JP7078571B2 - 超音波診断装置、トレース方法及びプログラム - Google Patents

超音波診断装置、トレース方法及びプログラム Download PDF

Info

Publication number
JP7078571B2
JP7078571B2 JP2019060111A JP2019060111A JP7078571B2 JP 7078571 B2 JP7078571 B2 JP 7078571B2 JP 2019060111 A JP2019060111 A JP 2019060111A JP 2019060111 A JP2019060111 A JP 2019060111A JP 7078571 B2 JP7078571 B2 JP 7078571B2
Authority
JP
Japan
Prior art keywords
point
trace
doppler
search
doppler waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060111A
Other languages
English (en)
Other versions
JP2020156810A (ja
Inventor
誠司 大山
一昌 伊勢
Original Assignee
富士フイルムヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルムヘルスケア株式会社 filed Critical 富士フイルムヘルスケア株式会社
Priority to JP2019060111A priority Critical patent/JP7078571B2/ja
Priority to US16/812,639 priority patent/US11426145B2/en
Publication of JP2020156810A publication Critical patent/JP2020156810A/ja
Application granted granted Critical
Publication of JP7078571B2 publication Critical patent/JP7078571B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/486Diagnostic techniques involving arbitrary m-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は超音波診断装置、トレース方法及びプログラムに関し、特に、ドプラ波形をトレースする技術に関する。
超音波診断装置は、一般に、ドプラ波形を生成するドプラモードを備える。ドプラ波形は、生体内運動体(血流等)のドプラ情報の時間変化を表したものである。具体的には、ドプラ波形の横軸は時間軸であり、その縦軸は周波数軸(速度軸)である。ドプラ波形は、時間軸上に並ぶ複数の輝度分布からなる。個々の輝度分布は速度分布を示すものであり、つまり、ドプラ情報から演算される周波数スペクトルを示すものである。輝度分布を構成する各輝度は各速度成分のパワーに相当する。ドプラ波形として、血流ドプラ波形及び組織ドプラ波形が知られている。後者の組織ドプラ波形は、例えば心筋の運動情報を表すものである。なお、ドプラモードとして、パルスドプラ法を適用するパルスドプラモード(PWモード)、及び、連続波ドプラ法を適用する連続波ドプラモード(CWモード)が知られている。
ドプラ波形に対する解析や計測に先立って、必要に応じて、ドプラ波形がトレースされる。トレースにはマニュアルトレースと自動トレースとがある。自動トレースにおいては、例えば、各輝度分布において、頂点としてのピークよりも高域側(非ベースライン側)において所定条件を満たす点がトレース点として特定される。
パルスドプラモードにおいて生成されたドプラ波形には折返し現象が生じることがある。送信パルス繰り返し周期(PRT)に依存して、観測可能な速度レンジが規定されるところ、その速度レンジを正側又は負側に超える速度成分が存在する場合、それが折返し成分として表示されてしまう。なお、ドプラ波形の表示に際して、ベースラインシフトという機能を利用することが可能である。それは、速度ゼロに相当するベースラインを正側又は負側にシフトさせるものである。ベースラインシフトを行っても上記速度レンジの大きさそれ自体が変わることはなく、ベースラインシフトにより折返し現象のすべてを回避することは困難である。
特開平7-241289号公報
ドプラ波形に折返し成分が含まれていても、ドプラ波形を正しくトレースすることが望まれる。なお、特許文献1にはドプラ波形をトレースする技術が開示されている。その技術では、折返し成分が除去された上で、ドプラ波形がトレースされている。
本開示の目的は、折返し成分を含むドプラ波形に対するトレースの精度を高めることにある。あるいは、本開示の目的は、ドプラ波形の性質に適合したトレース方式が実行されるようにすることにある。
本開示に係る超音波診断装置は、超音波の送受波により得たドプラ情報に基づいてドプラ波形を生成するドプラ波形生成部と、前記ドプラ波形に基づいてそれを構成する輝度分布ごとにトレース点を特定するトレース部と、を含み、前記トレース部は、前記輝度分布に含まれる注目部分及び折返し部分の間の谷部に基準点を設定する基準点設定部と、前記輝度分布における前記基準点のベースライン側で前記トレース点の探索を行う探索部と、を含むことを特徴とする。
本開示に係るトレース方法は、第1超音波の送受波により得た第1ドプラ情報から生成された第1ドプラ波形に基づいて、それを構成する第1輝度分布ごとに第1トレース点を特定する工程と、第2超音波の送受波により得た第2ドプラ情報から生成された第2ドプラ波形に基づいて、それを構成する第2輝度分布ごとに第2トレース点を特定する工程と、を含み、前記第1トレース点を特定する工程では、前記第1輝度分布に含まれる注目部分及び折返し部分の間の谷部に探索開始点が設定され、前記第1輝度分布において前記探索開始点からベースライン側へ前記第1トレース点の探索が行われ、前記第2トレース点を特定する工程では、前記第2輝度分布においてベースライン反対側端点からベースライン側へ前記第2トレース点の探索が行われる、ことを特徴とする。
本開示に係るプログラムは、情報処理装置において実行されるプログラムであって、超音波の送受波により得たドプラ情報から生成されたドプラ波形に基づいて、それを構成する輝度分布ごとにトレース点を特定する機能を含み、前記機能には、前記輝度分布に含まれる注目部分及び折返し部分の間の谷部に探索開始点を設定する機能と、前記輝度分布において前記探索開始点からベースライン側へ前記トレース点の探索を行う機能と、が含まれる。
本発明によれば、折返し成分を含むドプラ波形に対するトレースの精度を高められる。あるいは、本発明によれば、ドプラ波形の性質に適合したトレース方式を実行できる。
実施形態に係る超音波診断装置の構成例を示すブロック図である。 トレース前の表示画像を示す図である。 トレース点探索処理を示す図である。 トレース後の表示画像を示す図である。 他のトレース処理を示す図である。 2つのドプラ波形を含む表示画像を示す図である。 トレース点探索処理を示すフローチャートである。 S18の具体例を示すフローチャートである。
以下、実施形態を図面に基づいて説明する。
(1)実施形態の概要
実施形態に係る超音波診断装置は、ドプラ波形生成部及びトレース部を有する。ドプラ波形生成部は、超音波の送受波により得たドプラ情報に基づいてドプラ波形を生成する。トレース部は、ドプラ波形に基づいてそれを構成する輝度分布ごとにトレース点を特定する。詳しくは、トレース部は、基準点設定部及び探索部を有する。基準点設定部は、輝度分布に含まれる注目部分及び折返し部分の間の谷部に基準点を設定する。探索部は、輝度分布における基準点のベースライン側でトレース点の探索を行う。
上記構成によれば、谷部の中の基準点よりもベースライン側でトレース点が探索されるので、折返し部分を避けてトレース点の探索を行える。よって、折返し部分の中にトレース点が設定されてしまうことを回避できる。上記の谷部は下側の頂点(又は最小値をとる点)を含む部分であり、底部に相当するものである。ドプラ波形は、後述する具体例において、血流ドプラ波形である。血流ドプラ波形と組織ドプラ波形とを同時に表示する場合、送信パルス繰り返し周期が大きくなり、血流ドプラ波形において折返し現象が生じ易くなる。よって、その場合において上記構成を採用する必要性が高くなる。
上記構成の説明は、折返し部分が生じている場合におけるトレース部の機能を記述したものである。折返し部分が生じていない場合、注目部分の非ベースライン側の全体が谷部又は底部に相当し、その中において基準点が設定される。折返し部分の存否にかかわらず、輝度分布に対して、同じトレースアルゴリズムが適用されるのが望ましい。その観点からは、後述するように、所定条件に従って定められた検出範囲内において基準点の検出を行うのが望ましい。検出範囲は、谷部又はそれを含む部分を処理対象として絞り込むウインドウに相当する。
実施形態において、基準点は探索開始点であり、その場合、基準点設定部は探索開始点設定部である。この構成によれば、折返し部分を避けつつトレース点を確実に探索することが可能となる。
実施形態において、基準点設定部は、過去の探索開始点に基づいて今回の探索開始点を検出する検出範囲を設定する範囲設定部を含む。これは、ドプラ波形の時間軸方向の連続性を利用して検出範囲を定めるものである。この構成によれば、探索開始点を迅速に検出でき、その際における演算量を少なくできる。また、探索開始点を誤って検出してしまう可能性を低減できる。過去の探索開始点は、例えば、前回の探索開始点である。
実施形態において、探索部は、検出範囲内において最小輝度値を特定することにより今回の探索開始点を設定する。検出範囲内において最小輝度値を有する点(最小値点)は、谷部における頂点に相当する。それは、注目部分と折返し部分の境界あるいはそれらを分ける基準点である。上記構成はそのような基準点を出発点としてそこからベースライン側へトレース点の探索を行うものである。複数の最小値点が特定された場合、それらの中での中間点、それらの中で最も高域側の点、等を探索開始点としてもよい。その際に、複数の最小値点の並び状況を考慮してもよい。
実施形態に係るトレース方法は、第1工程及び第2工程を有する。第1工程は、第1超音波の送受波により得た第1ドプラ情報から生成された第1ドプラ波形に基づいて、それを構成する第1輝度分布ごとに第1トレース点を特定する工程である。第2工程は、第2超音波の送受波により得た第2ドプラ情報から生成された第2ドプラ波形に基づいて、それを構成する第2輝度分布ごとに第2トレース点を特定する工程である。第1工程では、第1輝度分布に含まれる注目部分及び折返し部分の間の谷部に探索開始点が設定され、第1輝度分布において探索開始点からベースライン側へ記第1トレース点の探索が行われる。第2工程では、第2輝度分布においてベースライン反対側端点からベースライン側へ第2トレース点の探索が行われる。
例えば、第1ドプラ波形は折返し成分を含む可能性の高いドプラ波形であり、第2ドプラ波形は折返し成分を含む可能性の低いドプラ波形である。第1ドプラ波形については、折返し部分の中にトレース点が特定されないように、谷部の中に探索開始点が設定され、そこからベースライン側へ第1トレース点が探索される。第2ドプラ波形については、ベースライン反対側端点からベースライン側へ第2トレース点が探索される。これによれば演算量を削減してトレース点を迅速に探索することが可能となる。上記構成は、ドプラ波形に性質に基づいて、特に折返し部分が生じている可能性に応じて、トレース方法を切り変えるものである。
実施形態において、第1ドプラ波形は血流ドプラ波形であり、第2ドプラ波形は組織ドプラ波形である。複数の血流ドプラ波形が表示されてもよい。その場合には、両方のドプラ波形に対して折返し成分の影響を受け難いトレース方式が適用される。
実施形態に係るトレース方法は、超音波の送受波により得たドプラ情報から生成されたドプラ波形に基づいて、それを構成する輝度分布ごとにトレース点を特定する機能を含む。その機能には、輝度分布に含まれる注目部分及び折返し部分の間の谷部に探索開始点を設定する機能と、輝度分布において前記探索開始点からベースライン側へ前記トレース点の探索を行う機能と、が含まれる。
上記方法は、ハードウエアの機能として又はソフトウエアの機能として実現される。後者の場合、その機能を発揮するプログラムが情報処理装置へインストールされる。情報処理装置の概念には、コンピュータ、超音波診断装置、等が含まれる。
(2)実施形態の詳細
図1には、実施形態に係る超音波診断装置がブロック図として示されている。この超音波診断装置は、生体に対する超音波の送受波により得られた受信情報に基づいて超音波画像を生成し、その超音波画像を表示する医療装置である。実施形態においては、超音波画像として、断層画像及びドプラ波形が表示される。
図1において、プローブ10は、生体としての被検体の表面に当接された状態で超音波の送波及び受波を行うものである。プローブ10内には、振動素子アレイが設けられている。振動素子アレイは、直線状又は円弧状に並ぶ複数の振動素子により構成される。Bモードの実行時には、振動素子アレイによって超音波ビームBが形成される。その超音波ビームBは電子走査される。これにより走査面Sが形成される。電子走査方式として、電子セクタ走査、電子リニア走査等が知られている。
パルスドプラモード(PWモード)の実行時には、ユーザーにより指定された方位に対して超音波ビームが繰り返し形成される。2つの方位に対して2つの超音波ビームが交互に形成されることもある。図1に示す例においては、血流ドプラ情報を観測するための超音波ビームB1、及び、組織ドプラ情報を観測するための超音波ビームB2、が示されている。超音波ビームB1上には血流ドプラ情報を取り出すサンプルゲートG1が設定されており、超音波ビームB2上には組織ドプラ情報を取り出すサンプルゲートG2が設定されている。組織は運動する軟組織としての例えば心筋である。
BモードとPWモードとを同時に実行するモードは複合モードとも呼ばれる。複合モードの送受信シーケンスは、通常、時間軸上において並ぶ複数のシーケンス単位により構成される。換言すれば、特定の構成を有するサブシーケンスが時間軸上において繰り返し実行される。サブシーケンスは、例えば、時間軸上に並ぶ、複数回のBモード送受信、及び、1回のドプラ送受信、により構成される。複数のドプラビームを形成する複合モードにおいては、サブシーケンスは、例えば、時間軸上に並ぶ、複数回のBモード送受信、1回の第1ドプラ送受信、及び、1回の第2ドプラ送受信、により構成される。第1ドプラ送受信は、第1ドプラ情報としての血流ドプラ情報を取得するための送受信である。第2ドプラ送受信は、第2ドプラ情報としての組織ドプラ情報を取得するための送受信である。
送信部12は送信ビームフォーマとして機能する電子回路である。送信時において、送信部12から振動素子アレイへ複数の送信信号が並列的に供給される。受信部14は受信ビームフォーマとして機能する電子回路である。受信時において、振動素子アレイから受信部14へ複数の受信信号が並列的に出力される。受信部14においては、複数の受信信号に対して整相加算が適用され、これによりビームデータが生成される。Bモード用の送受信の繰り返しにより、走査面に対応するフレームデータが順次生成される。各フレームデータは電子走査方向に並ぶ複数のビームデータにより構成される。個々のビームデータは深さ方向に並ぶ複数のエコーデータにより構成される。各フレームデータは、断層画像形成部16へ送られる。ドプラモード用の送受信の繰り返しにより取得された複数のビームデータはドプラ波形生成部へ順次送られる。
断層画像形成部16は、入力されたフレームデータに基づいて断層画像を形成する電子回路である。断層画像形成部16には、デジタルスキャンコンバータ(DSC)が含まれる。DSCは、座標変換機能、画素補間機能、フレームレート変換機能、等を有する。断層画像のデータが表示処理部24へ送られる。
ドプラ波形生成部18は、ビームデータに含まれるドプラ情報に基づいてドプラ波形を生成する電子回路である。ドプラ波形生成部18には、実施形態において、ゲート回路、FFT演算回路、等が含まれる。ドプラ波形のデータが表示処理部24に送られている。
トレース部20は、トレース手段として機能するものであり、ドプラ波形に対してトレース処理を適用しトレースラインを生成する電子回路である。トレース部20は、基準点設定部(具体的には探索開始点設定部)、及び、探索部として機能する。トレース部20の構成及び作用については後に詳述する。トレースラインのデータが表示処理部24へ送られている。
トレース部20が実行するトレース処理は、心電波形を基礎として設定された所定の期間内のドプラ波形に対して実行される。具体的には、ドプラ波形から、所定の期間内の波形部分が静止画像として切り出され、それに対してトレース処理が適用される。リアルタイムで生成されるドプラ波形の全体に対してトレース処理が適用されてもよい。計測部22は、トレースラインに基づいて計測を実行する電子回路である。計測には、時間計測等が含まれる。計測結果は表示処理部24へ送られる。
なお、トレース処理に先だって、ドプラ波形の全体又はドプラ波形から切り出された波形部分に対して、平滑化処理が適用される。後述する閾値は、平滑化後のドプラ波形又は波形部分に基づいて決定される。平滑化処理では、例えば、二次元の平滑化フィルタが利用される。通常、トレースラインを生成するための各処理は、表示されているドプラ波形には影響を与えない。トレース処理結果であるトレースラインが、表示されているドプラ波形に重畳表示される。
表示処理部24は、画像合成機能、カラー処理機能等を有する電子回路である。表示処理部24は、表示器26に表示される画像を生成する。表示器26は、液晶表示器、有機EL表示器、等によって構成される。なお、断層画像形成部16、ドプラ波形生成部18、トレース部20、計測部22及び表示処理部24で構成されるモジュールが、1又は複数のプロセッサにより構成されてもよい。そのモジュールが他のデバイス(例えば情報処理装置)により構成されてもよい。以下に説明する制御部28が上記各機能を実行してもよい。
制御部28は、図1に示されている各要素の動作を制御するものである。制御部28は、動作プログラムを実行するCPUにより構成される。制御部28には、操作パネル30が接続されている。操作パネル30は、複数のスイッチ、キーボード、トラックボール等を有する。操作パネル30を利用して、ユーザーにより、動作モードが選択され、ドプラ観測方位やゲートが設定される。
心電計32は、被検体に貼付された複数の電極を有し、心電信号(ECG信号)を取得する測定器である。心電信号は、制御部28に入力されている。制御部28及びトレース部20により、心電信号が参照される。実施形態においては、ドプラ波形においてトレース処理対象となる波形部分を画定するために、心電信号が参照される。その場合、R波等が時相基準として利用される。
図2には、トレース前の表示画像34が示されている。この表示画像34は、表示器の表示画面上に表示される画像である。表示画像34には、断層画像36とドプラ波形(具体的には血流ドプラ波形)38とが含まれる。更に、表示画像34には、心電信号波形40も含まれる。断層画像36は、具体的には、心臓の左室の断面を示す画像である。方位マーカー42上にゲート位置を示すゲートマーカー44が表示されている。複数の受信信号から、ゲート位置に対応するドプラ情報が順次抽出され、それらを周波数解析することにより、ドプラ波形38が生成される。
ドプラ波形38には、注目成分46と折返し成分48とが含まれている。図示の例では、ドプラ波形38の表示枠における下辺がベースライン50である。ベースライン50は速度0に対応するラインである。横軸は時間軸であり、縦軸はドプラ偏移周波数つまり速度を示している。実際には、図示された縦軸は正の速度軸である。図示の例では、負の速度成分が折返し成分48としてドプラ波形38の上部に現れている。実際の速度が観測可能な速度レンジの正側及び負側を超えると折返し現象が生じる。ちなみに、上辺52は観測可能な速度レンジの最高流速に相当している。
このようなドプラ波形に対して、折返し成分48を考慮することなく、トレース処理を適用した場合、注目成分46のみならず折返し成分48がトレース対象になってしまうおそれがある。そこで、本実施形態においては、折返し成分48が生じていても、それに影響されずに、注目成分46をトレースできるトレース処理が実行される。それについて図3を用いて詳述する。なお、トレース対象となるドプラ波形(正確には波形部分)は既に説明したように心電信号に基づいて切り出される。
図3において、右側には血流ドプラ波形の一部分38Aが示されている。一部分38Aには注目成分の一部分46Aと折返し成分の一部分48Aとが含まれる。下辺はベースライン50である。前回トレース点探索を行ったラインが#n-1で示されており、現在トレース点探索を行うラインが#nで示されている。ライン#n-1において最低輝度値を有する点(最小値点)が前回の探索開始点Pn-1である。その位置Cを中心として、縦軸方向に一定の幅を有する区間が定められる。その区間がライン#nでの検出範囲Wとなる。これは、ドプラ波形の時間軸方向の連続性を利用して、前回の基準点(具体的には探索開始点)を今回の基準点(具体的には探索開始点)の検出において利用するものである。最初のラインにおいては、検出範囲をプリセットしておくのが望ましい。なお、ドプラ波形の性質によっては、複数のラインに対して設定される複数の検出範囲を同一としてもよい。
図3の右側には、上記のライン#nに対応する輝度分布54が示されている。横軸は正の速度軸である。縦軸は輝度軸である。符号61はベースライン位置を示している。図示の例において、ベースライン位置は縦軸の位置に一致している。ベースラインの位置を変更することが可能であり、例えば、符号61Aで示す位置にベースラインを動かすことも可能である。
図示の例において、輝度分布54には、注目部分54aと折返し部分54bとが含まれ、それらの間が谷部54cである。検出範囲Wの中で最低輝度値が特定され、最低輝度値を有する点(最小値点)が特定される。最小値点は、谷部54cにおける下向き頂点に相当し、その点が実施形態においては探索開始点Pnとされる。探索開始点Pnは、探索の基準点として機能するものである。谷部54c内の別の基準点に基づいて、探索開始点Pnが定められてもよい。少なくとも、折返し部分54bよりもベースライン61側であって、しかも谷部54cとピーク58との間のスロープの主要部がトレース点探索範囲に含まれるように、探索開始点又は探索範囲上端点を定めるのが望ましい。
実施形態においては、探索開始点Pnからベースライン61へ、画素単位で、トレース点探索が実行される(符号56を参照)。その場合、例えば、最初に閾値を超える輝度値が発見された場合、その輝度値を有する点がトレース点60として決定される。閾値は、平滑処理後のドプラ波形、又は、平滑化処理後の波形部分に基づいて決定され、例えば、ノイズレベル平均値に基づいて、決定される。平均輝度値に基づいて閾値が決定されてもよい。ピーク58のレベルを特定し、そのレベルに基づいて閾値が決定されてもよい。例えば、ピーク58のレベルから、一定割合h1だけ下がったレベルが閾値として決定されてもよい。一般に、注目部分54aの上縁又は上端に相当する点がトレース点として決定される。
以上の処理が、ラインごとにつまり輝度分布ごとに実行される。これにより特定された複数のトレース点によりトレースラインが構成される。複数のトレース点に対してスプライン補間処理等を適用することにより、トレースラインが構成されてもよい。
図4には、トレース後の表示画面34Aが示されている。なお、既に説明した要素には同一符号を付しその説明を省略する。このことは、以下に説明する他の図においても、同様である。
図4において、ドプラ波形38Bにはトレースライン62が含まれる。トレースライン62は、注目成分46の輪郭に沿って描かれており、折返し成分48の輪郭に対するトレースが回避されている。トレース点決定条件を変更すると、トレースライン62の位置又は形状が変化するが、そのような場合でも、実施形態によれば、折返し成分48がトレース対象となってしまうことを回避できる。
図5には、別のドプラ波形が示されている。ドプラ波形64は、組織ドプラ波形である。横軸は時間軸であり、縦軸は負の速度軸である。表示枠の上辺がベースライン66である。表示枠の下辺68は観測可能な負の最高流速に相当している。ドプラ波形64には、注目成分のみが含まれ、そこには折返し成分は認められない。このようなドプラ波形64をトレースする場合、各ライン70上において、下辺68上に探索開始点72が設定され、そこからベースライン66側へトレース点が探索される(符号74を参照)。所定の閾値に一致する又はそれを超える輝度値が発見された場合、その位置がトレース点75として定められる。折返し部分が存在しない場合、演算量の削減及び演算時間の短縮化の観点から、上記のような単純なトレース点探索を行うのが望ましい。
図6には、トレース後の表示画像74が示されている。断層画像76には方位ライン84及び方位ライン88が含まれる。方位ライン84上には血流用サンプルゲート86が設定されており、方位ライン88上には組織用サンプルゲート90が設定されている。
表示画像74には、血流ドプラ波形78、組織ドプラ波形80及び心電信号波形82が含まれる。血流ドプラ波形78には図3に示した手法によって作成されたトレースライン92が含まれ、組織ドプラ波形80には図5に示した手法によって作成されたトレースライン94が含まれる。
図7には、実施形態に係るトレース処理がフローチャートとして示されている。このトレース処理は血流ドプラ波形に対するものである。S10では、心電信号に基づいてドプラ波形から所定期間内の波形部分が切り出され、その部分が平滑化される。ここでは、その波形部分も便宜上、ドプラ波形と呼ぶ。S12においては、ドプラ波形に基づいてピーク判定条件が決定される。例えば、ドプラ波形に含まれるノイズ部分の平均輝度に基づいて、ピーク判定条件としての閾値が決定される。ドプラ波形それ全体の平均輝度に基づいて閾値が決定されてもよいし、注目部分のピークに基づいて閾値が決定されてもよい。S14ではライン番号iが初期化される。S16では、i-1番目の探索開始点に基づいて、i番目のライン上において検出範囲が設定される。S18では、n番目のライン上において、検出範囲内で最小輝度値を有する点(最小値点)が探索開始点として決定される。輝度分布において、探索開始点からベースライン方向へ輝度値が順次参照され、閾値以上輝度値が発見された場合にその輝度値を有する位置にピーク点が決定される。なお、iが1の場合、それ以前に探索開始点が存在しないので、その場合にはデフォルトとして指定された検出範囲内において最小値点が検出される。
S20では、iが最大値を超えたか否かが判定され、iが最大値を超えていない場合には、S22においてiが1つインクリメントされた上で、S16以降の工程が実行される。以上の処理がライン単位でつまり輝度分布ごとに実行され、最終的に、複数のトレース点の並びとしてトレースラインが構成される。複数のトレース点に基づく近似曲線生成処理によりトレースラインが構成されてもよい。
上記S18において、複数の最小値点が特定された場合、図8に示す処理を実行して、1つの最小値点を特定してもよい。S24において、複数の最小値点が検出されたと判断された場合、S28において、複数の最小値点の中から代表最小値点が特定され、代表最小値点が探索開始点とされる。一方、S24において、1つの最小値点が検出されたと判断された場合には、S26においてその最小値点が探索開始点として定められる。
S28において、複数の最小値点が連続して存在しているか離散的に存在しているかを判断し、状況に応じて探索開始点の決定ルールを異ならせるのが望ましい。例えば、複数の最小値点が連続して存在している場合、その中で最も非ベースライン側に近い最小値点を特定し、それを探索開始点としてもよい。また、複数の最小値点が離散的に存在している場合にはそれらの平均位置を探索開始点としてもよい。
上記実施形態によれば、折返し成分を含むドプラ波形に対するトレースの精度を高められる。また、上記実施形態によれば、ドプラ波形の性質に適合したトレース方式を実行できる。検出範囲の設定に際しては、過去の複数の探索開始点を参照してもよい。谷部の中心点や重心点を最小値点としてみなすことも可能である。なお、上記の方法を応用することにより、各ライン上において探索開始点よりも非ベースライン側に存在する波形部分(折返し部分)を消去する変形例が考えられる。また、上記の探索処理とベースライン側からの探索処理とを併用するようにしてもよい。
10 プローブ、16 断層画像形成部、18 ドプラ波形生成部、20 トレース部、22 計測部、24 表示処理部。

Claims (7)

  1. 超音波の送受波により得たドプラ情報に基づいてドプラ波形を生成するドプラ波形生成部と、
    前記ドプラ波形に基づいてそれを構成する輝度分布ごとにトレース点を特定するトレース部と、
    を含み、
    前記トレース部は、
    前記輝度分布に含まれる注目部分及び折返し部分の間の谷部に基準点を設定する基準点設定部と、
    前記輝度分布における前記基準点のベースライン側で前記トレース点の探索を行う探索部と、
    を含むことを特徴とする超音波診断装置。
  2. 請求項1記載の超音波診断装置において、
    前記基準点は探索開始点であり、
    前記探索部は前記探索開始点から前記ベースライン側へ探索を行う、
    ことを特徴とする超音波診断装置。
  3. 請求項2記載の超音波診断装置において、
    前記基準点設定部は、過去の探索開始点に基づいて今回の探索開始点を検出する検出範囲を設定する範囲設定部を含む、
    ことを特徴とする超音波診断装置。
  4. 請求項3記載の超音波診断装置において、
    前記基準点設定部は、前記検出範囲内において最小輝度値を特定することにより前記今回の探索開始点を設定する、
    ことを特徴とする超音波診断装置。
  5. 第1超音波の送受波により得た第1ドプラ情報から生成された第1ドプラ波形に基づいて、それを構成する第1輝度分布ごとに第1トレース点を特定する工程と、
    第2超音波の送受波により得た第2ドプラ情報から生成された第2ドプラ波形に基づいて、それを構成する第2輝度分布ごとに第2トレース点を特定する工程と、
    を含み、
    前記第1トレース点を特定する工程では、前記第1輝度分布に含まれる注目部分及び折返し部分の間の谷部に探索開始点が設定され、前記第1輝度分布において前記探索開始点からベースライン側へ前記第1トレース点の探索が行われ、
    前記第2トレース点を特定する工程では、前記第2輝度分布においてベースライン反対側端点からベースライン側へ前記第2トレース点の探索が行われる、
    ことを特徴とするトレース方法。
  6. 請求項5記載のトレース方法において、
    前記第1ドプラ波形は血流ドプラ波形であり、
    前記第2ドプラ波形は組織ドプラ波形である、
    ことを特徴とするトレース方法。
  7. 情報処理装置において実行されるプログラムであって、
    超音波の送受波により得たドプラ情報から生成されたドプラ波形に基づいて、それを構成する輝度分布ごとにトレース点を特定する機能を含み、
    前記機能には、
    前記輝度分布に含まれる注目部分及び折返し部分の間の谷部に探索開始点を設定する機能と、
    前記輝度分布において前記探索開始点からベースライン側へ前記トレース点の探索を行う機能と、
    が含まれる、ことを特徴とするプログラム。
JP2019060111A 2019-03-27 2019-03-27 超音波診断装置、トレース方法及びプログラム Active JP7078571B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019060111A JP7078571B2 (ja) 2019-03-27 2019-03-27 超音波診断装置、トレース方法及びプログラム
US16/812,639 US11426145B2 (en) 2019-03-27 2020-03-09 Ultrasonic diagnostic apparatus, tracing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060111A JP7078571B2 (ja) 2019-03-27 2019-03-27 超音波診断装置、トレース方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2020156810A JP2020156810A (ja) 2020-10-01
JP7078571B2 true JP7078571B2 (ja) 2022-05-31

Family

ID=72603907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060111A Active JP7078571B2 (ja) 2019-03-27 2019-03-27 超音波診断装置、トレース方法及びプログラム

Country Status (2)

Country Link
US (1) US11426145B2 (ja)
JP (1) JP7078571B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7307349B2 (ja) * 2020-09-18 2023-07-12 サミー株式会社 遊技機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110072A (ja) 2006-10-30 2008-05-15 Toshiba Corp 超音波診断装置及び画像処理プログラム
US20090062654A1 (en) 2007-08-28 2009-03-05 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for automatic optimization of doppler imaging parameters
JP2010155073A (ja) 2008-12-02 2010-07-15 Toshiba Corp 超音波診断装置、ドプラ計測装置及びドプラ計測方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721643B2 (ja) 1994-03-07 1998-03-04 アロカ株式会社 超音波ドプラ診断装置
US5868676A (en) * 1996-10-25 1999-02-09 Acuson Corporation Interactive doppler processor and method
JP3892538B2 (ja) * 1997-07-18 2007-03-14 株式会社東芝 超音波ドプラ診断装置
KR20080091350A (ko) * 2006-01-27 2008-10-10 코닌클리케 필립스 일렉트로닉스 엔.브이. 자동 초음파 도플러 측정

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110072A (ja) 2006-10-30 2008-05-15 Toshiba Corp 超音波診断装置及び画像処理プログラム
US20090062654A1 (en) 2007-08-28 2009-03-05 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for automatic optimization of doppler imaging parameters
JP2010155073A (ja) 2008-12-02 2010-07-15 Toshiba Corp 超音波診断装置、ドプラ計測装置及びドプラ計測方法

Also Published As

Publication number Publication date
JP2020156810A (ja) 2020-10-01
US11426145B2 (en) 2022-08-30
US20200305844A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US11786210B2 (en) Ultrasound diagnostic system, ultrasound image generation apparatus, and ultrasound image generation method
JP5100343B2 (ja) 超音波診断装置、及び超音波診断装置の制御プログラム
US6863655B2 (en) Ultrasound display of tissue, tracking and tagging
US8265358B2 (en) Ultrasonic image processing apparatus and method for processing ultrasonic image
US6884216B2 (en) Ultrasound diagnosis apparatus and ultrasound image display method and apparatus
JP4864547B2 (ja) 超音波診断装置およびその制御処理プログラム
JPH09521A (ja) 心臓血流情報の連続表示の方法および該超音波診断画像処理装置
EP2905633A1 (en) Ultrasonic diagnosis apparatus, image processing apparatus, and image processing method
US11844656B2 (en) Ultrasound diagnostic apparatus, method of controlling ultrasound diagnostic apparatus, and non-transitory computer-readable recording medium storing therein computer-readable program for controlling ultrasound diagnostic apparatus
JP2008080106A (ja) 超音波診断装置および超音波診断装置のデータ処理プログラム
WO2015029499A1 (ja) 超音波診断装置および超音波画像生成方法
WO2009013686A2 (en) Systems and methods for automated image selection in doppler ultrasound imaging systems
US11039777B2 (en) Ultrasonic diagnostic apparatus and control method
JP2007222533A (ja) 超音波診断装置及び超音波画像処理方法
JPH10262970A (ja) 超音波カラードプラ断層装置
JP3693264B2 (ja) 超音波診断装置
JP7078571B2 (ja) 超音波診断装置、トレース方法及びプログラム
EP2005890A9 (en) Image processing device, ultrasonic imaging device using the same, and image processing method
JP4709937B2 (ja) 超音波診断装置及び画像処理装置
US20170251998A1 (en) Ultrasonic diagnostic device
JP6199677B2 (ja) 超音波診断装置
CN106659470B (zh) 超声波诊断装置
JP6731275B2 (ja) 超音波診断装置
JP7082540B2 (ja) ドプラ波形処理装置
JP6828017B2 (ja) 適応型サンプル窓サイズを用いるスペクトルドプラ処理

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7078571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150