immediately written video signal. The same operation is performed up to the last line, and the address period Ta1 ends. Then, the signal writing operation for the next subframe period is started in order from the line at which the data retention time ends. Similarly, a video signal is input to the pixels in the address periods Ta2, Ta3, and Ta4, and the lighting and non-lighting of each pixel in the sustain periods Ts2, Ts3, and Ts4 are controlled by the video signal. Then, the sustain period TS4 is set at the end by starting the erasing operation. This is because when the signal written to the pixel is erased at the erase time Te of each line, it is forced regardless of the video signal written to the pixel during the address period until the signal is written to the next pixel. This is because it is not lit. That is, the data holding time ends from the pixel in the row where the erasing time Te starts.

ここで、図99(B)を参照して、i行目の画素行に着目して説明する。i行目の画素行
において、アドレス期間Ta1において、1行目から順に走査線に画素走査信号が入力さ
れ、画素が選択される。そして、期間Tb1(i)においてi行目の画素が選択されてい
るときに、i行目の画素にビデオ信号が入力される。そして、i行目の画素にビデオ信号
が書き込まれると、i行目の画素は再び信号が入力されるまでその信号を保持する。この
書き込まれたビデオ信号によって、サスティン期間Ts1(i)におけるi行目の画素の
点灯、非点灯が制御される。つまり、i行目にビデオ信号の書き込み動作が完了したら、
直ちに書き込まれたビデオ信号にしたがって、i行目の画素が点灯又は非点灯の状態とな
る。同様に、アドレス期間Ta2、Ta3、Ta4においてi行目の画素へビデオ信号が
入力され、そのビデオ信号によってサスティン期間Ts2、Ts3、Ts4におけるi行
目の画素の点灯、非点灯が制御される。そして、サスティン期間Ts4(i)はその終期
を消去動作の開始によって設定される。なぜなら、i行目の消去時間Ts(i)にi行目
の画素に書き込まれたビデオ信号に関わらず、強制的に非点灯となるからである。つまり
、消去時間Te(i)が始まるとi行目の画素のデータ保持時間が終了する。
Here, with reference to FIG. 99B, the description will be made focusing on the pixel row of the i-th row. In the pixel row of the i-th row, in the address period Ta1, the pixel scanning signal is input to the scanning line in order from the first row, and the pixel is selected. Then, when the pixel in the i-th row is selected in the period Tb1 (i), the video signal is input to the pixel in the i-th row. Then, when the video signal is written to the pixel on the i-th row, the pixel on the i-th row holds the signal until the signal is input again. The written video signal controls lighting and non-lighting of the pixel on the i-th row in the sustain period Ts1 (i). That is, when the video signal writing operation is completed on the i-th line,
According to the video signal written immediately, the pixel on the i-th row is turned on or off. Similarly, a video signal is input to the pixel on the i-th row in the address periods Ta2, Ta3, and Ta4, and the video signal controls lighting and non-lighting of the pixel on the i-th row in the sustain periods Ts2, Ts3, and Ts4. Then, the sustain period Ts4 (i) is set by the start of the erasing operation at the end of the sustain period Ts4 (i). This is because the lighting is forcibly turned off regardless of the video signal written in the pixel of the i-th row at the erasing time Ts (i) of the i-th row. That is, when the erasing time Te (i) starts, the data holding time of the pixel in the i-th row ends.

よって、アドレス期間とサスティン期間とを分離せずに、アドレス期間より短い高階調且
つデューティー比(1フレーム期間中の点灯期間の割合)の高い表示装置を提供すること
ができる。また、瞬間輝度を低くすることが可能であるため表示素子の信頼性の向上を図
ることが可能である。
Therefore, it is possible to provide a display device having a high gradation shorter than the address period and a high duty ratio (ratio of the lighting period in one frame period) without separating the address period and the sustain period. Further, since the instantaneous brightness can be lowered, the reliability of the display element can be improved.

なお、ここでは4ビット階調を表現する場合について説明したが、ビット数及び階調数は
これに限定されない。また、点灯の順番はTs1、Ts2、Ts3、Ts4である必要は
なく、ランダムでもよいし、複数に分割して発光をしてもよい。また、Ts1、Ts2、
Ts3、Ts4の点灯時間は、2のべき乗にする必要はなく、同じ長さの点灯時間にして
もよいし、2のべき乗からすこしだけずらしてもよい。
Although the case of expressing the 4-bit gradation has been described here, the number of bits and the number of gradations are not limited to this. Further, the order of lighting does not have to be Ts1, Ts2, Ts3, and Ts4, and may be random or may be divided into a plurality of lights to emit light. Also, Ts1, Ts2,
The lighting time of Ts3 and Ts4 does not have to be a power of 2, but may be a lighting time of the same length, or may be slightly shifted from the power of 2.

ここで、図98(A)及び図99(A)で説明したデジタル時間階調駆動を可能な画素構
成について図100(A)、(B)、(C)、(D)及び(E)を参照して説明する。な
お、図100(A)、(B)、(C)、(D)及び(E)に示す表示素子としては、EL
素子(有機EL素子、無機EL素子又は有機物及び無機物を含むEL素子)、電子放出素
子、液晶素子、電子インク、グレーティングライトバルブ(GLV)、デジタルマイクロ
ミラーデバイス(DMD)、カーボンナノチューブ、など、電気磁気的作用によりコント
ラストが変化する表示媒体を適応することができる。また、図100(A)、(B)、(
C)、(D)及び(E)に示す画素は、表示素子としてEL素子などのような自発光型の
素子が適している。なお、図100(A)、(B)、(C)、(D)及び(E)は1画素
のみを図示しているが、表示装置の画素部には行方向と列方向にマトリクス状に複数の画
素が配置されている。
Here, FIGS. 100 (A), (B), (C), (D) and (E) are shown with respect to the pixel configurations capable of digital time gradation drive described with reference to FIGS. 98 (A) and 99 (A). It will be explained with reference to. The display elements shown in FIGS. 100 (A), (B), (C), (D) and (E) are EL.
Elements (organic EL elements, inorganic EL elements or EL elements containing organic and inorganic substances), electron emitting elements, liquid crystal elements, electronic inks, grating light valves (GLV), digital micromirror devices (DMD), carbon nanotubes, etc. A display medium whose contrast changes due to magnetic action can be adapted. In addition, FIGS. 100 (A), (B), (
As the pixels shown in C), (D) and (E), self-luminous elements such as EL elements are suitable as display elements. Although FIGS. 100 (A), (B), (C), (D) and (E) show only one pixel, the pixel portion of the display device is formed in a matrix in the row direction and the column direction. Multiple pixels are arranged.

図100(A)に示す画素は、スイッチング用トランジスタ80301a、駆動用トラン
ジスタ80302a、容量素子80304aを有している。スイッチング用トランジスタ
80301aは、ゲート端子が走査線80312aに接続され、第1端子(ソース端子又
はドレイン端子)が信号線80311aに接続され、第2端子(ソース端子又はドレイン
端子)が駆動用トランジスタ80302aのゲート端子と接続されている。また、スイッ
チング用トランジスタ80301aの第2端子は容量素子80304aを介して電源線8
0313aに接続されている。さらに、駆動用トランジスタ80302aは第1端子が電
源線80313aに接続され、第2端子が表示素子80320aの第1の電極に接続され
ている。表示素子80320aの第2の電極80321aには低電源電位が設定されてい
る。なお、低電源電位とは、電源線80313aに設定される高電源電位を基準にして低
電源電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなど
が設定されていても良い。この高電源電位と低電源電位との電位差を表示素子80320
aに印加して、表示素子80320aに電流を流して表示素子80320aを発光させる
ため、高電源電位と低電源電位との電位差が表示素子80320aの順方向しきい値電圧
以上となるようにそれぞれの電位を設定する。なお、容量素子80304aは駆動用トラ
ンジスタ80302aのゲート容量を代用して省略することも可能である。駆動用トラン
ジスタ80302aのゲート容量については、ソース領域やドレイン領域やLDD領域な
どとゲート電極とが重なってオーバーラップしているような領域で容量が形成されていて
もよいし、チャネル領域とゲート電極との間で容量が形成されていてもよい。
The pixel shown in FIG. 100A has a switching transistor 80301a, a driving transistor 80302a, and a capacitive element 80304a. In the switching transistor 80301a, the gate terminal is connected to the scanning line 80312a, the first terminal (source terminal or drain terminal) is connected to the signal line 80311a, and the second terminal (source terminal or drain terminal) is the driving transistor 80302a. It is connected to the gate terminal. Further, the second terminal of the switching transistor 80301a is a power line 8 via the capacitive element 80304a.
It is connected to 0313a. Further, the drive transistor 80302a has a first terminal connected to a power supply line 80313a and a second terminal connected to a first electrode of the display element 80320a. A low power supply potential is set in the second electrode 80321a of the display element 80320a. The low power potential is a potential that satisfies the low power potential <high power potential with reference to the high power potential set in the power line 80313a, and the low power potential is set to, for example, GND or 0V. Is also good. Display element 80320 shows the potential difference between this high power supply potential and low power supply potential.
Since the current is applied to the display element 80320a to cause the display element 80320a to emit light, the potential difference between the high power supply potential and the low power supply potential is equal to or higher than the forward threshold voltage of the display element 80320a. Set the potential. The capacitive element 80304a can be omitted by substituting the gate capacitance of the driving transistor 80302a. Regarding the gate capacitance of the drive transistor 80302a, the capacitance may be formed in a region where the gate electrode overlaps with the source region, drain region, LDD region, etc., or the channel region and the gate electrode may be formed. A capacitance may be formed between the and.

走査線80312aで画素が選択されているとき、つまりスイッチング用トランジスタ8
0301aがオンになっているときに信号線80311aから画素にビデオ信号が入力さ
れる。そして、ビデオ信号に相当する電圧分の電荷が容量素子80304aに蓄積され、
容量素子80304aはその電圧を保持する。この電圧は駆動用トランジスタ80302
aのゲート端子と第1端子間の電圧であり、駆動用トランジスタ80302aのゲートソ
ース間電圧Vgsに相当する。
When the pixel is selected by the scanning line 80312a, that is, the switching transistor 8
When 0301a is on, a video signal is input to the pixels from the signal line 80311a. Then, the electric charge corresponding to the voltage corresponding to the video signal is accumulated in the capacitive element 80304a, and the electric charge is accumulated in the capacitive element 80304a.
The capacitive element 80304a holds the voltage. This voltage is the drive transistor 80302
It is the voltage between the gate terminal and the first terminal of a, and corresponds to the gate-source voltage Vgs of the driving transistor 80302a.

一般に、トランジスタの動作領域は、線形領域と飽和領域とに分けることが出来る。その
境目は、ドレインソース間電圧をVds、ゲートソース間電圧をVgs、しきい値電圧を
Vthとすると、(Vgs-Vth)=Vdsの時になる。(Vgs-Vth)>Vds
の場合は、線形領域であり、Vds、Vgsの大きさによって電流値が決まる。一方、(
Vgs-Vth)<Vdsの場合は飽和領域になり、理想的には、Vdsが変化しても、
電流値はほとんど変わらない。つまり、Vgsの大きさだけによって電流値が決まる。
In general, the operating region of a transistor can be divided into a linear region and a saturated region. The boundary is when (Vgs-Vth) = Vds, where Vds is the voltage between the drain and source, Vgs is the voltage between the gate and source, and Vth is the threshold voltage. (Vgs-Vth)> Vds
In the case of, it is a linear region, and the current value is determined by the magnitudes of Vds and Vgs. on the other hand,(
When Vgs-Vth) <Vds, it becomes a saturated region, and ideally, even if Vds changes,
The current value is almost the same. That is, the current value is determined only by the magnitude of Vgs.

ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ80302aのゲート端
子には、駆動用トランジスタ80302aが十分にオンするか、オフするかの二つの状態
となるようなビデオ信号を入力する。つまり、駆動用トランジスタ80302aは線形領
域で動作させる。
Here, in the case of the voltage input voltage drive method, a video signal is input to the gate terminal of the drive transistor 80302a so that the drive transistor 80302a is sufficiently turned on or off. .. That is, the driving transistor 80302a is operated in the linear region.

よって、駆動用トランジスタ80302aがオンするビデオ信号であるときには、理想的
には電源線80313aに設定されている電源電位Vddをそのまま表示素子80320
aの第1の電極に設定する。
Therefore, when the drive transistor 80302a is a video signal to be turned on, ideally, the power potential Vdd set in the power line 80313a is displayed as it is in the display element 80320.
It is set to the first electrode of a.

つまり、理想的には表示素子80320aに印加する電圧を一定にし、表示素子8032
0aから得られる輝度を一定にする。そして、1フレーム期間内に複数のサブフレーム期
間を設け、サブフレーム期間毎に画素へのビデオ信号の書き込みを行い、サブフレーム期
間毎に画素の点灯又は非点灯を制御し、その点灯しているサブフレーム期間の合計によっ
て、階調を表現する。
That is, ideally, the voltage applied to the display element 80320a is made constant, and the display element 8032 is used.
Make the brightness obtained from 0a constant. Then, a plurality of subframe periods are provided within one frame period, a video signal is written to the pixels for each subframe period, lighting or non-lighting of the pixels is controlled for each subframe period, and the lighting is performed. The gradation is expressed by the total of the subframe periods.

次に、図100(B)の画素構成について説明する。図100(B)に示す画素は、スイ
ッチングトランジスタ80301a、駆動用トランジスタ80302a、整流素子803
06a、容量素子80304a、表示素子80320bを有している。スイッチング用ト
ランジスタ80301bは、ゲート端子が第1の走査線80312bに接続され、第1端
子(ソース端子又はドレイン端子)が信号線80311bに接続され、第2端子(ソース
端子又はドレイン端子)が駆動用トランジスタ80302bのゲート端子と接続されてい
る。さらに、駆動用トランジスタ80302のゲート端子は整流素子80306aを介し
て第2の走査線80313bに接続されている。また、スイッチング用トランジスタ80
301bの第2端子は容量素子80304bを介して電源線80313bに接続されてい
る。さらに、駆動用トランジスタ80302bは第1端子が電源線80313bに接続さ
れ、第2端子が表示素子80320bの第1の電極に接続されている。表示素子8032
0bの第2の電極80321bには低電源電位が設定されている。なお、低電源電位とは
、電源線80313bに設定される高電源電位を基準にして低電源電位<高電源電位を満
たす電位であり、低電源電位としては例えばGND、0Vなどが設定されていても良い。
この高電源電位と低電源電位との電位差を表示素子80320bに印加して、表示素子8
0320bに電流を流して表示素子80320bを発光させるため、高電源電位と低電源
電位との電位差が表示素子80320bの順方向しきい値電圧以上となるようにそれぞれ
の電位を設定する。なお、容量素子80304bは駆動用トランジスタ80302bのゲ
ート容量を代用して省略することも可能である。駆動用トランジスタ80302bのゲー
ト容量については、ソース領域やドレイン領域やLDD領域などとゲート電極とが重なっ
てオーバーラップしているような領域で容量が形成されていてもよいし、チャネル領域と
ゲート電極との間で容量が形成されていてもよい。
Next, the pixel configuration of FIG. 100 (B) will be described. The pixels shown in FIG. 100B are a switching transistor 80301a, a driving transistor 80302a, and a rectifying element 803.
It has 06a, a capacitance element 80304a, and a display element 80320b. In the switching transistor 80301b, the gate terminal is connected to the first scanning line 80312b, the first terminal (source terminal or drain terminal) is connected to the signal line 80311b, and the second terminal (source terminal or drain terminal) is for driving. It is connected to the gate terminal of the transistor 80302b. Further, the gate terminal of the driving transistor 80302 is connected to the second scanning line 80313b via the rectifying element 80306a. Further, the switching transistor 80
The second terminal of 301b is connected to the power supply line 80313b via the capacitive element 80304b. Further, the drive transistor 80302b has a first terminal connected to a power supply line 80313b and a second terminal connected to a first electrode of the display element 80320b. Display element 8032
A low power supply potential is set in the second electrode 80321b of 0b. The low power potential is a potential that satisfies the low power potential <high power potential with reference to the high power potential set in the power line 80313b, and the low power potential is set to, for example, GND or 0V. Is also good.
The potential difference between the high power supply potential and the low power supply potential is applied to the display element 80320b, and the display element 8 is used.
In order to cause the display element 80320b to emit light by passing a current through 0320b, each potential is set so that the potential difference between the high power supply potential and the low power supply potential is equal to or higher than the forward threshold voltage of the display element 80320b. The capacitive element 80304b can be omitted by substituting the gate capacitance of the driving transistor 80302b. Regarding the gate capacitance of the drive transistor 80302b, the capacitance may be formed in a region where the gate electrode overlaps with the source region, drain region, LDD region, etc., or the channel region and the gate electrode may be formed. A capacitance may be formed between the and.

本画素構成は、図100(A)の画素に、整流素子80306aと第2の走査線8031
3bを追加したものである。よって、スイッチング用トランジスタ80301b、駆動用
トランジスタ80302b、容量素子80304b、信号線80311b、第1の走査線
80312b、電源線80313bは、それぞれスイッチング用トランジスタ80301
a、駆動用トランジスタ80302a、容量素子80304a、信号線80311a、走
査線80312a、電源線80313aに相当し、書き込みの動作や発光の動作は同様で
あるためここではその説明を省略する。
In this pixel configuration, the pixel of FIG. 100 (A) has a rectifying element 80306a and a second scanning line 8031.
3b is added. Therefore, the switching transistor 80301b, the driving transistor 80302b, the capacitive element 80304b, the signal line 80311b, the first scanning line 80312b, and the power supply line 80313b are each switching transistor 80301.
a, it corresponds to the driving transistor 80302a, the capacitive element 80304a, the signal line 80311a, the scanning line 80312a, and the power supply line 80313a, and the writing operation and the light emitting operation are the same, so the description thereof is omitted here.

消去動作について説明する。消去動作時には、第2の走査線80313bにHレベルの信
号を入力する。すると、整流素子80306aに電流が流れ、容量素子80304bによ
って保持されていた駆動用トランジスタ80302bのゲート電位をある電位に設定する
ことができる。つまり、駆動用トランジスタ80302bのゲート端子の電位を、ある電
位に設定し、画素へ書き込まれたビデオ信号に関わらず、駆動用トランジスタ80302
bを強制的にオフさせることができる。
The erasing operation will be described. At the time of erasing operation, an H level signal is input to the second scanning line 80313b. Then, a current flows through the rectifying element 80306a, and the gate potential of the driving transistor 80302b held by the capacitive element 80304b can be set to a certain potential. That is, the potential of the gate terminal of the drive transistor 80302b is set to a certain potential, and the drive transistor 80302 is set regardless of the video signal written to the pixel.
b can be forcibly turned off.

なお、第2の走査線80313bに入力するLレベルの信号は、画素に非点灯となるビデ
オ信号が書き込まれているときに整流素子80306aに電流が流れないような電位とす
る。また、第2の走査線80313bに入力するHレベルの信号は、画素に書き込まれた
ビデオ信号に関わらず、駆動用トランジスタ80302bがオフするような電位をゲート
端子に設定することができるような電位とする。
The L-level signal input to the second scanning line 80313b has a potential such that no current flows through the rectifying element 80306a when a video signal that is not lit is written in the pixel. Further, the H level signal input to the second scanning line 80313b is a potential at which the potential at which the driving transistor 80302b is turned off can be set at the gate terminal regardless of the video signal written in the pixel. And.

なお、整流素子80306aには、ダイオード接続したトランジスタを用いることが可能
である。さらに、ダイオード接続したトランジスタの他にも、PN接合やPIN接合のダ
イオードやショットキー型のダイオードやカーボンナノチューブで形成されたダイオード
などを用いてもよい。ダイオード接続したNチャネル型トランジスタを適用した場合を図
100(C)に示す。ダイオード接続トランジスタ80303cの第1端子(ソース端子
又はドレイン端子)を駆動用トランジスタ80302cのゲート端子と接続する。また、
ダイオード接続トランジスタ80303cの第2端子(ソース端子又はドレイン端子)を
ゲート端子と接続するとともに、第2の走査線80313cに接続する。すると、第2の
走査線80313cがLレベルのときにはダイオード接続トランジスタ80303cはゲ
ート端子とソース端子が接続されているため電流が流れないが、第2の走査線80313
cにHレベルの信号を入力したときにダイオード接続トランジスタ80303cの第2端
子はドレイン端子となるためダイオード接続トランジスタ80303cに電流が流れる。
よって、ダイオード接続トランジスタ80303cは整流作用を奏する。
A diode-connected transistor can be used for the rectifying element 80306a. Further, in addition to the diode-connected transistor, a PN-junction or PIN-junction diode, a Schottky-type diode, a diode formed of carbon nanotubes, or the like may be used. FIG. 100 (C) shows a case where an N-channel transistor connected by a diode is applied. The first terminal (source terminal or drain terminal) of the diode connection transistor 80303c is connected to the gate terminal of the drive transistor 80302c. again,
The second terminal (source terminal or drain terminal) of the diode connection transistor 80303c is connected to the gate terminal and is connected to the second scanning line 80313c. Then, when the second scanning line 80313c is at the L level, the diode connection transistor 80303c is connected to the gate terminal and the source terminal, so that no current flows, but the second scanning line 80313
When an H level signal is input to c, the second terminal of the diode connection transistor 80303c becomes a drain terminal, so that a current flows through the diode connection transistor 80303c.
Therefore, the diode connection transistor 80303c exerts a rectifying action.

なお、スイッチング用トランジスタ80301c、駆動用トランジスタ80302c、容
量素子80304c、信号線80311c、第1の走査線80312c、電源線8031
3cは、それぞれ図100(A)のスイッチング用トランジスタ80301a、駆動用ト
ランジスタ80302a、容量素子80304a、信号線80311a、走査線8031
2a、電源線80313aに相当する。また、第2の走査線80312cは、図100(
B)の第2の走査線80312dに相当する。
The switching transistor 80301c, the driving transistor 80302c, the capacitive element 80304c, the signal line 80311c, the first scanning line 80312c, and the power supply line 8031.
3c is a switching transistor 80301a, a driving transistor 80302a, a capacitive element 80304a, a signal line 80311a, and a scanning line 8031, respectively, of FIG. 100A.
2a corresponds to the power line 80313a. Further, the second scanning line 80312c is shown in FIG. 100 (
It corresponds to the second scanning line 80312d of B).

また、ダイオード接続したPチャネル型トランジスタを適用した場合は図100(D)に
示す。ダイオード接続トランジスタ80303dの第1端子(ソース端子又はドレイン端
子)を第2の走査線80313dに接続する。また、ダイオード接続トランジスタ803
03dの第2端子(ソース端子又はドレイン端子)をゲート端子と接続するとともに、駆
動用トランジスタ80302dのゲート端子と接続する。すると、第2の走査線8031
3dがLレベルのときにはダイオード接続トランジスタ80303dはゲート端子とソー
ス端子が接続されているため電流が流れないが、第2の走査線80313dにHレベルの
信号を入力したときにダイオード接続トランジスタ80303dの第2端子はドレイン端
子となるためダイオード接続トランジスタ80303dに電流が流れる。よって、ダイオ
ード接続トランジスタ80303dは整流作用を奏する。
Further, when a diode-connected P-channel transistor is applied, it is shown in FIG. 100 (D). The first terminal (source terminal or drain terminal) of the diode connection transistor 80303d is connected to the second scanning line 80313d. Also, the diode connection transistor 803
The second terminal (source terminal or drain terminal) of 03d is connected to the gate terminal, and is also connected to the gate terminal of the driving transistor 80302d. Then, the second scanning line 8031
When 3d is L level, current does not flow in the diode connection transistor 80303d because the gate terminal and the source terminal are connected, but when an H level signal is input to the second scanning line 80313d, the diode connection transistor 80303d becomes the first. Since the two terminals are drain terminals, a current flows through the diode connection transistor 80303d. Therefore, the diode connection transistor 80303d exerts a rectifying action.

なお、スイッチング用トランジスタ80301d、駆動用トランジスタ80302d、容
量素子80304d、信号線80311d、第1の走査線80312d、電源線8031
3dは、それぞれ図100(A)のスイッチング用トランジスタ80301a、駆動用ト
ランジスタ80302a、容量素子80304a、信号線80311a、走査線8031
2a、電源線80313aに相当する。また、第2の走査線80312dは、図100(
B)の第2の走査線80312dに相当する。
The switching transistor 80301d, the driving transistor 80302d, the capacitive element 80304d, the signal line 80311d, the first scanning line 80312d, and the power supply line 8031.
3d is a switching transistor 80301a, a driving transistor 80302a, a capacitive element 80304a, a signal line 80311a, and a scanning line 8031, respectively, of FIG. 100A.
2a corresponds to the power line 80313a. Further, the second scanning line 80312d is shown in FIG. 100 (
It corresponds to the second scanning line 80312d of B).

また、画素へ書き込まれた信号を消去させるために消去用トランジスタを設けてもよい。
図100(E)に示す画素は、図100(A)の画素に消去用トランジスタ80303e
と第2の走査線80312eを追加したものである。よって、スイッチング用トランジス
タ80301e、駆動用トランジスタ80302e、容量素子80304e、信号線80
311e、第1の走査線80312e、電源線80313eは、それぞれ図100(A)
のスイッチング用トランジスタ80301a、駆動用トランジスタ80302a、容量素
子80304a、信号線80311a、走査線80312a、電源線80313aに相当
し、書き込みの動作や発光の動作は同様であるためここではその説明を省略する。
Further, an erasing transistor may be provided to erase the signal written to the pixel.
The pixel shown in FIG. 100 (E) is the pixel of FIG. 100 (A) and the erasing transistor 80303e.
And a second scanning line 80312e are added. Therefore, the switching transistor 80301e, the driving transistor 80302e, the capacitive element 80304e, and the signal line 80
311e, the first scanning line 80312e, and the power supply line 80313e are shown in FIG. 100 (A), respectively.
Corresponds to the switching transistor 80301a, the driving transistor 80302a, the capacitive element 80304a, the signal line 80311a, the scanning line 80312a, and the power supply line 80313a, and the writing operation and the light emitting operation are the same, and thus the description thereof will be omitted here.

消去動作について説明する。消去動作時には、第2の走査線80312eにHレベルの信
号を入力する。すると、消去用トランジスタ80303eがオンし、駆動用トランジスタ
80302eのゲート端子と第1端子を同電位にすることができる。つまり、駆動用トラ
ンジスタ80302eのゲートとソース間電圧を0Vにすることができる。なお、第2の
走査線80312eのHレベルの電位は、電源線80313eの電位よりも消去用トラン
ジスタ80303eのしきい値電圧Vth以上高いことが望ましい。こうして、駆動用ト
ランジスタ80302eを強制的にオフさせることができる。
The erasing operation will be described. At the time of erasing operation, an H level signal is input to the second scanning line 80312e. Then, the erasing transistor 80303e is turned on, and the gate terminal and the first terminal of the driving transistor 80302e can be set to the same potential. That is, the voltage between the gate and the source of the drive transistor 80302e can be set to 0V. It is desirable that the H level potential of the second scanning line 80312e is higher than the potential of the power supply line 80313e by the threshold voltage Vth or more of the erasing transistor 80303e. In this way, the driving transistor 80302e can be forcibly turned off.

続いて、本発明に適応可能なしきい値電圧補正型の画素回路及び駆動方法の一例について
、図101(A)を参照して説明する。
Subsequently, an example of the threshold voltage correction type pixel circuit and the driving method applicable to the present invention will be described with reference to FIG. 101 (A).

図101(A)に示す画素は、駆動用トランジスタ80400、第1のスイッチ8040
1、第2のスイッチ80402、第3のスイッチ80403、第1の容量素子80404
、第2の容量素子80405及び表示素子80420を有している。駆動用トランジスタ
80400は、ゲート端子が第1の容量素子80404と第1のスイッチ80401とを
順に介して信号線80411と接続され、第1端子が電源線80412と接続され、第2
端子が第3のスイッチ80403を介して表示素子80420の第1の電極に接続されて
いる。さらに、駆動用トランジスタ80400のゲート端子が第2の容量素子80405
を介して電源線80412と接続されている。また、駆動用トランジスタ80400のゲ
ート端子が第2のスイッチ80402を介して駆動用トランジスタ80400の第2端子
と接続されている。また、表示素子80420の第2の電極80421には低電源電位が
設定されている。なお、低電源電位とは、電源線80412に設定される高電源電位を基
準にして低電源電位<高電源電位を満たす電位であり、低電源電位としては例えばGND
、0Vなどが設定されていても良い。この高電源電位と低電源電位との電位差を表示素子
80420に印加して、表示素子80420に電流を流して表示素子80420を発光さ
せるため、高電源電位と低電源電位との電位差が表示素子80420の順方向しきい値電
圧以上となるようにそれぞれの電位を設定する。なお、第2の容量素子80405は駆動
用トランジスタ80400のゲート容量を代用して省略することも可能である。駆動用ト
ランジスタ80400のゲート容量については、ソース領域やドレイン領域やLDD領域
などとゲート電極とが重なってオーバーラップしているような領域で容量が形成されてい
てもよいし、チャネル領域とゲート電極との間で容量が形成されていてもよい。なお、第
1のスイッチ80401、第2のスイッチ80402、第3のスイッチ80403は、そ
れぞれ第1の走査線80413、第2の走査線80414、第3の走査線80414によ
ってオン・オフが制御される。
The pixels shown in FIG. 101 (A) are a driving transistor 80400 and a first switch 8040.
1. Second switch 80402, third switch 80403, first capacitive element 80404
, A second capacitive element 80405 and a display element 80420. In the drive transistor 80400, the gate terminal is connected to the signal line 80411 via the first capacitive element 80404 and the first switch 80401 in order, the first terminal is connected to the power supply line 80412, and the second terminal is connected.
The terminal is connected to the first electrode of the display element 80420 via the third switch 80403. Further, the gate terminal of the drive transistor 80400 is a second capacitive element 80405.
It is connected to the power line 80412 via. Further, the gate terminal of the drive transistor 80400 is connected to the second terminal of the drive transistor 80400 via the second switch 80402. Further, a low power supply potential is set on the second electrode 80421 of the display element 80420. The low power supply potential is a potential that satisfies the low power supply potential <high power supply potential with reference to the high power supply potential set in the power supply line 80412, and the low power supply potential is, for example, GND.
, 0V and the like may be set. Since the potential difference between the high power supply potential and the low power supply potential is applied to the display element 80420 and a current is passed through the display element 80420 to cause the display element 80420 to emit light, the potential difference between the high power supply potential and the low power supply potential is the display element 80420. Set each potential so that it is equal to or higher than the forward threshold voltage of. The second capacitive element 80405 can be omitted by substituting the gate capacitance of the driving transistor 80400. Regarding the gate capacitance of the drive transistor 80400, the capacitance may be formed in a region where the gate electrode overlaps with the source region, drain region, LDD region, etc., or the channel region and the gate electrode may be formed. A capacitance may be formed between the and. The first switch 80401, the second switch 80402, and the third switch 80403 are turned on and off by the first scanning line 80413, the second scanning line 80414, and the third scanning line 80414, respectively. ..

図101(A)に示す画素の駆動方法は、初期化期間、データ書き込み期間、しきい値取
得期間、発光期間に分割することができる。
The pixel driving method shown in FIG. 101 (A) can be divided into an initialization period, a data writing period, a threshold value acquisition period, and a light emitting period.

初期化期間では、第2のスイッチ80402及び第3のスイッチ80403がオンして、
駆動用トランジスタ80400のゲート端子の電位が少なくとも電源線80412の電位
よりも低くなる。なお、このとき、第1のスイッチ80401は、オンしていてもオフし
ていてもよい。なお、初期化期間は必ずしも必要ではない。
During the initialization period, the second switch 80402 and the third switch 80403 are turned on.
The potential of the gate terminal of the drive transistor 80400 is at least lower than the potential of the power line 80412. At this time, the first switch 80401 may be turned on or off. The initialization period is not always necessary.

しきい値取得期間では、第1の走査線80413によって画素が選択される。つまり、第
1のスイッチ80401がオンし、信号線80411からある一定電圧が入力される。こ
のとき、第2のスイッチ80402がオンしており、駆動用トランジスタ80400がダ
イオード接続される。また、第3のスイッチ80403はオフしている。したがって、駆
動用トランジスタ80400のゲート端子の電位は、電源線80412の電位から駆動用
トランジスタ80400のしきい値電圧を引いた値となる。第1の容量素子80404に
は駆動用トランジスタ80400のしきい値電圧が保持される。また、第2の容量素子8
0405には、駆動用トランジスタ80400のゲート端子の電位と信号線80411か
ら入力されている一定電圧との電位差が保持される。
During the threshold acquisition period, pixels are selected by the first scan line 80413. That is, the first switch 80401 is turned on, and a certain constant voltage is input from the signal line 80411. At this time, the second switch 80402 is turned on, and the driving transistor 80400 is diode-connected. Also, the third switch 80403 is off. Therefore, the potential of the gate terminal of the drive transistor 80400 is a value obtained by subtracting the threshold voltage of the drive transistor 80400 from the potential of the power supply line 80412. The threshold voltage of the driving transistor 80400 is held in the first capacitive element 80404. Further, the second capacitive element 8
In 0405, the potential difference between the potential of the gate terminal of the driving transistor 80400 and the constant voltage input from the signal line 80411 is maintained.

データ書き込み期間では、信号線80411からビデオ信号(電圧)が入力される。この
とき、第1のスイッチ80401がオンのままであり、第2のスイッチ80402がオフ
し、第2のスイッチ80402がオフのままである。また、駆動用トランジスタ8040
0のゲート端子は浮遊状態となっている。よって、駆動用トランジスタ80400のゲー
ト端子の電位は、しきい値取得期間において信号線80411入力される一定電圧と、デ
ータ書き込み期間において信号線80411入力されるビデオ信号と、の電位差に応じて
変化する。例えば、第1の容量素子80404の容量値<<第2の容量素子80405の
容量値であれば、データ書き込み期間における駆動用トランジスタ80400のゲート端
子の電位は、しきい値取得期間において信号線80411入力される一定電圧とデータ書
き込み期間において信号線80411入力されるビデオ信号との電位差を、電源線804
12の電位から駆動用トランジスタ80400のしきい値電圧を引いた値に足した値とお
おむね等しくなる。つまり、駆動用トランジスタ80400のゲート端子の電位は、駆動
トランジスタ80400のしきい値電圧を補正した電位となる。
During the data writing period, a video signal (voltage) is input from the signal line 80411. At this time, the first switch 80401 remains on, the second switch 80402 turns off, and the second switch 80402 remains off. In addition, the driving transistor 8040
The gate terminal of 0 is in a floating state. Therefore, the potential of the gate terminal of the drive transistor 80400 changes according to the potential difference between the constant voltage input to the signal line 80411 during the threshold acquisition period and the video signal input to the signal line 80411 during the data writing period. .. For example, if the capacitance value of the first capacitance element 80404 << the capacitance value of the second capacitance element 80405, the potential of the gate terminal of the drive transistor 80400 during the data writing period is the signal line 80411 during the threshold acquisition period. The potential difference between the input constant voltage and the video signal input to the signal line 80411 during the data writing period is set to the power supply line 804.
It is approximately equal to the value obtained by adding the value obtained by subtracting the threshold voltage of the drive transistor 80400 from the potential of 12. That is, the potential of the gate terminal of the drive transistor 80400 is a potential corrected for the threshold voltage of the drive transistor 80400.

発光期間では、駆動用トランジスタ80400のゲート端子の電位と電源線80412と
の電位差(Vgs)に応じた電流が表示素子80420に流れる。このとき、第1のスイ
ッチ80401がオフし、第2のスイッチ80402がオフのままであり、第3のスイッ
チ80403がオンする。なお、表示素子80420に流れる電流は、駆動用トランジス
タ80400のしきい値電圧によらず一定である。
During the light emission period, a current corresponding to the potential difference (Vgs) between the potential of the gate terminal of the driving transistor 80400 and the power supply line 80412 flows through the display element 80420. At this time, the first switch 80401 is turned off, the second switch 80402 remains off, and the third switch 80403 is turned on. The current flowing through the display element 80420 is constant regardless of the threshold voltage of the driving transistor 80400.

なお、図101(A)に示す画素構成は、図101(A)に限定されない。例えば、図1
01(A)に示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ又は論理回
路などを追加してもよい。また、例えば、第2のスイッチ80402をPチャネル型トラ
ンジスタ又はNチャネル型トランジスタで構成し、第3のスイッチ80403を第2のス
イッチ80402とは別の極性のトランジスタで構成し、第2のスイッチ80402及び
第3のスイッチ80403を同じ走査線で制御してもよい。
The pixel configuration shown in FIG. 101 (A) is not limited to FIG. 101 (A). For example, FIG.
A switch, a resistance element, a capacitive element, a transistor, a logic circuit, or the like may be newly added to the pixel shown in 01 (A). Further, for example, the second switch 80402 is composed of a P-channel transistor or an N-channel transistor, the third switch 80403 is composed of a transistor having a polarity different from that of the second switch 80402, and the second switch 80402 is configured. And the third switch 80403 may be controlled by the same scanning line.

続いて、本発明に適応可能な電流入力型の画素回路及び駆動方法の一例について、図10
1(B)を参照して説明する。
Subsequently, FIG. 10 shows an example of a current input type pixel circuit and a driving method applicable to the present invention.
This will be described with reference to 1 (B).

図101(B)に示す画素は、駆動用トランジスタ80430、第1のスイッチ8043
1、第2のスイッチ80432、第3のスイッチ80433、容量素子80434及び表
示素子80450を有している。駆動用トランジスタ80430は、ゲート端子が第2の
スイッチ80432と第1のスイッチ80431とを順に介して信号線80441に接続
され、第1端子が電源線80442と接続され、第2端子が第3のスイッチ80433を
介して表示素子80450の第1の電極に接続されている。さらに、駆動用トランジスタ
80430のゲート端子が容量素子80434を介して電源線80442と接続されてい
る。また、駆動用トランジスタ80430のゲート端子が第2のスイッチ80432を介
して駆動用トランジスタ80430の第2端子と接続されている。また、表示素子804
50の第2の電極80451には低電源電位が設定されている。なお、低電源電位とは、
電源線80442に設定される高電源電位を基準にして低電源電位<高電源電位を満たす
電位であり、低電源電位としては例えばGND、0Vなどが設定されていても良い。この
高電源電位と低電源電位との電位差を表示素子80450に印加して、表示素子8045
0に電流を流して表示素子80450を発光させるため、高電源電位と低電源電位との電
位差が表示素子80450の順方向しきい値電圧以上となるようにそれぞれの電位を設定
する。なお、容量素子80434は駆動用トランジスタ80430のゲート容量を代用し
て省略することも可能である。駆動用トランジスタ80430のゲート容量については、
ソース領域やドレイン領域やLDD領域などとゲート電極とが重なってオーバーラップし
ているような領域で容量が形成されていてもよいし、チャネル領域とゲート電極との間で
容量が形成されていてもよい。なお、第1のスイッチ80431、第2のスイッチ804
32、第3のスイッチ80433は、それぞれ第1の走査線80443、第2の走査線8
0444、第3の走査線80454によってオン・オフが制御される。
The pixels shown in FIG. 101B are the driving transistor 80430 and the first switch 8043.
1. It has a second switch 80432, a third switch 80433, a capacitance element 80434, and a display element 80450. In the drive transistor 80430, the gate terminal is connected to the signal line 80441 via the second switch 80432 and the first switch 80431 in order, the first terminal is connected to the power supply line 80442, and the second terminal is the third. It is connected to the first electrode of the display element 80450 via the switch 80433. Further, the gate terminal of the drive transistor 80430 is connected to the power line 80442 via the capacitive element 80434. Further, the gate terminal of the drive transistor 80430 is connected to the second terminal of the drive transistor 80430 via the second switch 80432. In addition, the display element 804
A low power potential is set in the second electrode 80451 of 50. The low power potential is
The low power potential <the potential satisfying the high power potential with reference to the high power potential set in the power line 80442, and the low power potential may be set to, for example, GND, 0V or the like. The potential difference between the high power supply potential and the low power supply potential is applied to the display element 80450 to display the display element 8045.
In order to make the display element 80450 emit light by passing a current through 0, each potential is set so that the potential difference between the high power supply potential and the low power supply potential is equal to or higher than the forward threshold voltage of the display element 80450. The capacitive element 80434 can be omitted by substituting the gate capacitance of the driving transistor 80430. Regarding the gate capacitance of the drive transistor 80430,
The capacitance may be formed in a region where the gate electrode overlaps and overlaps with the source region, drain region, LDD region, etc., or the capacitance is formed between the channel region and the gate electrode. May be good. The first switch 80431 and the second switch 804
32, the third switch 80433 has the first scanning line 80443 and the second scanning line 8, respectively.
On / off is controlled by 0444 and the third scanning line 80454.

図101(B)に示す画素の駆動方法は、データ書き込み期間、発光期間に分割すること
ができる。
The pixel driving method shown in FIG. 101B can be divided into a data writing period and a light emitting period.

データ書き込み期間では、第1の走査線80443によって画素が選択される。つまり、
第1のスイッチ80431がオンし、信号線80431からビデオ信号として電流が入力
される。このとき、第2のスイッチ80432がオンし、第3のスイッチ80433がオ
フする。したがって、駆動用トランジスタ80430のゲート端子の電位は、ビデオ信号
に応じた電位となる。つまり、容量素子80434には、駆動用トランジスタ80430
がビデオ信号と同じ電流を流すような駆動用トランジスタ80430のゲート・ソース間
電圧が保持される。
During the data writing period, pixels are selected by the first scan line 80443. in short,
The first switch 80431 is turned on, and a current is input as a video signal from the signal line 80431. At this time, the second switch 80432 is turned on and the third switch 80433 is turned off. Therefore, the potential of the gate terminal of the driving transistor 80430 becomes the potential corresponding to the video signal. That is, the capacitive element 80434 has a drive transistor 80430.
The gate-source voltage of the drive transistor 80430 is maintained so that the same current as the video signal is passed.

次に、発光期間では、第1のスイッチ80431及び第2のスイッチ80432がオフし
、第3のスイッチ80433がオンする。したがって、表示素子80450にはビデオ信
号と同じ値の電流が流れる。
Next, during the light emission period, the first switch 80431 and the second switch 80432 are turned off, and the third switch 80433 is turned on. Therefore, a current having the same value as the video signal flows through the display element 80450.

なお、図101(B)に示す画素構成は、図101(B)に限定されない。例えば、図1
01(B)に示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ又は論理回
路などを追加してもよい。また、例えば、第1のスイッチ80431をPチャネル型トラ
ンジスタ又はNチャネル型トランジスタで構成し、第2のスイッチ80432を第1のス
イッチ80431と同じ極性のトランジスタで構成し、第1のスイッチ80431及び第
2のスイッチ80432を同じ走査線で制御してもよい。また、第2のスイッチ8043
2は駆動用トランジスタ80430のゲート端子と信号線80431との間に配置されて
いてもよい。
The pixel configuration shown in FIG. 101 (B) is not limited to FIG. 101 (B). For example, FIG.
A switch, a resistance element, a capacitive element, a transistor, a logic circuit, or the like may be newly added to the pixel shown in 01 (B). Further, for example, the first switch 80431 is composed of a P-channel transistor or an N-channel transistor, the second switch 80432 is composed of a transistor having the same polarity as the first switch 80431, and the first switch 80431 and the first switch 80431 are configured. Switch 80432 of 2 may be controlled by the same scanning line. Also, the second switch 8043
2 may be arranged between the gate terminal of the drive transistor 80430 and the signal line 80431.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態13)
本実施形態においては、本発明を適用できる半導体装置が薄膜トランジスタ(TFT)を
素子として有する場合の半導体装置の作製方法について、図面を参照して説明する。
(Embodiment 13)
In the present embodiment, a method for manufacturing a semiconductor device when the semiconductor device to which the present invention can be applied has a thin film transistor (TFT) as an element will be described with reference to the drawings.

図102は、本発明を適用できる半導体装置が有することのできるTFTの構造および製
造プロセスの例を示す図である。図102(A)は、本発明を適用できる半導体装置が有
することのできるTFTの構造の例を示す図である。また、図102(B)乃至(G)は
、本発明を適用できる半導体装置が有することのできるTFTの製造プロセスの例を示す
図である。
FIG. 102 is a diagram showing an example of a TFT structure and manufacturing process that a semiconductor device to which the present invention can be applied can have. FIG. 102 (A) is a diagram showing an example of a TFT structure that a semiconductor device to which the present invention can be applied can have. Further, FIGS. 102 (B) to 102 (G) are views showing an example of a TFT manufacturing process that can be possessed by a semiconductor device to which the present invention can be applied.

なお、本発明を適用できる半導体装置が有することのできるTFTの構造および製造プロ
セスは、図102に示すものに限定されず、様々な構造および製造プロセスを用いること
ができる。
The structure and manufacturing process of the TFT that can be possessed by the semiconductor device to which the present invention can be applied are not limited to those shown in FIG. 102, and various structures and manufacturing processes can be used.

まず、図102(A)を参照し、本発明を適用できる半導体装置が有することのできるT
FTの構造の例について説明する。図102(A)は複数の異なる構造を有するTFTの
断面図である。ここで、図102(A)においては、複数の異なる構造を有するTFTを
並置して示しているが、これは、発明を適用できる半導体装置が有することのできるTF
Tの構造を説明するための表現であり、発明を適用できる半導体装置が有することのでき
るTFTが、実際に図102(A)のように並置されている必要はなく、必要に応じてつ
くり分けることができる。
First, referring to FIG. 102 (A), a T that can be possessed by a semiconductor device to which the present invention can be applied.
An example of the structure of the FT will be described. FIG. 102 (A) is a cross-sectional view of a TFT having a plurality of different structures. Here, in FIG. 102 (A), TFTs having a plurality of different structures are shown side by side, which can be possessed by a semiconductor device to which the invention can be applied.
It is an expression for explaining the structure of T, and the TFTs that the semiconductor device to which the invention can be applied do not need to be juxtaposed as shown in FIG. 102 (A), and are made separately as needed. be able to.

次に、本発明を適用できる半導体装置が有することのできるTFTを構成する各層の特徴
について説明する。
Next, the features of each layer constituting the TFT that can be possessed by the semiconductor device to which the present invention can be applied will be described.

基板110111は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラ
ス基板、石英基板、セラミック基板またはステンレスを含む金属基板等を用いることがで
きる。他にも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(P
EN)、ポリエーテルサルフォン(PES)に代表されるプラスチック又はアクリル等の
可撓性を有する合成樹脂からなる基板を用いることも可能である。可撓性を有する基板を
用いることによって、折り曲げが可能である半導体装置を作製することが可能となる。ま
た、可撓性を有す基板であれば、基板の面積及び基板の形状に大きな制限はないため、基
板110111として、例えば、1辺が1メートル以上であって、矩形状のものを用いれ
ば、生産性を格段に向上させることができる。このような利点は、円形のシリコン基板を
用いる場合と比較すると、大きな優位点である。
As the substrate 110111, a glass substrate such as barium borosilicate glass or aluminoborosilicate glass, a quartz substrate, a ceramic substrate, a metal substrate containing stainless steel, or the like can be used. In addition, polyethylene terephthalate (PET) and polyethylene naphthalate (P)
It is also possible to use a substrate made of a flexible synthetic resin such as plastic or acrylic represented by EN) and polyether sulfone (PES). By using a flexible substrate, it becomes possible to manufacture a semiconductor device that can be bent. Further, as long as the substrate has flexibility, there are no major restrictions on the area of the substrate and the shape of the substrate. Therefore, as the substrate 110111, for example, a substrate having a side of 1 meter or more and having a rectangular shape may be used. , Productivity can be significantly improved. Such an advantage is a great advantage as compared with the case of using a circular silicon substrate.

絶縁膜110112は、下地膜として機能する。基板110111からNaなどのアルカ
リ金属又はアルカリ土類金属が、半導体素子の特性に悪影響を及ぼすのを防ぐために設け
る。絶縁膜110112としては、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化
窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸
素又は窒素を有する絶縁膜の単層構造若しくはこれらの積層構造で設けることができる。
例えば、絶縁膜110112を2層構造で設ける場合、1層目の絶縁膜として窒化酸化珪
素膜を設け、2層目の絶縁膜として酸化窒化珪素膜を設けるとよい。また、絶縁膜110
112を3層構造で設ける場合、1層目の絶縁膜として酸化窒化珪素膜を設け、2層目の
絶縁膜として窒化酸化珪素膜を設け、3層目の絶縁膜として酸化窒化珪素膜を設けるとよ
い。
The insulating film 110112 functions as a base film. It is provided from the substrate 110111 in order to prevent an alkali metal such as Na or an alkaline earth metal from adversely affecting the characteristics of the semiconductor element. The insulating film 110112 includes an insulating film having oxygen or nitrogen such as silicon oxide (SiOx), silicon nitride (SiNx), silicon oxide (SiOxNy) (x> y), silicon nitride (SiNxOy) (x> y). It can be provided with a single-layer structure or a laminated structure thereof.
For example, when the insulating film 110112 is provided in a two-layer structure, it is preferable to provide a silicon nitride film as the first insulating film and a silicon oxide film as the second insulating film. In addition, the insulating film 110
When the 112 is provided in a three-layer structure, a silicon oxide film is provided as the first insulating film, a silicon nitride film is provided as the second insulating film, and a silicon oxide film is provided as the third insulating film. It is good.

半導体膜110113、110114、110115は、非晶質(アモルファス)半導体
またはセミアモルファス半導体(SAS)で形成することができる。あるいは、多結晶半
導体膜を用いても良い。SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的
な構造を有し、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩
序を持ち格子歪みを有する結晶質な領域を含んでいる。少なくとも膜中の一部の領域には
、0.5~20nmの結晶領域を観測することができ、珪素を主成分とする場合にはラマ
ンスペクトルが520cm-1よりも低波数側にシフトしている。X線回折では珪素結晶
格子に由来するとされる(111)、(220)の回折ピークが観測される。未結合手(
ダングリングボンド)の終端として水素またはハロゲンを少なくとも1原子%またはそれ
以上含ませている。SASは、珪化を含む気体をグロー放電分解(プラズマCVD)して
形成する。珪化を含む気体としては、SiH、その他にもSi、SiHCl
、SiHCl、SiCl、SiFなどを用いることが可能である。あるいは、Ge
を混合させても良い。この珪化を含む気体をH、または、HとHe、Ar、Kr
、Neから選ばれた一種または複数種の希ガス元素で希釈してもよい。希釈率は2~10
00倍の範囲。圧力は概略0.1Pa~133Paの範囲、電源周波数は1MHz~12
0MHz、好ましくは13MHz~60MHz。基板加熱温度は300℃以下でよい。膜
中の不純物元素として、酸素、窒素、炭素などの大気成分の不純物は1×1020cm
以下とすることが望ましく、特に、酸素濃度は5×1019/cm以下、好ましくは
1×1019/cm以下とする。ここでは、公知の手段(スパッタ法、LPCVD法、
プラズマCVD法等)を用いてシリコン(Si)を主成分とする材料(例えばSixGe
1-x等)で非晶質半導体膜を形成し、当該非晶質半導体膜をレーザ結晶化法、RTA又
はファーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属元素を用いる熱結晶
化法などの公知の結晶化法により結晶化させる。
The semiconductor films 110113, 110114, 110115 can be formed of an amorphous semiconductor or a semi-amorphous semiconductor (SAS). Alternatively, a polycrystalline semiconductor film may be used. SAS is a semiconductor having an intermediate structure between amorphous and crystalline structures (including single crystal and polycrystal) and having a third state stable in free energy, and has short-range order and a lattice. It contains a crystalline region with strain. A crystal region of 0.5 to 20 nm can be observed in at least a part of the region in the film, and when silicon is the main component, the Raman spectrum shifts to the lower wavenumber side than 520 cm -1 . There is. In X-ray diffraction, diffraction peaks (111) and (220), which are said to be derived from the silicon crystal lattice, are observed. Unbonded hands (
The end of the dangling bond) contains at least 1 atomic% or more of hydrogen or halogen. SAS is formed by glow discharge decomposition (plasma CVD) of a gas containing silicified wood. Gases containing silicification include SiH 4 , Si 2 H 6 and SiH 2 Cl 2 .
, SiHCl 3 , SiC4, SiF 4 , and the like can be used. Or Ge
F4 may be mixed. The gas containing this silicification is H 2 , or H 2 and He, Ar, Kr.
, Ne may be diluted with one or more rare gas elements selected from Ne. Dilution rate is 2 to 10
00 times range. The pressure is approximately in the range of 0.1 Pa to 133 Pa, and the power frequency is 1 MHz to 12
0 MHz, preferably 13 MHz to 60 MHz. The substrate heating temperature may be 300 ° C. or lower. Impurities of atmospheric components such as oxygen, nitrogen, and carbon as impurity elements in the membrane are 1 x 10 20 cm-
It is preferably 1 or less, and in particular, the oxygen concentration is 5 × 10 19 / cm 3 or less, preferably 1 × 10 19 / cm 3 or less. Here, known means (spatter method, LPCVD method,
A material containing silicon (Si) as a main component (for example, SixGe) using a plasma CVD method or the like).
An amorphous semiconductor film is formed by 1-x, etc.), and the amorphous semiconductor film is subjected to a laser crystallization method, a thermal crystallization method using an RTA or a furnace annealing furnace, and a thermal crystal using a metal element that promotes crystallization. Crystallize by a known crystallization method such as a crystallization method.

