JP5307848B2 - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP5307848B2
JP5307848B2 JP2011099282A JP2011099282A JP5307848B2 JP 5307848 B2 JP5307848 B2 JP 5307848B2 JP 2011099282 A JP2011099282 A JP 2011099282A JP 2011099282 A JP2011099282 A JP 2011099282A JP 5307848 B2 JP5307848 B2 JP 5307848B2
Authority
JP
Japan
Prior art keywords
waveform
cycle
lower limit
upper limit
manufacturing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011099282A
Other languages
Japanese (ja)
Other versions
JP2012230043A (en
Inventor
勘 仲井
公昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011099282A priority Critical patent/JP5307848B2/en
Priority to KR1020110100671A priority patent/KR101260169B1/en
Publication of JP2012230043A publication Critical patent/JP2012230043A/en
Application granted granted Critical
Publication of JP5307848B2 publication Critical patent/JP5307848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/02Arrangements in which the value to be measured is automatically compared with a reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • General Factory Administration (AREA)

Description

この発明は、集録した波形を、所定の上下限値と比較して製品の良否を判定する検査装置に関するものである。   The present invention relates to an inspection apparatus that compares a collected waveform with a predetermined upper and lower limit value and determines whether a product is good or bad.

従来より、不具合を含んだ製品を市場に出荷することを防ぐために、製造した製品の良否を判定するための検査が行われている。その検査方法の1つとして、製造した製品に対して試験信号を与え、その際の製品の振る舞いをセンサ等を通じて計測し、その時系列として集録した計測波形を所定の上下限値と比較して製品の良否を判定する方法が知られている(例えば、非特許文献1参照)。   Conventionally, in order to prevent a product containing a defect from being shipped to the market, an inspection for determining the quality of a manufactured product has been performed. As one of the inspection methods, a test signal is given to the manufactured product, the behavior of the product at that time is measured through a sensor, etc., and the measured waveform acquired as a time series is compared with a predetermined upper and lower limit value. There is known a method for determining whether or not a product is good (see, for example, Non-Patent Document 1).

三菱データ収集アナライザMELIQC IU2シリーズ IU2-LOG-LIT1ユーザーズマニュアル(マニュアル番号:JZ990D48401 作成年月:2009年2月)Mitsubishi Data Collection Analyzer MELIQC IU2 Series IU2-LOG-LIT1 User's Manual (Manual No .: JZ990D48401 Date of creation: February 2009)

この波形の判定方法は、上限波形と下限波形を予め設定しておき、集録した波形がこれら上限波形及び下限波形(以下、上下限波形と略記する場合あり)を逸脱していないかを判定基準とする方法がある。この方法はバンド比較と呼ばれている(非特許文献1の3.3.6波形解析の(3)バンド比較を参照)。   In this waveform determination method, an upper limit waveform and a lower limit waveform are set in advance, and whether or not the acquired waveform deviates from these upper limit waveform and lower limit waveform (hereinafter may be abbreviated as upper and lower limit waveforms). There is a method. This method is called band comparison (see (3) Band comparison in 3.3.6 Waveform analysis in Non-Patent Document 1).

以下図7を用いて、従来のバンド比較について説明する。
<上下限波形の作成>
良品であることが分かっている製品に対して試験信号を与え、その際の製品の振る舞いをサンプリング間隔ΔTで計測する検査を行うものとして、検査の開始をトリガ検出して開始時刻T1を保持すると共にサンプリングを開始し、検査の終了もトリガ検出して終了時刻T2を保持すると共にサンプリングを停止し、その結果、1サイクルの所要時間がT(=T2−T1)で、波形点数がn点となったとする。なお、検査の所要時間Tは毎回一定であるから、1サイクルの開始トリガで波形集録を開始し、その後、波形点数がn点になった時点で、波形集録を終了しても、同じことである。このようにして、正常波形を得る。同様にして、不良品であることが分かっている製品に対しても試験信号を与え、波形集録を行い、異常波形を得る。
Hereinafter, a conventional band comparison will be described with reference to FIG.
<Creation of upper and lower limit waveforms>
Assuming that a test signal is given to a product that is known to be a non-defective product, and that the behavior of the product at that time is measured at a sampling interval ΔT, the start of the test is detected as a trigger and the start time T1 is held. At the same time, sampling is started, the end of the inspection is also detected by trigger, and the end time T2 is held and the sampling is stopped. As a result, the time required for one cycle is T (= T2-T1) and the number of waveform points is n points. Suppose that Since the time required for inspection T is constant every time, waveform acquisition is started with a start trigger of one cycle, and after that, when the number of waveform points reaches n points, the same thing can be said. is there. In this way, a normal waveform is obtained. Similarly, a test signal is given to a product that is known to be a defective product, waveform acquisition is performed, and an abnormal waveform is obtained.

このようにして正常波形と異常波形をいくつか取得し、これら取得したいくつかの正常波形と異常波形に基づいて上下限波形を規定する。例えば、取得したいくつかの正常波形を平均した波形を上下方向にずらして上下限波形を作成する。取得した異常波形のいずれもが、この作成した上下限波形を逸脱することを確認して、最終的に上下限波形(上限波形H1〜Hn、下限波形L1〜Ln)として規定する。規定した上下限波形もn点(サンプリング間隔ΔT)である。   In this way, several normal and abnormal waveforms are acquired, and upper and lower limit waveforms are defined based on these acquired normal and abnormal waveforms. For example, upper and lower limit waveforms are created by shifting a waveform obtained by averaging several acquired normal waveforms in the vertical direction. It is confirmed that any of the acquired abnormal waveforms deviate from the created upper and lower limit waveforms, and finally defined as upper and lower limit waveforms (upper limit waveforms H1 to Hn, lower limit waveforms L1 to Ln). The specified upper and lower limit waveforms are also n points (sampling interval ΔT).

<計測波形の判定>
検査対象である製品に対しても同様に試験信号を与え、その際の振る舞いをサンプリング間隔ΔTで計測し、その結果として計測波形(V1〜Vn)が得られたとする。計測波形が上下限波形を逸脱しているか否かの判定(以下特性判定と呼ぶ)は、計測波形の各点の値と、上下限波形の各点の値を比較することにより行う。すなわち、計測波形の各点の値が、上限波形の各点の値より小さく、かつ、下限波形の各点の値より大きければ(L1<V1<H1、L2<V2<H2、…、Ln<Vn<Hnであることを確認する)、計測波形が上下限波形を逸脱しておらず、この製品は良品であると判定する。
<Determination of measurement waveform>
Similarly, it is assumed that a test signal is also given to a product to be inspected, the behavior at that time is measured at a sampling interval ΔT, and measurement waveforms (V1 to Vn) are obtained as a result. Whether or not the measurement waveform deviates from the upper and lower limit waveforms (hereinafter referred to as characteristic determination) is performed by comparing the value of each point of the measurement waveform with the value of each point of the upper and lower limit waveform. That is, if the value of each point of the measurement waveform is smaller than the value of each point of the upper limit waveform and larger than the value of each point of the lower limit waveform (L1 <V1 <H1, L2 <V2 <H2,..., Ln < (Confirm that Vn <Hn), the measured waveform does not deviate from the upper and lower limit waveforms, and this product is determined to be non-defective.

上下限波形の逸脱で判定する上述の波形判定方法とは別の波形判定方法として、波形を解析処理して波形の特徴点を抽出し、その結果により良否を判定する方法も考えられるが、その処理は複雑であり、正しい良否を行える波形の解析処理を確立するまでに時間と労力を要する。従って、多品種変量生産の現代において、一品一様的に正しい良否を行える波形の解析処理を確立することは現実的ではない場合がある。一方で、バンド比較による方法は、上下限波形を設定するだけでよいので、そのような用途において有効な方法である。   As a waveform determination method that is different from the above-described waveform determination method that is determined by the deviation of the upper and lower limit waveforms, a method of analyzing the waveform and extracting the feature points of the waveform and determining the quality based on the result can be considered. The process is complicated, and it takes time and effort to establish a waveform analysis process that can perform right and wrong. Therefore, in the present day of multi-variety variable-volume production, it may not be practical to establish a waveform analysis process that can correctly and correctly perform one product. On the other hand, the method based on the band comparison is effective in such an application because it is only necessary to set the upper and lower limit waveforms.

このように、製造加工後の製品に対して検査を行い、製品の良否を判定する従来の方式では、製造加工工程の後に検査工程を設ける必要があり、その分だけ製品1個あたりの製造開始から完了までに要する時間も長くなる。これを解決するために、製造加工工程中における制御指令や製造加工状況を計測して、その結果として得られた波形が、正常な製造加工時の波形から逸脱していないかを確認することによって、製品の良否を判定する方法がある。この方法は、インライン検査とか機上検査(オン・マシン・ベリフィケーション)などと呼ばれたりする。   As described above, in the conventional method of inspecting a product after manufacturing and determining the quality of the product, it is necessary to provide an inspection process after the manufacturing and processing process, and start manufacturing per product accordingly. The time required from completion to completion also becomes longer. In order to solve this, by measuring the control commands and manufacturing process status during the manufacturing process, and confirming that the resulting waveform does not deviate from the waveform during normal manufacturing process There is a method for judging the quality of a product. This method is sometimes called in-line inspection or on-machine inspection (on-machine verification).

この波形の判定方法は、図7と同様でよい。すなわち、製造した製品に対して試験信号を与え、その際の製品の振る舞いを計測する代わりに、1個の製品の製造加工(1サイクル)の状況を計測し、得られた波形をバンド比較すればよい。   This waveform determination method may be the same as in FIG. That is, instead of giving a test signal to the manufactured product and measuring the behavior of the product at that time, measure the status of the manufacturing process (one cycle) of one product, and compare the obtained waveforms with the band. That's fine.

ところで、製造加工には、プレス機など、回転機構に基づいて(すなわち回転機構に同期して)制御する製造加工がある。このような製造加工設備の中には、暖気運転を必要とするなど、運転開始(電源投入)から、回転機構の回転が安定するまでに時間を要するものがある。回転機構の回転がこのような特性を有していても、製造加工の制御自体が回転機構に同期していることから、製造加工精度自体に問題はない。別の言い方をすれば、回転機構の回転がこのような特性を有していても、製造加工精度自体に問題がないように、製造加工の制御自体を回転機構に同期するように構成している。   By the way, in the manufacturing process, there is a manufacturing process that is controlled based on a rotating mechanism (that is, in synchronization with the rotating mechanism) such as a press machine. Some of these manufacturing and processing facilities require time from the start of operation (power-on) until the rotation of the rotation mechanism is stabilized, such as requiring warm-up operation. Even if the rotation of the rotation mechanism has such characteristics, there is no problem in the accuracy of the manufacturing process because the control of the manufacturing process itself is synchronized with the rotation mechanism. In other words, even if the rotation of the rotating mechanism has such characteristics, the manufacturing process control itself is synchronized with the rotating mechanism so that there is no problem in the manufacturing process accuracy itself. Yes.

ところが、このような特性を有する製造加工に対して、従来の波形判定方法による機上検査を行えば、実際の製品としては良であるにも関わらず、波形判定では否とされてしまうという問題があった。   However, if an on-machine inspection using a conventional waveform determination method is performed on a manufacturing process having such characteristics, the actual product is acceptable, but the waveform determination is rejected. was there.

例えば、運転開始から、回転機構の回転が安定するまでに時間を要するものであって、運転開始時の回転数が、安定時に比べて低く(遅く)、徐々に回転数が上がってゆくような特性を持つ場合、図8に示すように、安定時の製造加工の1サイクルに要する時間に比べて、運転開始時の製造加工の1サイクルが長くなる。そのため、安定時の1サイクルが波形集録できるように加工開始トリガから一定数の点数分を一定周期のサンプリング周期で波形集録する設定では、運転開始時の1サイクルが集録できない、つまり、集録時間、集録点数が足りず、1サイクルのすべてを集録しきれないにも関わらず、その不完全な集録波形に対して上限波形及び下限波形を逸脱していないかを基準として判定するので、正しい波形判定がなされないという問題があった。   For example, it takes time from the start of operation until the rotation of the rotation mechanism is stabilized, and the rotation speed at the start of operation is lower (slower) than at the stable time, and the rotation speed gradually increases. In the case of having the characteristics, as shown in FIG. 8, one cycle of the manufacturing process at the start of operation becomes longer than the time required for one cycle of the manufacturing process at the stable time. Therefore, if the waveform acquisition is performed for a fixed number of points from the processing start trigger so that one cycle at stable time can be acquired, one cycle at the start of operation cannot be acquired, that is, the acquisition time, Even if the number of acquisition points is insufficient and the entire cycle cannot be acquired, it is determined based on whether the upper limit waveform and lower limit waveform are not deviated from the incomplete acquisition waveform. There was a problem that was not made.

逆に、運転開始から、回転機構の回転が安定するまでに時間を要するものであって、運転開始時の回転数が、安定時に比べて高く(速く)、徐々に回転数が下がってくるような特性を持つ場合、図9に示すように、安定時の製造加工の1サイクルに要する時間に比べて、運転開始時の製造加工の1サイクルが短くなる。そのため、安定時の1サイクルが波形集録できるように加工開始トリガから一定数の点数分を一定周期のサンプリング周期で波形集録する設定では、運転開始時の1サイクルのみならず余計な波形まで集録してしまうにも関わらず、その集録波形に対して上限波形及び下限波形を逸脱していないかを基準として判定するので、正しい波形判定がなされないという問題があった。   Conversely, it takes time from the start of operation until the rotation of the rotation mechanism stabilizes, and the rotation speed at the start of operation is higher (faster) than when it is stable, and the rotation speed gradually decreases. As shown in FIG. 9, one cycle of manufacturing processing at the start of operation is shorter than the time required for one cycle of manufacturing processing when stable. Therefore, in the setting to acquire a certain number of points from the processing start trigger at a constant sampling period so that one cycle at stable time can be acquired, not only one cycle at the start of operation but also an extra waveform are acquired. In spite of this, there is a problem that correct waveform determination cannot be performed because the determination is made based on whether the acquired waveform deviates from the upper limit waveform and the lower limit waveform.

また、これを解決するために、加工開始トリガから加工終了トリガまでを一定周期のサンプリング周期で波形集録すると、得られた波形の点数が異なり、同じ波形判定方法が適用できない、という問題が起こる。さらにこの問題を解決する方法として、その計測された回転数に応じた予め複数種の異なる回転数で製造加工した際の1サイクルの上下限波形を用意しておき、1サイクルの製造加工時の回転数(回転周期)を計測し、その計測された回転数に応じた上下限波形をもって波形判定を行う方法が考えられるが、判定検査精度を上げようとすれば回転数を細かく分けて上下限波形を多数用意する必要があり、面倒であると同時に多数の上下限波形を記憶しておく領域にも限界があるので、あまり現実的ではないという問題があった。   In order to solve this problem, if the waveform acquisition is performed from the processing start trigger to the processing end trigger at a constant sampling period, the number of obtained waveforms is different, and the same waveform determination method cannot be applied. Furthermore, as a method for solving this problem, an upper and lower limit waveform for one cycle when manufacturing and processing at a plurality of different rotation speeds according to the measured rotation speed is prepared in advance. A method of measuring the number of rotations (rotation period) and determining the waveform with the upper and lower limit waveforms corresponding to the measured number of rotations is conceivable. It is necessary to prepare a large number of waveforms, and there is a problem that it is not practical because there is a limit to the area in which a large number of upper and lower limit waveforms are stored at the same time.

