JP7451946B2 - 制御装置 - Google Patents
制御装置 Download PDFInfo
- Publication number
- JP7451946B2 JP7451946B2 JP2019202587A JP2019202587A JP7451946B2 JP 7451946 B2 JP7451946 B2 JP 7451946B2 JP 2019202587 A JP2019202587 A JP 2019202587A JP 2019202587 A JP2019202587 A JP 2019202587A JP 7451946 B2 JP7451946 B2 JP 7451946B2
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- signal
- noise
- processing unit
- noise reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 claims description 128
- 230000009467 reduction Effects 0.000 claims description 68
- 239000000725 suspension Substances 0.000 claims description 24
- 230000000306 recurrent effect Effects 0.000 claims description 14
- 238000013528 artificial neural network Methods 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 claims description 11
- 230000006403 short-term memory Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000002542 deteriorative effect Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 210000000352 storage cell Anatomy 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
- B60G17/0182—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/019—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/25—Stroke; Height; Displacement
- B60G2400/252—Stroke; Height; Displacement vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/44—Vibration noise suppression
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Vehicle Body Suspensions (AREA)
- Feedback Control In General (AREA)
Description
図1は、実施形態にかかる制御装置100の構成を示した例示的かつ模式的なブロック図である。
なお、上述した実施形態では、センサ30が車高センサであり、アクチュエータ50がサスペンションアクチュエータである構成が例示されている。しかしながら、本開示にかかる技術は、センサによる検出結果を利用してアクチュエータを制御する構成であれば、どのような構成にも適用することが可能である。すなわち、本開示にかかる技術は、車高センサ以外の車載センサによる検出結果を利用してサスペンションアクチュエータ以外の車載アクチュエータを制御する構成にはもちろん、車両以外の分野の一般的なセンサによる検出結果を利用して一般的なアクチュエータを制御する構成にも適用することが可能である。
50 アクチュエータ(サスペンションアクチュエータ)
100、700 制御装置
110 信号処理部
120、720 ノイズ低減処理部
121、721 ノイズ低減ネットワーク
130 制御処理部
Claims (7)
- 時系列データを検出するセンサからの出力に基づく、ノイズを含んだセンサ信号を取得し、前記センサ信号に対応した前記ノイズを含む第1信号と、前記ノイズが除去された前記第1信号を示す第2信号と、の対応関係を学習するようにトレーニングされたリカレントニューラルネットワークに基づいて、前記センサ信号に含まれる前記ノイズを低減するノイズ低減処理部と、
前記ノイズ低減処理部からの出力に基づいてアクチュエータを制御する制御処理部と、
を備え、
前記ノイズが除去された前記第1信号を示す前記第2信号は、実測値の位相に対する推定値の位相の遅れが抑制されている、
制御装置。 - 前記センサは、車両の状態量に関する前記時系列データを検出する状態量センサを含む、
請求項1に記載の制御装置。 - 前記状態量センサは、前記車両の前記状態量としての前記車両の上下方向の変位に関する前記時系列データを検出する変位センサを含み、
前記アクチュエータは、前記車両のサスペンションを制御するサスペンションアクチュエータを含む、
請求項2に記載の制御装置。 - 前記センサと前記ノイズ低減処理部との間に設けられ、前記センサからの出力に対する信号処理を実行する信号処理部をさらに備え、
前記ノイズ低減処理部は、前記信号処理部からの出力を前記センサ信号として取得し、当該センサ信号に含まれる、少なくとも前記センサによる前記時系列データの検出時に発生する前記ノイズおよび前記信号処理部による前記信号処理に起因して発生する前記ノイズを低減する、
請求項1~3のうちいずれか1項に記載の制御装置。 - 前記信号処理部は、前記信号処理として微分処理または積分処理を実行する、
請求項4に記載の制御装置。 - 前記ノイズ低減処理部と前記制御処理部との間に設けられ、前記ノイズ低減処理部から出力される前記ノイズが低減された前記センサ信号に対する信号処理を実行する信号処理部をさらに備え、
前記ノイズ低減処理部は、前記センサからの出力を前記センサ信号として取得し、当該センサ信号に含まれる、少なくとも前記センサによる前記時系列データの検出時に発生する前記ノイズを低減し、
前記制御処理部は、前記ノイズ低減処理部からの出力に応じた前記信号処理部からの出力に基づいて、前記アクチュエータを制御する、
請求項1~3のうちいずれか1項に記載の制御装置。 - 前記リカレントニューラルネットワークは、LSTM(Long short-term memory)に基づくSeq2Seq(Sequence to Sequence)モデルにより構成されている、
請求項1~6のうちいずれか1項に記載の制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019202587A JP7451946B2 (ja) | 2019-11-07 | 2019-11-07 | 制御装置 |
US17/081,430 US11951791B2 (en) | 2019-11-07 | 2020-10-27 | Controller |
DE102020128323.7A DE102020128323A1 (de) | 2019-11-07 | 2020-10-28 | Steuerungsvorrichtung |
CN202011215294.1A CN112776553A (zh) | 2019-11-07 | 2020-11-04 | 控制装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019202587A JP7451946B2 (ja) | 2019-11-07 | 2019-11-07 | 制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021077030A JP2021077030A (ja) | 2021-05-20 |
JP7451946B2 true JP7451946B2 (ja) | 2024-03-19 |
Family
ID=75584126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019202587A Active JP7451946B2 (ja) | 2019-11-07 | 2019-11-07 | 制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11951791B2 (ja) |
JP (1) | JP7451946B2 (ja) |
CN (1) | CN112776553A (ja) |
DE (1) | DE102020128323A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4239420A1 (de) * | 2022-03-03 | 2023-09-06 | Siemens Aktiengesellschaft | Verfahren zum betrieb einer industriellen steuerungsanlage und industrielle steuerungsanlage |
CN116860124B (zh) * | 2023-09-04 | 2024-05-03 | 深圳市坤巨实业有限公司 | 一种触摸屏的噪声控制方法及系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019087500A1 (ja) | 2017-11-02 | 2019-05-09 | Tdk株式会社 | ニューロモルフィック素子を含むアレイ装置およびニューラルネットワークシステム |
JP2019135120A (ja) | 2018-02-05 | 2019-08-15 | トヨタ自動車株式会社 | 車両用制振制御装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6137886A (en) * | 1994-07-18 | 2000-10-24 | Cooper Tire & Rubber Company | Active vibration control method and apparatus |
EP3343502B1 (en) | 2016-12-28 | 2019-02-20 | Dassault Systèmes | Depth sensor noise |
WO2020018394A1 (en) * | 2018-07-14 | 2020-01-23 | Moove.Ai | Vehicle-data analytics |
DE102018222761A1 (de) * | 2018-12-21 | 2020-06-25 | Volkswagen Aktiengesellschaft | Verfahren zur Authentifizierung eines Fahrzeugnutzers mittels der Bewegungsdaten eines mobilen elektronischen Identifikationsgebers |
KR102129904B1 (ko) * | 2019-01-04 | 2020-07-06 | 주식회사 만도 | 서스펜션 제어 시스템, 서스펜션 제어 방법 및 서스펜션 제어 장치 |
JP6605170B1 (ja) | 2019-05-15 | 2019-11-13 | 株式会社小野測器 | 学習装置及び推定装置 |
US20220187847A1 (en) * | 2019-11-05 | 2022-06-16 | Strong Force Vcn Portfolio 2019, Llc | Robot Fleet Management for Value Chain Networks |
-
2019
- 2019-11-07 JP JP2019202587A patent/JP7451946B2/ja active Active
-
2020
- 2020-10-27 US US17/081,430 patent/US11951791B2/en active Active
- 2020-10-28 DE DE102020128323.7A patent/DE102020128323A1/de active Pending
- 2020-11-04 CN CN202011215294.1A patent/CN112776553A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019087500A1 (ja) | 2017-11-02 | 2019-05-09 | Tdk株式会社 | ニューロモルフィック素子を含むアレイ装置およびニューラルネットワークシステム |
JP2019135120A (ja) | 2018-02-05 | 2019-08-15 | トヨタ自動車株式会社 | 車両用制振制御装置 |
Non-Patent Citations (1)
Title |
---|
Alireza Ghods, Diane J. Cook,Activity2Vec: Learning ADL Embeddings from Sensor Data with a Sequence-to-Sequence Model,2019 KDD workshop on Applied data science in Healthcare,米国,Cornell University,2019年07月12日,https://arxiv.org/pdf/1907.05597.pdf |
Also Published As
Publication number | Publication date |
---|---|
US20210138862A1 (en) | 2021-05-13 |
JP2021077030A (ja) | 2021-05-20 |
DE102020128323A1 (de) | 2021-05-12 |
US11951791B2 (en) | 2024-04-09 |
CN112776553A (zh) | 2021-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7451946B2 (ja) | 制御装置 | |
US11912283B2 (en) | Detection of a hands-off condition through machine learning | |
CN101878360A (zh) | 用于消减发动机引起的噪音和振动的开环控制方法 | |
WO2016120019A1 (en) | Loose wheel detection | |
JP5955465B2 (ja) | 車両のステアリングコラムの操舵角を求める自動車、システム及び方法 | |
CN105074649A (zh) | 用于惯性传感器偏移补偿的系统和方法 | |
CN108454696A (zh) | 用于确定机电转向致动器中的动摩擦的方法和设备 | |
JP6999119B2 (ja) | Can基盤の通信ネットワークにおける信号検出方法および装置 | |
CN110132271B (zh) | 一种自适应卡尔曼滤波姿态估计算法 | |
JP6679801B1 (ja) | 保舵判定装置、ステアリング制御装置、及びステアリング装置 | |
JP6663072B1 (ja) | 保舵判定装置、ステアリング制御装置、及びステアリング装置 | |
El Youssfi et al. | Vehicle lateral dynamics estimation using unknown input observer | |
CN108985167A (zh) | 改进的rls自适应滤波的陀螺去噪方法 | |
CN110316227A (zh) | 重载列车运行状态识别方法及装置 | |
US9977048B2 (en) | Method and device for examining signals | |
US7392116B2 (en) | Method for operating a chassis regulating system and a device to carry out the method | |
CN110166023A (zh) | 基于滤波器系数的路面表征 | |
DE102007055639A1 (de) | Vorrichtung zur Ermittlung eines aktuellen Fahrzeugzustands | |
JPH04504833A (ja) | 車両における車輪滑りの制御方法 | |
CN110525442B (zh) | 坡度检测方法、系统及车辆 | |
Gao et al. | Longitudinal velocity estimation of electric vehicle with 4 in-wheel motors | |
Börner et al. | A sensor and process fault detection system for vehicle suspension systems | |
JP2008122197A (ja) | 状態量演算装置 | |
US20230001760A1 (en) | System and method for determining a displacement velocity signal, and active wheel suspension | |
CN116923025B (zh) | 半主动悬架侧倾控制方法、装置、介质、电子设备和车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7451946 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |