JP7075608B1 - Gear accuracy evaluation method and evaluation device - Google Patents

Gear accuracy evaluation method and evaluation device Download PDF

Info

Publication number
JP7075608B1
JP7075608B1 JP2021068565A JP2021068565A JP7075608B1 JP 7075608 B1 JP7075608 B1 JP 7075608B1 JP 2021068565 A JP2021068565 A JP 2021068565A JP 2021068565 A JP2021068565 A JP 2021068565A JP 7075608 B1 JP7075608 B1 JP 7075608B1
Authority
JP
Japan
Prior art keywords
gear
deviation
data
tooth
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021068565A
Other languages
Japanese (ja)
Other versions
JP2022163559A (en
Inventor
一郎 森脇
大輔 射場
昌蔵 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Original Assignee
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC filed Critical Kyoto Institute of Technology NUC
Priority to JP2021068565A priority Critical patent/JP7075608B1/en
Application granted granted Critical
Publication of JP7075608B1 publication Critical patent/JP7075608B1/en
Publication of JP2022163559A publication Critical patent/JP2022163559A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

【課題】ゴーストノイズ等のノイズ発生原因を簡単に推定できる歯車精度の評価方法を提供する。【解決手段】歯車測定機によって測定された歯車の各歯の偏差データに基づいて精度を評価する歯車精度の評価方法である。歯車の基礎円上に隣に並んだ2つの歯の偏差データ間の関係を相互相関関数によって求め、2つの歯に跨って歯面上に残された周期的な偏差を抽出するステップと、周期的な偏差を抽出するステップが歯車の回転位相が進む方向の前記歯に対して順番に実施されることにより、歯車の回転位相と周期的な偏差との関係の評価データを作成するステップと、備える。【選択図】図3PROBLEM TO BE SOLVED: To provide a gear accuracy evaluation method capable of easily estimating the cause of noise generation such as ghost noise. SOLUTION: This is a gear accuracy evaluation method for evaluating accuracy based on deviation data of each tooth of a gear measured by a gear measuring machine. The relationship between the deviation data of two adjacent teeth on the base circle of the gear is obtained by the mutual correlation function, and the step of extracting the periodic deviation left on the tooth surface across the two teeth and the period. A step of creating evaluation data of the relationship between the rotation phase of the gear and the periodic deviation by sequentially performing the step of extracting the deviation with respect to the tooth in the direction in which the rotation phase of the gear advances. Be prepared. [Selection diagram] Fig. 3

Description

本発明は、歯車精度の評価方法および評価装置に関する。 The present invention relates to an evaluation method and an evaluation device for gear accuracy.

従来、円筒歯車の精度評価については、対象となる歯車の形状偏差をJIS B 1757-1 (2012)の規格によって評価された歯車測定機を用いて計測し、JIS B 1702-1:2016(円筒歯車-精度等級第1部:歯車の歯面に関する誤差の定義および許容値)で定義された精度等級に従い、歯形・歯すじ、そしてピッチの偏差を評価してきた。 Conventionally, for accuracy evaluation of cylindrical gears, the shape deviation of the target gear is measured using a gear measuring machine evaluated according to the JIS B 1757-1 (2012) standard, and JIS B 1702-1: 2016 (cylinder). Gear-Accuracy grades Part 1: Definitions and tolerances for errors related to the tooth surface of gears) have been used to evaluate tooth profile, streaks, and pitch deviations according to the accuracy grades.

実際に、基準円直径とモジュールの大きさに従って、単一ピッチ誤差、累積ピッチ誤差、全歯形誤差、全歯すじ誤差等を評価することで、精度等級に振り分けてきた。このJIS B 1702-1は2013年に発行された国際規格ISO 1328-1を基として作成された日本工業規格であるが、1976年に発行された廃止規格であるJIS B 1702:1976を時代に合わせて修正してきた規格であり、ISOに準拠させるため精度等級の見直しや言葉の定義の変更があったものの、根本的な変更は行われていない。 Actually, by evaluating the single pitch error, the cumulative pitch error, the total tooth profile error, the total tooth streak error, etc. according to the reference circle diameter and the size of the module, the accuracy grades have been classified. This JIS B 1702-1 is a Japanese Industrial Standard created based on the international standard ISO 1328-1 issued in 2013, but it is based on the abolished standard JIS B 1702: 1976 issued in 1976. It is a standard that has been revised at the same time, and although the accuracy grade has been revised and the definition of words has been changed in order to comply with ISO, no fundamental changes have been made.