この発明は上記の諸問題を解決するためになされたものである。   The present invention has been made to solve the above problems.

この発明に係る検査装置は、信号入力部と、記憶部とを備え、前記信号入力部が入手した、同じ状態変化が繰り返される製造加工の1サイクルの信号を、一定のサンプリング間隔で集録する波形集録処理部を備え、前記波形集録処理部によって集録された計測波形を、前記記憶部が記憶している良否判定基準用の上限波形及び下限波形と比較して製品の良否を判定する比較処理部を備える検査装置において、前記計測波形の1サイクルの所要時間に基づいて、前記良否判定基準用の上限波形及び下限波形を時間軸に対して拡大または縮小処理する拡大縮小処理部を備えると共に、前記良否判定基準用の上限波形及び下限波形は、1つのk次の多項式、または、2つ以上のk次の多項式の組み合わせの形態で記憶され、前記基準波形拡大または縮小処理は、前記計測波形の1サイクルの所要時間と、前記良否判定基準用の上限波形及び下限波形の所要時間の比に基づいて、k次の多項式の係数を変更することにより、k次の多項式で表される前記良否判定基準用の上限波形及び下限波形を拡大または縮小し、比較処理は、前記計測波形の点列の各点と、前記多項式とを比較して特性判定するものである。 The inspection apparatus according to the present invention includes a signal input unit and a storage unit, and acquires a waveform obtained by the signal input unit for one cycle of a manufacturing process in which the same state change is repeated at a constant sampling interval. A comparison processing unit that includes an acquisition processing unit and compares the measured waveform acquired by the waveform acquisition processing unit with an upper limit waveform and a lower limit waveform for a quality determination criterion stored in the storage unit, and determines whether the product is good or bad in the testing apparatus comprising, based on the time required for one cycle of the measurement waveform, provided with a scaling processing unit for enlarging or reducing process the upper waveform and lower waveforms for the quality criterion with respect to the time axis, the The upper limit waveform and the lower limit waveform for pass / fail judgment criteria are stored in the form of one k-order polynomial or a combination of two or more k-order polynomials, and the reference waveform expansion or The small processing is performed by changing the coefficient of the k-th order polynomial based on the ratio of the time required for one cycle of the measurement waveform and the time required for the upper and lower waveforms for the pass / fail judgment criterion. The upper limit waveform and the lower limit waveform for the pass / fail judgment criterion represented by a polynomial are enlarged or reduced, and the comparison processing is performed by comparing each point of the point sequence of the measurement waveform with the polynomial to determine characteristics. .

製造開始から製造加工装置が安定するまでに時間を要するものであっても、その製品の良否を正しく判定することができる。   Even if it takes time from the start of manufacturing until the manufacturing and processing apparatus is stabilized, it is possible to correctly determine the quality of the product.

この発明の実施の形態1に係る検査装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the inspection apparatus which concerns on Embodiment 1 of this invention. この発明を実施する際の製造加工装置と検査装置との関係を示す流れ図である。It is a flowchart which shows the relationship between the manufacturing processing apparatus at the time of implementing this invention, and an inspection apparatus. 実施の形態1に係る検査装置の機能を説明するブロック図である。FIG. 3 is a block diagram for explaining functions of the inspection apparatus according to the first embodiment. この発明の上限波形及び下限波形の拡大並びに波形判定の方法を説明する図である。It is a figure explaining the method of the expansion and waveform determination of the upper limit waveform and lower limit waveform of this invention. この発明の上限波形及び下限波形の拡大を説明するフローチャートである。It is a flowchart explaining the expansion of the upper limit waveform and the lower limit waveform of the present invention. この発明の実施の形態2に係る上限波形及び下限波形の拡大方法を説明する図である。It is a figure explaining the expansion method of the upper limit waveform and lower limit waveform which concern on Embodiment 2 of this invention. 従来の上限波形及び下限波形の作成並びに波形判定についての説明図である。It is explanatory drawing about preparation of the conventional upper limit waveform and a lower limit waveform, and waveform determination. 回転機械の回転不安定時と安定時の各1サイクルの製造加工における集録波形を示す図である。It is a figure which shows the acquisition waveform in the manufacturing process of each 1 cycle at the time of the rotation unstable of a rotary machine, and the stable time. 回転機械の回転不安定時と安定時の各1サイクルの製造加工における集録波形を示す図である。It is a figure which shows the acquisition waveform in the manufacturing process of each 1 cycle at the time of the rotation unstable of a rotary machine, and the stable time.

実施の形態1.
図1は、この発明を実現するためのハードウェア構成を示している。検査装置1は、マイクロプロセッサ2、データ格納メモリ3、操作入力部4、データ保存部5、信号入力部6、信号出力部7、及び操作表示部8から構成される。
Embodiment 1 FIG.
FIG. 1 shows a hardware configuration for realizing the present invention. The inspection apparatus 1 includes a microprocessor 2, a data storage memory 3, an operation input unit 4, a data storage unit 5, a signal input unit 6, a signal output unit 7, and an operation display unit 8.

検査装置1には、複数の検査プログラムを記憶部であるデータ格納メモリ3やデータ保存部5に記憶させることができ、操作入力部4で指定した検査プログラムに従って、マイクロプロセッサ2が、信号入力部6で計測した信号に対して、特性判定の処理を行い、その判定結果をデータ格納メモリ3やデータ保存部5に記憶したり、信号出力部7へ信号出力したり、操作表示部8で判定結果表示を行なったりする。検査装置の種別によっては、操作表示部8を備えていないものもある。また、上述の従来技術で説明したとおり、検査プログラムに従って、信号出力部7から試験信号を出力し、その試験信号を、検査対象である製造した製品に対して与え、その際の製品の振る舞いを、信号入力部6で計測して良否判定を行なうような使い方もある。   The inspection apparatus 1 can store a plurality of inspection programs in the data storage memory 3 and the data storage unit 5 that are storage units, and the microprocessor 2 performs signal input unit according to the inspection program specified by the operation input unit 4. The characteristic measurement process is performed on the signal measured in 6, and the determination result is stored in the data storage memory 3 and the data storage unit 5, the signal is output to the signal output unit 7, and the operation display unit 8 performs the determination. Display results. Some types of inspection devices do not include the operation display unit 8. Further, as described in the above-mentioned prior art, according to the inspection program, a test signal is output from the signal output unit 7 and the test signal is given to the manufactured product to be inspected, and the behavior of the product at that time is determined. There is also a method of using the signal input unit 6 to determine pass / fail.