絶縁膜110116は、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(
SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素または窒
素を有する絶縁膜の単層構造、若しくはこれらの積層構造で設けることができる。
The insulating film 110116 includes silicon oxide (SiOx), silicon nitride (SiNx), and silicon nitride (silicon oxide).
It can be provided by a single-layer structure of an insulating film having oxygen or nitrogen such as SiOxNy) (x> y) and silicon nitride (SiNxOy) (x> y), or a laminated structure thereof.

ゲート電極110117は、単層の導電膜、または二層、三層の導電膜の積層構造とする
ことができる。ゲート電極110117の材料としては、公知の導電膜を用いることがで
きる。たとえば、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステ
ン(W)、クロム(Cr)、シリコン(Si)などの元素の単体膜、または、前記元素の
窒化膜(代表的には窒化タンタル膜、窒化タングステン膜、窒化チタン膜)、または、前
記元素を組み合わせた合金膜(代表的にはMo-W合金、Mo-Ta合金)、または、前
記元素のシリサイド膜(代表的にはタングステンシリサイド膜、チタンシリサイド膜)な
どを用いることができる。なお、上述した単体膜、窒化膜、合金膜、シリサイド膜などは
、単層で用いてもよいし、積層して用いてもよい。
The gate electrode 110117 may have a single-layer conductive film or a laminated structure of two-layer or three-layer conductive film. A known conductive film can be used as the material of the gate electrode 110117. For example, a single film of an element such as tantalum (Ta), titanium (Ti), molybdenum (Mo), tungsten (W), chromium (Cr), silicon (Si), or a nitrided film of the element (typically). Tantalum nitride film, tungsten nitride film, titanium nitride film), alloy film combining the above elements (typically Mo-W alloy, Mo-Ta alloy), or silicide film of the element (typically). Tungsten silicide film, titanium silicide film) and the like can be used. The above-mentioned single film, nitride film, alloy film, silicide film and the like may be used as a single layer or may be used in a laminated manner.

絶縁膜110118は、公知の手段(スパッタ法やプラズマCVD法等)によって、酸化
珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、
窒化酸化珪素(SiNxOy)(x>y)等の酸素または窒素を有する絶縁膜やDLC(
ダイヤモンドライクカーボン)等の炭素を含む膜の単層構造、若しくはこれらの積層構造
で設けることができる。
The insulating film 110118 is formed of silicon oxide (SiOx), silicon nitride (SiNx), silicon oxide (SiOxNy) (x> y), by a known means (spatter method, plasma CVD method, etc.).
An insulating film having oxygen or nitrogen such as silicon nitride (SiNxOy) (x> y) or DLC (
It can be provided by a single-layer structure of a carbon-containing film such as diamond-like carbon) or a laminated structure thereof.

絶縁膜110119は、シロキサン樹脂、または、酸化珪素(SiOx)、窒化珪素(S
iNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(
x>y)等の酸素または窒素を有する絶縁膜やDLC(ダイヤモンドライクカーボン)等
の炭素を含む膜、または、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノール、
ベンゾシクロブテン、アクリル等の有機材料、からなる単層若しくは積層構造で設けるこ
とができる。なお、シロキサン樹脂とは、Si-O-Si結合を含む樹脂に相当する。シ
ロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基と
して、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる
。置換基として、フルオロ基を用いることもできる。あるいは、置換基として、少なくと
も水素を含む有機基と、フルオロ基とを用いてもよい。なお、本発明に適応できる半導体
装置において、絶縁膜110118を設けずにゲート電極110117を覆うように直接
絶縁膜110119を設けることも可能である。
The insulating film 110119 is made of a siloxane resin, silicon oxide (SiOx), or silicon nitride (S).
iNx), Silicon Nitride (SiOxNy) (x> y), Silicon Nitride (SiNxOy) (
An insulating film having oxygen or nitrogen such as x> y), a film containing carbon such as DLC (diamond-like carbon), or an epoxy, polyimide, polyamide, polyvinylphenol,
It can be provided in a single layer or laminated structure made of an organic material such as benzocyclobutene or acrylic. The siloxane resin corresponds to a resin containing a Si—O—Si bond. The skeleton structure of siloxane is composed of the bonds between silicon (Si) and oxygen (O). As the substituent, an organic group containing at least hydrogen (for example, an alkyl group or an aromatic hydrocarbon) is used. A fluoro group can also be used as the substituent. Alternatively, an organic group containing at least hydrogen and a fluoro group may be used as the substituent. In the semiconductor device applicable to the present invention, it is also possible to directly provide the insulating film 110119 so as to cover the gate electrode 110117 without providing the insulating film 110118.

導電膜110123は、Al、Ni、C、W、Mo、Ti、Pt、Cu、Ta、Au、M
nなどの元素の単体膜、または、前記元素の窒化膜、または、前記元素を組み合わせた合
金膜、または、前記元素のシリサイド膜などを用いることができる。例えば、前記元素を
複数含む合金として、C及びTiを含有したAl合金、Niを含有したAl合金、C及び
Niを含有したAl合金、C及びMnを含有したAl合金等を用いることができる。また
、積層構造で設ける場合、AlをMoまたはTiなどで挟み込んだ構造とすることができ
る。こうすることで、Alの熱や化学反応に対する耐性を向上することができる。
The conductive film 110123 has Al, Ni, C, W, Mo, Ti, Pt, Cu, Ta, Au, and M.
A simple substance film of an element such as n, a nitride film of the element, an alloy film in which the elements are combined, a silicide film of the element, or the like can be used. For example, as the alloy containing a plurality of the elements, an Al alloy containing C and Ti, an Al alloy containing Ni, an Al alloy containing C and Ni, an Al alloy containing C and Mn, and the like can be used. Further, when the structure is provided in a laminated structure, the structure may be such that Al is sandwiched between Mo or Ti. By doing so, the resistance of Al to heat and chemical reaction can be improved.

次に、図102(A)に示した、複数の異なる構造を有するTFTの断面図を参照して、
各々の構造の特徴について説明する。
Next, with reference to the cross-sectional view of the TFT having a plurality of different structures shown in FIG. 102 (A).
The features of each structure will be described.

110101は、シングルドレインTFTであり、簡便な方法で製造できるため、製造コ
ストが低く、歩留まりを高く製造できる利点がある。ここで、半導体膜110113、1
10115は、それぞれ不純物の濃度が異なり、半導体膜110113はチャネル領域、
半導体膜110115はソース領域およびドレイン領域として用いる。このように、不純
物の量を制御することで、半導体膜の抵抗率を制御できる。また、半導体膜と導電膜11
0123との電気的な接続状態を、オーミック接続に近づけることができる。なお、不純
物の量の異なる半導体膜を作り分ける方法としては、ゲート電極110117をマスクと
して半導体膜に不純物をドーピングする方法を用いることができる。
Since 110101 is a single-drain TFT and can be manufactured by a simple method, it has the advantages of low manufacturing cost and high yield. Here, the semiconductor film 110113, 1
In 10115, the concentration of impurities is different, and the semiconductor film 110113 is in the channel region.
The semiconductor film 110115 is used as a source region and a drain region. By controlling the amount of impurities in this way, the resistivity of the semiconductor film can be controlled. Further, the semiconductor film and the conductive film 11
The electrical connection with 0123 can be brought closer to ohmic connection. As a method for producing semiconductor films having different amounts of impurities, a method of doping the semiconductor film with impurities using the gate electrode 110117 as a mask can be used.

110102は、ゲート電極110117に一定以上のテーパー角を有するTFTであり
、簡便な方法で製造できるため、製造コストが低く、歩留まりを高く製造できる利点があ
る。ここで、半導体膜110113、110114、110115は、それぞれ不純物濃
度が異なり、半導体膜110113はチャネル領域、半導体膜110114は低濃度ドレ
イン(Lightly Doped Drain:LDD)領域、半導体膜110115
はソース領域およびドレイン領域として用いる。このように、不純物の量を制御すること
で、半導体膜の抵抗率を制御できる。また、半導体膜と導電膜110123との電気的な
接続状態を、オーミック接続に近づけることができる。また、LDD領域を有するため、
TFT内部に高電界がかかりにくく、ホットキャリアによる素子の劣化を抑制することが
できる。なお、不純物の量の異なる半導体膜を作り分ける方法としては、ゲート電極11
0117をマスクとして半導体膜に不純物をドーピングする方法を用いることができる。
110102においては、ゲート電極110117が一定以上のテーパー角を有している
ため、ゲート電極110117を通過して半導体膜にドーピングされる不純物の濃度に勾
配を持たせることができ、簡便にLDD領域を形成することができる。
The 110102 is a TFT having a taper angle of a certain value or more on the gate electrode 110117, and can be manufactured by a simple method, so that there are advantages that the manufacturing cost is low and the yield can be high. Here, the semiconductor films 110113, 110114, and 110115 have different impurity concentrations, the semiconductor film 110113 is a channel region, the semiconductor film 110114 is a low concentration drain (LDD) region, and the semiconductor film 110115.
Is used as the source area and drain area. By controlling the amount of impurities in this way, the resistivity of the semiconductor film can be controlled. Further, the electrical connection state between the semiconductor film and the conductive film 110123 can be brought close to that of ohmic connection. In addition, because it has an LDD area,
It is difficult for a high electric field to be applied to the inside of the TFT, and deterioration of the element due to hot carriers can be suppressed. As a method for forming semiconductor films having different amounts of impurities, the gate electrode 11 is used.
A method of doping impurities in the semiconductor film using 0117 as a mask can be used.
In 110102, since the gate electrode 110117 has a taper angle of a certain value or more, it is possible to give a gradient to the concentration of impurities that pass through the gate electrode 110117 and are doped into the semiconductor film, and the LDD region can be easily formed. Can be formed.

110103は、ゲート電極110117が少なくとも2層で構成され、下層のゲート電
極が上層のゲート電極よりも長い形状を有するTFTである。ゲート電極110117の
形状が2層で構成され、下層のゲート電極が上層のゲート電極よりも長い形状であること
によって、フォトマスクを追加することなく、LDD領域を形成することができる。なお
、110103のように、LDD領域がゲート電極110117と重なっている構造を、
特にGOLD構造(Gate Overlapped LDD)と呼ぶ。なお、ゲート電
極110117の形状を2層で構成され、下層のゲート電極が上層のゲート電極よりも長
い形状とする方法としては、次のような方法を用いてもよい。
Reference numeral 110103 is a TFT in which the gate electrode 110117 is composed of at least two layers, and the lower gate electrode has a shape longer than that of the upper gate electrode. Since the shape of the gate electrode 110117 is composed of two layers and the lower gate electrode has a longer shape than the upper gate electrode, the LDD region can be formed without adding a photomask. A structure in which the LDD region overlaps with the gate electrode 110117, such as 110103, is used.
In particular, it is called a GOLD structure (Gate Overlapped LDD). As a method in which the shape of the gate electrode 110117 is composed of two layers and the shape of the lower gate electrode is longer than that of the upper gate electrode, the following method may be used.

まず、ゲート電極110117をパターニングする際に、ドライエッチングにより、下層
のゲート電極及び上層のゲート電極をエッチングして側面に傾斜(テーパー)のある形状
にする。続いて、異方性エッチングにより上層のゲート電極の傾斜を垂直に近くなるよう
に加工する。これにより、断面形状が下層のゲート電極が上層のゲート電極よりも長い形
状のゲート電極が形成される。その後、2回、不純物元素をドーピングすることによって
、チャネル領域として用いる半導体膜110113、LDD領域として用いる半導体膜1
10114、ソース電極およびドレイン電極として用いる半導体膜110115が形成さ
れる。
First, when patterning the gate electrode 110117, the lower gate electrode and the upper gate electrode are etched by dry etching to form a shape having an inclination (taper) on the side surface. Subsequently, it is processed by anisotropic etching so that the inclination of the upper gate electrode becomes close to vertical. As a result, a gate electrode having a cross-sectional shape in which the lower gate electrode is longer than the upper gate electrode is formed. Then, by doping the impurity element twice, the semiconductor film 110113 used as the channel region and the semiconductor film 1 used as the LDD region are used.
A semiconductor film 110115 used as 10114, a source electrode and a drain electrode is formed.

なお、ゲート電極110117と重なっているLDD領域をLov領域、ゲート電極11
0117と重なっていないLDD領域をLoff領域と呼ぶことにする。ここで、Lof
f領域はオフ電流値を抑える効果は高いが、ドレイン近傍の電界を緩和してホットキャリ
アによるオン電流値の劣化を防ぐ効果は低い。一方、Lov領域はドレイン近傍の電界を
緩和し、オン電流値の劣化の防止には有効であるが、オフ電流値を抑える効果は低い。よ
って、種々の回路毎に、求められる特性に応じた構造のTFTを作製することが好ましい
。たとえば、本発明に適応できる半導体装置を表示装置として用いる場合、画素TFTは
、オフ電流値を抑えるために、Loff領域を有するTFTを用いることが好適である。
一方、周辺回路におけるTFTは、ドレイン近傍の電界を緩和し、オン電流値の劣化を防
止するために、Lov領域を有するTFTを用いることが好適である。
The LDD region overlapping the gate electrode 110117 is the Lov region, and the gate electrode 11
The LDD region that does not overlap with 0117 is referred to as a Loff region. Here, Lof
The f region has a high effect of suppressing the off-current value, but has a low effect of relaxing the electric field near the drain to prevent deterioration of the on-current value due to hot carriers. On the other hand, the Lov region relaxes the electric field in the vicinity of the drain and is effective in preventing deterioration of the on-current value, but the effect of suppressing the off-current value is low. Therefore, it is preferable to manufacture a TFT having a structure according to the required characteristics for each of various circuits. For example, when a semiconductor device applicable to the present invention is used as a display device, it is preferable to use a TFT having a Loff region as the pixel TFT in order to suppress the off-current value.
On the other hand, as the TFT in the peripheral circuit, it is preferable to use a TFT having a Lov region in order to relax the electric field in the vicinity of the drain and prevent deterioration of the on-current value.

110104は、ゲート電極110117の側面に接して、サイドウォール110121
を有するTFTである。サイドウォール110121を有することによって、サイドウォ
ール110121と重なる領域をLDD領域とすることができる。
The 110104 is in contact with the side surface of the gate electrode 110117, and the sidewall 110121 is in contact with the side surface.
It is a TFT having. By having the sidewall 110121, the region overlapping the sidewall 110121 can be set as the LDD region.

110105は、半導体膜にマスクを用いてドーピングすることにより、LDD(Lof
f)領域を形成したTFTである。こうすることにより、確実にLDD領域を形成するこ
とができ、TFTのオフ電流値を低減することができる。
In 110105, LDD (Lof) is obtained by doping a semiconductor film with a mask.
f) A TFT that forms a region. By doing so, the LDD region can be reliably formed, and the off-current value of the TFT can be reduced.

110106は、半導体膜にマスクを用いてドーピングすることにより、LDD(Lov
)領域を形成したTFTである。こうすることにより、確実にLDD領域を形成すること
ができ、TFTのドレイン近傍の電界を緩和し、オン電流値の劣化を低減することができ
る。
110106 is LDD (Lov) by doping the semiconductor film with a mask.
) It is a TFT that forms a region. By doing so, the LDD region can be reliably formed, the electric field in the vicinity of the drain of the TFT can be relaxed, and the deterioration of the on-current value can be reduced.

次に、図102(B)乃至(G)を参照して、本発明を適用できる半導体装置が有するこ
とのできるTFTの製造プロセスの例を説明する。
なお、本発明を適用できる半導体装置が有することのできるTFTの構造および製造プロ
セスは、図102に示すものに限定されず、様々な構造および製造プロセスを用いること
ができる。
Next, with reference to FIGS. 102 (B) to (G), an example of a TFT manufacturing process that can be possessed by a semiconductor device to which the present invention can be applied will be described.
The structure and manufacturing process of the TFT that can be possessed by the semiconductor device to which the present invention can be applied are not limited to those shown in FIG. 102, and various structures and manufacturing processes can be used.

本実施の形態においては、基板110111の表面に、絶縁膜110112の表面に、半
導体膜110113の表面に、110114の表面に、110115の表面に、絶縁膜1
10116の表面に、絶縁膜110118の表面に、または絶縁膜110119の表面に
、プラズマ処理を用いて酸化または窒化を行うことにより、半導体膜または絶縁膜を酸化
または窒化することができる。このように、プラズマ処理を用いて半導体膜または絶縁膜
を酸化または窒化することによって、当該半導体膜または当該絶縁膜の表面を改質し、C
VD法やスパッタ法により形成した絶縁膜と比較してより緻密な絶縁膜を形成することが
できるため、ピンホール等の欠陥を抑制し半導体装置の特性等を向上させることが可能と
なる。
In the present embodiment, the insulating film 1 is on the surface of the substrate 110111, on the surface of the insulating film 110112, on the surface of the semiconductor film 110113, on the surface of 110114, and on the surface of 110115.
The semiconductor film or insulating film can be oxidized or nitrided by oxidizing or nitriding the surface of 10116, the surface of the insulating film 110118, or the surface of the insulating film 110119 using plasma treatment. In this way, the surface of the semiconductor film or the insulating film is modified by oxidizing or nitriding the semiconductor film or the insulating film using plasma treatment, and C.
Since a denser insulating film can be formed as compared with the insulating film formed by the VD method or the sputtering method, it is possible to suppress defects such as pinholes and improve the characteristics of the semiconductor device.

まず、基板110111の表面をフッ酸(HF)、アルカリまたは純水を用いて洗浄する
。基板110111は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガ
ラス基板、石英基板、セラミック基板またはステンレスを含む金属基板等を用いることが
できる。他にも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(
PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチックや、アクリル等
の可撓性を有する合成樹脂からなる基板を用いることも可能である。なお、ここでは基板
110111としてガラス基板を用いる場合を示す。
First, the surface of the substrate 110111 is washed with hydrofluoric acid (HF), alkali or pure water. As the substrate 110111, a glass substrate such as barium borosilicate glass or aluminoborosilicate glass, a quartz substrate, a ceramic substrate, a metal substrate containing stainless steel, or the like can be used. In addition, polyethylene terephthalate (PET) and polyethylene naphthalate (
It is also possible to use a substrate made of a plastic typified by PEN), a polyether sulfone (PES), or a synthetic resin having flexibility such as acrylic. Here, a case where a glass substrate is used as the substrate 110111 is shown.

ここで、基板110111の表面にプラズマ処理を行うことで、基板110111の表面
を酸化または窒化することによって、基板110111の表面に酸化膜または窒化膜を形
成してもよい(図102(B))。表面にプラズマ処理を行うことで形成された酸化膜ま
たは窒化膜などの絶縁膜を、以下では、プラズマ処理絶縁膜とも記す。図102(B)に
おいては、絶縁膜131がプラズマ処理絶縁膜である。一般的に、ガラス又はプラスチッ
ク等の基板上に薄膜トランジスタ等の半導体素子を設ける場合、ガラス又はプラスチック
等に含まれるNaなどの、アルカリ金属又はアルカリ土類金属等の不純物元素が半導体素
子に混入して汚染することによって、半導体素子の特性に影響を及ぼす恐れがある。しか
し、ガラス又はプラスチック等からなる基板の表面を窒化することにより、基板に含まれ
るNaなどの、アルカリ金属又はアルカリ土類金属等の不純物元素が半導体素子に混入す
るのを防止することができる。
Here, an oxide film or a nitride film may be formed on the surface of the substrate 110111 by oxidizing or nitriding the surface of the substrate 110111 by performing plasma treatment on the surface of the substrate 110111 (FIG. 102 (B)). .. An insulating film such as an oxide film or a nitride film formed by subjecting the surface to plasma treatment is also referred to as a plasma treatment insulating film below. In FIG. 102 (B), the insulating film 131 is a plasma-treated insulating film. Generally, when a semiconductor element such as a thin film film is provided on a substrate such as glass or plastic, an impurity element such as an alkali metal or an alkaline earth metal such as Na contained in glass or plastic is mixed in the semiconductor element. Contamination may affect the characteristics of the semiconductor element. However, by nitriding the surface of a substrate made of glass, plastic, or the like, it is possible to prevent impurity elements such as alkali metal or alkaline earth metal contained in the substrate from being mixed into the semiconductor element.

なお、プラズマ処理により表面を酸化する場合には、酸素雰囲気下(例えば、酸素(O
)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)雰囲気下、または
、酸素と水素(H)と希ガス雰囲気下、または、一酸化二窒素と希ガス雰囲気下)でプ
ラズマ処理を行う。一方、プラズマ処理により半導体膜を窒化する場合には、窒素雰囲気
下(例えば、窒素(N)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを
含む)雰囲気下、または、窒素と水素と希ガス雰囲気下、または、NHと希ガス雰囲気
下)でプラズマ処理を行う。希ガスとしては、例えばArを用いることができる。あるい
は、ArとKrを混合したガスを用いてもよい。そのため、プラズマ処理絶縁膜は、プラ
ズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)を含
んでいる。たとえば、Arを用いた場合にはプラズマ処理絶縁膜にArが含まれている。
When the surface is oxidized by plasma treatment, it is under an oxygen atmosphere (for example, oxygen (O 2 ).
) And noble gas (including at least one of He, Ne, Ar, Kr, Xe), oxygen and hydrogen (H 2 ) and noble gas atmosphere, or dinitrogen monoxide and noble gas atmosphere. ) Performs plasma processing. On the other hand, when the semiconductor film is nitrided by plasma treatment, it is under a nitrogen atmosphere (for example, a nitrogen (N 2 ) and a rare gas (including at least one of He, Ne, Ar, Kr, Xe) atmosphere) or. Perform plasma treatment in a nitrogen, hydrogen, and noble gas atmosphere, or in an NH3 and noble gas atmosphere). As the noble gas, for example, Ar can be used. Alternatively, a gas in which Ar and Kr are mixed may be used. Therefore, the plasma-treated insulating film contains a rare gas (including at least one of He, Ne, Ar, Kr, and Xe) used for plasma treatment. For example, when Ar is used, Ar is contained in the plasma-treated insulating film.

また、プラズマ処理は、上記ガスの雰囲気中において、電子密度が1×1011cm-3
以上1×1013cm-3以下であり、プラズマの電子温度が0.5ev以上1.5eV
以下で行うことが好適である。プラズマの電子密度が高密度であり、被処理物付近での電
子温度が低いため、被処理物に対するプラズマによる損傷を防止することができる。また
、プラズマの電子密度が1×1011cm-3以上と高密度であるため、プラズマ処理を
用いて、被照射物を酸化または窒化することよって形成される酸化物または窒化膜は、C
VD法やスパッタ法等により形成された膜と比較して膜厚等が均一性に優れ、且つ緻密な
膜を形成することができる。あるいは、プラズマの電子温度が1eV以下と低いため、従
来のプラズマ処理や熱酸化法と比較して低温度で酸化または窒化処理を行うことができる
。たとえば、ガラス基板の歪点温度よりも100度以上低い温度でプラズマ処理を行って
も十分に酸化または窒化処理を行うことができる。なお、プラズマを形成するための周波
数としては、マイクロ波(2.45GHz)等の高周波を用いることができる。なお、以
下に特に断らない場合は、プラズマ処理として上記条件を用いて行うものとする。
In the plasma treatment, the electron density is 1 × 10 11 cm -3 in the atmosphere of the gas.
It is 1 × 10 13 cm -3 or less, and the electron temperature of plasma is 0.5 ev or more and 1.5 ev.
It is preferable to carry out the following. Since the electron density of the plasma is high and the electron temperature in the vicinity of the object to be processed is low, damage to the object to be processed by the plasma can be prevented. Further, since the electron density of plasma is as high as 1 × 10 11 cm -3 or more, the oxide or nitride film formed by oxidizing or nitriding the irradiated object by using plasma treatment is C.
Compared with the film formed by the VD method, the sputtering method, or the like, the film thickness and the like are excellent in uniformity, and a dense film can be formed. Alternatively, since the electron temperature of the plasma is as low as 1 eV or less, the oxidation or nitriding treatment can be performed at a lower temperature as compared with the conventional plasma treatment or thermal oxidation method. For example, even if the plasma treatment is performed at a temperature 100 degrees or more lower than the strain point temperature of the glass substrate, the oxidation or nitriding treatment can be sufficiently performed. As the frequency for forming the plasma, a high frequency such as a microwave (2.45 GHz) can be used. Unless otherwise specified below, the plasma treatment shall be performed using the above conditions.

なお、図102(B)においては、基板110111の表面をプラズマ処理することによ
ってプラズマ処理絶縁膜を形成する場合を示しているが、本実施の形態は、基板1101
11の表面にプラズマ処理絶縁膜を形成しない場合も含む。
Although FIG. 102 (B) shows a case where a plasma-treated insulating film is formed by plasma-treating the surface of the substrate 110111, the present embodiment shows the case where the substrate 1101 is formed.
The case where the plasma-treated insulating film is not formed on the surface of No. 11 is also included.

なお、図102(C)乃至(G)においては、被処理物の表面をプラズマ処理することに
よって形成されるプラズマ処理絶縁膜を図示しないが、本実施の形態においては、基板1
10111、絶縁膜110112、半導体膜110113、110114、110115
、絶縁膜110116、絶縁膜110118、または絶縁膜110119の表面に、プラ
ズマ処理を行なうことによって形成されるプラズマ処理絶縁膜が存在する場合も含む。
Although the plasma-treated insulating film formed by plasma-treating the surface of the object to be treated is not shown in FIGS. 102 (C) to 102 (G), in the present embodiment, the substrate 1 is not shown.
10111, insulating film 110112, semiconductor film 110113, 110114, 110115
, The case where a plasma-treated insulating film formed by performing plasma treatment is present on the surface of the insulating film 110116, the insulating film 110118, or the insulating film 110119 is also included.

次に、基板110111上に公知の手段(スパッタ法、LPCVD法、プラズマCVD法
等)を用いて絶縁膜110112を形成する(図102(C))。絶縁膜110112と
しては、酸化珪素(SiOx)または酸化窒化珪素(SiOxNy)(x>y)を用いる
ことができる。
Next, the insulating film 110112 is formed on the substrate 110111 by using known means (sputtering method, LPCVD method, plasma CVD method, etc.) (FIG. 102 (C)). As the insulating film 110112, silicon oxide (SiOx) or silicon nitride (SiOxNy) (x> y) can be used.

ここで、絶縁膜110112の表面にプラズマ処理を行い、絶縁膜110112を酸化ま
たは窒化することによって、絶縁膜110112の表面にプラズマ処理絶縁膜を形成して
もよい。絶縁膜110112の表面を酸化することによって、絶縁膜110112の表面
を改質しピンホール等の欠陥の少ない緻密な膜を得ることができる。また、絶縁膜110
112の表面を酸化することによって、N原子の含有率が低いプラズマ処理絶縁膜を形成
することができるため、プラズマ処理絶縁膜に半導体膜を設けた場合にプラズマ処理絶縁
膜と半導体膜界面特性が向上する。また、プラズマ処理絶縁膜は、プラズマ処理に用いた
希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。なお、
プラズマ処理は上述した条件下で同様に行うことができる。
Here, the plasma-treated insulating film may be formed on the surface of the insulating film 110112 by subjecting the surface of the insulating film 110112 to plasma treatment and oxidizing or nitriding the insulating film 110112. By oxidizing the surface of the insulating film 110112, the surface of the insulating film 110112 can be modified to obtain a dense film having few defects such as pinholes. In addition, the insulating film 110
By oxidizing the surface of 112, a plasma-treated insulating film having a low N atom content can be formed. Therefore, when a semiconductor film is provided in the plasma-treated insulating film, the interface characteristics between the plasma-treated insulating film and the semiconductor film are improved. improves. Further, the plasma-treated insulating film contains a rare gas (including at least one of He, Ne, Ar, Kr, and Xe) used for plasma treatment. note that,
The plasma treatment can be carried out in the same manner under the above-mentioned conditions.

次に、絶縁膜110112上に島状の半導体膜110113、110114を形成する(
図102(D))。島状の半導体膜110113、110114は、絶縁膜110112
上に公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いてシリコン(
Si)を主成分とする材料(例えばSiGe1-x等)等を用いて非晶質半導体膜を形
成し、当該非晶質半導体膜を結晶化させ、半導体膜を選択的にエッチングすることにより
設けることができる。なお、非晶質半導体膜の結晶化は、レーザ結晶化法、RTA又はフ
ァーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属元素を用いる熱結晶化法
またはこれら方法を組み合わせた方法等の公知の結晶化法により行うことができる。なお
、ここでは、島状の半導体膜の端部を直角に近い形状(θ=85~100°)で設ける。
あるいは、低濃度ドレイン領域となる半導体膜110114は、マスクを用いて不純物を
ドーピングすることによって形成されてもよい。
Next, the island-shaped semiconductor films 110113 and 110114 are formed on the insulating film 110112 (.
FIG. 102 (D). The island-shaped semiconductor films 110113 and 110114 have an insulating film 110112.
Silicon (sputtering method, LPCVD method, plasma CVD method, etc.) using the above known means (sputtering method, LPCVD method, plasma CVD method, etc.)
An amorphous semiconductor film is formed using a material containing Si) as a main component (for example, Si x Ge 1-x , etc.), the amorphous semiconductor film is crystallized, and the semiconductor film is selectively etched. It can be provided by. The crystallization of the amorphous semiconductor film includes a laser crystallization method, a thermal crystallization method using an RTA or a furnace annealing furnace, a thermal crystallization method using a metal element that promotes crystallization, or a method in which these methods are combined. It can be carried out by the known crystallization method of. Here, the end portion of the island-shaped semiconductor film is provided in a shape close to a right angle (θ = 85 to 100 °).
Alternatively, the semiconductor film 110114, which is a low-concentration drain region, may be formed by doping impurities with a mask.

ここで、半導体膜110113、110114の表面にプラズマ処理を行い、半導体膜1
10113、110114の表面を酸化または窒化することによって、半導体膜1101
13、110114の表面にプラズマ処理絶縁膜を形成してもよい。例えば、半導体膜1
10113、110114としてSiを用いた場合、プラズマ処理絶縁膜として、酸化珪
素(SiOx)または窒化珪素(SiNx)が形成される。あるいは、プラズマ処理によ
り半導体膜110113、110114を酸化させた後に、再度プラズマ処理を行うこと
によって窒化させてもよい。この場合、半導体膜110113、110114に接して酸
化珪素(SiOx)が形成され、当該酸化珪素の表面に窒化酸化珪素(SiNxOy)(
x>y)が形成される。なお、プラズマ処理により半導体膜を酸化する場合には、酸素雰
囲気下(例えば、酸素(O)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一
つを含む)雰囲気下、または、酸素と水素(H)と希ガス雰囲気下または一酸化二窒素
と希ガス雰囲気下)、でプラズマ処理を行う。一方、プラズマ処理により半導体膜を窒化
する場合には、窒素雰囲気下(例えば、窒素(N)と希ガス(He、Ne、Ar、Kr
、Xeの少なくとも一つを含む)雰囲気下、または、窒素と水素と希ガス雰囲気下または
NHと希ガス雰囲気下)、でプラズマ処理を行う。希ガスとしては、例えばArを用い
ることができる。また、ArとKrを混合したガスを用いてもよい。そのため、プラズマ
処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少なくと
も一つを含む)を含んでいる。たとえば、Arを用いた場合にはプラズマ処理絶縁膜にA
rが含まれている。
Here, the surfaces of the semiconductor films 110113 and 110114 are subjected to plasma treatment, and the semiconductor film 1 is subjected to plasma treatment.
By oxidizing or nitriding the surface of 10113, 110114, the semiconductor film 1101
A plasma-treated insulating film may be formed on the surface of 13, 110114. For example, semiconductor film 1
When Si is used as the 10113 and 110114, silicon oxide (SiOx) or silicon nitride (SiNx) is formed as the plasma-treated insulating film. Alternatively, the semiconductor films 110113 and 110114 may be oxidized by plasma treatment and then nitrided by plasma treatment again. In this case, silicon oxide (SiOx) is formed in contact with the semiconductor films 110113 and 110114, and silicon nitride (SiNxOy) (SiNxOy) is formed on the surface of the silicon oxide.
x> y) is formed. When the semiconductor film is oxidized by plasma treatment, it is under an oxygen atmosphere (for example, an oxygen (O 2 ) and a rare gas (including at least one of He, Ne, Ar, Kr, and Xe) atmosphere) or. Plasma treatment is performed with oxygen and hydrogen (H 2 ) and a noble gas atmosphere or dinitrogen monoxide and a noble gas atmosphere). On the other hand, when the semiconductor film is nitrided by plasma treatment, it is in a nitrogen atmosphere (for example, nitrogen (N 2 ) and a rare gas (He, Ne, Ar, Kr).
Plasma treatment is performed in an atmosphere (including at least one of Xe), or in an atmosphere of nitrogen, hydrogen, and a rare gas, or in an atmosphere of NH3 and a rare gas). As the noble gas, for example, Ar can be used. Further, a gas in which Ar and Kr are mixed may be used. Therefore, the plasma-treated insulating film contains a rare gas (including at least one of He, Ne, Ar, Kr, and Xe) used for plasma treatment. For example, when Ar is used, the plasma-treated insulating film is A.
r is included.

次に、絶縁膜110116を形成する(図102(E))。絶縁膜110116は、公知
の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いて、酸化珪素(SiO
x)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素
(SiNxOy)(x>y)等の酸素または窒素を有する絶縁膜の単層構造、またはこれ
らの積層構造で設けることができる。なお、半導体膜110113、110114の表面
をプラズマ処理することにより、半導体膜110113、110114の表面にプラズマ
処理絶縁膜を形成した場合には、プラズマ処理絶縁膜を絶縁膜110116として用いる
ことも可能である。
Next, the insulating film 110116 is formed (FIG. 102 (E)). The insulating film 110116 uses a known means (sputtering method, LPCVD method, plasma CVD method, etc.) to form silicon oxide (SiO).
Single-layer structure of insulating film having oxygen or nitrogen such as x), silicon nitride (SiNx), silicon oxide (SiOxNy) (x> y), silicon nitride (SiNxOy) (x> y), or a laminate thereof. It can be provided by the structure. When the plasma-treated insulating film is formed on the surface of the semiconductor films 110113 and 110114 by plasma-treating the surfaces of the semiconductor films 110113 and 110114, the plasma-treated insulating film can also be used as the insulating film 110116. ..

ここで、絶縁膜110116の表面にプラズマ処理を行い、絶縁膜110116の表面を
酸化または窒化することによって、絶縁膜110116の表面にプラズマ処理絶縁膜を形
成してもよい。なお、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne
、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。また、プラズマ処理は上述
した条件下で同様に行うことができる。
Here, a plasma-treated insulating film may be formed on the surface of the insulating film 110116 by subjecting the surface of the insulating film 110116 to plasma treatment and oxidizing or nitriding the surface of the insulating film 110116. The plasma-treated insulating film is a rare gas (He, Ne) used for plasma treatment.
, Ar, Kr, Xe at least one). Further, the plasma treatment can be similarly performed under the above-mentioned conditions.

あるいは、一旦酸素雰囲気下でプラズマ処理を行うことにより絶縁膜110116を酸化
させた後に、再度窒素雰囲気下でプラズマ処理を行うことにより窒化させてもよい。この
ように、絶縁膜110116にプラズマ処理を行い、絶縁膜110116の表面を酸化ま
たは窒化することによって、絶縁膜110116の表面を改質し緻密な膜を形成すること
ができる。プラズマ処理を行うことによって得られた絶縁膜は、CVD法やスパッタ法で
形成された絶縁膜と比較して緻密でピンホール等の欠陥も少ないため、薄膜トランジスタ
の特性を向上させることができる。
Alternatively, the insulating film 110116 may be oxidized by once performing plasma treatment in an oxygen atmosphere, and then nitriding by performing plasma treatment again in a nitrogen atmosphere. In this way, by plasma-treating the insulating film 110116 and oxidizing or nitriding the surface of the insulating film 110116, the surface of the insulating film 110116 can be modified to form a dense film. Since the insulating film obtained by plasma treatment is denser and has less defects such as pinholes as compared with the insulating film formed by the CVD method or the sputtering method, the characteristics of the thin film transistor can be improved.

次に、ゲート電極110117を形成する(図102(F))。ゲート電極110117
は、公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いて形成するこ
とができる。
Next, the gate electrode 110117 is formed (FIG. 102 (F)). Gate electrode 110117
Can be formed by using known means (sputtering method, LPCVD method, plasma CVD method, etc.).

110101においては、ゲート電極110117を形成した後に不純物ドーピングを行
なうことで、ソース領域およびドレイン領域として用いる半導体膜110115を形成す
ることができる。
In 110101, the semiconductor film 110115 used as the source region and the drain region can be formed by performing impurity doping after forming the gate electrode 110117.

110102においては、ゲート電極110117を形成した後に不純物ドーピングを行
なうことで、LDD領域として用いる110114と、半導体膜ソース領域およびドレイ
ン領域として用いる半導体膜110115を形成することができる。
In 110102, by performing impurity doping after forming the gate electrode 110117, 110114 used as the LDD region and the semiconductor film 110115 used as the semiconductor film source region and drain region can be formed.

110103においては、ゲート電極110117を形成した後に不純物ドーピングを行
なうことで、LDD領域として用いる110114と、半導体膜ソース領域およびドレイ
ン領域として用いる半導体膜110115を形成することができる。
In 110103, by performing impurity doping after forming the gate electrode 110117, 110114 used as the LDD region and the semiconductor film 110115 used as the semiconductor film source region and drain region can be formed.

110104においては、ゲート電極110117の側面にサイドウォール110121
を形成した後、不純物ドーピングを行なうことで、LDD領域として用いる110114
と、半導体膜ソース領域およびドレイン領域として用いる半導体膜110115を形成す
ることができる。
In 110104, the sidewall 110121 is on the side surface of the gate electrode 110117.
110114 used as the LDD region by performing impurity doping after forming
And the semiconductor film 110115 used as the semiconductor film source region and drain region can be formed.

なお、サイドウォール110121は、酸化珪素(SiOx)または窒化珪素(SiNx
)を用いることができる。サイドウォール110121をゲート電極110117の側面
に形成する方法としては、たとえば、ゲート電極110117を形成した後に、酸化珪素
(SiOx)または窒化珪素(SiNx)を公知の方法で成膜した後に、異方性エッチン
グによって酸化珪素(SiOx)または窒化珪素(SiNx)膜をエッチングする方法を
用いることができる。こうすることで、ゲート電極110117の側面にのみ酸化珪素(
SiOx)または窒化珪素(SiNx)膜を残すことができるので、ゲート電極1101
17の側面にサイドウォール110121を形成することができる。
The sidewall 110121 is formed of silicon oxide (SiOx) or silicon nitride (SiNx).
) Can be used. As a method of forming the sidewall 110121 on the side surface of the gate electrode 110117, for example, after forming the gate electrode 110117, silicon oxide (SiOx) or silicon nitride (SiNx) is formed by a known method, and then anisotropic. A method of etching a silicon oxide (SiOx) or silicon nitride (SiNx) film by etching can be used. By doing so, only the side surface of the gate electrode 110117 is silicon oxide (
Since a SiOx) or silicon nitride (SiNx) film can be left, the gate electrode 1101
A sidewall 110121 can be formed on the side surface of the 17.

110105においては、ゲート電極110117を覆うようにマスク110122を形
成した後、不純物ドーピングを行なうことで、LDD(Loff)領域として用いる11
0114と、半導体膜ソース領域およびドレイン領域として用いる半導体膜110115
を形成することができる。
In 110105, a mask 110122 is formed so as to cover the gate electrode 110117, and then impurity doping is performed to use the mask 110122 as an LDD (Loff) region11.
0114 and the semiconductor film 110115 used as the semiconductor film source region and drain region.
Can be formed.

110106においては、ゲート電極110117を形成した後に不純物ドーピングを行
なうことで、LDD(Lov)領域として用いる110114と、半導体膜ソース領域お
よびドレイン領域として用いる半導体膜110115を形成することができる。
In 110106, by performing impurity doping after forming the gate electrode 110117, 110114 used as the LDD (Lov) region and the semiconductor film 110115 used as the semiconductor film source region and drain region can be formed.

次に、絶縁膜110118を形成する(図102(G))。絶縁膜110118は、公知
の手段(スパッタ法やプラズマCVD法等)により、酸化珪素(SiOx)、窒化珪素(
SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)
(x>y)等の酸素または窒素を有する絶縁膜やDLC(ダイヤモンドライクカーボン)
等の炭素を含む膜の単層構造、またはこれらの積層構造で設けることができる。
Next, the insulating film 110118 is formed (FIG. 102 (G)). The insulating film 110118 is formed of silicon oxide (SiOx) or silicon nitride (SiOx) by a known means (sputtering method, plasma CVD method, etc.).
SiNx), Silicon Nitride (SiOxNy) (x> y), Silicon Nitride (SiNxOy)
Insulating film having oxygen or nitrogen such as (x> y) or DLC (diamond-like carbon)
It can be provided by a single-layer structure of a film containing carbon such as, or a laminated structure thereof.

ここで、絶縁膜110118の表面にプラズマ処理を行い、絶縁膜110118の表面を
酸化または窒化することによって、絶縁膜110118の表面にプラズマ処理絶縁膜を形
成してもよい。なお、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne
、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。また、プラズマ処理は上述
した条件下で同様に行うことができる。
Here, a plasma-treated insulating film may be formed on the surface of the insulating film 110118 by subjecting the surface of the insulating film 110118 to plasma treatment and oxidizing or nitriding the surface of the insulating film 110118. The plasma-treated insulating film is a rare gas (He, Ne) used for plasma treatment.
, Ar, Kr, Xe at least one). Further, the plasma treatment can be similarly performed under the above-mentioned conditions.

次に、絶縁膜110119を形成する。絶縁膜110119は、公知の手段(スパッタ法
やプラズマCVD法等)により、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒
化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素
または窒素を有する絶縁膜やDLC(ダイヤモンドライクカーボン)等の炭素を含む膜を
用いることができる他に、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノール、
ベンゾシクロブテン、アクリル等の有機材料やシロキサン樹脂の単層構造、またはこれら
の積層構造で設けることができる。なお、シロキサン樹脂とは、Si-O-Si結合を含
む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が
構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭
化水素)が用いられる。置換基として、フルオロ基を用いることもできる。あるいは、置
換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。また、プラ
ズマ処理絶縁膜には、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少
なくとも一つを含む)が含まれており、例えばArを用いた場合にはプラズマ処理絶縁膜
中にArが含まれている。
Next, the insulating film 110119 is formed. The insulating film 110119 is formed of silicon oxide (SiOx), silicon nitride (SiNx), silicon oxide (SiOxNy) (x> y), silicon nitride (SiNxOy) (SiNxOy) by a known means (spatter method, plasma CVD method, etc.). In addition to an insulating film having oxygen or nitrogen such as x> y) and a film containing carbon such as DLC (diamond-like carbon), epoxy, polyimide, polyamide, polyvinylphenol, etc. can be used.
It can be provided by a single-layer structure of an organic material such as benzocyclobutene or acrylic or a siloxane resin, or a laminated structure thereof. The siloxane resin corresponds to a resin containing a Si—O—Si bond. The skeleton structure of siloxane is composed of the bonds between silicon (Si) and oxygen (O). As the substituent, an organic group containing at least hydrogen (for example, an alkyl group or an aromatic hydrocarbon) is used. A fluoro group can also be used as the substituent. Alternatively, an organic group containing at least hydrogen and a fluoro group may be used as the substituent. Further, the plasma-treated insulating film contains a rare gas (including at least one of He, Ne, Ar, Kr, and Xe) used for plasma treatment, and for example, when Ar is used, plasma-treated insulation is used. Ar is contained in the membrane.

絶縁膜110119としてポリイミド、ポリアミド、ポリビニルフェノール、ベンゾシク
ロブテン、アクリル等の有機材料やシロキサン樹脂等を用いた場合、絶縁膜110119
の表面をプラズマ処理により酸化または窒化することにより、当該絶縁膜の表面を改質す
ることができる。表面を改質することによって、絶縁膜110119の強度が向上し開口
部形成時等におけるクラックの発生やエッチング時の膜減り等の物理的ダメージを低減す
ることが可能となる。また、絶縁膜110119の表面が改質されることによって、絶縁
膜110119上に導電膜110123を形成する場合に導電膜との密着性が向上する。
例えば、絶縁膜110119としてシロキサン樹脂を用いてプラズマ処理を用いて窒化を
行った場合、シロキサン樹脂の表面が窒化されることにより窒素または希ガスを含むプラ
ズマ処理絶縁膜が形成され、物理的強度が向上する。
When an organic material such as polyimide, polyamide, polyvinylphenol, benzocyclobutene, acrylic, or a siloxane resin is used as the insulating film 110119, the insulating film 110119 is used.
The surface of the insulating film can be modified by oxidizing or nitriding the surface of the insulating film by plasma treatment. By modifying the surface, the strength of the insulating film 110119 is improved, and it is possible to reduce physical damage such as crack generation during opening formation and film loss during etching. Further, by modifying the surface of the insulating film 110119, the adhesion to the conductive film is improved when the conductive film 110123 is formed on the insulating film 110119.
For example, when nitridation is performed using a siloxane resin as the insulating film 110119 by plasma treatment, the surface of the siloxane resin is nitrided to form a plasma-treated insulating film containing nitrogen or a rare gas, and the physical strength is increased. improves.

次に、半導体膜110115と電気的に接続された導電膜110123を形成するため、
絶縁膜110119、絶縁膜110118、絶縁膜110116にコンタクトホールを形
成する。なお、コンタクトホールの形状はテーパー状であってもよい。こうすることで、
導電膜110123のカバレッジを向上させることができる。
Next, in order to form the conductive film 110123 electrically connected to the semiconductor film 110115,
Contact holes are formed in the insulating film 110119, the insulating film 110118, and the insulating film 110116. The shape of the contact hole may be tapered. By doing this,
The coverage of the conductive film 110123 can be improved.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態14)
本実施形態においては、表示装置に適用できる発光素子の詳細な構成について説明する。
(Embodiment 14)
In this embodiment, a detailed configuration of a light emitting element applicable to a display device will be described.

エレクトロルミネセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化
合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と
呼ばれている。
The light emitting element utilizing electroluminescence is distinguished by whether the light emitting material is an organic compound or an inorganic compound, and the former is generally called an organic EL element and the latter is called an inorganic EL element.

無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。前者は、発光材料の粒子をバインダ中に分散させた電界発光層を有し、後者は
、発光材料の薄膜からなる電界発光層を有している点に違いはあるが、高電界で加速され
た電子を必要とする点では共通である。なお、得られる発光のメカニズムとしては、ドナ
ー準位とアクセプター準位を利用するドナー-アクセプター再結合型発光と、金属イオン
の内殻電子遷移を利用する局在型発光とがある。一般的に、分散型無機ELではドナー-
アクセプター再結合型発光、薄膜型無機EL素子では局在型発光である場合が多い。
The inorganic EL element is classified into a dispersed inorganic EL element and a thin film type inorganic EL element according to the element configuration. The former has an electroluminescent layer in which particles of the luminescent material are dispersed in a binder, and the latter has an electroluminescent layer made of a thin film of the luminescent material, but is accelerated by a high electric field. It is common in that it requires electroluminescence. The obtained luminescence mechanism includes a donor-acceptor recombination type luminescence that utilizes a donor level and an acceptor level, and a localized luminescence that utilizes a core electron transition of a metal ion. Generally, in distributed inorganic EL, donor-
In many cases, acceptor recombination type light emission and thin film type inorganic EL element are localized type light emission.

本発明に適用できる発光材料は、母体材料と発光中心となる不純物元素とで構成される。
含有させる不純物元素を変化させることで、様々な色の発光を得ることができる。発光材
料の作製方法としては、固相法や液相法(共沈法)などの様々な方法を用いることができ
る。あるいは、噴霧熱分解法、複分解法、プレカーサーの熱分解反応による方法、逆ミセ
ル法やこれらの方法と高温焼成を組み合わせた方法、凍結乾燥法などの液相法なども用い
ることができる。
The light-emitting material applicable to the present invention is composed of a base material and an impurity element that serves as a light-emitting center.
By changing the impurity elements contained, it is possible to obtain light emission of various colors. As a method for producing the luminescent material, various methods such as a solid phase method and a liquid phase method (coprecipitation method) can be used. Alternatively, a spray pyrolysis method, a multi-decomposition method, a method by a thermal decomposition reaction of a precursor, a reverse micelle method, a method combining these methods and high-temperature firing, a liquid phase method such as a freeze-drying method, and the like can also be used.

固相法は、母体材料と、不純物元素又は不純物元素を含む化合物を秤量し、乳鉢で混合、
電気炉で加熱、焼成を行い反応させ、母体材料に不純物元素を含有させる方法である。焼
成温度は、700~1500℃が好ましい。温度が低すぎる場合は固相反応が進まず、温
度が高すぎる場合は母体材料が分解してしまうからである。なお、粉末状態で焼成を行っ
てもよいが、ペレット状態で焼成を行うことが好ましい。比較的高温での焼成を必要とす
るが、簡単な方法であるため、生産性がよく大量生産に適している。
In the solid phase method, the base material and the impurity element or the compound containing the impurity element are weighed and mixed in a mortar.
This is a method in which an impurity element is contained in the base material by heating and firing in an electric furnace to react. The firing temperature is preferably 700 to 1500 ° C. This is because if the temperature is too low, the solid phase reaction does not proceed, and if the temperature is too high, the base material is decomposed. Although firing may be performed in a powder state, firing is preferably performed in a pellet state. Although it requires firing at a relatively high temperature, it is a simple method, so it is highly productive and suitable for mass production.

液相法(共沈法)は、母体材料又は母体材料を含む化合物と、不純物元素又は不純物元素
を含む化合物を溶液中で反応させ、乾燥させた後、焼成を行う方法である。発光材料の粒
子が均一に分布し、粒径が小さく低い焼成温度でも反応が進むことができる。
The liquid phase method (coprecipitation method) is a method in which a base material or a compound containing a base material is reacted with an impurity element or a compound containing an impurity element in a solution, dried, and then calcined. The particles of the luminescent material are uniformly distributed, the particle size is small, and the reaction can proceed even at a low firing temperature.

発光材料に用いる母体材料としては、硫化物、酸化物、窒化物を用いることができる。
硫化物としては、例えば、硫化亜鉛(ZnS)、硫化カドミウム(CdS)、硫化カルシ
ウム(CaS)、硫化イットリウム(Y)、硫化ガリウム(Ga)、硫化ス
トロンチウム(SrS)、硫化バリウム(BaS)等を用いることができる。また、酸化
物としては、例えば、酸化亜鉛(ZnO)、酸化イットリウム(Y)等を用いるこ
とができる。また、窒化物としては、例えば、窒化アルミニウム(AlN)、窒化ガリウ
ム(GaN)、窒化インジウム(InN)等を用いることができる。さらに、セレン化亜
鉛(ZnSe)、テルル化亜鉛(ZnTe)等も用いることができ、硫化カルシウム-ガ
リウム(CaGa)、硫化ストロンチウム-ガリウム(SrGa)、硫化バ
リウム-ガリウム(BaGa)、等の3元系の混晶であってもよい。
Sulfide, oxide, and nitride can be used as the base material used for the light emitting material.
Examples of the sulfide include zinc sulfide (ZnS), cadmium sulfide (CdS), calcium sulfide (CaS), yttrium sulfide (Y 2 S 3 ), gallium sulfide (Ga 2 S 3 ), strontium sulfide (SrS), and sulfide. Sulfide (BaS) or the like can be used. Further, as the oxide, for example, zinc oxide (ZnO) , yttrium oxide ( Y2O3) and the like can be used. Further, as the nitride, for example, aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN) and the like can be used. Further, zinc selenide (ZnSe), zinc telluride (ZnTe) and the like can also be used, and calcium sulfide-gallium (CaGa 2 S 4 ), strontium sulfide-gallium (SrGa 2 S 4 ), barium sulfide-gallium (BaGa). It may be a mixed crystal of a ternary system such as 2 S 4 ).

局在型発光の発光中心として、マンガン(Mn)、銅(Cu)、サマリウム(Sm)、テ
ルビウム(Tb)、エルビウム(Er)、ツリウム(Tm)、ユーロピウム(Eu)、セ
リウム(Ce)、プラセオジウム(Pr)などを用いることができる。なお、電荷補償と
して、フッ素(F)、塩素(Cl)などのハロゲン元素が添加されていてもよい。
Manganese (Mn), copper (Cu), samarium (Sm), terbium (Tb), erbium (Er), thulium (Tm), europium (Eu), cerium (Ce), and placeodium are the emission centers of localized light emission. (Pr) and the like can be used. Halogen elements such as fluorine (F) and chlorine (Cl) may be added as charge compensation.

一方、ドナー-アクセプター再結合型発光の発光中心として、ドナー準位を形成する第1
の不純物元素及びアクセプター準位を形成する第2の不純物元素を含む発光材料を用いる
ことができる。第1の不純物元素は、例えば、フッ素(F)、塩素(Cl)、アルミニウ
ム(Al)等を用いることができる。第2の不純物元素としては、例えば、銅(Cu)、
銀(Ag)等を用いることができる。
On the other hand, the first that forms the donor level as the emission center of the donor-acceptor recombination type emission.
A light emitting material containing an impurity element of the above and a second impurity element forming an acceptor level can be used. As the first impurity element, for example, fluorine (F), chlorine (Cl), aluminum (Al) and the like can be used. As the second impurity element, for example, copper (Cu),
Silver (Ag) or the like can be used.

ドナー-アクセプター再結合型発光の発光材料を固相法を用いて合成する場合、母体材料
と、第1の不純物元素又は第1の不純物元素を含む化合物と、第2の不純物元素又は第2
の不純物元素を含む化合物をそれぞれ秤量し、乳鉢で混合した後、電気炉で加熱、焼成を
行う。母体材料としては、上述した母体材料を用いることができ、第1の不純物元素又は
第1の不純物元素を含む化合物としては、例えば、フッ素(F)、塩素(Cl)、硫化ア
ルミニウム(Al)等を用いることができ、第2の不純物元素又は第2の不純物元
素を含む化合物としては、例えば、銅(Cu)、銀(Ag)、硫化銅(CuS)、硫化
銀(AgS)等を用いることができる。焼成温度は、700~1500℃が好ましい。
温度が低すぎる場合は固相反応が進まず、温度が高すぎる場合は母体材料が分解してしま
うからである。なお、粉末状態で焼成を行ってもよいが、ペレット状態で焼成を行うこと
が好ましい。
When a donor-acceptor recombination type luminescent material is synthesized by the solid phase method, the parent material, a compound containing a first impurity element or a first impurity element, and a second impurity element or a second are used.
Weigh the compounds containing the impurity elements of the above, mix them in a mortar, and then heat and bake them in an electric furnace. As the base material, the above-mentioned base material can be used, and examples of the first impurity element or the compound containing the first impurity element include fluorine (F), chlorine (Cl), and aluminum sulfide ( Al 2S). 3 ) and the like can be used, and examples of the compound containing the second impurity element or the second impurity element include copper (Cu), silver (Ag), copper sulfide (Cu 2S), and silver sulfide (Ag). 2S ) and the like can be used. The firing temperature is preferably 700 to 1500 ° C.
This is because if the temperature is too low, the solid phase reaction does not proceed, and if the temperature is too high, the base material is decomposed. Although firing may be performed in a powder state, firing is preferably performed in a pellet state.

また、固相反応を利用する場合の不純物元素として、第1の不純物元素と第2の不純物元
素で構成される化合物を組み合わせて用いてもよい。この場合、不純物元素が拡散されや
すく、固相反応が進みやすくなるため、均一な発光材料を得ることができる。さらに、余
分な不純物元素が入らないため、純度の高い発光材料が得ることができる。第1の不純物
元素と第2の不純物元素で構成される化合物としては、例えば、塩化銅(CuCl)、塩
化銀(AgCl)等を用いることができる。
Further, as the impurity element when the solid phase reaction is used, a compound composed of the first impurity element and the second impurity element may be used in combination. In this case, the impurity element is easily diffused and the solid phase reaction is easily promoted, so that a uniform light emitting material can be obtained. Further, since no extra impurity element is contained, a highly pure luminescent material can be obtained. As the compound composed of the first impurity element and the second impurity element, for example, copper chloride (CuCl), silver chloride (AgCl) and the like can be used.

なお、これらの不純物元素の濃度は、母体材料に対して0.01~10atom%であれ
ばよく、好ましくは0.05~5atom%の範囲である。
The concentration of these impurity elements may be 0.01 to 10 atom% with respect to the base material, preferably in the range of 0.05 to 5 atom%.

薄膜型無機ELの場合、電界発光層は、上記発光材料を含む層であり、抵抗加熱蒸着法、
電子ビーム蒸着(EB蒸着)法等の真空蒸着法、スパッタリング法等の物理気相成長法(
PVD)、有機金属CVD法、ハイドライド輸送減圧CVD法等の化学気相成長法(CV
D)、原子エピタキシ法(ALE)等を用いて形成することができる。
In the case of the thin film type inorganic EL, the electroluminescent layer is a layer containing the above-mentioned light emitting material, and is a resistance heating vapor deposition method.
Vacuum vapor deposition method such as electron beam vapor deposition (EB vapor deposition), physical vapor deposition method such as sputtering method (
PVD), organometallic CVD method, hydride transport vacuum CVD method, and other chemical vapor deposition methods (CV)
D), it can be formed by using an atomic epitaxy method (ALE) or the like.

図103(A)乃至(C)に発光素子として用いることのできる薄膜型無機EL素子の一
例を示す。図103(A)乃至(C)において、発光素子は、第1の電極層120100
、電界発光層120102、第2の電極層120103を含む。
FIGS. 103 (A) to 103 (C) show an example of a thin film type inorganic EL element that can be used as a light emitting element. In FIGS. 103A to 103C, the light emitting element is the first electrode layer 120100.
Includes an electroluminescent layer 120102 and a second electrode layer 120103.

図103(B)及び図103(C)に示す発光素子は、図103(A)の発光素子におい
て、電極層と電界発光層間に絶縁層を設ける構造である。図103(B)に示す発光素子
は、第1の電極層120100と電界発光層120102との間に絶縁層120104を
有し、図103(C)に示す発光素子は、第1の電極層120100と電界発光層120
102との間に絶縁層120105、第2の電極層120103と電界発光層12010
2との間に絶縁層120106とを有している。このように絶縁層は電界発光層を挟持す
る一対の電極層のうち一方の間にのみ設けてもよいし、両方の間に設けてもよい。また、
絶縁層は単層でもよいし複数層を有する積層でもよい。
The light emitting element shown in FIGS. 103 (B) and 103 (C) has a structure in which an insulating layer is provided between the electrode layer and the electroluminescent layer in the light emitting element of FIG. 103 (A). The light emitting element shown in FIG. 103 (B) has an insulating layer 120104 between the first electrode layer 120100 and the electroluminescent layer 120102, and the light emitting element shown in FIG. 103 (C) has a first electrode layer 120100. And electroluminescent layer 120
Between 102 and the insulating layer 120105, the second electrode layer 120103 and the electroluminescent layer 12010
It has an insulating layer 120106 between the two. As described above, the insulating layer may be provided only between one of the pair of electrode layers sandwiching the electroluminescent layer, or may be provided between both. again,
The insulating layer may be a single layer or a laminated layer having a plurality of layers.

なお、図103(B)では第1の電極層120100に接するように絶縁層120104
が設けられているが、絶縁層と電界発光層の順番を逆にして、第2の電極層120103
に接するように絶縁層120104を設けてもよい。
In FIG. 103 (B), the insulating layer 120104 is in contact with the first electrode layer 120100.
However, the order of the insulating layer and the electroluminescent layer is reversed, and the second electrode layer 120103 is provided.
The insulating layer 120104 may be provided so as to be in contact with the above.

分散型無機ELの場合、粒子状の発光材料をバインダ中に分散させ膜状の電界発光層を形
成する。粒子状に加工する。発光材料の作製方法によって、十分に所望の大きさの粒子が
得られない場合は、乳鉢等で粉砕などによって粒子状に加工すればよい。バインダとは、
粒状の発光材料を分散した状態で固定し、電界発光層としての形状に保持するための物質
である。発光材料は、バインダによって電界発光層中に均一に分散し固定される。
In the case of the dispersed inorganic EL, the particulate luminescent material is dispersed in the binder to form a film-like electroluminescent layer. Process into particles. If particles of a sufficiently desired size cannot be obtained by the method for producing a luminescent material, the particles may be processed into particles by pulverization or the like in a mortar or pestle. What is a binder?
It is a substance for fixing a granular light emitting material in a dispersed state and holding it in a shape as an electroluminescent layer. The luminescent material is uniformly dispersed and fixed in the electroluminescent layer by a binder.

分散型無機ELの場合、電界発光層の形成方法は、選択的に電界発光層を形成できる液滴
吐出法や、印刷法(スクリーン印刷やオフセット印刷など)、スピンコート法などの塗布
法、ディッピング法、ディスペンサー法などを用いることもできる。膜厚は特に限定され
ることはないが、好ましくは、10~1000nmの範囲である。また、発光材料及びバ
インダを含む電界発光層において、発光材料の割合は50wt%以上80wt%以下とす
るよい。
In the case of dispersed inorganic EL, the electroluminescent layer is formed by a droplet ejection method capable of selectively forming an electroluminescent layer, a printing method (screen printing, offset printing, etc.), a coating method such as a spin coating method, or dipping. A method, a dispenser method, or the like can also be used. The film thickness is not particularly limited, but is preferably in the range of 10 to 1000 nm. Further, in the electroluminescent layer containing the light emitting material and the binder, the ratio of the light emitting material may be 50 wt% or more and 80 wt% or less.

図104(A)乃至(C)に発光素子として用いることのできる分散型無機EL素子の一
例を示す。図104(A)における発光素子は、第1の電極層120200、電界発光層
120202、第2の電極層120203の積層構造を有し、電界発光層120202中
にバインダによって保持された発光材料120201を含む。
FIGS. 104 (A) to 104 (C) show an example of a dispersed inorganic EL element that can be used as a light emitting element. The light emitting element in FIG. 104 (A) has a laminated structure of a first electrode layer 120200, an electroluminescent layer 120202, and a second electrode layer 120203, and a light emitting material 120201 held by a binder in the electroluminescent layer 120202. include.

本実施の形態に用いることのできるバインダは、絶縁材料を用いることができる。絶縁材
料としては、有機材料および無機材料を用いることができる。あるいは、有機材料及び無
機材料の混合材料を用いてもよい。有機絶縁材料としては、シアノエチルセルロース系樹
脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチ
レン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂を用いること
ができる。あるいは、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzi
midazole)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。なお、シ
ロキサン樹脂とは、Si-O-Si結合を含む樹脂に相当する。シロキサンは、シリコン
(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素
を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フル
オロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ
基とを用いてもよい。あるいは、ポリビニルアルコール、ポリビニルブチラールなどのビ
ニル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹
脂、オキサゾール樹脂(ポリベンゾオキサゾール)等の樹脂材料を用いてもよい。これら
の樹脂に、チタン酸バリウム(BaTiO)やチタン酸ストロンチウム(SrTiO
)などの高誘電率の微粒子を適度に混合して誘電率を調整することもできる。
As the binder that can be used in this embodiment, an insulating material can be used. As the insulating material, an organic material and an inorganic material can be used. Alternatively, a mixed material of an organic material and an inorganic material may be used. As the organic insulating material, a polymer having a relatively high dielectric constant such as a cyanoethyl cellulose resin or a resin such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin or vinylidene fluoride can be used. Alternatively, aromatic polyamides, polybenzimidazoles (polybenzi)
A heat-resistant polymer such as midazole) or a siloxane resin may be used. The siloxane resin corresponds to a resin containing a Si—O—Si bond. The skeleton structure of siloxane is composed of the bonds between silicon (Si) and oxygen (O). As the substituent, an organic group containing at least hydrogen (for example, an alkyl group or an aromatic hydrocarbon) is used. A fluoro group may be used as the substituent. Alternatively, an organic group containing at least hydrogen and a fluoro group may be used as the substituent. Alternatively, a resin material such as a vinyl resin such as polyvinyl alcohol or polyvinyl butyral, a phenol resin, a novolak resin, an acrylic resin, a melamine resin, a urethane resin, or an oxazole resin (polybenzoxazole) may be used. These resins include barium titanate (BaTIO 3 ) and strontium titanate (SrTiO 3 ).
) And other high dielectric constant particles can be mixed appropriately to adjust the dielectric constant.

バインダに含まれる無機絶縁材料としては、酸化珪素(SiOx)、窒化珪素(SiNx
)、酸素及び窒素を含む珪素、窒化アルミニウム(AlN)、酸素及び窒素を含むアルミ
ニウム、酸素及び窒素を含む酸化アルミニウム(Al)、酸化チタン(TiO
、BaTiO、SrTiO、チタン酸鉛(PbTiO)、ニオブ酸カリウム(KN
bO)、ニオブ酸鉛(PbNbO)、酸化タンタル(Ta)、タンタル酸バリ
ウム(BaTa)、タンタル酸リチウム(LiTaO)、酸化イットリウム(Y
)、酸化ジルコニウム(ZrO)、ZnSその他の無機絶縁性材料を含む物質か
ら選ばれた材料で形成することができる。有機材料に、誘電率の高い無機材料を含ませる
(添加等によって)ことによって、発光材料及びバインダよりなる電界発光層の誘電率を
より制御することができ、より誘電率を大きくすることができる。
Examples of the inorganic insulating material contained in the binder include silicon oxide (SiOx) and silicon nitride (SiNx).
), Silicon containing oxygen and nitrogen, aluminum nitride (AlN), aluminum containing oxygen and nitrogen, aluminum oxide containing oxygen and nitrogen (Al 2 O 3 ), titanium oxide (TIO 2 ).
, BaTIO 3 , SrTIO 3 , Lead Titanate (PbTIO 3 ), Potassium niobate (KN)
bO 3 ), lead niobate (PbNbO 3 ), tantalum oxide (Ta 2 O 5 ), barium tantalate (BaTa 2 O 6 ), lithium tantalate (LiTaO 3 ), yttrium oxide (Y)
It can be formed of a material selected from materials including 2O 3 ), zirconium oxide (ZrO 2 ), ZnS and other inorganic insulating materials. By including an inorganic material having a high dielectric constant in the organic material (by addition or the like), the dielectric constant of the electroluminescent layer made of the light emitting material and the binder can be further controlled, and the dielectric constant can be further increased. ..

作製工程において、発光材料はバインダを含む溶液中に分散される。本実施の形態に用い
ることのできるバインダを含む溶液の溶媒としては、バインダ材料が溶解し、電界発光層
を形成する方法(各種ウエットプロセス)及び所望の膜厚に適した粘度の溶液を作製でき
るような溶媒を適宜選択すればよい。たとえば、溶媒として有機溶媒等を用いることがで
きる。バインダとしてシロキサン樹脂を用いる場合は、プロピレングリコールモノメチル
エーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEAともいう)
、3-メトシキ-3メチル-1-ブタノール(MMBともいう)などを溶媒として用いる
ことができる。
In the fabrication process, the luminescent material is dispersed in a solution containing a binder. As the solvent of the solution containing the binder that can be used in the present embodiment, a method of dissolving the binder material to form an electroluminescent layer (various wet processes) and a solution having a viscosity suitable for a desired film thickness can be prepared. Such a solvent may be appropriately selected. For example, an organic solvent or the like can be used as the solvent. When a siloxane resin is used as a binder, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate (also referred to as PGMEA)
, 3-Metoshiki-3methyl-1-butanol (also referred to as MMB) and the like can be used as a solvent.

図104(B)及び図104(C)に示す発光素子は、図104(A)の発光素子におい
て、電極層と電界発光層間に絶縁層を設ける構造である。図104(B)に示す発光素子
は、第1の電極層120200と電界発光層120202との間に絶縁層120204を
有し、図104(C)に示す発光素子は、第1の電極層120200と電界発光層120
202との間に絶縁層120205、第2の電極層120203と電界発光層12020
2との間に絶縁層120206とを有している。このように絶縁層は電界発光層を挟持す
る一対の電極層のうち一方の間にのみ設けてもよいし、両方の間に設けてもよい。また絶
縁層は単層でもよいし複数層を有する積層でもよい。
The light emitting element shown in FIGS. 104 (B) and 104 (C) has a structure in which an insulating layer is provided between the electrode layer and the electroluminescent layer in the light emitting element of FIG. 104 (A). The light emitting element shown in FIG. 104 (B) has an insulating layer 120204 between the first electrode layer 120200 and the electroluminescent layer 120202, and the light emitting element shown in FIG. 104 (C) has a first electrode layer 120200. And electroluminescent layer 120
Between 202 and the insulating layer 120205, the second electrode layer 120203 and the electroluminescent layer 12020
It has an insulating layer 120206 between the two. As described above, the insulating layer may be provided only between one of the pair of electrode layers sandwiching the electroluminescent layer, or may be provided between both. Further, the insulating layer may be a single layer or a laminated layer having a plurality of layers.

また、図104(B)では第1の電極層120200に接するように絶縁層120204
が設けられているが、絶縁層と電界発光層の順番を逆にして、第2の電極層120203
に接するように絶縁層120204を設けてもよい。
Further, in FIG. 104 (B), the insulating layer 120204 is in contact with the first electrode layer 120200.
However, the order of the insulating layer and the electroluminescent layer is reversed, and the second electrode layer 120203 is provided.
The insulating layer 120204 may be provided so as to be in contact with the above.

図103における絶縁層120104、図104における絶縁層120204のような絶
縁層に用いることのできる材料は、絶縁耐性が高く、緻密な膜質であることが好ましい。
さらには、誘電率が高いことが好ましい。例えば、酸化シリコン(SiO)、酸化イッ
トリウム(Y)、酸化チタン(TiO)、酸化アルミニウム(Al)、酸
化ハフニウム(HfO)、酸化タンタル(Ta)、チタン酸バリウム(BaTi
)、チタン酸ストロンチウム(SrTiO)、チタン酸鉛(PbTiO)、窒化
シリコン(Si)、酸化ジルコニウム(ZrO)等やこれらの混合膜又は2種以
上の積層膜を用いることができる。これらの絶縁膜は、スパッタリング、蒸着、CVD等
により成膜することができる。また、絶縁層はこれら絶縁材料の粒子をバインダ中に分散
して成膜してもよい。バインダ材料は、電界発光層に含まれるバインダと同様な材料、方
法を用いて形成すればよい。膜厚は特に限定されることはないが、好ましくは10~10
00nmの範囲である。
Materials that can be used for the insulating layer, such as the insulating layer 120104 in FIG. 103 and the insulating layer 120204 in FIG. 104, preferably have high dielectric strength and a dense film quality.
Furthermore, it is preferable that the dielectric constant is high. For example, silicon oxide (SiO 2 ), yttrium oxide (Y 2 O 3 ), titanium oxide (TIO 2 ), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), Barium titanate (BaTi)
O 3 ), strontium titanate (SrTIO 3 ), lead titanate (PbTIO 3 ), silicon nitride (Si 3 N 4 ), zirconium oxide (ZrO 2 ), etc., a mixed film thereof, or a laminated film of two or more thereof is used. be able to. These insulating films can be formed by sputtering, vapor deposition, CVD, or the like. Further, in the insulating layer, particles of these insulating materials may be dispersed in a binder to form a film. The binder material may be formed by using the same material and method as the binder contained in the electroluminescent layer. The film thickness is not particularly limited, but is preferably 10 to 10.
It is in the range of 00 nm.

本実施の形態で示す発光素子は、電界発光層を挟持する一対の電極層間に電圧を印加する
ことで発光が得られるが、直流駆動又は交流駆動のいずれにおいても動作することができ
る。
The light emitting element shown in the present embodiment can emit light by applying a voltage between a pair of electrode layers sandwiching an electroluminescent layer, but can operate in either DC drive or AC drive.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態15)
本実施形態においては、表示装置の一例、特に光学的な取り扱いを行なう場合について説
明する。
(Embodiment 15)
In this embodiment, an example of a display device, particularly a case where optical handling is performed, will be described.

図105(A)及び(B)に示す背面投影型表示装置130100は、プロジェクタユニ
ット130111、ミラー130112、スクリーンパネル130101を備えている。
その他に、スピーカ130102、操作スイッチ類130104を備えていてもよい。こ
のプロジェクタユニット130111は、背面投影型表示装置130100の筐体130
110の下部に配設され、映像信号に基づいて映像を映し出す投射光をミラー13011
2に向けて投射する。背面投影型表示装置130100はスクリーンパネル130101
の背面から投影される映像を表示する構成となっている。
The rear projection type display device 130100 shown in FIGS. 105 (A) and 105 (B) includes a projector unit 130111, a mirror 130112, and a screen panel 130101.
In addition, a speaker 130102 and operation switches 130104 may be provided. The projector unit 130111 is a housing 130 of the rear projection type display device 130100.
Mirror 13011 is arranged at the bottom of 110 and projects light that projects an image based on an image signal.
Project toward 2. The rear projection type display device 130100 is a screen panel 130101.
It is configured to display the image projected from the back of.

一方、図106は、前面投影型表示装置130200を示している。前面投影表示装置
130200は、プロジェクタユニット130111と投射光学系130201を備えて
いる。この前面投影光学系130200は前面に配設するスクリーン等に映像を投影する
構成となっている。
On the other hand, FIG. 106 shows the front projection type display device 130200. The front projection display device 130200 includes a projector unit 130111 and a projection optical system 130201. The front projection optical system 130200 is configured to project an image on a screen or the like arranged on the front surface.

図105に示す背面投影型表示装置130100、図106に示す前面投影型表示装置
130200に適用されるプロジェクタユニット130111の構成を以下に説明する。
The configuration of the projector unit 130111 applied to the rear projection type display device 130100 shown in FIG. 105 and the front projection type display device 130200 shown in FIG. 106 will be described below.

図107は、プロジェクタユニット130111の一構成例を示している。このプロジ
ェクタユニット130111は、光源ユニット130301及び変調ユニット13030
4を備えている。光源ユニット130301は、レンズ類を含んで構成される光源光学系
130303と、光源ランプ130302を備えている。光源ランプ130302は迷光
が拡散しないように筐体内に収納されている。光源ランプ130302としては、大光量
の光を放射可能な、例えば、高圧水銀ランプやキセノンランプなどが用いられる。光源光
学系130303は、光学レンズ、偏光機能を有するフィルム、位相差を調節するための
フィルム、IRフィルム等を適宜設けて構成される。そして、光源ユニット130301
は、放射光が変調ユニット130304に入射するように配設されている。変調ユニット
130304は、複数の表示パネル130308、カラーフィルター、ダイクロイックミ
ラー130305、全反射ミラー130306、プリズム130309、投射光学系13
0310を備えている。光源ユニット130301から放射された光は、ダイクロイック
ミラー130305で複数の光路に分離される。
FIG. 107 shows a configuration example of the projector unit 130111. The projector unit 130111 includes a light source unit 130301 and a modulation unit 13030.
4 is provided. The light source unit 130301 includes a light source optical system 130303 including lenses and a light source lamp 130302. The light source lamp 130302 is housed in a housing so that stray light does not diffuse. As the light source lamp 130302, for example, a high-pressure mercury lamp or a xenon lamp capable of radiating a large amount of light is used. The light source optical system 130303 is configured by appropriately providing an optical lens, a film having a polarizing function, a film for adjusting a phase difference, an IR film, and the like. And the light source unit 130301
Is arranged so that the synchrotron radiation is incident on the modulation unit 130304. The modulation unit 130304 includes a plurality of display panels 130308, a color filter, a dichroic mirror 130305, a total reflection mirror 130306, a prism 130309, and a projection optical system 13.
It is equipped with 0310. The light emitted from the light source unit 130301 is separated into a plurality of optical paths by the dichroic mirror 130305.

各光路には、所定の波長若しくは波長帯の光を透過するカラーフィルターと、表示パネ
ル130308が備えられている。透過型である表示パネル130308は映像信号に基
づいて透過光を変調する。表示パネル130308を透過した各色の光は、プリズム13
0309に入射し投射光学系130310を通して、スクリーン上に映像を表示する。な
お、フレネルレンズがミラー及びスクリーンの間に配設されていてもよい。そして、プロ
ジェクタユニット130111によって投射されミラーで反射される投影光は、フレネル
レンズによって概略平行光に変換され、スクリーンに投影される。
Each optical path is provided with a color filter that transmits light of a predetermined wavelength or wavelength band, and a display panel 130308. The transmissive display panel 130308 modulates the transmitted light based on the video signal. The light of each color transmitted through the display panel 130308 is the prism 13.
An image is displayed on the screen through the projection optical system 130310 incident on 0309. The Fresnel lens may be arranged between the mirror and the screen. Then, the projected light projected by the projector unit 130111 and reflected by the mirror is converted into substantially parallel light by the Fresnel lens and projected on the screen.

図108で示すプロジェクタユニット130111は、反射型の表示パネル13040
7、130408、130409を備えた構成を示している。
The projector unit 130111 shown in FIG. 108 is a reflective display panel 13040.
A configuration including 7, 130408 and 130409 is shown.

図108で示すプロジェクタユニット130111は、光源ユニット130301と変
調ユニット130400を備えている。光源ユニット130301は、図107と同様の
構成であってもよい。光源ユニット130301からの光は、ダイクロイックミラー13
0401、130402、全反射ミラー130403により、複数の光路に分けられて、
偏光ビームスプリッタ130404、130405、130406に入射する。偏光ビー
ムスプリッタ130404、130405、130406は、各色に対応する反射型表示
パネル130407、130408、130409に対応して設けられている。反射型表
示パネル130407、130408、130409は、映像信号に基づいて反射光を変
調する。反射型表示パネル130407、130408、130409で反射された各色
の光は、プリズム130309に入射することで合成されて、投射光学系130411を
通して投射される。
The projector unit 130111 shown in FIG. 108 includes a light source unit 130301 and a modulation unit 130400. The light source unit 130301 may have the same configuration as that shown in FIG. 107. The light from the light source unit 130301 is a dichroic mirror 13.
It is divided into a plurality of optical paths by 0401, 130402, and total reflection mirror 130403.
It is incident on the polarizing beam splitters 130404, 130405 and 130406. The polarizing beam splitters 130404, 130405, and 130406 are provided corresponding to the reflective display panels 130407, 130408, and 130409 corresponding to each color. The reflective display panels 130407, 130408, 130409 modulate the reflected light based on the video signal. The light of each color reflected by the reflective display panels 130407, 130408, and 130409 is combined by being incident on the prism 130309 and projected through the projection optical system 130411.

光源ユニット130301から放射された光は、ダイクロイックミラー130401で
赤の波長領域の光のみを透過し、緑および青の波長領域の光を反射する。さらに、ダイク
ロイックミラー130402では、緑の波長領域の光のみが反射される。ダイクロイック
ミラー130401を透過した赤の波長領域の光は、全反射ミラー130403で反射さ
れ、偏光ビームスプリッタ130404へ入射する、また、青の波長領域の光は偏光ビー
ムスプリッタ130405へ入射し、緑の波長領域の光は偏光ビームスプリッタ1304
06に入射する。偏光ビームスプリッタ130404、130405、130406は、
入射光をP偏光とS偏光とに分離する機能を有し、且つP偏光のみを透過させる機能を有
している。反射型表示パネル130407、130408、130409は、映像信号に
基づいて、入射した光を偏光する。
The light emitted from the light source unit 130301 transmits only the light in the red wavelength region by the dichroic mirror 130401 and reflects the light in the green and blue wavelength regions. Further, the dichroic mirror 130402 reflects only light in the green wavelength region. Light in the red wavelength region transmitted through the dichroic mirror 130401 is reflected by the full reflection mirror 130403 and incident on the polarized beam splitter 130404, and light in the blue wavelength region is incident on the polarized beam splitter 130405 and has a green wavelength. The light in the region is the polarized beam splitter 1304
It is incident on 06. The polarization beam splitters 130404, 130405, 130406 are
It has a function of separating incident light into P-polarized light and S-polarized light, and has a function of transmitting only P-polarized light. The reflective display panels 130407, 130408, and 130409 polarized the incident light based on the video signal.

各色に対応する反射型表示パネル130407、130408、130409には各色
に対応するS偏光のみが入射する。なお、反射型表示パネル130407、130408
、130409は液晶パネルであってもよい。このとき、液晶パネルは電界制御複屈折モ
ード(ECB)で動作する。また、液晶分子は基板に対してある角度をもって垂直配向し
ている。よって、反射型表示パネル130407、130408、130409は画素が
オフ状態にある時は入射光の偏光状態を変化させないで反射させるように表示分子が配向
している。また、画素がオン状態にある時は表示分子の配向状態が変化し、入射光の偏光
状態が変化する。
Only the S-polarized light corresponding to each color is incident on the reflective display panels 130407, 130408, and 130409 corresponding to each color. The reflective display panels 130407 and 130408
, 130409 may be a liquid crystal panel. At this time, the liquid crystal panel operates in the electric field controlled birefringence mode (ECB). Further, the liquid crystal molecules are vertically oriented at a certain angle with respect to the substrate. Therefore, in the reflective display panels 130407, 130408, and 130409, the display molecules are oriented so as to reflect the incident light without changing the polarization state when the pixel is in the off state. Further, when the pixel is in the on state, the orientation state of the display molecule changes, and the polarization state of the incident light changes.

図108に示すプロジェクタユニット130111は、図105に示す背面投影型表示
装置130100及び、図106に示す前面投影型表示装置130200に適用すること
ができる。
The projector unit 130111 shown in FIG. 108 can be applied to the rear projection type display device 130100 shown in FIG. 105 and the front projection type display device 130200 shown in FIG. 106.

図109で示すプロジェクタユニットは単板式の構成を示している。図109(A)に
示したプロジェクタユニット130111は、光源ユニット130301、表示パネル1
30507、投射光学系130511、位相差板130504を備えている。投射光学系
130511は一つ又は複数のレンズにより構成されている。表示パネル130507に
はカラーフィルターが備えられていてもよい。
The projector unit shown in FIG. 109 shows a single-panel configuration. The projector unit 130111 shown in FIG. 109 (A) has a light source unit 130301 and a display panel 1.
It includes 30507, a projection optical system 130511, and a retardation plate 130504. The projection optical system 130511 is composed of one or a plurality of lenses. The display panel 130507 may be provided with a color filter.

図109(B)は、フィールドシーケンシャル方式で動作するプロジェクタユニット1
30111の構成を示している。フィールドシーケンシャル方式は、赤、緑、青などの各
色の光を時間的にずらせて順次表示パネルに入射させて、カラーフィルター無しでカラー
表示を行う方式である。特に、入力信号変化に対する応答速度の大きい表示パネルと組み
合わせると、高精細な映像を表示することができる。図109(B)では、光源ユニット
130301と表示パネル130508の間に、赤、緑、青などの複数のカラーフィルタ
ーが備えられた回動式のカラーフィルター板130505を備えている。
FIG. 109 (B) shows a projector unit 1 that operates in a field sequential manner.
The configuration of 30111 is shown. The field sequential method is a method in which light of each color such as red, green, and blue is sequentially incident on a display panel by shifting the time in time, and color display is performed without a color filter. In particular, when combined with a display panel having a high response speed to changes in the input signal, a high-definition image can be displayed. In FIG. 109 (B), a rotary color filter plate 130505 provided with a plurality of color filters such as red, green, and blue is provided between the light source unit 130301 and the display panel 130508.

図109(C)で示すプロジェクタユニット130111は、カラー表示の方式として
、マクロレンズを使った色分離方式の構成を示している。この方式は、マイクロレンズア
レイ130506を表示パネル130509の光入射側に備え、各色の光をそれぞれの方
向から照明することでカラー表示を実現する方式である。この方式を採用するプロジェク
タユニット130111は、カラーフィルターによる光の損失が少ないので、光源ユニッ
ト130301からの光を有効に利用することができるという特徴を有している。図10
9(C)に示すプロジェクタユニット130111は、表示パネル130509に対して
各色の光をそれぞれの方向から照明するように、ダイクロイックミラー130501、ダ
イクロイックミラー130502、赤色光用ダイクロイックミラー130503を備えて
いる。
The projector unit 130111 shown in FIG. 109 (C) shows a configuration of a color separation method using a macro lens as a color display method. In this method, a microlens array 130506 is provided on the light incident side of the display panel 130509, and light of each color is illuminated from each direction to realize color display. The projector unit 130111 that adopts this method has a feature that the light from the light source unit 130301 can be effectively used because the loss of light due to the color filter is small. FIG. 10
The projector unit 130111 shown in 9 (C) includes a dichroic mirror 130501, a dichroic mirror 130502, and a dichroic mirror 130503 for red light so as to illuminate the display panel 130509 with light of each color from each direction.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態16)
本実施形態においては、本発明に係る電子機器の例について説明する。
(Embodiment 16)
In the present embodiment, an example of the electronic device according to the present invention will be described.

図110は表示パネル900101と、回路基板900111を組み合わせた表示パネル
モジュールを示している。表示パネル900101は画素部900102、走査線駆動回
路900103及び信号線駆動回路900104を有している。回路基板900111に
は、例えば、コントロール回路900112及び信号分割回路900113などが形成さ
れている。表示パネル900101と回路基板900111とは接続配線900114に
よって接続されている。接続配線にはFPC等を用いることができる。
FIG. 110 shows a display panel module in which a display panel 900101 and a circuit board 900111 are combined. The display panel 900101 has a pixel unit 900102, a scanning line driving circuit 900103, and a signal line driving circuit 900104. For example, a control circuit 900112 and a signal division circuit 900113 are formed on the circuit board 900111. The display panel 900101 and the circuit board 900111 are connected by a connection wiring 900114. FPC or the like can be used for the connection wiring.

表示パネル900101は、画素部900102と一部の周辺駆動回路(複数の駆動回路
のうち動作周波数の低い駆動回路)を基板上にTFTを用いて一体形成し、一部の周辺駆
動回路(複数の駆動回路のうち動作周波数の高い駆動回路)をICチップ上に形成し、そ
のICチップをCOG(Chip On Glass)などで表示パネル900101に
実装してもよい。こうすることで、回路基板900111の面積を削減でき、小型の表示
装置を得ることができる。あるいは、そのICチップをTAB(Tape Auto B
onding)やプリント基板を用いて表示パネル900101に実装してもよい。こう
することで、表示パネル900101の面積を小さくできるので、額縁サイズの小さい表
示装置を得ることができる。
The display panel 900101 integrally forms a pixel unit 900102 and a part of peripheral drive circuits (a drive circuit having a low operating frequency among a plurality of drive circuits) on a substrate by using a TFT, and a part of the peripheral drive circuits (a plurality of drive circuits). A drive circuit having a high operating frequency among the drive circuits) may be formed on an IC chip, and the IC chip may be mounted on the display panel 900101 by COG (Chip On Glass) or the like. By doing so, the area of the circuit board 900111 can be reduced, and a small display device can be obtained. Alternatively, the IC chip is TAB (Tape Auto B).
It may be mounted on the display panel 900101 by using on) or a printed circuit board. By doing so, the area of the display panel 900101 can be reduced, so that a display device having a small frame size can be obtained.

例えば、消費電力の低減を図るため、ガラス基板上にTFTを用いて画素部を形成し、全
ての周辺駆動回路をICチップ上に形成し、そのICチップをCOGまたはTABで表示
パネルに実装してもよい。
For example, in order to reduce power consumption, a pixel portion is formed on a glass substrate using a TFT, all peripheral drive circuits are formed on an IC chip, and the IC chip is mounted on a display panel by COG or TAB. You may.

図110に示した表示パネルモジュールによって、テレビ受像機を完成させることができ
る。図111は、テレビ受像機の主要な構成を示すブロック図である。チューナ9002
01は映像信号と音声信号を受信する。映像信号は、映像信号増幅回路900202と、
映像信号増幅回路900202から出力される信号を赤、緑、青の各色に対応した色信号
に変換する映像信号処理回路900203と、その映像信号を駆動回路の入力仕様に変換
するためのコントロール回路900212により処理される。コントロール回路9002
12は、走査線側と信号線側にそれぞれ信号を出力する。デジタル駆動する場合には、信
号線側に信号分割回路900213を設け、入力デジタル信号をm個(mは正の整数)に
分割して供給する構成としても良い。
The television receiver can be completed by the display panel module shown in FIG. 110. FIG. 111 is a block diagram showing a main configuration of a television receiver. Tuner 9002
01 receives a video signal and an audio signal. The video signal is the video signal amplifier circuit 900202 and
A video signal processing circuit 900203 that converts the signal output from the video signal amplifier circuit 900202 into a color signal corresponding to each color of red, green, and blue, and a control circuit 900212 for converting the video signal into the input specifications of the drive circuit. Is processed by. Control circuit 9002
12 outputs signals to the scanning line side and the signal line side, respectively. In the case of digital driving, a signal dividing circuit 900213 may be provided on the signal line side, and the input digital signal may be divided into m pieces (m is a positive integer) and supplied.

チューナ900201で受信した信号のうち、音声信号は音声信号増幅回路900205
に送られ、その出力は音声信号処理回路900206を経てスピーカー900207に供
給される。制御回路900208は受信局(受信周波数)及び音量の制御情報を入力部9
00209から受け、チューナ900201や音声信号処理回路900206に信号を送
出する。
Of the signals received by the tuner 900201, the audio signal is the audio signal amplifier circuit 900205.
The output is supplied to the speaker 900207 via the audio signal processing circuit 900206. The control circuit 900208 inputs the receiving station (reception frequency) and volume control information into the input unit 9.
It receives from 00209 and sends a signal to the tuner 900201 and the audio signal processing circuit 900206.

また、図111とは別の形態の表示パネルモジュールを組み込んだテレビ受像器について
図112(A)に示す。図112(A)において、筐体900301内に収められた表示
画面900302は、表示パネルモジュールで形成される。なお、スピーカー90030
3、操作スイッチ900304などが適宜備えられていてもよい。
Further, FIG. 112 (A) shows a television receiver incorporating a display panel module having a form different from that of FIG. 111. In FIG. 112A, the display screen 900302 housed in the housing 900301 is formed of a display panel module. The speaker 90030
3. An operation switch 900304 or the like may be appropriately provided.

また、図112(B)に、ワイヤレスでディスプレイのみを持ち運び可能なテレビ受像器
を示す。筐体900312にはバッテリー及び信号受信器が内蔵されており、そのバッテ
リーで表示部900313やスピーカー部900317を駆動させる。バッテリーは充電
器900310で繰り返し充電が可能となっている。また、充電器900310は映像信
号を送受信することが可能で、その映像信号をディスプレイの信号受信器に送信すること
ができる。筐体900312は操作キー900316によって制御する。あるいは、図1
12(B)に示す装置は、操作キー900316を操作することによって、筐体9003
12から充電器900310に信号を送ることが可能である、映像音声双方向通信装置で
あってもよい。あるいは、操作キー900316を操作することによって、筐体9003
12から充電器900310に信号を送り、さらに充電器900310が送信できる信号
を他の電子機器に受信させることによって、他の電子機器の通信制御も可能である、汎用
遠隔制御装置であってもよい。本発明を表示部900313に適用することができる。
Further, FIG. 112B shows a television receiver that can carry only the display wirelessly. A battery and a signal receiver are built in the housing 900123, and the battery drives the display unit 900133 and the speaker unit 900317. The battery can be repeatedly charged with the charger 900310. Further, the charger 900310 can transmit and receive a video signal, and the video signal can be transmitted to the signal receiver of the display. The housing 900123 is controlled by the operation key 900316. Alternatively, FIG.
The device shown in 12 (B) has a housing 9003 by operating the operation key 900316.
It may be a video-audio bidirectional communication device capable of sending a signal from 12 to the charger 900310. Alternatively, by operating the operation key 900316, the housing 9003
It may be a general-purpose remote control device capable of controlling communication of other electronic devices by sending a signal from 12 to the charger 900310 and further causing another electronic device to receive a signal that can be transmitted by the charger 900310. .. The present invention can be applied to the display unit 900313.

図113(A)は、表示パネル900401とプリント配線基板900402を組み合わ
せたモジュールを示している。表示パネル900401は、複数の画素が設けられた画素
部900403と、第1の走査線駆動回路900404、第2の走査線駆動回路9004
05と、選択された画素にビデオ信号を供給する信号線駆動回路900406を備えてい
てもよい。
FIG. 113A shows a module in which the display panel 900401 and the printed wiring board 900402 are combined. The display panel 900401 includes a pixel unit 900403 provided with a plurality of pixels, a first scanning line driving circuit 900404, and a second scanning line driving circuit 9004.
05 may be provided with a signal line drive circuit 900406 that supplies a video signal to the selected pixels.

プリント配線基板900402には、コントローラ900407、中央処理装置(CPU
)900408、メモリ900409、電源回路900410、音声処理回路90041
1及び送受信回路900412などが備えられている。プリント配線基板900402と
表示パネル900401は、フレキシブル配線基板(FPC)900413により接続さ
れている。プリント配線基板900413には、保持容量、バッファ回路などを設け、電
源電圧や信号にノイズの発生、及び信号の立ち上がり時間の増大を防ぐ構成としても良い
。また、コントローラ900407、音声処理回路900411、メモリ900409、
CPU900408、電源回路900410などは、COG(Chip On Glas
s)方式を用いて表示パネル900401に実装することもできる。COG方式により、
プリント配線基板900402の規模を縮小することができる。
The printed wiring board 900402 has a controller 900407 and a central processing unit (CPU).
) 900408, memory 900409, power supply circuit 900410, audio processing circuit 90041
1 and a transmission / reception circuit 900412 and the like are provided. The printed wiring board 900402 and the display panel 900401 are connected by a flexible wiring board (FPC) 900413. The printed wiring board 900413 may be provided with a holding capacity, a buffer circuit, or the like to prevent noise from being generated in the power supply voltage or the signal and an increase in the rise time of the signal. Further, the controller 900407, the voice processing circuit 900411, the memory 90409,
CPU900408, power supply circuit 900410, etc. are COG (Chip On Glass).
It can also be mounted on the display panel 900401 using the s) method. By COG method
The scale of the printed wiring board 900402 can be reduced.

プリント配線基板900402に備えられたインターフェース(I/F)部900414
を介して、各種制御信号の入出力が行われる。また、アンテナとの間の信号の送受信を行
うためのアンテナ用ポート900415が、プリント配線基板900402に設けられて
いる。
Interface (I / F) unit 900144 provided on the printed wiring board 900402
Various control signals are input and output via. Further, an antenna port 900415 for transmitting and receiving signals to and from the antenna is provided on the printed wiring board 900402.

図113(B)は、図113(A)に示したモジュールのブロック図を示す。このモジュ
ールは、メモリ900409としてVRAM900416、DRAM900417、フラ
ッシュメモリ900418などが含まれている。VRAM900416にはパネルに表示
する画像のデータが、DRAM900417には画像データまたは音声データが、フラッ
シュメモリには各種プログラムが記憶されている。
FIG. 113B shows a block diagram of the module shown in FIG. 113A. This module includes VRAM900416, DRAM900417, flash memory 900418, and the like as the memory 9004000. The VRAM 900416 stores image data to be displayed on the panel, the DRAM 900417 stores image data or audio data, and the flash memory stores various programs.

電源回路900410は、表示パネル900401、コントローラ900407、CPU
900408、音声処理回路900411、メモリ900409、送受信回路90041
2を動作させる電力を供給する。またパネルの仕様によっては、電源回路900410に
電流源が備えられている場合もある。
The power supply circuit 900410 includes a display panel 900401, a controller 900407, and a CPU.
900408, voice processing circuit 900411, memory 900409, transmission / reception circuit 90041
Supply the power to operate 2. Further, depending on the specifications of the panel, the power supply circuit 900410 may be provided with a current source.

CPU900408は、制御信号生成回路900420、デコーダ900421、レジス
タ900422、演算回路900423、RAM900424、CPU900408用の
インターフェース900419などを有している。インターフェース900419を介し
てCPU900408に入力された各種信号は、一旦レジスタ900422に保持された
後、演算回路900423、デコーダ900421などに入力される。演算回路9004
23では、入力された信号に基づき演算を行い、各種命令を送る場所を指定する。一方デ
コーダ900421に入力された信号はデコードされ、制御信号生成回路900420に
入力される。制御信号生成回路900420は入力された信号に基づき、各種命令を含む
信号を生成し、演算回路900423において指定された場所、具体的にはメモリ900
409、送受信回路900412、音声処理回路900411、コントローラ90040
7などに送る。
The CPU900408 has a control signal generation circuit 900420, a decoder 900421, a register 900422, an arithmetic circuit 900423, a RAM90024, an interface 900419 for the CPU 9004000, and the like. Various signals input to the CPU 9004000 via the interface 900419 are once held in the register 900422 and then input to the arithmetic circuit 900423, the decoder 900421, and the like. Arithmetic circuit 9004
In 23, an operation is performed based on the input signal, and a place to send various commands is specified. On the other hand, the signal input to the decoder 900421 is decoded and input to the control signal generation circuit 900420. The control signal generation circuit 900420 generates a signal including various instructions based on the input signal, and the location specified in the arithmetic circuit 900423, specifically, the memory 900.
409, transmission / reception circuit 900412, audio processing circuit 900411, controller 90040
Send to 7 etc.

メモリ900409、送受信回路900412、音声処理回路900411、コントロー
ラ900407は、それぞれ受けた命令に従って動作する。以下その動作について簡単に
説明する。
The memory 900409, the transmission / reception circuit 900412, the voice processing circuit 900411, and the controller 900407 operate according to the instructions received, respectively. The operation will be briefly described below.

入力手段900425から入力された信号は、インターフェイス900414を介してプ
リント配線基板900402に実装されたCPU900408に送られる。制御信号生成
回路900420は、ポインティングデバイスやキーボードなどの入力手段900425
から送られてきた信号に従い、VRAM900416に格納してある画像データを所定の
フォーマットに変換し、コントローラ900407に送付する。
The signal input from the input means 900425 is sent to the CPU 900408 mounted on the printed wiring board 900402 via the interface 900414. The control signal generation circuit 900420 is an input means 900425 such as a pointing device or a keyboard.
According to the signal sent from, the image data stored in the VRAM 900416 is converted into a predetermined format and sent to the controller 900407.

コントローラ900407は、パネルの仕様に合わせてCPU900408から送られて
きた画像データを含む信号にデータ処理を施し、表示パネル900401に供給する。ま
たコントローラ900407は、電源回路900410から入力された電源電圧やCPU
900408から入力された各種信号をもとに、Hsync信号、Vsync信号、クロ
ック信号CLK、交流電圧(AC Cont)、切り替え信号L/Rを生成し、表示パネ
ル900401に供給する。
The controller 900407 performs data processing on the signal including the image data sent from the CPU 900408 according to the specifications of the panel, and supplies the signal to the display panel 900401. Further, the controller 900407 is a power supply voltage and a CPU input from the power supply circuit 900410.
Based on various signals input from 900408, an Hsync signal, a Vsync signal, a clock signal CLK, an AC voltage (AC Cont), and a switching signal L / R are generated and supplied to the display panel 900401.

送受信回路900412では、アンテナ900428において電波として送受信される信
号が処理されており、具体的にはアイソレータ、バンドパスフィルタ、VCO(Volt
age Controlled Oscillator)、LPF(Low Pass
Filter)、カプラ、バランなどの高周波回路を含んでいてもよい。送受信回路90
0412において送受信される信号のうち音声情報を含む信号が、CPU900408か
らの命令に従って、音声処理回路900411に送られる。
In the transmission / reception circuit 900412, signals transmitted / received as radio waves are processed by the antenna 900428, specifically, an isolator, a bandpass filter, and a VCO (Volt).
age Control Oscillator), LPF (Low Pass)
It may include a high frequency circuit such as a filter), a coupler, and a balun. Transmission / reception circuit 90
Among the signals transmitted and received in 0412, the signal including the voice information is sent to the voice processing circuit 900411 according to the command from the CPU900408.

CPU900408の命令に従って送られてきた音声情報を含む信号は、音声処理回路9
00411において音声信号に復調され、スピーカー900427に送られる。またマイ
ク900426から送られてきた音声信号は、音声処理回路900411において変調さ
れ、CPU900408からの命令に従って、送受信回路900412に送られる。
The signal including the voice information sent according to the instruction of the CPU 900408 is the voice processing circuit 9.
It is demodulated into an audio signal in 00411 and sent to the speaker 900427. Further, the audio signal transmitted from the microphone 900426 is modulated by the audio processing circuit 900411 and sent to the transmission / reception circuit 900412 according to a command from the CPU 900408.

コントローラ900407、CPU900408、電源回路900410、音声処理回路
900411、メモリ900409を、本実施形態のパッケージとして実装することがで
きる。
The controller 900407, the CPU 900408, the power supply circuit 900410, the audio processing circuit 900411, and the memory 900409 can be implemented as a package of the present embodiment.

勿論、本実施の形態はテレビ受像機に限定されず、パーソナルコンピュータのモニタをは
じめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など特に大面
積の表示媒体として様々な用途に適用することができる。
Of course, this embodiment is not limited to television receivers, and is used for various purposes such as personal computer monitors, information display boards at railway stations and airports, and advertisement display boards on the streets. Can be applied to.

次に、図114を参照して、本発明に係る携帯電話の構成例について説明する。 Next, a configuration example of the mobile phone according to the present invention will be described with reference to FIG. 114.

表示パネル900501はハウジング900530に脱着自在に組み込まれる。ハウジン
グ900530は表示パネル900501のサイズに合わせて、形状や寸法を適宜変更す
ることができる。表示パネル900501を固定したハウジング900530はプリント
基板900531に嵌入されモジュールとして組み立てられる。
The display panel 900501 is detachably incorporated into the housing 900530. The shape and dimensions of the housing 900530 can be appropriately changed according to the size of the display panel 900501. The housing 900530 to which the display panel 900501 is fixed is fitted into the printed circuit board 900351 and assembled as a module.

表示パネル900501はFPC900513を介してプリント基板900531に接続
される。プリント基板900531には、スピーカー900532、マイクロフォン90
0533、送受信回路900534、CPU及びコントローラなどを含む信号処理回路9
00535が形成されている。このようなモジュールと、入力手段900536、バッテ
リー900537を組み合わせ、筐体900539に収納する。表示パネル900501
の画素部は筐体900539に形成された開口窓から視認できように配置する。
The display panel 900501 is connected to the printed circuit board 900351 via the FPC900513. The printed circuit board 900531 has a speaker 900523 and a microphone 90.
Signal processing circuit 9 including 0533, transmission / reception circuit 900534, CPU, controller, etc.
00535 is formed. Such a module is combined with the input means 900536 and the battery 900537 and housed in the housing 900539. Display panel 900501
The pixel portion of the above is arranged so as to be visible from the opening window formed in the housing 900539.

表示パネル900501は、画素部と一部の周辺駆動回路(複数の駆動回路のうち動作周
波数の低い駆動回路)を基板上にTFTを用いて一体形成し、一部の周辺駆動回路(複数
の駆動回路のうち動作周波数の高い駆動回路)をICチップ上に形成し、そのICチップ
をCOG(Chip On Glass)で表示パネル900501に実装しても良い。
あるいは、そのICチップをTAB(Tape Auto Bonding)やプリント
基板を用いてガラス基板と接続してもよい。このような構成とすることで、表示装置の低
消費電力化を図り、携帯電話機の一回の充電による使用時間を長くすることができる。ま
た、携帯電話機の低コスト化を図ることができる。
In the display panel 900501, a pixel portion and a part of peripheral drive circuits (a drive circuit having a low operating frequency among a plurality of drive circuits) are integrally formed on a substrate by using a TFT, and a part of the peripheral drive circuits (a plurality of drives) are integrally formed. A drive circuit having a high operating frequency among the circuits) may be formed on an IC chip, and the IC chip may be mounted on the display panel 900501 by COG (Chip On Glass).
Alternatively, the IC chip may be connected to a glass substrate using a TAB (Tape Auto Bonding) or a printed circuit board. With such a configuration, it is possible to reduce the power consumption of the display device and prolong the usage time by charging the mobile phone once. In addition, the cost of the mobile phone can be reduced.

また、図115で示す携帯電話機は、操作スイッチ類900604、マイクロフォン90
0605などが備えられた本体(A)900601と、表示パネル(A)900608、
表示パネル(B)900609、スピーカー900606などが備えられた本体(B)9
00602とが、蝶番900610で開閉可能に連結されている。表示パネル(A)90
0608と表示パネル(B)900609は、回路基板900607と共に本体(B)9
00602の筐体900603の中に収納される。表示パネル(A)900608及び表
示パネル(B)900609の画素部は筐体900603に形成された開口窓から視認で
きるように配置される。
The mobile phone shown in FIG. 115 includes operation switches 900604 and a microphone 90.
Main body (A) 900601 equipped with 0605 and the like, display panel (A) 900608,
Main unit (B) 9 equipped with a display panel (B) 960609, a speaker 960606, etc.
00602 is connected to the hinge 900610 so as to be openable and closable. Display panel (A) 90
The 0608 and the display panel (B) 960609 are the main body (B) 9 together with the circuit board 960607.
It is housed in the housing 900603 of 00602. The pixel portions of the display panel (A) 960608 and the display panel (B) 960609 are arranged so as to be visible from the opening window formed in the housing 960603.

表示パネル(A)900608と表示パネル(B)900609は、その携帯電話機90
0600の機能に応じて画素数などの仕様を適宜設定することができる。例えば、表示パ
ネル(A)900608を主画面とし、表示パネル(B)900609を副画面として組
み合わせることができる。
The display panel (A) 960608 and the display panel (B) 960609 are the mobile phone 90 thereof.
Specifications such as the number of pixels can be appropriately set according to the function of 0600. For example, the display panel (A) 960608 may be used as the main screen, and the display panel (B) 960609 may be used as the sub screen.

本実施形態に係る携帯電話機は、その機能や用途に応じてさまざまな態様に変容し得る。
例えば、蝶番900610の部位に撮像素子を組み込んで、カメラ付きの携帯電話機とし
ても良い。また、操作スイッチ類900604、表示パネル(A)900608、表示パ
ネル(B)900609を一つの筐体内に納めた構成としても、上記した作用効果を奏す
ることができる。また、表示部を複数個そなえた情報表示端末に本実施形態の構成を適用
しても、同様な効果を得ることができる。
The mobile phone according to the present embodiment can be transformed into various modes depending on its function and application.
For example, an image sensor may be incorporated in the portion of the hinge 900610 to form a mobile phone with a camera. Further, even if the operation switches 900604, the display panel (A) 960608, and the display panel (B) 960609 are housed in one housing, the above-mentioned effects can be obtained. Further, even if the configuration of the present embodiment is applied to an information display terminal provided with a plurality of display units, the same effect can be obtained.

