JP7077965B2 - Compositions for optical materials - Google Patents

Compositions for optical materials Download PDF

Info

Publication number
JP7077965B2
JP7077965B2 JP2018568128A JP2018568128A JP7077965B2 JP 7077965 B2 JP7077965 B2 JP 7077965B2 JP 2018568128 A JP2018568128 A JP 2018568128A JP 2018568128 A JP2018568128 A JP 2018568128A JP 7077965 B2 JP7077965 B2 JP 7077965B2
Authority
JP
Japan
Prior art keywords
composition
mass
compound
optical material
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018568128A
Other languages
Japanese (ja)
Other versions
JPWO2018150951A1 (en
Inventor
慶彦 西森
陽介 今川
紘平 竹村
裕 堀越
良亮 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2018150951A1 publication Critical patent/JPWO2018150951A1/en
Application granted granted Critical
Publication of JP7077965B2 publication Critical patent/JP7077965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D331/00Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only ring hetero atom
    • C07D331/02Three-membered rings
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Description

本発明は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター、及び、接着剤等の光学部品、中でも眼鏡用プラスチックレンズ等の光学レンズに用いられる光学材料用組成物に関するものである。 The present invention relates to optical components such as plastic lenses, prisms, optical fibers, information recording substrates, filters, and adhesives, and particularly compositions for optical materials used in optical lenses such as plastic lenses for spectacles.

光学材料、中でも眼鏡レンズに要求されるプラスチック材料の主な性能は、耐熱性、低比重、高透明性および低黄色度、ならびに高屈折率および高アッベ数などの光学性能であり、近年、高屈折率と高アッベ数を達成する為にポリエピスルフィド化合物を含有する光学材料用重合性組成物が提案されている(特許文献1~3)。
また、眼鏡レンズ等の光学レンズには意匠性、耐久性、及び光学特性の向上を目的として、染色、ハードコート、及び、反射防止コートが施される。それらを施す工程において光学材料は高温にさらされ、熱変形に起因する問題が起こることがある。そのため光学材料の耐熱性の向上が望まれている。光学材料の高屈折率化や色調安定性を向上する目的で光学材料用組成物に種々のコモノマーの添加が行われている。
しかしながら、コモノマーの添加によって重合後に得られる光学材料の架橋密度が低下して耐熱性が悪化する傾向があり、耐熱性の面からコモノマーの添加量が限られ、光学材料の特性の向上可能な範囲が限定されてしまう課題がある。基準となる耐熱性を向上することでコモノマーの添加許容量を増加させ、広範な物性を持つ光学材料を設計可能となる光学材料用組成物が望まれる。
The main performances of optical materials, especially plastic materials required for spectacle lenses, are heat resistance, low specific gravity, high transparency and low yellowness, and high refractive index and high Abbe number. In order to achieve a refractive index and a high Abbe number, polymerizable compositions for optical materials containing a polyepisulfide compound have been proposed (Patent Documents 1 to 3).
Further, optical lenses such as spectacle lenses are dyed, hard-coated, and anti-reflection coated for the purpose of improving designability, durability, and optical characteristics. In the process of applying them, the optical material is exposed to high temperatures, which can cause problems due to thermal deformation. Therefore, it is desired to improve the heat resistance of the optical material. Various comonomers are added to the composition for an optical material for the purpose of increasing the refractive index of the optical material and improving the color tone stability.
However, the addition of comonomer tends to reduce the crosslink density of the optical material obtained after polymerization and deteriorate the heat resistance, and the amount of comonomer added is limited from the viewpoint of heat resistance, and the characteristics of the optical material can be improved. There is a problem that is limited. A composition for an optical material is desired, which can increase the allowable amount of comonomer addition by improving the standard heat resistance and can design an optical material having a wide range of physical characteristics.

特開平10-298287号公報Japanese Unexamined Patent Publication No. 10-298287 特開2001-002933号公報Japanese Unexamined Patent Publication No. 2001-002933 特開2010-242093号公報Japanese Unexamined Patent Publication No. 2010-242093

耐熱性が向上した、広範な物性を持つ光学材料を設計可能となる光学材料用組成物を提供することが望まれている。 It is desired to provide a composition for an optical material capable of designing an optical material having an improved heat resistance and having a wide range of physical characteristics.

本発明者らは、下記式(1)で表される化合物及びポリチオール(a)を含有する特定の組成物により広範な物性を持つ光学材料を設計可能であることを見出した。すなわち、本発明は以下の通りである。 The present inventors have found that it is possible to design an optical material having a wide range of physical properties by a specific composition containing a compound represented by the following formula (1) and polythiol (a). That is, the present invention is as follows.

[1] 下記式(1)で表される化合物(A)及びポリチオール(a)を含有し、1,2,3,5,6-ペンタチエパン(b)を含有しない、光学材料用組成物。

Figure 0007077965000001
[2] 化合物(A)の含有量が、組成物総量に対して、20~80質量%である、[1]に記載の組成物。
[3] さらに硫黄を含有する、[1]または[2]に記載の組成物。
[4] さらに下記式(2)で表される化合物(B)を含有する、[1]~[3]のいずれかに記載の組成物。
Figure 0007077965000002
(式中、mは0~4の整数を示し、nは0~2の整数を示す。)
[5] 化合物(B)の含有量が、組成物総量に対して、0~70質量%である、[4]に記載の組成物
[6] ポリチオール(a)は、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、及びチイランメタンチオールから選択される少なくとも1種である、[1]~[5]のいずれかに記載の組成物。
[7] 組成物総量に対して、
化合物(A) 20~80質量%;
化合物(B) 0~70質量%;
ポリチオール(a) 0.1~20質量%;及び
硫黄 0~25質量%;
を含有する[1]~[6]のいずれかに記載の組成物。
[7a] 組成物総量に対して、
化合物(A) 20~80質量%;
化合物(B) 0~70質量%;
ポリチオール(a) 0.1~20質量%;
硫黄 0~25質量%;
重合触媒 0~10質量%;及び
重合調整剤 0~5質量%
を含有する[1]~[7]のいずれかに記載の組成物。
[8] [1]~[7]、[7a]のいずれかに記載の組成物を硬化した光学材料。
[9] [8]に記載の光学材料を含む光学レンズ。 [1] A composition for an optical material containing the compound (A) and the polythiol (a) represented by the following formula (1) and not containing 1,2,3,5,6-pentathiepan (b).
Figure 0007077965000001
[2] The composition according to [1], wherein the content of the compound (A) is 20 to 80% by mass with respect to the total amount of the composition.
[3] The composition according to [1] or [2], which further contains sulfur.
[4] The composition according to any one of [1] to [3], further containing the compound (B) represented by the following formula (2).
Figure 0007077965000002
(In the formula, m indicates an integer of 0 to 4, and n indicates an integer of 0 to 2.)
[5] The composition according to [4], wherein the content of the compound (B) is 0 to 70% by mass with respect to the total amount of the composition .
[6] Polythiol (a) is 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldisulfanyl) methanethiol, bis (2-mercaptoethyl) sulfide, 2,5. -Bis (mercaptomethyl) -1,4-ditian, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9 -Trithiaundecane, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, 5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Tri From thiaundecane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, tetramercaptopentaerythritol, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, and thiranmethanethiol The composition according to any one of [1] to [5], which is at least one selected.
[7] With respect to the total amount of the composition
Compound (A) 20-80% by mass;
Compound (B) 0-70% by mass;
Polythiol (a) 0.1 to 20% by mass; and sulfur 0 to 25% by mass;
The composition according to any one of [1] to [6] containing.
[7a] With respect to the total amount of the composition
Compound (A) 20-80% by mass;
Compound (B) 0-70% by mass;
Polythiol (a) 0.1 to 20% by mass;
Sulfur 0-25% by mass;
Polymerization catalyst 0-10% by mass; and polymerization modifier 0-5% by mass
The composition according to any one of [1] to [7] containing.
[8] An optical material obtained by curing the composition according to any one of [1] to [7] and [7a].
[9] An optical lens containing the optical material according to [8].