図2は、この発明を実施する際の製造加工装置と検査装置との関係を示している。製造加工装置9には制御部10が備わっており、その制御部10が制御指令11を出力することによって製造加工状態12が制御され、製造加工が行なわれる。例えばプレス機の場合には、回転機構の原動力となるモータ、そのモータの起動・停止・回転速度を制御する制御部、そのモータの回転運動を製造加工対象へと伝達するシャフトやギヤやカムなどの機械部が備わっており、これらによってプレス型が制御されて製造加工対象である板金をプレスする。製造加工状態12を示す信号は、状態検出部13により検出され、検査装置1の信号入力部6に伝達される。   FIG. 2 shows the relationship between the manufacturing / processing apparatus and the inspection apparatus when the present invention is carried out. The manufacturing / processing apparatus 9 includes a control unit 10. When the control unit 10 outputs a control command 11, the manufacturing / processing state 12 is controlled and manufacturing processing is performed. For example, in the case of a press machine, a motor that is the driving force of the rotation mechanism, a control unit that controls the start / stop / rotation speed of the motor, a shaft, gear, cam, etc. that transmits the rotational motion of the motor to the object to be processed The press part is controlled by these to press the sheet metal to be manufactured and processed. A signal indicating the manufacturing process state 12 is detected by the state detection unit 13 and transmitted to the signal input unit 6 of the inspection apparatus 1.

図3は、この発明を実施する際、マイクロプロセッサ2が行なう処理の機能ブロック構成(ソフトウェアブロック構成)を示している。以下、図3に沿って検査装置1の動作を説明する。検査装置1は、製造加工装置9の状態検出部13で検出された製造加工状態12を表す信号を、信号入力部6の信号計測チャンネル(CH)を通して計測する。マイクロプロセッサ2の処理機能である波形集録処理16とは、信号入力部6が入手した信号を、時間間隔ΔTでサンプリングし、その計測波形17を時系列で記憶部であるデータ格納メモリ3に記憶させ、さらに、それをデータ保存部5に転送して保存させる処理である。1サイクルを計測するための開始トリガや終了トリガは、製造加工装置9の制御部10からの出力を信号入力部6のトリガ検出チャンネル(CH)に接続して検出する。このように、マイクロプロセッサ2は、信号入力部6のトリガ検出チャンネルで開始トリガを検出すると、信号入力部6の信号計測チャンネルを時間間隔ΔTでサンプリングし、その値を時系列でデータ保存部5に保持する波形集録処理16を開始し、信号入力部6のトリガ検出チャンネルで終了トリガを検出するとこの波形集録処理16を終了する。   FIG. 3 shows a functional block configuration (software block configuration) of processing performed by the microprocessor 2 when the present invention is implemented. Hereinafter, the operation of the inspection apparatus 1 will be described with reference to FIG. The inspection device 1 measures a signal representing the manufacturing / processing state 12 detected by the state detection unit 13 of the manufacturing / processing device 9 through a signal measurement channel (CH) of the signal input unit 6. The waveform acquisition process 16 which is a processing function of the microprocessor 2 samples the signal obtained by the signal input unit 6 at a time interval ΔT and stores the measured waveform 17 in the data storage memory 3 which is a storage unit in time series. Furthermore, it is a process of transferring the data to the data storage unit 5 and storing it. The start trigger and the end trigger for measuring one cycle are detected by connecting the output from the control unit 10 of the manufacturing apparatus 9 to the trigger detection channel (CH) of the signal input unit 6. As described above, when the microprocessor 2 detects the start trigger in the trigger detection channel of the signal input unit 6, the microprocessor 2 samples the signal measurement channel of the signal input unit 6 at the time interval ΔT, and calculates the value in time series as the data storage unit 5. The waveform acquisition process 16 is started, and when the end trigger is detected in the trigger detection channel of the signal input unit 6, the waveform acquisition process 16 ends.

良否判定基準用の上限波形14及び下限波形15は、特性判定処理であるバンド比較処理20を行う前に、予めデータ格納メモリ3またはデータ保存部5に記憶されており、波形集録処理16で得られた計測波形17について点数m18につき、拡大縮小処理19が行なわれる。その後、特性判定であるバンド比較処理20が行なわれる。すなわち、マイクロプロセッサ2は、波形集録処理16を完了すると、データ処理メモリ3またはデータ保存部5に記憶されている上限波形14及び下限波形15を読み出し、これらと、波形集録された計測波形17とをバンド比較処理20する。そして、その判定結果21を、記憶部であるデータ格納メモリ3またはデータ保存部5に記憶したり、信号出力部7に出力したり、操作表示部8へ供給したりする。なお、バンド比較の方法である上下限波形の作成、及び、計測波形の判定は、背景技術で説明したとおりである。   The upper limit waveform 14 and the lower limit waveform 15 for pass / fail judgment criteria are stored in advance in the data storage memory 3 or the data storage unit 5 before performing the band comparison process 20 which is a characteristic determination process, and are obtained by the waveform acquisition process 16. Enlargement / reduction processing 19 is performed on the measured waveform 17 for the score m18. Thereafter, a band comparison process 20 that is characteristic determination is performed. That is, when the microprocessor 2 completes the waveform acquisition process 16, the microprocessor 2 reads the upper limit waveform 14 and the lower limit waveform 15 stored in the data processing memory 3 or the data storage unit 5, and these and the waveform acquisition measurement waveform 17. The band comparison process 20 is performed. Then, the determination result 21 is stored in the data storage memory 3 or the data storage unit 5 that is a storage unit, output to the signal output unit 7, or supplied to the operation display unit 8. The creation of upper and lower limit waveforms and the determination of the measurement waveform, which are band comparison methods, are as described in the background art.

<上下限波形の作成>
先ず、良否判定基準用の上限波形14及び下限波形15の作成について、再度図7を用いて説明する。製造加工の安定状態において、1サイクルの波形をサンプリング間隔ΔTで計測するとして、1サイクルの開始をトリガ検出して開始時刻T1を保持すると共にサンプリングを開始し、1サイクルの終了もトリガ検出して終了時刻T2を保持すると共にサンプリングを停止し、その結果、1サイクルの所要時間がT(=T2−T1)及び波形点数がn点となったとする。製造加工の安定状態において所要時間Tは毎サイクル一定であるから、1サイクルの開始トリガで波形集録を開始し、その後、波形点数がn点になった時点で、波形集録を終了しても同じことである。
<Creation of upper and lower limit waveforms>
First, creation of the upper limit waveform 14 and the lower limit waveform 15 for pass / fail judgment criteria will be described with reference to FIG. Assuming that the waveform of one cycle is measured at the sampling interval ΔT in the stable state of the manufacturing process, the start of one cycle is detected as a trigger, the start time T1 is held, sampling is started, and the end of one cycle is also detected as a trigger. Assume that the end time T2 is held and sampling is stopped. As a result, the time required for one cycle is T (= T2−T1) and the number of waveform points is n. Since the required time T is constant every cycle in the stable state of manufacturing and processing, the waveform acquisition is started by the start trigger of one cycle, and then the waveform acquisition is ended when the number of waveform points reaches n points. That is.

その時に製造加工した製品を別途検査して、その製品が良品であれば、その時の製造加工中に計測した波形は正常波形であり、その製品が不良品であれば、その時の製造加工中に計測した波形は異常波形である。このようにして正常波形と異常波形をいくつか取得し、これら取得したいくつかの正常波形と異常波形に基づいて上下限波形を規定する。例えば、取得したいくつかの正常波形を平均した波形を上下方向にずらして上下限波形を作成する。取得した異常波形のいずれもが、この作成した上下限波形を逸脱することを確認して、最終的に上下限波形(上限波形H1〜Hn、下限波形L1〜Ln)として規定する。規定した上下限波形もn点(サンプリング間隔ΔT)である。   If the product manufactured and processed at that time is separately inspected, and the product is a non-defective product, the waveform measured during the manufacturing process is a normal waveform. If the product is defective, the product is processed during the manufacturing process. The measured waveform is an abnormal waveform. In this way, several normal and abnormal waveforms are acquired, and upper and lower limit waveforms are defined based on these acquired normal and abnormal waveforms. For example, upper and lower limit waveforms are created by shifting a waveform obtained by averaging several acquired normal waveforms in the vertical direction. It is confirmed that any of the acquired abnormal waveforms deviate from the created upper and lower limit waveforms, and finally defined as upper and lower limit waveforms (upper limit waveforms H1 to Hn, lower limit waveforms L1 to Ln). The specified upper and lower limit waveforms are also n points (sampling interval ΔT).

以上は従来の機上検査のバンド比較の上下限波形の規定の方法と同じである。次の波形判定の方法が、従来にはないこの発明の部分である。以下この発明の波形判定の方法について図を用いて説明する。   The above is the same as the conventional method for defining the upper and lower limit waveforms of band comparison in on-board inspection. The following waveform determination method is a part of the present invention which is not present. The waveform determination method according to the present invention will be described below with reference to the drawings.

<計測波形の判定>
図4において、安定状態に至っていない製造加工中の1サイクルの波形を、サンプリング間隔ΔTで計測するとして、1サイクルの開始をトリガ検出して開始時刻Taを保持すると共にサンプリングを開始し、1サイクルの終了もトリガ検出して終了時刻Tbを保持すると共にサンプリングを停止し、その結果、1サイクルの所要時間がTc(=Tb−Ta)及び波形点数がm点(F1〜Fm)となったとする。
<Determination of measurement waveform>
In FIG. 4, assuming that the waveform of one cycle during the manufacturing process that has not reached the stable state is measured at the sampling interval ΔT, the start of one cycle is detected as a trigger, the start time Ta is held, sampling is started, and one cycle is started. The end of the signal is also detected as a trigger to hold the end time Tb and stop sampling. As a result, the time required for one cycle is Tc (= Tb-Ta) and the number of waveform points is m points (F1 to Fm). .

この発明では、集録した計測波形17のm点18(1サイクルの所要時間Tc)に合わせて、n点の上限波形14及び下限波形15を、m点の上限波形及び下限波形へと拡大または縮小処理19する。つまり、1サイクルの所要時間Tの上限波形14及び下限波形15をTcの上限波形及び下限波形へと拡大または縮小してする。その後、拡大または縮小された上限波形及び下限波形と計測波形17とをバンド比較処理20する。なお、以下では、拡大または縮小のことを、拡縮と略記する場合がある。   In the present invention, the upper limit waveform 14 and the lower limit waveform 15 at the n point are expanded or reduced to the upper limit waveform and the lower limit waveform at the m point in accordance with the m point 18 (the required time Tc of one cycle) of the acquired measurement waveform 17. Process 19 is performed. That is, the upper limit waveform 14 and the lower limit waveform 15 of the required time T in one cycle are enlarged or reduced to the upper limit waveform and the lower limit waveform of Tc. Thereafter, the upper limit waveform and the lower limit waveform expanded or reduced and the measurement waveform 17 are subjected to band comparison processing 20. In the following, enlargement or reduction may be abbreviated as enlargement / reduction.

図4及び図5は、n<mの場合の良否判定基準用の上限波形14の拡大処理について示したものである。図4及び図5では、その上限波形14の拡大処理の具体的な方法の代表例として、線形補間による方法について説明している。なお、n>mの場合の上限波形の縮小処理方法も、拡大の場合と手順は同じであり、また、下限波形の拡大または縮小処理方法も、上限波形の拡大または縮小処理方法と手順は同じであるので詳細な説明は省略する。   4 and 5 show the enlargement process of the upper / lower waveform 14 for pass / fail judgment criteria when n <m. 4 and 5, a linear interpolation method is described as a representative example of a specific method for enlarging the upper limit waveform 14. The upper limit waveform reduction processing method when n> m is the same as the enlargement procedure, and the lower limit waveform enlargement or reduction processing method is the same as the upper limit waveform enlargement or reduction processing method. Therefore, detailed description is omitted.

図4及び図5において、先ず、上限波形14の最初の点H1(Hi)をそのままH1’(Hi’)として配置し、H1’を拡大補正後の上限波形の最初の点K1(Kj)とする(ステップ502)。次に、i=i+1及びj=j+1として(ステップ503)、上限波形のH1(Hi−1)に続く点、すなわちH1からΔT後に計測した点H2(Hi)は、H1’からΔT×TC/Tの後の点H2’(Hi’)として配置する(ステップ504)。そして、H1’(Hi−1’)とH2’(Hi’)を結ぶ直線上で、拡大補正後の上限波形の最初の点K1(Kj−1)からΔTの後の点を算出できれば算出する(ステップ505)。算出できなければステップ508に進み、Hi’が上限波形の最後の点かどうか判断し(ステップ508)、最後なら処理を終わり、最後でなければi=i+1として(ステップ509)、ステップ504からの処理を繰り返す。ここでは1点だけ算出できるので、その点を拡大補正後の上限波形の最初の点K1に続く点K2(Kj)として(ステップ506)、次のためにj=j+1としておく(ステップ507)。   4 and 5, first, the first point H1 (Hi) of the upper limit waveform 14 is arranged as it is as H1 ′ (Hi ′), and H1 ′ is the first point K1 (Kj) of the upper limit waveform after enlargement correction. (Step 502). Next, assuming that i = i + 1 and j = j + 1 (step 503), a point following H1 (Hi-1) of the upper limit waveform, that is, a point H2 (Hi) measured after ΔT from H1, is obtained from H1 ′ to ΔT × TC / Place it as a point H2 ′ (Hi ′) after T (step 504). If the point after ΔT can be calculated from the first point K1 (Kj−1) of the upper limit waveform after the enlargement correction on the straight line connecting H1 ′ (Hi−1 ′) and H2 ′ (Hi ′), the calculation is performed. (Step 505). If not, the process proceeds to step 508, where it is determined whether Hi ′ is the last point of the upper limit waveform (step 508). If it is the last, the process ends. If not, i = i + 1 is set (step 509). Repeat the process. Since only one point can be calculated here, the point is set as a point K2 (Kj) following the first point K1 of the upper limit waveform after enlargement correction (step 506), and j = j + 1 is set for the next (step 507).

次に、上限波形14のH1から3番目に続く点、すなわちH1からΔT×2後に計測した点、つまりH2に続く点H3は、H1’からΔT×2×TC/Tの後、つまりH2’からΔT×TC/Tの後の点H3’として配置する(ステップ507)。そして、H2’とH3’を結ぶ直線上で、既に算出済みである拡大補正後の上限波形の点K2からΔTの後の点を算出できれば算出する。ここでは2点算出できるので、その点を拡大補正後の上限波形の点K2に続く点K3、及び、K3に続く点K4とする(ステップ505)。   Next, the third point following H1 of the upper limit waveform 14, that is, the point measured after ΔT × 2 from H1, that is, the point H3 following H2, is the point after H1 ′ after ΔT × 2 × TC / T, that is, H2 ′. Is set as a point H3 ′ after ΔT × TC / T (step 507). Then, on the straight line connecting H2 'and H3', if the point after ΔT can be calculated from the already corrected upper limit waveform point K2 after enlargement correction. Since two points can be calculated here, the points are set as a point K3 following the point K2 of the upper limit waveform after enlargement correction, and a point K4 following K3 (step 505).