本発明を様々な電子機器に適用することができる。具体的には、電子機器の表示部に適用
することができる。そのような電子機器として、ビデオカメラ、デジタルカメラ、ゴーグ
ル型ディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディ
オコンポ等)、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯
電話、携帯型ゲーム機又は電子書籍等)、記録媒体を備えた画像再生装置(具体的にはD
igital Versatile Disc(DVD)等の記録媒体を再生し、その画
像を表示しうるディスプレイを備えた装置)などが挙げられる。
The present invention can be applied to various electronic devices. Specifically, it can be applied to a display unit of an electronic device. Such electronic devices include video cameras, digital cameras, goggle-type displays, navigation systems, sound reproduction devices (car audio, audio components, etc.), computers, game devices, mobile information terminals (mobile computers, mobile phones, portable games, etc.). An image playback device (specifically, D) equipped with a machine or electronic book, etc., and a recording medium.
A device provided with a display capable of reproducing a recording medium such as an ultimate Versail Disc (DVD) and displaying the image) and the like.

図116(A)はディスプレイであり、筐体900711、支持台900712、表示部
900713等を含む。
FIG. 116A is a display, which includes a housing 900711, a support base 900112, a display unit 900713, and the like.

図116(B)はカメラであり、本体900721、表示部900722、受像部900
723、操作キー900724、外部接続ポート900725、シャッター900726
等を含む。
FIG. 116 (B) is a camera, which is a main body 900721, a display unit 900722, and an image receiving unit 900.
723, operation key 900274, external connection port 900275, shutter 900726
Etc. are included.

図116(C)はコンピュータであり、本体900731、筐体900732、表示部
900733、キーボード900734、外部接続ポート900735、ポインティング
デバイス900736等を含む。
FIG. 116C is a computer, which includes a main body 900731, a housing 900732, a display unit 900734, a keyboard 900734, an external connection port 900735, a pointing device 900736, and the like.

図116(D)はモバイルコンピュータであり、本体900741、表示部90074
2、スイッチ900743、操作キー900744、赤外線ポート900745等を含む
FIG. 116 (D) is a mobile computer, which is a main body 900741 and a display unit 900741.
2. Includes switch 900743, operation key 900744, infrared port 900745 and the like.

図116(E)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)
であり、本体900751、筐体900752、表示部A900753、表示部B900
754、記録媒体(DVD等)読み込み部900755、操作キー900756、スピー
カー部900757等を含む。表示部A900753は主として画像情報を表示し、表示
部B900754は主として文字情報を表示することができる。
FIG. 116 (E) shows a portable image playback device (for example, a DVD playback device) provided with a recording medium.
The main body 900751, the housing 900752, the display unit A900753, and the display unit B900.
754, a recording medium (DVD or the like) reading unit 900755, an operation key 90076, a speaker unit 900757, and the like are included. The display unit A900753 can mainly display image information, and the display unit B90074 can mainly display character information.

図116(F)はゴーグル型ディスプレイであり、本体900761、表示部90076
2、イヤホン900763、支持部900764を含む。
FIG. 116 (F) is a goggle type display, which is a main body 900761 and a display unit 900761.
2. Includes earphones 900763 and support 900764.

図116(G)は携帯型遊技機であり、筐体900771、表示部900772、スピー
カー部900773、操作キー900774、記憶媒体挿入部900775等を含む。本
発明の表示装置を表示部900772に用いた携帯型遊技機は、鮮やかな色彩を表現する
ことができる。
FIG. 116 (G) is a portable gaming machine, which includes a housing 90071, a display unit 900772, a speaker unit 900773, an operation key 900774, a storage medium insertion unit 900775, and the like. A portable gaming machine using the display device of the present invention for the display unit 90072 can express vivid colors.

図116(H)はテレビ受像機能付きデジタルカメラであり、本体900781、表示部
900782、操作キー900783、スピーカー900784、シャッター90078
5、受像部900786、アンテナ900787等を含む。
FIG. 116 (H) is a digital camera with a television image receiving function, which is a main body 90041, a display unit 900782, an operation key 900783, a speaker 900744, and a shutter 900781.
5. Includes an image receiving unit 900846, an antenna 900787, and the like.

図116(A)乃至(E)に示したように、本発明に係る電子機器は、何らかの情報を表
示するための表示部を有することを特徴とする。
As shown in FIGS. 116A to 116E, the electronic device according to the present invention is characterized by having a display unit for displaying some information.

次に、本発明に係る半導体装置の応用例を説明する。 Next, an application example of the semiconductor device according to the present invention will be described.

図117に、本発明に係る半導体装置を、建造物に設けた例について示す。図117は、
筐体900810、表示部900811、操作部であるリモコン装置900812、スピ
ーカー部900813等を含む。本発明に係る半導体装置は、壁かけ型として建物と一体
となっており、設置するスペースを広く必要とすることなく設置可能である。
FIG. 117 shows an example in which the semiconductor device according to the present invention is provided in a building. FIG. 117 shows
It includes a housing 900810, a display unit 900111, a remote control device 900812 which is an operation unit, a speaker unit 900713 and the like. The semiconductor device according to the present invention is integrated with the building as a wall-mounted type, and can be installed without requiring a large space for installation.

図118に、建造物内に本発明に係る半導体装置を、建造物に設けた別の例について示す
。表示パネル900901は、ユニットバス900902と一体に取り付けられており、
入浴者は表示パネル900901の視聴が可能になる。表示パネル900901は入浴者
が操作することで情報の表示を行ったり、広告や娯楽手段として利用できる機能を有する
FIG. 118 shows another example in which the semiconductor device according to the present invention is provided in a building. The display panel 900901 is mounted integrally with the unit bath 900902.
Bathers will be able to view the display panel 900901. The display panel 900901 has a function of displaying information by being operated by a bather, and can be used as an advertisement or an entertainment means.

なお、本発明に係る半導体装置は、図118で示したユニットバス900902の側壁だ
けではなく、様々な場所に設置することができる。たとえば、鏡面の一部や浴槽自体と一
体にするなどとしてもよい。このとき、表示パネル900901の形状は、鏡面や浴槽の
形状に合わせたものとなっていてもよい。
The semiconductor device according to the present invention can be installed not only in the side wall of the unit bath 900902 shown in FIG. 118 but also in various places. For example, it may be integrated with a part of the mirror surface or the bathtub itself. At this time, the shape of the display panel 900901 may match the shape of the mirror surface or the bathtub.

図119に、本発明に係る半導体装置を、建造物に設けた別の例について示す。表示パネ
ル901002は、柱状体901001の曲面に合わせて湾曲させて取り付けられている
。なお、ここでは柱状体901001を電柱として説明する。
FIG. 119 shows another example in which the semiconductor device according to the present invention is provided in a building. The display panel 901002 is attached so as to be curved according to the curved surface of the columnar body 901001. Here, the columnar body 901001 will be described as an electric pole.

図119に示す表示パネル901002は、人間の視点より高い位置に設けられている。
電柱のように屋外で繰り返し林立している建造物に表示パネル901002を設置するこ
とで、不特定多数の視認者に広告を行なうことができる。ここで、表示パネル90100
2は、外部からの制御により、同じ画像を表示させること、また、瞬時に画像を切替える
ことが容易であるため、極めて効率的な情報表示、及び広告効果が期待できる。また、表
示パネル901002に自発光型の表示素子を設けることで、夜間であっても、視認性の
高い表示媒体として有用であるといえる。また、電柱に設置することで、表示パネル90
1002の電力供給手段の確保が容易である。また、災害発生時などの非常事態の際には
、被災者に素早く正確な情報を伝達する手段ともなり得る。
The display panel 901002 shown in FIG. 119 is provided at a position higher than the human viewpoint.
By installing the display panel 901002 in a building that is repeatedly forested outdoors, such as a utility pole, it is possible to advertise to an unspecified number of viewers. Here, the display panel 90100
In No. 2, the same image can be displayed by external control, and the images can be easily switched instantly, so that extremely efficient information display and advertising effect can be expected. Further, by providing the display panel 901002 with a self-luminous display element, it can be said that it is useful as a display medium having high visibility even at night. In addition, by installing it on a utility pole, the display panel 90
It is easy to secure the power supply means of 1002. It can also be a means of quickly and accurately transmitting information to disaster victims in the event of an emergency such as a disaster.

なお、表示パネル901002としては、たとえば、フィルム状の基板に有機トランジス
タなどのスイッチング素子を設けて表示素子を駆動することにより画像の表示を行なう表
示パネルを用いることができる。
As the display panel 901002, for example, a display panel that displays an image by providing a switching element such as an organic transistor on a film-shaped substrate and driving the display element can be used.

なお、本実施形態において、建造物として壁、柱状体、ユニットバスを例としたが、本実
施形態はこれに限定されず、様々な建造物に本発明に係る半導体装置を設置することがで
きる。
In the present embodiment, a wall, a columnar body, and a unit bath are taken as examples of buildings, but the present embodiment is not limited to this, and the semiconductor device according to the present invention can be installed in various buildings. ..

次に、本発明に係る半導体装置を、移動体に設けた例について示す。 Next, an example in which the semiconductor device according to the present invention is provided on a moving body will be described.

図120は、本発明に係る半導体装置を、自動車に設けた例について示した図である。表
示パネル901102は、自動車の車体901101と一体に取り付けられており、車体
の動作や車体内外から入力される情報をオンデマンドに表示することができる。また、ナ
ビゲーション機能を有していてもよい。
FIG. 120 is a diagram showing an example in which the semiconductor device according to the present invention is provided in an automobile. The display panel 901102 is integrally attached to the vehicle body 901101 of the automobile, and can display the operation of the vehicle body and information input from inside and outside the vehicle body on demand. Further, it may have a navigation function.

なお、本発明に係る半導体装置は、図120で示した車体901101だけではなく、様
々な場所に設置することができる。たとえば、ガラス窓、ドア、ハンドル、シフトレバー
、座席シート、ルームミラー等と一体にしてもよい。このとき、表示パネル901102
の形状は、設置するもの形状に合わせたものとなっていてもよい。
The semiconductor device according to the present invention can be installed not only in the vehicle body 901101 shown in FIG. 120 but also in various places. For example, it may be integrated with a glass window, a door, a handle, a shift lever, a seat, a rear-view mirror, or the like. At this time, the display panel 901022
The shape of may be matched to the shape of the one to be installed.

図121は、本発明に係る半導体装置を、列車車両に設けた例について示した図である。 FIG. 121 is a diagram showing an example in which the semiconductor device according to the present invention is provided in a train vehicle.

図121(a)は、列車車両のドア901201のガラスに表示パネル901202を設
けた例について示した図である。従来の紙による広告に比べて、広告切替えの際に必要と
なる人件費がかからないという利点がある。また、表示パネル901202は、外部から
の信号により表示部で表示される画像の切り替えを瞬時に行なうことが可能であるため、
たとえば、電車の乗降客の客層が入れ替わる時間帯ごとに表示パネルの画像を切り替える
ことができ、より効果的な広告効果が期待できる。
FIG. 121 (a) is a diagram showing an example in which a display panel 901202 is provided on the glass of the door 901201 of a train vehicle. Compared to conventional paper advertisements, there is an advantage that the labor cost required for switching advertisements is not required. Further, since the display panel 901202 can instantly switch the image displayed on the display unit by a signal from the outside, the display panel 901202 can instantly switch the image.
For example, the image of the display panel can be switched at each time when the customer base of train passengers changes, and more effective advertising effect can be expected.

図121(b)は、列車車両のドア901201のガラスの他に、ガラス窓901203
、及び天井901204に表示パネル901202を設けた例について示した図である。
このように、本発明に係る半導体装置は、従来では設置が困難であった場所に容易に設置
することが可能であるため、効果的な広告効果を得ることができる。また、本発明に係る
半導体装置は、外部からの信号により表示部で表示される画像の切り替えを瞬時に行なう
ことが可能であるため、広告切替え時のコストおよび時間が削減でき、より柔軟な広告の
運用および情報伝達が可能となる。
FIG. 121B shows a glass window 901203 in addition to the glass of the train vehicle door 901201.
, And an example showing an example in which the display panel 901202 is provided on the ceiling 901204.
As described above, the semiconductor device according to the present invention can be easily installed in a place where it was difficult to install in the past, so that an effective advertising effect can be obtained. Further, since the semiconductor device according to the present invention can instantly switch the image displayed on the display unit by a signal from the outside, the cost and time for switching the advertisement can be reduced, and the advertisement is more flexible. Operation and information transmission are possible.

なお、本発明に係る半導体装置は、図121で示したドア901201、ガラス窓901
203、及び天井901204だけではなく、様々な場所に設置することができる。たと
えば、つり革、座席シート、てすり、床等と一体にしてもよい。このとき、表示パネル9
01202の形状は、設置するもの形状に合わせたものとなっていてもよい。
The semiconductor device according to the present invention includes a door 901201 and a glass window 901 shown in FIG. 121.
It can be installed not only in 203 and the ceiling 901204 but also in various places. For example, it may be integrated with straps, seats, railings, floors, and the like. At this time, the display panel 9
The shape of 01202 may be adapted to the shape of the object to be installed.

図122は、本発明に係る半導体装置を、旅客用飛行機に設けた例について示した図であ
る。
FIG. 122 is a diagram showing an example in which the semiconductor device according to the present invention is provided on a passenger airplane.

図122(a)は、旅客用飛行機の座席上部の天井901301に表示パネル90130
2を設けたときの、使用時の形状について示した図である。表示パネル901302は、
天井901301とヒンジ部901303を介して一体に取り付けられており、ヒンジ部
901303の伸縮により乗客は表示パネル901302の視聴が可能になる。表示パネ
ル901302は乗客が操作することで情報の表示を行ったり、広告や娯楽手段として利
用できる機能を有する。また、図122(b)に示すように、ヒンジ部を折り曲げて天井
901301に格納することにより、離着陸時の安全に配慮することができる。なお、緊
急時に表示パネルの表示素子を点灯させることで、情報伝達手段および誘導灯としても利
用可能である。
FIG. 122 (a) shows a display panel 90130 on the ceiling 901301 above the seat of a passenger airplane.
It is a figure which showed the shape at the time of use when 2 is provided. The display panel 901302 is
It is integrally attached to the ceiling 901301 via the hinge portion 901303, and the expansion and contraction of the hinge portion 901303 allows passengers to view the display panel 901302. The display panel 901302 has a function of displaying information by being operated by a passenger, and can be used as an advertisement or an entertainment means. Further, as shown in FIG. 122 (b), by bending the hinge portion and storing it in the ceiling 901301, safety at the time of takeoff and landing can be considered. By turning on the display element of the display panel in an emergency, it can also be used as an information transmission means and a guide light.

なお、本発明に係る半導体装置は、図122で示した天井901301だけではなく、様
々な場所に設置することができる。たとえば、座席シート、座席テーブル、肘掛、窓等と
一体にしてもよい。また、多数の人が同時に視聴できる大型の表示パネルを、機体の壁に
設置してもよい。このとき、表示パネル901302の形状は、設置するもの形状に合わ
せたものとなっていてもよい。
The semiconductor device according to the present invention can be installed not only in the ceiling 901301 shown in FIG. 122 but also in various places. For example, it may be integrated with a seat, a seat table, an accoudoir, a window, or the like. Further, a large display panel that can be viewed by a large number of people at the same time may be installed on the wall of the aircraft. At this time, the shape of the display panel 901302 may be adapted to the shape of the one to be installed.

なお、本実施形態において、移動体としては電車車両本体、自動車車体、飛行機車体につ
いて例示したがこれに限定されず、自動二輪車、自動四輪車(自動車、バス等を含む)、
電車(モノレール、鉄道等を含む)、船舶等、様々なものに設置することができる。本発
明に係る半導体装置は、外部からの信号により、移動体内における表示パネルの表示を瞬
時に切り替えることが可能であるため、移動体に本発明に係る半導体装置を設置すること
により、移動体を不特定多数の顧客を対象とした広告表示板、災害発生時の情報表示板、
等の用途に用いることが可能となる。
In the present embodiment, examples of moving objects include train vehicle bodies, automobile bodies, and airplane bodies, but the present invention is not limited to these, and motorcycles, motorcycles (including automobiles, buses, etc.), and motorcycles.
It can be installed on various things such as trains (including monorails and railroads) and ships. Since the semiconductor device according to the present invention can instantly switch the display of the display panel in the moving body by a signal from the outside, the moving body can be mounted by installing the semiconductor device according to the present invention on the moving body. Advertising display board for an unspecified number of customers, information display board in the event of a disaster,
It can be used for such purposes.

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
In addition, although it has been described using various figures in this embodiment, the contents described in each figure (
(May be part) applies, combines, and applies to the content (may be part) described in another figure.
Or it can be replaced freely. Furthermore, in the figures described so far, more figures can be formed by combining different parts with respect to each part.

同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
Similarly, the content (which may be a part) described in each figure of the present embodiment may be applied, combined, or replaced with respect to the content (which may be a part) described in the figure of another embodiment. Can be done freely. Further, in the figure of the present embodiment, more figures can be formed by combining the parts of another embodiment with respect to each part.

なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
It should be noted that this embodiment is an improvement of the contents (may be a part) described in the other embodiments, as an example in the case of embodying, an example in the case of being slightly deformed, and an example in the case of partially changing. An example of the case,
An example of the case described in detail, an example of the case of application, an example of related parts, and the like are shown. Therefore, the contents described in the other embodiments can be freely applied, combined, or replaced with the present embodiments.

(実施の形態17)
以上に示したように、本明細書には少なくとも以下の発明が含まれる。
(Embodiment 17)
As shown above, the present specification includes at least the following inventions.

液晶素子を有する画素と、駆動回路とを有し、前記駆動回路は、第1のトランジスタと、
第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第5のトランジ
スタと、第6のトランジスタと、第7のトランジスタと、第8のトランジスタを有し、前
記第1のトランジスタの第1の電極が第4の配線に電気的に接続され、前記第1のトラン
ジスタの第2の電極が第3の配線に電気的に接続され、前記第2のトランジスタの第1の
電極が第7の配線に電気的に接続され、前記第2のトランジスタの第2の電極が前記第3
の配線に電気的に接続され、前記第2のトランジスタのゲート電極が第5の配線に電気的
に接続され、前記第3のトランジスタの第1の電極が第6の配線に電気的に接続され、前
記第3のトランジスタの第2の電極が前記第6のトランジスタのゲート電極に電気的に接
続され、前記第3のトランジスタのゲート電極が前記第4の配線に電気的に接続され、前
記第4のトランジスタの第1の電極が前記第7の配線に電気的に接続され、前記第4のト
ランジスタの第2の電極が前記第6のトランジスタのゲート電極に電気的に接続され、前
記第4のトランジスタのゲート電極が前記第5の配線に電気的に接続され、前記第5のト
ランジスタの第1の電極が前記第6の配線に電気的に接続され、前記第5のトランジスタ
の第2の電極が前記第1のトランジスタのゲート電極に電気的に接続され、前記第5のト
ランジスタのゲート電極が第1の配線に電気的に接続され、前記第6のトランジスタの第
1の電極が前記第7の配線に電気的に接続され、前記第6のトランジスタの第2の電極が
前記第1のトランジスタのゲート電極に電気的に接続され、前記第7のトランジスタの第
1の電極が前記第7の配線に電気的に接続され、前記第7のトランジスタの第2の電極が
前記第1のトランジスタのゲート電極に電気的に接続され、前記第7のトランジスタのゲ
ート電極が第2の配線に電気的に接続され、前記第8のトランジスタの第1の電極が前記
第7の配線に電気的に接続され、前記第8のトランジスタの第2の電極が前記第6のトラ
ンジスタのゲート電極に電気的に接続され、前記第8のトランジスタのゲート電極が前記
第1のトランジスタのゲート電極に電気的に接続されている。
It has a pixel having a liquid crystal element and a drive circuit, and the drive circuit has a first transistor and
The first transistor has a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, and an eighth transistor. The first electrode is electrically connected to the fourth wiring, the second electrode of the first transistor is electrically connected to the third wiring, and the first electrode of the second transistor is the first. Electrically connected to the wiring of 7, the second electrode of the second transistor is the third.
The gate electrode of the second transistor is electrically connected to the fifth wiring, and the first electrode of the third transistor is electrically connected to the sixth wiring. The second electrode of the third transistor is electrically connected to the gate electrode of the sixth transistor, and the gate electrode of the third transistor is electrically connected to the fourth wiring. The first electrode of the fourth transistor is electrically connected to the seventh wiring, the second electrode of the fourth transistor is electrically connected to the gate electrode of the sixth transistor, and the fourth is electrically connected. The gate electrode of the transistor is electrically connected to the fifth wiring, the first electrode of the fifth transistor is electrically connected to the sixth wiring, and the second electrode of the fifth transistor is electrically connected. The electrode is electrically connected to the gate electrode of the first transistor, the gate electrode of the fifth transistor is electrically connected to the first wiring, and the first electrode of the sixth transistor is the first electrode. The second electrode of the sixth transistor is electrically connected to the wiring of the seventh transistor, the second electrode of the sixth transistor is electrically connected to the gate electrode of the first transistor, and the first electrode of the seventh transistor is the seventh. The second electrode of the seventh transistor is electrically connected to the gate electrode of the first transistor, and the gate electrode of the seventh transistor is electrically connected to the second wiring. The first electrode of the eighth transistor is electrically connected to the seventh wiring, and the second electrode of the eighth transistor is electrically connected to the gate electrode of the sixth transistor. The gate electrode of the eighth transistor is electrically connected to the gate electrode of the first transistor.

上記構成において前記第1のトランジスタ乃至前記第8のトランジスタのチャネル長Lと
チャネル幅Wの比W/Lの値の中で、第1のトランジスタのW/Lの値が最大になるよう
に設けることができる。また、上記構成において、前記第1のトランジスタW/Lの値を
、前記第5のトランジスタW/Lの値の2倍~5倍としてもよい。また、前記第3のトラ
ンジスタのチャネル長Lを、前記第8のトランジスタのチャネル長Lよりも大きく設けて
もよい。また、前記第1のトランジスタの第2の電極と、前記第1のトランジスタのゲー
ト電極との間に容量素子を設けてもよい。また、前記第1のトランジスタ乃至前記第7の
トランジスタは、Nチャネル型トランジスタで設けてもよい。また、前記第1のトランジ
スタ乃至前記第7のトランジスタを、アモルファスシリコンを用いて形成してもよい。
In the above configuration, the value of W / L of the first transistor is set to be the maximum among the values of the ratio W / L of the channel length L and the channel width W of the first transistor to the eighth transistor. be able to. Further, in the above configuration, the value of the first transistor W / L may be 2 to 5 times the value of the fifth transistor W / L. Further, the channel length L of the third transistor may be larger than the channel length L of the eighth transistor. Further, a capacitive element may be provided between the second electrode of the first transistor and the gate electrode of the first transistor. Further, the first transistor to the seventh transistor may be provided as an N-channel transistor. Further, the first transistor to the seventh transistor may be formed by using amorphous silicon.

液晶素子を有する画素と、第1の駆動回路と、第2の駆動回路を有し、前記第1の駆動回
路は、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のト
ランジスタと、第5のトランジスタと、第6のトランジスタと、第7のトランジスタと、
第8のトランジスタを有し、前記第1のトランジスタの第1の電極が第4の配線に電気的
に接続され、前記第1のトランジスタの第2の電極が第3の配線に電気的に接続され、前
記第2のトランジスタの第1の電極が第7の配線に電気的に接続され、前記第2のトラン
ジスタの第2の電極が前記第3の配線に電気的に接続され、前記第2のトランジスタのゲ
ート電極が第5の配線に電気的に接続され、前記第3のトランジスタの第1の電極が第6
の配線に電気的に接続され、前記第3のトランジスタの第2の電極が前記第6のトランジ
スタのゲート電極に電気的に接続され、前記第3のトランジスタのゲート電極が前記第4
の配線に電気的に接続され、前記第4のトランジスタの第1の電極が前記第7の配線に電
気的に接続され、前記第4のトランジスタの第2の電極が前記第6のトランジスタのゲー
ト電極に電気的に接続され、前記第4のトランジスタのゲート電極が前記第5の配線に電
気的に接続され、前記第5のトランジスタの第1の電極が前記第6の配線に電気的に接続
され、前記第5のトランジスタの第2の電極が前記第1のトランジスタのゲート電極に電
気的に接続され、前記第5のトランジスタのゲート電極が第1の配線に電気的に接続され
、前記第6のトランジスタの第1の電極が前記第7の配線に電気的に接続され、前記第6
のトランジスタの第2の電極が前記第1のトランジスタのゲート電極に電気的に接続され
、前記第7のトランジスタの第1の電極が前記第7の配線に電気的に接続され、前記第7
のトランジスタの第2の電極が前記第1のトランジスタのゲート電極に電気的に接続され
、前記第7のトランジスタのゲート電極が第2の配線に電気的に接続され、前記第8のト
ランジスタの第1の電極が前記第7の配線に電気的に接続され、前記第8のトランジスタ
の第2の電極が前記第6のトランジスタのゲート電極に電気的に接続され、前記第8のト
ランジスタのゲート電極が前記第1のトランジスタのゲート電極に電気的に接続され、前
記第2の駆動回路は、第9のトランジスタと、第10のトランジスタと、第11のトラン
ジスタと、第12のトランジスタと、第13のトランジスタと、第14のトランジスタと
、第15のトランジスタと、第16のトランジスタを有し、前記第9のトランジスタの第
1の電極が第12の配線に電気的に接続され、前記第9のトランジスタの第2の電極が第
10の配線に電気的に接続され、前記第10のトランジスタの第1の電極が第14の配線
に電気的に接続され、前記第10のトランジスタの第2の電極が前記第10の配線に電気
的に接続され、前記第10のトランジスタのゲート電極が第12の配線に電気的に接続さ
れ、前記第11のトランジスタの第1の電極が第13の配線に電気的に接続され、前記第
11のトランジスタの第2の電極が前記第14のトランジスタのゲート電極に電気的に接
続され、前記第11のトランジスタのゲート電極が前記第11の配線に電気的に接続され
、前記第12のトランジスタの第1の電極が前記第14の配線に電気的に接続され、前記
第12のトランジスタの第2の電極が前記第14のトランジスタのゲート電極に電気的に
接続され、前記第12のトランジスタのゲート電極が前記第12の配線に電気的に接続さ
れ、前記第13のトランジスタの第1の電極が前記第13の配線に電気的に接続され、前
記第13のトランジスタの第2の電極が前記第9のトランジスタのゲート電極に電気的に
接続され、前記第13のトランジスタのゲート電極が第8の配線に電気的に接続され、前
記第14のトランジスタの第1の電極が前記第14の配線に電気的に接続され、前記第1
4のトランジスタの第2の電極が前記第9のトランジスタのゲート電極に電気的に接続さ
れ、前記第15のトランジスタの第1の電極が前記第14の配線に電気的に接続され、前
記第15のトランジスタの第2の電極が前記第9のトランジスタのゲート電極に電気的に
接続され、前記第15のトランジスタのゲート電極が第9の配線に電気的に接続され、前
記第16のトランジスタの第1の電極が前記第14の配線に電気的に接続され、前記第1
6のトランジスタの第2の電極が前記第14のトランジスタのゲート電極に電気的に接続
され、前記第16のトランジスタのゲート電極が前記第9のトランジスタのゲート電極に
電気的に接続されるている。
It has a pixel having a liquid crystal element, a first drive circuit, and a second drive circuit, and the first drive circuit includes a first transistor, a second transistor, a third transistor, and a first transistor. 4 transistors, 5th transistor, 6th transistor, 7th transistor,
It has an eighth transistor, the first electrode of the first transistor is electrically connected to the fourth wiring, and the second electrode of the first transistor is electrically connected to the third wiring. The first electrode of the second transistor is electrically connected to the seventh wiring, and the second electrode of the second transistor is electrically connected to the third wiring. The gate electrode of the transistor is electrically connected to the fifth wiring, and the first electrode of the third transistor is the sixth.
The second electrode of the third transistor is electrically connected to the gate electrode of the sixth transistor, and the gate electrode of the third transistor is electrically connected to the fourth of the third transistor.
The first electrode of the fourth transistor is electrically connected to the seventh wiring, and the second electrode of the fourth transistor is the gate of the sixth transistor. Electrically connected to the electrodes, the gate electrode of the fourth transistor is electrically connected to the fifth wiring, and the first electrode of the fifth transistor is electrically connected to the sixth wiring. The second electrode of the fifth transistor is electrically connected to the gate electrode of the first transistor, and the gate electrode of the fifth transistor is electrically connected to the first wiring. The first electrode of the transistor of 6 is electrically connected to the 7th wiring, and the 6th transistor is electrically connected.
The second electrode of the transistor is electrically connected to the gate electrode of the first transistor, the first electrode of the seventh transistor is electrically connected to the seventh wiring, and the seventh.
The second electrode of the transistor is electrically connected to the gate electrode of the first transistor, the gate electrode of the seventh transistor is electrically connected to the second wiring, and the eighth transistor of the eighth transistor is electrically connected. The electrode 1 is electrically connected to the seventh wiring, the second electrode of the eighth transistor is electrically connected to the gate electrode of the sixth transistor, and the gate electrode of the eighth transistor is electrically connected. Is electrically connected to the gate electrode of the first transistor, and the second drive circuit includes a ninth transistor, a tenth transistor, an eleventh transistor, a twelfth transistor, and a thirteenth. The 9th transistor, the 14th transistor, the 15th transistor, and the 16th transistor are provided, and the first electrode of the ninth transistor is electrically connected to the twelfth wiring. The second electrode of the transistor is electrically connected to the tenth wiring, the first electrode of the tenth transistor is electrically connected to the fourteenth wiring, and the second electrode of the tenth transistor is electrically connected. Is electrically connected to the tenth wiring, the gate electrode of the tenth transistor is electrically connected to the twelfth wiring, and the first electrode of the eleventh transistor is electrically connected to the thirteenth wiring. The second electrode of the eleventh transistor is electrically connected to the gate electrode of the fourteenth transistor, and the gate electrode of the eleventh transistor is electrically connected to the eleventh wiring. The first electrode of the twelfth transistor is electrically connected to the fourteenth wiring, and the second electrode of the twelfth transistor is electrically connected to the gate electrode of the fourteenth transistor. The gate electrode of the twelfth transistor is electrically connected to the twelfth wiring, the first electrode of the thirteenth transistor is electrically connected to the thirteenth wiring, and the thirteenth transistor is electrically connected. The second electrode of the thirteenth transistor is electrically connected to the gate electrode of the ninth transistor, the gate electrode of the thirteenth transistor is electrically connected to the eighth wiring, and the first of the fourteenth transistor is connected. The electrodes are electrically connected to the 14th wiring and the 1st
The second electrode of the fourth transistor is electrically connected to the gate electrode of the ninth transistor, the first electrode of the fifteenth transistor is electrically connected to the fourteenth wiring, and the fifteenth transistor is electrically connected. The second electrode of the transistor is electrically connected to the gate electrode of the ninth transistor, the gate electrode of the fifteenth transistor is electrically connected to the ninth wiring, and the gate electrode of the sixth transistor is electrically connected. The electrode 1 is electrically connected to the 14th wiring, and the 1st electrode is connected to the 14th wiring.
The second electrode of the sixth transistor is electrically connected to the gate electrode of the fourteenth transistor, and the gate electrode of the sixteenth transistor is electrically connected to the gate electrode of the ninth transistor. ..

また、前記第4の配線と前記第11の配線とを電気的に接続し、前記第5の配線と前記第
12の配線とを電気的に接続し、前記第6の配線と前記第13の配線とを電気的に接続し
、前記第7の配線と前記第14の配線とを電気的に接続さしてもよい。また、前記第4の
配線と前記第11の配線とは同一の配線で設け、前記第5の配線と前記第12の配線とは
同一の配線で設け、前記第6の配線と前記第13の配線とは同一の配線で設け、前記第7
の配線と前記第14の配線とは同一の配線で設けてもよい。また、前記第3の配線と前記
第10の配線とを電気的に接続してもよい。また、前記第3の配線と前記第10の配線と
を同一の配線で設けてもよい。また、前記第1のトランジスタ乃至第8のトランジスタの
チャネル長Lとチャネル幅Wの比W/Lの値の中で、前記第1のトランジスタのW/Lの
値を最大とし、前記第9のトランジスタ乃至前記第16のトランジスタのチャネル長Lと
チャネル幅Wの比W/Lの値の中で、第9のトランジスタのW/Lの値が最大としてもよ
い。また、前記第1のトランジスタW/Lの値を前記第5のトランジスタW/Lの値の2
倍~5倍とし、前記第9のトランジスタW/Lの値を前記第12のトランジスタW/Lの
値の2倍~5倍としてもよい。また、前記第3のトランジスタのチャネル長Lを前記第8
のトランジスタのチャネル長Lよりも大きくし、前記第11のトランジスタのチャネル長
Lを前記第16のトランジスタのチャネル長Lよりも大きくしてもよい。また、前記第1
のトランジスタの第2の電極と、前記第1のトランジスタのゲート電極との間に容量素子
を設け、前記第9のトランジスタの第2の電極と、前記第9のトランジスタのゲート電極
との間に容量素子を設けてもよい。また、前記第1のトランジスタ乃至前記第16のトラ
ンジスタを、Nチャネル型トランジスタで設けてもよい。また、前記第1のトランジスタ
乃至前記第16のトランジスタを、半導体層としてアモルファスシリコンを用いて設けて
もよい。
Further, the fourth wiring and the eleventh wiring are electrically connected, the fifth wiring and the twelfth wiring are electrically connected, and the sixth wiring and the thirteenth wiring are connected. The wiring may be electrically connected, and the seventh wiring and the fourteenth wiring may be electrically connected. Further, the fourth wiring and the eleventh wiring are provided with the same wiring, the fifth wiring and the twelfth wiring are provided with the same wiring, and the sixth wiring and the thirteenth wiring are provided. The wiring is the same as the wiring, and the 7th
The wiring of No. 14 and the 14th wiring may be provided by the same wiring. Further, the third wiring and the tenth wiring may be electrically connected. Further, the third wiring and the tenth wiring may be provided with the same wiring. Further, among the values of the ratio W / L of the channel length L and the channel width W of the first transistor to the eighth transistor, the value of W / L of the first transistor is maximized, and the ninth transistor is used. Among the values of the ratio W / L of the channel length L and the channel width W of the transistor or the 16th transistor, the value of W / L of the 9th transistor may be the maximum. Further, the value of the first transistor W / L is set to 2 of the value of the fifth transistor W / L.
The value may be doubled to five times, and the value of the ninth transistor W / L may be doubled to five times the value of the twelfth transistor W / L. Further, the channel length L of the third transistor is set to the eighth.
The channel length L of the eleventh transistor may be made larger than the channel length L of the transistor, and the channel length L of the eleventh transistor may be made larger than the channel length L of the sixteenth transistor. In addition, the first
A capacitive element is provided between the second electrode of the transistor and the gate electrode of the first transistor, and between the second electrode of the ninth transistor and the gate electrode of the ninth transistor. A capacitive element may be provided. Further, the first transistor to the sixteenth transistor may be provided as an N-channel transistor. Further, the first transistor to the sixteenth transistor may be provided by using amorphous silicon as a semiconductor layer.

本実施の形態で示す液晶表示装置は、本明細書に記載されているものであり、従って他の
実施の形態と同様の作用効果を奏する。
The liquid crystal display device shown in this embodiment is described in the present specification, and therefore has the same function and effect as other embodiments.

10 配線
101 トランジスタ
101 +Vth
101 +α(Vth
102 トランジスタ
103 トランジスタ
103 配線
104 トランジスタ
105 トランジスタ
106 トランジスタ
107 トランジスタ
108 トランジスタ
109 トランジスタ
110 トランジスタ
121 配線
122 配線
123 配線
124 配線
124 ノード
125 配線
126 配線
127 配線
128 配線
129 配線
130 配線
131 配線
132 配線
133 配線
134 配線
135 配線
136 配線
141 ノード
142 ノード
151 容量素子
152 トランジスタ
211 信号
212 信号
213 信号
214 信号
215 信号
216 信号
221 信号
222 信号
223 信号
225 信号
227 信号
228 信号
234 信号
241 電位
242 電位
501 トランジスタ
511 配線
701 配線
702 配線
703 配線
704 配線
705 配線
706 配線
707 配線
708 配線
709 配線
710 配線
717 配線
901 トランジスタ
1011 抵抗素子
1012 抵抗素子
1021 トランジスタ
1022 トランジスタ
1023 トランジスタ
1024 トランジスタ
1101 フリップフリップ
1111 配線
1112 配線
1113 配線
1114 配線
1115 配線
1116 配線
1117 配線
1211 信号
1212 信号
1213 信号
1216 信号
1401 バッファ
1701 信号線駆動回路
1702 走査線駆動回路
1703 画素
1704 画素部
1705 絶縁基板
1801 フリップフロップ
1914 配線
2221 信号
2222 信号
2223 信号
2225 信号
2227 信号
2228 信号
2401 フリップフロップ
2402 フリップフリップ
2411 配線
2412 配線
2413 配線
2414 配線
2415 配線
2416 配線
2417 配線
2418 配線
2419 配線
2420 配線
2424 配線
2511 信号
2512 信号
2513 信号
2514 信号
2515 信号
2518 信号
2519 信号
2595 配線
2702 走査線駆動回路
2901 導電層
2902 導電層
2903 導電層
2904 導電層
2905 導電層
2906 導電層
2907 導電層
2908 導電層
2909 導電層
2910 導電層
2911 導電層
2912 導電層
2913 導電層
2914 導電層
2915 導電層
2916 導電層
2951 配線
2952 配線
2953 配線
2954 配線
2955 配線
2956 配線
2957 配線
2958 配線
2960 配線
2981 半導体層
2982 半導体層
2983 半導体層
2984 半導体層
2985 半導体層
2986 半導体層
2987 半導体層
2988 半導体層
4201 フリップフロップ
4211 配線
4212 配線
4213 配線
4214 配線
4215 配線
4216 配線
4217 配線
4218 配線
4311 信号
4312 信号
4313 信号
4314 信号
4315 信号
4401 トランジスタ
4402 トランジスタ
4403 トランジスタ
4404 トランジスタ
4405 トランジスタ
4406 トランジスタ
4407 トランジスタ
4408 トランジスタ
4421 配線
4421 信号
4422 配線
4422 信号
4423 配線
4423 信号
4424 配線
4425 配線
4425 信号
4426 配線
4427 配線
4427 信号
4428 配線
4428 信号
4429 配線
4430 配線
4431 配線
4432 配線
4433 配線
4441 ノード
4442 ノード
4503 トランジスタ
4521 信号
4522 信号
4525 信号
4527 信号
4528 信号
4541 電位
4542 電位
8000 バッファ
8011 配線
8012 配線
8100 バッファ
8201 トランジスタ
8202 トランジスタ
8211 配線
8212 配線
8213 配線
8214 配線
8301 トランジスタ
8302 トランジスタ
8303 トランジスタ
8304 トランジスタ
8311 配線
8312 配線
8313 配線
8314 配線
8315 配線
8316 配線
8341 ノード
8401 トランジスタ
8402 トランジスタ
8403 トランジスタ
8404 トランジスタ
8411 配線
8412 配線
8413 配線
8414 配線
8415 配線
8416 配線
8417 配線
8441 ノード
8501 トランジスタ
8502 トランジスタ
8503 トランジスタ
8511 配線
8512 配線
8513 配線
8514 配線
8515 配線
8516 配線
8541 ノード
8601 トランジスタ
8602 トランジスタ
8603 トランジスタ
8604 トランジスタ
8611 配線
8612 配線
8613 配線
8614 配線
8615 配線
8616 配線
8641 ノード
1902a 走査線駆動回路
1902b 走査線駆動回路
1902b 駆動回路
2002a 走査線駆動回路
2002b 走査線駆動回路
2802a 走査線駆動回路
2802b 走査線駆動回路
2802b 駆動回路
8001a インバータ
8001b インバータ
8001c インバータ
8002a インバータ
8002b インバータ
8002c インバータ
8003a インバータ
8003b インバータ
8003c インバータ
10 Wiring 101 Transistor 101 + Vth
101 + α (Vth)
102 wiring 103 wiring 103 wiring 104 wiring 105 transistor 106 transistor 107 transistor 108 transistor 109 transistor 110 transistor 121 wiring 122 wiring 123 wiring 124 wiring 124 node 125 wiring 126 wiring 127 wiring 128 wiring 129 wiring 130 wiring 131 wiring 132 wiring 133 wiring 134 wiring 135 Wiring 136 Wiring 141 Node 142 Node 151 Capacitive element 152 Transistor 211 Signal 212 Signal 213 Signal 214 Signal 215 Signal 216 Signal 221 Signal 222 Signal 223 Signal 225 Signal 227 Signal 228 Signal 234 Signal 241 Potential 242 Potential 501 Transistor 511 Wiring 701 Wiring 701 Wiring 703 Wiring 704 Wiring 705 Wiring 706 Wiring 707 Wiring 708 Wiring 709 Wiring 710 Wiring 717 Wiring 901 Wiring 1011 Resistance element 1012 Resistance element 1021 Transistor 1022 Transistor 1023 Transit 1024 Wire 1101 Flip flip 1111 Wiring 1112 Wiring 1113 Wiring 1115 Wiring 11 1117 Wiring 1211 Signal 1212 Signal 1213 Signal 1216 Signal 1401 Buffer 1701 Signal line drive circuit 1702 Scan line drive circuit 1703 Pixel 1704 Pixel part 1705 Insulation board 1801 Flip flop 1914 Wiring 2221 Signal 2222 Signal 2223 Signal 2225 Signal 2227 Signal 2228 Signal 2401 Flip flop 2402 Flip Flip 2411 Wiring 2412 Wiring 2413 Wiring 2414 Wiring 2415 Wiring 2416 Wiring 2417 Wiring 2418 Wiring 2419 Wiring 2420 Wiring 2424 Wiring 2511 Signal 2512 Signal 2513 Signal 2514 Signal 2515 Signal 2518 Signal 2519 Signal 2595 Wiring 2702 Scanning line drive circuit 2901 Conductive layer 2903 Conductive layer 2904 Conductive layer 2905 Conductive layer 2906 Conductive layer 2907 Conductive layer 2908 Conductive layer 2909 Conductive layer 2910 Conductive layer 2911 Conductive layer 2912 Conductive layer 2913 Conductive layer 2914 Conductive layer 2915 Conductive layer 2916 Conductive layer 2951 Wiring 2952 Wiring 295 3 wiring 2954 wiring 2955 wiring 2965 wiring 2957 wiring 2985 wiring 2960 wiring 2891 semiconductor layer 2982 semiconductor layer 2983 semiconductor layer 2984 semiconductor layer 2985 semiconductor layer 2896 semiconductor layer 2987 semiconductor layer 2988 semiconductor layer 4201 flip flop 4211 wiring 4212 wiring 4213 wiring 4215 wiring 4215 Wiring 4216 Wiring 4217 Wiring 4218 Wiring 4311 Signal 4312 Signal 4313 Signal 4314 Signal 4315 Signal 4401 Transistor 4402 Transistor 4403 Transistor 4404 Transistor 4405 Transistor 4406 Transistor 4407 Transistor 4408 Transistor 4421 Wiring 4421 Signal 4422 Wiring 4422 Signal 4423 Wiring 4423 Signal 4426 Wire 4427 Wire 4427 Signal 4428 Wire 4428 Signal 4492 Wire 4430 Wire 4431 Wire 4432 Wire 4433 Transistor 4441 Node 4442 Node 4503 Transistor 4521 Signal 4522 Signal 4525 Signal 4527 Signal 4528 Signal 4541 Potential 4542 Potential 8000 Buffer 8011 Wire 8012 Transistor 8202 Transistor 8211 Wiring 8212 Wiring 8213 Wiring 8214 Transistor 8301 Transistor 8302 Transistor 8303 Transistor 8304 Transistor 8311 Wiring 8312 Wiring 8313 Wiring 8314 Transistor 8315 Wiring 8316 Wiring 8341 Node 8401 Transistor 8402 Transistor 8403 Transistor 8404 Transistor 8411 Wiring 8412 Wiring 8416 Wiring 8417 Wiring 8417 Transistor 8541 Transistor 8502 Transistor 8503 Transistor 8511 Wiring 8512 Wiring 8513 Wiring 8514 Wiring 8515 Wiring 8516 Wiring 8541 Node 8601 Transistor 8602 Transistor 8603 Transistor 8604 Transistor 8611 Wiring 8612 Wiring 8613 Wiring 8614 Wiring 86 Scan line drive circuit 1902b Scan line drive circuit 1 902b Drive circuit 2002a Scan line drive circuit 2002b Scan line drive circuit 2802a Scan line drive circuit 2802b Scan line drive circuit 2802b Drive circuit 8001a Inverter 8001b Inverter 8001c Inverter 8002a Inverter 8002b Inverter 8002c Inverter 8003a Inverter 8003b Inverter 8003c Inverter

Claims (2)

画素と、配線を介して前記画素と電気的に接続された駆動回路と、を有し、
前記駆動回路は、第1乃至第9のトランジスタを有し、
前記第1のトランジスタのソースまたはドレインの一方は、前記配線と電気的に接続され、
前記第2のトランジスタのソースまたはドレインの一方は、前記配線と電気的に接続され、
前記第3のトランジスタのソースまたはドレインの一方は、前記第2のトランジスタのゲートと電気的に接続され、
前記第3のトランジスタのソースまたはドレインの他方は、前記第3のトランジスタのゲートと電気的に接続されず、
前記第4のトランジスタのソースまたはドレインの一方は、前記第2のトランジスタのゲートと電気的に接続され、
前記第5のトランジスタのソースまたはドレインの一方は、前記第1のトランジスタのゲートと電気的に接続され、
前記第5のトランジスタのソースまたはドレインの他方は、前記第5のトランジスタのゲートと電気的に接続されず、
前記第6のトランジスタのソースまたはドレインの一方は、前記第1のトランジスタのゲートと電気的に接続され、
前記第6のトランジスタのゲートは、前記第2のトランジスタのゲートと電気的に接続され、
前記第7のトランジスタのソースまたはドレインの一方は、前記第1のトランジスタのゲートと電気的に接続され、
前記第8のトランジスタのソースまたはドレインの一方は、前記第2のトランジスタのゲートと電気的に接続され、
前記第8のトランジスタのゲートは、前記第1のトランジスタのゲートと電気的に接続され、
前記第9のトランジスタのソースまたはドレインの一方は、前記配線と電気的に接続され、
前記第9のトランジスタのゲートは、前記第4のトランジスタのゲートと電気的に接続され、
前記第9のトランジスタのゲートは、前記第3のトランジスタのソースまたはドレインの他方と電気的に接続されず、
前記第1のトランジスタのソースまたはドレインの他方は、第1の信号を入力され、
前記第4及び第9のトランジスタのゲートには、第2の信号を入力され、
前記第2のトランジスタのソースまたはドレインの他方は、電源電位が供給され、
前記第4のトランジスタのソースまたはドレインの他方は、前記電源電位が供給され、
前記第6のトランジスタのソースまたはドレインの他方は、前記電源電位が供給され、
前記第8のトランジスタのソースまたはドレインの他方は、前記電源電位が供給され、
前記配線は出力信号が出力される表示装置。
It has a pixel and a drive circuit that is electrically connected to the pixel via wiring.
The drive circuit has first to ninth transistors.
One of the source or drain of the first transistor is electrically connected to the wiring.
One of the source or drain of the second transistor is electrically connected to the wiring.
One of the source or drain of the third transistor is electrically connected to the gate of the second transistor.
The other of the source or drain of the third transistor is not electrically connected to the gate of the third transistor and is not electrically connected.
One of the source or drain of the fourth transistor is electrically connected to the gate of the second transistor.
One of the source or drain of the fifth transistor is electrically connected to the gate of the first transistor.
The other of the source or drain of the fifth transistor is not electrically connected to the gate of the fifth transistor and is not electrically connected.
One of the source or drain of the sixth transistor is electrically connected to the gate of the first transistor.
The gate of the sixth transistor is electrically connected to the gate of the second transistor.
One of the source or drain of the seventh transistor is electrically connected to the gate of the first transistor.
One of the source or drain of the eighth transistor is electrically connected to the gate of the second transistor.
The gate of the eighth transistor is electrically connected to the gate of the first transistor.
One of the source or drain of the ninth transistor is electrically connected to the wiring.
The gate of the ninth transistor is electrically connected to the gate of the fourth transistor.
The gate of the ninth transistor is not electrically connected to the other of the source or drain of the third transistor.
The other of the source or drain of the first transistor is input with the first signal.
A second signal is input to the gates of the fourth and ninth transistors.
The other of the source or drain of the second transistor is supplied with a power potential and is supplied with a power potential.
The other of the source or drain of the fourth transistor is supplied with the power potential.
The other of the source or drain of the sixth transistor is supplied with the power potential.
The other of the source or drain of the eighth transistor is supplied with the power potential.
The wiring is a display device that outputs an output signal.
請求項1において、
前記第1のトランジスタのW(Wはチャネル幅)/L(Lはチャネル長)は、前記第2乃至第9のトランジスタのW/Lより大きい表示装置。
In claim 1,
A display device in which W (W is the channel width) / L (L is the channel length) of the first transistor is larger than W / L of the second to ninth transistors.
JP2020007447A 2020-01-21 2020-01-21 Display device Active JP7078653B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020007447A JP7078653B2 (en) 2020-01-21 2020-01-21 Display device
JP2021145294A JP7201760B2 (en) 2020-01-21 2021-09-07 semiconductor equipment
JP2022135916A JP2022177025A (en) 2020-01-21 2022-08-29 Semiconductor device
JP2023111297A JP2023139042A (en) 2020-01-21 2023-07-06 Flip-flop and shift register

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007447A JP7078653B2 (en) 2020-01-21 2020-01-21 Display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019142854A Division JP2019200435A (en) 2019-08-02 2019-08-02 Display device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2021017281A Division JP7087132B2 (en) 2021-02-05 2021-02-05 Semiconductor equipment
JP2021145294A Division JP7201760B2 (en) 2020-01-21 2021-09-07 semiconductor equipment

Publications (2)

Publication Number Publication Date
JP2020080541A JP2020080541A (en) 2020-05-28
JP7078653B2 true JP7078653B2 (en) 2022-05-31

Family

ID=70802519

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2020007447A Active JP7078653B2 (en) 2020-01-21 2020-01-21 Display device
JP2021145294A Active JP7201760B2 (en) 2020-01-21 2021-09-07 semiconductor equipment
JP2022135916A Withdrawn JP2022177025A (en) 2020-01-21 2022-08-29 Semiconductor device
JP2023111297A Pending JP2023139042A (en) 2020-01-21 2023-07-06 Flip-flop and shift register

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2021145294A Active JP7201760B2 (en) 2020-01-21 2021-09-07 semiconductor equipment
JP2022135916A Withdrawn JP2022177025A (en) 2020-01-21 2022-08-29 Semiconductor device
JP2023111297A Pending JP2023139042A (en) 2020-01-21 2023-07-06 Flip-flop and shift register

Country Status (1)

Country Link
JP (4) JP7078653B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113781947B (en) * 2021-09-15 2023-10-17 昆山国显光电有限公司 Shift register circuit and display panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060145999A1 (en) 2004-12-31 2006-07-06 Lg Philips Lcd Co., Ltd. Shift register

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804038B1 (en) * 2002-04-04 2008-02-18 삼성전자주식회사 Shift resistor and liquid crystal display apparatus having the same
KR100913303B1 (en) 2003-05-06 2009-08-26 삼성전자주식회사 Liquid crystal display apparatus
US7289594B2 (en) 2004-03-31 2007-10-30 Lg.Philips Lcd Co., Ltd. Shift registrer and driving method thereof
KR101057891B1 (en) 2004-05-31 2011-08-19 엘지디스플레이 주식회사 Shift register
KR101014172B1 (en) 2004-09-13 2011-02-14 삼성전자주식회사 Driving unit and display apparatus having the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060145999A1 (en) 2004-12-31 2006-07-06 Lg Philips Lcd Co., Ltd. Shift register

Also Published As

Publication number Publication date
JP2023139042A (en) 2023-10-03
JP2022003395A (en) 2022-01-11
JP2022177025A (en) 2022-11-30
JP7201760B2 (en) 2023-01-10
JP2020080541A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP5116277B2 (en) Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
JP4932415B2 (en) Semiconductor device
JP5288654B2 (en) Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
JP5622902B2 (en) Semiconductor device, display device, display module, and electronic apparatus
JP2012168536A (en) Semiconductor device
JP5459919B2 (en) Semiconductor device, display device, display module, and electronic apparatus
JP2023139042A (en) Flip-flop and shift register
JP6159004B2 (en) Semiconductor device
JP5337859B2 (en) Semiconductor device, display device, and liquid crystal display device
JP6845821B2 (en) Display device
JP2017216033A (en) Semiconductor device
JP2012141619A (en) Semiconductor device, display device, liquid crystal display device, display module and electronic apparatus
JP7087132B2 (en) Semiconductor equipment
JP7049433B2 (en) Semiconductor device
JP2019220245A (en) Semiconductor device and electronic device
JP2022078091A (en) Flip-flop and shift register
JP5521061B2 (en) Semiconductor device, display device, and electronic device
JP2022068138A (en) Semiconductor device
JP6154445B2 (en) Display device
JP5809722B2 (en) Liquid crystal display
JP5337923B1 (en) Semiconductor device, display device, and liquid crystal display device
JP2023121752A (en) Flip-flop and shift register
JP2023093436A (en) Semiconductor device and display device
JP5771724B2 (en) Semiconductor device and display device
JP2014017816A (en) Semiconductor device and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210917

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210921

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211015

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211019

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220118

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220222

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220322

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220426

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7078653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150