本発明の光学材料用組成物は以下の一以上の効果を有する。
(1)本発明の光学材料用組成物を用いることで耐熱性が向上し、コモノマーの添加許容量を増加させ、広範な物性を持つ光学材料を設計可能となる。
(2)優れた耐熱性および高屈折率を両立する光学材料が得られ得る。
The composition for an optical material of the present invention has one or more of the following effects.
(1) By using the composition for an optical material of the present invention, heat resistance is improved, the allowable amount of comonomer added is increased, and an optical material having a wide range of physical characteristics can be designed.
(2) An optical material having both excellent heat resistance and a high refractive index can be obtained.

以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples, but the present invention is not limited to the embodiments and examples shown below, and is arbitrary as long as it does not deviate from the gist of the present invention. Can be changed to.

本発明の一形態は、下記式(1)で表される化合物(A)及びポリチオール(a)を含有し、1,2,3,5,6-ペンタチエパン(b)を含有しない、光学材料用組成物に関する。

Figure 0007077965000003
本形態の光学材料用組成物は、必要に応じて、化合物(B)、硫黄、および重合触媒などの他の成分を含有する。
以下、各構成要素について詳細に説明する。One embodiment of the present invention is for an optical material containing the compound (A) and the polythiol (a) represented by the following formula (1) and not containing 1,2,3,5,6-pentathiepan (b). Regarding the composition.
Figure 0007077965000003
The composition for optical materials of this embodiment contains other components such as compound (B), sulfur, and a polymerization catalyst, if necessary.
Hereinafter, each component will be described in detail.

[化合物(A)]
化合物(A)は、下記式(1)で表される4つのチオエポキシ基を有するチオエーテル化合物であり、光学材料の屈折率と耐熱性を高める効果がある。

Figure 0007077965000004
この化合物の入手方法は特に限定されないが、例えば、テトラメルカプトペンタエリスリトールを原料として特開平09-110979記載の方法にて合成可能であり好適に用いることができる。[Compound (A)]
The compound (A) is a thioether compound having four thioepoxy groups represented by the following formula (1), and has an effect of increasing the refractive index and heat resistance of the optical material.
Figure 0007077965000004
The method for obtaining this compound is not particularly limited, but for example, it can be synthesized by the method described in JP-A-09-110979 using tetramercaptopentaerythritol as a raw material and can be preferably used.

光学材料用組成物中の化合物(A)の割合は、組成物総量に対して、0.1~99.5質量%であり、好ましくは3~90質量%、より好ましくは5~90質量%、さらに好ましくは10~90質量%、一層好ましくは20~90質量%であり、特に好ましくは20~80質量%であり、最も好ましくは30~80質量%である。この範囲にあることで、十分な耐熱性向上効果を得ることができる。 The ratio of the compound (A) in the composition for optical materials is 0.1 to 99.5% by mass, preferably 3 to 90% by mass, and more preferably 5 to 90% by mass with respect to the total amount of the composition. It is more preferably 10 to 90% by mass, still more preferably 20 to 90% by mass, particularly preferably 20 to 80% by mass, and most preferably 30 to 80% by mass. Within this range, a sufficient effect of improving heat resistance can be obtained.

[ポリチオール(a)]
ポリチオール(a)は、1分子あたりメルカプト基を2つ以上有するチオール化合物である。ポリチオール(a)は本発明の光学材料用組成物から得られる樹脂の加熱時の色調を改善させる効果がある。
本発明において使用されるポリチオールは特に限定されないが、色調改善効果が高いことから、好ましい具体例として、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、及びチイランメタンチオールが挙げられ、特にビス(2-メルカプトエチル)スルフィド、1,2,6,7-テトラメルカプト-4-チアへプタンが好ましい。これらは市販品や公知の方法により合成した物が使用可能であり、また2種以上を併用することができる。これらは市販品や公知の方法により合成した物が使用可能であり、また2種以上を併用することができる。
[Polythiol (a)]
Polythiol (a) is a thiol compound having two or more mercapto groups per molecule. Polythiol (a) has an effect of improving the color tone of the resin obtained from the composition for optical materials of the present invention during heating.
The polythiol used in the present invention is not particularly limited, but since it has a high color tone improving effect, preferred specific examples thereof include 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldi). Sulfanyl) methanethiol, bis (2-mercaptoethyl) sulfide, 2,5-bis (mercaptomethyl) -1,4-ditian, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4, 8-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, 5,7- Dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, tetramercaptopentaerythritol, 1,3-bis (mercaptomethyl) benzene , 1,4-bis (mercaptomethyl) benzene, and thilane methanethiol, with bis (2-mercaptoethyl) sulfide, 1,2,6,7-tetramercapto-4-thiaheptane being particularly preferred. As these, commercially available products or products synthesized by a known method can be used, and two or more types can be used in combination. As these, commercially available products or products synthesized by a known method can be used, and two or more types can be used in combination.

光学材料用組成物においてポリチオール(a)の割合は、組成物総量に対して、好ましくは0.1~25質量%、より好ましくは0.1~20質量%であり、さらに好ましくは0.5~20質量%であり、特に好ましくは0.5~15質量%であり、最も好ましくは0.5~10質量%である。この範囲にあることで、色調安定効果と耐熱性とのバランスがよくなる。 In the composition for optical materials, the proportion of polythiol (a) is preferably 0.1 to 25% by mass, more preferably 0.1 to 20% by mass, still more preferably 0.5, based on the total amount of the composition. It is about 20% by mass, particularly preferably 0.5 to 15% by mass, and most preferably 0.5 to 10% by mass. Within this range, the balance between the color tone stabilizing effect and the heat resistance is improved.

[1,2,3,5,6-ペンタチエパン(b)]
本発明の光学材料用組成物は1,2,3,5,6-ペンタチエパン(b)を含有しない。1,2,3,5,6-ペンタチエパン(b)は、下記式(b)で表される化合物である。

Figure 0007077965000005
なお、「1,2,3,5,6-ペンタチエパン(b)を含有しない」とは、1,2,3,5,6-ペンタチエパン(b)を光学材料用組成物に意図的に添加しないことを意味し、以下の態様を含む:
1)本発明の光学材料用組成物中に1,2,3,5,6-ペンタチエパン(b)が全く存在しない;及び
2)本発明の光学材料用組成物中に1,2,3,5,6-ペンタチエパン(b)が実質的に存在しない。
「1,2,3,5,6-ペンタチエパン(b)が実質的に存在しない」とは、典型的には、高速液体クロマトグラフィー(HPLC)による分析において、1,2,3,5,6-ペンタチエパン(b)の含有量が、組成物総量に対して1ppm未満であることをいい、好ましくは、1,2,3,5,6-ペンタチエパン(b)の存在が検出されない(検出限界以下である)ことをいう。HPLCによる分析は、例えば下記方法により行うことができる。
[HPLC分析方法]
カラムオーブン温度:40℃
カラム:一般財団法人化学物質評価研究機構製 VP-ODS、カラムサイズ4.6φ×150mm)
溶離液:アセトニトリル/蒸留水(容積比)=50/50
溶液調製:サンプル5mgを0.1%ギ酸溶液(アセトニトリル溶媒)10mlで希釈し分析試料とする。[1,2,3,5,6-pentathiepan (b)]
The composition for optical materials of the present invention does not contain 1,2,3,5,6-pentathiepan (b). 1,2,3,5,6-pentathiepan (b) is a compound represented by the following formula (b).
Figure 0007077965000005
In addition, "does not contain 1,2,3,5,6-pentathiepan (b)" means that 1,2,3,5,6-pentathiepan (b) is not intentionally added to the composition for optical materials. Means that, including the following aspects:
1) No 1,2,3,5,6-pentathiepan (b) is present in the composition for optical materials of the present invention; and 2) 1,2,3 in the composition for optical materials of the present invention. 5,6-Pentatiepane (b) is virtually absent.
"The absence of 1,2,3,5,6-pentathiepan (b)" is typically 1,2,3,5,6 in high performance liquid chromatography (HPLC) analysis. -It means that the content of pentatiepan (b) is less than 1 ppm with respect to the total amount of the composition, preferably 1,2,3,5,6-the presence of pentatiepan (b) is not detected (below the detection limit). Is). The analysis by HPLC can be performed by, for example, the following method.
[HPLC analysis method]
Column oven temperature: 40 ° C
Column: VP-ODS manufactured by Chemicals Evaluation and Research Institute, column size 4.6φ x 150mm)
Eluent: acetonitrile / distilled water (volume ratio) = 50/50
Solution preparation: Dilute 5 mg of the sample with 10 ml of 0.1% formic acid solution (acetonitrile solvent) to prepare an analytical sample.

1,2,3,5,6-ペンタチエパン(b)を含有せず、化合物(A)とポリチオール(a)とを含有する構成とすることにより、耐熱性が向上した硬化物が得られる。 A cured product having improved heat resistance can be obtained by using a structure that does not contain 1,2,3,5,6-pentathiepan (b) but contains the compound (A) and the polythiol (a).

[化合物(B)]
光学材料用組成物は必要に応じて化合物(B)を含んでもよい。化合物(B)は、下記式(2)で表される、2つのエピスルフィド基を有するエピスルフィド化合物である。化合物(B)は化合物(A)と共重合可能であり、化合物(A)とともに用いることで硬化反応性を高める効果がある。

Figure 0007077965000006
(式中、mは0~4の整数を示し、nは0~2の整数を示す。)[Compound (B)]
The composition for an optical material may contain compound (B), if necessary. Compound (B) is an episulfide compound having two episulfide groups represented by the following formula (2). The compound (B) can be copolymerized with the compound (A), and when used together with the compound (A), it has an effect of enhancing the curing reactivity.
Figure 0007077965000006
(In the formula, m indicates an integer of 0 to 4, and n indicates an integer of 0 to 2.)

中でもビス(β-エピチオプロピル)スルフィドおよびビス(β-エピチオプロピル)ジスルフィドが好ましく、ビス(β-エピチオプロピル)スルフィドが特に好ましい。ビス(β-エピチオプロピル)スルフィドは上記式(2)においてm=n=0の化合物に相当し、ビス(β-エピチオプロピル)ジスルフィドは上記式(2)においてm=0かつn=1である化合物に相当する。 Of these, bis (β-epithiopropyl) sulfide and bis (β-epithiopropyl) disulfide are preferable, and bis (β-epithiopropyl) sulfide is particularly preferable. The bis (β-epithiopropyl) sulfide corresponds to the compound of m = n = 0 in the above formula (2), and the bis (β-epithiopropyl) disulfide corresponds to m = 0 and n = 1 in the above formula (2). Corresponds to the compound that is.

光学材料用組成物中の化合物(B)の含有量は、組成物総量に対して、0~70質量%であり、好ましくは0~60質量%、より好ましくは0~50質量%である。この範囲にあることで、耐熱性を確保しつつ、硬化反応性を向上し得る。 The content of the compound (B) in the composition for an optical material is 0 to 70% by mass, preferably 0 to 60% by mass, and more preferably 0 to 50% by mass with respect to the total amount of the composition. Within this range, the curing reactivity can be improved while ensuring heat resistance.

化合物(A)と化合物(B)のと質量比(化合物(A):化合物(B))は、20:80~100:0であることが好ましく、30:70~100:0であることがより好ましく、40:60~100:0であることがさらに好ましい。この範囲にあることで、高い屈折率を維持しつつ耐熱性を向上し得る。 The mass ratio of compound (A) to compound (B) (compound (A): compound (B)) is preferably 20:80 to 100: 0, and preferably 30:70 to 100: 0. More preferably, it is more preferably 40:60 to 100: 0. Within this range, heat resistance can be improved while maintaining a high refractive index.

[硫黄]
光学材料用組成物は必要に応じて硫黄を含んでもよい。硫黄は本発明の光学材料用組成物から得られる光学材料(樹脂)の屈折率を向上させる効果がある。
本発明で用いる硫黄の形状はいかなる形状でもかまわない。具体的には、硫黄としては、微粉硫黄、コロイド硫黄、沈降硫黄、結晶硫黄、昇華硫黄等が挙げられ、溶解速度の観点から好ましくは、粒子の細かい微粉硫黄である。
本発明に用いる硫黄の粒径(直径)は10メッシュより小さいことが好ましい。硫黄の粒径が10メッシュより大きい場合、硫黄が完全に溶解しにくい。硫黄の粒径は、30メッシュより小さいことがより好ましく、60メッシュより小さいことが最も好ましい。
本発明に用いる硫黄の純度は、好ましくは98%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.5%以上であり、最も好ましくは99.9%以上である。硫黄の純度が98%以上であると、98%未満である場合に比べて、得られる光学材料の色調がより改善する。
上記条件を満たす硫黄は、市販品を容易に入手可能であり、好適に用いることができる。
[sulfur]
The composition for optical materials may contain sulfur, if necessary. Sulfur has the effect of improving the refractive index of the optical material (resin) obtained from the composition for optical materials of the present invention.
The shape of sulfur used in the present invention may be any shape. Specifically, examples of sulfur include fine powder sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimation sulfur, and the like, and from the viewpoint of dissolution rate, fine powder sulfur is preferable.
The particle size (diameter) of sulfur used in the present invention is preferably smaller than 10 mesh. When the particle size of sulfur is larger than 10 mesh, it is difficult for sulfur to dissolve completely. The particle size of sulfur is more preferably smaller than 30 mesh and most preferably smaller than 60 mesh.
The purity of sulfur used in the present invention is preferably 98% or more, more preferably 99.0% or more, still more preferably 99.5% or more, and most preferably 99.9% or more. When the purity of sulfur is 98% or more, the color tone of the obtained optical material is further improved as compared with the case where it is less than 98%.
Sulfur satisfying the above conditions is easily available on the market and can be preferably used.

光学材料用組成物において硫黄の割合は、組成物総量に対して、0~40質量%(例えば1~40質量%)であり、好ましくは0~30質量%(例えば5~30質量%、10~30質量%)、より好ましくは0~25質量%(例えば5~25質量%)であり、特に好ましくは0~20質量%(例えば5~20質量%)である。この範囲にあることで、屈折率向上効果と溶解性のバランスに優れるためである。 The proportion of sulfur in the composition for optical materials is 0 to 40% by mass (for example, 1 to 40% by mass), preferably 0 to 30% by mass (for example, 5 to 30% by mass, 10) with respect to the total amount of the composition. ~ 30% by mass), more preferably 0 to 25% by mass (for example, 5 to 25% by mass), and particularly preferably 0 to 20% by mass (for example, 5 to 20% by mass). This is because the range is excellent in the balance between the effect of improving the refractive index and the solubility.