以上の方法を繰り返し行うことで、計測波形17のm点(1サイクルの所要時間Tc)に合わせて、n点の上限波形14のH1〜Hnを、m点の上限波形K1〜Kmへと拡大(1サイクルの所要時間Tの上限波形をTcの上限波形へと拡大)することができる。同様に、下限波形15のL1〜Lnも拡大補正後の下限波形J1〜Jm(図示せず)へと拡大することができる。よって、計測波形17の各点の値が、拡大補正後の上限波形の各点の値より小さいか否か、かつ、拡大補正後の下限波形の各点の値より大きいか否かをバンド比較部20で確認することで、計測波形17の特性判定をし、判定結果21を得ることができる。すなわち、J1<F1<K1、J2<F2<K2、…、Jm<Fm<Kmであることが確認できれば、計測波形F1〜Fmが拡大補正後の上限波形及び拡大補正後の下限波形を逸脱しておらず、この製品は良品であると判定する。   By repeating the above method, H1 to Hn of the upper limit waveform 14 at the n point are expanded to the upper limit waveforms K1 to Km at the n point according to the m point (the required time Tc of one cycle) of the measurement waveform 17. (The upper limit waveform of the required time T of one cycle can be expanded to the upper limit waveform of Tc). Similarly, L1 to Ln of the lower limit waveform 15 can be enlarged to lower limit waveforms J1 to Jm (not shown) after the enlargement correction. Therefore, band comparison is performed to determine whether the value of each point of the measurement waveform 17 is smaller than the value of each point of the upper limit waveform after enlargement correction, and whether the value of each point of the lower limit waveform after enlargement correction is larger. By checking with the unit 20, the characteristics of the measurement waveform 17 can be determined, and the determination result 21 can be obtained. That is, if it can be confirmed that J1 <F1 <K1, J2 <F2 <K2,..., Jm <Fm <Km, the measured waveforms F1 to Fm deviate from the upper limit waveform after enlargement correction and the lower limit waveform after enlargement correction. This product is determined to be non-defective.

実施の形態2.
なお、図4及び図5では、計測した波形17のTa、Tb、点数m(1サイクルの所要時間Tc)に応じて上下限波形n点の拡縮処理を行うが、そのm点分を生成するためには、n点分の点列に基づいてm点分の点列を算出する補間処理を、次の1サイクルの開始までに完了する必要がある。そのため、特にタクトの短い製造加工の機上検査や、サンプリング点数の多い機上検査に対しては、次の1サイクルの開始までの時間が短く、それら処理を完了させるに十分な計算能力を持ったコンピュータが必要となる。
Embodiment 2. FIG.
4 and 5, the upper and lower limit waveform n points are enlarged / reduced according to the measured waveform 17 Ta, Tb, and the number of points m (required time Tc of one cycle), but the m points are generated. For this purpose, it is necessary to complete the interpolation process for calculating the point sequence for m points based on the point sequence for n points by the start of the next one cycle. Therefore, especially for on-machine inspections with short tact manufacturing and on-machine inspections with a large number of sampling points, the time until the start of the next cycle is short, and there is sufficient computing power to complete these processes. Computer is required.

そのような問題が懸念される場合には、上下限波形をスプライン曲線でモデル化(スプライン曲線で近似)して数式で表現し、点数n→m(1サイクルの所要時間T→Tc)の拡縮率に合わせて、その数式を時間方向に拡縮し、計測した波形の各点m個がその拡縮後の数式よりも上にあるか下にあるかを算出することで、拡縮後の上下限波形よりも上にあるか下にあるかを判別する方法を利用すればよい。上下限波形の数式モデリング処理に多少時間がかかっても、それはオフラインで行う作業、すなわち製造加工を始める前、機上検査を始める前に行うことができる作業であり、数式の拡大は、n点の線形補間よりも格段に計算量が少なくて済む。   If such a problem is a concern, the upper and lower limit waveforms are modeled by a spline curve (approximate by a spline curve) and expressed by a mathematical expression, and the number of points n → m (required time T → Tc for one cycle) is expanded or reduced. Depending on the rate, the mathematical formula is scaled in the time direction, and the upper and lower limit waveforms after scaling are calculated by calculating whether m points of the measured waveform are above or below the scaled mathematical formula. What is necessary is just to use the method of discriminating whether it is above or below. Even if the mathematical modeling process of upper and lower limit waveforms takes some time, it can be done offline, that is, before starting manufacturing and before on-machine inspection. The amount of calculation is much smaller than the linear interpolation.

上下限波形を1つの数式でモデリングするのは、数式が複雑になる等、不適当であるため、上下限波形の構造(極大極小点や変曲点の数)に応じて、複数個の数式に分割してモデル化する。数式の例として、2次や3次、あるいはそれ以上の高次の多項式で表現されるスプライン曲線やBezier曲線やB-Spline曲線、2次や3次、あるはそれ以上の高次の有理多項式で表現されるNURBS曲線がある。   Modeling the upper and lower limit waveforms with a single mathematical formula is inappropriate due to the complexity of the mathematical formula, etc. Therefore, a plurality of mathematical formulas can be selected depending on the structure of the upper and lower limit waveforms (the number of local maxima and inflection points). Divided into two models. Examples of mathematical formulas are spline curves, Bezier curves, B-Spline curves expressed by quadratic, cubic, or higher order polynomials, quadratic, cubic, or higher order rational polynomials. There is a NURBS curve represented by

例えば、図4の上限波形14を、4つの2次スプライン曲線で分割してモデル化した場合を、図6に示す。ここでは、上限波形14の点列H1〜Hnのうち、変曲点、つまり波形の形状が凸になっているところと凹になっているところの境界となっている点で分割してモデル化した例について示す。1つめの凹形となっているH1〜Hxまでを1つめの2次スプライン曲線Hx(p)で近似し、次の凸形となっているHx〜Hyまでを2つめの2次スプライン曲線Hy(p)で近似し、その次の凹形となっている部分はHyの近傍での非常に小さなものとして無視できるものとし、その次の凸形となっているHy〜Hzまでを3つめの2次スプライン曲線Hz(p)で近似し、最後の凹形となっているHz〜Hnまでを4つめの2次スプライン曲線Hw(p)で近似している。なお、pは時間を示す。   For example, FIG. 6 shows a case where the upper limit waveform 14 of FIG. 4 is modeled by dividing it by four quadratic spline curves. Here, modeling is performed by dividing the inflection point, that is, the boundary between the convex shape and the concave shape in the upper limit waveform 14 point sequence H1 to Hn. An example is shown. The first concave spline curve Hx (p) approximates the first concave H1 to Hx, and the second convex spx curve Hy to the second convex Hx to Hy. (P) is approximated, and the next concave part can be ignored as a very small part in the vicinity of Hy, and the next convex part Hy to Hz is the third. A quadratic spline curve Hz (p) is approximated, and the last concave shape from Hz to Hn is approximated by a fourth quadratic spline curve Hw (p). In addition, p shows time.

1つめの2次スプライン曲線Hx(p)を例として、詳細に説明すると、数式1のAx、Bx、Cxを、H1〜Hxの各点からの誤差が最小となるように決定する。このような誤差が最小となるようなパラメータの算出方法の代表例としては、従来より最小二乗法が知られている。   To explain in detail by taking the first quadratic spline curve Hx (p) as an example, Ax, Bx, and Cx in Formula 1 are determined so that the error from each point of H1 to Hx is minimized. As a representative example of a parameter calculation method that minimizes such an error, a least square method has been conventionally known.

Figure 0005307848
Figure 0005307848

Hx(p)は、製造加工の安定状態での1サイクルの所要時間Tに基づく上限波形の一部分をモデル化したものである。このHx(p)を、安定状態に至っていない製造加工中で集録した計測波形の1サイクルの所要時間Tcに合わせてHx(t)へと拡大する。1サイクルの所要時間をTからTcに合わせて均等に拡大するのであるから、安定状態での製造加工の時間pと、安定状態に至っていない状態での製造加工の時間tとは、数式2の関係式で表すことができる。   Hx (p) models a part of the upper limit waveform based on the required time T of one cycle in the stable state of the manufacturing process. This Hx (p) is expanded to Hx (t) in accordance with the required time Tc of one cycle of the measurement waveform acquired during the manufacturing process that has not reached the stable state. Since the time required for one cycle is increased uniformly from T to Tc, the time p for manufacturing and processing in a stable state and the time t for manufacturing and processing in a state where the stable state has not been reached It can be expressed by a relational expression.

