JP7078392B2 - 深度センサノイズ - Google Patents

深度センサノイズ Download PDF

Info

Publication number
JP7078392B2
JP7078392B2 JP2017248111A JP2017248111A JP7078392B2 JP 7078392 B2 JP7078392 B2 JP 7078392B2 JP 2017248111 A JP2017248111 A JP 2017248111A JP 2017248111 A JP2017248111 A JP 2017248111A JP 7078392 B2 JP7078392 B2 JP 7078392B2
Authority
JP
Japan
Prior art keywords
depth
noise
depth map
depth sensor
noisy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248111A
Other languages
English (en)
Japanese (ja)
Other versions
JP2018109976A (ja
JP2018109976A5 (enExample
Inventor
アミーネ アヤリ モハメド
ギテニー ヴィンセント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dassault Systemes SE
Original Assignee
Dassault Systemes SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dassault Systemes SE filed Critical Dassault Systemes SE
Publication of JP2018109976A publication Critical patent/JP2018109976A/ja
Publication of JP2018109976A5 publication Critical patent/JP2018109976A5/ja
Application granted granted Critical
Publication of JP7078392B2 publication Critical patent/JP7078392B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/30Interpretation of pictures by triangulation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/36Videogrammetry, i.e. electronic processing of video signals from a single source or from different sources to give parallax or range information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0455Auto-encoder networks; Encoder-decoder networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/60Image enhancement or restoration using machine learning, e.g. neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/75Determining position or orientation of objects or cameras using feature-based methods involving models
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
JP2017248111A 2016-12-28 2017-12-25 深度センサノイズ Active JP7078392B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16306838.0 2016-12-28
EP16306838.0A EP3343502B1 (en) 2016-12-28 2016-12-28 Depth sensor noise

Publications (3)

Publication Number Publication Date
JP2018109976A JP2018109976A (ja) 2018-07-12
JP2018109976A5 JP2018109976A5 (enExample) 2021-01-21
JP7078392B2 true JP7078392B2 (ja) 2022-05-31

Family

ID=57755158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248111A Active JP7078392B2 (ja) 2016-12-28 2017-12-25 深度センサノイズ

Country Status (4)

Country Link
US (1) US10586309B2 (enExample)
EP (1) EP3343502B1 (enExample)
JP (1) JP7078392B2 (enExample)
CN (1) CN108253941B (enExample)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187882A (ja) 2016-04-04 2017-10-12 セイコーエプソン株式会社 画像処理に用いられるコンピュータープログラム
EP3293705B1 (en) * 2016-09-12 2022-11-16 Dassault Systèmes 3d reconstruction of a real object from a depth map
EP3343502B1 (en) * 2016-12-28 2019-02-20 Dassault Systèmes Depth sensor noise
US10387751B2 (en) * 2017-01-12 2019-08-20 Arizona Board Of Regents On Behalf Of Arizona State University Methods, apparatuses, and systems for reconstruction-free image recognition from compressive sensors
US10929987B2 (en) * 2017-08-16 2021-02-23 Nvidia Corporation Learning rigidity of dynamic scenes for three-dimensional scene flow estimation
US10552665B2 (en) 2017-12-12 2020-02-04 Seiko Epson Corporation Methods and systems for training an object detection algorithm using synthetic images
US10453220B1 (en) * 2017-12-29 2019-10-22 Perceive Corporation Machine-trained network for misalignment-insensitive depth perception
US10769437B2 (en) 2018-04-10 2020-09-08 Seiko Epson Corporation Adaptive sampling of training views
US10878285B2 (en) * 2018-04-12 2020-12-29 Seiko Epson Corporation Methods and systems for shape based training for an object detection algorithm
RU2698402C1 (ru) * 2018-08-30 2019-08-26 Самсунг Электроникс Ко., Лтд. Способ обучения сверточной нейронной сети для восстановления изображения и система для формирования карты глубины изображения (варианты)
US10634918B2 (en) 2018-09-06 2020-04-28 Seiko Epson Corporation Internal edge verification
EP3674984B1 (en) * 2018-12-29 2024-05-15 Dassault Systèmes Set of neural networks
US11308652B2 (en) * 2019-02-25 2022-04-19 Apple Inc. Rendering objects to match camera noise
EP3736741B1 (en) 2019-05-06 2025-02-12 Dassault Systèmes Experience learning in virtual world
EP3736740B1 (en) * 2019-05-06 2025-02-12 Dassault Systèmes Experience learning in virtual world
CN110298916B (zh) * 2019-06-21 2022-07-01 湖南大学 一种基于合成深度数据的三维人体重建方法
JP7451946B2 (ja) 2019-11-07 2024-03-19 株式会社アイシン 制御装置
CN111612071B (zh) * 2020-05-21 2024-02-02 北京华睿盛德科技有限公司 一种从曲面零件阴影图生成深度图的深度学习方法
US11238307B1 (en) 2020-09-24 2022-02-01 Eagle Technology, Llc System for performing change detection within a 3D geospatial model based upon semantic change detection using deep learning and related methods
US11747468B2 (en) 2020-09-24 2023-09-05 Eagle Technology, Llc System using a priori terrain height data for interferometric synthetic aperture radar (IFSAR) phase disambiguation and related methods
US11587249B2 (en) 2020-09-24 2023-02-21 Eagle Technology, Llc Artificial intelligence (AI) system and methods for generating estimated height maps from electro-optic imagery
US11302071B1 (en) 2020-09-24 2022-04-12 Eagle Technology, Llc Artificial intelligence (AI) system using height seed initialization for extraction of digital elevation models (DEMs) and related methods
JP7468681B2 (ja) * 2020-10-05 2024-04-16 日本電信電話株式会社 学習方法、学習装置、及びプログラム
CN113204010B (zh) * 2021-03-15 2021-11-02 锋睿领创(珠海)科技有限公司 非视域目标检测方法、装置和存储介质
CN113450295B (zh) * 2021-06-15 2022-11-15 浙江大学 一种基于差分对比学习的深度图合成方法
CN113628190B (zh) * 2021-08-11 2024-03-15 跨维(深圳)智能数字科技有限公司 一种深度图去噪方法、装置、电子设备及介质
JP7727563B2 (ja) * 2022-01-20 2025-08-21 京セラ株式会社 深度情報処理装置、深度分布推定方法、深度分布検出システム及び学習済みモデル生成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109640A (ja) 2006-09-28 2008-05-08 Sony Corp 予測係数演算装置および方法、画像データ演算装置および方法、プログラム、並びに記録媒体
JP2014199584A (ja) 2013-03-29 2014-10-23 キヤノン株式会社 画像処理装置および画像処理方法
US20160239725A1 (en) 2015-02-12 2016-08-18 Mitsubishi Electric Research Laboratories, Inc. Method for Denoising Time-of-Flight Range Images

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295546B2 (en) * 2009-01-30 2012-10-23 Microsoft Corporation Pose tracking pipeline
US8213680B2 (en) * 2010-03-19 2012-07-03 Microsoft Corporation Proxy training data for human body tracking
JP5695186B2 (ja) * 2010-05-11 2015-04-01 トムソン ライセンシングThomson Licensing 3次元ビデオのコンフォートノイズ及びフィルム粒子処理
US8711206B2 (en) * 2011-01-31 2014-04-29 Microsoft Corporation Mobile camera localization using depth maps
JP5976441B2 (ja) 2011-08-03 2016-08-23 東芝メディカルシステムズ株式会社 超音波プローブ及び超音波診断装置
US9031356B2 (en) * 2012-03-20 2015-05-12 Dolby Laboratories Licensing Corporation Applying perceptually correct 3D film noise
US9613298B2 (en) 2014-06-02 2017-04-04 Microsoft Technology Licensing, Llc Tracking using sensor data
US10460158B2 (en) * 2014-06-19 2019-10-29 Kabushiki Kaisha Toshiba Methods and systems for generating a three dimensional representation of a human body shape
US10719727B2 (en) 2014-10-01 2020-07-21 Apple Inc. Method and system for determining at least one property related to at least part of a real environment
US10110881B2 (en) 2014-10-30 2018-10-23 Microsoft Technology Licensing, Llc Model fitting from raw time-of-flight images
CN105657402B (zh) * 2016-01-18 2017-09-29 深圳市未来媒体技术研究院 一种深度图恢复方法
CN105741267B (zh) * 2016-01-22 2018-11-20 西安电子科技大学 聚类引导深度神经网络分类的多源图像变化检测方法
US9460557B1 (en) * 2016-03-07 2016-10-04 Bao Tran Systems and methods for footwear fitting
US9996981B1 (en) * 2016-03-07 2018-06-12 Bao Tran Augmented reality system
US9959455B2 (en) * 2016-06-30 2018-05-01 The United States Of America As Represented By The Secretary Of The Army System and method for face recognition using three dimensions
CN106251303A (zh) * 2016-07-28 2016-12-21 同济大学 一种使用深度全卷积编码‑解码网络的图像降噪方法
EP3293705B1 (en) * 2016-09-12 2022-11-16 Dassault Systèmes 3d reconstruction of a real object from a depth map
EP3343502B1 (en) * 2016-12-28 2019-02-20 Dassault Systèmes Depth sensor noise
US10796200B2 (en) * 2018-04-27 2020-10-06 Intel Corporation Training image signal processors using intermediate loss functions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109640A (ja) 2006-09-28 2008-05-08 Sony Corp 予測係数演算装置および方法、画像データ演算装置および方法、プログラム、並びに記録媒体
JP2014199584A (ja) 2013-03-29 2014-10-23 キヤノン株式会社 画像処理装置および画像処理方法
US20160239725A1 (en) 2015-02-12 2016-08-18 Mitsubishi Electric Research Laboratories, Inc. Method for Denoising Time-of-Flight Range Images

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ankur Handa et al.,"A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM",2014 IEEE International Conference on Robotics and Automation (ICRA),米国,IEEE,2014年05月31日,pp.1524-1531
Edward Johns et al.,"Deep learning a grasp function for grasping under gripper pose uncertainty",2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),米国,IEEE,2016年10月09日,pp.4461-4468
Michael J. Landau et al.,"Simulating Kinect Infrared and Depth Images",IEEE Transactions on Cybernetics,米国,IEEE,2015年11月13日,Vol.46, No.12,p.3018-3031
金子 将也、外4名,"決定木を用いた距離画像からの高速なエッジ検出",SSII2014 第20回画像センシングシンポジウム 講演論文集,日本,画像センシング技術研究会,2014年06月11日,pp.1-8

Also Published As

Publication number Publication date
EP3343502A1 (en) 2018-07-04
JP2018109976A (ja) 2018-07-12
CN108253941B (zh) 2021-11-12
US10586309B2 (en) 2020-03-10
US20180182071A1 (en) 2018-06-28
EP3343502B1 (en) 2019-02-20
CN108253941A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
JP7078392B2 (ja) 深度センサノイズ
US20250191395A1 (en) Systems and methods for extracting information about objects from scene information
US11893690B2 (en) 3D reconstruction with smooth maps
US11043026B1 (en) Systems and methods for processing 2D/3D data for structures of interest in a scene and wireframes generated therefrom
CN107067473B (zh) 用于对3d建模对象进行重构的方法、装置及系统
US9886530B2 (en) Computing camera parameters
JP7521894B2 (ja) メッシュからの特徴木の抽出
KR20160070712A (ko) 3d 모델링된 객체 텍스처링
JP2022036024A (ja) パラメータ化された3dモデルを出力するニューラルネットワーク
JP7505880B2 (ja) 生メッシュからの構造化3dモデルの生成
JP2022036023A (ja) 3dモデルを出力する変分オートエンコーダ
JP2022179417A (ja) Cadモデルのパラメータ化
JP7294788B2 (ja) 3d配置のタイプに応じた2d画像の分類
EP4162443A1 (en) Three-dimensional map inconsistency detection using neural network
CN116934998A (zh) 从图像进行3d重建
US20240028784A1 (en) Segmenting a building scene
Nešić et al. A Generative Model for the Creation of Large Synthetic Image Datasets Used for Distance Estimation
Wiemann Automatic Generation of 3D Polygon Maps for Mobile Robots
Campos Feature-Based 3D Level Set Morphing
Briassoulis 3D image acquisition and NURBS based geometry modelling of natural objects

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7078392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250