好ましい光学材料用組成物の組成の一例は、以下の通りである。
組成物総量に対して、
化合物(A) 20~80質量%(より好ましくは30~80質量%);
化合物(B) 0~70質量%(より好ましくは0~60質量%);
ポリチオール(a) 0.1~20質量%(より好ましくは0.5~10質量%);及び
硫黄 0~25質量%(より好ましくは0~20質量%);
を含有し、
1,2,3,5,6-ペンタチエパン(b)を含有しない(例えば、HPLCによる分析において1ppm未満)、
光学材料用組成物。
好ましい光学材料用組成物の組成の他の一例は、以下の通りである。
組成物総量に対して、
化合物(A) 20~80質量%(より好ましくは30~80質量%);
化合物(B) 0~70質量%(より好ましくは0~60質量%);
ポリチオール(a) 0.1~20質量%(より好ましくは0.5~10質量%);
硫黄 0~25質量%(より好ましくは0~20質量%);
重合触媒 0~10質量%(より好ましくは0~5質量%);及び
重合調整剤 0~5質量%(より好ましくは0.0001~5.0質量%)
を含有し、
1,2,3,5,6-ペンタチエパン(b)を含有しない(例えば、HPLCによる分析において1ppm未満)、
光学材料用組成物。
An example of the composition of a preferred composition for an optical material is as follows.
For the total amount of composition
Compound (A) 20 to 80% by mass (more preferably 30 to 80% by mass);
Compound (B) 0 to 70% by mass (more preferably 0 to 60% by mass);
Polythiol (a) 0.1 to 20% by weight (more preferably 0.5 to 10% by weight); and sulfur 0 to 25% by weight (more preferably 0 to 20% by weight);
Contains,
It does not contain 1,2,3,5,6-pentathiepan (b) (eg, less than 1 ppm in analysis by HPLC).
Compositions for optical materials.
Another example of the composition of a preferred optical material composition is as follows.
For the total amount of composition
Compound (A) 20 to 80% by mass (more preferably 30 to 80% by mass);
Compound (B) 0 to 70% by mass (more preferably 0 to 60% by mass);
Polythiol (a) 0.1 to 20% by mass (more preferably 0.5 to 10% by mass);
Sulfur 0-25% by weight (more preferably 0-20% by weight);
Polymerization catalyst 0-10% by weight (more preferably 0-5% by weight); and polymerization modifier 0-5% by weight (more preferably 0.0001-5.0% by weight)
Contains,
It does not contain 1,2,3,5,6-pentathiepan (b) (eg, less than 1 ppm in analysis by HPLC).
Compositions for optical materials.

[その他の成分]
また、本発明の光学材料用組成物は、化合物(A)と共重合可能な他の重合性化合物を含んでも良い。
他の重合性化合物としては、化合物(A)および化合物(B)以外のエピスルフィド化合物、ビニル化合物、メタクリル化合物、アクリル化合物、及びアリル化合物が挙げられる。
他の重合性化合物の添加量は、本発明の効果を阻害しない範囲であれば特に制限されず、例えば、組成物総量に対して、0~30質量%である。
[Other ingredients]
Further, the composition for an optical material of the present invention may contain another polymerizable compound that can be copolymerized with the compound (A).
Examples of other polymerizable compounds include episulfide compounds other than the compound (A) and the compound (B), vinyl compounds, methacrylic compounds, acrylic compounds, and allyl compounds.
The amount of the other polymerizable compound added is not particularly limited as long as it does not impair the effects of the present invention, and is, for example, 0 to 30% by mass with respect to the total amount of the composition.

また、耐酸化性、耐候性、染色性、強度及び屈折率等の各種性能改良を目的として、各種性能改良剤として、本発明の組成成分(組成成分を予備重合反応させて得られる重合物を含む)の一部もしくは全部と反応可能な化合物を添加して、重合硬化する事も可能である。
このような組成成分の一部もしくは全部と反応可能な化合物の具体例としては、エポキシ化合物類、イソ(チオ)シアネート類、カルボン酸類、カルボン酸無水物類、フェノール類、アミン類、ビニル化合物類、アリル化合物類、アクリル化合物類、及びメタクリル化合物類が挙げられる。これらの化合物の添加量は、本発明の効果を阻害しない範囲であれば特に制限されず、例えば、組成物総量に対して、0~10質量%である。
Further, for the purpose of improving various performances such as oxidation resistance, weather resistance, dyeability, strength and refractive index, as various performance improving agents, the composition component of the present invention (polymer obtained by prepolymerizing the composition component) is used. It is also possible to polymerize and cure by adding a compound that can react with part or all of (including).
Specific examples of compounds that can react with some or all of such compositional components include epoxy compounds, iso (thio) cyanates, carboxylic acids, carboxylic acid anhydrides, phenols, amines, and vinyl compounds. , Allyl compounds, acrylic compounds, and methacryl compounds. The amount of these compounds added is not particularly limited as long as it does not impair the effects of the present invention, and is, for example, 0 to 10% by mass with respect to the total amount of the composition.

また、重合硬化のために光学材料用組成物は公知の重合触媒および/または重合調節剤を含んでもよい。一形態の光学材料用組成物は重合触媒をさらに含む。
一形態の光学材料用組成物は重合触媒をさらに含む。
重合触媒としては、例えば、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類、第3級スルホニウム塩類、第2級ヨードニウム塩類、鉱酸類、ルイス酸類、有機酸類、ケイ酸類、四フッ化ホウ酸類、過酸化物、アゾ化系合物、アルデヒドとアンモニア系化合物の縮合物、グアニジン類、チオ尿素類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカルバミン酸塩類、キサントゲン酸塩類、酸性リン酸エステル類等を挙げることができる。好ましくは、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類である。重合触媒は単独でも2種類以上を混合して使用してもかまわない。
重合触媒の添加量は、特に制限されず、例えば、組成物総量に対して、0.0001~10質量%である。
一形態の光学材料用組成物は重合調整剤をさらに含む。
重合調整剤は、長期周期律表における第13~16族のハロゲン化物を挙げることができる。これらのうち好ましいものは、ケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物であり、より好ましいものはアルキル基を有するゲルマニウム、スズ、アンチモンの塩化物である。重合調整剤は単独でも2種類以上を混合して使用してもかまわない。
重合調整剤の添加量は、特に制限されず、例えば、組成物総量に対して、0.0001~5.0質量%である。
Further, the composition for an optical material may contain a known polymerization catalyst and / or polymerization modifier for polymerization curing. One form of the composition for an optical material further comprises a polymerization catalyst.
One form of the composition for an optical material further comprises a polymerization catalyst.
Examples of the polymerization catalyst include amines, phosphins, quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, secondary iodonium salts, mineral acids, Lewis acids, organic acids, silicic acids, and quaternary compounds. Borate fluorides, peroxides, azized compounds, condensates of aldehydes and ammonia compounds, guanidines, thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthogenates, Acidic phosphate esters and the like can be mentioned. Preferred are amines, phosphines, quaternary ammonium salts, and quaternary phosphonium salts. The polymerization catalyst may be used alone or in combination of two or more.
The amount of the polymerization catalyst added is not particularly limited, and is, for example, 0.0001 to 10% by mass with respect to the total amount of the composition.
One form of the composition for an optical material further comprises a polymerization modifier.
Examples of the polymerization modifier include halides of Groups 13 to 16 in the long-term periodic table. Of these, preferred are halides of silicon, germanium, tin and antimony, and more preferred are chlorides of germanium, tin and antimony having an alkyl group. The polymerization modifier may be used alone or in combination of two or more.
The amount of the polymerization modifier added is not particularly limited, and is, for example, 0.0001 to 5.0% by mass with respect to the total amount of the composition.