Figure 0005307848
Figure 0005307848

これをHx(p)に代入して数式3を導き出し、このHx(t)を拡大後の2次スプライン曲線とする。すなわち、拡大前の元の数式の2次の項の係数Axに対して(Tc×Tc)/(T×T)をかけたものを拡大後の数式の2次の項の係数とし、拡大前の元の数式の1次の項の係数Bxに対してTc/Tをかけたものを拡大後の数式の1次の項の係数とすればよい。なお、Tc/Tの代わりにm/nを用いても同じことである。   By substituting this into Hx (p), Equation 3 is derived, and this Hx (t) is taken as an enlarged secondary spline curve. That is, a coefficient obtained by multiplying the coefficient Ax of the second-order term of the original mathematical formula before enlargement by (Tc × Tc) / (T × T) is used as the coefficient of the second-order term of the mathematical formula after enlargement. A coefficient obtained by multiplying the coefficient Bx of the first-order term of the original formula by Tc / T may be used as the coefficient of the first-order term of the enlarged formula. Note that the same is true if m / n is used instead of Tc / T.

Figure 0005307848
Figure 0005307848

3次スプライン曲線でモデル化する場合も同様にして、拡大前の元の数式の3次の項の係数に対して(Tc×Tc×Tc)/(T×T×T)をかけたものを拡大後の数式の3次の項の係数とし、拡大前の元の数式の2次の項の係数に対して(Tc×Tc)/(T×T)をかけたものを拡大後の数式の2次の項の係数とし、拡大前の元の数式の1次の項の係数に対してTc/Tをかけたものを拡大後の数式の1次の項の係数とすればよい。   Similarly, when modeling with a cubic spline curve, a coefficient obtained by multiplying the coefficient of the cubic term of the original mathematical formula before enlargement by (Tc × Tc × Tc) / (T × T × T) is used. A coefficient obtained by multiplying the coefficient of the second-order term of the original mathematical formula before enlargement by (Tc × Tc) / (T × T) is used as the coefficient of the third-order term of the mathematical formula after enlargement. The coefficient of the second-order term, and the coefficient of the first-order term of the original mathematical formula before expansion multiplied by Tc / T may be the coefficient of the first-order term of the mathematical formula after enlargement.

その後、計測した波形の各点m個がその拡縮後の数式よりも上にあるか下にあるかを算出することで、拡縮後の上下限波形よりも上にあるか下にあるかを判別すればよい。例えば計測した波形の点Fjについては、その時間(1サイクルの開始からの経過時間)がTjであるから、それに該当する数式Hy(t)を用いて、Ly(Tj)<Fj<Hy(Tj)であるか否かを判別する。   After that, by calculating whether m points of the measured waveform are above or below the scaled formula, it is determined whether it is above or below the scaled waveform. do it. For example, since the time (elapsed time from the start of one cycle) of the measured waveform point Fj is Tj, Ly (Tj) <Fj <Hy (Tj) using the corresponding expression Hy (t). ).

なお、計測波形のm点を、良否判定基準用の上下限波形と同じn点に縮小してバンド比較する方法は、検査精度の観点から好ましくない。なぜならば、計測波形の点数を縮小するということは、計測波形に対して一種の平均化処理を行うことであるから、本来検出されなければならない異常点も、この縮小処理(平均化処理)によって埋もれてしまい、検出されなくなる場合があるからである。   Note that the method of comparing the bands by reducing the m points of the measurement waveform to the same n points as the upper and lower limit waveforms for pass / fail judgment criteria is not preferable from the viewpoint of inspection accuracy. This is because reducing the number of points in a measurement waveform means performing a kind of averaging process on the measurement waveform, so that abnormal points that must be detected are also reduced by this reduction process (averaging process). This is because they may be buried and may not be detected.

1 検査装置、 2 マイクロプロセッサ、
3 データ格納メモリ、 4 操作入力部、
5 データ保存部、 6 信号入力部、
7 信号出力部、 8 操作表示部、
9 製造加工装置、 10 制御部、
11 制御指令、 12 製造加工状態、
13 状態検出部、 14 上限波形、
15 下限波形、 16 波形集録処理、
17 計測波形、 18 点数m、
19 拡大縮小処理、 20 バンド比較処理、
21 判定結果。
1 inspection device, 2 microprocessor,
3 data storage memory, 4 operation input section,
5 Data storage unit, 6 Signal input unit,
7 signal output section, 8 operation display section,
9 Manufacturing processing equipment, 10 Control part,
11 Control command, 12 Manufacturing process state,
13 state detector, 14 upper limit waveform,
15 lower limit waveform, 16 waveform acquisition processing,
17 Measurement waveform, 18 points m,
19 Enlargement / reduction processing, 20 Band comparison processing,
21 Judgment result.

Claims (4)