特開昭62-282216号公報Japanese Unexamined Patent Publication No. 62-282216

通常、歯車対がかみ合うと、軸回転周波数と歯数によって決まるかみ合い振動およびその高調波成分が発生するが、これらの想定された振動数以外の成分が発生することがあり、ゴーストノイズと呼ばれ原因の特定が困難とされる。高精度の歯車対を用いても、低ノイズ、低振動の例えばトランスミッションを実現できない場合は、こうした想定外の要因の発生が挙げられる。すなわち、こうした要因を除去し、静粛なトランスミッションを構成するためには精度等級以外の評価項目が必要であることを意味しており、現在のJISで規定された評価精度の項目だけでは不十分である。全歯のピッチ誤差、歯形誤差、歯すじ誤差の生波形をグラフとして番号順に並べた歯車精度検査成績シート上で見比べ、かみ合い振動とその高調波成分以外の要因となる因子を抽出するのは知識や経験がなければ困難である。この場合、精度評価項目として、それぞれの各歯の歯形誤差、歯すじ誤差のグラフから傾き(歯形勾配誤差、歯すじ傾斜誤差)や振幅(全歯形誤差、歯形形状誤差、全歯すじ誤差、歯すじ形状誤差)について導出し、全歯の結果から最大値を精度等級の評価に用いていた。これらの評価指標は、歯車形状の最大誤差から精度等級を決定することになり、いわゆるある歯の最悪値を特徴量として評価しているに過ぎない。実際に歯車は回転しながら利用されるため、円周上に配置された各歯が順番に相手歯車とかみ合っていくことになるが、各歯で個別に測定された偏差を順番に並べ、歯車全体を俯瞰して偏差を評価する方法はなかった。そのため、幾何形状の誤差として測定された各歯の偏差データの生波形から振動に繋がる形状偏差を評価するという問題を解決することはできていない。 Normally, when a pair of gears meshes, meshing vibration and its harmonic components determined by the shaft rotation frequency and the number of teeth are generated, but components other than these assumed frequencies may be generated, which is called ghost noise. It is difficult to identify the cause. If a transmission with low noise and low vibration cannot be realized even with a high-precision gear pair, such unexpected factors may occur. In other words, it means that evaluation items other than the accuracy grade are necessary to eliminate these factors and construct a quiet transmission, and the evaluation accuracy items specified by the current JIS are not sufficient. be. It is knowledgeable to compare the raw waveforms of pitch error, tooth profile error, and tooth streak error of all teeth on a gear accuracy inspection result sheet arranged in numerical order as a graph, and to extract factors that are factors other than meshing vibration and its harmonic components. It is difficult without experience. In this case, as accuracy evaluation items, the inclination (tooth profile gradient error, tooth trace inclination error) and amplitude (total tooth profile error, tooth profile error, all tooth trace error, tooth) from the graph of tooth profile error and tooth trace error of each tooth. The streak shape error) was derived, and the maximum value was used to evaluate the accuracy grade from the results of all teeth. These evaluation indexes determine the accuracy grade from the maximum error of the gear shape, and only evaluate the worst value of a certain tooth as a feature amount. Since the gear is actually used while rotating, each tooth arranged on the circumference meshes with the mating gear in order, but the deviation measured individually for each tooth is arranged in order, and the gear There was no way to evaluate the deviation from a bird's-eye view. Therefore, it has not been possible to solve the problem of evaluating the shape deviation leading to vibration from the raw waveform of the deviation data of each tooth measured as an error of the geometric shape.

本発明が解決しようとする課題は、ゴーストノイズ等のノイズ発生原因を簡単に推定できる歯車精度の評価方法および評価装置を提供することにある。 An object to be solved by the present invention is to provide a gear accuracy evaluation method and an evaluation device that can easily estimate the cause of noise generation such as ghost noise.

本発明の歯車精度の評価方法は、歯車測定機によって測定された歯車の各歯の偏差データに基づいて精度を評価する歯車精度の評価方法であって、前記歯車の基礎円上に隣に並んだ2つの前記歯の偏差データ間の関係を相互相関関数によって求め、2つの前記歯に跨って歯面上に残された周期的な偏差を抽出するステップと、前記周期的な偏差を抽出するステップが前記歯車の回転位相が進む方向の前記歯に対して順番に実施されることにより、前記歯車の回転位相と周期的な偏差との関係の評価データを作成するステップと、を備える。 The gear accuracy evaluation method of the present invention is a gear accuracy evaluation method for evaluating the accuracy based on the deviation data of each tooth of the gear measured by the gear measuring machine, and is arranged next to each other on the base circle of the gear. The relationship between the deviation data of the two teeth is obtained by the mutual correlation function, and the step of extracting the periodic deviation left on the tooth surface straddling the two teeth and the periodic deviation are extracted. The steps are sequentially performed on the teeth in the direction in which the rotation phase of the gear advances, thereby comprising a step of creating evaluation data of the relationship between the rotation phase of the gear and the periodic deviation.

本発明の歯車精度の評価装置は、歯車測定機によって測定された歯車の各歯の偏差データに基づいて精度を評価する歯車精度の評価装置であって、前記歯車の基礎円上に隣に並んだ2つの前記歯の偏差データ間の関係を相互相関関数によって求め、2つの前記歯に跨って歯面上に残された周期的な偏差を抽出する偏差抽出部と、前記偏差抽出部による周期的な偏差の抽出が、前記歯車の回転位相が進む方向の前記歯に対して順番に実施されることにより、前記歯車の回転位相と周期的な偏差との関係の評価データを作成する評価データ作成部とを備える。 The gear accuracy evaluation device of the present invention is a gear accuracy evaluation device that evaluates the accuracy based on the deviation data of each tooth of the gear measured by the gear measuring machine, and is arranged next to each other on the base circle of the gear. The relationship between the deviation data of the two teeth is obtained by the mutual correlation function, and the deviation extraction unit that extracts the periodic deviation left on the tooth surface straddling the two teeth and the period by the deviation extraction unit. Deviation is extracted in order for the teeth in the direction in which the rotational phase of the gear advances, thereby creating evaluation data for the relationship between the rotational phase of the gear and the periodic deviation. It has a creation unit.

本発明によれば、歯車測定機によって計測された歯車の形状偏差について、個別に評価するのではなく、回転位相に従って変化していく隣り合う歯に残された偏差間の周期性を相互相関関数によって抽出し、それを歯車の回転位相が進む順に並べて表記することによって、歯車全体の形状偏差を俯瞰して観察、評価することが可能となり、これまでには困難であった、ゴーストノイズ等のノイズ発生原因を簡単に推定できる。 According to the present invention, the shape deviation of the gear measured by the gear measuring machine is not evaluated individually, but the periodicity between the deviations left in the adjacent teeth changing according to the rotation phase is a mutual correlation function. By arranging them in the order in which the rotation phase of the gear advances, it is possible to observe and evaluate the shape deviation of the entire gear from a bird's-eye view, which has been difficult until now, such as ghost noise. The cause of noise can be easily estimated.

歯車の説明図である。It is explanatory drawing of a gear. 本発明の一実施の形態を示す評価装置のブロック図である。It is a block diagram of the evaluation apparatus which shows one Embodiment of this invention. 歯車精度の評価方法のフローチャートである。It is a flowchart of the evaluation method of a gear accuracy. 歯車測定機によって測定された歯車の1つの歯の偏差データのグラフである。It is a graph of the deviation data of one tooth of a gear measured by a gear measuring machine. ガウシアンフィルタを適用した偏差データのグラフである。It is a graph of the deviation data to which the Gaussian filter is applied. 良品の場合の回転位相と周期的な偏差との関係の評価データを示すグラフである。It is a graph which shows the evaluation data of the relationship between the rotation phase and the periodic deviation in the case of a good product. 不良品の場合の回転位相と周期的な偏差との関係の評価データを示すグラフである。It is a graph which shows the evaluation data of the relationship between the rotation phase and the periodic deviation in the case of a defective product.

以下、本発明の一実施の形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に歯車10を示す。歯車10は、基礎円11上に並んで設けられた複数の歯12を備えている。そして、歯車測定機によって、各歯12の歯形、歯すじ等の偏差が測定される。 FIG. 1 shows the gear 10. The gear 10 includes a plurality of teeth 12 provided side by side on the base circle 11. Then, the deviation of the tooth profile, the tooth streak, etc. of each tooth 12 is measured by the gear measuring machine.

また、図2に歯車精度の評価装置20を示す。評価装置20は、例えばコンピュータによって構成されている。評価装置20は、歯車測定機21によって測定された各歯12の偏差データを取得し、この取得した偏差データから各歯12の歯形偏差、歯すじ偏差等の偏差データ間の関係性を、歯車10がかみ合う順番ごとに整理して可視化することで振動の要因となる偏差を、歯車10の全体を俯瞰して評価可能としている。 Further, FIG. 2 shows a gear accuracy evaluation device 20. The evaluation device 20 is configured by, for example, a computer. The evaluation device 20 acquires deviation data of each tooth 12 measured by the gear measuring machine 21, and determines the relationship between the deviation data such as the tooth profile deviation and the tooth streak deviation of each tooth 12 from the acquired deviation data. By arranging and visualizing the 10s in the order in which they engage, the deviation that causes vibration can be evaluated from a bird's-eye view of the entire gear 10.

評価装置20は、ガウシアンフィルタ22と、偏差抽出部23と、評価データ作成部24とを備えている。ガウシアンフィルタ22は、歯車測定機21によって測定された歯車10の歯12の偏差データから所定の周波数成分の偏差データを抽出する。偏差抽出部23は、歯車10の基礎円11上に隣に並んだ2つの歯12の偏差データ間の関係を相互相関関数によって求め、2つの歯12に跨って歯面上に残された周期的な偏差を抽出する。評価データ作成部24は、偏差抽出部23による周期的な偏差の抽出が、歯車10の回転位相が進む方向の歯12に対して順番に実施されることにより、歯車10の回転位相と周期的な偏差との関係の評価データを作成する。評価データは、例えばグラフである。 The evaluation device 20 includes a Gaussian filter 22, a deviation extraction unit 23, and an evaluation data creation unit 24. The Gaussian filter 22 extracts deviation data of a predetermined frequency component from the deviation data of the teeth 12 of the gear 10 measured by the gear measuring machine 21. The deviation extraction unit 23 obtains the relationship between the deviation data of the two teeth 12 arranged adjacent to each other on the basic circle 11 of the gear 10 by a cross-correlation function, and the period left on the tooth surface straddling the two teeth 12. Deviation. The evaluation data creation unit 24 periodically extracts the deviation by the deviation extraction unit 23 with respect to the teeth 12 in the direction in which the rotation phase of the gear 10 advances. Create evaluation data of the relationship with various deviations. The evaluation data is, for example, a graph.

評価装置20には、評価データを出力する出力部25が接続されている。出力部25はディスプレイやプリンタ等が含まれる。なお、出力部25は評価装置20の一部であってもよい。 An output unit 25 that outputs evaluation data is connected to the evaluation device 20. The output unit 25 includes a display, a printer, and the like. The output unit 25 may be a part of the evaluation device 20.

次に、歯車精度の評価方法を、図3のフローチャートを参照して説明する。 Next, the method of evaluating the gear accuracy will be described with reference to the flowchart of FIG.

評価装置20は、歯車測定機21によって測定された歯車10の各歯12の偏差データを取得する(ステップS1)。図4には1つの歯12の偏差データを示す。 The evaluation device 20 acquires deviation data of each tooth 12 of the gear 10 measured by the gear measuring machine 21 (step S1). FIG. 4 shows the deviation data of one tooth 12.

評価装置20は、取得された各歯12の偏差データに対してガウシアンフィルタ22を適用し、このフィルタリング処理で歯12の歯面上に残された偏差から着目する周波数成分の偏差データを抽出する(ステップS2)。例えば、表面性状に関連した粗さデータについては周期が短く振動に与える影響も小さいことから、このフィルタリング処理で除去し、また、歯研仕上げ加工で歯面に残されたうねり成分については抽出する。さらに、直流成分は振動に寄与しないため、元の偏差データから除去する。図5にはフィルタリング処理によって抽出された偏差データを示す。 The evaluation device 20 applies the Gaussian filter 22 to the acquired deviation data of each tooth 12, and extracts the deviation data of the frequency component of interest from the deviation left on the tooth surface of the tooth 12 by this filtering process. (Step S2). For example, the roughness data related to the surface texture has a short period and has a small effect on vibration, so it is removed by this filtering process, and the waviness component left on the tooth surface by the tooth grind finishing process is extracted. .. Furthermore, since the DC component does not contribute to vibration, it is removed from the original deviation data. FIG. 5 shows the deviation data extracted by the filtering process.

そして、評価装置20の偏差抽出部により、歯車10の基礎円11上に隣に並んだ2つの歯12の偏差データ(x(t)およびy(t))間の関係を次の数1の相互相関関数(Rxy)の式によって求め、2つの歯12に跨って歯面上に残された周期的な偏差を抽出する(ステップS3)。 Then, by the deviation extraction unit of the evaluation device 20, the relationship between the deviation data (x (t) and y (t)) of the two teeth 12 arranged next to each other on the basic circle 11 of the gear 10 is set to the next number 1. It is obtained by the formula of the cross-correlation function (Rxy), and the periodic deviation left on the tooth surface straddling the two teeth 12 is extracted (step S3).

Figure 0007075608000002
Figure 0007075608000002

2つ並んだ歯12の偏差データ(x(t)およびy(t))間の関係を相互相関関数の式で求める手順を、歯車10の回転位相が進む方向の歯12に対して順番に実施することにより(ステップS4)、評価装置20の評価データ作成部24によって、かみ合う順番に並べた回転位相と周期的な偏差との関係の評価データを作成する(ステップS5)。 The procedure for obtaining the relationship between the deviation data (x (t) and y (t)) of two side-by-side teeth 12 by the formula of the cross-correlation function is sequentially performed for the tooth 12 in the direction in which the rotation phase of the gear 10 advances. By doing so (step S4), the evaluation data creating unit 24 of the evaluation device 20 creates evaluation data of the relationship between the rotational phases arranged in the order of meshing and the periodic deviation (step S5).

評価データは例えば図6または図7に示すグラフとして作成され、出力部25のディスプレイに表示またはプリンタでプリントアウトされる。 The evaluation data is created, for example, as a graph shown in FIG. 6 or 7, and is displayed on the display of the output unit 25 or printed out by a printer.

そして、歯車10の仕上げ加工が適切であり、隣接する歯12が同様の偏差を持つ場合、図6に示すように、かみ合い振動とその高調波成分が主となる振動が発生し、この場合の回転位相と周期的な偏差との関係は、横軸であるシフト量が0の位置で大きな値をとり、それ以外のシフト量の位置でその値が減少していく。縦軸である回転位相の方向には同じシフト量の位置では大きな変化は発生しない。 Then, when the finishing process of the gear 10 is appropriate and the adjacent teeth 12 have the same deviation, as shown in FIG. 6, the meshing vibration and the vibration mainly composed of the harmonic component thereof are generated, and in this case, the vibration is generated. The relationship between the rotational phase and the periodic deviation takes a large value at the position where the shift amount on the horizontal axis is 0, and decreases at the position where the shift amount is other than that. No significant change occurs in the direction of the rotation phase, which is the vertical axis, at positions with the same shift amount.

それに対して、歯車10の仕上げ加工が不良であり、ゴーストノイズ等が発生する歯車10は、セッティングが不適切な状態で加工されているため、図7に示すように、歯面上に残された加工痕が通常(図6)ではない周期として残されることになる。これらの歯面上に残された波形は単一では確認が困難であるが、回転位相と周期的な偏差との関係のグラフを作成することにより、特殊な周期性が目視でも簡単に確認できることになる。 On the other hand, the gear 10 is poorly finished and ghost noise or the like is generated. Since the gear 10 is processed in an improper setting, it is left on the tooth surface as shown in FIG. 7. The machined marks will be left as an unusual cycle (FIG. 6). It is difficult to confirm the waveform left on these tooth surfaces by itself, but by creating a graph of the relationship between the rotational phase and the periodic deviation, the special periodicity can be easily confirmed visually. become.

このように、本実施形態によれば、歯車測定機21によって計測された歯車10の形状偏差について、個別に評価するのではなく、回転位相に従って変化していく隣り合う歯12に残された偏差間の周期性を相互相関関数によって抽出し、それを歯車10の回転位相が進む順に並べて表記することによって、歯車10の全体の形状偏差を俯瞰して観察、評価することが可能となり、これまでには困難であった、ゴーストノイズ等のノイズ発生原因を簡単に推定できる。 As described above, according to the present embodiment, the shape deviation of the gear 10 measured by the gear measuring machine 21 is not evaluated individually, but the deviation left in the adjacent teeth 12 changing according to the rotation phase. By extracting the periodicity between them by a mutual correlation function and arranging them in the order in which the rotational phase of the gear 10 advances, it is possible to observe and evaluate the overall shape deviation of the gear 10 from a bird's-eye view. It is possible to easily estimate the cause of noise generation such as ghost noise, which was difficult to achieve.

10 歯車
11 基礎円
12 歯
20 評価装置
21 歯車測定機
22 ガウシアンフィルタ
23 偏差抽出部
24 評価データ作成部
10 Gear 11 Basic circle 12 Teeth 20 Evaluation device 21 Gear measuring machine 22 Gaussian filter 23 Deviation extraction unit 24 Evaluation data creation unit

Claims (4)

歯車測定機によって測定された歯車の各歯の偏差データに基づいて精度を評価する歯車精度の評価方法であって、
前記歯車の基礎円上に隣に並んだ2つの前記歯の偏差データ間の関係を相互相関関数によって求め、2つの前記歯に跨って歯面上に残された周期的な偏差を抽出するステップと、
前記周期的な偏差を抽出するステップが前記歯車の回転位相が進む方向の前記歯に対して順番に実施されることにより、前記歯車の回転位相と周期的な偏差との関係の評価データを作成するステップと、
を備えることを特徴とする歯車精度の評価方法。
It is a gear accuracy evaluation method that evaluates the accuracy based on the deviation data of each tooth of the gear measured by the gear measuring machine.
The step of finding the relationship between the deviation data of two teeth arranged adjacent to each other on the base circle of the gear by a cross-correlation function and extracting the periodic deviation left on the tooth surface straddling the two teeth. When,
By sequentially performing the step of extracting the periodic deviation with respect to the tooth in the direction in which the rotation phase of the gear advances, evaluation data of the relationship between the rotation phase of the gear and the periodic deviation is created. Steps to do and
A method for evaluating gear accuracy.
前記周期的な偏差を抽出するステップの前に、前記歯車測定機によって測定された前記歯車の前記歯の偏差データに対してガウシアンフィルタを適用し、所定の周波数成分の偏差データを抽出するステップを備える
ことを特徴とする請求項1記載の歯車精度の評価方法。
Prior to the step of extracting the periodic deviation, a step of applying a Gaussian filter to the deviation data of the teeth of the gear measured by the gear measuring machine and extracting the deviation data of a predetermined frequency component is performed. The method for evaluating gear accuracy according to claim 1, wherein the method is provided.
歯車測定機によって測定された歯車の各歯の偏差データに基づいて精度を評価する歯車精度の評価装置であって、
前記歯車の基礎円上に隣に並んだ2つの前記歯の偏差データ間の関係を相互相関関数によって求め、2つの前記歯に跨って歯面上に残された周期的な偏差を抽出する偏差抽出部と、
前記偏差抽出部による周期的な偏差の抽出が前記歯車の回転位相が進む方向の前記歯に対して順番に実施されることにより、前記歯車の回転位相と周期的な偏差との関係の評価データを作成する評価データ作成部と
を備えることを特徴とする歯車精度の評価装置。
It is a gear accuracy evaluation device that evaluates the accuracy based on the deviation data of each tooth of the gear measured by the gear measuring machine.
The relationship between the deviation data of two teeth arranged next to each other on the base circle of the gear is obtained by a cross-correlation function, and the deviation that extracts the periodic deviation left on the tooth surface straddling the two teeth. Extractor and
Evaluation data of the relationship between the rotation phase of the gear and the periodic deviation is performed by sequentially extracting the periodic deviation by the deviation extraction unit for the teeth in the direction in which the rotation phase of the gear advances. An evaluation device for gear accuracy, characterized in that it is equipped with an evaluation data creation unit.
前記歯車測定機によって測定された前記歯車の前記歯の偏差データから所定の周波数成分の偏差データを抽出するガウシアンフィルタを備える
ことを特徴とする請求項3記載の歯車精度の評価装置。
The gear accuracy evaluation device according to claim 3, further comprising a Gaussian filter that extracts deviation data of a predetermined frequency component from deviation data of the teeth of the gear measured by the gear measuring machine.
JP2021068565A 2021-04-14 2021-04-14 Gear accuracy evaluation method and evaluation device Active JP7075608B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021068565A JP7075608B1 (en) 2021-04-14 2021-04-14 Gear accuracy evaluation method and evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021068565A JP7075608B1 (en) 2021-04-14 2021-04-14 Gear accuracy evaluation method and evaluation device

Publications (2)

Publication Number Publication Date
JP7075608B1 true JP7075608B1 (en) 2022-05-26
JP2022163559A JP2022163559A (en) 2022-10-26

Family

ID=81749612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021068565A Active JP7075608B1 (en) 2021-04-14 2021-04-14 Gear accuracy evaluation method and evaluation device

Country Status (1)

Country Link
JP (1) JP7075608B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146503A (en) * 2017-03-08 2018-09-20 トヨタ自動車株式会社 Method for managing shape of tooth surface
JP2018185166A (en) * 2017-04-24 2018-11-22 本田技研工業株式会社 Tooth surface waviness evaluation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146503A (en) * 2017-03-08 2018-09-20 トヨタ自動車株式会社 Method for managing shape of tooth surface
JP2018185166A (en) * 2017-04-24 2018-11-22 本田技研工業株式会社 Tooth surface waviness evaluation method

Also Published As

Publication number Publication date
JP2022163559A (en) 2022-10-26

Similar Documents

Publication Publication Date Title
Jiang et al. Paradigm shifts in surface metrology. Part I. Historical philosophy
AU2016251428B2 (en) Method and device for machining a tool by removing material
JP7486708B2 (en) Method for correcting design tolerances and measurement system
TWI518310B (en) Method for determining the precision of gears
JP2018524606A (en) Measuring method and evaluation method of gear accuracy
JP7075608B1 (en) Gear accuracy evaluation method and evaluation device
JP2007139774A (en) Computer-implemented technique and system for characterizing geometric parameter of edge break in machined part
Zhang et al. Geometric product specification of gears: The GeoSpelling perspective
JP2018185166A (en) Tooth surface waviness evaluation method
JP3132920B2 (en) Gear set analysis method
JP2018197690A (en) Uneven shape measuring method on three-dimensional curved surface
Krömer et al. Surface characteristics of hobbed gears
Lecompte et al. Technological form defects identification using discrete cosine transform method
Kimme et al. Simulation of error-prone continuous generating production processes of helical gears and the influence on the vibration excitation in gear mesh
JP2007003507A (en) Gear inspection device
CN109341629B (en) Method for analyzing influence of intersection angle error of hob mounting shaft on surface error of machined gear
CN108648265B (en) Three-dimensional modeling method for hobbing tooth surface of helical cylindrical gear
Gravel Analysis of ripple on noisy gears
Konecki et al. Issues related to an attempt to recreate the geometry of a non-standard spur gear
JPH0933398A (en) Simulation method for tooth contact transmission error of bevel gear
JP5149060B2 (en) Double tooth meshing gear inspection system
CN109886949B (en) Straight spur gear multi-parameter evaluation method based on machine vision
Stanciu et al. MASTER WHEEL ERRORS ELIMINATION IN FORCED GEAR ENGAGEMENT TESTING MACHINE USING HARMONIC ANALYSIS THROUGH FAST FOURIER TRANSFORM
JP5307848B2 (en) Inspection device
JP5374048B2 (en) Worm simulation grinding method and worm grinding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220427

R150 Certificate of patent or registration of utility model

Ref document number: 7075608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350