また、公知の酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤、密着性改善剤及び離型性改善剤等の添加剤を添加することもできる。これらの添加剤の量は、本発明の効果を阻害しない範囲であれば特に制限されず、例えば、組成物総量に対して、0~10質量%である。 Further, known additives such as antioxidants, brewing agents, ultraviolet absorbers, deodorants, adhesion improving agents and mold release improving agents can also be added. The amount of these additives is not particularly limited as long as it does not impair the effects of the present invention, and is, for example, 0 to 10% by mass with respect to the total amount of the composition.

[光学材料用組成物]
本発明の光学材料用組成物は、化合物(A)、ポリチオール(a)、及び、必要に応じて、化合物(B)、硫黄、及びその他の成分を均一な状態に混合することにより調製される。
[Composition for optical materials]
The composition for an optical material of the present invention is prepared by mixing compound (A), polythiol (a), and, if necessary, compound (B), sulfur, and other components in a uniform state. ..

[光学材料用組成物の硬化]
光学材料用組成物はモールド等の型に注型し、重合させることで光学材料とすることができる。光学材料用重合性組成物をモールドに注入する前にあらかじめ脱気処理を行うことは、光学材料の高度な透明性を達成する面から好ましい。
本発明の光学材料用組成物の注型に際し、0.1~5μm程度の孔径のフィルター等で不純物を濾過し除去することは、本発明の光学材料の品質を高める点から好ましい。
[Curing of composition for optical materials]
The composition for an optical material can be obtained as an optical material by casting it into a mold such as a mold and polymerizing it. It is preferable to perform a degassing treatment in advance before injecting the polymerizable composition for an optical material into a mold from the viewpoint of achieving a high degree of transparency of the optical material.
When casting the composition for an optical material of the present invention, it is preferable to filter and remove impurities with a filter or the like having a pore size of about 0.1 to 5 μm from the viewpoint of improving the quality of the optical material of the present invention.

本発明の光学材料用組成物の重合(硬化)は通常以下の条件で行われる。
硬化時間は通常1~100時間であり、硬化温度は通常-10℃~140℃である。重合(硬化)は所定の重合温度で所定時間保持する工程、0.1℃~100℃/hの昇温を行う工程、0.1℃~100℃/hの降温を行う工程によって、又はこれらの工程を組み合わせて行う。なお、硬化時間とは昇温過程・降温過程等を含めた重合硬化時間をいい、所定の重合(硬化)温度で保持する工程に加えて、所定の重合(硬化)温度へと昇温・冷却する工程を含む。
また、硬化終了後、得られた光学材料を50~150℃の温度で10分~5時間程度アニール処理を行うことは、本発明の光学材料の歪を除くために好ましい。さらに得られた光学材料に対して、必要に応じて染色、ハードコート、耐衝撃性コート、反射防止、防曇性付与等の表面処理を行ってもよい。
Polymerization (curing) of the composition for optical materials of the present invention is usually carried out under the following conditions.
The curing time is usually 1 to 100 hours, and the curing temperature is usually −10 ° C. to 140 ° C. Polymerization (curing) is carried out by a step of holding at a predetermined polymerization temperature for a predetermined time, a step of raising the temperature from 0.1 ° C. to 100 ° C./h, a step of lowering the temperature from 0.1 ° C. to 100 ° C./h, or these. The steps of are combined. The curing time refers to the polymerization curing time including the temperature raising process and the temperature lowering process, and in addition to the step of holding at a predetermined polymerization (curing) temperature, the temperature is raised and cooled to a predetermined polymerization (curing) temperature. Including the process of
Further, it is preferable to perform an annealing treatment on the obtained optical material at a temperature of 50 to 150 ° C. for about 10 minutes to 5 hours after the curing is completed in order to remove the distortion of the optical material of the present invention. Further, the obtained optical material may be subjected to surface treatment such as dyeing, hard coating, impact resistance coating, antireflection, and antifogging property, if necessary.

上記のとおり、上記光学材料用組成物を重合硬化することで光学材料を製造することができる。本発明は、上記光学材料用組成物を重合硬化することを含む光学材料の製造方法をも包含するものである。
さらに、上記光学材料用組成物を硬化して得られる光学材料(成形体;硬化物;硬化樹脂)もまた、本発明に包含される。
As described above, an optical material can be produced by polymerizing and curing the composition for an optical material. The present invention also includes a method for producing an optical material, which comprises polymerizing and curing the composition for an optical material.
Further, an optical material (molded body; cured product; cured resin) obtained by curing the composition for an optical material is also included in the present invention.

本発明の光学材料用組成物は、化合物(A)およびポリチオール(a)を含有し、かつ、1,2,3,5,6-ペンタチエパン(b)を含有しないことにより、優れた耐熱性を達成でき、その他のコモノマーの添加による耐熱性低下の影響を低減できる。したがって、光学材料用組成物に種々のコモノマーを配合し、かつ、その配合量を増加させることが可能であり、これにより広範な物性を持つ光学材料の設計が可能となる。
特に、本発明の一実施形態の光学材料用組成物は、高い屈折率を維持しつつ、耐熱性に特に優れた光学材料を与えることができる。
The composition for an optical material of the present invention contains the compound (A) and the polythiol (a), and does not contain 1,2,3,5,6-pentathiepan (b), thereby providing excellent heat resistance. This can be achieved, and the influence of the decrease in heat resistance due to the addition of other comonomer can be reduced. Therefore, it is possible to blend various comonomer into the composition for optical material and increase the blending amount thereof, which makes it possible to design an optical material having a wide range of physical characteristics.
In particular, the composition for an optical material according to an embodiment of the present invention can provide an optical material having particularly excellent heat resistance while maintaining a high refractive index.

光学材料用組成物を硬化させた際の光学材料の屈折率は、1.70以上であることが好ましく、1.72以上であることがより好ましく、1.73以上であることが特に好ましい。屈折率は屈折率計により測定することができ、25℃、e線(波長546.1nm)で測定した値である。
光学材料の耐熱性としては、光学材料を昇温した際に軟化点が存在しないか、あるいは軟化点が、50℃以上であることが好ましく、60℃以上がより好ましく、65℃以上が特に好ましい。軟化点はTMA(熱機械分析)により測定できる。TMA曲線の温度微分曲線であるDTMAのピーク値が小さいほど熱による軟化が起こりにくいため好ましく、DTMAのピーク値が、1.5μm/℃以下であることが好ましく、1μm/℃以下であることがより好ましい。
The refractive index of the optical material when the composition for an optical material is cured is preferably 1.70 or more, more preferably 1.72 or more, and particularly preferably 1.73 or more. The refractive index can be measured by a refractive index meter, and is a value measured at 25 ° C. and an e-line (wavelength 546.1 nm).
As for the heat resistance of the optical material, it is preferable that there is no softening point when the temperature of the optical material is raised, or the softening point is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and particularly preferably 65 ° C. or higher. .. The softening point can be measured by TMA (thermomechanical analysis). The smaller the peak value of DTMA, which is the temperature differential curve of the TMA curve, the less likely it is to soften due to heat. Therefore, the peak value of DTMA is preferably 1.5 μm / ° C or less, and preferably 1 μm / ° C or less. More preferred.

本発明の光学材料は、例えば、光学部材、機械部品材料、電気・電子部品材料、自動車部品材料、土木建築材料、成形材料等の他、塗料や接着剤の材料等の各種用途に有用である。中でも、光学材料、例えば、眼鏡レンズ、(デジタル)カメラ用撮像レンズ、光ビーム集光レンズ、光拡散用レンズ等のレンズ、LED用封止材、光学用接着剤、光伝送用接合材料、光ファイバー、プリズム、フィルター、回折格子、ウォッチガラス、表示装置用のカバーガラス等の透明ガラスやカバーガラス等の光学用途;LCDや有機ELやPDP等の表示素子用基板、カラーフィルター用基板、タッチパネル用基板、情報記録基板、ディスプレイバックライト、導光板、ディスプレイ保護膜、反射防止フィルム、防曇フィルム等のコーティング剤(コーティング膜)などの表示デバイス用途等が好適である。上記光学材料としては、特に、光学レンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料、中でも光学レンズが好適である。
本発明の光学材料用組成物を用いて製造される光学レンズは、安定性、色相、透明性などに優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。
The optical material of the present invention is useful for various applications such as optical members, mechanical parts materials, electrical / electronic parts materials, automobile parts materials, civil engineering and building materials, molding materials, as well as paints and adhesive materials. .. Among them, optical materials such as spectacle lenses, image pickup lenses for (digital) cameras, light beam condensing lenses, lenses for light diffusion, encapsulants for LEDs, optical adhesives, bonding materials for optical transmission, optical fibers. , Prism, filter, diffraction grid, watch glass, transparent glass such as cover glass for display devices, optical applications such as cover glass; substrate for display elements such as LCD, organic EL and PDP, substrate for color filter, substrate for touch panel , Information recording substrate, display backlight, light guide plate, display protective film, antireflection film, antifogging film and other coating agents (coating film) and the like are suitable for display devices. As the optical material, an optical material such as an optical lens, a prism, an optical fiber, an information recording substrate, and a filter, particularly an optical lens is preferable.
Since the optical lens manufactured by using the composition for optical materials of the present invention is excellent in stability, hue, transparency and the like, conventionally expensive high refractive index glass lenses such as telescopes, binoculars and television projectors have been used. It can be used in the field where it was, and it is extremely useful. If necessary, it is preferably used in the form of an aspherical lens.

以下、実施例により本発明を具体的に説明するが、本発明の効果を奏する限りにおいて適宜実施形態を変更することができる。 Hereinafter, the present invention will be specifically described with reference to Examples, but the embodiments can be appropriately changed as long as the effects of the present invention are exhibited.

光学材料の分析・評価は以下の方法で行った。
[光学材料の屈折率]
光学材料の屈折率はデジタル精密屈折率計(株式会社島津製作所製、KPR-2000)を用い、25℃におけるe線の屈折率を測定した。
[光学材料の耐熱性評価]
サンプルを厚さ3mmに切り出し、0.5mmφのピンに50gの荷重を与え、10℃/分で昇温してTMA測定(セイコーインスツルメンツ製、TMA/SS6100)を行って、得られたTMA曲線の温度微分曲線であるDTMAのピーク温度、及びDTMAピーク値により評価を行った。
このDTMAピーク値が小さいほど熱による軟化が起こりにくく耐熱性が高いと評価される。特にピーク値が負、またはピークが無い場合は軟化点無しとした。DTMDTMAピーク値が1.0以下のものをA、1.0を超えて1.5以下であるものをB、DTMAピーク値が1.5を超えるものCとして評価した。
The analysis and evaluation of the optical material was performed by the following method.
[Refractive index of optical material]
The refractive index of the optical material was measured by using a digital precision refractive index meter (KPR-2000, manufactured by Shimadzu Corporation) at 25 ° C.
[Evaluation of heat resistance of optical materials]
A sample was cut into a thickness of 3 mm, a load of 50 g was applied to a pin of 0.5 mmφ, the temperature was raised at 10 ° C./min, and TMA measurement (TMA / SS6100 manufactured by Seiko Instruments) was performed. The evaluation was performed based on the peak temperature of DTMA, which is a temperature differential curve, and the peak value of DTMA.
It is evaluated that the smaller the DTMA peak value, the less likely it is to soften due to heat and the higher the heat resistance. In particular, when the peak value was negative or there was no peak, no softening point was set. A DTMDTMA peak value of 1.0 or less was evaluated as A, an DTMDTMA peak value of more than 1.0 and 1.5 or less was evaluated as B, and a DTMA peak value of more than 1.5 was evaluated as C.

[合成例1]
テトラメルカプトペンタエリスリトール10.0g(0.050mol)にメタノール50mLを加え、5℃に冷却した。その溶液に48%水酸化ナトリウム水溶液0.42g(0.0049mol)を加えた後、溶液を15℃以下に保ちながらエピクロロヒドリン20.3g(0.22mol)を滴下した。滴下終了後、更に1時間5℃で撹拌を行った。
その後、溶液を5℃に冷却しつつ、48%水酸化ナトリウム水溶液16.3g(0.20mol)をメタノール20mLに溶かした溶液を滴下した。滴下終了後更に2時間撹拌を行い、トルエン100mLおよび水100mLを加えた。トルエン層を3回水洗し、溶媒を留去してテトラキス(β-エポキシプロピルチオメチル)メタン20.1g(0.047mol)を得た。
得られたテトラキス(β-エポキシプロピルチオメチル)メタン20.1g(0.047mol)にトルエン100mL、メタノール100mL、無水酢酸1.24g(0.012mol)、およびチオ尿素30.5g(0.40mol)を加えて、20℃で24時間撹拌を行った。その後、トルエン400mLおよび5%硫酸400mLを加えてトルエン層を3回水洗し、溶媒を留去することで16.8gのテトラキス(β-エピチオプロピルチオメチル)メタンの粗製物を得た。粗製物を更にシリカゲルカラム精製を行うことで11.2g(0.023mol)のテトラキス(β-エピチオプロピルチオメチル)メタン(以下、化合物A1と称する)を得た。
以下の実験で用いた化合物A1はこの方法で合成したものである。
[Synthesis Example 1]
To 10.0 g (0.050 mol) of tetramercaptopentaerythritol, 50 mL of methanol was added, and the mixture was cooled to 5 ° C. After adding 0.42 g (0.0049 mol) of a 48% aqueous sodium hydroxide solution to the solution, 20.3 g (0.22 mol) of epichlorohydrin was added dropwise while keeping the solution at 15 ° C. or lower. After completion of the dropping, the mixture was further stirred at 5 ° C. for 1 hour.
Then, while cooling the solution to 5 ° C., a solution prepared by dissolving 16.3 g (0.20 mol) of a 48% sodium hydroxide aqueous solution in 20 mL of methanol was added dropwise. After the completion of the dropping, the mixture was further stirred for 2 hours, and 100 mL of toluene and 100 mL of water were added. The toluene layer was washed with water three times, and the solvent was distilled off to obtain 20.1 g (0.047 mol) of tetrakis (β-epoxypropylthiomethyl) methane.
To 20.1 g (0.047 mol) of the obtained tetrakis (β-epoxypropylthiomethyl) methane, 100 mL of toluene, 100 mL of methanol, 1.24 g (0.012 mol) of acetic anhydride, and 30.5 g (0.40 mol) of thiourea. Was added, and the mixture was stirred at 20 ° C. for 24 hours. Then, 400 mL of toluene and 400 mL of 5% sulfuric acid were added, and the toluene layer was washed with water three times, and the solvent was distilled off to obtain 16.8 g of a crude product of tetrakis (β-epithiopropylthiomethyl) methane. The crude product was further purified by a silica gel column to obtain 11.2 g (0.023 mol) of tetrakis (β-epithiopropylthiomethyl) methane (hereinafter referred to as compound A1).
Compound A1 used in the following experiments was synthesized by this method.

[実施例1]
化合物(A)であるテトラキス(β-エピチオプロピルチオメチル)メタン(化合物A1)80質量部、(a)化合物としてビス(2-メルカプトエチル)スルフィド(化合物a1)20質量部及び重合触媒としてテトラ-n-ブチルホスホニウムブロマイド0.02質量部及び重合調整剤としてジ-n-ブチルスズジクロライド0.05質量部を混合しながら真空脱気を行い、光学材料用組成物を得た。
得られた光学材料用組成物を30℃で10時間加熱し、100℃まで10時間かけて昇温させ、最後に100℃で5時間加熱し、重合硬化させた。放冷後、120℃で30分アニール処理を行った。得られた光学材料の評価を表1にまとめた。
[Example 1]
80 parts by mass of tetrakis (β-epithiopropylthiomethyl) methane (compound A1) as compound (A), 20 parts by mass of bis (2-mercaptoethyl) sulfide (compound a1) as compound, and tetra as a polymerization catalyst. Vacuum degassing was performed while mixing 0.02 part by mass of -n-butylphosphonium bromide and 0.05 part by mass of di-n-butyltin dichloride as a polymerization modifier to obtain a composition for an optical material.
The obtained composition for optical materials was heated at 30 ° C. for 10 hours, heated to 100 ° C. over 10 hours, and finally heated at 100 ° C. for 5 hours to polymerize and cure. After allowing to cool, annealing treatment was performed at 120 ° C. for 30 minutes. The evaluations of the obtained optical materials are summarized in Table 1.

[実施例2~11、比較例1~4]
表1に示される組成に従い、実施例1と同様の操作を行うことにより、光学材料を得た。
得られた光学材料の評価を表1にまとめた。
[Examples 2 to 11, Comparative Examples 1 to 4]
An optical material was obtained by performing the same operation as in Example 1 according to the composition shown in Table 1.
The evaluations of the obtained optical materials are summarized in Table 1.

Figure 0007077965000007
Figure 0007077965000007

なお、表中の数値は、組成物中の化合物の含有量(質量部)を示す。また、表中の数値と併記したa1~a3およびB1、B2の表記は使用した化合物を示す。表中の化合物としては、以下のものを使用した。
A1:テトラキス(β-エピチオプロピルチオメチル)メタン
a1:ビス(2-メルカプトエチル)スルフィド
a2:1,3-ビス(メルカプトメチル)ベンゼン
a3:1,2,6,7-テトラメルカプト-4-チアへプタン
B1:ビス(β-エピチオプロピル)スルフィド
B2:ビス(β-エピチオプロピル)ジスルフィド

なお、化合物a3は、例えば、特開2005-263791号記載の方法で合成可能である。
The numerical values in the table indicate the content (parts by mass) of the compound in the composition. In addition, the notations a1 to a3 and B1 and B2 shown together with the numerical values in the table indicate the compounds used. The following compounds were used as the compounds in the table.
A1: Tetrakiss (β-epithiopropylthiomethyl) Methane a1: Bis (2-mercaptoethyl) Sulfide a2: 1,3-bis (mercaptomethyl) Benzene a3: 1,2,6,7-Tetramercapto-4- Thiaheptane B1: Bis (β-Epithiopropyl) Sulfide B2: Bis (β-Epithiopropyl) Disulfide

The compound a3 can be synthesized, for example, by the method described in JP-A-2005-263791.

上記表1から、式(1)で表される化合物(A)およびポリチオール(a)、ならびに必要に応じて化合物(B)および/または硫黄を含み、1,2,3,5,6-ペンタチエパン(b)を含まない光学材料用組成物を用いた場合(実施例1~11)には、高い屈折率を維持しつつ優れた耐熱性を有する光学材料が得られることが確認される。
一方、化合物(A)を含まない比較例1,3,4や1,2,3,5,6-ペンタチエパン(b)を含む比較例2では、耐熱性に劣ることが確認される。
From Table 1 above, 1,2,3,5,6-pentathiepan containing the compound (A) and the polythiol (a) represented by the formula (1), and optionally the compound (B) and / or sulfur. When the composition for an optical material not containing (b) is used (Examples 1 to 11), it is confirmed that an optical material having excellent heat resistance while maintaining a high refractive index can be obtained.
On the other hand, in Comparative Example 1,3,4 not containing the compound (A) and Comparative Example 2 containing 1,2,3,5,6-pentathiepan (b), it is confirmed that the heat resistance is inferior.

本発明の光学材料用組成物を重合硬化した硬化物は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター、及び、接着剤などの光学材料として好適に用いることができる。
The cured product obtained by polymerizing and curing the composition for optical materials of the present invention can be suitably used as an optical material such as a plastic lens, a prism, an optical fiber, an information recording substrate, a filter, and an adhesive.

Claims (6)

組成物総量に対して、
下記式(1)で表される化合物(A) 30~80質量%;
下記式(2)で表される化合物(B) 0~70質量%;
ポリチオール(a) 0.1~20質量%;及び
硫黄 0~25質量%;
を含有し、1,2,3,5,6-ペンタチエパン(b)を含有しない、光学材料用組成物。
Figure 0007077965000008
(式中、mは0~4の整数を示し、nは0~2の整数を示す。)
For the total amount of composition
Compound (A) represented by the following formula (1) 30 to 80% by mass;
Compound (B) represented by the following formula (2) 0 to 70% by mass;
Polythiol (a) 0.1-20% by weight; and
Sulfur 0-25% by mass;
A composition for an optical material containing 1,2,3,5,6-pentathiepan (b).
Figure 0007077965000008
(In the formula, m indicates an integer of 0 to 4, and n indicates an integer of 0 to 2.)
黄を含有する、請求項1に記載の組成物。 The composition according to claim 1 , which contains sulfur . 合物(B)を含有する、請求項1または2に記載の組成物。 The composition according to claim 1 or 2 , which comprises compound (B). ポリチオール(a)は、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、及びチイランメタンチオールから選択される少なくとも1種である、請求項1~3のいずれか一項に記載の組成物。 Polythiol (a) is 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldisulfanyl) methanethiol, bis (2-mercaptoethyl) sulfide, 2,5-bis ( Mercaptomethyl) -1,4-ditian, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithia Undecane, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithian Undecane, 5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithian Undecane, Selected from 1,1,3,3-tetrakis (mercaptomethylthio) propane, tetramercaptopentaerythritol, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, and thiranmethanethiol. The composition according to any one of claims 1 to 3, which is at least one kind. 請求項1~のいずれか一項に記載の組成物を硬化した光学材料。 An optical material obtained by curing the composition according to any one of claims 1 to 4 . 請求項に記載の光学材料を含む光学レンズ。 An optical lens comprising the optical material according to claim 5 .
JP2018568128A 2017-02-17 2018-02-06 Compositions for optical materials Active JP7077965B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017027502 2017-02-17
JP2017027502 2017-02-17
PCT/JP2018/004015 WO2018150951A1 (en) 2017-02-17 2018-02-06 Optical material composition

Publications (2)

Publication Number Publication Date
JPWO2018150951A1 JPWO2018150951A1 (en) 2019-12-12
JP7077965B2 true JP7077965B2 (en) 2022-05-31

Family

ID=63170270

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018568127A Active JP7014188B2 (en) 2017-02-17 2018-02-06 Compositions for optical materials
JP2018568128A Active JP7077965B2 (en) 2017-02-17 2018-02-06 Compositions for optical materials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018568127A Active JP7014188B2 (en) 2017-02-17 2018-02-06 Compositions for optical materials

Country Status (7)

Country Link
US (2) US10982094B2 (en)
EP (2) EP3584269B1 (en)
JP (2) JP7014188B2 (en)
KR (2) KR102464231B1 (en)
CN (2) CN110198969B (en)
TW (2) TWI761449B (en)
WO (2) WO2018150950A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102464231B1 (en) * 2017-02-17 2022-11-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Composition for optical materials
CN112639538A (en) * 2018-09-07 2021-04-09 三菱瓦斯化学株式会社 Composition for optical material and optical material
KR102372880B1 (en) * 2019-05-21 2022-03-08 주식회사 엘지화학 Curable composition and optical material comprising the cured product thereof
CN110776491B (en) * 2019-11-25 2021-01-29 山东益丰生化环保股份有限公司 Multi-branched thioether-type ring sulfur compound and preparation method and application thereof
WO2022085329A1 (en) * 2020-10-19 2022-04-28 三菱瓦斯化学株式会社 Composition, and optical material and lens using said composition
US20230374191A1 (en) * 2020-10-19 2023-11-23 Mitsubishi Gas Chemical Company, Inc. Composition, and optical material and lens using same
JPWO2022137715A1 (en) * 2020-12-25 2022-06-30
WO2022191574A1 (en) * 2021-03-10 2022-09-15 주식회사 엘지화학 Curable composition and optical member comprising same
CN116478108B (en) * 2023-03-31 2023-10-13 益丰新材料股份有限公司 Sulfur-containing heterocyclic compound, optical material composition and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073613A1 (en) 2008-12-24 2010-07-01 株式会社ニコン・エシロール Optical resin composition, optical lens, and eyeglass plastic lens
WO2011105320A1 (en) 2010-02-25 2011-09-01 三菱瓦斯化学株式会社 Composition for optical materials, process for production thereof, and optical materials made from the composition
JP2011231185A (en) 2010-04-26 2011-11-17 Nikon-Essilor Co Ltd Method of manufacturing prepolymer for optical lens molding, and method of manufacturing optical lens

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491660B2 (en) 1995-08-16 2004-01-26 三菱瓦斯化学株式会社 Novel linear alkyl sulfide type episulfide compound
JP3864998B2 (en) 1995-09-08 2007-01-10 三菱瓦斯化学株式会社 Novel branched alkyl sulfide type episulfide compounds
US5807975A (en) * 1995-08-16 1998-09-15 Mitsubishi Gas Chemical Company,Inc. Alkyl sulfide type episulfide compound
JPH09255781A (en) * 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc New episulfide compound
US5945504A (en) 1996-01-17 1999-08-31 Mitsubishi Gas Chemical Company, Inc. Episulfide compound
JP3465528B2 (en) 1997-04-22 2003-11-10 三菱瓦斯化学株式会社 New resin for optical materials
US6180753B1 (en) * 1998-08-17 2001-01-30 Mitsubishi Gas Chemical Company, Inc. Process for treating a compound having epithio structures for disposal
JP4920126B2 (en) * 1998-08-17 2012-04-18 三菱瓦斯化学株式会社 Method for treating compound having epithio structure
JP2001002933A (en) 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc Composition for optical material
JP3373825B2 (en) * 1999-07-23 2003-02-04 三井化学株式会社 Polymerizable composition and method for producing optical resin comprising the same
US20040254258A1 (en) * 2002-07-08 2004-12-16 Hiroshi Horikoshi Polymerizable composition, optical material comprising the composition and method for producing the material
JP2004043526A (en) * 2002-07-08 2004-02-12 Mitsubishi Gas Chem Co Inc Composition for optical material
JP4127169B2 (en) * 2002-09-27 2008-07-30 三菱瓦斯化学株式会社 Manufacturing method of optical material
JP4788154B2 (en) 2004-02-17 2011-10-05 三菱瓦斯化学株式会社 Production method of vicinal dithiol
JP4965838B2 (en) 2005-09-27 2012-07-04 Hoya株式会社 Sulfide compound and method for producing the same
CN104017216A (en) * 2009-05-14 2014-09-03 三菱瓦斯化学株式会社 Composition for use in optical material with high refractive index and high strength
JP5387518B2 (en) 2010-06-18 2014-01-15 三菱瓦斯化学株式会社 Composition for optical materials
WO2012112015A2 (en) * 2011-02-19 2012-08-23 주식회사 케이오씨솔루션 Polythiol compound chain-extended through ring-opening, preparation method therefor, and resin composition for urethane optical material using same
TWI633140B (en) * 2013-12-26 2018-08-21 三菱瓦斯化學股份有限公司 Composition for optical material and method of producing the same
JP6773033B2 (en) * 2015-06-17 2020-10-21 三菱瓦斯化学株式会社 Compositions for optical materials and optical materials using them
JP6179690B1 (en) 2015-12-10 2017-08-16 三菱瓦斯化学株式会社 Photocurable composition and optical material
KR102464231B1 (en) 2017-02-17 2022-11-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Composition for optical materials
KR102012013B1 (en) * 2018-10-15 2019-08-19 경남산업개발 주식회사 window assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073613A1 (en) 2008-12-24 2010-07-01 株式会社ニコン・エシロール Optical resin composition, optical lens, and eyeglass plastic lens
WO2011105320A1 (en) 2010-02-25 2011-09-01 三菱瓦斯化学株式会社 Composition for optical materials, process for production thereof, and optical materials made from the composition
JP2011231185A (en) 2010-04-26 2011-11-17 Nikon-Essilor Co Ltd Method of manufacturing prepolymer for optical lens molding, and method of manufacturing optical lens

Also Published As

Publication number Publication date
JP7014188B2 (en) 2022-02-01
CN110198969B (en) 2021-09-17
EP3584269B1 (en) 2022-04-27
US11078363B2 (en) 2021-08-03
CN110198969A (en) 2019-09-03
TW201840653A (en) 2018-11-16
US20200216616A1 (en) 2020-07-09
TWI818903B (en) 2023-10-21
JPWO2018150950A1 (en) 2019-12-12
KR20190112280A (en) 2019-10-04
JPWO2018150951A1 (en) 2019-12-12
EP3584269A4 (en) 2020-03-04
WO2018150950A1 (en) 2018-08-23
EP3584270A4 (en) 2020-01-01
CN110214157B (en) 2022-10-04
US10982094B2 (en) 2021-04-20
US20200024450A1 (en) 2020-01-23
KR102470216B1 (en) 2022-11-23
EP3584270B1 (en) 2022-06-15
EP3584269A1 (en) 2019-12-25
TWI761449B (en) 2022-04-21
EP3584270A1 (en) 2019-12-25
KR20190114993A (en) 2019-10-10
CN110214157A (en) 2019-09-06
TW201840654A (en) 2018-11-16
WO2018150951A1 (en) 2018-08-23
KR102464231B1 (en) 2022-11-07

Similar Documents

Publication Publication Date Title
JP7077965B2 (en) Compositions for optical materials
KR102522740B1 (en) Composition for optical material and optical material using the same
WO2022085330A1 (en) Composition, and optical material and lens using same
KR101177613B1 (en) Thietane compound, polymerizable composition comprising the compound, and use of the composition
WO2022085329A1 (en) Composition, and optical material and lens using said composition
WO2022137715A1 (en) Composition, and optical material and lens using same
JP2006083313A (en) Polymerizable compound and its application

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220328

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R151 Written notification of patent or utility model registration

Ref document number: 7077965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151