信号入力部と、記憶部とを備え、前記信号入力部が入手した、同じ状態変化が繰り返される製造加工の1サイクルの信号を、一定のサンプリング間隔で集録する波形集録処理部を備え、前記波形集録処理部によって集録された計測波形を、前記記憶部が記憶している良否判定基準用の上限波形及び下限波形と比較して製品の良否を判定する比較処理部を備える検査装置において、前記計測波形の1サイクルの所要時間に基づいて、前記良否判定基準用の上限波形及び下限波形を時間軸に対して拡大または縮小処理する拡大縮小処理部を備えると共に、前記良否判定基準用の上限波形及び下限波形は、1つのk次の多項式、または、2つ以上のk次の多項式の組み合わせの形態で記憶され、前記基準波形拡大または縮小処理は、前記計測波形の1サイクルの所要時間と、前記良否判定基準用の上限波形及び下限波形の所要時間の比に基づいて、k次の多項式の係数を変更することにより、k次の多項式で表される前記良否判定基準用の上限波形及び下限波形を拡大または縮小し、前記比較処理は、前記計測波形の点列の各点と、前記多項式とを比較して特性判定することを特徴とする検査装置。 A waveform input processing unit that includes a signal input unit and a storage unit, and acquires a signal of one cycle of a manufacturing process that is obtained by the signal input unit and repeats the same state change at a constant sampling interval; In the inspection apparatus including the comparison processing unit that determines the quality of the product by comparing the measurement waveform acquired by the acquisition processing unit with the upper limit waveform and the lower limit waveform for the quality determination criterion stored in the storage unit, And an enlargement / reduction processing unit for enlarging or reducing the upper / lower waveform for the pass / fail judgment criterion with respect to the time axis based on a time required for one cycle of the waveform, and an upper limit waveform for the pass / fail judgment reference, The lower limit waveform is stored in the form of one k-th order polynomial or a combination of two or more k-th order polynomials, and the reference waveform enlargement or reduction process is performed on the measured waveform. The pass / fail judgment criterion represented by the k-th order polynomial is changed by changing the coefficient of the k-th order polynomial based on the ratio of the required time of the cycle and the time required for the upper / lower waveform for the pass / fail judgment criterion. An inspection apparatus characterized in that the upper limit waveform and the lower limit waveform are enlarged or reduced, and the comparison process performs characteristic determination by comparing each point of the point sequence of the measurement waveform with the polynomial . 信号入力部と、記憶部とを備え、前記信号入力部が入手した、同じ状態変化が繰り返される製造加工の1サイクルの信号を、一定のサンプリング間隔で集録する波形集録処理部を備え、前記波形集録処理部によって集録された計測波形を、前記記憶部が記憶している良否判定基準用の上限波形及び下限波形と比較して製品の良否を判定する比較処理部を備える検査装置において、前記計測波形の1サイクルの所要時間に基づいて、前記良否判定基準用の上限波形及び下限波形を時間軸に対して拡大または縮小処理する拡大縮小処理部を備えると共に、前記良否判定基準用の上限波形及び下限波形は、1つのk次の多項式、または、2つ以上のk次の多項式の組み合わせの形態で記憶され、前記基準波形拡大または縮小処理は、前記計測波形の点数mと、前記良否判定基準用の上限波形及び下限波形の点数nの比に基づいて、k次の多項式の係数を変更することにより、k次の多項式で表される前記良否判定基準用の上限波形及び下限波形を拡大または縮小し、前記比較処理は、前記計測波形の点列の各点と、前記多項式とを比較して特性判定することを特徴とする検査装置。A waveform input processing unit that includes a signal input unit and a storage unit, and acquires a signal of one cycle of a manufacturing process that is obtained by the signal input unit and repeats the same state change at a constant sampling interval; In the inspection apparatus including the comparison processing unit that determines the quality of the product by comparing the measurement waveform acquired by the acquisition processing unit with the upper limit waveform and the lower limit waveform for the quality determination criterion stored in the storage unit, And an enlargement / reduction processing unit for enlarging or reducing the upper / lower waveform for the pass / fail judgment criterion with respect to the time axis based on a time required for one cycle of the waveform, and an upper limit waveform for the pass / fail judgment reference, The lower limit waveform is stored in the form of one k-th order polynomial or a combination of two or more k-th order polynomials, and the reference waveform enlargement or reduction process is performed on the measured waveform. By changing the coefficient of the k-th order polynomial based on the ratio of the number m and the point n of the upper and lower waveform for the quality judgment criterion, the quality judgment criterion for the quality judgment criterion represented by the k-th order polynomial is changed. An inspection apparatus characterized in that an upper limit waveform and a lower limit waveform are enlarged or reduced, and the comparison process performs characteristic determination by comparing each point of the sequence of points of the measurement waveform with the polynomial. 前記1サイクルは、同じ制御が繰り返される製造加工の状態の1サイクルであって、前記製造加工が、周期を持つ機構に基づいて制御され、かつ、製造加工の開始時における前記機構の周期と、製造加工の開始から時間経過した後の前記機構の周期とが、一定しない製造加工であることを特徴とする請求項1または2に記載の検査装置。 The one cycle is one cycle of a manufacturing process state in which the same control is repeated, and the manufacturing process is controlled based on a mechanism having a cycle, and the period of the mechanism at the start of the manufacturing process, The inspection apparatus according to claim 1 or 2 , wherein a period of the mechanism after a lapse of time from the start of the manufacturing process is a non-constant manufacturing process. 前記機構は、回転機構であることを特徴とする請求項に記載の検査装置。 The inspection apparatus according to claim 3 , wherein the mechanism is a rotation mechanism.
JP2011099282A 2011-04-27 2011-04-27 Inspection device Expired - Fee Related JP5307848B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011099282A JP5307848B2 (en) 2011-04-27 2011-04-27 Inspection device
KR1020110100671A KR101260169B1 (en) 2011-04-27 2011-10-04 Inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099282A JP5307848B2 (en) 2011-04-27 2011-04-27 Inspection device

Publications (2)

Publication Number Publication Date
JP2012230043A JP2012230043A (en) 2012-11-22
JP5307848B2 true JP5307848B2 (en) 2013-10-02

Family

ID=47431696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099282A Expired - Fee Related JP5307848B2 (en) 2011-04-27 2011-04-27 Inspection device

Country Status (2)

Country Link
JP (1) JP5307848B2 (en)
KR (1) KR101260169B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958471B2 (en) * 2018-04-20 2021-11-02 オムロン株式会社 Control device and control method
JP2022182123A (en) 2021-05-27 2022-12-08 パナソニックIpマネジメント株式会社 Processing process monitoring device and processing process monitoring method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105175A (en) * 1987-10-19 1989-04-21 Hioki Ee Corp Displaying method on waveform display screen for waveform decision device
US4912661A (en) * 1987-12-01 1990-03-27 Hewlett-Packard Company Tracking and resampling method and apparatus for monitoring the performance of rotating machines
JP3215722B2 (en) * 1992-08-14 2001-10-09 エヌイーシー三菱電機ビジュアルシステムズ株式会社 Measurement waveform judgment method
JP3444074B2 (en) * 1996-01-18 2003-09-08 日産自動車株式会社 Operating state monitor of machine powered by motor and abnormality diagnosis method of machine powered by motor
JP4686000B2 (en) * 1999-11-30 2011-05-18 日置電機株式会社 Power meter waveform judgment method
JP4103029B2 (en) * 2001-05-18 2008-06-18 有限会社 ソフトロックス Process monitoring method
JP2005274370A (en) * 2004-03-25 2005-10-06 Hioki Ee Corp Waveform determination device and method for displaying waveform determination information on display screen
JP2009211589A (en) * 2008-03-06 2009-09-17 Toshiba Corp Method of manufacturing product, manufacturing system, and program
JP5525144B2 (en) * 2008-06-23 2014-06-18 日置電機株式会社 Waveform determination apparatus and time axis position adjustment method in the waveform determination apparatus
JP2011060168A (en) * 2009-09-14 2011-03-24 Toshiba Corp Monitoring device

Also Published As

Publication number Publication date
KR101260169B1 (en) 2013-05-06
KR20120121821A (en) 2012-11-06
JP2012230043A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP2022179757A (en) Design tolerance correction method and measurement system
US9639656B2 (en) Machining simulation device and method
JP5307848B2 (en) Inspection device
TW201408423A (en) Method for estimating the rotational speed of a tool mounted on a rotating spindle of a machine tool
CN109118476B (en) Method and device for detecting integrity of edge profile of part
EP3819806A1 (en) System, apparatus and method for estimating life of components
US9792741B2 (en) Method of estimation on a curve of a relevant point for the detection of an anomaly of a motor and data processing system for the implementation thereof
JP5950728B2 (en) Equivalent circuit analysis apparatus and equivalent circuit analysis method
CN110849406B (en) Measuring and calibrating method, device and equipment of encoder and storage medium
JP6509841B2 (en) Automatic test system, method of operating the same system, and apparatus for the same system
CN109093013B (en) Edge covering forming method and device
CN107991003B (en) Test method, device, equipment and the storage medium of temperature sensor time constant
JP5419921B2 (en) Inspection device
CN103808262A (en) Simulation mold repair method for multi-hole product holes
CN115855165A (en) Multi-dimensional precision point inspection method and system for thermal power equipment
CN103810098A (en) Evaluation of resizing capability of web browser
Jermak et al. Measurement system for assesment of motor cylinder tolerances and roundness
Mutambi et al. Application of digital image analysis method in metric screw thread metrology
JP2005208735A (en) Method for simulation of gear geometry
Sinha Efficient wall thickness analysis methods for optimal design of casting parts
US9395268B2 (en) Method and system to tolerance test a component
JP7075608B1 (en) Gear accuracy evaluation method and evaluation device
TWI795719B (en) data processing device
US20210390227A1 (en) Generation method, estimation method, generator, and estimator
JP2009134518A (en) Verification method for test program, and verification system therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R151 Written notification of patent or utility model registration

Ref document number: 5307848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees